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Abstract

Reconstructing state-space dynamics from scalar data using time-delay em-
bedding requires choosing values for the delay 7 and the dimension m. Both
parameters are critical to the success of the procedure and neither is easy to
formally validate. While embedding theorems do offer formal guidance for
these choices, in practice one has to resort to heuristics, such as the average
mutual information (AMI) method of Fraser & Swinney for 7 or the false near
neighbor (FNN) method of Kennel et al. for m. Best practice suggests an
iterative approach: one of these heuristics is used to make a good first guess
for the corresponding free parameter and then an “asymptotic invariant” ap-
proach is then used to firm up its value by, e.g., computing the correlation
dimension or Lyapunov exponent for a range of values and looking for con-
vergence. This process can be subjective, as these computations often involve
finding, and fitting a line to, a scaling region in a plot: a process that is gen-
erally done by eye and is not immune to confirmation bias. Moreover, most
of these heuristics do not provide confidence intervals, making it difficult to
say what “convergence” is. Here, we propose an approach that automates
the first step, removing the subjectivity, and formalizes the second, offering
a statistical test for convergence. Our approach rests upon a recently devel-
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oped method for automated scaling-region selection that includes confidence
intervals on the results. We demonstrate this methodology by selecting val-
ues for the embedding dimension for several real and simulated dynamical
systems. We compare these results to those produced by FNN and validate
them against known results—e.g., of the correlation dimension—where these
are available. We note that this method extends to any free parameter in
the theory or practice of delay reconstruction.

Keywords: Delay-coordinate embedding, Nonlinear time series analysis,
embedding parameters
PACS: 05.45.-a, 05.45.Df, 05.45Tp

1. Overview

Delay-coordinate embedding, [1, 2, 3] the foundation of nonlinear time-
series analysis,? involves constructing m-dimensional vectors o(t) from a
scalar time series z(t), defined by

U(t) = [x(t),z(t — 1), 2(t — 27),...,2(t — (m — 1)7)]

for a time-delay 7. If this is done correctly, the reconstructed dynamics will
generically be topologically conjugate to the underlying dynamics that are
sampled by z(t).

There are two free parameters in this procedure: the delay 7 and the
dimension m, both of which are critical to obtain a proper embedding. The
embedding theorems offer guidance for these choices, but in practice—when
one has a finite number of potentially noisy data points that are measured
with finite precision—it is typical to resort to heuristics to choose good pa-
rameter values. Many strategies have been proposed for these purposes. One
generally chooses 7 first, working with some statistic that measures indepen-
dence of 7-separated points in the time series. The first minimum of a plot of
the average mutual information versus 7, as proposed by Fraser & Swinney
6], is perhaps the most common such technique. Subsequently one proceeds
to choose m, using e.g., the false near neighbor (FNN) method of Kennel et
al. [7]. In this approach, embeddings of the data for a sequence of dimensions

2For comprehensive reviews of the theory and practice in this field, including exhaustive
citation lists, we refer the reader to [4, 5].
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m=...,k,k+1,... are used to compute the nearest neighbor to each point
at dimension k. A change in the neighbor relationship—when a neighbor in
k dimensions is no longer one in k£ + 1 dimensions—is taken as an indication
that the dynamics had not been properly “unfolded” with m = k and that
m should be increased.

This type of heuristic reasoning is difficult to implement as a formal com-
putational procedure. For example, the depth of a minimum in a discrete
plot that is required, the distance that defines a false neighbor, and the max-
imum fraction of FNN that signals a proper unfolding can all be subjective.
In the face of these uncertainties, best practice suggests an iterative method:
one of these heuristics is used to choose a good first guess for the correspond-
ing parameter. An “asymptotic invariant” approach is then used to firm up
the value. In this procedure, the value of some dynamical invariant—e.g.,
correlation dimension or Lyapunov exponent—is computed over a parameter
range to look for convergence. This process can also be subjective, however,
since these computations often involve identifying a scaling region. In a plot
of the correlation sum or distance growth, for example, such scaling regions
are generally selected by eye, a process that is not immune to confirmation
bias. (Of course, if one simply fits a line to the full results of the calculation
without regard to the plot shape, the resulting value of the computed dy-
namical invariant is typically not correct.) The notion of convergence with
increasing embedding dimension, too, is problematic: is one significant figure
in the correlation dimension enough? Or does one need two? These issues
are exacerbated by the fact that when the embedding dimension is large, the
nearest neighbors tend to be far away, giving incorrect results [8, 9]. More-
over, larger embedding dimensions can introduce spurious effects for data
sets that are small or noisy.

