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1. The Mathematics of Thin Structures – An introduction (by G. Francfort
and I. Fonseca).

1.1. Introduction. This collection of articles attempts to provide a wide ranging, while
not encompassing all views of the current mathematical investigations into thin structures.
Rather than enumerate and detail the various topics that have been either included or
excluded from this volume, we prefer to describe briefly the main historical steps that
have led to the kind of pursuit which is described in the following presentations.

The original concern was a simple one: What happens to a thin three-dimensional
elastic body when its thickness vanishes asymptotically? In other words, consider a
domain of the form ⌦" := !⇥ (�"/2, "/2) with ! ⇢ R2 open, bounded, Lipschitz domain,
and " > 0.

"/2
"/2

⌦"

!

Fig. 1. The thin domain

That domain is occupied by an elastic material with W : R3⇥3 ! R̄ as elastic energy
density, so that the internal energy of the body is

E"(U
") :=

ˆ
⌦"

W (rU") dx,

where U" is the elastic minimizer of the associated potential energy.1 What is the stored
energy in the limit two dimensional body ! as "& 0?

It was realized early on that the limit stored energy critically depends on the order
of E" in ", giving rise to a great variety of asymptotic behaviors. Given a thin domain
and a set of boundary conditions and loads, there is no natural way to guess what the

1In this presentation, as well as in those of the various contributors, a variational attitude is adopted.
It consists in assuming that elastic equilibrium is achieved through minimization of the potential energy
for the relevant boundary conditions and loads. Of course, while this is strictly equivalent to assuming
equilibrium in a linearized context, it is not so in a nonlinear framework and much remains to be done on
that front.
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relevant order is, so the classification is not so useful from a practical standpoint, except
maybe for the potential corrections that the obtained asymptotic models suggest vis à
vis the classical models used by engineers. Nevertheless, this is where the mathematical
e↵ort has concentrated, and our goal in this short introduction is to review the classical
tenet of the theory precisely in terms of the "-order of the internal energy.

In the sequel and unless otherwise stated, we assume the following on the elastic energy
W , as was first posited in [16],
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

W : R3⇥3 ! R̄+ is continuous

W (F ) = 1 if detF  0 (preservation of orientation +non interpenetration)

W (RF ) = W (F ) for all R 2 SO(3) (frame indi↵erence)

W (Id) = 0 (no pre-stress)

W isC2 near Id

W (F ) � c dist2(F, SO(3)) = c|
p
FTF � Id|2 for some c > 0

(linear behavior near the identity),
(1.1)

which are the classical features of a so-called hyperelastic energy. In (1.1), Id is the
identity matrix.

Remark 1.1. Note that the last property in (1.1) implies that @W/@F (Id) = 0, and
that the quadratic form

Q3(M) :=
@2W

@F 2
(Id)M ·M, M symmetric 3⇥ 3 matrix, (1.2)

satisfies Q3(M) � c tr MTM. Further,

W (Id+ hA) � Q3(hA)� o(|hA|2).

The first step in the analysis is always the same. One should rescale the problem so as
to deal with a fixed domain ⌦ = ! ⇥ (�1/2, 1/2). The associated rescaling is x3 7! x3/",
resulting in

E"(U
") = "

ˆ
⌦
W (r"u") dx, (1.3)

where u"(x↵, x3) := U"(x↵, "x3) and r" :=

✓
r0, 1/"

@

@x3

◆
, r0 denoting the in-plane

partial derivatives @/@x1, @/@x2.
We define

E"(v) :=

ˆ
⌦
W (r"v) dx

so that E"(U") = "E(u").
The goal is then to investigate the asymptotic behavior of E"/"� . In mathematical

terms, this amounts to a study of
• The compactness of (approximate) minimizers u" of E"/"��1 under the assumption
that

sup
"

E"(u")/"��1 < 1; (1.4)
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• The �-convergence, in the topology for which compactness is attained as per the
previous item, of E"/"��1.

It is clear from (1.3) that the first order for which a non trivial limit may be obtained is
� = 1. This will give rise to the so-called membrane regime detailed in Subsection 1.2.1.
Then, the regimes � > 1 will produce a variety of di↵erent models that conform more or
less to classical engineering models, as described in Subsections 1.2.3, 1.2.4 and 1.2.5. All
results pertaining to regimes for which � > 1 heavily hinge on an approximate rigidity
theorem established in [90]. Subsection 1.2.2 will detail that result and the way it is used
in establishing the relevant �-limits in Subsections 1.2.3, 1.2.4 and 1.2.5.

Each of the following subsections in Section 1.2 is short (and even very short), and
essentially reduces to a mere statement of the most important results pertaining to the
relevant scaling, together with a rapid sketch of some of the underlying mathematical
arguments. The focus is almost exclusively on the derivation of a lower bound for the
�� lim inf which, hopefully, will be optimal. In all that follows, we assume familiarity
with the notion of �(X)-convergence, X being a metrizable topological space (see [54]).

Finally, in Section 1.3, we address a few of the problems or concerns that can be raised
as to the significance of the models described in Section 1.2 in the hope that some of
those will provide motivation for future research.

Notationwise, if M is a 3 ⇥ 3 matrix, we denote by |M | its Frobenius norm, that is
(tr MTM)1/2 (associated to the Frobenius inner product M ·N := tr MTN), and we use
x0 to denote the planar coordinates x1, x2. The rest of the notation is standard.

1.2. The various regimes. In this section, we quickly describe the main regimes that
can be obtained when � varies.

Remark 1.2. In Section 3, Marta Lewicka will o↵er a similar analysis with the
additional non trivial feature that hers is a non-Euclidean setting induced by the presence
of a pre-strain in the model. In that framework, E"(U") is modified and becomes´
⌦" W (rU"g�1/2) dx where g is the smooth Riemannian metric associated with the
pre-strain of the thin domain.

1.2.1. Membranes (� = 1 ; Le Dret-Raoult). The scaling � = 1 is historically the first
one to be addressed in [136]. Unfortunately, the analysis in that paper does not allow for
an energy satisfying (1.1). Instead, one should have, for some C > 0,

W : R3⇥3R is continuous, and
1

C
|F |p � C  W (F )  C(|F |p + 1), 1 < p < 1, (1.5)

which of course goes against the requirement that W (F ) % 1 as detF ! 0+.
In such a setting, coercivity immediately implies that a sequence {u"} satisfying (1.4)

will have a weak-Lp(⌦;R3⇥3)-converging subsequence of gradients with, as limit the
gradient of an x3-independent function u = u(x0). With this in mind, a first result is as
follows:

Theorem 1.3. Under assumption (1.5)
• For a subsequence (still indexed by "), if u" satisfies (1.4), then

weakly in W 1,p(⌦;R3), with u a function of x0 solely;
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• E" �(Lp(⌦;R3))-converges to

Em(u) =

(´
!
QW (r0u)dx0, u 2 W 1,p(⌦,R3), u independent of x3

1, else,

where, for F 2 R3⇥2,W (F ) := infz2R3 W (F, z), and QW is the 3⇥ 2-quasiconvex
envelope of W , that is

QW (F ) := inf
'

⇢ 
A

W (F +r0') : ' 2 C1
c
(A;R3)

�

for some (any) bounded open set A 2 R2 with L2(@A) = 0.

Remark 1.4. Note that, if W satisfies frame indi↵erence (see (1.1)), then so does QW .
Also, if F 2 R3⇥2 is such that |F |2  1, then QW (F ) = 0. Indeed, in such a case, the
singular values v1, v2 of F are both in [0, 1]. The a�ne deformation u = (v1x1, v2x2, 0)T is
such that r0uTr0u = FTF and thus, because of frame indi↵erence, QW (F ) = QW (r0u).
But the sequence {u"} given by u" := (v1x1 + "✓1(x1/"), v2x2 + "✓2(x2/"), 0)T with

✓i(t) :=

(
(1� vi)t if 0  t  (1 + vi)/2,

�(1 + vi)(t� 1) if (1 + vi)/2  t  1,

converges strongly to u in L2(⌦;R3), while its reduced gradient r0u" only takes the values

J±,± :=

0

@
±1 0
0 ±1
0 0

1

A .

Since QW (J±,±)  W (J±,±), and by (1.1) W (J±,±) = W (Id) = 0, we deduce that
QW (r0u") = 0 and, in turn, by lower semicontinuity we conclude that QW (r0u) ⌘ 0.

This shows that the membrane regime does not react to compression, and forces us to
go beyond that scaling in the next subsections.

The previous theorem result, in spite of its intrinsic defect with regard to orientation
preservation and non interpenetration, spurred a plethora of investigations in a variety of
fields ranging from micro-magnetics, optimal design, fracture, to homogenization among
others. We will not dwell upon those here, pointing instead to Section 2 by Jean-François
Babadjian on brittle membranes and of both Section 4 by Giovanni di Fratta and Section
5 by Cyrill Muratov on micro-magnetics in this volume. In Section 2 contribution an
additional energy is added to the elastic energy to account for delamination of the
membrane from its substrate and/or fracture within the membrane, and the author
analyzes the competition between those two processes. In Section 4 elasticity is replaced
by magnetism while the membrane is not a flat one, but a curved one (! is replaced by a
smooth surface embedded in R3) and the author investigates the appearance of magnetic
skyrmions. In Section 5, the emphasis is on the study of magnetic domains in thin films
(those regions with aligned magnetic spins) and on the transition layers between the
domains (the magnetic walls).

To this day, the handling of conditions (1.1) seems to be out of reach. The studies
that come nearest to achieving that goal are those of [50, 206] which investigate the
incompressible case, that is what happens when the energy is infinite if detF 6= 1 and
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satisfies (1.5). In that case, the limit model is exactly that obtained in the previous
theorem and incompressibility is lost in the limit.

Finally, let us emphasize that one could refine the results of Theorem 1.3 in a variety
of ways. As an example, one could also impose that, in the search for a �-limit, one
also require that, for a converging sequence {w"}, the weak Lp(⌦;R3)-limit of the term
1/"@w"/@x3 be given (and not only that of the strong Lp(⌦;R3)-limit of w"). In that
case, the results are much more intricate and the limit behavior is most likely nonlocal.
We refer the reader to [27] for details.

1.2.2. Rigidity (Friesecke-James-Müller). Say that u 2 W 1,2(⌦;Rn) is such that
ru(x) = R(x) 2 SO(n), for a.e. x 2 ⌦. Then, since div cof ru = 0, we get
0 = div cof R = divR = 4u, and u is harmonic. Hence, we may consider derivatives of u
of any order, and because |R|2 = 1, we have

0 = 4|R|2 = 4(|ru|2) = |r2u|2,

(r2u is the Hessian matrix of each component of u), and thus ru is a constant rotation.
This is a classical exact rigidity result à la Liouville. The approximate rigidity result
uncovered in [90] states a similar result, provided that ru is L2-close to a rotation,
namely,

Theorem 1.5. Let ⌦ ⇢ Rn, n � 2, be a bounded Lipschitz domain. Then there exists
C(⌦), invariant by translation and dilation, such that, for all u 2 W 1,2(⌦,Rn), there
exists R 2 SO(n) with

kru�RkL2(⌦;Rn⇥n)  C(⌦)kdist (ru, SO(n)kL2(⌦).

This result has proved a milestone in many fields. For our part, we apply it to the
setting at hand, recalling the bound from below on W (F ) in (1.1). We obtain that, for "
small, there exists R" 2 SO(3) such thatˆ

Sa,"

|r"u" �R"|2 dx  C

ˆ
Sa,"

dist (r"u, SO(3))2 dx,

where Sa," := (a + (�"/2, "/2))2) ⇥ (�1/2, 1/2), a 2 "Z2 and C is independent of a, ".
Provided that (1.4) holds, the previous estimate gives rise to a piecewise constant rotation
field R"(x0) such that ˆ

!⇥(�1/2,1/2)
|r"u" �R"|2 dx  C"��1 (1.6)

and, with a little bit of work, it is not hard to show that, for some C 0 > 0,ˆ
!

|R"(x0 + z)�R"(x0)|2 dx0  C 0"��1

✓���
z

"

���
2
+ 1

◆
. (1.7)

If � � 3, from (1.7), we immediately infer that

lim sup
z!0

sup
"

kR"(·+ z)�R"(·)kL2(⌦,R3) = 0

so that, by the Fréchet-Kolmogorov theorem,

R"
L

2(⌦;R3⇥3)�! R̄ 2 W 1,2(!;SO(3))
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and thus, with (1.6),

r"u" and R"
L

2(⌦;R3⇥3)�! R̄ 2 W 1,2(!, SO(3)). (1.8)

In particular, we get that

r"u"
L

2(⌦;R3⇥3)�! (r0u, b) with b(x0) =
@u

@x1
(x0) ^ @u

@x2
(x0). (1.9)

If � < 3, the only information we derive from (1.6) is that

r"u" and R"
weakly in L

2(⌦;R3⇥3)
* (r0u, b) with |r0u|2  1. (1.10)

In such a case, u is called a short map.
1.2.3. In between (1 < � < 3 ; Conti-Maggi). Strangely enough, not much is known

about the regime 1 < � < 3 in addition to (1.10). In [52], it is proved that, when � < 8/3
the �(L2)-limit of E/"��1 is 0 for short maps and 1 else while, for 8/3  �  3, the
�(L2)-limit has not been characterized as of yet.

The di�culty in this case lies in the construction of a recovery sequence. This relies upon
the possibility of approaching uniformly a W 1,1(⌦;R3)-short map u by C1-isometries
uk, that is such that, for some bk, (ruk, bk) 2 SO(3); this is the famous Nash-Kuiper
theorem.

In [52], the authors relate their results to Origami constructions and, further, to paper
crumpling, an association which may, or may not be relevant because of the irreversibility
of the folding process.

1.2.4. Bending (� = 3 ; Friesecke-James-Müller). If � = 3, then from (1.6) we immedi-
ately conclude that, up to a subsequence,

G" := 1/"((R")Tr"u" � Id)
weakly in L

2(⌦;R3⇥3)
* G (1.11)

and thus that, since, by frame indi↵erence, W (r"u") = W (Id+ "G"), we get, thanks to
Remark 1.1,

E"(u")/"2 � 1/2

ˆ
⌦
Q3(G

") dx� o(1)

where Q3 was defined in (1.2). Hence

lim inf
"

E"(u")/"2 � 1/2

ˆ
⌦
Q2(G

00) dx (1.12)

where, for any M 2 R2⇥2,

Q2(M) := inf
z,z02R2,z”2R

Q3

✓✓
M z
z0 z”

◆◆
(1.13)

where we use the notation F 00 to denote the 2⇥ 2 matrix with entries Fij , 1  i, j  2,
while F 0 stands for the 3⇥ 2 matrix with entries Fi,j , 1  i  3, 1  j  2.

It remains to identify G00 in (1.12). To that e↵ect, recalling that b = b(x0) is the strong
L2(⌦;R3)-limit of {1/" @u"/@x3}, we have

1

"z

ˆ
x3+z

x3

@u"

@x3
dz =

1

"z
(u"(x0, x3 + z)� u"(x0, x3))

L
2(⌦;R3)�! b,
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hence

1

z
((R"G")0(x0, x3 + z)� (R"G")0(x0, x3)) =

1

z


(r0u"(x0, x3 + z)�r0u"(x0, x3))

"

�
H

�1(⌦;R3⇥3)�! r0b(x0).

Consequently, from (1.8), (1.11),

R̄

✓
G(x0, x3 + z)�G(x0, x3)

z

◆�0
= r0b,

and, letting z & 0,
⇥
R̄@G/@x3

⇤0
= r0b, from which simple algebra leads to


@G

@x3

�00
= (r0u(x0))Tr0b(x0), (1.14)

which is thus an x3-independent quantity. Finally we conclude that

G00(x0, x3) = G00(x0, 0) + x3


@G

@x3

�00

(x0)

and so, recalling (1.12), (1.14),

lim inf
"

E"(u")/"2 � 1/2

ˆ
!

Q2(G
00(x0, 0)) dx+ 1/24

ˆ
!

Q2

�
(r0u(x0))Tr0b(x0)

�
dx0

� 1/24

ˆ
!

Q2

�
(r0u(x0))Tr0b(x0)

�
dx0. (1.15)

Inequality (1.15) actually provides the correct �-limit, as could be checked by constructing
a recovery sequence roughly of the form U" := û(x0) + "x3b̂(x0) + "x2

3d̂(x
0), where û is an

isometry, b̂ := @û/@x1 ^ @û/@x2, and d̂ is such that Q3(R̂T (r0b, d)) = Q2((r0û)Tr0b̂),
with R̂ := (r0û, b̂).

So we obtain the following:

Theorem 1.6. Under assumption (1.1)
• For a subsequence (still indexed by "), if u" satisfies (1.4), then r"u" �! (r0u, b)

strongly in L2(⌦;R3⇥3), where (r0u, b) 2 W 1,2(⌦;SO(3)) and is a function of x0

solely;

• E"/"2 �(L2(⌦;R3))-converges to

Eb(v) :=

8
>><

>>:

1/24
´
!
Q2((r0v)Tr0c)dx0, if (r0v, c) satisfies (r0v, c) 2 W 1,2(⌦;SO(3))

and is a function of x0 solely

1, else,

where Q2 was defined in (1.13).

The above regime is usually referred to as that of nonlinear bending.

Remark 1.7. Note that (r0v, c) 2 SO(3), therefore c · @v
@x1

= c · @v
@x2

= 0. Di↵erenti-

ating these equations with respect to x1 and to x2, shows that the term (r0v)Tr0c can
be equivalently written as (r0)2v · c (the reduced Hessian of u).
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1.2.5. von Kármán like (� > 3 ; Friesecke-James-Müller). First we remark that, when
� > 3, then (1.7) implies that R̄ is a constant. Then, because of frame indi↵erence, we
may as well assume that R̄ = Id. The argument for deriving a �-liminf roughly follow
those expounded in the previous subsection, but with �-dependent scalings; for example
the quantity G" in (1.11) is now

G" := "
1��
2 ((R")Tr"u" � Id).

We refer the interested reader to [91, Theorems 2,3] and only detail somewhat the result
in the true von Kármán case, that is that when � = 5.

In the setting of Subsection 1.2.2, we define

y" := (R̄")Tu" � c",

where R̄" is a constant "-dependent rotation obtained from R" defined in (1.6) and c" is
a suitable constant so that

´
⌦(y

" � (x0, "x3)) dx = 0 (see [91, Lemma 1] for details). We
further define the averaged in-plane and out-of-plane displacements

8
>>><

>>>:

h"

1,2 := 1/"2
ˆ 1/2

�1/2
(y"1,2 � x1,2) dx3,

v" := 1/"

ˆ 1/2

�1/2
y"3 dx3.

