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ABSTRACT

We study dynamics of a generic quadratic diffeomorphism, a 3D generalization of the planar Hénon map. Focusing on the dissipative, orien-
tation preserving case, we give a comprehensive parameter study of codimension-one and two bifurcations. Periodic orbits, born at resonant,
Neimark–Sacker bifurcations, give rise to Arnold tongues in parameter space. Aperiodic attractors include invariant circles and chaotic orbits;
these are distinguished by rotation number and Lyapunov exponents. Chaotic orbits include Hénon-like and Lorenz-like attractors, which
can arise from period-doubling cascades, and those born from the destruction of invariant circles. The latter lie on paraboloids near the local
unstable manifold of a fixed point.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0103436

Since Hénon’s observation of strange, chaotic attractors in
his eponymous two-dimensional map,1 this quadratic map has
become a pivotal model to understand chaotic dynamics in the
plane.2,3 It is of much interest to understand the dynamics of
higher-dimensional generalizations of this map as models for
the onset and development of chaotic dynamics. As a prototyp-
ical model, we study the so-called 3D generalized Hénon map,4

which is a quadratic normal form for several bifurcation sce-
narios. Building upon previous work, we study the periodic and
aperiodic dynamics of this map using a variety of visualizations
in both parameter and phase space. For example, Arnold tongues,
or resonant regions, in parameter space correspond to attracting
periodic orbits in phase space. We compute heteroclinic trajecto-
ries between orbits in the tongues as well as in period-doubling
cascades. We also follow the evolution of invariant circles as they
bifurcate, some of which can become complex chaotic attractors.

I. INTRODUCTION

The two-dimensional Hénon map1 is the quadratic diffeomor-
phism of the plane: every such diffeomorphism is conjugate to a map
in the two-parameter Hénon family. Prominent rigorous results for
this diffeomorphism include that of Devaney and Nitecki,5 who
showed that the dynamics of its bounded orbits are conjugate to a

Smale horseshoe in some parameter regimes, and that of Benedicks
and Carleson,6 who showed that when the Jacobian is sufficiently
small, there are cases for which the map has a transitive attractor
with a positive Lyapunov exponent. It was also shown that the horse-
shoe in this map can be thought of as arising from an anti-integrable
limit, where the dynamics becomes non-deterministic.7

Some of these results have been generalized to higher-
dimensional maps. For the three-dimensional (3D) case, it was
shown in Ref. 8 that every quadratic diffeomorphism with a
quadratic inverse is conjugate to the map L : R3 → R3,

L(x, y, z) = (δz + G(x, y), x, y),

G(x, y) = α + τx − σy + ax2 + bxy + cy2.
(1)

This analysis was later generalized to include 3D quadratic diffeo-
morphisms that have quartic inverses9 and to higher dimensions.10

The diffeomorphism (1) arises as a normal form in the volume-
preserving (δ = 1) case near a fixed point with three unit
multipliers.11,12 It has also been shown to be a normal form near
a map with a saddle-focus fixed point that has a quadratic homo-
clinic tangency.4,13 The theory of anti-integrability also applies to
these maps when α → −∞; see, e.g., Ref. 14.

The map L has seven parameters, six in the quadratic polyno-
mial G and δ = det DL, the Jacobian determinant. This parameter
set can be reduced, as noted in Ref. 8: whenever a + b + c $= 0 and
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2a + b $= 0 (if one of these is violated, other scaling transforma-
tions can be found to eliminate two of the parameters), an affine
coordinate transformation allows one to set

a + b + c = 1 and τ = 0. (2)

Using this simplification, (1) depends only on (α, σ , a, c) and the
Jacobian δ.

The case (a, b, c) = (1, 0, 0) has been called “the 3D Hénon
map” since it only has one nonlinear term similar to the clas-
sical Hénon map.1 In a series of papers starting with Refs. 4
and 13, Gonchenko and collaborators focus on the formation
of chaotic attractors for this map (in their notation, M1 = −α,
B = δ, M2 = −σ ). These attractors are shown to be “wild hyper-
bolic” (nearby maps have Newhouse tangencies between stable and
unstable manifolds15) near the parameters (α, σ , δ) = ( 1

4
, −1, 1),

where a pair of fixed points are born with multipliers (−1, −1, 1).
These attractors are also “pseudo-hyperbolic” (its tangent space
splits into a strong stable subspace and a complementary subspace
that exponentially expands volume), such as like the Lorenz attrac-
tor, implying that every orbit in the attractor has at least one positive
and one negative Lyapunov exponent. According to Ref. 16, there
are five types of such attractors formed from the unstable manifold
of a fixed point, including “Lorenz-like” and several “figure-eight”
attractors.17 Moreover, there are infinite cascades in the parame-
ter space of nearby systems with Lorenz-like attractors.18 Chaotic
attractors for the non-orientable case have also been studied.19

Following Gonchenko et al., we will primarily study the 3D
Hénon case using the scaling (2) and taking 0 < δ < 1 so that the
map is volume contracting and orientation preserving. We focus on
two examples:

(SC) Strongly Contracting: (a, c, δ) = (1, 0, 0.05),
(MC) Moderately Contacting: (a, c, δ) = (1, 0, 0.7),

allowing (α, σ ) to vary. In Sec. II, we recall basic bifurcation behav-
ior of periodic orbits for a 3D map using the trace and second trace
of the Jacobian. These bifurcation conditions are transformed to
conditions on (α, σ ) for the fixed points of (1) in Sec. III. A similar
bifurcation criterion was obtained for the 3D Hénon map in Ref. 20
for the case that σ = δ, as well as in Ref. 21 when σ = 0 for three
and more dimensions. In Sec. IV, we prove that all bounded orbits
of the 3D Hénon map lie within a finite cube about origin, following
the proof of a related theorem in Ref. 8.

The simplest bounded orbits are stable and periodic. Parame-
ter regions in the (α, σ )-plane containing such attractors, analogous
to Arnold tongues, are computed in Sec. V, where we also com-
pute heteroclinic manifolds between stable and unstable orbits. In
Sec. VI, we study aperiodic attractors, computing the maximal Lya-
punov exponent to distinguish between regular and chaotic cases.
Regular aperiodic attractors come in the form of invariant circles,
which we study in Sec. VI A expanding upon the volume-preserving
case studied in Ref. 12. In Sec. VI B, we find Hénon-like attractors for
case (SC) and discrete, Lorenz-like attractors22 for case (MC). Addi-
tionally, we observe chaotic attractors arising from bifurcations of
invariant circles that are unlike those in Refs. 23 and 24; these also
do not seem to be related to the generalizations of Smale’s horseshoe
to 3D found by Ref. 25.