In this paper, we address these subjectivities and informalities using a
recently developed method for automated scaling-region selection [10] that
offers statistical confidence intervals on the results. A sketch of the algorithm
is as follows:

1. On the two-dimensional plot, perform linear fits to segments of the data
using every possible combination of left and right endpoints.

2. Calculate a weight for each linear fit that is directly proportional to
the length of the segment and inversely proportional to the square of
the least-squares fit error.

3. Using the ensemble of fits, generate a histogram of all slopes, taking
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into account the calculated weights.

4. Generate a probability distribution function (PDF) of slopes from the
histogram using a kernel density estimator. The mode of this PDF is
the most likely estimate of the scaling region slope, and its full width
at half maximum provides confidence bounds.?

This technique can be used as the core of an effective methodology, de-
scribed in Section 2, for automating the asymptotic invariant procedure. The
algorithm outlined in the steps above not only removes the subjective identi-
fication and extraction of the scaling regions; it also supports calculation of
statistical estimates of convergence, computed using an appropriate metric
on the PDFs. As a proof of concept for these claims, we apply this method-
ology in Section 2 to data from a number of real and simulated dynamical
systems to select values for the embedding dimension. We then compare the
results—both the embedding dimension and the dynamical invariants—to
those produced by other methods.

While we focus here primarily on estimating m, it is easy to use this
methodology to estimate good values for 7—or, indeed, for any parameter
in a procedure for calculating dynamical invariants. One could also use a
straightforward two-parameter extension of our method to estimate m and
7 simultaneously, as in [11].

2. Automating the asymptotic invariant procedure

Our goals in this section are to outline a systematic procedure for selecting
good values for the free parameters in the delay-reconstruction process and
to demonstrate the procedure in the context of the embedding dimension,
m. We do this with several synthetic and real data sets that are described
in Section 2.1, first estimating the delay, 7 using the method of Fraser &
Swinney [6], then embedding the data for a range of m and computing the
correlation sums using TISEAN [12, 13]. Using the method of Deshmukh et
al. [10] on the resulting plots and the Wasserstein metric [14] on the resulting
distributions, we establish the embedding dimension at which the correlation
dimension converges; see Section 2.2. These results are compared to the

3The algorithm in [10] returns two additional distributions that provide information
about boundaries of the scaling region(s). The approach proposed in this paper does not
rely on those distributions.
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dimension given by the false near neighbor method [7]. We also compare the
correlation dimension results to the known values, where they exist. Finally,
in Section 2.3 we apply these ideas to computation of Lyapunov exponents.
We will note that algorithms to compute different dynamical invariants might
work best using different embedding dimensions.

2.1. Data sets
We use four data sets in this work.

e The x coordinate of a 90,000-point trajectory from the canonical Lorenz

system [15]:

& =10(y — ),

y:$(28_2)_y7

Z=1xy — %z,
with the initial condition (0, 1,1.05). This is obtained using a fourth-
order Runge-Kutta algorithm for 10° points with the time step At =
0.01. We discard the first 10* points to remove transient behavior and
focus on the attractor. For this well-studied system the correlation

dimension and largest Lyapunov exponent are well-known (approxi-
mately 2.05 and 0.91, respectively) [16, 17, 18].

e The first coordinate of a 990,000-point trajectory from the 14-dimensional
Lorenz-96 system [19]:

d.ﬁlﬁk

dt
for k = 1,...14 with z3414 = 7. The trajectory for the initial con-
dition [6,5,5,...,5] is obtained using the fourth-order Runge-Kutta
algorithm with time step At = é. We discard the first 10* points from
the million point trajectory to remove the transient. This example is
included because its dynamics are high dimensional: the Kaplan-Yorke
dimension is estimated to be 6.93 by [20].

= (Thy1 — Tp—2)Tp—1 — T + F (1)

e Two 80,000-point data sets from experiments on a Photonic Integrated
Chip (PIC) distributed feedback laser that was developed as part of
the European Commission PICASSO project, sampled at 40 GHz [21].
These examples are included to validate our method on experimental
data for which there are established values for delay-reconstruction
parameters and correlation dimension.
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2.2. Correlation Dimension

In this section, we demonstrate how to choose good values of the em-
bedding dimension, m, for the four data sets described in Section 2.1 using
automated asymptotic invariant analyses on correlation-sum plots.