(1.16)

Then it is easily obtained that
8
<

:
h"

W
1,2(!;R2)�! h,

v"
W

1,2(!)�! v.
(1.17)

The �-convergence theorem is as follows:

Theorem 1.8. Under assumption (1.1)
• For a subsequence (still indexed by "), if u" satisfies (1.4), then {h"}, {v"}

constructed through (1.16) from u" satisfy convergences (1.17);
• E"/"4 �-converges (for the topology associated with the convergences (1.17)) to

Evk(h, v) := 1/2

ˆ
!

Q2(1/2[r0h+ (r0h)T ] +r0v ⌦r0v) dx0 + 1/24

ˆ
!

Q2((r0)2v) dx,

where Q2 was defined in (1.13).

The von Kármán model has always been contentious. While widely used by engineers,
it has been criticized by many famous scientists, not least among them Cli↵ord Truesdell.2

At worst the above theorem demonstrates that such a model is compatible with the
variational view of nonlinear elasticity under appropriate rescaling.

Remark 1.9. For 3 < � < 5, the obtained regime sits between the nonlinear bending
and the von Kármán regimes, while for � > 5 we recover in the limit the setting of linear
Kirchho↵-Love plate theory which can also be obtained through 3d to 2d dimensional
reduction starting from linear elasticity as first established in [46].

2 “An analyst may regard that theory as handed down by some higher power (a Hungarian wizard,
say) and study it as a matter of pure analysis. To do so for the von Kármán theory is particularly
tempting because nobody can make sense out of the “derivations”. ” [207, Page 601].
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1.3. Boundary conditions, forces and other considerations. From a mathematical
standpoint, the regime � = 1 distinguishes itself from all others on two grounds. On
the one hand, as already explained, it does not allow for energies satisfying (1.1). But,
on the other hand, it gives rise to a model which is local in the sense that the �-limit
can be localized to any open subdomain A of ! and remains the same (just replace
⌦ by A ⇥ (�1/2, 1/2) in the definition of E"). This is so because, as a function of A,
the integration domain in the plane, that �-limit is a measure, as can be established
through what is sometimes called the fundamental estimate (see e.g. [31, Chapter 11]).
In particular, that estimate implies that the obtained membrane model (or, equivalently
the �-limit) is impervious to the kind of boundary conditions that are imposed on the
converging sequences. As such, it is a bona fide constitutive model for thin plates.

Not so for the other regimes where the �-convergence process cannot be localized, and
where the only kind of boundary conditions that can be imposed are enslaved by the limit
kinematics. For example, in the nonlinear bending regime (� = 3), those must be of the
form

u"

b@!⇥(�1/2,1/2) = û(x0) + x3"b̂(x
0)

where û 2 W 2,2(!;R3) is such that (r0û, b̂) 2 SO(3) a.e. in ⌦.
If, however, the domain is laterally clamped (u"

b@!⇥(�1/2,1/2) = 0), the resulting

model (called Föppl-von Kármán) is completely di↵erent for all scalings 1 < � < 5 as
demonstrated in [53].

For this reason, one could possibly wonder whether the obtained �-limits are truly
constitutive models, and not only classes of asymptotic solutions to specific boundary
value problems.

In this respect, a related issue is that of forces. Indeed, in most works on dimensional
reduction, the relevant scaling, which cannot, as we just saw, be connected to the boundary
conditions except in the membrane regime, is dictated by the scaling of the forces; this is,
for example, the adopted classification in [91]. Now, the volume forces that allow such a
hierarchy generate an additional contribution to the energy in the unscaled domain of
the form

�
ˆ
⌦"

f" · V dx, (1.18)

the relevant scaling becoming dependent on how f" varies with ". Those kinds of forces
are referred to as dead forces. However, a contribution to the potential energy of the form
(1.18) is rather useless when contemplating an equilibrium problem in finite elasticity. As
a matter of fact, from an engineering standpoint, the only dead force is gravity, hardly
an "-dependent load! All other applied forces, be they the representation of volume or
surface loads, are active forces and generate a contribution to the potential energy that
includes non linear terms involving the gradient of the deformation. For example, an
hydrostatic pressure p applied to the boundary of the domain generates an additional
contribution of the form

p

ˆ
⌦"

detrV dx,

a term which is of the same order of nonlinearity as the elastic energy itself.
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Furthermore, as already alluded to in the introduction, if confronted with a boundary
value problem for a thin domain of thickness " and a set of boundary conditions and
loads, how is one to decide what the appropriate "-scaling is for such loads (and boundary
conditions). This conundrum would be resolved if one could somehow establish quanti-
tative error estimates for, e.g., u" � u, u" being a minimizer for the "-rescaled problem.
Unfortunately, no such results are available.

2. Fracture versus delamination of thin films (by J.F. Babadjian).
2.1. Introduction.

2.1.1. Motivation. Thin films can essentially experience two di↵erent fracture modes:
either transverse cracks which split the body into several pieces, or planar cracks leading
to debonding e↵ects and delaminated surfaces. These phenomena can be observed in real
life as, e.g. the stickers identifying research labs at the Ecole Polytechnique in Palaiseau,
France, which was the starting place of this project. A thin vinyl sticker is bonded
to a metal panel and exposed to atmospheric conditions. Among others, the variation
of temperature generates inelastic mismatch strains leading to transverse cracking and
possibly debonding. A few panels relative to numbers in the range “401”–“408”, all of the
same material and subject to similar loading conditions, show recurring crack patterns.

Fig. 2. Cracked lettering at Ecole Polytechnique, Palaiseau, France

Many works have attempted to explain these types of phenomena from mechanical,
mathematical or numerical points view. A comprehensive review of common fracture
patterns may by found in [161, 214].

From a mathematical standpoint, static fractures in (nonlinearly elastic) thin films
have been investigated by means of a �-convergence analysis that allows the identification
of an e↵ective reduced 2D model (see [30, 26, 13]). In [12] a quasi-static evolution model
of cracks in thin films is studied, proving the convergence of the full three-dimensional
evolution to the reduced two-dimensional one (see also [88] in the case of linear elasticity
with topological restrictions on the admissible cracks). The dimension reduction of a
bilayer thin film allowing for debonding at the interface has been investigated in [22],
debonding being penalized by a phenomenological interfacial energy paying for the jump
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of the deformation at the interface. The limit models are discussed according to the
weight of interfacial energy. Rigorous derivations of decohesion-type energies have been
given in [9, 10] by means of a homogenization procedure. In these works the interfacial
energy appears as the limit of a Neumann sieve, debonding being regarded as the e↵ect of
the interaction of two thin films through a suitably periodically distributed contact zone.

More recently, [56, 160, 86] have also derived similar cohesive fracture models by
means of a phase field Ambrosio-Tortorelli approximation involving an internal damage
variable. Finally, several works have focused on the quasi-static evolution of debonding
problems with a prescribed debonding zone. In particular, [193] modeled the debonding
phenomenon through an internal variable representing the volume fraction of adhesive
contact between the layers. However, none of these works is able to rigorously justify the
models used by the engineering fracture mechanics community to model the cracks of
thin film/substrate systems [161].

In [162], a two-dimensional model of a thin film bonded on a thin subtrate has been
introduced and studied. In this model, transverse cracks � and debonded regions � are
respectively 1-dimensional and 2-dimensional subsets of a given reference configuration
! ⇢ R2. The kinematic unknown is the planar displacement u : ! ! R2 and its associated
elastic strain is given by the symmetric part of its gradient e(u) = (ru+ruT )/2. For
external loadings given by a inelastic deformation in the film e0 : ! ! M2⇥2

sym (the set of
2⇥ 2 symmetric matrices) and a prescribed displacement u0 : ! ! R2 in the substrate,
the total energy associated to the triple (�,�, u) is given by

E(�,�, u) := P(�,�, u) + S(�,�),

where

P(�,�, u) :=
1

2

ˆ
!\�

A(e(u)� e0) : (e(u)� e0) dx+
1

2

ˆ
!\�

K(u� u0) · (u� u0) dx

is the potential energy, and

S(�,�) = H1(�) + L2(�)

is the fracture energy of transverse cracks � and delaminated surfaces �. In the previous
expressions, the elastic term is interpreted as the energy of a brittle membrane subject
to inelastic strains e0 lying on a brittle elastic foundation of sti↵ness K, whereas in the
surface term, transverse cracks � and debonded regions � are penalized by a Gri�th-
type surface energy proportional to their length (through the 1-dimensional Hausdor↵
measure H1) and area (through the 2-dimensional Lebesgue measure L2), respectively.
The contribution of the elastic foundation is extended only to the bonded portion of the
film ! \�.

The object of this note is to show that it is possible to rigorously derive the previous
phenomenological model introduced in [162], starting from three-dimensional brittle
fracture in the context of linear elasticity, by letting the thickness of the film tend to zero.
It corresponds to joint works in collaboration with Blaise Bourdin, Duvan Henao, Andres
Leon Baldelli and Corrado Maurini (see [163, 15]).
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2.1.2. Description of the problem. Let us consider a system

⌦" = ⌦"

f
[ ⌦"

b
[ ⌦"

s

made of a thin film ⌦"

f
= ! ⇥ (0, ") (! ⇢ R2 is a smooth bounded open set) deposited on

an infinite substrate ⌦"

s
= ! ⇥ (�1,�") through a bonding layer ⌦"

b
= ! ⇥ [�", 0]. We

assume that ⌦" stands for the reference configuration of an isotropic linearly elastic body
allowing for cracks. This body is subjected to two types of planar loadings:

• a prescribed (smooth) planar displacement u0 : ! ! R2 in the substrate (identified
with a function u0 : ⌦"

s
! R3 with zero last component);

• a (smooth) inelastic strain e0 = ! ! M2⇥2
sym (identified with a function e0 :

⌦"

f
[ ⌦"

b
! M3⇥3

sym with zero entries on the third row and the third column).
According to the variational approach to fracture (see [101, 87, 28]), for a given crack

� ⇢ ⌦
"

of finite area and a given displacement v : ⌦" \� ! R3 satisfying v = u0 in ⌦"

s
, we

define the Gri�th energy as the sum of the elastic energy (computed outside the crack)
and the surface energy (penalizing the presence of cracks) by

(v,�) 7! 1

2

ˆ
⌦"\�

A"(e(v)� e0) : (e(v)� e0) dx+

ˆ
�
" dH2.

In the previous expression, A" stands for Hooke’s law and " is the toughness, which
are "-dependent material parameters possibly depending on the spatial variable. The
notation Hk stands for the k-dimensional Hausdor↵ measure which coincides with the
usual notion of surface (for k = 2) or length (for k = 1) for smooth enough geometrical
objects.

Of course, the dependence of A" and " on " can lead to many di↵erent limit theories.
In this work, we focus on the following scaling

A" = Af1⌦"
f
+ "2Ab1⌦"

b
, " = f1⌦"

f
+ "b1⌦"

b
,

where Af and Ab are the (isotropic) Hooke’s law of the film and the bonding layer,
respectively, and f > 0, b > 0 are the toughnesses of the film and the bonding layer,
respectively.

The first di�culty is to define a convenient mathematical framework. Since the
displacement v might jump across the crack � and following the seminal idea of the
italian school of De Giorgi for free discontinuity problems, we can identify � to the jump
set of v. The previous energy turns out to be well defined in the space SBD2(⌦") of
special functions of bounded deformation, i.e. integrable vector fields v such that the
distributional symmetric gradient Ev = (Dv+DvT )/2 is a bounded M3⇥3

sym-valued measure
of the form

Ev = e(v)L3 + (v+ � v�)� ⌫vH2 Jv

(see [205, 202, 8, 14]). In the previous expression, e(v) 2 L2(⌦";M3⇥3
sym) is the absolutely

continuous part of Ev with respect to the Lebesgue measure L3. The jump set Jv is
a countably H2-rectifiable set with H2(Jv) < 1, on which it is possible to define a
generalized unit normal ⌫v and one-sided traces v± according to this orientation.
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In this context, we define the energy J(") : SBD2(⌦") ! R+ by

J(")(v) =
1

2

ˆ
⌦"\Jv

A"(e(v)� e0) : (e(v)� e0) dx+

ˆ
Jv

" dH2

=
1

2

ˆ
⌦"

f\Jv

Af (e(v)� e0) : (e(v)� e0) dx+ fH2(Jv \ ⌦"

f
)

+
"2

2

ˆ
⌦"

b\Jv

Ab(e(v)� e0) : (e(v)� e0) dx+ "bH2(Jv \ ⌦"

b
).

Note that there is no energetic contribution of the substrate since the displacement
is prescribed and smooth inthere. However, cracks are allowed to touch the interface
{x3 = �"} between the bonding layer and the substrate.

Our objective is to understand the asymptotic behavior of the previous energy functional
as " ! 0 in the sense of �-convergence which will give information on the asymptotic
behavior of minimizers and the minimal value of J(").

Remark 2.1. In order to simplify the presentation, we will henceworth assume that
e0 = 0 and u0 = 0.

2.1.3. Rescaling. As usual in dimension reduction problems, we reformulate the problem
on a fixed domain independent of ". Contrary to nonlinear elasticity where one only
rescales the variable, we rescale here both the variables and the components of the
displacement, as commonly done in linear elasticity (see [45]).

To this aim, we set ⌦ = ⌦1, ⌦f = ⌦1
f
, ⌦b = ⌦1

b
and ⌦s = ⌦1

s
. For x = (x1, x2, x3) =

(x0, x3) 2 ⌦, with x0 = (x1, x2), we define for ↵ = 1, 2,

u↵(x
0, x3) = v↵(x

0, "x3), u3(x
0, x3) = "v3(x

0, "x3).

Then, for all u 2 SBD2(⌦) with u = 0 in ⌦s (recall Remark 2.1), we define

J"(u) = "�1J(")(v) = Jf

"
(u) + Jb

"
(u),

where

Jf

"
(u) :=

1

2

ˆ
⌦f\Ju

Afe
"(u) : e"(u) dx+ f

ˆ
Ju\⌦f

���(⌫u)0, "�1(⌫u)3
��� dH2,

Jb

"
(u) :=

"2

2

ˆ
⌦b\Ju

Abe
"(u) : e"(u) dx+ b"

ˆ
Ju\⌦b

���(⌫u)0, "�1(⌫u)3
��� dH2,

and

e"(u) :=

0

@
e11(u) e12(u) "�1e13(u)
e12(u) e22(u) "�1e23(u)

"�1e13(u) "�1e23(u) "�2e33(u)

1

A

is the rescaled elastic strain.
2.2. Dimension reduction in linear elasticity. In this first part, we focus on the energy

in the thin film in the absence of cracks. The problem can be straightforwardly formulated
in the framework of Sobolev space owing to Korn’s inequality: for u 2 H1(⌦f ;R3), we
only consider the elastic energy

Jf

"
(u) =

1

2

ˆ
⌦f

Afe
"(u) : e"(u) dx.
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Denoting by �f and µf the Lamé coe�cients of the film (which satisfy the usual ellipticity
conditions µf > 0 and 3�f + 2µf > 0) and recalling the isotropy hypothesis, the previous
energy can be expressed as

Jf

"
(u) :=

ˆ
⌦f

h�f
2
e↵↵(u)e��(u) + µfe↵�(u)e↵�(u)

i
dx

+"�2

ˆ
⌦f

h
�fe↵↵(u)e33(u) + 2µfe↵3(u)e↵3(u)

i
dx

+"�4

ˆ
⌦f

�f + 2µf

2
e33(u)e33(u) dx,

where, from now on, we use Einstein’s summation convention over repeating indexes. The
diverging coe�cients in front of both last integrals imply that if u" 2 H1(⌦f ;R3) is such
that u" ! u in L2(⌦f ;R3) and Jf

"
(u")  C, the limit admissible displacement u must

satisfy ei3(u) = 0 for i = 1, 2, 3, which means that

u3(x
0, x3) = ū3(x

0), u↵(x
0, x3) = ū↵(x

0) +

✓
1

2
� x3

◆
@↵ū3(x

0) for ↵ = 1, 2.

Such displacements are called Kirchho↵-Love displacements and the space of all Kirchho↵-
Love displacements is denoted by KL(⌦f ).

The following �-convergence result can be found e.g. in [29] (see also [45]).

Theorem 2.2. The functional Jf

"
�-convergence in H1(⌦f ;R3), with respect to the

strong L2(⌦f ;R3) topology, to the functional Jf

0 : H1(⌦f ;R3) ! [0,1] given by

Jf

0 (u) =

8
><

>:

ˆ
⌦f

h �fµf

�f + 2µf

e↵↵(u)e��(u) + µfe↵�(u)e↵�(u)
i
dx if u 2 KL(⌦f ),

1 otherwise.

Using the Kirchho↵-Love structure of the displacement u, the previous functional
decouples into

Jf

0 (u) =

ˆ
!

h �fµf

�f + 2µf

e↵↵(ū)e��(ū) + µfe↵�(ū)e↵�(ū)
i
dx0

+
1

12

ˆ
!

h �fµf

�f + 2µf

e↵↵(rū3)e��(rū3) + µfe↵�(rū3)e↵�(rū3)
i
dx0.

The first term is a membrane energy term which accounts for stretching e↵ect, while the
second one stands for a bending energy term involving higher order derivatives. From
the point of view the Euler-Lagrange equation, this last term leads to the biharmonic
equation of plates.

2.3. Winkler elastic foundation. We now enrich the previous analysis by adding the
information on the bonding layer and the substrate, but still assuming the absence of
cracks. In this framework, the space of all kinematically admissible displacements is given
by

A := {v 2 H1(⌦;R3) : v = 0 in ⌦s},
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where we recall that ⌦ = ⌦f [ ⌦b [ ⌦s. For u 2 H1(⌦;R3), the total energy is given by

eJ"(u) =

8
><

>:

1

2

ˆ
⌦f

Afe
"(u) : e"(u) dx+

"2

2

ˆ
⌦b

Abe
"(u) : e"(u) dx if u 2 A,

1 otherwise,

or still, using the isotropy hypothesis and denoting by �b and µb the Lamé coe�cients of
the bonding layer (which again satisfy the ellipticity conditions µb > 0 and 3�b+2µb > 0),
for u 2 A,

eJ"(u) :=

ˆ
⌦f

h�f
2
e↵↵(u)e��(u) + µfe↵�(u)e↵�(u)

i
dx

+"�2

ˆ
⌦f

h
�fe↵↵(u)e33(u) + 2µfe↵3(u)e↵3(u)

i
dx

+"�4

ˆ
⌦f

�f + 2µf

2
e33(u)e33(u) dx

+"2
ˆ
⌦b

h�b
2
e↵↵(u)e��(u) + µbe↵�(u)e↵�(u)

i
dx

+

ˆ
⌦b

h
�be↵↵(u)e33(u) + 2µbe↵3(u)e↵3(u)

i
dx

+"�2

ˆ
⌦b

�b + 2µb

2
e33(u)e33(u) dx.

