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Reports from

the Frontier

edited by Scott Cushing,
Interface Contributing Editor

This feature is intended to let ECS award-winning students and post-docs write primary
author perspectives on their field, their work, and where they believe things are going. This
month we highlight the work of both Grace Lindquist, the ETD Graduate Student Award
Winner, and Matthew J. Liu, the IEEE Student Achievement Award Winner.

Electrifying Chemical Transformations
and Separations to Valorize Wastewater Nitrogen

by Matthew J. Liu and William A. Tarpeh

mmonia (NH;) is an essential compound to modern
society, underpinning fertilizer production and chemical
manufacturing. Ammonia is also being considered as a
hydrogen carrier that can be produced from renewable
energy; liquified, stored, and transported readily; and
utilized for energy without direct carbon dioxide (CO,) emission.'-
Global ammonia demand currently exceeds 150 million tons a year
(market value 70 billion USD) and is projected to increase over 2%
annually.>*> Over 96% of ammonia is currently generated through
the Haber-Bosch (HB) process, in which steam-reformed hydrogen
(H,) reacts with nitrogen (N,) under reaction conditions (400-500 °C,
100-200 atm) that consume 1-2% of global energy and contribute
1.2-1.4% of anthropogenic CO, emissions every year.>>¢
In an environmental context, ammonia is a form of reactive
nitrogen. Large amounts of reactive nitrogen, such as HB ammonia,
accumulate in the biosphere because 80% of wastewater globally
is discharged without treatment.” The resulting skew in the global
nitrogen cycle leads to imbalanced ecosystems and threatens water
quality; damages from reactive nitrogen emissions to freshwater
alone (including algal blooms and drinking water pollution) cost
billions of dollars annually in the United States.*® Conventional water
treatment removes reactive nitrogen by converting it to N, (biological
nitrification—denitrification); at HB facilities, the N, is then cycled
back to produce ammonia. Directly valorizing reactive nitrogen in
waste streams would shortcut the use of N, as an intermediate in
water remediation and ammonia production, allowing savings in
energy, emissions, and costs. Indeed, treating nitrogen as a resource
to recover rather than simply a pollutant to remove aligns with the
US National Academy of Engineering’s call to manage the nitrogen
cycle, a challenge central to chemical manufacturing and ecosystem
protection.!*12
Two forms of reactive nitrogen dominate aqueous nitrogen
emissions: ammonium (NHj) and nitrate (NOj3). In the context
of ammonia recovery, wastewater ammonium can be recovered
through processes that selectively separate it from other wastewater
constituents. Meanwhile, wastewater nitrate can be recovered as
ammonia through a selective reduction reaction followed by a
selective separation process. Catalysis has traditionally preceded
separations in chemical manufacturing schemes, with the two
processes being viewed and developed separately.'*!4 Use of impaired
feedstocks such as wastewaters has created new opportunities to co-
locate selective reactions with selective separations.'>2°
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We define a reactive separation process as an integration of
reaction and separation imposed at the system, unit process, or
molecular scale, with a particular focus on the unit process scale in
this report. Reactive separations can enhance process intensification,
process control, and energy consumption in wastewater treatment and
valorization. Electricity provides a tunable driving force for reactive
separation processes: potential differences control the free energy
changes in the electrochemical system while the current controls
the electrochemical reaction rate.?’ As a result, electrochemical
processes enable thermodynamic and kinetic control over multiple
length and time scales. In addition, electrochemical processes can
be implemented in decentralized settings, which may complement
the often-decentralized nature of water treatment and nitrogen
pollution. For these reasons, we anticipate that electrochemists and
electrochemical engineers can uniquely and meaningfully contribute
to nitrogen use practices—both separations and reactions.