Results for the classic Lorenz-63 system are shown in Figure 1. The first
three panels show the standard steps in the delay-reconstruction process.
From the time series, shown in panel (a), TISEAN’s mutual command gives
the average mutual information versus 7, shown in panel (b). We select
the first minimum at 7 = 18 for the rest of the analysis. To estimate the
embedding dimension m, we then run TISEAN’s false nearest command,;
panel (c) shows the percentage of false near neighbors plotted versus m.
Using a 10% threshold, as is common in practice, the FNN results suggest
m =34

The bottom three panels of Figure 1 demonstrate our methodology using
the correlation dimension as an asymptotic invariant. The correlation sums,
C'(e), are found from TISEAN’s d2 command for a range of m values. Here
€ is the size of the balls used to cover the set during the calculation of the
Grassberger-Procaccia algorithm [22]. Panel (d) shows In C'(¢) versus Ine. If
this plot has a scaling region, its slope is the correlation dimension.

It is common practice to choose the endpoints of a scaling region by eye,
and then compute the slope using a linear fit. In this case, if the slopes were
to converge as m increases, it is thought that the m-embedded attractor is
properly unfolded and that the value of the correlation dimension is correct.
Figure 1(d) shows clear scaling regions whose slopes behave as expected:
when m is too low, the attractor is not properly unfolded and the computed
correlation dimensions—i.e., the slopes of the blue (m = 1) and orange (m =
2) traces—are artificially low. As m increases, the slopes increase and then
appear to converge.

We formalize this procedure using the method of Deshmukh et al. [10],
which uses slope distributions to identify scaling regions and the Wasserstein
distance to establish convergence of the distributions with increasing m. As
a first step, we compute potential scaling regions corresponding to an ensem-
ble of intervals, varying the left and right endpoints. We set the minimum

“4In this paper we leave TISEAN’s many algorithmic parameters at their default values
unless otherwise mentioned. For Lorenz-63, we increased the default range of 7 in mutual
to see the first minimum in Figure 1(b).
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Figure 1: Lorenz-63 example. (a) Time series for the = coordinate. (b) Average mutual
information as a function of 7.

(c) Percentage of false near neighbors as a function of
the embedding dimension m. (d) Correlation sum plots for 7 = 18 and m € [1,10]

,10]. (e)
Weighted slope distributions generated from an ensemble of fits in different intervals from
panel (d). (f) Wasserstein distance between successive slope distributions
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number of points for the fitting interval to be 10, but allow all possible com-
binations otherwise. This choice is discussed in [10]. In panel (d) there are
100 values of In(e€) as possible endpoints; using a minimal width of 10 points
then gives 4005 potential scaling regions. For each m in Figure 1(d), we
then generate a distribution of slopes, P,,, from least-squares fits for each
interval. The goodness of the fit is included by weighting each result by the
length of the fitting interval and inversely by square of the fit error. We show
kernel density estimates for these distributions in panel (e), calculated using
python’s scipy.stats.gaussian kde function.

The geometry of these distributions brings out the salient information
quite effectively, including both the existence of one or more scaling regions
and their slopes. Unimodal slope distributions, as in Figure 1(e), suggest
the presence of a single, wide scaling region for d2.° The mode of P, is an
estimate of the slope of the scaling region and the width of the distribution
around that mode width gives an indication of precision. More formally, we
calculate a confidence interval by computing the standard deviation, o, of
the ensemble members within the full width at half maximum (FWHM) of
the mode. For the m = 2 case (orange), o = 0.02, giving the estimated slope
1.92 + 0.02.

If there were no scaling region in the plot, the distribution would be
wide and the corresponding confidence interval large. For Figure 1, the
trajectory samples the attractor cleanly and thoroughly, resulting in small
error estimates. However, this is not the case for all of the examples below.
Moreover, if the plot contains multiple scaling regions, the distributions will
be multi-modal. This may occur, for example, for d2 when € is larger than
the diameter of the attractor, or for noisy data when € is small [10]. The
possibility of such multi-modal distributions is why we use the mode rather
than the mean.