According to the analysis of the previous section, if u" 2 A satisfies u" ! u in L2(⌦f ;R3)

and eJ"(u")  C, the limit admissible displacement u must at least be of Kirchho↵-Love
type. Using further the condition u" = 0 in ⌦s in the substrate as well as, from the third
and last terms of the energy,ˆ

⌦f[⌦b

|@3(u")3|2 dx =

ˆ
⌦f[⌦b

|e33(u")|2 dx ⇠ "2,

we infer that u must also satisfy u3 = 0. Inserting this information in the Kirchho↵-Love
structure yields u(x0, x3) = (ū(x0), 0) which means that u is a planar displacement. As a
consequence all flexural terms appearing in Jf

0 (in Theorem 2.2) cancel and there only
remain the membrane termsˆ

!

h �fµf

�f + 2µf

e↵↵(ū)e��(ū) + µfe↵�(ū)e↵�(ū)
i
dx0.

The bonding layer does not only contribute to specifying limit admissible displacements,
but also to an additional energetic term which arises from the only first order term in the
bonding layer,

2µb

ˆ
⌦b

e↵3(u")e↵3(u") dx.

In the "! 0 limit, this term leads to a cohesive type energy of the form

µb

2

ˆ
!

|ū|2 dx0

penalizing the mismatch between the prescribed displacement in the substrate (recall
that from Remark 2.1 we assume u0 = 0) and the displacement in the film.
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In summary, the following �-convergence result holds (see [15]) corresponding to the
derivation of a Winkler foundation (see [212]).

Theorem 2.3. The functional eJ" �-convergence in H1(⌦;R3), with respect to the strong
L2(⌦f ;R3) topology, to the functional eJ0 : H1(⌦;R3) ! [0,1] given by

eJ0(u) =
8
><

>:

ˆ
!

h
�fµf

�f + 2µf
e↵↵(ū)e��(ū) + µfe↵�(ū)e↵�(ū)

i
dx

0 +
µb

2

ˆ
!

|ū|
2
dx

0 if

(
u = (ū, 0),

ū 2 H
1(!;R2),

1 otherwise.

2.4. Transerve cracks. We next introduce cracks into the model. We first focus on the
energy in the film ⌦f which allow for cracks, without taking care of the bonding layer
and the substrate. For all u 2 SBD2(⌦f ), the (Gri�th) energy is defined by

eJf

"
(u) =

1

2

ˆ
⌦f\Ju

Afe
"(u) : e"(u) dx+ f

ˆ
Ju\⌦f

���(⌫u)0, "�1(⌫u)3
��� dH2

=

ˆ
⌦f\Ju

h�f
2
e↵↵(u)e��(u) + µfe↵�(u)e↵�(u)

i
dx

+"�2

ˆ
⌦f\Ju

h
�fe↵↵(u)e33(u) + 2µfe↵3(u)e↵3(u)

i
dx

+"�4

ˆ
⌦f\Ju

�f + 2µf

2
e33(u)e33(u) dx+ f

ˆ
Ju\⌦f

���(⌫u)0, "�1(⌫u)3
��� dH2.

In order to guess what kind of limit admissible displacement one should expect, let
us consider a sequence of displacements {u"} in SBD2(⌦f ) such that eJf

"
(u")  C.

Assuming further the uniform bound ku"k1  C, we can apply a compactness and
lower semicontinuity result in SBD (see [19]) which ensures that, up to a subsquence,
there exists u 2 SBD2(⌦f ) such that u" ! u in L2(⌦f ;R3), e(u") * e(u) weakly in
L2(⌦f ;M3⇥3

sym) and H2(Ju)  lim inf" H2(Ju"). Using the energy bound, we infer that
ei3(u) = 0 in ⌦f and (⌫u)3 = 0 on Ju. These last conditions ensure that D3u3 = E33u =
@3u3L3 + (u+

3 � u�
3 )(⌫u)3H2 Ju = 0, hence u3 = 0. Unfortunately, the full displacement

u might fail to be of Kirchho↵-Love type as in the case of pure elasticity (see Theorem
2.2) because

E↵3u =
(u+

3 � u�
3 )(⌫u)↵
2

H2 Ju 6= 0, ↵ = 1, 2.

However, it has been established in [15], that such displacements enjoy a Kirchho↵-Love
type structure “outside the jump set” in the sense that u3 2 SBV 2(!), the approximate

gradient of u3, denoted by ru3 = (@1u3, @2u3) 2 SBD(!), ū =
´ 1
0 (u1(·, s), u2(·, s)) ds 2

SBD(!) and

u↵(x) = ū↵(x
0) +

✓
1

2
� x3

◆
@↵u3(x

0), Ju = (Jū [ Ju3 [ Jru3)⇥ (0, 1).

Thus, the jump set (which is assimiliated to the crack) associated to an admissible limit
displacement is transverse in the sense that it is invariant with respect to the vertical
direction.
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The following �-convergence result has been proved in [15].

Theorem 2.4. Under a uniform bound assumption, the functional eJf

"
�-converges

in SBD2(⌦), with respect to the strong L2(⌦f ;R3) topology, to the functional eJ0 :
SBD2(⌦f ) ! [0,1] defined by

eJ0(u) =

ˆ
⌦f\Ju

h �fµf

�f + 2µf

e↵↵(u)e��(u) + µfe↵�(u)e↵�(u)
i
dx+ fH2(Ju)

=

ˆ
!\Jū

h �fµf

�f + 2µf

e↵↵(ū)e��(ū) + µfe↵�(ū)e↵�(ū)
i
dx0

+
1

12

ˆ
!\Jru3

h �fµf

�f + 2µf

e↵↵(ru3)e��(ru3) + µfe↵�(ru3)e↵�(ru3)
i
dx0

+fH1(Jū [ Ju3 [ Jru3),

if 8
>>>><

>>>>:

u3 2 SBV (!), ru3 2 SBD(!),

ū :=
´ 1
0 (u1(·, x3), u2(·, x3)) dx3 2 SBD(!),

u↵(x) = ū↵(x0) +
⇣

1
2 � x3

⌘
@↵u3(x0) for ↵ = 1, 2,

Ju = (Jū [ Ju3 [ Jru3)⇥ (0, 1)

and eJ0(u) = 1 otherwise.

Remark 2.5. The uniform bound assumption means that we work inside a fixed
“box”, i.e. admissible displacements are required to satisfy kuk1  M for some fixed
M > 0. This condition is necessary to apply the compactness result of [19]. Although this
condition is meaningfull from a mechanical point of view (we can suppose without loss of
generality to work in a e.g. 1000 km neighborhood of the earth), it has no mathematical
justification at present. Lately, this condition has been dropped in [4] at the expense of
working in a larger and more sophisticated space called GSBD2(⌦) introduced in [55].

2.5. Fracture, debonding and delamination. We now arrive to our final goal of identify-
ing the �-limit of the family of functionals, defined for u 2 SBD2(⌦), by

J"(u) :=
1

2

ˆ
⌦f\Ju

Afe
"(u) : e"(u) dx+ f

ˆ
Ju\⌦f

���(⌫u)0, "�1(⌫u)3
��� dH2,

+
"2

2

ˆ
⌦b\Ju

Abe
"(u) : e"(u) dx+ b"

ˆ
Ju\⌦b

���(⌫u)0, "�1(⌫u)3
��� dH2.

Unfortunately, the understanding of the limit behavior of this functional is still an open
question at present in such a generality. We thus simplify the problem by considering a
scalar version of this problem where, now, u 2 SBV 2(⌦) is scalar valued, and the energy
associated to u is given by

I"(u) :=
µf

2

ˆ
⌦f\Ju

(|r0u|2 + "�2|@3u|2) dx+ f

ˆ
Ju\⌦f

���(⌫u)0, "�1(⌫u)3
��� dH2,

+
µb

2

ˆ
⌦b\Ju

("2|r0u|2 + |@3u|2) dx+ b

ˆ
Ju\⌦b

|("(⌫u)0, (⌫u)3)| dH2.
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The scalar nature of this new problem makes the analysis more tractable and we are able
to identify the �-limit of the family {I"}. This is the object of the following result which
has been proved in [163].

Theorem 2.6. The functional I" �-converges in SBV 2(⌦), with respect to the strong
L2(⌦f ) topology, to the functional I0 : SBV 2(⌦f ) ! [0,1] defined by

I0(u) =

8
<

:

µf

2

ˆ
!\Ju

|r
0
u|

2
dx+ fH

1(Ju) +
µb

2

ˆ
!\�u

|u|
2
dx

0 + bL
2(�u) if u 2 SBV

2(!),

1 otherwise,

where �u := {|u| >
p
2b/µb} is the delamination set.

As expected, this result shows the interplay between transverse cracks characterized
by the jump set Ju (which is still invariant with respect to the vertical direction) and
delamination surfaces corresponding to the set�u. There is a theshold criterion stipulating
that, as long as the displacement is small (less than the material constant

p
2b/µb), it

is energetically favorable to pay a cohesive energy penalizing the mismatch between the
prescribed displacement in the substrate and the displacement in the film, while if the
displacement overpasses this threshold, it is preferable to create a discontinuity surface
leading a delamination zone.

The generalization of this result to the full vectorial case is still not entirely understood.
However, we expect the following result to be true.

Conjecture 2.1. Under a uniform bound assumption, the functional J" �-converges
in SBD2(⌦), with respect to the strong L2(⌦f ;R3) topology, to the functional J0 :
SBD2(⌦f ) ! [0,1] defined by

J0(u) =

ˆ
!\Jū

h �fµf

�f + 2µf

e↵↵(ū)e��(ū) + µfe↵�(ū)e↵�(ū)
i
dx0

+
1

12

ˆ
!\Jru3

h �fµf

�f + 2µf

e↵↵(ru3)e��(ru3) + µfe↵�(ru3)e↵�(ru3)
i
dx0

+fH1(Jū [ Ju3 [ Jru3) +
µb

2

ˆ
!\�u

|ū|2 dx0 + bL2(�u),

if 8
>>>>>>><

>>>>>>>:

u3 2 SBV (!), ru3 2 SBD(!),

ū :=
´ 1
0 (u1(·, x3), u2(·, x3)) dx3 2 SBD(!),

u↵(x) = ū↵(x0) +
⇣

1
2 � x3

⌘
@↵u3(x0),

Ju = (Jū [ Ju3 [ Jru3)⇥ (0, 1),

�u := {|ū| >
p
2b/µb} [ {u3 6= 0},

and J0(u) = 1 otherwise.
Right now, this conjecture is not proved. However, in [15] the validity of the upper

bound is established while some insight into the proof of the lower bound is provided.
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3. Geometry and morphogenesis of thin films (by Marta Lewicka). In this
section, we present the author’s choice of topics and results motivated by the mathematical
study of curvature-driven morphogenesis. For brevity, we only include state-of-the-art
analytical results concerning the dimension reduction for prestrained materials, while we
refer the reader to [140] for a larger scope review and a list open problems which are ripe
for exploration through methods of Di↵erential Equations, Mathematical Analysis and
Geometry.

Prestrained materials arise in science and technology from a range of causes: inhomo-
geneous growth, plastic deformation, swelling or shrinkage by solvent absorption. In all
these situations, the resulting shape is a consequence of the heterogeneous incompatibility
of strains that leads to local elastic stresses. One approach towards understanding the
coupling between residual stress and the ultimate shape of the body relies on the model
of non-Euclidean elasticity, introduced below.

3.1. The set-up of non-Euclidean elasticity. Let g be a smooth Riemannian metric,
given on an open, bounded domain ⌦ ⇢ R3. Since g(x) is symmetric and positive definite,

it possesses a unique symmetric, positive definite square root A(x) = g(x)1/2. Define:

E(u) =
ˆ
⌦
W
�
(ru)A�1

�
dx 8u 2 H1(⌦,R3), (3.1)

where the energy density W : R3⇥3 ! [0,1] obeys the principles of material frame
invariance (1.1). The model (3.1)-(1.1) postulates that the body ⌦ seeks to realize a
configuration with a prescribed metric g by means of an orientation preserving isometric
immersion u : ⌦ ! R3:

(ru)Tru = g and detru > 0 in !,

Although any G always has a Lipschitz u satisfying the first condition above, one can show
that any such immersion changes its orientation in any neighbourhood of a point where
the Riemann curvature [Rij,kl]i,j,k,l=1...3 of G is not zero. Excluding such nonphysical
deformations leads to the energy E in (3.1), that quantifies the total pointwise deviation of
the deformation gradient ru from G1/2, modulo rotations. The infimum of E in absence
of forces or boundary conditions is then indeed strictly positive for a non-Euclidean G:

Theorem 3.1. [151] If [Rij,kl] 6⌘ 0 in ⌦, then inf
�
E(u); u 2 H1(⌦,R3)

 
> 0.

The above statement points to the dichotomy: either g and E are, by a smooth change
of variable equivalent to the scenario with g = Id3 and min E = 0, or otherwise the zero
energy level cannot be achieved even in the limit of weakly regular H1 deformations. The
latter case points to existence of residual stress at free equilibria.

3.2. Thin prestrained films. Consider now a family (⌦", u", g, A, E")">0 (or more gen-
erally (⌦", u", g", A", E")">0) given in function of the thickness parameter " in:

⌦" = ! ⇥
�
� "

2
,
"

2

�
.
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The open, bounded set ! ⇢ R2 with Lipschitz boundary is viewed as the midplate of the
thin film ⌦", on which we pose the energy of elastic deformations:

E"(u") =
1

"

ˆ
⌦"

W
�
(ru")A�1

�
dx 8u" 2 H1(⌦",R3). (3.2)

The main objective of study is now to predict the scaling of inf E" as "! 0 and to analyze
the asymptotic behaviour of minimizing deformations u" in relation to the curvatures
of the prestrain A = g1/2. Similarly as in Theorem 3.1 there is a connection between
inf E" and existence of isometric immersions, which is now more subtle. In the context
of dimension reduction, this connection relies on the isometric immersions of the metric
g(·, 0)2⇥2 on ! into R3, corresponding to parametrised surfaces y : ! ! R3 satisfying:

(ry)Try = g(·, 0)2⇥2 in ! (3.3)

The following result was proved first for g = g(x0) in [151] and was further generalized to
the abstract setting of Riemannian manifolds in [130]:

Theorem 3.2. [23] Let {u" 2 H1(⌦",R3)}"!0 satisfy E"(u")  C"2. Then we have:
(i) (Compactness). There exist {c" 2 R3, R" 2 SO(3)}"!0 such that the rescaled

deformations {y"(x0, x3) = R"u"(x0, "x3)� c"}"!0 converge up to a subsequence
in H1(⌦1,R3), to some y 2 H2(⌦1,R3) depending only on x0 and satisfying (3.3).

(ii) (Liminf inequality). There holds the lower bound:

lim inf
"!0

1

"2
E"(u") � I2,g(y) =

1

24

ˆ
!

Q2

�
x0, (ry)Tr~b� 1

2
@3g(·, 0)2⇥2

�
dx0, (3.4)

where Q2(x0, ·) are nonnegative quadratic forms derived from D2W (Id3), and

where ~b satisfies:
⇥
@1y, @2y,~b

⇤
2 SO(3)g(·, 0)1/2. Equivalently, ~b is the Cosserat

vector comprising the nonzero shear, in addition to ~N that is normal to y(!):

~b = (ry)g�1
2⇥2


g13
g23

�
+

p
det gp

det g2⇥2

~N, ~N =
@1y ⇥ @2y

|@1y ⇥ @2y|
. (3.5)

Moreover, there holds:
(iii) (Limsup inequality). If y 2 H2(!,R3) satisfies (3.3), then convergence as in (i)

holds for some {u" 2 H1(⌦",R3)}"!0 with c" = 0, R" = Id3, and:

lim
"!0

1

"2
E"(u") = I2,g(y).

Theorem 3.2 may be restated as the following �-convergence:

1

"2
E"
�
y(x0, "x3)

� ��!
⇢

I2,g(y) if y 2 H2(!,R3) and it satisfies (3.3)
+1 otherwise,

with respect to convergence in H1(⌦1,R3). Consequently, there is a one-to-one correspon-
dence between (global) approximate minimizers of E" and (global) minimizers of I2,g,
provided that g(·, 0)2⇥2 has a H2-regular isometric immersion from ! to R3. We remark
that, in general, one cannot expect E" to have a minimizer. The lowersemicontinuity of E
in (3.1) is tied to the quasiconvexity of the energy density, whereas it is known that the
prototypical density F 7! dist2(F, SO(3)) is not even rank-one convex [216].
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From Theorem 3.2, one can also deduce a counterpart of Theorem 3.1, in the context
of thin prestrain films, stating equivalence of existence of a H2 isometric immersion of
a 2-dimensional metric ḡ in R3, with the energy scaling inf E"  C"2 for some smooth
(equivalently, for any) metric g on ⌦1 such that g(·, 0)2⇥2 = ḡ.

3.3. Other energy scalings. A separate energy bound may be obtained by constructing
deformations uh through the Kirchho↵-Love extension of isometric immersions of regularity
C1,↵. Existence of such is guaranteed by techniques of convex integration [60] for all
↵ < 1/5, and this threshold implies the particular energy scaling bound in:

Theorem 3.3. [140] If ! ⇢ R2 is simply connected with C1,1-regular boundary, then:

inf E"  C"� 8� <
2

3
.

Not much is known about the asymptotic behaviour of deformations with the energy
scaling E"(u")  C"� for � < 2. We refer the reader to the list of available results in [140],
where we also point out the connection of the analytical results to experiments. On the
other hand, in the opposite regime where � > 2, the complete information is available.

