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Abstract

Reconstructing state-space dynamics from scalar data using time-delay em-
bedding requires choosing values for the delay ⌧ and the dimension m. Both
parameters are critical to the success of the procedure and neither is easy to
formally validate. While embedding theorems do o↵er formal guidance for
these choices, in practice one has to resort to heuristics, such as the average
mutual information (AMI) method of Fraser & Swinney for ⌧ or the false near
neighbor (FNN) method of Kennel et al. for m. Best practice suggests an
iterative approach: one of these heuristics is used to make a good first guess
for the corresponding free parameter and then an “asymptotic invariant” ap-
proach is then used to firm up its value by, e.g., computing the correlation
dimension or Lyapunov exponent for a range of values and looking for con-
vergence. This process can be subjective, as these computations often involve
finding, and fitting a line to, a scaling region in a plot: a process that is gen-
erally done by eye and is not immune to confirmation bias. Moreover, most
of these heuristics do not provide confidence intervals, making it di�cult to
say what “convergence” is. Here, we propose an approach that automates
the first step, removing the subjectivity, and formalizes the second, o↵ering
a statistical test for convergence. Our approach rests upon a recently devel-

1These authors contributed equally to this work.
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oped method for automated scaling-region selection that includes confidence
intervals on the results. We demonstrate this methodology by selecting val-
ues for the embedding dimension for several real and simulated dynamical
systems. We compare these results to those produced by FNN and validate
them against known results—e.g., of the correlation dimension—where these
are available. We note that this method extends to any free parameter in
the theory or practice of delay reconstruction.

Keywords: Delay-coordinate embedding, Nonlinear time series analysis,
embedding parameters
PACS: 05.45.-a, 05.45.Df, 05.45Tp

1. Overview1

Delay-coordinate embedding, [1, 2, 3] the foundation of nonlinear time-2

series analysis,2 involves constructing m-dimensional vectors ~v(t) from a3

scalar time series x(t), defined by4

~v(t) = [x(t), x(t� ⌧), x(t� 2⌧), . . . , x(t� (m� 1)⌧)]

for a time-delay ⌧ . If this is done correctly, the reconstructed dynamics will5

generically be topologically conjugate to the underlying dynamics that are6

sampled by x(t).7

There are two free parameters in this procedure: the delay ⌧ and the8

dimension m, both of which are critical to obtain a proper embedding. The9

embedding theorems o↵er guidance for these choices, but in practice—when10

one has a finite number of potentially noisy data points that are measured11

with finite precision—it is typical to resort to heuristics to choose good pa-12

rameter values. Many strategies have been proposed for these purposes. One13

generally chooses ⌧ first, working with some statistic that measures indepen-14

dence of ⌧ -separated points in the time series. The first minimum of a plot of15

the average mutual information versus ⌧ , as proposed by Fraser & Swinney16

[6], is perhaps the most common such technique. Subsequently one proceeds17

to choose m, using e.g., the false near neighbor (FNN) method of Kennel et18

al. [7]. In this approach, embeddings of the data for a sequence of dimensions19

2For comprehensive reviews of the theory and practice in this field, including exhaustive
citation lists, we refer the reader to [4, 5].
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m = . . . , k, k+1, . . . are used to compute the nearest neighbor to each point20

at dimension k. A change in the neighbor relationship—when a neighbor in21

k dimensions is no longer one in k+1 dimensions—is taken as an indication22

that the dynamics had not been properly “unfolded” with m = k and that23

m should be increased.24

This type of heuristic reasoning is di�cult to implement as a formal com-25

putational procedure. For example, the depth of a minimum in a discrete26

plot that is required, the distance that defines a false neighbor, and the max-27

imum fraction of FNN that signals a proper unfolding can all be subjective.28

In the face of these uncertainties, best practice suggests an iterative method:29

one of these heuristics is used to choose a good first guess for the correspond-30