Electrochemical
Separation Approaches

Selective separations demix solutes using driving forces such
as temperature, pressure, and electrochemical gradients.”* Fig. 1
shows electrochemical stripping, a process that uses electrochemical
driving forces to recover >93% of wastewater NH; based on charge
and volatility. Ammonium-rich wastewater is fed into the anode
chamber (left chamber). The anode and cathode chamber are
separated by a cation exchange membrane to allow electromigration
of ammonium into the cathode chamber. The catholyte basifies
to an alkaline pH (typically 10.5-11.5) that can be tuned through
the applied current, thereby avoiding the need for direct chemical
input (e.g., of sodium hydroxide to basify the solution). As a result,
ammonium deprotonates to ammonia (pK, ~ 9.25), which is a volatile
species. Over time, high ammonia vapor pressure builds up in the
cathode chamber. The cathode and trap chamber are separated by
a hydrophobic gas permeable membrane (e.g., polypropylene)
to allow volatilized ammonia to diffuse to the trap chamber for
collection. For example, sulfuric acid can be used such that high-
purity ammonium sulfate, a commodity fertilizer, is generated.???°
Traditionally, ammonia stripping has been employed to treat
ammonium-rich wastewater. The treatment process is predicated on
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Fi1G. 1. Electrochemical stripping reactor. A cation exchange membrane
separates the anode and cathode chamber, and a gas permeable membrane
separates the cathode and trap chamber. Hydrogen evolution in the cathode
chamber produces an alkaline environment, allowing ammonia to diffuse
across the gas permeable membrane into the trap chamber. Ammonia

in the trap chamber protonates to ammonium, maintaining an ammonia
concentration gradient between the cathode and trap chambers.

the need for centralized infrastructure that collects wastewater for
treatment. However, wastewater is often generated and collected in
a distributed fashion, creating a need for self-sufficient processes
such as electrochemical stripping that can treat water on-site while
generating ammonia in a distributed manner. Electrochemical
membrane reactors such as electrochemical stripping can therefore
act as reactive separations platforms to recover high-purity ammonia
from ammonium-rich wastewaters and/or nitrate-rich wastewaters.

Electrochemical Reaction Approaches

Electrocatalysts mediate the transfer of electrons through a catalyst
active site, enabling electrochemical redox reactions to occur with
increased reaction rate, energy efficiency, and/or product selectivity.?
Implementation of an ammonia-selective nitrate reduction reaction
(NO;RR) catalyst in the cathode chamber of electrochemical
stripping could allow simultaneous water treatment and electrified
ammonia manufacturing.

NO; +8¢ +9H" — NH, +3H,0

NO,RR electrocatalysts consist largely of heterogeneous, metallic
catalysts such as single metals (e.g., Pt, Pd, Cu, Ti),””*® alloys (e.g.,
CuNi, PtRu),?*3* and core—shell nanoparticles (e.g., Ru—oxygen-
doped-Ru, Cu/CuO,—~Co/Co00).3"> However, the surface structures
of these electrocatalysts are difficult to control at an atomic level
and they tend to restructure under reaction conditions, making it
challenging to isolate the contributions of different surface species
to reactivity. For example, titanium, an inexpensive and abundant
metal, has been identified as a robust electrocatalytic material for
NO,RR.?® The reasons underlying the catalytic performance of
titanium remain unclear, especially regarding the role of near-surface
titanium hydride (TiH,, 0 <x <2), a water-stable titanium species that
electrochemically forms under protic, reducing conditions.*

We overcame the obstacle of linking catalytic performance
with surface structure by combining systematic synchrotron X-ray
characterization of Ti electrodes with electrochemical testing (Fig. 2).
Through ex situ grazing-incidence X-ray diffraction (GIXRD) and
total electron yield X-ray absorption spectroscopy (TEY XAS)
measurements, we demonstrated that near-surface TiH, formation
begins at NO,RR potentials < —0.4Vy, and that TiH, dominates
near-surface speciation < —0.8Vy,;. For a fixed applied potential,
increasing NO,RR duration promotes near-surface TiH, formation,
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though to a lesser extent than varying the potential. These results
informed an electrochemical treatment method of Ti to produce TiH,/
Ti electrodes. Controlled potential electrolysis of unamended Ti
electrodes vs. TiH,/Ti demonstrated that at all the tested potentials
(—0.4,-0.6,-0.8,and —1.0 V), the rate-determining and selectivity-
determining steps of NO,RR were unaffected by the initial near-
surface structure.?* These findings therefore helped decouple hydride
formation from NO,;RR performance under a variety of reaction
durations and applied potentials, which are parameters that may need
to be varied to formulate different value-added products on-demand
and to remove pollutants to threshold values. In a follow-up study,
we found that mass transport effects on interfacial electrolyte pH and
solute concentrations played a more impactful role than near-surface
structure in regulating NO;RR activity and selectivity.’® The influence
of electrolyte properties on NO,RR was especially salient to the
context of water treatment, which involves the need to accommodate
various wastewater compositions.