We start by observing that in view of Theorem 3.2, there holds:

lim
"!0

1

"2
inf E" = 0

i↵ there exists y 2 H2(!,R3) and ~b in (3.5), with:

(ry)Try = g(·, 0)2⇥2 and sym
�
(ry)Tr~b

�
=

1

2
@3g(·, 0)2⇥2 in !. (3.6)

The above compatibility of tensors g(·, 0)2⇥2 and @3g(·, 0)2⇥2 is proved in [154, 23, 139] to
be equivalent to the satisfaction of the Gauss-Codazzi-Mainardi equations for the first and
second fundamental forms: I = (ry)Try, II = (ry)Tr ~N =

p
g33
�
sym((ry)Tr~b) �

1
2@3g(·, 0)2⇥2

�
� 1p

g33

⇥
�3
ij
(·, 0)

⇤
i,j=1...2

. These turn out to be precisely expressed by:

R12,12(·, 0) = R12,13(·, 0) = R12,23(·, 0) = 0 in !. (3.7)

Moreover, if (3.7) holds, then Ker I2,g =
�
Ry0+c; R 2 SO(3), c 2 R3

 
where y0 : !̄ ! R3

is the unique “compatible” smooth isometric immersion satisfying (3.6) together with its

corresponding Cosserat vector ~b = ~b1. Further, by a direct construction: inf E"  C"4.

These statements may be generalized beyond � = 4: the only viable scalings of
inf E" ⇠ "� in the regime � � 2 are the even powers � = 2n. Namely, we have:

Theorem 3.4. [138] For every n � 2, if lim"!0
1

"2n
inf E" = 0 then inf E"  C"2(n+1).

Moreover, the following three statements are equivalent:
(i) inf E"  C"2(n+1).

(ii) R12,12(·, 0) = R12,13(·, 0) = R12,23(·, 0) = 0 and @(k)3 Ri3,j3(·, 0) = 0 in !, for all
k = 0 . . . n� 2 and all i, j = 1 . . . 2.

(iii) There exist smooth fields y0, {~bk}n+1
k=1 : !̄ ! R3, frames B0 =

⇥
@1y0, @2y0, ~b1

⇤
,

�
Bk =

⇥
@1~bk, @2~bk, ~bk+1

⇤ n
k=1

: !̄ ! R3⇥3, such that:
mX

k=0

✓
m

k

◆
BT

k
Bm�k �

@(m)
3 g(·, 0) = 0 for all m = 0 . . . n.
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Equivalently:
⇣ nX

k=0

xk

3

k!
Bk

⌘T⇣ nX

k=0

xk

3

k!
Bk

⌘
= g(x0, x3)+O("n+1) on ⌦" as "! 0.

The field y0 is the unique smooth isometric immersion of g(·, 0)2⇥2 into R3 for
which I2,g(y0) = 0.

We note that if R(·, 0) = 0 and @(m)
3

⇥
Ri3,j3(·, 0)

⇤
i,j=1...2

= 0 on ! for all m = 0 . . . n�2,

but @(n�1)
3

⇥
Ri3,j3(·, 0)

⇤
i,j=1...2

6= 0, then: c"2(n+1)  inf E"  C"2(n+1) for some c, C > 0.

The conformal metrics g(x0, x3) = e2�(x3)Id3 provide a class of examples for the viability
of all scalings: inf E" ⇠ "2n by choosing �(k)(0) = 0 for k = 1 . . . n� 1 and �(n)(0) 6= 0.

A crucial ingredient in proving compactness of sequences of deformations that satisfy
an energy bound in Theorem 3.4 (i), is the following approximation result:

Theorem 3.5. [138, 154] Assume any of the equivalent conditions in Theorem 3.4, for
some n � 1. Then, given {u" 2 H1(⌦",R3)}"!0 such that E"(u")  C"2(n+1), there
exists {R" 2 H1(!, SO(3))}"!0 with:

1

"

ˆ
⌦"

��ru" �R"

nX

k=0

xk

3

k!
Bk

��2 dx  C"2(n+1) and

ˆ
!

|rR"(x0)|2 dx0  C"2n.

When n = 0, the above bounds are deduced from the celebrated geometric rigidity
estimate in [90], which is the nonlinear version of Korn’s inequality. Dependence of the
optimal constants in these inequalities on the various geometric features of the domains
where they are posed, has been addressed for example in [148, 149, 105, 215].

3.4. The infinite hierarchy of �-limits. To derive a counterpart of Theorem 3.2 for
higher energy scalings, one observes the following compactness properties under the
assumption E"(u")  C"2(n+1). First [138], there exist {c" 2 R3, R" 2 SO(3)}"!0 with:

V "(x0) =
1

"n

 
"/2

�"/2
(R̄")T

�
u"(x0, x3)� c"

�
�
⇣
y0(x

0) +
nX

k=1

xk

3

k!
~bk(x

0)
⌘
dx3

converging as "! 0 in H1(!,R3), to a limit V that is an infinitesimal isometry:

V 2 Vy0 =
�
V 2 H2(!,R3); sym

�
(ry0)

TrV
�
= 0
 
.

In particular, there exists ~p 2 H1(!,R3) with sym
�
BT

0

⇥
rV, ~p

⇤�
= 0. Second, the strains:

1

"
sym

�
(ry0)

TrV "
�

converge as "! 0, weakly in L2(!,R2⇥2) to a limiting S in the finite strain space:

S 2 Sy0 = closureL2

�
sym((ry0)

Trw); w 2 H1(!,R3)
 
.

The space Sy0 can be identified, in particular, in the following two cases on ! simply
connected. When y0 = id2, then Sy0 = {S 2 L2(!,R2⇥2

sym
); curl curl S = 0}. When Gauss’s

curvature ((ry0)Try0) = 
�
g(·, 0)2⇥2) > 0 in !̄, then Sy0 = L2(!,R2⇥2

sym
) [146].

We further have �-convergence with respect to the above compactness statements:
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Theorem 3.6. [139, 138] In the energy (3.2) scaling regimes in Theorem 3.4, there holds:
(i) For the von Kármán-like regime, we have for all V 2 Vy0 and S 2 Sy0 :

1

"4
E" ��! I4,g(V, S) =

1

2

ˆ
!

Q2

⇣
x0, S(x0) +

1

2
rV (x0)TrV (x0) +

1

24
r~b1(x0)Tr~b1(x0)� 1

48
@33g(x

0, 0)2⇥2

| {z }
stretching

⌘
dx0

+
1

24

ˆ
!

Q2

⇣
x0,ry0(x

0)Tr~p(x0) +rV (x0)Tr~b1(x0)| {z }
bending

⌘
dx0

+
1

1440

ˆ
!

Q2

⇣
x0,


R13,13 R13,23

R13,23 R23,23

�

| {z }
curvature

⌘
dx0.

When g = Id3 then I4,Id3(V, S) reduces to the classical von Kármán functional, given in
terms of the out-of-plane scalar displacement v in V = (↵x?+�, v) for which ~p = (�rv, 0),
and the in-plane displacement w in S = symrw:

I4(v, w) =
1

2

ˆ
!

Q2

�
symrw +

1

2
rv ⌦rv

�
dx0 +

1

24

ˆ
!

Q2(r2v) dx0. (3.8)

(ii) For all n � 2 (which is the case parallel to linear elasticity), we have for all V 2 Vy0 :

1

"2(n+1)
E" ��! I2(n+1),g(V )

=
1

24

ˆ
!

Q2

⇣
x0, (ry0)

Tr~p+ (rV )Tr~b1 + ↵n

⇥
@(n�1)
3 Ri3,j3

⇤
i,j=1...2| {z }

bending

⌘
dx0

+ �n

ˆ
!

Q2

⇣
x0,PS?

y0

�⇥
@(n�1)
3 Ri3,j3

⇤
i,j=1...2

�⌘
dx0

+ �n

ˆ
!

Q2

⇣
x0,PSy0

�⇥
@(n�1)
3 Ri3,j3

⇤
i,j=1...2

�⌘
dx0.

Above, PSy0
, PS?

y0
denote orthogonal projections onto Sy0 and onto its L2-orthogonal

complement S?
y0
. Coe�cients ↵n,�n, �n � 0 are given explicitly and ↵n 6= 0 i↵ n is even.

For g = Id3, each I2(n+1),Id3
reduces then to the classical linear elasticity:

I2(n+1)(v) =
1

24

ˆ
!

Q2

�
r2v

�
dx0. (3.9)

The functional I4,g consists of stretching and bending (with respect to the unique
isometric immersion y0 that gives the zero energy in the prior �-limit (3.4)) plus a new
term, which quantifies the remaining three Riemann curvatures. In the present geometric
context, the bending term (ry0)Tr~p + (rV )Tr~b1 in I2(n+1),g is of order "nx3 and

it interacts with the curvature
⇥
@(n�1)
3 Ri3,j3(·, 0)

⇤
i,j=1...2

which is of order xn+1
3 . The

interaction occurs i↵ the two terms have the same parity in x3, namely at even n. The
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two remaining terms measure the L2 norm of
⇥
@(n�1)
3 Ri3,j3(·, 0)

⇤
i,j=1...2

, with distinct

weights assigned to Sy0 and
�
Sy0

�?
projections, according to the parity of n.

Corollary 3.7. In the context of Theorem 3.6, there holds:

inf
Vy0

I2(n+1),g ⇠
��⇥@(n�1)

3 Ri3,j3(·, 0)
⇤
i,j=1...2

k2
L2(!).

We gather the findings about the infinite hierarchy of limiting models in Figure 3.

Fig. 3. The infinite hierarchy of �-limits for prestrained films (� � 2).

3.5. The weak prestrain. Assume now that the given prestrain A" = (g")1/2 on ⌦" is
incompatible only through smooth perturbations S,B : !̄ ! R3⇥3

sym
of higher order in:

A"(x0, x3) = Id3 + "�S(x0) + "�/2x3B(x0). (3.10)

The correlation of stretching and bending exponents �, �/2 may be relaxed [120]. In this
context, the counterpart of Theorem 3.2 is as follows:

Theorem 3.8. [150] Assume that a family deformations {u" 2 H1(⌦",R3)}"!0 satisfies
the energy bound: E"(u")  C"�+2, for some � 2 (1, 2). Then we have:

(i) (Compactness). There exist {R" 2 SO(3), c" 2 R3}"!0 such that for {y"(x0, x3) =
R"u"(x0, "x3)�c"}"!0 the following holds. First, {y"} converge to x0 inH1(⌦1,R3).

Second, the fields {V "(x0) = 1
"�/2

� 1/2
�1/2 y

"(x0, t)�x0 dt}h!0 converge inH1(!,R3),

up to a subsequence, to some V of the form V = (0, 0, v)T , and satisfying:

v 2 H2(!,R), detr2v = �curl curlS2⇥2. (3.11)

(ii) (�-convergence). If ! is simply connected with C1,1 boundary, then we have:

1

"�+2
E"(uh)

��! IS,B(v) =
1

12

ˆ
!

Q2

�
x0,r2v +B2⇥2

�
dx0. (3.12)
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As before, one can further deduce that the Monge-Ampére problem (3.11) has a H2-
regular solution i↵ inf E"  C"�+2. Moreover, c"�+2  inf E"  C"�+2 for some c, C > 0
is equivalent to the solvability of (3.11) and the simultaneous non-vanishing of the lowest
order terms (i.e. terms of order � and �

2 , respectively) in curvatures R12,12(·, 0) and
[R12,i3(·, 0)]i=1,2. This last condition is equivalent to:

curl curlS2⇥2 + detB2⇥2 6⌘ 0 or curlB2⇥2 6⌘ 0 in !.

We mention that a parallel analysis of the weak prestrain as in (3.10), but imposed on
a shell rather than a plate ⌦", has been carried out in [143]. When the mid-surface
curvature are of order given by a power of " and hence compete with the order of the
prestrain, the resulting �-limit involves a further Monge-Ampère-type constraint.

Construction of the recovery sequence in the proof of Theorem 3.8 suggests to view
the Monge-Ampére equation detr2v = f through its very weak form, well defined for all
v 2 H1

loc
(!,R), in the sense of distributions:

Detr2v
.
= �1

2
curl curl(rv ⌦rv) = f in !. (3.13)

An application of techniques of convex integration [153, 60] assure that for any smooth
f : !̄ ! R and ↵ < 1

5 , the set of C1,↵(!̄) solutions to (3.13) is dense in C0(!̄). One
consequence of this result is that the operator Detr2 is weakly discontinuous everywhere
in H1(!). By an explicit construction, there follows a counterpart of Lemma 3.3:

Theorem 3.9. [120] Assume that ! ⇢ R2 is simply connected with C1,1 boundary. Then:

inf E"  C"� for all � 2
⇥2
7
, 2
⇤

and � <
5

3
� +

2

3
,

inf E"  C"� for all � 2
�
0,

2

7

�
.

We point out [103], that one can consider the generalization of (3.13) to problems
posed on higher-dimensional domains ! ⇢ RN , in the context of dimension reduction and
isometry matching. The set {symrw; H1(!,RN )} can be shown to coincide with the
kernel of the operator Curl2 , where

Curl
2 (A) =

⇥
Curl

2 (A)ab,cd
⇤
a,b,c,d=1 ...N

,

defined for A 2 L2(!,RN⇥N ), is given as the application of two exterior derivatives in:

Curl
2 (A)ab,cd =

⇥
@a@cAbd + @b@dAac � @a@dAbc � @b@cAad

⇤
a,b,c,d=1 ...N

.

Then: Rab,cd(IdN + �2A) = � �
2

2 Curl
2 (A)ab,cd + o(�2 ). Taking A = rv ⌦rv, one can

see that a scalar displacement field v on ! can be matched by a higher order perturbation
vector field w, so that defining �̄"(x0) = x0 + "2w(x0), "v(x0)) : ! ! RN , the metric is
matched in (r�̄)Tr�̄ = IdN + "2A+O("4) i↵

⇥
det(r2v)ab,cd

⇤
ab,cd

= �Curl
2 (A).
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3.6. Classical nonlinear elasticity: case of no prestrain. We now list results concerning
the dimension reduction of thin elastic shells, where instead of the imposed prestrain, the
stored energy is due to the presence of external loads. Consider a family {S"}"!0 of thin
shells around an oriented 2d midsurface S with the unit normal vector ~n:

S" = {x+ t~n(x); x 2 S, �"/2 < t < "/2} ⇢ R3

The elastic energy (with density W that satisfies (1.1)) of deformations and the total
energy in presence of the applied force f" 2 L2(S",R3) are given, respectively, by:

E"(u") =
1

"

ˆ
S"

W (ru"), J"(u") = E"(u")� 1

"

ˆ
S"

f"u" 8u" 2 W 1,2(S",R3).

It has been shown [91] that if {f"}"!0 scale like "↵, then E"(u") at approximate minimizers
u" of J" scale like "� , with � = ↵ for 0  ↵  2 and � = 2↵� 2 for ↵ > 2. The dimension
reduction question in this context consists thus of identifying the �-limits I�,S of the
rescaled energies { 1

"�
E"}"!0. Contrary to the curvature-driven shape formation, there is

no energy quantization and any scaling exponent � > 0 is viable.

In case of S ⇢ R2 i.e. when {S"}"!0 is a family of thin plates, such �-convergence was
first established for � = 0 [135], and later [91] for all � � 2. This last regime corresponds
to a rigid behavior since the limiting deformations are isometries if � = 2 (in accordance
with the general result in Theorem 3.2), or infinitesimal isometries if � > 2 (see the
compactness analysis in subsection 3.4). One particular case is � = 4, where the derivation
yields the von Kármán theory (3.8), then � > 4 with the �-limit as in (3.9), and � 2 (2, 4)
where the result is e↵ectively included in Theorem 3.8. We gather these results in Figure
4, which should be compared with Figure 3.

3.7. The infinite hierarchy of shell theories and the matching properties. The first result
for the case when S is a surface of arbitrary geometry was given in [135] as the membrane
theory (� = 0) where the limit I0,S depends only on the stretching and shearing. The
case � = 2 was analyzed in [89] and proved to reduce to the flexural shell model, i.e. a
geometrically nonlinear pure bending, constrained to isometric immersions of S. The
energy I2,S depends then on the change of curvature as in Theorem 3.2.

For � = 4 the �-limit I4,S , as shown in [144, 145, 146], acts on the first order isometries:

V 2 V1 = Vid2 =
�
V 2 H2(S,R3); symrV = 0

 

i.e. displacements of S whose covariant derivative is skew-symmetric, and finite strains:

B 2 S = Sid2 = closureL2{symrw; w 2 H1(S,R3)}

(compare the definitions of Vy0 ,Sy0 in section 3.4). The limiting energy consists of two
terms corresponding to the stretching (second order change in metric) and bending (first
order change in the second fundamental form II = r ~N on S) of a family of deformations:

{�⌘ = id + ⌘V + ⌘2w⌘}⌘!0

of S, induced by displacements V 2 V1 and w⌘ satisfying lim⌘!0 symrw⌘ = B. The
out-of-plane displacements v present in (3.8) are therefore replaced by the vector fields in
V1, preserving the metric on S up to first order. For � > 4 the limiting energy consists
[144, 145] only of the bending term and it coincides with the linear elasticity.
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Fig. 4. The finite hierarchy of �-limits for plates (� � 2)

The form of I�,S for any � > 2 and arbitrary S has been conjectured in [152]. Namely,
I�,S acts on the space of k-th order infinitesimal isometries Vk, where k is such that:

� 2 [�k+1,�k) where �n = 2 + 2/n for all n � 1.

The space Vk consists of k-tuples (V1, . . . , Vk) of displacements Vi : S ! R3, such that

the deformations {�⌘ = idS +
P

k

i=1 ⌘
iVi}⌘!0 preserve the metric on S up to order ⌘k,

i.e. (r�⌘)Tr�⌘ � Id2 = O(⌘k+1). Further, setting ⌘ = "�/2�1, we have:
(i) When � = �k+1 then I�,S '

´
S
Q2 (x, �k+1IS) +

´
S
Q2 (x, �1IIS), where �k+1IS

is the change of metric on S of the order ⌘k+1, generated by the family of
deformations {�⌘}⌘!0 and �1IIS is the first order (i.e. order ⌘) change in the
second fundamental form IIS of S.

(ii) When � 2 (�k+1,�k) then I�,S =
´
S
Q2 (x, �1IIS).

(iii) The constraint of k-th order isometry Vk may be relaxed to that of Vm, m < k,
if S has the following m 7! k matching property. For every (V1, . . . Vm) 2 Vm

there exist sequences of corrections V ⌘

m+1, . . . , V
⌘

k
, equibounded in ⌘, such that:

�̃⌘ = id +
P

m

i=1 ⌘
iVi +

P
k

i=m+1 ⌘
iV ⌘

i
preserve the metric on S up to order ⌘k.