ing parameter. An “asymptotic invariant” approach is then used to firm up31

the value. In this procedure, the value of some dynamical invariant—e.g.,32

correlation dimension or Lyapunov exponent—is computed over a parameter33

range to look for convergence. This process can also be subjective, however,34

since these computations often involve identifying a scaling region. In a plot35

of the correlation sum or distance growth, for example, such scaling regions36

are generally selected by eye, a process that is not immune to confirmation37

bias. (Of course, if one simply fits a line to the full results of the calculation38

without regard to the plot shape, the resulting value of the computed dy-39

namical invariant is typically not correct.) The notion of convergence with40

increasing embedding dimension, too, is problematic: is one significant figure41

in the correlation dimension enough? Or does one need two? These issues42

are exacerbated by the fact that when the embedding dimension is large, the43

nearest neighbors tend to be far away, giving incorrect results [8, 9]. More-44

over, larger embedding dimensions can introduce spurious e↵ects for data45

sets that are small or noisy.46

In this paper, we address these subjectivities and informalities using a47

recently developed method for automated scaling-region selection [10] that48

o↵ers statistical confidence intervals on the results. A sketch of the algorithm49

is as follows:50

1. On the two-dimensional plot, perform linear fits to segments of the data51

using every possible combination of left and right endpoints.52

2. Calculate a weight for each linear fit that is directly proportional to53

the length of the segment and inversely proportional to the square of54

the least-squares fit error.55

3. Using the ensemble of fits, generate a histogram of all slopes, taking56
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into account the calculated weights.57

4. Generate a probability distribution function (PDF) of slopes from the58

histogram using a kernel density estimator. The mode of this PDF is59

the most likely estimate of the scaling region slope, and its full width60

at half maximum provides confidence bounds.361

This technique can be used as the core of an e↵ective methodology, de-62

scribed in Section 2, for automating the asymptotic invariant procedure. The63

algorithm outlined in the steps above not only removes the subjective identi-64

fication and extraction of the scaling regions; it also supports calculation of65

statistical estimates of convergence, computed using an appropriate metric66

on the PDFs. As a proof of concept for these claims, we apply this method-67

ology in Section 2 to data from a number of real and simulated dynamical68

systems to select values for the embedding dimension. We then compare the69

results—both the embedding dimension and the dynamical invariants—to70

those produced by other methods.71

While we focus here primarily on estimating m, it is easy to use this72

methodology to estimate good values for ⌧—or, indeed, for any parameter73

in a procedure for calculating dynamical invariants. One could also use a74

straightforward two-parameter extension of our method to estimate m and75

⌧ simultaneously, as in [11].76

2. Automating the asymptotic invariant procedure77

Our goals in this section are to outline a systematic procedure for selecting78

good values for the free parameters in the delay-reconstruction process and79

to demonstrate the procedure in the context of the embedding dimension,80

m. We do this with several synthetic and real data sets that are described81

in Section 2.1, first estimating the delay, ⌧ using the method of Fraser &82

Swinney [6], then embedding the data for a range of m and computing the83

correlation sums using TISEAN [12, 13]. Using the method of Deshmukh et84

al. [10] on the resulting plots and the Wasserstein metric [14] on the resulting85

distributions, we establish the embedding dimension at which the correlation86

dimension converges; see Section 2.2. These results are compared to the87

3The algorithm in [10] returns two additional distributions that provide information
about boundaries of the scaling region(s). The approach proposed in this paper does not
rely on those distributions.
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dimension given by the false near neighbor method [7]. We also compare the88

correlation dimension results to the known values, where they exist. Finally,89

in Section 2.3 we apply these ideas to computation of Lyapunov exponents.90

We will note that algorithms to compute di↵erent dynamical invariants might91

work best using di↵erent embedding dimensions.92

2.1. Data sets93

We use four data sets in this work.94

• The x coordinate of a 90,000-point trajectory from the canonical Lorenz95

system [15]:96

ẋ = 10(y � x),

ẏ = x(28� z)� y,

ż = xy � 8
3z,

with the initial condition (0, 1, 1.05). This is obtained using a fourth-97

order Runge-Kutta algorithm for 105 points with the time step �t =98

0.01. We discard the first 104 points to remove transient behavior and99

focus on the attractor. For this well-studied system the correlation100

dimension and largest Lyapunov exponent are well-known (approxi-101

mately 2.05 and 0.91, respectively) [16, 17, 18].102

• The first coordinate of a 990,000-point trajectory from the 14-dimensional103

Lorenz-96 system [19]:104

dxk

dt
= (xk+1 � xk�2)xk�1 � xk + F (1)

