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Abstract— To make robots accessible to a broad audience, it
is critical to endow them with the ability to take universal modes
of communication, like commands given in natural language,
and extract a concrete desired task specification, defined using a
formal language like linear temporal logic (LTL). In this paper,
we present a learning-based approach for translating from
natural language commands to LTL specifications with very
limited human-labeled training data. This is in stark contrast
to existing natural-language to LTL translators, which require
large human-labeled datasets, often in the form of labeled pairs
of LTL formulas and natural language commands, to train the
translator. To reduce reliance on human data, our approach
generates a large synthetic training dataset through algorithmic
generation of LTL formulas, conversion to structured English,
and then exploiting the paraphrasing capabilities of modern
large language models (LLMs) to synthesize a diverse corpus of
natural language commands corresponding to the LTL formu-
las. We use this generated data to finetune an LLM and apply a
constrained decoding procedure at inference time to ensure the
returned LTL formula is syntactically correct. We evaluate our
approach on three existing LTL/natural language datasets and
show that we can translate natural language commands at 75 %
accuracy with far less human data (<12 annotations). Moreover,
when training on large human-annotated datasets, our method
achieves higher test accuracy (95% on average) than prior
work. Finally, we show the translated formulas can be used
to plan long-horizon, multi-stage tasks on a 12D quadrotor.

I. INTRODUCTION

Many tasks that we want our robots to complete are
temporally-extended and multi-stage in nature. For example,
the success of cooking, urban navigation, robotic assembly,
etc. is determined not by a single goal, but rather a sequence
of interconnected subtasks and time-varying constraints.
Thus, to reliably complete such tasks, it is critical to have
an unambiguous specification of these goals and constraints.

Linear temporal logic (LTL) [1] is a powerful and expres-
sive tool for unambiguously specifying temporally-extended
tasks. LTL augments the traditional notions of standard
propositional logic with temporal operators that are able to
express properties holding over trajectories; to complete the
task, low-level robot trajectories that satisfy the LTL formula
can then be synthesized [2] to complete the task. Despite its
strength in specifying complex tasks, LTL is difficult to use
for non-expert end users [3], [4], and it is unreasonable to
expect an end user to provide an LTL formula that encodes
the desired task for many applications. In contrast, it is
easy for humans to provide natural language commands.
Thus, a semantic parser which can translate natural language
commands into LTL specifications is of great interest.
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APs (Atomic Propositions):
pi: 'blue_room’,  p,: 'green_room’,
p3: ‘purple_room’, py: 'red_room’,
ps: 'yellow_room’,  py: 'first_floor’,
p7: 'second_floor’, pg: 'third_floor’,
po: 'landmark_1',  pyo: landmark_2'

Translated: F (landmark 1 A (F red))

“remain on the first floor and
navigate to the red room .”
_ | Translated: (F red) A (G first floor)

Translated: (F green) A (G (—landmark 1))

2
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Fig. 1: We translate natural language commands into LTL
formulas that achieve complex tasks on a 12D quadrotor.

However, training a task-specific semantic parser can be
difficult, and requires a large dataset of natural language
commands paired with corresponding LTL formulas [5],
[6]; in particular, to use neural architectures, thousands of
annotated examples and hundreds of human workers [5],
may be required for good generalization. This is prohibitively
expensive to collect and is prone to labeling errors, unless
LTL experts are used to annotate the data — hence, obtaining
data is the key challenge facing LTL translation. In contrast,
recent semantic parsing work in the natural language process-
ing (NLP) community [7] has alleviated the need for human-
annotated data via synthetic training data [8], [9] and the
built-in natural language understanding of pre-trained large
language models (LLMs) like GPT-3 [10] and BART [11].