The above is supported by all the rigorously derived models. In particular, plates
enjoy the 2 7! 1 matching property [91], i.e. every W 1,1 \H2 element of V2 may be
matched to an exact isometry in the sense of (iii) above. Hence all theories for � 2 (2, 4)
collapse to a single theory (linearized Kirchho↵ model, see Figure 4). Further, elliptic
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(i.e. strictly convex up to the boundary) surfaces enjoy [146] a matching property of
1 7! 1, which is stronger than that in case of plates. Namely, on S elliptic and C4,↵,
every V 2 V1 \ C2,↵, possesses a sequence {w⌘}⌘!0, equibounded in C2,↵(S̄,R3), and
such that �⌘ = idS + ⌘V + ⌘2w⌘ is an (exact) isometry for all ⌘ ⌧ 1. As a consequence,
for elliptic surfaces with su�cient regularity the �-limit of the nonlinear elastic energies
"��E" for any scaling regime � > 2 is given by the bending functional constrained to the
first order isometries, as in the case � > 4.

In [110] a further matching property of isometries on developable surfaces without a�ne
regions, has been proved. Namely, on such S of regularity C2k,1, every V 2 V1 \ C2k�1,1

enjoys 1 7! k matching property. The implication for elasticity of thin shells with smooth
developable mid-surface is that, again, the only small slope theory is the linear theory; a
developable shell transitions directly from the linear regime to fully nonlinear bending
if the applied forces are adequately increased. While the von Kármán theory describes
buckling of thin plates, the equivalent variationally correct theory for developable shells
is the purely nonlinear bending.

3.8. Remarks. The related problem of dynamical viscoelasticity in presence if prestrain
has not been satisfactory addressed, to date. To understand how growth patterns change
in response to shape, one must turn to experiments. The simple developmental feedback
from shape to growth has been studied in [147], where we initiated this analysis by
showing the local and global in time existence of the classical solutions to a general
class of stress-assisted di↵usion systems. As a follow-up, it would be interesting to
tackle the questions of stability of viscoelastic prestrained shock profiles, using the Evans
function-based analysis as in [17]. The inverse design problems in morphogenesis require
a separate attention, for a handful of simple analytical observations see [3]. Finally, we
point out a plethora of parallel discrete problems (e.g. origami, kirigami) both in the
static description as well as in the shape evolution through singular prestrain.
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4. Micromagnetics of curved thin films (By Giovanni Di Fratta). The analysis
of micromagnetic thin films is a subject with a long history. It dates back to the seminal
papers [100, 40], where the authors show that in planar thin films, the e↵ect of the
demagnetizing field operator drops down to an easy-surface anisotropy term. In the last
decade, magnetic systems with the shape of a curved thin film have been subject to
extensive experimental and theoretical research (nanotubes, 3d helices, thin spherical
shells). The wide range of magnetic properties emerging in curved geometries makes them
well-suited for spintronic applications, from racetrack memory devices to spin-wave filters
(see [203, 204] for topical reviews). The embedding of two-dimensional structures in the
three-dimensional space permits altering the system’s magnetic properties by tailoring its
local curvature. It turns out that even in the absence of Dzyaloshinskii-Moriya interaction

(DMI) [80, 174], curved geometries can induce an e↵ective antisymmetric interaction that
supports the emergence of magnetic skyrmions, i.e., of topologically protected states to
which a topological degree can be assigned.

In the next section, we define magnetic skyrmions in the mathematical framework
of the variational theory of micromagnetism, which is also quickly recalled in the same
section. After a brief review on magnetic thin films in planar structures, we present
the recent developments about curved thin films, which are the geometric structures
where magnetic skyrmions naturally emerge. For that, we focus on the general setting
of a bounded C2-surface S ✓ R3. Then, we concentrate on the analysis of magnetic
skyrmions in spherical thin films (S = S2), and we describe the challenges still open. We
conclude with a section that addresses other curved geometries and highlights how simpler
geometry can still be the source of valuable techniques in analyzing other geometries.

4.1. Magnetic skyrmions in curved geometries. Skyrmions are a class of solitons,
topologically stable and with quasiparticle properties: they behave like particles, but
they are inherently more complex structures due to their collective nature. They owe
their name to the nuclear physicist Tony Skyrme, who, in 1962, proposed a description of
elementary subatomic particles as geometric twists in a continuous quantum field [198].

From the mathematical perspective, magnetic skyrmions emerge as topologically
protected magnetization textures that carry a specific topological charge, referred to
as the skyrmion number . If M is a compact and smooth hypersurface of Rn+1, and
m : M ! Sn is a su�ciently smooth vector field on M, the skyrmion number of m is
defined by the Kronecker integral [189]

Nsk (m) :=
1

|Sn|

ˆ
M

m⇤!n, (4.1)

with !n(x) :=
P

n

j=1(�1)j�1xjdx1^. . .^ddxj^. . .^dxn the volume form on Sn, and m⇤!n

the pull-back of !n by m on M. According to Hadamard, Nsk (m) is always an integer
number and coincides with the topological degree of m. Also, by Hopf’s theorem [170],
skyrmions with di↵erent topological charges belong to di↵erent homotopy classes; therefore,
from the physical point of view, skyrmions are expected to be topologically protected
against external perturbations and thermal fluctuations.

Since their discovery, magnetic skyrmions have been the object of intense research
work in condensed matter physics. Their stability, reduced size, and the small current



THE MATHEMATICS OF THIN STRUCTURES 31

densities su�cient to control them, make magnetic skyrmions extremely attractive for
applications in modern spintronics [84]. An in-depth understanding of their rich structure
(e.g., chirality, topological charge, stability) leads to challenging problems in a subject
area where geometry and continuum mechanics meet topology and analysis, and this has
raised interest in magnetic skyrmions also from a mathematical perspective [11, 21, 57,
71, 73, 75, 81, 82, 114, 116, 131, 155, 156, 165, 168, 169, 178].

4.2. The variational theory of micromagnetism. The appropriate theoretical model
for magnetic phenomena depends on the length scale of interest. Models at the level of
individual atoms are necessarily quantum mechanical. However, for length scales down to
tens of nanometers, there is a well-established continuum theory of micromagnetism [34,
112], which dates back to the seminal work of Landau–Lifshitz on fine ferromagnetic
particles [133]. In this theory, the observable states of a rigid ferromagnetic particle,
occupying a region ⌦ ✓ R3, are described by its magnetization M, a vector field verifying
the fundamental constraint of micromagnetism: there is a material-dependent constant
Ms such that |M| = Ms in ⌦. The spontaneous magnetization Ms := Ms(T ) depends only
on the temperature T and vanishes above a critical value Tc, characteristic of each crystal
type, known as the Curie temperature. When the specimen is at a fixed temperature
well below Tc, the function Ms is constant in ⌦, and the magnetization takes the form
M := Msm, where m : ⌦ ! S2 is a vector field with values in the unit sphere of R3

(cf. [34, 74, 112]).
Although the length of m is constant in space, this is generally not the case for its

direction. For single crystal ferromagnets (cf. [1, 5, 57]), the observable states of the
magnetization are the local minimizers of the micromagnetic energy functional which,
after normalization, reads as

F⌦ (m) :=
1

2

ˆ
⌦

|rm|2

=:E⌦(m)

+

ˆ
⌦
'an (m)

=:A⌦(m)

+
1

2

ˆ
R3

|hd [m�⌦]|2

=:W⌦(m)

�
ˆ
⌦

ha ·m.

=:Z⌦(m)

(4.2)

Here, m 2 H1(⌦, S2), and m�⌦ is the extension by zero of m to R3. The exchange

energy E⌦ penalizes nonuniformities in the orientation of the magnetization. The mag-

netocrystalline anisotropy energy A⌦ accounts for the existence of preferred directions
of the magnetization: its energy density 'an : S2 ! R+ vanishes only on a finite set
of directions (the so-called easy directions). The magnetostatic self-energy W⌦ is the
energy due to the demagnetizing field hd generated by m. From the mathematical point
of view, for every m 2 L2(R3,R3), hd[m] is the unique solution in L2(R3,R3) of the
Maxwell-Ampére equations of magnetostatics:

curlhd = 0, div b = 0, b = µ0 (hd +m) . (4.3)

Here, b denotes the magnetic flux density, and µ0 is the magnetic permeability of
the vacuum. The Zeeman energy Z⌦ models the tendency of a specimen to have the
magnetization aligned with the applied field ha (cf. Figure 5). The energy contributions
A⌦ and Z⌦ are of fundamental importance in ferromagnetism. However, from the
variational point of view, they typically behave like continuous perturbations, and their
analysis is usually straightforward. To streamline the presentation, we will often neglect
these terms.
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m ha
m

Fig. 5. Below the Curie temperature (T ⌧ Tc), the modulus of
M = Msm is constant in ⌦ (but not the direction). The direction
of M can be modified/controlled by an external magnetic field ha.

The variational problem (4.2) is non-convex, non-local, and contains multiple length
scales. The four terms in the energy functional (4.2) consider e↵ects originating from
di↵erent spatial scales, such as short-range exchange forces and long-range magnetostatic
interactions. The competition among the four contributions in (4.2) explains most of the
striking pictures of the magnetization observable in ferromagnetic materials; in particular,
the domain structure suggested by Weiss, i.e., regions of uniform or slowly varying
magnetization (magnetic domains) separated by thin transition layers (domain walls)
(see, e.g., [62, 63, 117, 118, 119, 173, 187], and the references therein).

Recent advances in nanotechnology have led to the fabrication of ultrathin films (and
multilayers) with a thickness down to several atomic layers and a lateral extent down to
tens of nanometers. These structures often display unusual magnetic properties connected
to a prominent influence of interfacial e↵ects; first and foremost, the emergence of magnetic
skyrmions originating from the Dzyaloshinskii-Moriya interaction (DMI) [80, 174]. In
thin films, DMI is closely related to reflection symmetry breaking, whereas a lack of
inversion symmetry is the primary cause in bulk magnetic materials. The bulk DMI
corresponds to the trace of the chirality tensor, which leads to the energy contribution

D⌦ (m) := �

ˆ
⌦
Curl m ·m. (4.4)

The normalized constant � 2 R is the bulk DMI constant, and its sign a↵ects the chirality
of the ferromagnetic system [25, 180].

However, the main interest in curved geometry relies on the observation that they
can host magnetic skyrmions even when no spin-orbit coupling mechanism (in the guise
of DMI) is considered (cf. [93, 129]). The evidence of these spontaneous states sheds
light on the role of the geometry in magnetism: chiral spin-textures can be stabilized by
curvature e↵ects only, in contrast to the planar case where DMI is required [80, 174]. For
that reason, from now on, we will focus on the micromagnetic energy functional

G⌦ (m) :=
1

2

ˆ
⌦

|rm|2 + 1

2

ˆ
R3

|hd [m�⌦]|2 +
ˆ
⌦
'an (m) , (4.5)

and we will be interested in the asymptotic regime of curved thin films.

Remark 4.1. Although we will focus on the variational theory of micromagnetism,
from time to time, we will need to refer to magnetization dynamics. For the sake of
completeness, we recall that the motion of non-equilibrium magnetizations is governed by
the Landau–Lifshitz–Gilbert (LLG) equation [98, 133]

@m

@t
� ↵m⇥ @m

@t
= �m⇥ he↵ [m] in ⌦⇥ R+. (4.6)
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Fig. 6. The thin shell ⌦" is generated by extruding, along the e3
axis, a planar surface ! ✓ R2 ⇥ {0}.

The LLG equation is driven by the e↵ective field he↵ [m] := �@mG⌦ (m) and includes
both conservative precessional and dissipative contributions; the constant ↵ is the so-called
Gilbert damping constant.

4.3. The planar thin-film regime. Let ! be a smooth domain in R2. For any " > 0 the
tubular neighborhood ⌦" is defined by (cf. Figure 6)

⌦" :=
�
x 2 R3 : x = ⇠ + "e3, ⇠ 2 !

 
.

The micromagnetic energy functional on H1(⌦", S2) reads as (cf. (4.5))

G" (m") :=
1

2

ˆ
⌦"

|rm"|2 �
1

2

ˆ
⌦"

hd [m"�⌦" ] ·m" +

ˆ
⌦"

'an (m") . (4.7)

Here, ! is the planar surface generating the cylindrical surface ⌦" := ! ⇥ (0, "), and
e3 = (0, 0, 1) is the normal to the planar surface ! (cf. Figure 6). The existence for any
" > 0 of at least a minimizer for G" in H1(⌦", S2) is easily obtained by the direct method
of the calculus of variations. The interest is in the asymptotic behavior of the energies
("�1G") as " ! 0, i.e., on the identification of the empty slots in the following typical
�-convergence diagram

argmin
m"2H1(⌦",S2)

"�1G" (m")
"!0�! argmin

⇤
⇤. (4.8)

For planar thin films, it is well-known that the demagnetizing field behaves like the
projection of the magnetization onto the plane of the film. The first mathematical
justification of this observation in micromagnetics is in the work of Gioia and James [100],
where it is shown that the role of the demagnetizing field operator reduces to an easy-
surface anisotropy term. Their theory generalizes Stoner and Wohlfarth’s results for flat
ellipsoids [201] to arbitrary-shaped planar thin films. In the language of the scheme in
(4.8), they proved that

argmin
m"2H1(⌦",S2)

1

"
G" (m")

"!0�! argmin
m2H1(!,S2)

G0 (m) , (4.9)

with

G0 (m) :=
1

2

ˆ
!

|rm|2 + (m · e3)2 +
ˆ
!

'an (m) . (4.10)
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Fig. 7. The thin shell ⌦" is generated by extruding, along the normal
direction n, a surface S embedded in R3.

Note that when the magnetocrystalline anisotropy is in-plane, i.e., when 'an(⇠) = 0 for
every ⇠ 2 S1 ⇥ {0}, every constant and in-plane magnetization minimizes G0. However,
it is understandable from the Maxwell–Ampére equations of magnetostatics (4.3) that
when " is su�ciently small, not every constant in-plane configuration is equally favored.
In fact, the direction of the limiting minimizer will depend on the shape anisotropy of @!.
In order to get mathematical evidence of this fact, one can use the methods of potential
theory to obtain higher-order correctors in the energy expansion. This has been done by
Carbou in [40], where it is shown that

min "�1G" = minG0 �
1

2
" ln "minG00

0 + o(" ln ")

with

G00
0 (⇠) :=

ˆ
@!

(⇠ · ⌫)2, ⇠ 2 S1 ⇥ {0}.

Here, ⌫ is the normal to @!, and the result has the following interpretation. When the
magnetocrystalline anisotropy is in-plane, among all constant and in-plane magnetization
⇠ 2 S1⇥{0} that minimize G0, the limiting magnetization tends to align along the direction
which minimizes G00

0 (⇠). The same result can be obtained using harmonic analysis, and we
refer the reader to [123], which also considers other attractive geometric regimes. Finally,
we mention the results in [58] where the contribution of DMI is taken into account, again
in the geometric setting of planar thin films. It is shown that, in the limiting thin-film
model, part of the DMI behaves like the projection of the magnetic moment onto the
normal to the film, contributing this way to an increase in the shape anisotropy arising
from the magnetostatic self-energy.

4.4. The curved thin film regime. To discuss results about curved thin films we need a
proper setup. Let S be a smooth surface admitting a tubular neighborhood of thickness
� > 0. For any " 2 I� := (0, �) the tubular neighborhood ⌦" is defined by ⌦" :=�
x 2 R3 : x = ⇠ + "n(⇠), ⇠ 2 S

 
, where n(⇠) denotes the normal at ⇠ 2 S (cf. Figure 7).

The micromagnetic energy functional defined on H1(⌦", S2) reads as (cf. (4.5))

G"(m") :=
1

2

ˆ
⌦"

|rm"|2 �
1

2

ˆ
⌦"

hd [m"�⌦" ] ·m". (4.11)
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The existence of at least a minimizer for G" in H1(⌦", S2) is easily obtained by the direct
method of the calculus of variations.

For every " 2 I� := (0, �) we denote by  " the di↵eomorphism of M := S ⇥ (0, 1) onto
⌦" given by

 " : (⇠, s) 2 M 7! ⇠ + "sn(⇠) 2 ⌦".

For every ⇠ 2 S the symbols ⌧1(⇠), ⌧2(⇠) denote an orthonormal basis of T⇠S made by
its principal directions, i.e., an orthonormal basis consisting of eigenvectors of the shape
operator of S (cf. [78]). We then write 1(⇠),2(⇠) for the principal curvatures at ⇠ 2 S.
Note that, for any x 2 ⌦� the trihedron

(⌧1(⇠), ⌧2(⇠),n(⇠)) with ⇠ := ⇡(x) , (4.12)

constitutes an orthonormal basis of T⇡(x)⌦� that depends only on S. Also, we denote byp
g" the metric factor which relates the volume form on ⌦" to the volume form on M, by

h1,", h2," the metric coe�cients which link the gradient on ⌦" to the gradient on M. A
direct computation shows that (cf., e.g., [181])

p
g"(⇠, s) := |1 + 2"sH(⇠) + ("s)2G(⇠)| , hi,"(⇠, s) :=

1

1 + "si(⇠)
(i = 1, 2).

where H(⇠) and G(⇠) are the mean and Gaussian curvature at ⇠ 2 S. Also, we denote
by H1(M,R3) the Sobolev space of vector-valued functions defined on M and endowed
with the norm

kuk2
H1(M) :=

ˆ
M

|u(⇠, s)|2d⇠ds+
ˆ
M

|r⇤
⇠
u(⇠, s)|2 + |@su(⇠, s)|2d⇠ds. (4.13)

Here, r⇤
⇠
u is the tangential gradient of u on S, and we write H1(M, S2) for the subset

of H1(M,R3) consisting of vector-valued functions with values in S2.
With M = S ⇥ I, we introduce the following functionals on H1(M, S2). The exchange

energy on M is defined by

E"

M(u) :=
1

2

2X

i=1

ˆ
M

|hi,"@⌧i(⇠)u|2
p
g"d⇠ds+

1

2

1

"2

ˆ
M

|@su|2
p
g"d⇠ds. (4.14)

The magnetostatic self-energy on M is defined by

W"

M(u) := �1

2

2X

i=1

ˆ
M

h"[u](⇠, s) · u(⇠, s)
p
g"(⇠, s)d⇠ds. (4.15)

Here, h"[u] 2 L2(M,R3) is the demagnetizing filed on M defined by h"[u](⇠, s) :=
hd[(u�I) �  �1

"
] �  ".