for k = 1, . . . 14 with xk±14 = xk. The trajectory for the initial con-105

dition [6, 5, 5, . . . , 5] is obtained using the fourth-order Runge-Kutta106

algorithm with time step �t = 1
64 . We discard the first 104 points from107

the million point trajectory to remove the transient. This example is108

included because its dynamics are high dimensional: the Kaplan-Yorke109

dimension is estimated to be 6.93 by [20].110

• Two 80,000-point data sets from experiments on a Photonic Integrated111

Chip (PIC) distributed feedback laser that was developed as part of112

the European Commission PICASSO project, sampled at 40 GHz [21].113

These examples are included to validate our method on experimental114

data for which there are established values for delay-reconstruction115

parameters and correlation dimension.116
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2.2. Correlation Dimension117

In this section, we demonstrate how to choose good values of the em-118

bedding dimension, m, for the four data sets described in Section 2.1 using119

automated asymptotic invariant analyses on correlation-sum plots.120

Results for the classic Lorenz-63 system are shown in Figure 1. The first121

three panels show the standard steps in the delay-reconstruction process.122

From the time series, shown in panel (a), TISEAN’s mutual command gives123

the average mutual information versus ⌧ , shown in panel (b). We select124

the first minimum at ⌧ = 18 for the rest of the analysis. To estimate the125

embedding dimension m, we then run TISEAN’s false nearest command;126

panel (c) shows the percentage of false near neighbors plotted versus m.127

Using a 10% threshold, as is common in practice, the FNN results suggest128

m = 3.4129

The bottom three panels of Figure 1 demonstrate our methodology using130

the correlation dimension as an asymptotic invariant. The correlation sums,131

C(✏), are found from TISEAN’s d2 command for a range of m values. Here132

✏ is the size of the balls used to cover the set during the calculation of the133

Grassberger-Procaccia algorithm [22]. Panel (d) shows lnC(✏) versus ln ✏. If134

this plot has a scaling region, its slope is the correlation dimension.135

It is common practice to choose the endpoints of a scaling region by eye,136

and then compute the slope using a linear fit. In this case, if the slopes were137

to converge as m increases, it is thought that the m-embedded attractor is138

properly unfolded and that the value of the correlation dimension is correct.139

Figure 1(d) shows clear scaling regions whose slopes behave as expected:140

when m is too low, the attractor is not properly unfolded and the computed141

correlation dimensions—i.e., the slopes of the blue (m = 1) and orange (m =142

2) traces—are artificially low. As m increases, the slopes increase and then143

appear to converge.144

We formalize this procedure using the method of Deshmukh et al. [10],145

which uses slope distributions to identify scaling regions and the Wasserstein146

distance to establish convergence of the distributions with increasing m. As147

a first step, we compute potential scaling regions corresponding to an ensem-148

ble of intervals, varying the left and right endpoints. We set the minimum149

4In this paper we leave TISEAN’s many algorithmic parameters at their default values
unless otherwise mentioned. For Lorenz-63, we increased the default range of ⌧ in mutual
to see the first minimum in Figure 1(b).
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(a) Lorenz-63 time series