II. BIFURCATIONS FOR 3D MAPS

For a fixed point ξ ∗ = f(ξ ∗) of a 3D map f, the eigenvalues of
the Jacobian A = Df(ξ ∗) are given by the zeros of a characteristic
polynomial,

pA(λ) = det(λI − A) = λ3 − tλ2 + sλ − d. (3)

We refer to these as the multipliers of the fixed point. Here,
t = tr(A) is the trace and d = det(A). An expression for the “sec-
ond trace,” s, can be obtained from the Cayley–Hamilton theorem:
a matrix satisfies its own characteristic polynomial, A3 − tA2 + sA
− dI = 0. Multiplying this by A−3 implies that s = dtr(A−1). Finally,
multiplying the Cayley polynomial by A−1 and taking the trace gives

s = 1
2

(

t2 − tr(A2)
)

. (4)

Of course, the multipliers can be related to the coefficients of (3) by
the symmetric polynomials,

t = λ1 + λ2 + λ3,

s = λ1λ2 + λ1λ3 + λ2λ3,

d = λ1λ2λ3.

(5)

More generally, for an orbit, ξt = f(ξt−1), that has period n,
ξ0 = f n(ξ0), the Jacobian becomes

A = Dfn(ξ0) = Df(ξn−1)Df(ξn−2), . . . , Df(ξ1)Df(ξ0).

Thus, using the same process as above, we can find a general
expression for the trace and second trace of a period-n orbit,

t = Tr(Dfn), s =
1

2

(

t2 − Tr
(

(Dfn)2)) .

Following Ref. 26, the simplest, local codimension-one
bifurcations—saddle-node, period-doubling, and Neimark–
Sacker—occur when at least one multiplier has unit modulus. Each
of these occurs on a surface in (t, s, d), given in Table I. Sections
through these surfaces for four values of d are shown in Fig. 1; sim-
ilar figures can be found in Ref. 8 for the case d = 1 and in Ref. 16,
where they are referred to as “saddle-charts.”

Saddle-node (SN) bifurcations require a unit multiplier so that
(3) gives pA(1) = 1 − t + s − d = 0. This corresponds to a line in
the (t, s)-plane, shown in blue in Fig. 1. A period-doubling (PD)
bifurcation occurs when there is a −1 multiplier or pA(−1) = −1
− t − s − d = 0, shown in red in Fig. 1. The third codimension-one
bifurcation, the Neimark–Sacker (NS), occurs when there is a pair
of complex multipliers with a unit modulus; it generically results
in the creation of an invariant circle or a pair of periodic orbits
with differing stabilities. Since |λ1,2| = 1, (5) gives λ3 = d so that
pA(d) = d(d2 − td + s − 1) = 0. The resulting line, s = d(t − d)
+ 1, is shown in black in Fig. 1. Solving for the complex multipliers
gives

λ1,2 = e±2π iω = 1
2

(

t − d ±
√

(t − d)2 − 4

)

(6)

or that t − d = 2 cos(2πω) for rotation number ω.
Some codimension-two bifurcations occur along the NS line

when ω = p
q

and generically result in the birth of a pair of period-q

orbits. The end points of the NS line occur where it intersects the
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TABLE I. Local bifurcations for a 3Dmap with Jacobian d, trace t, and second trace s. For each d, codimension-one bifurcations lie on lines in the (t, s) plane and codimension-two
bifurcations at points. Since λ1λ2λ3 = d, for the NS and resonant bifurcations, λ3 = d, and for SNf, λ3 = −d.

CoD Bifurcation Multiplier (t, s)

1 Saddle-node (SN) λ1 = 1 (t, t + d − 1)
Period-doubling (PD) λ1 =−1 (t, − t − d − 1)
Neimark–Sacker (NS) λ1,2 = e±2π iω (d + 2cos (2πω), 2dcos (2πω) + 1)

2 ω = 0
1

(R1) λ1,2 = 1 (d + 2, 2d + 1)

ω = 1
2

(R2) λ1,2 = −1 (d − 2, 1 − 2d)

ω = 1
3

(R3) λ1,2 = e±2π i/3 (d − 1, 1 − d)

ω = 1
4

(R4) λ1,2 =±i (d, 1)
Saddle-node flip (SNf) λ1 = 1, λ2 =−1 ( − d, − 1)

SN and PD lines at ω = 0 and ω = 1
2
, labeled (R1) and (R2), respec-

tively, in Table I. The table also shows the period-three (R3) and
period-four (R4) cases. Finally, the saddle-node flip (SNf) bifurca-
tion point, with multipliers (−1, 1, −d), is at the intersection of the
PD and SN lines.

A curve in parameter space along which there is a double multi-
plier, say λ1 = λ2 = r, for r ∈ R, corresponds to the transition from
real to complex multipliers. Using (5), this occurs when λ3 = d/r2

along the parametric curve

(t, s) =
(

d

r2
+ 2r, 2

d

r
+ r2

)

. (7)

This curve has two branches when d $= 0, one of which has a cusp at
r3 = d, i.e., at (t, s) = 3(d1/3, d2/3). When r = 1, this curve is tangent
to the SN line and crosses the R1 point, and when r = −1, the curve
is tangent to the PD line and crosses the R2 point. Four segments of
these curves, labeled by ranges of the double multiplier, are shown
in Fig. 1.

We also include representative configurations of the multipli-
ers in the complex plane relative to the unit circle for each region of
the (t, s) plane in Fig. 1. For 0 ≤ d < 1, there exists a small triangu-
lar region with all stable multipliers (|λi| < 1) that is bounded by the
SN, PD, and NS lines with vertices R1, R2, and SNf. Otherwise, the
SN and PD lines divide the plane into four regions where stability
types of the multipliers of the fixed points alternate between having
one unstable and two stable multipliers and two unstable and one
stable multiplier.