The choice of the smallest embedding dimension that gives an accurate
and valid calculation of the correlation dimension is the critical matter at
issue here. We assert that this m corresponds to the smallest value for
which the slope distributions “converge.” In Figure 1(d), this convergence is
apparent to the eye: the P, (blue) and P, (orange) distributions reflect the
low correlation dimensions of an incompletely unfolded attractor; however,

5Note that all distribution plots in this paper have the same vertical scale for the
purposes of comparison, and may be truncated.
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the P, for m > 3 largely overlap. This suggests that m = 3 or 4 would be a
good choice.

To formalize the notion of convergence, we use the Wasserstein metric
[14], My, to compare sequential pairs P, and P,,_;. As a metric, My = 0 if
and only if the distributions are identical, or—as we are using it for samples—
if and only if the weighted sample values are the same. Figure 1(f) shows
Myw (P,,, P,,_1) for the Lorenz-63 d2 slope distributions, calculated using the
python scipy.stats.wasserstein distance function. For this noise-free,
low-dimensional case, the distance My (FP,,, P,,—1) montonically decreases
with m.

For real-valued data, it is known that the L; Wasserstein distance for a
sample of size N from a distribution approaches zero as N~'/2 under some
technical assumptions [23]. In our experiments, N = O(10?) is the number
of selected left and right endpoint pairs for the linear fits. The theoretical
error is also proportional to the width of the PDF, which in our applications
tends to be O(1). We make the null hypothesis that the PDFs are the same
if

My (Pp, Pp—1) <01

In Figure 1(f) this threshold, shown as the dashed line, first occurs at m = 4
where My (Py, P3) = 0.025 < 0.1, so we choose this embedding dimension.
This then gives do = 2.06 & 0.03, which is in reasonable agreement with the
known value of ~ 2.05.

Our approach bears some similarities to other methods for choosing m,
but the My, threshold is mathematically justifiable. By contrast, there ap-
pears to be no such justification for the selection of a threshold for the per-
centage of false nearest neighbors. The suggestion of [7] is that “a physicist
might well choose to accept this threshold to make more efficient any further
computations performed on the data,” a reason based only on convenience.
Moreover, the percentages of FNN can vary widely with 7 and m, and also
are sensitive to noise [9]. This further complicates the selection of a threshold
for the FNN heuristic. Similarly, Cao [24] proposes a method to automate
the asymptotic invariant approach by comparing quantities calculated from
embeddings at successive dimensions. The quantities are derived from dis-
tances between points that are neighbors in space (E1(d)) or in time (E2(d)).
However, the paper does not formalize a threshold on F1 and F2 to indicate
that the correct embedding dimension has been reached.

For the second example, we use the Lorenz-96 trajectory described in
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Figure 2: Lorenz-96 example. (a) Correlation sum plots for embeddings for 7 = 23 and
m € [3,12]. (b) Weighted slope distributions generated from an ensemble of fits in different
intervals from panel (a). (¢) Convergence of slope distributions.

Section 2.1 to give a time series sampled from an attractor in a 14D state
space. In this case, AMI (not shown here) does not give a good estimate for
T because it has broad, almost-flat region with a first minimum at 7 = 145, a
value that produces an over-folded embedding. Instead, we use the curvature-
based heuristic of [25] to select 7 = 23. The resulting correlation sums from
TISEAN for a range of embedding dimensions are shown in Figure 2(a). The
corresponding slope distributions, panel (b), exhibit the same behavior as the
Lorenz-63 example: they peak at artificially low slopes when the dimension
is too small, and appear to converge with increasing m. The Wasserstein
metric, panel (c), confirms this and suggests m = 9 is sufficient. This gives
dy = 5.74+0.09. This is in accord with the Kaplan-Yorke dimension, dxy =
6.93 according to [20], for this system, which is an upper bound on dy for
multifractal sets.

For this trajectory, the FNN method would require a larger value, m =
11, giving only a slightly larger estimate of the correlation dimension. The
difference between the two estimates stems from what each method is trying
to do. FNN performs an aggregate calculation of neighbor relationships
across the attractor, with the goal of identifying false trajectory crossings
created by inadequate unfolding. Elimination of such crossings is sufficient
for computing the correct dimension, but not necessary [9]. By contrast, our
method uses the convergence of the desired invariant as the primary criterion,
which is more appropriate given that this is the goal.