(b) Choosing ⌧ : AMI (c) Choosing m: FNN

(d) Correlation sums (e) Weighted slope distributions

(f) Wasserstein distance

Figure 1: Lorenz-63 example. (a) Time series for the x coordinate. (b) Average mutual
information as a function of ⌧ . (c) Percentage of false near neighbors as a function of
the embedding dimension m. (d) Correlation sum plots for ⌧ = 18 and m 2 [1, 10]. (e)
Weighted slope distributions generated from an ensemble of fits in di↵erent intervals from
panel (d). (f) Wasserstein distance between successive slope distributions.
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number of points for the fitting interval to be 10, but allow all possible com-150

binations otherwise. This choice is discussed in [10]. In panel (d) there are151

100 values of ln(✏) as possible endpoints; using a minimal width of 10 points152

then gives 4005 potential scaling regions. For each m in Figure 1(d), we153

then generate a distribution of slopes, Pm, from least-squares fits for each154

interval. The goodness of the fit is included by weighting each result by the155

length of the fitting interval and inversely by square of the fit error. We show156

kernel density estimates for these distributions in panel (e), calculated using157

python’s scipy.stats.gaussian kde function.158

The geometry of these distributions brings out the salient information159

quite e↵ectively, including both the existence of one or more scaling regions160

and their slopes. Unimodal slope distributions, as in Figure 1(e), suggest161

the presence of a single, wide scaling region for d2.5 The mode of Pm is an162

estimate of the slope of the scaling region and the width of the distribution163

around that mode width gives an indication of precision. More formally, we164

calculate a confidence interval by computing the standard deviation, �, of165

the ensemble members within the full width at half maximum (FWHM) of166

the mode. For the m = 2 case (orange), � = 0.02, giving the estimated slope167

1.92± 0.02.168

If there were no scaling region in the plot, the distribution would be169

wide and the corresponding confidence interval large. For Figure 1, the170

trajectory samples the attractor cleanly and thoroughly, resulting in small171

error estimates. However, this is not the case for all of the examples below.172

Moreover, if the plot contains multiple scaling regions, the distributions will173

be multi-modal. This may occur, for example, for d2 when ✏ is larger than174

the diameter of the attractor, or for noisy data when ✏ is small [10]. The175

possibility of such multi-modal distributions is why we use the mode rather176

than the mean.177

The choice of the smallest embedding dimension that gives an accurate178

and valid calculation of the correlation dimension is the critical matter at179

issue here. We assert that this m corresponds to the smallest value for180

which the slope distributions “converge.” In Figure 1(d), this convergence is181

apparent to the eye: the P1 (blue) and P2 (orange) distributions reflect the182

low correlation dimensions of an incompletely unfolded attractor; however,183

5Note that all distribution plots in this paper have the same vertical scale for the
purposes of comparison, and may be truncated.
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the Pm for m � 3 largely overlap. This suggests that m = 3 or 4 would be a184

good choice.185

To formalize the notion of convergence, we use the Wasserstein metric186

[14], MW , to compare sequential pairs Pm and Pm�1. As a metric, MW = 0 if187

and only if the distributions are identical, or—as we are using it for samples—188

if and only if the weighted sample values are the same. Figure 1(f) shows189

MW (Pm, Pm�1) for the Lorenz-63 d2 slope distributions, calculated using the190

python scipy.stats.wasserstein distance function. For this noise-free,191

low-dimensional case, the distance MW (Pm, Pm�1) montonically decreases192

with m.193

For real-valued data, it is known that the L1 Wasserstein distance for a194

sample of size N from a distribution approaches zero as N�1/2 under some195

technical assumptions [23]. In our experiments, N = O(103) is the number196

of selected left and right endpoint pairs for the linear fits. The theoretical197

error is also proportional to the width of the PDF, which in our applications198

tends to be O(1). We make the null hypothesis that the PDFs are the same199

if200

MW (Pm, Pm�1) . 0.1.

In Figure 1(f) this threshold, shown as the dashed line, first occurs at m = 4201

where MW (P4, P3) = 0.025 < 0.1, so we choose this embedding dimension.202

This then gives d2 = 2.06± 0.03, which is in reasonable agreement with the203

known value of ⇡ 2.05.204

Our approach bears some similarities to other methods for choosing m,205

but the MW threshold is mathematically justifiable. By contrast, there ap-206

pears to be no such justification for the selection of a threshold for the per-207

centage of false nearest neighbors. The suggestion of [7] is that “a physicist208

might well choose to accept this threshold to make more e�cient any further209

computations performed on the data,” a reason based only on convenience.210

Moreover, the percentages of FNN can vary widely with ⌧ and m, and also211

are sensitive to noise [9]. This further complicates the selection of a threshold212