It is imperative to observe that for any " 2 I�, the minimization problem for G" in
H1(⌦", S2) is equivalent to the minimization in H1(M, S) of the functional F" defined by

F"(u) := E"

M(u) +W"

M(u),

in the sense that the the configuration m" 2 H1(⌦", S2) minimizes G" if and only if
u" := m �  " 2 H1(M, S) minimizes "F".

We can now state a proper generalization of the results in [100] (cf. (4.9)) to the curved
setting.
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Theorem 4.2 ([40, 74, 71]). The family (F") is equicoercive in the weak H1(M, S2) and
(F")

��! F 0
0 in the sense of �-convergence, with F 0

0 given by

F 0
0(u) :=

1

2

ˆ
S

|r⇤
⇠
u|2d⇠ + 1

2

ˆ
S

(u · n)2 d⇠ (4.16)

if @su = 0, and F 0
0(u) = +1 otherwise. Here, r⇤

⇠
u is the tangential gradient of u on S.

Also, by the fundamental theorem of �-convergence

min
H1(⌦",S2)

"�1G" = min
H1(M,S2)

F 0
0 + o("),

and if (u")"2I� is a minimizing family for (F")"2I� , there exists a subsequence of (u")"2I�

which strongly converges in H1(M, S2) to a minimum point of F 0
0.

Remark 4.3. Theorem 4.2 applies to bounded surfaces that admit a tubular neighbor-
hood. The range of such surfaces is broad. Indeed, any compact and smooth surface is
orientable and admits a tubular neighborhood (of uniform thickness) [78]. In particular,
the analysis holds for bounded convex surfaces (e.g., planar surfaces, the sphere, the
ellipsoid) as well as non-convex ones (e.g., the torus). Also, it covers the class of bounded
surfaces that are di↵eomorphic to an open subset of a compact surface (e.g., the finite
cylinder or the graph of a C2-function).

Fig. 8. • (Left) The thin shell ⌦✏ is generated by extruding, along
the normal direction ⌫, a surface S whose closure is di↵eomorphic
to the closed unit disk D1 of R2. • (Right) A pillow-like thin shell:
⌦" :=

�
(x, z) 2 ! ⇥ R2 : "�1(x) 6 z 6 "�2(x)

 
where ! ✓ R2 is a

planar surface and �1, �2 functions vanishing on the boundary of !.

Theorem 4.2 states that in the curved thin-film regime, the magnetostatic self-energy
tends to favor tangential vector fields. The first analysis of the curved thin-film limit is
addressed in Carbou [40], where Theorem 4.2 is established under the assumption that
the thin geometry is generated by a surface di↵eomorphic to the closed unit disk of R2
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(cf. Figure 8). Also, in [199], a �-convergence analysis is performed on pillow-like shells,
i.e., on shells of small thickness " > 0 having the form

⌦" := {(x, z) 2 ! ⇥ R : "�1(x) 6 z 6 "�2(x)}

with ! ✓ R2 and �1, �2 functions vanishing on the boundary of !.
The inherent local character of the results in [40] and [199] does not cover significant

scenarios like the one of a spherical thin film [197, 200, 75]. After all, it is on compact
surfaces that topological protection can be exploited through the mathematical concept
of degree. The lack of mathematical justifications in this context motivated the results
in [74], where three distinct variational principles for the magnetostatic self-energy are
introduced. Through them and the explicit construction of suitable families of scalar
and vector potentials, one can circumvent the technical di�culties in [40], at least in
the stationary case. Indeed, the approach in [74], dealing with energy estimates rather
than with the asymptotic behavior of the demagnetizing field operator, is not suitable for
analyzing the time-dependent case governed by the LLG. The results in [71] hold in the
more general framework of smooth (C2 is su�cient) and bounded orientable surfaces in
R3 (in particular, they cover the class of compact surfaces). The proofs in [40] and [71]
cover both the stationary case, which is governed by the micromagnetic energy functional,
and the time-dependent case driven by the LLG. They are based on a characterization
of the limiting demagnetizing field operator on curved thin films, which states that the
demagnetizing field behaves like the projection of the magnetization on the normal to the
film. In other words, one has strong L2-convergence of h"[u](⇠, s) to [n(⇠)⌦ n(⇠)]u(⇠).
Strong convergence in L2 is crucial for extending these results to the LLG equation
(see [71]).

Identifying higher-order correctors in the energy expansion of magnetostatic energy
is still an open problem. For a compact surface with boundary, the question is whether
the next order term in the expansion W"

M(u) reduces to a shape anisotropy term on the
boundary of the surface (of the order ("| ln "|)�1 if " is the thickness of the thin film).
For compact surfaces without a boundary (e.g., S2), the analysis should benefit from the
absence of a lateral surface in the curved thin-shell, which is what contributes at the
("| ln "|)�1 order in the planar case; yet, ven for S2 the question has not been investigated.

4.5. Topologically protected states in spherical thin films. Spherical thin films are
currently of interest due to their capability to host spontaneous skyrmion solutions [93,
129] even when no spin-orbit coupling mechanism (DMI) is considered. In addition to
fundamental reasons, the interest in these geometries is triggered by recent advances
in the fabrication of magnetic spherical hollow nanoparticles, which lead to artificial
materials with unexpected characteristics and numerous applications ranging from logic
devices to biomedicine (cf. [196]).

From Theorem 4.2, we know that for a spherical magnetic thin film, the energy
functional reads as:

F : m 2 H1(S2, S2) 7!
ˆ
S2

��r⇤
⇠
m(⇠)

��2 +  (m(⇠) · n(⇠))2 d⇠. (4.17)

Here, n(⇠) ⌘ ⇠ and, as before, r⇤
⇠
is the surface gradient at ⇠ 2 S2. The parameter  2 R

summarizes the contribution of crystal and shape anisotropy. The role of  2 R is easily
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understood. Uniform states are the only local minimizers of F when  = 0. For  > 0,
tangential vector fields are energetically favored, and this corresponds to the case of
in-plane crystal anisotropy in planar thin films. When  < 0, energy minimization prefers
normal vector fields, which compares to the case of perpendicular crystal anisotropy in
planar thin films, or, to be more precise, to the situation where shape anisotropy prevails
over perpendicular crystal anisotropy.

An exact characterization of the minimizers of F is a challenging task with far-reaching
consequences in modern storage technologies [197]. Recently, a partial answer has been
given for the case  < 0. In [75], the following result is proved.

Proposition 1 ([75]). For every  2 R, the normal vector fields ±n(⇠) are stationary
points of the micromagnetic energy functional F on the space H1(S2, S2). Moreover,
they are strict local minimizers for every  < 0 and are unstable for  > 0. If  6 �4,
the normal vector fields are the only global minimizers of F.

Also, in [169], it is shown that for ⌧ 0, skyrmionic solutions topologically distinct
from the ground state emerge as excited states.

The interest in results of this type is in the topological remark that ±n carry di↵erent
skyrmion numbers. Indeed, since deg(±n) = ±1, by Hopf theorem, these two configura-
tions cannot be homotopically mapped one into the other and are, therefore, topologically
protected against external perturbations and thermal fluctuations. These considerations
make the two ground states ±n promising in view of novel spintronic devices [84].

Remark 4.4. It is worth pointing out a correspondence between Proposition 1 and
Brown’s fundamental theorem on small ferromagnetic particles, which states the existence
of a critical value of the radius of a spherical particle below which all local minimizers are
constant in space [36, 70, 6]. Indeed, a simple scaling argument shows that the constant
 in (4.17) can also be interpreted as a measure of the size of the particle.

The proof of Proposition 1 is based on the derivation of sharp Poincaré inequalities
arising when the pointwise constraint m 2 S2 is relaxed to the energy constraint

1

4⇡

ˆ
S2

|m(⇠)|2d⇠ = 1. (4.18)

Depending on the value of , minimizers of the relaxed problem may turn out to be
minimizers of the original problem (i.e., S2-valued). This is indeed the case for the normal
vector fields ±n when  6 �4.

Theorem 4.5 (Sharp Poincaré-type inequality on S2, [75]). Let  2 R. For every
u 2 H1(S2,R3) the following inequality holds

ˆ
S
|r⇤

⇠
u(⇠)|2d⇠ + ||

ˆ
S
|u(⇠)⇥ n(⇠)|2d⇠ > (||+ �())

ˆ
S
|u(⇠)|2d⇠. (4.19)

with best constant �() given by

�() :=

⇢
+ 2 if  6 �4,
1
2

�
(+ 6)�

p
2 + 4+ 36

�
if  > �4.
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Fig. 9. Minimizers for  negative. • (Left)  = �8 • (Center)  = �4
• (Right)  = �2.

Moreover, for any  2 R, the equality sign is reached if, and only if,

u(⇠) = c0y
(1)
0,0(⇠) +

1X

j=�1

⌘jy
(1)
1,j + �jy

(2)
1,j .

Here, y(i)
n,j

are the vector spherical harmonics of degree n and orderj, with |j| 6 n
(cf. [18, 75]) while the coe�cients c0, (⌘,�) := (⌘j ,�j)|j|61 are defined as follows. If

 < �4 then c0 = ±
p
4⇡, and ⌘ = � = 0; in particular, ±n are the unique minimizers. If

 > �4 then

c0 = 0, � =
�2

p
2

(�()� 2)
⌘, |⌘|2 = 2⇡

�(+ 2) +
p
2 + 4+ 36p

2 + 4+ 36
.

If  = �4 then

� =

p
2

2
⌘, 2c20 + 3|⌘|2 = 8⇡.

Remark 4.6. Recall that, y(1)
n,j

are normal vector fields, while y(2)
n,j

and y(3)
n,j

are
tangential vector fields (cf. [18, 75]). Also, note that for ! 0� the minimizers tend to
be constant. A plot of vector fields u 2 H1(S2,R3) for which the equality sign is reached
in the Poincaré inequality (4.19) is reported in Figure 9.

For  > 0, the energy landscape of F is hard to describe analytically and is still an
open question. Although tangential vector fields are energetically favored when  > 0,
topological obstructions (hairy ball theorem) prevent the existence of purely tangential
vector fields in H1(S2, S2). The primary interest here is in the study of energy minimizers
within prescribed homotopy classes. More specifically, on the characterizations of the
global minimizers of F in H1(S2, S2) under the constraint (cf. (4.1))

1

4⇡

ˆ
S2
m · (@⌧1m⇥ @⌧2m) = n 2 Z, (4.20)

for some prescribed integer n, which uniquely identifies the homotopy class ofm. Numerics
suggest that when  > 0, the energy F can exhibit magnetic states with skyrmion number
0 or ±1 (cf. Figure 10, and [129, 197, 200]). Also, within the homotopy class {Nsk = 0},
the energy F favors the so-called onion state if  is su�ciently small, and the vortex
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Fig. 10. Numerics suggest that when  > 0, the energy F can
exhibit magnetic states with skyrmion number 0 or ±1. Also, within
the homotopy class {Nsk = 0}, the energy F favors the so-called
onion state if  is su�ciently small, and the vortex state otherwise.

state otherwise (cf. Figure 10). Moreover, in analogy with well-known results for harmonic
maps into spheres, the minimizers of F appear axially symmetric. However, to turn
these observations into quantitative statements can be particularly tricky because of the
complete rotational symmetry of the underlying Euler-Lagrange equations, which requires
capturing the emergence of breaking symmetry phenomena in the energy minimizers.

4.6. Conclusions and further outlook. In the previous sections, we reviewed some of
the main results in the theory of magnetic curved thin films and stressed how these
achievements allow further investigations on the profile of energy minimizers in specific
geometries. We presented a characterization of the ground states in spherical thin films
when the anisotropy constant  is negative (see (4.17)), and we also pointed out that the
situation appears more involved when  > 0. However, careful consideration reveals that
similar symmetry-breaking phenomena already emerge in the analysis of the ground states
for a more tractable geometry like the one of a cylinder. This led to the developments
in [72], where di↵erent strategies are introduced that seem promising to tackle similar
questions in more complex geometries.

Consider the circular cylinder C = I ⇥ S1, I := [�1, 1] and the energy functional

E↵ (m) :=

ˆ
C
|r⇠m|2 d⇠ + ↵2

ˆ
C
|m⇥ n|2 d⇠, m 2 H1(C, S2). (4.21)

First, it is possible to show that for any ↵2 > 0, minimizers of the energy E↵ are z-
invariant, i.e., if m minimizes E↵ then m(z, ⇣) = m(⇣) for every (z, ⇣) 2 C. Actually,
z-invariance of the minimizers holds under the more general assumption of cylindrical
surfaces of the type C := I ⇥ � where I := [�1, 1] and � ✓ R2 is the image of a smooth
Jordan curve ⇣ : [0, 2⇡] ! �. Then, one realizes that when C = I ⇥ S1, special attention
must be deserved to weakly axially symmetric configurations. These are defined by the
condition that ˆ

S1
m?(z, �)d� = 0 8z 2 I, (4.22)
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Fig. 11. A plot of the vector fields minimizing the energy (4.21) in
H1(S1, S1). There is a critical value 2

⇤ of the anisotropy parameter,
2
⇤ ⇡ 2.31742, below which the global minimizers of (4.21) have

degree zero, and above which the only two global minimizers are the
normal vector fields ±n (and have degree one). From left to right,
we plot the minimizers for 2 = 0.25, 2 = 1, and 2 = 2.25.

where m? := m � (m · e3) e3. It is simple to prove that every axially symmetric
configuration satisfies (4.22). The relevant observation here is that every minimizer of E
in the class of weakly axially symmetric competitors is, in fact, axially symmetric. The
proof is based on a symmetrization argument in conjunction with the classical Poincaré-
Wirtinger inequality for null average and periodic functions. We believe that these results
can be transposed to the context of spherical thin films to prove similar results for the
energy functional (4.17) in the unexplored regime  > 0.

One can further analyze global minimizers of the energy E in the unrestricted class
H1(I ⇥ S1, S2), i.e., when no weak axial symmetry is assumed on the competitors. Then,
by deriving a family of sharp Poincaré-type inequalities, one obtains that for ↵2 > 3,
the normal vector fields ±n are the only global minimizers of the energy functional E in
H1(C, S2). Precisely, the following result holds.

Proposition 2 (see [72]). For every value ↵2 > 0 of the anisotropy, the normal vector
fields ±n are stationary points of the micromagnetic energy functional E↵. If ↵2 > 3,
the normal vector fields ±n are the only global minimizers of the energy functional E↵
in H1(C, S2). Also, they are locally stable for every ↵2 > 1 and unstable for 0 < ↵2 < 1.
Moreover, when ↵2 > 1, the normal vector fields ±n are local minimizers of the energy
E↵.

Remark 4.7. It is simple to show that the constant vector fields ±e3 are stationary
points of the micromagnetic energy functional and they are are unstable for all 2 > 0.
Despite this, one can prove that they are stable in the class of axially symmetric minimizers.

Finally, motivated by their importance in numerical simulations, one is interested in
global minimizers of E↵ in the class of in-plane configurations. In [72] it is shown that if
m? 2 H1(S1, S1) is the profile of a minimizer of E↵, then either degm? = 0 or degm? = 1
(cf. Figure 11). Indeed, there exists a threshold value ↵2

⇤ of the anisotropy parameter
such that the normal vector fields ±n are the only two in-plane energy minimizers when
2 > 2⇤ and the common minimum value of the energy is 2⇡. Instead, when 2 < 2⇤, the
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minimal energy depends on 2. The precise minimal values and the analytic expressions
of the minimizers can be written in terms of elliptic integrals.

There are several analogies in the behavior of the minimizers of the micromagnetic
energy in cylindrical and spherical surfaces. However, there are also remarkable exceptions.
Indeed, in both cases, the normal vector fields turn out to be the unique global minimizers
of the energy functional in a wide range of the parameters [75]. Nevertheless, the
topological implications are di↵erent. On the one hand, the normal vector fields to S2
carry a di↵erent skyrmion number because deg (±nS2) = ±1, and, by Hopf theorem, they
cannot be homotopically mapped one into the other (this translates into the so-called
topological protection of the ground states). On the other hand, due to the odd dimension,
the two normal vector fields to S1 have the same degree, and therefore, they can be
“easily” switched one to the other through suitable external perturbation.
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5. One-dimensional domain walls in thin film ferromagnets: an overview
(by C. Muratov).

5.1. Introduction. Magnetism is a physical phenomenon that has been known to
mankind for at least two millenia. In nature, it manifests itself in the ability of the
naturally magnetized mineral magnetite to exert an attractive force on objects made of
iron. Importantly, this interaction represents one of the basic examples of actio ad distans,
since a piece of iron feels the force of a magnet separated from it by a macroscopically
large distance. The latter is due to the nonlocal character of the interaction that is
mediated by the magnetic field.

Despite its long history, magnetism remained a poorly understood phenomenon until
the early 20th century. The 1907 work of Weiss was the first to explain the macroscopic
alignment of the individual magnetic moments of atoms in a ferromagnet through the
concept of the molecular field [210]. Yet it took another 20 years with the works of Pauli,
Dirac and Heisenberg during the “golden age” of quantum mechanics to identify the
microscopic origin of ferromagnetism as a manifestation of the Pauli exclusion principle and
spin – a purely quantum-mechanical degree of freedom of a particle [190, 76, 107, 108, 77].
The exclusion principle gives rise to the Heisenberg exchange interaction between electrons,
which, in turn, leads to the emergence of a macroscopic magnetic moment in ferromagnets
due to the alignment of the electron spins.

Heisenberg exchange favors alignment of spins of the neighboring electrons in a fer-
romagnetic material, creating a non-zero magnetization that would ideally be uniform
in space. However, such a uniform magnetization generates a magnetic field that does
not always favor alignment of the spins at large distances. The competition of Heisen-
berg exchange with the magnetostatic interaction gives rise to the notion of magnetic

domains, introduced in the 1926 book of Weiss and Foëx, whereby the magnetization
in a ferromagnet consists of extended regions of space in which the spins are aligned,
separated by sharp transition regions [211]. These types of configurations can lower the
magnetostatic interaction energy via fine scale oscillations of the magnetization between
di↵erent domains, which results in a vast variety of the observed magnetic domain patterns
[111].