Moving beyond synthetic examples, we now consider two PIC laser data
sets from McMahon et al. [21]. These were gathered from the same device

10
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but under different conditions and, as noted in the paper, lead to quite
different dynamics; see Figure 3(a) and (b). McMahon et al. first estimate
7 using AMI then calculate the correlation sums over a fixed range of m €
[5,10]. They apply a “minimum gradient detection” algorithm to find scaling
regions. This method gives dy = 1.27 4+ 0.05 and 1.01 4 0.06, respectively.
The paper does not note a “best” value for m, as their goal is calculation of
the correlation dimension and not the embedding dimension.

The results of applying our methodology to this data are shown in Fig-
ure 3(c)-(h). The minimum AMI occurs at 7 = 3 for both cases. The
correlation sum for a range of m values is shown in panels (¢) and (d). Pan-
els (e) and (f) show the corresponding slope distributions, and (g) and (h)
show the Wasserstein distances. For the data in the left column, the slope
distributions are multimodal for m € [1,4], reflecting the distinct linear re-
gions in panel (c¢). The PDFs in (e) are far broader than those in Figures 1
and 2, indicating less certainty. Nevertheless, the Wasserstein distance in
panel (g) does drop below 0.1 for m = 5, implying ds = 1.37 £ 0.05. This
is in agreement with the quoted results of McMahon et al., though it should
be noted that their confidence interval is calculated differently.

The story is quite different for the second case. The distributions in
Figure 3(f) do not appear to converge with increasing m; this is corroborated
by the Wasserstein metric in panel (h). Indeed, the curves in panel (d)
are clearly problematic from the standpoint of time-series analysis. The
m = 1 and m = 2 results do have scaling regions—indicated by the strong,
unimodal peaks in the blue and orange distributions in panel (f)—but the
slopes of these regions give spurious dy values because the attractor is not
reconstructed properly for such low dimensions (as is clear from the change
in slope with increasing m in this range). When m > 2, none of the ds curves
have clear scaling regions. Our slope distributions bring this out clearly: the
Wasserstein distance never falls below 0.1, indicating low confidence in the
correlation dimension. This is not in accord with the asserted value in [21],
perhaps because computing a gradient from noisy data, as is done in that
paper, is notoriously problematic.

A number of methods have been proposed to automate the estimation of
dy: see, for example, [26, 27, 28]. These papers essentially use the follow-
ing workflow: calculate a local gradient of the correlation sum, generate a
histogram of the slopes, and then locate the peak value. Numerical differen-
tiation can, of course, be problematic unless the data points are noise free.
Our method is designed to avoid this issue. Since we weight the linear fits by

11
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their length, we favor longer fits, thus de-emphasizing small-scale noise. Our
choice of the mode of the slope distribution provides a slope that is common
to a range of endpoint choices. Another important difference between our
method and those in the cited papers is generality. The primary focus of
those papers is an automatic estimate of the correlation dimension. The ob-
jective of our method is to select a good value of the embedding dimension;
the d2 calculation is only the vehicle. Any other dynamical invariant would
be just as good, as we show next.

2.3. Other invariants

Correlation dimension is not the only dynamical invariant that involves
fitting a line to a scaling region. Another important quantity is the largest
Lyapunov exponent, A;, which can be computed by the widely used Kantz
[29] and Rosenstein [30] algorithms. These calculate a “stretching factor”
S(An) between nearby trajectory points. This computation also gives a
scaling region to which our method can be applied. This, in turn, pro-
vides another opportunity for an automated asymptotic invariant approach
to choose embedding parameter values.

Figure 4 shows the results of this approach applied to the Lorenz-63
dataset from Section 2.1, using TISEAN’s 1yap_k command. The Wasser-
stein metric, panel (c), suggests that m = 3 is adequate. With this choice,
we estimate A\ = 0.927 4+ 0.031, close to the value 0.91 computed from inte-
grating the ODEs [16].

Note that this embedding dimension is smaller than the m = 4 in Sec-
tion 2.2, which was obtained using d2 calculations. This brings out an inter-
esting point: different values of the embedding dimension may be sufficient
for the calculation of different invariants. This is likely due to a combination
of dynamical and algorithmic effects. The 1yap_k algorithm analyzes how the
dynamics deform the state space by tracking the forward images of points
in an initial e-ball that stretches along the most unstable manifold. Our
results suggest that this effect can be tracked effectively in m = 3, whereas
the d2 algorithm, which counts points in m-dimensional e-balls, requires a
more fully unfolded reconstruction. In other words, both the nature of the
invariant and the algorithm play a role. This is not the first observation of
this effect, of course, see for example [31, 32].