for the FNN heuristic. Similarly, Cao [24] proposes a method to automate213

the asymptotic invariant approach by comparing quantities calculated from214

embeddings at successive dimensions. The quantities are derived from dis-215

tances between points that are neighbors in space (E1(d)) or in time (E2(d)).216

However, the paper does not formalize a threshold on E1 and E2 to indicate217

that the correct embedding dimension has been reached.218

For the second example, we use the Lorenz-96 trajectory described in219
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(a) Correlation sums (b) Weighted slope distributions (c) Wasserstein distance

Figure 2: Lorenz-96 example. (a) Correlation sum plots for embeddings for ⌧ = 23 and
m 2 [3, 12]. (b) Weighted slope distributions generated from an ensemble of fits in di↵erent
intervals from panel (a). (c) Convergence of slope distributions.

Section 2.1 to give a time series sampled from an attractor in a 14D state220

space. In this case, AMI (not shown here) does not give a good estimate for221

⌧ because it has broad, almost-flat region with a first minimum at ⌧ = 145, a222

value that produces an over-folded embedding. Instead, we use the curvature-223

based heuristic of [25] to select ⌧ = 23. The resulting correlation sums from224

TISEAN for a range of embedding dimensions are shown in Figure 2(a). The225

corresponding slope distributions, panel (b), exhibit the same behavior as the226

Lorenz-63 example: they peak at artificially low slopes when the dimension227

is too small, and appear to converge with increasing m. The Wasserstein228

metric, panel (c), confirms this and suggests m = 9 is su�cient. This gives229

d2 = 5.74± 0.09. This is in accord with the Kaplan-Yorke dimension, dKY =230

6.93 according to [20], for this system, which is an upper bound on d2 for231

multifractal sets.232

For this trajectory, the FNN method would require a larger value, m =233

11, giving only a slightly larger estimate of the correlation dimension. The234

di↵erence between the two estimates stems from what each method is trying235

to do. FNN performs an aggregate calculation of neighbor relationships236

across the attractor, with the goal of identifying false trajectory crossings237

created by inadequate unfolding. Elimination of such crossings is su�cient238

for computing the correct dimension, but not necessary [9]. By contrast, our239

method uses the convergence of the desired invariant as the primary criterion,240

which is more appropriate given that this is the goal.241

Moving beyond synthetic examples, we now consider two PIC laser data242

sets from McMahon et al. [21]. These were gathered from the same device243

10



but under di↵erent conditions and, as noted in the paper, lead to quite244

di↵erent dynamics; see Figure 3(a) and (b). McMahon et al. first estimate245

⌧ using AMI then calculate the correlation sums over a fixed range of m 2246

[5, 10]. They apply a “minimum gradient detection” algorithm to find scaling247

regions. This method gives d2 = 1.27 ± 0.05 and 1.01 ± 0.06, respectively.248

The paper does not note a “best” value for m, as their goal is calculation of249

the correlation dimension and not the embedding dimension.250

The results of applying our methodology to this data are shown in Fig-251

ure 3(c)-(h). The minimum AMI occurs at ⌧ = 3 for both cases. The252

correlation sum for a range of m values is shown in panels (c) and (d). Pan-253

els (e) and (f) show the corresponding slope distributions, and (g) and (h)254

show the Wasserstein distances. For the data in the left column, the slope255

distributions are multimodal for m 2 [1, 4], reflecting the distinct linear re-256

gions in panel (c). The PDFs in (e) are far broader than those in Figures 1257

and 2, indicating less certainty. Nevertheless, the Wasserstein distance in258

panel (g) does drop below 0.1 for m = 5, implying d2 = 1.37 ± 0.05. This259

is in agreement with the quoted results of McMahon et al., though it should260

be noted that their confidence interval is calculated di↵erently.261

The story is quite di↵erent for the second case. The distributions in262

Figure 3(f) do not appear to converge with increasing m; this is corroborated263

by the Wasserstein metric in panel (h). Indeed, the curves in panel (d)264

are clearly problematic from the standpoint of time-series analysis. The265

m = 1 and m = 2 results do have scaling regions—indicated by the strong,266

unimodal peaks in the blue and orange distributions in panel (f)—but the267

slopes of these regions give spurious d2 values because the attractor is not268

reconstructed properly for such low dimensions (as is clear from the change269

in slope with increasing m in this range). When m > 2, none of the d2 curves270

have clear scaling regions. Our slope distributions bring this out clearly: the271