In this paper, we reduce the human-labeled data require-
ments for natural language-to-LTL translators by applying
ideas from low-resource semantic parsing. We assume we are
given a predefined set of possible LTL formulas and atomic
propositions, and up to one natural language annotation for
each formula. We translate these pre-defined formulas to
(structured) English either by a rule-based translator when
the dataset is sufficiently structured, or by querying a human
expert for a translation template, and then using the para-
phrasing abilities of modern LLMs [10] to generate a large
corpus of diverse natural language commands with similar
meaning to the associated LTL formulas. We then use this
data to finetune an LLM. Here, we explore two variants,
where for training labels we use 1) raw LTL formulas, or 2)
a canonical form of the LTL formulas [12]) (an intermediate
representation between LTL and English). At evaluation
time, we enforce the LLM’s output to be syntactically
consistent with LTL via constrained decoding. We evaluate
our approach on several existing datasets of paired LTL and
natural language commands [6], [S], and show our method
achieves competitive performance with prior work (trained
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on thousands of human annotations), with <12 human-
labeled annotations. Moreover, when combined with human-
labeled data, our method exhibits improved generalization
compared to prior work. Overall, our contributions are:

o data augmentation schemes for training natural
language-to-LTL translators with very few human
annotations,

« a neural translation architecture which draws from re-
cent advances in the semantic parsing community to
improve LTL translation performance,

« evaluation on several datasets in the literature, achieving
competitive performance with far fewer human labels.

II. RELATED WORK

First, our work is related to methods which aim to obtain
task constraints and LTL specifications from human inter-
action. A large body of work uses interactive training [13],
[14] and physical demonstrations to infer task constraints
[15], [16], [17], [18] and LTL formulas [19], [20], [21],
[22]. However, these forms of human interactions tend to be
costly; hence, our goal in this work is to recover LTL for-
mulas from cheaper input, e.g., natural language commands.

If we specify the interaction medium to be language, there
is extensive work on translating English to LTL. Early work
[23], [24], [25] translated structured English commands to
LTL formulas (possibly through an intermediate structured
representation); however, providing English commands with
this structure requires an understanding of the specific gram-
mar used, which can be unnatural for humans. More recent
work uses neural networks to train the translator using thou-
sands of human-labeled natural language/LTL pairs [5], [6],
[26]. To reduce the need for human labels, other work aims
to learn from trajectories paired with natural language; this
however, still requires many trajectories (i.e., demonstrations
or executions) to implicitly supervise the translator [27] [28].
Other work [29] [30] improves the translators’ generalization
to new domains; this is complementary to our method,
which improves accuracy within a given set of domains and
reduces reliance on human-labeled data. Other work directly
translates language to actions [31], [32] without using LTL,
and thus cannot use the planning tools [2] that we can exploit.

Our work also relates to the problem of semantic parsing
from the NLP community, which seeks to convert from an
utterance of (unstructured) natural language to a (structured)
logical form which is machine-understandable; e.g., between
a command expressed in natural language and an explicit
query in a SQL database [33]. Recently, significant progress
has been made in low-resource semantic parsing. Early works
in the area [34], [12] proposed to use a “canonical” natural
language form, i.e., an alternate representation of the formal
syntax that is closer to English, and which was shown
to improve performance on complex tasks. More recent
work explores low-resource learning by [8], [7] exploiting
automatic training data synthesis using a combination of
parsing, templating, paraphrasing, and filtering techniques, or
by leveraging large language models (LLMs) [35], [9], such
as GPT-3 [10] or BART [11] for their improved performance

and generalization capabilities. While low-resource semantic
parsing is well-studied in NLP, these advances have yet
to transfer to natural language-to-LTL translation, which is
itself a semantic parsing problem. A key contribution of our
work is to bridge the gap between these two communities.
Through extensive experiments, we show that recent ideas in
low-resource semantic parsing can notably increase the sam-
ple efficiency of traditionally data-hungry LTL translators.

III. PRELIMINARIES AND PROBLEM STATEMENT

We first overview the basics of linear temporal logic (Sec.
III-A) and modern generative language models (Sec. III-B),
and then give our problem statement (Sec. III-C).