Outlook

Ammonia synthesis in the 21% century will be a multifaceted effort
that needs to fulfill several goals relating to energy, the environment,
and resource equity. First, methods of ammonia synthesis must be
increasingly coupled with renewable energy. For example, ammonia
could be produced in electrolysis cells powered by electricity from
solar or wind energy. According to the US Department of Energy
(DOE), electrochemical technologies must operate at current
densities >300 mA cm while maintaining energy efficiencies >60%
and faradaic efficiencies >90% to be economically viable options
for carbon-neutral fuel production (fuel energy cost <$0.3 kWh').3¢
Current state-of-the-art electrochemical ammonia synthesis systems,
whether by N, by NOj reduction, can typically achieve one or
perhaps two of these metrics,**”-® but rarely all three. The technology
readiness level (TRL) of electrochemical ammonia synthesis remains
at an estimated TRL 1-3,° meaning that the most mature technologies
remain experimental proofs of concept. Substantial work at the
intersection of electrocatalyst and electrochemical engineering
research, design, and scale-up will help guide electrochemical
technologies toward achieving the metrics prescribed by the DOE.

The second goal of 21* century ammonia synthesis is to respond to
quality-of-life needs, especially in the context of resource equity. The
infrastructure needed for HB production plants requires large capital
investment, which favors economies of scale.’® As a result, HB pro-
duction plants are concentrated in North America and in Western Eu-
rope, leading to inequitable distribution and pricing of HB ammonia
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F16. 2. Ex situ synchrotron X-ray characterization of the titanium
electrode near-surface. Grazing-incidence X-ray diffraction (GLIXRD)
characterizes the long-range, crystalline structure of the near-surface while
X-ray absorption spectroscopy (XAS) gives insight into the short-range,
local Ti coordination environment of the near-surface (e.g., coordination
number and interatomic distance). We developed quantitative relationships
between near-surface titanium hydride content and various NO;RR durations
and applied potentials, allowing us to better decouple the formation of
titanium hydride from NO;RR performance. Adapted with permission

from M. J. Liu et al., J. Am. Chem. Soc., 144, 5739-5744 (2022). © 2022
American Chemical Society.
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around the world.** Electrochemical methods of ammonia synthesis
can enable distributed manufacturing of ammonia, where modular
process units can leverage distributed feedstocks to deliver products
at the source. In this way, technological and economic barriers to ac-
cessing ammonia as a resource can be lowered.

The third goal for 21% century ammonia synthesis is to address
rather than exacerbate environmental remediation. As we discussed
in this report, NO;RR represents an avenue through which water can
be simultaneously treated with ammonia generation and recovery.
Wastewater can be utilized as a feedstock beyond NO;RR to enable
transformations of inorganic nitrogen across the entire oxidation state
of nitrogen.** We envision that fugitive reactive nitrogen emissions
of all forms can be converted to high-purity ammonia and recovered,
or vice-versa. Such flexibility would allow wastewater to transition
from being a waste stream to a valuable feedstock from which tun-
able and on-demand methods of chemical manufacturing can be uti-
lized to mine the water for maximal value before discharge.'

In his Nobel Prize acceptance speech in 1919, Fritz Haber said of
his ammonia synthesis process: “It may be that this solution is not
the final one.”! Indeed, the science, technology, economics, policy,
and equity surrounding ammonia synthesis and nitrogen management
will continue to evolve in the 21* century. Amidst these multifaceted
changes, electrochemists and electrochemical engineers are uniquely
positioned to contribute to the opportunities of coupling ammonia
synthesis with nitrogen management.
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