Wasserstein distance never falls below 0.1, indicating low confidence in the272

correlation dimension. This is not in accord with the asserted value in [21],273

perhaps because computing a gradient from noisy data, as is done in that274

paper, is notoriously problematic.275

A number of methods have been proposed to automate the estimation of276

d2: see, for example, [26, 27, 28]. These papers essentially use the follow-277

ing workflow: calculate a local gradient of the correlation sum, generate a278

histogram of the slopes, and then locate the peak value. Numerical di↵eren-279

tiation can, of course, be problematic unless the data points are noise free.280

Our method is designed to avoid this issue. Since we weight the linear fits by281
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(a) Laser data set #1 (b) Laser data set #2

(c) Correlation sums for set #1 (d) Correlation sums for set #2

(e) Slope distributions for set #1 (f) Slope distributions for set #2

(g) Wasserstein distance for set #1 (h) Wasserstein distance for set #2

Figure 3: Extracting scaling regions for data from two laser experiments, segments of
which are shown in the top two panels. Below each time series are the correlation sums,
slope distributions, and convergence measures for the corresponding data.
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their length, we favor longer fits, thus de-emphasizing small-scale noise. Our282

choice of the mode of the slope distribution provides a slope that is common283

to a range of endpoint choices. Another important di↵erence between our284

method and those in the cited papers is generality. The primary focus of285

those papers is an automatic estimate of the correlation dimension. The ob-286

jective of our method is to select a good value of the embedding dimension;287

the d2 calculation is only the vehicle. Any other dynamical invariant would288

be just as good, as we show next.289

2.3. Other invariants290

Correlation dimension is not the only dynamical invariant that involves291

fitting a line to a scaling region. Another important quantity is the largest292

Lyapunov exponent, �1, which can be computed by the widely used Kantz293

[29] and Rosenstein [30] algorithms. These calculate a “stretching factor”294

S(�n) between nearby trajectory points. This computation also gives a295

scaling region to which our method can be applied. This, in turn, pro-296

vides another opportunity for an automated asymptotic invariant approach297

to choose embedding parameter values.298

Figure 4 shows the results of this approach applied to the Lorenz-63299

dataset from Section 2.1, using TISEAN’s lyap k command. The Wasser-300

stein metric, panel (c), suggests that m = 3 is adequate. With this choice,301

we estimate �1 = 0.927± 0.031, close to the value 0.91 computed from inte-302

grating the ODEs [16].303

Note that this embedding dimension is smaller than the m = 4 in Sec-304

tion 2.2, which was obtained using d2 calculations. This brings out an inter-305

esting point: di↵erent values of the embedding dimension may be su�cient306

for the calculation of di↵erent invariants. This is likely due to a combination307

of dynamical and algorithmic e↵ects. The lyap k algorithm analyzes how the308

dynamics deform the state space by tracking the forward images of points309

in an initial ✏-ball that stretches along the most unstable manifold. Our310

results suggest that this e↵ect can be tracked e↵ectively in m = 3, whereas311

the d2 algorithm, which counts points in m-dimensional ✏-balls, requires a312

more fully unfolded reconstruction. In other words, both the nature of the313

invariant and the algorithm play a role. This is not the first observation of314

this e↵ect, of course, see for example [31, 32].315

On a related note: default range for the initial ✏-ball in the lyap k calcu-316

lation is set, by default, to five values betwen 0.001 and 0.01 of the span of317

the data, and S(�n) is computed for each ✏. Data limitations can make the318
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(a) Stretching factor S(�n) (b) Weighted slope distributions (c) Wasserstein distance

Figure 4: Largest Lyapunov exponent for Lorenz-63. (a) Spreading factor for embeddings
for ⌧ = 18 andm 2 [2, 9]. (b) Weighted slope distributions from panel (a). (c) Convergence
of slope distributions.