The theory of magnetic domains was put on a solid theoretical footing in 1935 through
the work of Landau and Lifshitz, who formulated what is now known as the micromagnetic

modeling framework [133]. Landau and Lifshitz interpreted the observed magnetization
patterns as the result of the minimization of the micromagnetic energy functional, defined
on three-dimensional vector fields of constant length. Their ideas were further extended
in the works of Néel, Kittel and Brown [182, 183, 121, 33, 34]. Furthermore, the dynamics
of the magnetization in response to external influences may be studied with the help
of the Landau-Lifshitz-Gilbert equation and its extensions [133, 99, 32, 92]. Stochastic
e↵ects may also be added to study the e↵ect of thermal noise on the magnetization, as
pioneered by Brown [35]. Today these formulations find their implementations in the form
of e�cient numerical algorithms that allow to explore the complexity of the magnetic
systems computationally [96, 137, 186, 85].

From the mathematical point of view, micromagnetics pose a great number of challeng-
ing problems, from calculus of variations, to nonlinear dynamics, to stochastic analysis.
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This field caught the attention of mathematicians fairly recently, but has already generated
a large and growing body of literature (for an excellent review from 2006, see [68]). In
the calculus of variations, one is faced with highly nonlinear, nonlocal, often topologically
constrained minimization problems that involve multiple spatial scales. It is only very
recently that the basic ideas of the theories of magnetic domains began to receive rigorous
mathematical treatment, with the methods of asymptotic analysis in the calculus of
variations playing a significant role (see, e.g., [43, 44, 49, 188, 124, 66, 125], this list is
certainly not exhaustive).

The basic ingredient in the analysis of the domain structure of ferromagnets is the
domain wall solution, which represents a one-dimensional transition layer profile that
connects di↵erent values of the magnetization at the opposite sides. This note aims at
giving a brief overview of the state of the art and some open questions in the modeling
and analysis of domain wall solutions in thin ferromagnetic films with the magnetization
lying mostly in the film plane.

5.2. Micromagnetic energy functional. The starting point of micromagnetic modeling
is the micromagnetic energy functional E(M) defined on a vector field M : ⌦ ! R3 that
represents the magnetization vector, i.e., the vector-valued magnetic dipole moment per
unit volume, in a ferromagnetic body occupying a bounded three-dimensional domain ⌦
in free space. The length of the magnetization vector is fixed to be equal to the saturation
magnetization, i.e., |M(r)| = Ms for all r = (x, y, z) 2 ⌦, but the direction of M(r) is
allowed to be arbitrary. If ⌦ is occupied by a bulk uniaxial ferromagnetic single crystal
with the easy axis along the y-axis, the micromagnetic energy takes the form (in the SI
units) [134]

E(M) =
A

M2
s

ˆ
⌦
|rM|2 d3r + K

M2
s

ˆ
⌦
(M2

1 +M2
3 ) d

3r

� µ0

ˆ
⌦
M ·H d3r + µ0

ˆ
R3

ˆ
R3

r ·M(r)r ·M(r0)

8⇡|r� r0| d3r d3r0. (5.1)

Here M = (M1,M2,M3), and the terms, in order of appearance, are the exchange, the
magnetocrystalline anisotropy, the Zeeman and the magnetostatic energy, also referred
to as the stray field energy, respectively. The constants A,K, µ0 are, respectively, the
exchange sti↵ness, the anisotropy constant and the permeability of vacuum, and H is the
applied external magnetic field. In the last term in (5.1), the magnetization vector M is
extended by zero outside ⌦ and r ·M is understood distributionally. In writing (5.1), the
e↵ects of magnetostrsiction and other, more exotic interactions have been neglected [134].

The exchange energy in (5.1) forces the magnetization to be spatially uniform, while
the anisotropy energy forces the magnetization to align with ±ŷ. The Zeeman term
favors alignment of the magnetization along the applied field H. The stray field energy,
in contrast, is a non-negative term that can be viewed as the Coulombic energy of the
“magnetic charges” with density ⇢ = �r ·M and, therefore, forcing the distributional
divergence of the magnetization to be zero.

When ⌦ = R3 and H = 0, the energy in (5.1) is explicitly minimized by M = ±Msŷ,
illustrating the fundamental bistability of the magnetization in a uniaxial ferromagnetic
crystal. It was quickly recognized, however, that in a large but finite sample ⌦ ⇢ R3 a
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spatially uniform magnetization would result in a high stray field due to the jumps of the
magnetization to zero at @⌦, leading to a large magnetostatic energy term. Instead, the
energy is reduced by dividing ⌦ into subdomains in which M alternates between the two
preferred orientations, thus creating a domain structure. The first step in understanding
the latter is to understand the structure of the transition layer between the two preferred
orientations of M.

5.3. Domain walls in bulk materials. Domain walls are the basic building blocks of the
magnetic domains. The concept of a domain wall as a narrow transition region separating
the two distinct orientations of the magnetization was first proposed by Bloch [24], but
within the micromagnetic modeling framework it was formulated by Landau and Lifshitz
[133] and further developed by Néel [184]. We can conveniently rewrite the stray field
energy with the help of the magnetostatic potential U solving

�U = r ·M in D0(R3) (5.2)

and vanishing at infinity. In the absence of the applied field the energy is then [33, 134, 74]

E(M) =
A

M2
s

ˆ
⌦
|rM|2 d3r + K

M2
s

ˆ
⌦
(M2

1 +M2
3 ) d

3r +
µ0

2

ˆ
⌦
|rU |2 d3r. (5.3)

We next extend the above discussion to the case ⌦ = R3 and assume that M = M(x),
i.e., that M varies only along x̂. We further assume that M satisfies

lim
x!±1

M(x) = ±Msŷ, (5.4)

and that the gradient of U vanishes as x ! ±1. Then the energy per unit area in the
yz-plane is

E1d(M) =

ˆ 1

�1

✓
A

M2
s

|M0|2 + K

M2
s

(M2
1 +M2

3 ) +
µ0

2
M2

1

◆
dx, (5.5)

where we took into account that the solution of (5.2) in this case yields rU = M1x̂.
Landau and Lifshitz approached the problem of determining the domain wall profile

by assuming that M1 = 0 to make the stray field contribution to the energy vanish. This
ansatz then implies that we can write M = M0, where

M0 = Ms(0, cos ✓, sin ✓), (5.6)

for some rotation angle ✓ = ✓(x) to be determined. Assuming that M0 from (5.6)
minimizes the energy in (5.5) among the profiles satisfying (5.4), one obtains

A✓00 �K sin ✓ cos ✓ = 0, ✓(�1) = ±⇡, ✓(+1) = 0, (5.7)

whose unique solution, up to translations, is

✓ = ± arccos(tanh(x/L)), (5.8)

where L =
p
K/A is the wall width [133]. This solution is referred to as the Bloch wall

solution. The corresponding wall energy per unit area is E1d(M0) = 4
p
AK. Thus, the

domain wall is expected to give a net contribution proportional to the domain wall area
to the energy of the magnetic domains.

One may wonder to which extent this logic is mathematically sound. At the level of the
one-dimensional energy E1d, why should the magnetization M admit the representation in
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(5.6), and even if it does, why should it satisfy the conditions at infinity in (5.7), namely,
not exhibit winding, which would correspond to adding integer multiples of 2⇡ to one
of the limits? Going to higher dimensions, would the obtained profile also minimize the
energy in (5.3) when, say, ⌦ = R ⇥ [0, l)2, for l > 0, and periodicity in y and z? More
broadly, is the obtained profile the unique, up to translations, critical point of E1d or E
among profiles with suitable behavior at infinity? What if ⌦ = R3?

These questions bear a striking similarity with another problem arising in the context
of phase field models of phase transitions [102] that has received considerable attention in
the mathematical community under the name of the De Giorgi conjecture (for a review, see
[61]). In its canonical form, De Giorgi conjecture states that the only bounded solutions
u : Rn ! R of the Euler-Lagrange equation

�u+ u� u3 = 0 (5.9)

associated with the Ginzburg-Landau energy

EGL(u) =

ˆ
⌦

✓
1

2
|ru|2 + 1

4
(1� u2)2

◆
dnr (5.10)

for every ⌦ ⇢ Rn bounded, which are monotone in one spatial variable are one-dimensional,
i.e., u(x1, . . . , xn) = tanh(x1/

p
2) after a rotation and a translation [59]. In the physical

dimensions, n = 2, 3, the conjecture was proved by Ghoussoub and Gui [97] and Ambrosio
and Cabré [7], respectively. A simpler version of this conjecture additionally assumes that
the solution approaches u = ±1 along the direction of monotonicity, and when this limit
is uniform, the solution is known to be one-dimensional without the need of a rotation
or monotonicity assumption (see [61] and references therein). In particular, the latter
result applies when ⌦ = R⇥ [0, l)2, for any l > 0, to any finite energy solution of (5.9)
connecting u = ±1 as x ! ±1.

The corresponding problem associated with (5.3) represents a vectorial and nonlocal
extension of the above problem, and is in general considerably more challenging, even with
additional assumptions on the behavior of the solution “at infinity”. One may naturally
ask whether, say, the solution given by (5.6) and (5.8) is the unique, up to translations,
minimizer of (5.3) satisfying (5.4) for ⌦ = R⇥ [0, l)2 and periodic boundary conditions,
for any l > 0. The answer to this question may be rather easily seen to be positive, but
in fact it does not involve the solution of the very complicated Euler-Lagrange equation
associated with (5.3). Instead, one can proceed with the help of the vectorial version of
the Modica-Mortola trick [171], which is available for the problems of micromagnetics
[127]. For example, setting m = M/Ms, in one space dimension we have (see also [95])

E1d(M) �
ˆ
R

�
A|rm|2 +K(m2

1 +m2
3)
�
dx

�
ˆ
R

✓
A

|m0
2|2

1�m2
2

+K(1�m2
2)

◆
dx

� 2
p
AK

ˆ
R
|m0

2|dx

� 4
p
AK = E1d(M0), (5.11)
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and, therefore, E(M) � l2E1d(M0), with equality if and only if M = M0 in ⌦ = R⇥[0, l)2,
up to a translation.

However, things get more complicated if one only requires that M be a local minimizer,
or even a critical point of E. Even in one dimension, the question as to whether M0 is
the only critical point of E1d satisfying (5.4) would require solving a system of nonlinear
ordinary di↵erential equations associated with (5.5) and includes a possibility of winding
solutions. Things come to the next level of complexity in higher dimensions due to the
nonlocality introduced by (5.2), and even further complexity arises due to severe lack of
compactness when ⌦ = R3. In particular, in contrast to the scalar problem in (5.9) the
vectorial problem associated with (5.3) lacks rotational symmetry. Furthermore, simply
changing the orientation of the wall, e.g., taking M = M0(y) immediately results in an
infinite wall energy per unit area, since the wall becomes charged and, therefore, the
magnetostatic potential U solving (5.2) exhibits an asymptotically linear behavior far
away from the wall.

5.4. Micromagnetics of thin films. We now turn to the situation in which ⌦ is a domain
in the form of an extended film, i.e., ⌦ = R2 ⇥ (0, d), where d is the film thickness. Notice
that in this case the uniform magnetization configurations M = ±Msŷ do not produce
any stray field and, therefore, are still the global minimizers of the energy in (5.3) for
H = 0. At the same time, the one-dimensional domain wall profile given by (5.6) and
(5.8) is no longer a minimizer of (5.3) per unit length in the y-direction, since it generates
a stray field due to the jump of the magnetization at the top and bottom surfaces of
the film, z = 0 and z = d. For su�ciently thick films, this stray field modifies the wall
profile only in the small vicinity of the surfaces by creating the Néel caps [195], unless
the material is magnetically su�ciently soft [132, 79]. At the same time, as was pointed
out in 1955 by Néel, as the thickness of the film becomes su�ciently small it becomes
energetically favorable for the magnetization to rotate in the film plane, giving rise to
a Néel wall [185]. This is due to the appearance of a shape anisotropy, whereby to the
leading order the stray field energy behaves as a local penalty term for the out-of-plane
component of the magnetization [213, 100]. It can be most easily seen from the solution of
(5.2) for a spatially uniform magnetization, in which case rU = M3ẑ�(0,d)(z), where here
and everywhere below �D denotes the characteristic function of the set D, generating an
additional anisotropy-like term in (5.3). When the film thickness decreases, a transition
from the Bloch to the Néel wall occurs [185, 69, 208].

For thin films, i.e., films whose thickness is smaller than the exchange length `ex =p
2A/(µ0M2

s
), which is the characteristic length scale at which the exchange and the

magnetostatic interactions balance each other, the magnetization vector becomes nearly
independent of z, and due to the strong shape anisotropy the magnetization is forced to lie
almost entirely in the film plane in magnetically soft materials. There are many possible
combinations of the material and geometric parameters that lead to a whole hierarchy
of thin film regimes [66, 128, 175, 176, 115, 125, 113, 172] (this list is not meant to be
exhaustive). For Néel walls in extended films with moderate magnetocrystalline anisotropy,
an appropriate model that balances the exchange, anisotropy and the magnetostatic
energy as the film thickness vanishes was introduced in [176] (see also [65, 39]). Assuming
that ⌦ = D ⇥ (0, d) for some D ✓ R2 and that M(x, y, z) = Ms(m(x, y)�(0,d)(z), 0) for
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some m : R2 ! S1 [ {0} with |m| = �D, we can compute the energy of the magnetization
configuration explicitly (below we follow the presentation in [159]). Measuring the lengths
in the units of the Bloch wall width L =

p
A/K, the energy in the units of 2Ad, and

introducing the dimensionless thin film parameter

⌫ =
µ0M2

s
d

2
p
AK

, (5.12)

we arrive at the following expression for the energy [94]:

E(m) =
1

2

ˆ
D

�
|rm|2 +m2

1 � 2h ·m
�
d2r

+
⌫

2

ˆ
R2

ˆ
R2

K�(|r� r0|)r ·m(r)r ·m(r) d2r d2r0, (5.13)

where

K�(r) =
1

2⇡�

(
ln

 
� +

p
�2 + r2

r

!
�
r

1 +
r2

�2
+

r

�

)
, (5.14)

� = d/L is the dimensionless film thickness, and we set H = K/(µ0Ms)(h, 0) for h : R2 !
R2, assuming that the applied field lies in the film plane.

Observe that when � is small, we have

K�(r) '
1

4⇡r
and

ˆ
@D

K�(|r� r0|) dH1(r0) ' 1

2⇡
ln ��1. (5.15)

Therefore, to the leading order as � ! 0 we have E(m) ' E�(m), where

E�(m) =
1

2

ˆ
D

�
|rm|2 +m2

1 � 2h ·m
�
d2r +

⌫

8⇡

ˆ
D

ˆ
D

r ·m(r)r ·m(r)

|r� r0| d2r d2r0

� ⌫

4⇡

ˆ
D

ˆ
@D

r ·m(r)(m(r0) · n(r0))
|r� r0| dH1(r0) d2r+

⌫ ln ��1

4⇡

ˆ
@D

(m(r) ·n(r))2 dH1(r),

(5.16)

where n(r) denotes the outward unit normal at r 2 @D. As the last term in (5.16) forces
m · n = 0, in the limit we arrive at

E0(m) =
1

2

ˆ
D

�
|rm|2 +m2

1 � 2h ·m
�
d2r +

⌫

8⇡

ˆ
D

ˆ
D

r ·m(r)r ·m(r)

|r� r0| d2r d2r0,

(5.17)

with admissible configurations m 2 H1(D; S1) satisfying Dirichlet boundary condition
m = st on @D, where t is the positively oriented unit tangent vector to @D and
s : @D ! {�1, 1} is constant on each connected component of @D.

The reduced thin film energy in (5.17) may be rigorously justified via a uniform
�-expansion in the limit of vanishing film thickness [125], provided that the anisotropy
constant K and the applied field h scale as O(d2), which is appropriate for moderately
soft ferromagnetic materials of a few nanometer thickness [106, 176]. Notice that it
represents a di↵erent regime from the thin film limits considered by De Simone, Kohn,
Müller and Otto in [66], which are relevant to extremely soft ferromagnetic materials
such as permalloy and in which the magnetostatic energy dominates. The connection
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of the energy in (5.17) with the latter is obtained by considering the regime of ⌫ � 1.
Similarly, the regime that leads to (5.17) is di↵erent from the one studied by Kohn and
Slastikov in [128], which corresponds to specimens of small lateral extent (see also [172]).
Also notice that the energy in (5.16) does not support boundary vortices, which appear
in the regime studied by Moser [175].

5.5. Domain walls in thin films. The analysis of domain wall profiles in thin films
requires to extend (5.17) to the cases in which the film domain D is unbounded. Therefore,
we first modify the functional to make the energy of the ferromagnetic state zero in the
presence of the applied field h = (h1, h2) for either 0  h1 < 1 and h2 = 0, or h1 = 0 and
h2 > 0, corresponding to two cases of interest, namely, the field applied in the direction
perpendicular to the easy axis and the field applied along the easy axis:

E(m) =
1

2

ˆ
R2

⇣
|rm|2 + (m1 � h1)

2 + 2h2(1�m2)
⌘
d2r

+
⌫

8⇡

ˆ
R2

ˆ
R2

r ·m(r)r ·m(r)

|r� r0| d2r d2r0, (5.18)

where we dropped the subscript zero from the energy to simplify notations. In the first
case, the ground states of the energy are m = (h1,±

p
1� h2

1), while in the second case
the ground state is m = (0, 1). The case of zero applied field is included in the first case,
and the case h1 � 1 and h2 = 0 is analogous to the second case.

We also need to derive a one-dimensional analog of the energy in (5.18). To that end,
we assume that m = m(⇠), where ⇠ = x cos� + y sin� for some � 2 [0, ⇡

2 ], i.e., that m
varies only along the direction (cos�, sin�) in the xy-plane. Writing m = (� sin ✓, cos ✓),
where ✓ is the angle between the magnetization vector and the easy axis measured
counterclockwise, we then have that the energy per unit length normal to the (cos�, sin�)
direction is [159]

E�(✓) =
1

2

ˆ 1

�1

�
|✓0|2 + (sin ✓ � h1)

2 + 2h2(1� cos ✓)
�
d⇠

+
⌫

8⇡

ˆ 1

�1

ˆ 1

�1

(sin(✓(⇠)� �)� sin(✓(⇠0)� �))2

(⇠ � ⇠0)2
d⇠ d⇠0. (5.19)

The associated Euler-Lagrange equation is

0 =
d2✓

d⇠2
+ h1 cos ✓ � (h2 + cos ✓) sin ✓ � ⌫

2
cos(✓ � �)

✓
� d2

d⇠2

◆1/2

sin(✓ � �), (5.20)

where
✓
� d2

d⇠2

◆1/2

u(⇠) =
1

⇡
�
ˆ 1

�1

u(⇠)� u(⇠0)

(⇠ � ⇠0)2
d⇠0, (5.21)

and �́ denotes the principal value of the integral.
Before discussing the results and open questions for solutions of (5.20), let us recall what

happens in the local case ⌫ = 0. In this case an elementary phase plane analysis shows that
the only solutions that connect distinct equilibria at infinity are those that connect the
adjacent minima of the potential energy term in (5.19). In particular, when h1 = h2 = 0,
we must have ✓(+1) � ✓(�1) = ±⇡, resulting in a 180-degree wall, while for h1 = 0



50J.-F. BABADJIAN, GIOVANNI DI FRATTA, I. FONSECA, G. A. FRANCFORT, MARTA LEWICKA, AND CYRILL B. MURATOV

and h2 > 0 we must have ✓(+1)� ✓(�1) = ±2⇡, resulting in a 360-degree wall. When
h2 = 0 and 0 < h1 < 1, the solutions satisfy either ✓(+1)� ✓(�1) = ±(⇡ � 2 arcsinh1)
or ✓(+1) � ✓(�1) = ±(⇡ + 2arcsinh1). These solutions remain the only monotone
solutions connecting the respective equilibria, up to rotations, in two space dimensions
by the results of [97]. For h1 = 0 they are energy minimizing, and when 0 < h1 < 1 the
solution with the smaller variation is energy minimizing. Finally, their profiles may be
computed by an explicit integration, just like in the case of the Bloch wall profile.