III. FIXED POINTS OF THE QUADRATIC MAP

We now apply the results of Sec. II to fixed points of (1) with
parameter convention (2). The fixed points have the form ξ± =
(x±, x±, x±), where

x± = 1
2
(σ − δ + 1) ±

√
αSN − α,

αSN ≡
1

4
(σ − δ + 1)2,

(8)

provided α ≤ αSN. These are born in a saddle-node bifurcation
when α = αSN with x2

± = x2
SN = αSN. Thinking of α as a bifurca-

tion parameter, the form (8) implies that there is a fixed point at
x∗, say, when α = α∗ ≤ αSN whenever (x∗ − xSN)2 = αSN − α∗ or,

equivalently, when

α∗ = x∗(2xSN − x∗). (9)

The stability of the fixed points is determined by the lineariza-
tion of (1),

DL =





2ax + by −σ + bx + 2cy δ
1 0 0
0 1 0



 .

This is in a companion form, implying that at a fixed point, the trace
and second trace are

t±=(2a + b)x±, s±=σ − (b + 2c)x±, (10)

and the Jacobian is d = δ.
The fixed points lie on a line in the (t, s)-plane that can be found

by eliminating x± and b from (10),

(1 + a − c)(s±−σ ) = −(1 − a + c)t±, (11)

and are born at the intersection of this line with the SN line from
Table I,

tSN = 1
2
(σ − δ + 1)(1 + a − c).

Moreover, (10) gives

s±−t±−δ + 1 = σ − δ + 1 − 2x±= ∓ 2
√

αSN − α.

Since x− < xSN < x+, this implies that x+ lies below and x− above
the SN line in the (t, s) plane. Therefore, when 0 ≤ δ < 1, if there
exists an attracting fixed point, it must be ξ−.

Using the equations for the SN and PD lines in Table I, the fixed
points are born above the PD line when tSN > −δ or

(δ − σ − 1)(1 + a − c) < 2δ.

Provided a $= c, one of the fixed points undergoes a period-
doubling bifurcation at

xPD =
σ + δ + 1

2(c − a)
. (12)

An expression for the period-doubling value of α is obtained from
(9): αPD = xPD(2xSN − xPD). Note that for a fixed point to “double,”
it needs to exist; thus, we must have αPD ≤ αSN. In addition, when

Chaos 32, 113127 (2022); doi: 10.1063/5.0103436 32, 113127-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Codimension-one and two bifurcations in the (t, s)-plane for d = 0, d = 0.05, d = 0.5, and d = 1. The double-multiplier curves (7) and irrational NS points for

ω = (
√
5 − 1)/2 (Rg) and ω = 1/

√
2 (Rs) for the golden and silver means, respectively, are also shown. Behavior at irrational points along the NS line will be discussed

in Sec. VI. The insets show the complex plane with representative multiplier locations relative to the unit circle.
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FIG. 2. Bifurcation curves for the fixed point ξ− of (1) for the case (SC) (δ = 0.05) and (MC) (δ = 0.7) as (α, σ ) vary. The fixed points do not exist to the right of the SN

line, i.e., in the gray region. The double-multiplier curves (7) are shown for |r| >
√

δ, as this range corresponds to a double multiplier for ξ−; see the Appendix for details.

xPD < xSN, the ξ− fixed point doubles, and when xPD > xSN, the
ξ+ point doubles.

Similarly, using (10) and the expression in Table I for the NS
bifurcation gives

xNS =
σ − δτ + δ2 − 1

δ(1 + a − c) + (1 − a + c)
, (13)

provided the denominator is nonzero. Of course, this bifurcation
only exists if the fixed points intersect the NS line on the inter-
val δ − 2 < t < δ + 2. Again, (9) can be used to determine the
bifurcation value, αNS.

When the parameters (a, c, δ) are fixed, the generic bifurcation
diagrams of Fig. 1 can be transformed to corresponding diagrams for
a fixed point in the (α, σ ) plane; details are given in the Appendix,
including criteria for codimension-two bifurcations. The results are
shown in Fig. 2 for the fixed point ξ−—as this is the only fixed point
that can be attracting—for cases (SC) and (MC).

IV. BOUNDED ORBITS

In Ref. 8, it was shown that if the quadratic form Q(x, y)
= ax2 + bxy + cy2 is positive definite and δ = 1, then there is a cube
that contains all bounded orbits of (1); equivalently, all points out-
side of this cube escape to infinity. We show in this section that a
similar argument can be used for the case (a, b, c) = (1, 0, 0), where
Q is semi-definite, for any δ > 0.

Lemma 1. If (a, b, c) = (1, 0, 0), τ = 0, and δ > 0, then all
bounded orbits of the map (1) are contained within the cube {(x, y, z) :
|x|, |y|, |z| ≤ κ} where

κ = 1
2

(

|σ | + δ + 1 +
√

(|σ | + δ + 1)2 + 4|α|
)

. (14)

Proof. For an orbit ξt = (xt, yt, zt) of the map (1), yt = xt−1

and zt = xt−2; therefore, the map is equivalent to the forward and
backward difference equations,

xt+1 = δxt−2 + α − σxt−1 + x2
t , (15)

xt−3 = δ−1
(

xt − α + σxt−2 − x2
t−1

)

. (16)

There are three cases to consider that depend on which term in the
sequence xt−2, xt−1, xt is the largest.

1. |xt| ≥ max (|xt−1|, |xt−2|): then, (15) gives

xt+1 ≥ x2
t − (|σ | + |δ|)|xt| − |α|,

giving a lower bound to the forward iterate. Notice this inequal-
ity implies that the next iterate lies above an even, piecewise-
parabolic curve with a negative vertical intercept. Thus, there
exists κ > 0 such that whenever |xt| > κ , we have

xt+1 ≥ x2
t − (|σ | + |δ|)|xt| − |α| > |xt| > κ .

Here, κ is the maximum root of x2
t − (|σ | + |δ| + 1)|xt| − |α|,

given by (14). This implies that xt+1 > |xt| ≥ |xt−1|. Recursively
applying this argument to each forward step implies that

xt+k > xt+k−1 > · · · > xt+1 > |xt| > κ .

This is a monotone increasing sequence that cannot have a finite
limit: if it were to converge, it would have to converge to one of
the fixed points x±, (8), but this is impossible since, by simple
calculation, κ > |x±|.

2. |xt−2| ≥ max (|xt|, |xt−1|): then, (16) gives

xt−3 ≤ δ−1
(

−x2
t−2 + (1 + |σ |)|xt−2| + |α|

)

,

giving an upper bound to the preimage. This inequality is the
space below an even, downward facing piecewise parabola with
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a positive vertical intercept. As before, when |xt−2| > κ ,

xt−3 ≤ δ−1
(

−x2
t−2 + (1 + |σ |) |xt−2| + |α|

)

< −|xt−2| < −κ .