On a related note: default range for the initial e-ball in the 1yap_k calcu-
lation is set, by default, to five values betwen 0.001 and 0.01 of the span of
the data, and S(An) is computed for each e. Data limitations can make the
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Figure 4: Largest Lyapunov exponent for Lorenz-63. (a) Spreading factor for embeddings
for7 = 18 and m € [2,9]. (b) Weighted slope distributions from panel (a). (¢) Convergence
of slope distributions.
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Figure 5: Wasserstein distance for the Lorenz-63 data for a range of ¢ in the lyap_k
algorithm. Figure 4(c) uses e = 0.105.

results quite sensitive to this scale, however, so choosing a good ¢ value—or
knowing whether a choice is good—can be a challenge. Our method can
provide some insight in this situation. Figure 5 shows the effect of ¢ on
the Wasserstein distance for the Lorenz-63 data. For the five smallest € in
the figure, the slopes converge by m = 3. For ¢ = 0.135, the slopes still
converge, but not until m = 4. Beyond that, the Wasserstein distance is
non-monotonic, indicating a lack of convergence with increasing dimension.
This suggests that these larger values of € are problematic.
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3. Discussion and conclusion

The choice of the embedding dimension is a critical, but challenging,
step in delay reconstruction. As discussed in Section 2.2, a number of good
heuristics have been developed to aid in this process. However these do not
provide confidence intervals, and they involve subjective thresholds that may
or may not be optimal for any particular data set. In the face of this, one
can adopt an iterative approach: use some heuristic to obtain a good first
guess, then compute a dynamical invariant—e.g., the correlation dimension
or Lyapunov exponent—over a range of embedding dimensions, looking for
convergence. This process, too, can be subjective, as these computations
often involve finding, and fitting a slope to, a scaling region. Since this is
generally done by eye, it is not immune to confirmation bias.

The contribution of this paper is a method that formalizes and auto-
mates this process. We use the ideas of Deshmukh et al. [10] to generate
an ensemble of slopes from prospective scaling regions, creating a slope dis-
tribution that uses interval width and fit quality as weights. Broad, clean
scaling regions manifest as narrow, tall peaks in these distributions. Upon
repeating this calculation for a range of embedding dimensions, this leads
to a good choice of m values: when the resulting sequence of slope distribu-
tions converges, as signaled by the decrease of a Wasserstein distance below
a threshold that is motivated by the theoretical expectation for samples from
a fixed distribution.

We demonstrated the method in Section 2 on four data sets using two
dynamical invariants calculated with the TISEAN package: the correlation
dimension and the largest Lyapunov exponent. Each of these requires com-
puting a slope—of the correlation sum versus the scale parameter, or of the
stretching factor versus time, respectively. The results corroborate known
values, except in one case: a laser data set from [21]. In this case, the
correlation-sum plots, when examined visually, clearly did not contain true
scaling regions.

We emphasize that calculations of such dynamical invariants are valid
if, and only if, the plots contain “robust” scaling regions. Robustness is
obviously a subjective term that can lead to real problems in the practice of
nonlinear time-series analysis. To quote Kantz & Schreiber: “Some authors
failed to observe that the curves that they were fitting with straight lines were
actually not quite straight...” [5]. Fitting a line blindly to some arbitrarily
selected portion of a plot is even worse. A strength of our method is that
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it objectively measures when there is a scaling region—and, if so, indicates
where it is, and what is its slope.

Our technique can also be useful in the invocation of these algorithms.
Tools like d2 or lyap_k in the TISEAN package attack a difficult problem:
how can one extract dynamical invariants from incomplete samples? Their
implementations involve a number of free parameters such as time scale, the
Theiler window [33], etc. Moreover, the time series must be sufficiently long
for the invariant computation to be valid [34, 357 |. The best practice for
choosing such parameters mirrors the “asymptotic invariant” approach: vary
the parameter, seeking convergence. One can use our method to accomplish
this—for individual parameters or even for several at once, using a multivari-
ate sweep. This could include choosing any of the free parameters in delay
reconstruction.
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