5.5.1. 180-degree uncharged walls. As soon as ⌫ > 0, the analysis of (5.20) becomes
much more complicated than in the case ⌫ = 0, as the problem becomes nonlocal and
its solution can no longer be written down in closed form. In fact, this gave rise to
a significant controversy about the structure of the 180-degree Néel wall profile in the
physics literature (for a discussion, see [2] and [111]). Note that the 180-degree Néel walls
are routinely observed experimentally in su�ciently thin, magnetically soft films [111, 20].

Early studies of 180-degree Néel walls relied on either ansatz-based, or numerical, or
perturbative minimizations of the analog of (5.19) with h1 = h2 = 0 and � = 0 that is
obtained from (5.13) [69, 48, 192, 94, 95]. The first rigorous analysis of existence and
qualitative properties of the wall profiles, still in the context of (5.13), was carried out
by Melcher [167] (see also [39] for a discussion of (5.19)). A comprehensive study of the
energy minimizing profiles connecting distinct equilibria within the context of (5.19) with
0  h1 < 1, h2 = 0, and � = 0 was carried out by Chermisi and Muratov, in which
existence, monotonicity, asymptotic decay and uniqueness of minimizers connecting the
equilibrium ✓ = arcsinh1 with ✓ = ⇡ � arcsinh1 were established [41]. Furthermore,
uniqueness of monotone solutions connecting these equilibria was established by Muratov
and Yan, taking advantage of the hidden convexity of the one-dimensional energy [179].
Notice that such a result is non-trivial even in one space dimension, as in the nonlocal
setting it is not a priori clear whether the solutions of (5.20) must necessarily be monotone.
While it is known that the energy minimizing solution is monotone and vice versa, it is
not known whether non-monotone domain wall solutions to (5.20) with � = 0 might also
exist.

It would be interesting to see whether the monotone one-dimensional solutions to
(5.20) with � = 0 also remain the unique monotone critical points of (5.17) with D =
{(x, y) 2 R2 : �l/2 < y < l/2}, a strip with width l > 0 and subject to periodicity in y.
The vectorial nature of the problem prevents the use of monotone rearrangements to show
that the minimizers are still monotone in this setting, contrary to the one-dimensional
case. The only available result concerning the one-dimensionality of the minimizers that
is currently available in this context is that of De Simone, Knüpfer and Otto, who studied
a similar problem on a strip, but with clamped magnetization away from the origin and
neglecting the magnetocrystalline anisotropy [64]. Introducing a small parameter in front
of the exchange term, they showed that as this parameter tends to zero, the domain wall
energy is asymptotically minimized by a one-dimensional profile. It is not known if the
asymptotic profile is, in fact, one-dimensional for small but finite value of the parameter,
nor is it known that the profile of the minimizer converges to a suitable discontinuous
one-dimensional profile.
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In connection with (5.18) and in the spirit of [64], one could also consider the following
version of the energy

E"(m) =
1

2

ˆ
R⇥(�l/2,l/2)

✓
"|rm|2 + 1

"
m2

1

◆
d2r

+
⌫

8⇡

ˆ
R⇥(�l/2,l/2)

ˆ
R2

r ·m(r)r ·m(r)

|r� r0| d2r d2r0, (5.22)

obtained by rescaling all lengths by ", as in the Modica-Mortola rescaling and fixing the
domain to be a strip after the rescaling. In one dimension the minimizer of this problem,
which is simply a rescaling of the minimizer of (5.19) with � = 0, clearly converges to
m(x) = sgn(x)ŷ as "! 0, after suitable translations. Whether the same conclusion holds
on the strip remains to be seen, even if it seems to be plausible, as the energy minimizing
magnetizations must converge to a function in BV (R ⇥ (�l/2, l/2);R2) taking values
±ŷ due to the Modica-Mortola estimate on the first two terms in the energy. Also, any
deviations of the jump set of the limit function from a vertical line would create large
stray field contributions that would be heavily penalized by the last term in (5.22). In
fact, if " is the width of the transition region between m = ŷ and m = �ŷ which makes
an angle ↵ with the vertical, then the last term can be seen to yield a contribution of
order | ln "| sin2 ↵. It is then also natural to ask if one recovers the total variation of m1

as the �-limit of E" in (5.22) as "! 0 if ⌫ is replaced by ⌫" = �| ln "|�1 for � > 0 fixed.
Surprisingly, the latter seems to be false, as the recovery sequence of the Modica-Mortola
theory would generate a strictly positive magnetostatic contribution on the parts of the
jump set where the distributional gradient of m1 is not aligned with the x-axis. Lastly,
we would like to mention that studying a version of (5.22) defined on m = (� sin ✓, cos ✓)
as a functional of ✓ is, in turn, more subtle, as the latter keeps track of the winding of
the magnetization, while the one in (5.22) does not. In particular, the energy in (5.22)
would not be able to capture 360-degree walls in the limit (see also section 5.5.3).

5.5.2. 180-degree charged walls. The domain walls considered so far do not carry a
net “magnetic charge” [111]. More precisely, integrating the non-dimensionalized bulk
magnetic charge density ⇢ = �r ·m per unit length over these profiles yields the jump of
the component of the magnetization along the wall, which is zero when � = 0. However,
for � 6= 0 the magnitude of the jump of the magnetization is equal to 2 sin� 6= 0 when
m(±1) = ±ŷ. This immediately makes the magnetostatic energy infinite:
ˆ 1
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⇠0
= +1,

(5.23)

where we assumed without loss of generality that � < ✓(⇠) < � + ⇡ for ⇠ < 0 and chose
a su�ciently large R > 0 such that sin2(✓(⇠0) � �) � 1

2 sin
2 � > 0 for all ⇠0 > R. Thus,

paradoxically there are no finite energy solutions to (5.20) for any � 2 (0, ⇡

2 ]. Nevertheless,
one may wonder if (5.20) does have solutions with ✓(+1) = 0 and ✓(�1) = ±⇡, as is
the case when ⌫ = 0. At present, this question is completely open.
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A closely related question was recently addressed by Lund, Muratov and Slastikov in a
slightly di↵erent context [159]. They considered the situation in which the ferromagnetic
film occupies a half-plane instead of the whole plane, and edge domain walls are expected
due to the boundary penalty term forcing the magnetization to be tangential to the
boundary [109, 209, 194, 166]. These magnetization configurations would solve a Dirichlet
problem for (5.20) with ⇠ > 0 and the boundary condition ✓(0) = �, provided that
sin(✓ � �) is set to zero in the nonlocal term for ⇠ < 0. Clearly, such a wall is bound to
be charged if ✓(+1) 2 ⇡Z in order for the anisotropy energy to remain finite.

Lund, Muratov and Slastikov proved existence of solutions for the above problem by
minimizing the renormalized energy obtained from (5.19) by subtracting the leading order
divergent term at infinity from the nonlocal term. This leads to considering
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(sin(⌘�(⇠)� �)� sin(⌘�(⇠0)� �))2

(⇠ � ⇠0)2
d⇠ d⇠0, (5.24)

where ⌘�(⇠) is a fixed smooth non-increasing cuto↵ function such that ⌘�(⇠) = � for
all ⇠ < 0 and ⌘�(⇠) = 0 for all ⇠ > 1, and the minimization is carried out over all

✓ � � 2 H̊1
0 (R+). Formally, it is not di�cult to see that minimizers of (5.24) should

satisfy (5.20) for ⇠ > 0.
In [159], it was shown that minimizers of (5.24) in the considered class indeed exist,

are su�ciently regular and solve (5.20) classically for each � 2 (0, ⇡

2 ] and each ⌫ > 0.
Minimizers approach a limit ✓(+1) 2 ⇡Z and satisfy |✓0(0)| = sin�, but develop a
singularity in ✓00(⇠) as ⇠ ! 0+. Not much else can be said a priori. In particular,
minimizers are not guaranteed to be monotone or not to exhibit winding. In fact,
numerical solution of the Dirichlet problem for (5.20) shows that both possibilities do
occur. Also, minimizers do not have to be unique. Nevertheless, one can exclude winding
when either ⌫ or � is su�ciently small, and there is uniqueness in the small � case.
Whether the obtained profiles are also minimizers for the two-dimensional problem is
also not clear. However, in a closely related setting such a symmetry result was recently
established by the same authors in [158].

To conclude this section, we would like to mention a recent paper by Knüpfer and Shi,
who considered a two-dimensional problem related to head-to-head domain walls that in
one dimension would correspond to the case of � = ⇡

2 [126]. They considered a Modica-
Mortola rescaling of the energy as in (5.22), except ⌫ is again replaced by ⌫" = �| ln "|�1,
and considered clamped magnetization configurations as in [64]. However, as the stray
field energy would still be infinite on the considered class of magnetizations, they modify
the stray field term by subtracting a reference configuration from the magnetization. This
amounts to introducing an additional external magnetic field that precisely cancels the
divergence of the energy, thus modifying the nature of the problem in a rather significant
way. Nevertheless, Knüpfer and Shi were able to establish several asymptotic results for
the considered energy. In particular, for � below some threshold the limit energy is given
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by an anisotropic perimeter of the jump set of the limit magnetization configuration. We
conjecture that such a result should also hold for a suitably renormalized version of the
energy in (5.22) with the above choice of ⌫ = ⌫". It is also expected that while for small
enough values of � the minimizers are one-dimensional, for large enough values of � they
would develop a microstructure in the form of zig-zag walls [111].

5.5.3. 360-degree and other winding walls. A qualitatively di↵erent type of a domain
wall is the 360-degree wall. In contrast to the cases considered in the preceding sections,
this wall, in which the magnetization rotates exactly once over the unit circle, connects the
same limit magnetization on either side of the wall. Thus, a 360-degree wall represents an
example of a topological defect, as such a wall is characterized by a non-trivial topological
degree:

deg(m) =
1

2⇡

ˆ
R
(m1m

0
2 �m2m

0
1)d⇠ =

1

2⇡

ˆ
R
✓0 d⇠ =

1

2⇡
(✓(+1)� ✓(�1)) = ±1,

(5.25)

where, as before, m = (� sin ✓, cos ✓) for ✓ = ✓(⇠). The 360-degree walls are also frequently
observed in magnetically soft thin ferromagnetic films [83, 209, 42, 191, 111].

As was already mentioned, when ⌫ = 0 the 360-degree walls exist if and only if
h1 = 0 and h2 6= 0. This is in contrast with the experimental observations, in which
these walls can be observed in the absence of any applied fields. In [177], Muratov
and Osipov carried out an ansatz-based minimization and a computational study of
360-degree walls as a function of their orientation angle � for di↵erent ⌫ > 0. They
found numerically that the solutions of (5.20) in the form of 360-degree walls exist for
all � 2 (0, ⇡

2 ], while they cease to exist for � = 0. Also, the wall energy was found to
depend strongly on the wall orientation angle �. The existence of solutions was explained
by the magnetostatic interaction between the two 180-degree cores inside a 360-degree
wall, which is logarithmically attractive for � 6= 0, as the cores carry opposite charges. At
the same time, for � = 0 the 180-degree cores only carry net dipole moments oriented
opposite to each other. This results in an algebraic repulsion between the cores (see also
[67]).

Ignat and Knüpfer studied the structure of 360-degree transition layers under clamping
away from the origin in a model in which the energy consists of only exchange and stray
field terms, and a small parameter balancing the two terms in the energy to yield a
non-trivial limit [115]. Although these are not 360-degree walls per se, they exhibit many
of the characteristics of the 360-degree wall solutions from [177]. In particular, Ignat and
Knüpfer show the asymptotic behavior of the energy of the 360-degree wall solutions
obtained in [177] for ⌫ � 1.

Ignat and Moser carried out an analysis of winding domain wall structures, which
include 360-degree walls, via minimization of (5.19) (or its natural modification for h1 > 1)
[119]. Only the case � = 0 and h2 = 0 was considered (the value of ⌫ was also fixed,
which is less essential). They proved that for h1 > 1 there is a minimizer for any value of
the degree. Note that in the case ⌫ = 0 such an existence result could be obtained only
when deg(m) = ±1. The existence of minimizers with degrees strictly greater than 1 may
be explained by the attractive interaction of the 360-degree cores, which are now dipoles
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with the same orientation along the line and, therefore, attract each other. They also
showed non-existence of minimizers with degree 1 for � = 0 and h1 2 [0, 1), confirming
the numerics-based conclusion of [177]. Nevertheless, they also showed existence of a
domain wall with a non-trivial winding in a range of positive values of h1.

In the absence of the applied field, the analysis of existence of 360-degree walls for
general orientations was carried out by Capella, Knüpfer and Muratov [38]. They proved
existence of 360-degree walls for all ⌫ > 0 in the case � = ⇡

2 , i.e., when the wall direction
is along the easy axis. The proof is enabled by a symmetric decreasing rearrangement of
m2, which lowers the energy and reduces the minimization to the analysis of monotone
profiles. In particular, the obtained wall profile is monotone and satisfies (5.20).

Capella, Knüpfer and Muratov also proved existence of minimizers of (5.19) for all
� 2 (0, ⇡

2 ], provided the value of ⌫ is su�ciently small depending on � [38]. Here
the di�culty is due to the fact that one does not know any more if the wall profile is
monotone. Instead, the proof relies on a perturbative argument, by which the deviation
of the profile from the minimizer of the Modica-Mortola energy from the exchange and
anisotropy contributions is quantified. As a by-product, Capella, Knüpfer and Muratov
also characterize the width of the wall as a function of � and ⌫ and obtain the asymptotic
expression for the wall energy for either � or ⌫ small.

It would be interesting to see if the one-dimensional minimizers obtained for ⌫ > 0
and no applied field remain as minimizers in the two-dimensional setting. For example,
are minimizers of (5.19) for � = ⇡

2 with deg(m) = 1 still minimizers of (5.18) with
D = {(x, y) : �l/2 < x < l/2} subject to periodicity and limit behavior at infinity?
Notice that the answer to this question could turn out to be negative, depending on how
the wall energy depends on its orientation angle. It is conceivable that tilting the wall may
result in an energy decrease due to the orientation dependence of the wall energy, even if
the length of the wall would otherwise increase. Further studies into this question are
definitely needed. A closely related question comes up in the study of the Modica-Mortola
rescaling of the energy given in (5.22), written in terms of the ✓ variable to retain the
information about the magnetization winding. We conjecture that the �-limit of the
latter energy should be given by an anisotropic perimeter type functional that takes into
account winding multiplicity. For zero applied field the situation is complicated by the
presence of 180-degree walls oriented along the easy axis, but those can be eliminated by
assuming h2 > 0.

5.5.4. 90-degree and 180-degree walls in biaxial materials. We conclude by briefly
mentioning a class of materials in which the magnetocrystalline anisotropy exhibits a four-
fold symmetry, which is common for materials with cubic crystalline structure [134, 106].
The corresponding energy analogous to (5.18) with the applied field set equal to zero
reads

E(m) =
1

2

ˆ
R2

⇣
|rm|2 +m2

1m
2
2

⌘
d2r +

⌫

8⇡

ˆ
R2

ˆ
R2

r ·m(r)r ·m(r)

|r� r0| d2r d2r0, (5.26)

with the easy directions along either ±x̂ or ±ŷ. Thus, in addition to the usual types of
domain walls, a 90-degree wall is also possible.

Lund and Muratov studied existence of 90-degree and 180-degree domain wall solutions
by minimizing the one-dimensional version of (5.26) analogous to (5.19) [157]. They
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found existence of 90-degree walls for � = ⇡

4 (and all their possible ⇡

2 rotations). This
choice of � corresponds to the orientation that makes the wall charge-free for ✓(+1) = 0
and ✓(�1) = ⇡

2 . The analysis of this case follow the lines of that of 180-degree walls in
uniaxial materials [41], with similar conclusions. In contrast, existence of 180-degree wall
solutions was found for � = 0 (and all their possible ⇡

2 rotations), using the techniques of
the analysis of 360-degree walls in uniaxial materials for � = ⇡

2 [38]. The issue here is to
show that a 180-degree walls does not split into two 90-degree walls, and this does not
happen because the latter would be charged for ✓(+1) = 0, ✓(�1) = ⇡ and � = 0.

All the open questions that were discussed in the preceding sections are similarly
relevant to biaxial materials. However, these materials may possess a richer domain
structure due to the four possible equilibria of the magnetization, as well as a richer set
of charge-free domain walls.

5.6. Conclusion. In summary, in recent years there have been a number of developments
in modeling and analysis of the domain walls arising in thin ferromagnetic films in which
the magnetization rotates in the film plane, pushing forward our understanding of the
classical questions in physics that began to be formulated in the 1920s. Some of the domain
wall solutions are by now fairly well understood in one space dimension. Nevertheless,
there are more open questions than answers, especially in two-dimensional and vectorial
settings, that will hopefully inspire the next generation of researchers in the calculus of
variations and analysis of PDEs to further advance this exciting area at the intersection
of mathematics and materials science.
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[126] H. Knüpfer and W. Shi. �-limit for two-dimensional charged magnetic zigzag domain walls.

arXiv:2005.02857, 2020.
[127] R. V. Kohn. Energy-driven pattern formation. In International Congress of Mathematicians. Vol.

I, pages 359–383. Eur. Math. Soc., Zürich, 2007.
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