Applying this argument recursively implies that xt−k is a
monotone decreasing sequence. Again, the sequence must be
unbounded.

3. |xt−1| ≥ max (|xt|, |xt−2|): using (16) gives

xt−3 ≤ δ−1
(

−x2
t−1 + (1 + |σ |)|xt−1| + |α|

)

< −|xt−1|

whenever −|xt−1| < −κ . Recursively, this implies xt−3

< −|xt−1| ≤ −|xt−2|, resulting in the same scenario as (2).

Thus, bounded orbits of the map (1) with (a, b, c) = (1, 0, 0), τ = 0,
and δ > 0 must lie within a κ-cube about the origin. !

To illustrate this result, we compute the volume of bounded
orbits, i.e., the volume of the basin of any attractors, for the cases
(SC) and (MC); see Fig. 3. For each point on a 5002 grid in the
(α, σ )-plane for which the fixed points (8) exist (α ≤ αSN), we
choose 503 initial conditions on a uniform grid in a cube with
bounds (14) that vary with (α, σ ). An orbit is declared to be
unbounded if it leaves the κ-cube within 200 iterates.

The selected parameters in Fig. 3 focus on the triangular
regions of Fig. 2 where ξ− is an attracting fixed point. The bifur-
cation curves (dashed) and codimension-two points are also shown
(refer to the legend in Fig. 2). Note that near the SN line, the volume
of bounded orbits in the κ-cube is small since most are found near
the fixed points, which are close together.

V. PERIODIC ATTRACTORS

In this section, we compute regions in parameter space for
which (1) has attracting periodic orbits. If there is a unique, bounded
attractor, it can easily be found by choosing an appropriate ini-
tial condition within the cube of Lemma 1 and iterating until the
orbit limits on the attractor. Once the transient is removed, param-
eter regions of periodic behavior can be computed by looking for
recurrence.

Computed periodic regions are shown in Fig. 4 for the two
cases, (SC) and (MC). To compute these, the initial point is set to
ξ0 = 0 when neither of the fixed points exist [i.e., to the right of
the SN line in the (α, σ )-plane] or to ξ0 = ξ− + (0.001, 0, 0), near
the fixed point. For each (α, σ ) on a 10002 grid, the map (1) is iter-
ated T = 5000 times to eliminate transients. The orbit is declared to
diverge (white region) if |ξt| > κmax for some t ≤ T, where κmax is the
maximum of (14) over the studied parameter region [κmax = 3.237
for (SC) and 4.632 for (MC)]. Otherwise, the point ξT is iterated up
to 90 more steps, checking for return time, defined as the first time,
p, for which the distance

‖ξT+p − ξT‖ < 10−4. (17)

Thus, we find approximately periodic orbits up to period 90; the
period p is indicated by the color map in Fig. 4. If an orbit is not
periodic by this definition, the point is colored black or gray; we will
discuss the dynamics in these regions in Sec. VI.

Note that the initial condition, the number of transient itera-
tions, recurrence tolerance, and grid size were strategically chosen to
provide sufficient detail at the pictured resolution but still lessen the

FIG. 3. The volume of bounded orbits for 503 initial conditions in the κ-cube for case (SC) (δ = 0.05) and case (MC) (δ = 0.7) as a function of (α, σ ). Bifurcation curves
and points from Fig. 2 are also shown. Notice the color bar for case (SC) includes larger values, with a maximum volume of 61.8. This is expected as it is more strongly
contracting than case (MC), which has a maximum volume of 31.9.
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FIG. 4. Parameter dependence of the dynamics of (1) for (a) (SC) and (b) (MC) as (α, σ ) vary. The white region corresponds to orbits that diverge. Bounded, periodic
attractors, for periods up to 90, are colored as shown in the color bar. The black region corresponds to period >90 or aperiodic, regular behavior, and the gray region to
chaotic orbits, i.e., where the maximal Lyapunov exponent µT > µo = 0.0003; see Sec. VI.

computational expense. Clearly, computations of precise bifurcation
boundaries would require more stringent tolerances.

Since this method uses a single initial condition, it cannot find
cases where there are multiple attractors. Additionally, it is possible
that the chosen initial condition leads to an unbounded orbit when
there is still an attractor somewhere in the κ-cube. Nevertheless, for
almost all (α, σ ) points that have bounded orbits in Fig. 3, the orbit
iterated in Fig. 4 is also bounded; therefore, with a few exceptions,
it does not appear that the orbit of ξ0 is unbounded when there are
other bounded orbits. We plan to discuss such exceptional cases and
the case of multiple attractors in future papers.

The largest, blue regions in Fig. 4 correspond to period-one,
where ξ− is attracting. This region is bounded by the SN, PD, and
NS curves seen in Fig. 2. When the fixed point loses stability at the
PD curve, an attracting period-two orbit is born; the period-two
(vivid orange) region is prominent in Fig. 4(a), though there is also a
thin period-two region just below the PD curve in Fig. 4(b). Period-
doubling bifurcations leading to period-four (magenta) and eight
(red) are also seen in Fig. 4(a). By contrast, in Fig. 4(b), the period-
two orbit in (MC) looses stability by a NS bifurcation; therefore, a
doubling cascade is not seen in this case.

Resonant “tongues,” analogous to the Arnold tongues found
in circle maps, start along the NS curve where ω is rational; these
are prominent in Fig. 4(b). Especially visible are the ω = 1

3
(yellow),

1
4

(magenta), 2
5

(dark green), and 3
7

(brown) tongues. Bifurcation
points along the NS curve for the first two of these were indicated in
Fig. 2 as R3 and R4.

Enlargements of case (SC), shown in Fig. 5, and of case (MC),
Fig. 7, provide more detail. In Subsections V A and V B, we show

a few examples of the corresponding orbits in phase space for the
period-doubling cascade and resonant tongues.