A. Linear temporal logic (LTL)

We consider planning for discrete-time systems ;1 =
f(xe,uy), with state x € X and control u € U. To specify
tasks for this system, we use linear temporal logic (LTL)
[1], which augments standard propositional logic to express
properties holding on system trajectories over periods of
time. Similar to [5], the LTL specifications considered in
this paper can be written with the grammar

u=plpleiNpa | o1V |Go| Foler U pa, (1)

where p € P = {pL}f\i“l’ are atomic propositions (APs). In

this paper, the APs correspond to sets of salient regions of
the state space which the robot may wish to visit or avoid
(e.g., the blue room in Fig. 1 is an AP). As we consider
continuous-state systems in this paper, we associate each
AP with a constrained region in the state space; that is,
z | pi © gi(x) <0, for a constraint function g; : X — R.
Additionally, Gy denotes that the condition ¢ should hold
globally for all time, F¢ denotes that ¢ should hold even-
tually (i.e., there exists some time-step ¢ where ¢ is true),
and ¢; U @9 denotes that ; should hold for all time-steps
until @9 holds for the first time. This grammar can be used
to specify a diverse set of robotic tasks in, e.g., navigation
(“drive to the charging station” as F Pcharging), Manipulation
(“empty the mug before stacking” as —Psack U Pempty), €tC.

B. Generative Language Models

Given a piece of text with n words w1, wa, ..., w,, a lan-
guage model will estimate the probability p(wy, we, ..., Wy ),
for all possible instantiations of text. Auto-regressive lan-
guage models factor the probability as

plwi, wa, ..., wn) = Hp(wi | wi,..wimr) (2
i=1

This formulation of language modeling allows efficient text
generation, where given preceding words wy, wa, ..., W;—1,
the model can generate the probability distribution for the
next word p (w; | wy, ..., w;—1).

Modern transformer-based [36] generative language mod-
els like GPT-3 [10] and BART [11] can generate text
output in an auto-regressive fashion. They are pre-trained on
internet-scale text corpora, and have shown strong natural
language understanding and generalization capabilities with
impressive performance across many NLP tasks [37].
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Fig. 2: Method flow: generating synthetic data, training on that
data, evaluation, and planning with the evaluated formula.

C. Problem statement

In this paper, we wish to learn a natural language-to-LTL

translator in a data-efficient manner. Specifically, given:

1) a list of possible APs, each with an associated natural
language description, e.g., an AP named “G” has the
associated description of “inside the green room”,

2) a list of possible LTL structures, i.e., a template for
an LTL formula with undefined APs, which takes
instantiations of those APs as input (this assumption
can be relaxed, see Sec. VI),

we wish to learn a mapping between natural language
and LTL task specifications, i.e., given a natural language
command, we aim to translate it to its associated LTL form.

We consider two data regimes: 1) low-resource scenarios,

where we provide limited (/=10) human annotations to train
the translator, and 2) the standard data regime, where as
in pre-existing language models, we provide thousands of
natural language-LTL pairs for training. In low-resource
scenarios, we aim to show our method enables satisfactory
translation performance, with only a small performance drop
relative to a translator trained on a large set of human
annotations. In the standard data regime, we aim to show
that our translator architecture improves translation accuracy
relative to prior methods trained on the same data.

IV. METHOD

For data-efficent translation of natural language commands
to LTL, our method combines 1) a data synthesis pipeline
that automatically generates large synthetic training datasets
with little human supervision (Sec. IV-A), and 2) a modern
neural semantic parsing architecture that is stronger in natural
language understanding and generalization compared to prior
work (Sec. IV-B). We visualize our method in Fig. 2.

A. Data synthesis pipeline

Training a neural translator generally requires a corpus
of input and output language pairs, e.g., paired natural
language commands and LTL formulas as input and output,
respectively. Given the set of possible LTL structures and the
set of APs relevant for the set of possible tasks, we can obtain
all possible LTL formula outputs by simply filling each LTL
structure with combinations of APs. However, while we can
generate large numbers of LTL formulas, obtaining a diverse
set of natural language descriptions for each LTL formula
typically requires a large amount of human labor, making
the training extremely expensive [6], [5].