Figure 5: Wasserstein distance for the Lorenz-63 data for a range of ✏ in the lyap k
algorithm. Figure 4(c) uses ✏ = 0.105.

results quite sensitive to this scale, however, so choosing a good ✏ value—or319

knowing whether a choice is good—can be a challenge. Our method can320

provide some insight in this situation. Figure 5 shows the e↵ect of ✏ on321

the Wasserstein distance for the Lorenz-63 data. For the five smallest ✏ in322

the figure, the slopes converge by m = 3. For ✏ = 0.135, the slopes still323

converge, but not until m = 4. Beyond that, the Wasserstein distance is324

non-monotonic, indicating a lack of convergence with increasing dimension.325

This suggests that these larger values of ✏ are problematic.326
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3. Discussion and conclusion327

The choice of the embedding dimension is a critical, but challenging,328

step in delay reconstruction. As discussed in Section 2.2, a number of good329

heuristics have been developed to aid in this process. However these do not330

provide confidence intervals, and they involve subjective thresholds that may331

or may not be optimal for any particular data set. In the face of this, one332

can adopt an iterative approach: use some heuristic to obtain a good first333

guess, then compute a dynamical invariant—e.g., the correlation dimension334

or Lyapunov exponent—over a range of embedding dimensions, looking for335

convergence. This process, too, can be subjective, as these computations336

often involve finding, and fitting a slope to, a scaling region. Since this is337

generally done by eye, it is not immune to confirmation bias.338

The contribution of this paper is a method that formalizes and auto-339

mates this process. We use the ideas of Deshmukh et al. [10] to generate340

an ensemble of slopes from prospective scaling regions, creating a slope dis-341

tribution that uses interval width and fit quality as weights. Broad, clean342

scaling regions manifest as narrow, tall peaks in these distributions. Upon343

repeating this calculation for a range of embedding dimensions, this leads344

to a good choice of m values: when the resulting sequence of slope distribu-345

tions converges, as signaled by the decrease of a Wasserstein distance below346

a threshold that is motivated by the theoretical expectation for samples from347

a fixed distribution.348

We demonstrated the method in Section 2 on four data sets using two349

dynamical invariants calculated with the TISEAN package: the correlation350

dimension and the largest Lyapunov exponent. Each of these requires com-351

puting a slope—of the correlation sum versus the scale parameter, or of the352

stretching factor versus time, respectively. The results corroborate known353

values, except in one case: a laser data set from [21]. In this case, the354

correlation-sum plots, when examined visually, clearly did not contain true355

scaling regions.356

We emphasize that calculations of such dynamical invariants are valid357

if, and only if, the plots contain “robust” scaling regions. Robustness is358

obviously a subjective term that can lead to real problems in the practice of359

nonlinear time-series analysis. To quote Kantz & Schreiber: “Some authors360

failed to observe that the curves that they were fitting with straight lines were361

actually not quite straight...” [5]. Fitting a line blindly to some arbitrarily362

selected portion of a plot is even worse. A strength of our method is that363

15



it objectively measures when there is a scaling region—and, if so, indicates364

where it is, and what is its slope.365

Our technique can also be useful in the invocation of these algorithms.366

Tools like d2 or lyap k in the TISEAN package attack a di�cult problem:367

how can one extract dynamical invariants from incomplete samples? Their368

implementations involve a number of free parameters such as time scale, the369

Theiler window [33], etc. Moreover, the time series must be su�ciently long370

for the invariant computation to be valid [34, 35? ]. The best practice for371

choosing such parameters mirrors the “asymptotic invariant” approach: vary372

the parameter, seeking convergence. One can use our method to accomplish373

this—for individual parameters or even for several at once, using a multivari-374

ate sweep. This could include choosing any of the free parameters in delay375

reconstruction.376
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