A. Period-doubling cascade

A supercritical period-doubling bifurcation generically occurs
when a real multiplier of an attracting periodic orbit passes through
−1, the PD line of Fig. 1, and results in the creation of a stable orbit
of twice the period. As is well known from studies of 1D maps, this
behavior often recurs, resulting in a cascade of doubling bifurcations
that accumulates leading to the formation of a chaotic attractor.2,3

Such a cascade is prominent in case (SC) seen in Fig. 4(a) and its
enlargement Fig. 5. Cascades are also often seen at the ends of the
resonant tongues; most apparent for case (MC) in Fig. 7, which
shows a multitude of tongues radiating from the attracting fixed
point region.

To visualize the progression of the period-doubling cascade in
case (SC), we fix σ ≈ −0.291 along the line segment shown in Fig. 5
and vary α. The four (α, σ )-points (triangles) along this segment
correspond to the parameters used to find the orbits seen in Fig. 6,
which are pictured using triangles of the same color. Figure 6 also
shows the heteroclinic orbit that lies on the 1D unstable manifold
of the fixed point ξ− (black triangle) to the attracting orbit. This
unstable manifold is traced out by 500 iterates of a set of 100 ini-
tial conditions starting in a ball of radius 0.01 about ξ−. The first
point, at α ≈ −0.248, is a stable period-one orbit. It period dou-
bles at α ≈ −0.393, creating an attracting period-2 orbit, shown
for α ≈ −0.563 (orange triangles). The 1D unstable manifold of ξ−

is also shown in orange. As α continues to decrease, the doubling
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FIG. 5. An enlargement of case (SC) from Fig. 4(a), providing more detail of the period-doubling cascade. The triangles along the line segment show parameters used in
Fig. 6. Also seen are a number of shrimps corresponding to period-5 (dark green), period-7 (brown), etc., attracting orbits.

recurs forming next a stable period-4 (magenta) and then a stable
period-8 (red). The parameters for these are listed in Table II.

Also prominent in Fig. 5 are a number of shrimps, com-
mon structures seen in two-parameter families of one27,28 and two-
dimensional maps.29 Shrimps are prototypical structures formed by
saddle-node bifurcations of periodic orbits in a “sea of chaos.” These
structures will not be discussed further in this paper.

B. Resonant tongues

At a resonant point, ω = p
q
, on the NS curve, a pair of period-

q orbits are born when q ≥ 5. These period-q orbits exist in a
“tongue”-shaped region bounded by curves of SN bifurcations.
While a pair of periodic orbits still exist for the strongly resonant
cases, q ≤ 4, the resonant regions can be more complex.3 Near the
NS curve of the fixed point, one of these orbits is stable and is easily
detected by our recurrence algorithm. Such tongues are especially
prominent in Fig. 7 for case (MC).

The pair of orbits found within the tongues can be used to find
heteroclinic orbits from the period-q saddle to its attracting coun-
terpart. Examples for q = 3 and 4 are seen for case (MC) in Fig. 8.
The parameters chosen in the respective tongues are indicated in
Fig. 7 by triangles and listed in Table II. To visualize the hetero-
clinic orbits, a set of 100 initial conditions are chosen in a ball of
radius 0.01 about a point on the period-q saddle, which is found by
numerically solving for a fixed point of Lq(ξ). The first 500 iterates
of these points, shown in Fig. 8, trace out the 1D unstable mani-
fold of the saddle and lie on the 2D stable manifold of the period-q
sink.

VI. APERIODIC ATTRACTORS

We now discuss the black and gray regions seen in Fig. 4
and its enlargements (Figs. 5 and 7). These represent parameters
for which there is an attractor that is either aperiodic or periodic
with the period larger than 90. Possible aperiodic attractors include
invariant circles formed at an NS bifurcation with irrational ω, as
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FIG. 6. Four orbits along the period-doubling cascade for case (SC) for parameters given in Table II. For each, the fixed point is shown as a black triangle and attracting
orbits as triangles colored by period using the same color scheme as Fig. 5. At first, there is a single fixed point, and as α decreases, the fixed point shifts down and leftward,
becoming a reflecting saddle when it bifurcates creating a period-2 attractor (orange). This process repeats for period-4 (magenta) and period-8 (red). A heteroclinic orbit of
the same color connects the fixed point and attracting orbit.

well as more complex, possibly chaotic cases. In this section, we
will distinguish between regular and chaotic cases by computing
the maximal Lyapunov exponent. In a number of studies, multiple
Lyapunov exponents were calculated to characterize the dimension-
ality of the unstable spaces of attractors.16,22 Here, we only compute
one, as our focus is simply the distinction between chaotic and
regular.

Formally, the Lyapunov exponent is

µ(ξ0; v0) = lim sup
n→∞

ln ‖vn‖
n

(18)

for an initial point ξ0 and an initial vector v0, which evolves linearly
as vt = DL(ξt−1)vt−1. Note for a generic initial vector, v0, this limits
to the maximal exponent (MLE). If there exists an attracting regular

TABLE II. Parameters for Figs. 6 and 8 that correspond to the annotations in Figs. 5 and 7.

Case Behavior (α, σ ) . Color

δ = 0.05 Fixed point (−0.248 30, −0.291 30) Black
Doubling bifurcation (−0.393 12, −0.291 30)

Period-2 attractor (−0.562 71, −0.291 30) Orange
Quadrupling bifurcation (−0.973 16, −0.291 30)

Period-4 attractor (−0.994 17, −0.291 30) Magenta
Octupling bifurcation (−1.081 97, −0.291 30)

Period-8 attractor (−1.099 22, −0.291 30) Red

δ = 0.7 Period-3 attractor (−0.135 57, 0.288 92) Yellow
Period-4 attractor (0.105 53, 1.009 50) Magenta
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FIG. 7. An enlargement of case (MC) from Fig. 4(b) provides detail of the resonant tongues emanating from the NS line of ξ−. Highlighted points include two triangles
in the period-3 and 4 tongues, used for the phase portraits in Fig. 8. Also shown are line segments Rg and Rs that have endpoints along the NS line that correspond to

ω = 2/(1 +
√
5), the golden mean, and ω = 1/

√
2, the silver mean. The behavior of orbits in phase space along these segments are discussed in Sec. VI A.

orbit, then any initial condition in its basin will have a non-positive
MLE, whereas chaotic orbits will have µ > 0.

Numerically, we approximate the lim sup of (18) by choosing
an increment *T and computing

µT(ξ0; v0) = max
n∈[T,T+*T)

ln ‖vn‖
n

. (19)

This approximates (18) for a “large” enough T and *T, up to some
tolerance. We estimate the MLEs for those bounded orbits that have
periods larger than 90. The initial point used for (19) is the point
used in the recurrence algorithm described in Sec. V found after
5000 + 90 iterates, and the initial vector is set to v0 = (1, 1, 1)/

√
3.

To avoid overflow, the length of vn is renormalized every ten iter-
ates. As is well known, it is computationally expensive to achieve
convergence of MLEs. Indeed, since the ostensible error for (19)
is O(T−1), we chose a threshold appropriate for T ∼ 103 − 104: an

orbit is deemed regular if µT ≤ µo = 3(10)−4. We selected the inter-
val *T = 100 as it gave reasonable convergence for a number of
trials. The time T in (19) is increased in steps of *T until the error
|µT − µT+*T| < 10−4 or until T reaches Tmax = 105. In this case, the
MLE is set to µTmax . For the results in Fig. 4, µT is set to µTmax for
0.14% of the calculations for case (MC) and 1.2% for case (SC).

Orbits with µT > µo are declared to be “chaotic” and colored
gray, and those with smaller MLEs are declared “regular” and col-
ored black in the figures. As seen in Fig. 4. there is a qualitative
difference between the two cases. For case (SC), there are very few
regular, aperiodic orbits—these are confined to a narrow strip along
the NS curve at the top of the bounded region (4.3% of the aperiodic
orbits). For case (MC), however, there are large regions of regular,
aperiodic behavior to the left of the NS curve (70% of the aperiodic
orbits). In Subsections VI A and VI B, we illustrate this difference by
looking at the corresponding behavior of orbits in phase space.
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FIG. 8. Two heteroclinic orbits for the (MC) case found in the period-3 (yellow, left) and 4 (magenta, right) tongues, respectively. These orbits connect the periodic saddle
orbit (black triangles) with its attracting periodic counterpart (yellow and magenta triangles). See Table II for values of (α, σ ).

A. Regular attractors

Regular, aperiodic orbits are primarily born on the NS curve
when the rotation number, ω, in (6) is irrational. Such a bifurcation
generically gives rise to an invariant circle that persists for an inter-
val along a curve in parameter space that starts on the NS curve.3

The rotation number will become rational when the curve enters a
resonant tongue. To explore the structure of such circles, we study
the development of orbits in phase space for (MC) along two lines
in the (α, σ )-plane that start at an irrational NS point, as illustrated
in Fig. 7,

Rg : σg ≈ −0.032 32, (αg0, αg1) ≈ (−0.253 75, −0.452 69),
(20)

Rs : σs ≈ 0.627 24, (αs0, αs1) ≈ (0.070 64, −0.289 60). (21)

The Rg segment starts at (αg0, σg), the NS bifurcation for the golden

mean, ω = 1
2
(
√

5 − 1) ≈ 0.618 03, and the Rs segment starts at

(αs0, σs), the NS bifurcation for the silver mean, ω = 1√
2

≈ 0.707 11.

Each segment has fixed σ and ends when α reaches the edge of the
bounded region.

Figure 9 shows orbits along (20), starting just below αg0 and
moving toward αg1 in six panels. These are projected onto the plane
orthogonal to the line x = y = z that contains the fixed points. This
plane is spanned by the orthogonal vectors

u = (−1, 1, 0), v = (1, 1, −2), (22)

and these are used as the axes in the figures. We observe that the
invariant circles appear to have a one-to-one projection onto this
plane and enclose the projected fixed point ξ−, which projects to the
origin (black triangle). Each panel consists of several orbits; corre-
sponding values of α are given. As α decreases, an invariant circle

grows, deforms, and bifurcates to periodic orbits when the segment
passes through resonant tongues.

An alternative visualization of the dynamics along (20) is
through its bifurcation diagram, seen in Fig. 10 (top, left). This
shows a 1D projection onto the x-axis for varying α. Invariant cir-
cles correspond to dense segments and periodic attractors to isolated
points in this diagram.

Following the analysis of Ref. 12, we compute the rotation
number of the orbits. Since the projection onto the (u, v) plane is
one-to-one and encircles the origin, the rotation number can be
computed by measuring the angle θt at time t counterclockwise
from the vector u using the full range atan2 function. The time T
approximation of the rotation number is then

ωT =
1

2πT

T
∑

t=1

θt. (23)

This sum is computed from the initial conditions used for Fig. 7
after removing the transient as before. We choose T to be the return
time (17) or if there is no such time, T = 5(10)5. For the purposes of
our illustrations, this gives sufficient accuracy. If one desired higher
accuracy computations, then the sum in (23) could be replaced by a
weighted average as discussed in Ref. 30.

The rotation number and the corresponding Lyapunov expo-
nent, (19), are shown as a function of α in the bottom row of
Fig. 10, aligned with the corresponding bifurcation diagrams for (20)
and (21).

We do not observe chaotic orbits along (20)—µT is essentially
nonpositive, though small oscillations up to the threshold µo reflect
the difficulty in computing the MLE. Note that when the dynamics
are conjugate to a rigid rotation (i.e., the orbit lies on a circle), then
there is a zero Lyapunov exponent. Since the circle is attracting, this
is what we observe for the MLE in Fig. 7. When α ≈ αg0, the rotation
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FIG. 9. Attracting orbits found along (20), seen in Fig. 7, projected onto the plane (22). The black triangle at the origin is the projected fixed point, ξ−. Each panel contains
two or three orbits for values of α shown in the same color as the orbit. The panels correspond to the intervals at the bottom of Fig. 10 (left). (a) Invariant circles close to
αg0. (b) An invariant circle and two period-8 orbits. (c) Three invariant circles. (d) Period-19 (blue) and period-30 (green) orbits, with an invariant circle at an intermediate α.
These periodic orbits lie in windows too small to be visible in Fig. 10 (left). (e) Two invariant circles and a period-41 orbit at an intermediate α. (f) Period-11 (blue) and doubled
period-22 (yellow) orbits. All of these orbits are regular, as µT < µo along the entire segment, seen in Fig. 10 (left). Orbits become divergent when α ≤ αg1.
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FIG. 10. Bifurcation diagrams (top) aligned with graphs ofωT andµT (bottom) for attracting orbits along the segments (20) (left) and (21) (right). Calculations start with an α
value 10−4 below the NS points, and α is decreased until the orbits diverge (i.e., when the segment reaches the white region). Resonant tongues correspond to constant ωT

in the bottom panels and to windows of periodicity in the top panels. Chaotic orbits, µT > µo, are only seen for (21). The annotated α intervals, (a)–(f), refer to the panels
of Figs. 9 and 11.

number ωT ≈ 0.618, as expected, and as α decreases, the rotation
number grows monotonically. When the orbit passes through a res-
onant tongue, ωT becomes a constant rational value and µT < µo

since the resulting periodic orbit is attracting. These align with
the periodic windows in the bifurcation diagram. Periodic win-
dows visible in Fig. 10 (left) are the period eight

(

ω = 5
8

= 0.625
)

and the period 11 and 22 tongues. For the latter, ω = 7
11

≈ 0.636,

and—when the orbit doubles—ω = 14
22

, the same value. Near the

period doubling in the 7
11

tongue, µT grows as α decreases, reaching
zero at the bifurcation point α ≈ −0.433. The orbit diverges when
α ≤ αg1.

The segment (21) crosses multiple tongues and chaotic regions,
as seen in Fig. 10 (right). When α ≈ αs0, ωT ≈ 0.707, but as α
decreases, the rotation number is not monotone. Note that when

µT > µo, calculations for ωT do not converge well since the orbit is
chaotic. As before, in the resonant tongues, µT < µo and ωT is con-
stant, and when there is an attracting invariant circle, µT is close
to zero. The most visible tongues correspond to orbits of period
24

(

ω = 17
24

≈ 0.708
)

, 31 and 62
(

ω = 22
31

= 44
62

≈ 0.710
)

, and 7 and

14
(

ω = 5
7

= 10
14

≈ 0.714
)

. Note that there are chaotic regions both
before and after the last tongue.

Phase portraits along (21) projected onto the plane (22) are
shown in a series of six panels in Fig. 11; each corresponds to an
interval annotated in Fig. 10 (right). Near αs0, we observe a family of
growing invariant circles that pass through windows of periodicity
as α decreases. Panels (c), (d), and (f) show chaotic attractors; these
occur when the segment (21) passes through gray regions so that
µT > µo, in Fig. 10 (right). These attractors are born with a structure
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FIG. 11. Attracting orbits along (21), a segment in Fig. 7, projected onto the plane (22). The black triangles are the fixed point, ξ−. Each panel contains orbits at the indicated
values of α in the same color as the orbit. The panels correspond to the intervals labeled in Fig. 10 (right). (a) Four invariant circles near αs0. (b) Period-24 (blue), period-31
(yellow), and an invariant circle. (c) Period-608 (blue), chaotic with µT = 0.147 71 (yellow), and period-62 (green) orbits. (d) Chaotic orbit with µT = 0.236 46. (e) Period-7
orbit (blue) that doubles to period-14 (yellow and green). (f) Chaotic orbit withµT = 0.488 08. This attractor is shown in 3D in Fig. 13(a). Orbits become divergent for α ≤ αs1.
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like the invariant circle but also seem to fold around the neighbor-
ing, no-longer stable periodic orbits. In panel (f), the outer boundary
of the chaotic attractor appears relatively smooth and aligns with the
former invariant circle, but its interior is much more complex. This
attractor is also shown in 3D in Fig. 13(a).

B. Chaotic attractors

As we have known since Feigenbaum’s classic studies of 1D
maps, chaos can arise from a self-similar accumulation of period-
doubling bifurcations, i.e., a period-doubling cascade.2,3 As we have
seen for (1), cascades from the fixed point ξ−, Fig. 5, or from higher
period orbits, at the “ends” of the tongues, Fig. 7, do indeed lead to
chaos.

When δ is small, the resulting chaotic attractors can resem-
ble that of the 2D Hénon map. For case (SC), where δ = 0.05, the
heteroclinic orbits of Fig. 6 show the beginning of the development
of a Hénon-like attractor through a period-doubling cascade of the
fixed point. Continuing beyond the end point of the segment in
Fig. 5 leads to the attractor shown in Fig. 12(a), with a nearly 2D,
horseshoe-like shape. Note that for δ = 0, the map (1) is essentially
2D (it becomes a semi-direct product of a linear map and a 2D
quadratic map14), and for (a, c, α, σ ) = (1, 0, −1.4, −0.3), its dynam-
ics correspond to the classic Hénon map.1 Even when δ = 0.05,
these parameters are at the very edge of the chaotic region after the
period-doubling cascade of the fixed point, close to an arm of the
period-5 shrimp in Fig. 5. The attractor for this case is shown in
Fig. 12(b).

FIG. 12. Chaotic attractors illustrated as 500 iterates of 100 points in a ball of radius 0.01 about the fixed point ξ− (black triangle). (a) Case (SC) with (α, σ )
≈ (−1.135 99,−0.291 30) following from the heteroclinic orbit seen in Fig. 6 after a period-doubling cascade. (b) Case (SC) with (α, σ ) = (−1.4,−0.3), near the
parameters of the classic Hénon attractor. (c) A Lorenz-like attractor for case (MC) with (α, σ ) = (0,−0.815).
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FIG. 13. Chaotic attractors found using the method described in Sec. VI A: a point near ξ− (black triangle) is first iterated 5000 steps to remove transients, and then T

additional points [T is either the return time (17) or at most 5(10)5] are plotted. (a) A 3D view of the attractor of Fig. 11(f) for case (MC). (b)–(f) Attractors for case (MC) for
five parameter cases (shown in each panel) taken from the chaotic (gray) regions of Fig. 4(b).
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In Ref. 22, parameters were found so that a 3D quadratic map
conjugate to (1) has a discrete Lorenz-like attractor. The corre-
sponding parameters for (1) are (a, c, δ, α, σ ) = (1, 0, 0.7, 0, −0.815).
This case lies within the chaotic region below the NS bifurcation of
the period-two orbit shown in Fig. 4(b). The resulting Lorenz-like
attractor (with a lacuna) is shown in Fig. 12(c). We refer to the works
of Gonchenko et al.16,22 for more discussions of such attractors.

In Sec. VI A, we saw the development of chaotic attractors as α
decreased along the segment (21); recall Figs. 11(c), 11(d), and 11(f).
A three-dimensional plot of panel (f) is shown in Fig. 13(a) to better
illustrate that it appears to lie near a paraboloid that opens up in the
positive direction along the line x = y = z, which is near the local
unstable manifold of the fixed point ξ−. To illustrate some of the
variations in geometry that can occur, five additional cases, using
parameters in the gray region of Fig. 4(b) for case (MC), are also
pictured in Fig. 13. As before, each of these appears to lie near a
paraboloid. The attractors in panels (a) and (b) have arms or ten-
tacles, some of which appear to go toward the fixed point ξ−. By
contrast, in panels (b) and (c), the attractors more closely resemble
invariant circles with additional folds. Finally, in panels (e) and (f),
the attractors have an internal flower-like structure that fills out an
annular region on the paraboloid.

VII. CONCLUSIONS

Previous research on quadratic 3D maps has focused on the
volume-preserving case8,12 or on the existence and development of
chaotic attractors.4,16,22 Here, we have explored a broader range of
parameters and studied periodic and aperiodic, and regular and
chaotic attractors.

The simplest bifurcations of a 3D map were discussed in Sec. II
using the trace and second trace of the Jacobian as primary parame-
ters and fixing the Jacobian determinant. These results were applied
to the fixed points of the map (1) in Sec. III. We focused on two
primary parameters: the more “structural” parameter σ , which con-
trols the type of bifurcation and what can be viewed as the “primary
unfolding” parameter, α. Note that in our previous work on anti-
integrability, it was the limit α → −∞ that corresponded to a
non-deterministic limit where the dynamics is conjugate to a shift
on a set of symbols.14

For our numerical studies, we chose two cases for the Jaco-
bian δ: a strongly contracting case (SC)—where the map is nearly
2D—and a moderately contracting case (MC).

We showed in Sec. IV that all bounded orbits of the orientation
preserving 3D Hénon map lie within a cube about origin as illus-
trated in Fig. 3. Most of the region of bounded orbits corresponds
to nonchaotic situations, which could be an attracting fixed point
or orbits that arise from this point by doubling or Neimark–Sacker
bifurcations. However, this figure also shows protruding spikes from
the region of stability, which may be related to attractors not born
from the fixed point. We hope to study these further in the future.

To classify the behavior of bounded orbits, we computed reso-
nant regions in parameter space in Sec. V; these are analogous to
the Arnold tongues of circle maps. The resulting partition of the
bounded region, Fig. 4, shows periodic and aperiodic attractors.
Using this, we are able to understand the development of attract-
ing periodic orbits and visualize their codimension-one and -two

bifurcations. Note that our computations used the attractor aris-
ing from a single initial condition. There will be cases with multiple
attractors and cases for which the chosen orbit is unbounded even
when there might be attractors elsewhere. However, given the simi-
larity between Figs. 3 and 4, the latter possibility is rare. We plan to
investigate the more complex, outlying cases in future research.

Aperiodic attractors (defined to be attractors with period
greater than 90) were studied in Sec. VI. We also followed the evo-
lution of invariant circles along several curves in parameter space
starting at points on the NS bifurcation curve where the rotation
number was irrational. We did not attempt to follow a circle with
fixed rotation number, though we expect such a curve exists in
a two-dimensional parameter space and plan to do this in future
research. Along the parameter curves that we did follow, the invari-
ant circle has a varying rotation number. When this becomes ratio-
nal, the circle undergoes a resonant bifurcation, generically breaking
up into a pair of periodic orbits. Given the hyperbolic structure of
these attractors, this could lead to a “string of pearls” bifurcation
as discussed in Ref. 12, which results in the formation of bubbles
from the stable and unstable manifolds of the periodic orbits. Such
bifurcations were also seen for a normal form near a codimension-
two SN–NS bifurcation in Ref. 31. These cases will be analyzed in
future work. As the curve leaves a resonant tongue, an invariant cir-
cle can reform. In some cases, the destruction of the circle gave rise
to chaotic attractors.

Some of the chaotic attractors we studied are well known: the
discrete Lorenz and Hénon attractors found in Refs. 1, 14, and 22.
More unusual are the chaotic attractors with a paraboloid structure
that arise from the destruction of the invariant circles; recall Fig. 13.
These are not classified in Ref. 16 and are not obviously related to
the 3D generalized horseshoes studied by Ref. 25. We believe that
further study of such cases could lead to a broader understanding of
attractors that lie within higher-dimensional generalizations of the
Smale horseshoe.
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APPENDIX: PARAMETER SPACE CONVERSION

Here, the conditions for codimension-one and -two bifurca-
tions as seen in the last column of Table I in terms of the trace and
second trace are converted to conditions on (α, σ ). We are inter-
ested in the fixed point ξ− of (1), given by (8); thus, t and s are given
by (10) and d = δ. We assume that τ = 0, as in (2).

Provided that there are no singularities, the codimension-one
bifurcation curves are easily found using (9),

(SN) α = 1
4
(σ − δ + 1)2,

(PD) α = xPD(2xSN − xPD),

(NS) α = xNS(2xSN − xNS)

(A1)

for xSN = 1
2
(σ − δ + 1) and xPD, xNS given by (12) and (13), respec-

tively. The NS bifurcation is restricted to the interval δ − 2
< (2a + b)xNS < δ + 2.

Again, provided there are no singularities, the codimension-
two bifurcations are all points that satisfy (9) but also require an
expression for σ . The SNf bifurcation occurs at (t, s) = (−δ, −1).
Using t to solve for the fixed point then gives

(SNf) xSNf = −
δ

2a + b
,

α = xSNf(2xSN − xSNf),

σ = −1 + (b + 2c)xSNf,

where xSN is dependent on σ .
A Neimark–Sacker bifurcation with rotation number ω occurs

at (t, s) = (2 cos (2πω) + δ, δ(t − δ) + 1). Solving for the fixed
point then gives

(Rω) xRω =
2 cos (2πω) + δ

2a + b
,

α = xRω(2xSN − xRω),

σ = 2δ cos (2πω) + 1 + (b + 2c)xRω,

where, again, xSN is dependent on σ .
Last, recall that double multipliers, λ1,2 = r ∈ R, occur on the

parametric curves (7). Using the same process as above yields

(λ1 = λ2) xr =
δ + 2r3

r2(2a + b)
,

α = xr(2xSN − xr),

σ = 2 δ
r
+ r2 + (b + 2c)xr

for xSN dependent on σ . Since we are only concerned with x− and
we know x− < xSN, we choose r such that xr < xSN. When enforcing

(2), we obtain the range |r| >
√

δ; otherwise, xr = x+.
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