To alleviate this problem, we apply a two-stage pipeline
inspired by [8], [7], [12]. First, we perform back-translation
(i.e., translate the LTL formula back into structured English)
and second, perform extensive data augmentation (by lever-
aging LLMs trained on natural language) to synthesize a
diverse set of natural language training data from the LTL
formulas, requiring much less human labor. During back-
translation, given the LTL formulas used in the task, we
generate one natural language description for each LTL for-
mula by using either an LTL-to-English translator (when the
LTL representation is sufficiently structured), or templates
written by human experts (when such structure does not
exist). We discuss specific examples of when to use which in
Sec. V. During augmentation, based on the back-translation
result, we automatically synthesize a diverse training corpus
by leveraging a LLM-based paraphrasing model. We discuss
these components in more detail.

1) Back-translation: Although mapping natural language
into a formal language remains an open research question,
the inverse problem of mapping formal language back to
natural language can be done relatively easily, by either
1) symbolically parsing the formula [38] or 2) training a
neural translator [39]. We build a rule-based LTL-to-English
translator based on the grammar of LTL (1). Given an LTL
formula, the translator will parse out its syntax tree and
then translate it to structured English. This assumed structure
renders the translation straightforward. When the LTL corpus
is too complex or ambiguous for the translator to work (as
in the datasets explored in Sec. V-B and V-C), we obtain the
back-translation result by querying human experts to provide
a small number of annotations; see Sec. V-B and V-C for
specific instances of this process.

2) Augmentation: Given the training data obtained in
back-translation, unlike previous methods [6], [5], which
simply augment the dataset by replacing existing AP combi-
nations with novel ones, we follow [8], [9] and use a neural
paraphrasing model to paraphrase the text. In particular, we
prompt the GPT-3 language model [10] to give ten different
paraphrases for every English sentence created during back-
translation to augment the synthetic training corpus. An
example from the data synthesis pipeline in Sec. V-B is
shown below. This example consists of a prompt template (a
text template to be filled with string arguments) filled with a
source natural language command and then GPT-3’s output
as the paraphrased results.

Rephrase the source sentence in 10 different ways.
Make the outputs as diverse as possible.

Source: Go to the blue room or go to the red room to
finally go to the yellow room.

Outputs:

1. You can go to the blue room or the red room, and
then finally the yellow room.

2. To get to the yellow room, you must go through
the blue room or the red room.

10. In order to reach the yellow room, you must first
go to the blue room or red room.
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Since the back-translated structured English commands are
empirically similar to the natural language that GPT-3 is
trained on, we find GPT-3 returns meaningful, diverse para-
phrases resembling natural language. In short, our insight is
to exploit LLMs’ large-scale pre-training on general-purpose
natural language to generate diverse English commands that
notably reduces reliance on human annotators (who may also
make mistakes due to unfamiliarity with LTL, cf. Sec. I).

B. Architecture

Applying large language models to low-resource semantic
parsing has led to much progress (see Sec. II). Following
[35], we select the pre-trained BART-large language model
as our translation model, finetune it on the task-specific
corpus (using either raw LTL or a canonicalization of LTL for
training labels), and at inference time perform LTL grammar-
constrained decoding. We discuss these now in detail.

1) Pre-training and fine-tuning: BART is a transformer-
based [36] language model. Given a corrupted version of
English text as input, e.g., “my is Alex”, the model is trained
to recover and output the original text ‘my name is Alex”. In
our context, BART is given the natural language command
as input, and the LTL formula as output. We explore two
variants on the training label representation: 1) using the raw
LTL formula for training labels (i.e., 7 B, for “eventually
visit the blue room”, is transcribed as “F B” for the training
label), and 2) using a canonicalization of the LTL formula
for the labels (an intermediary between LTL and English),
which we describe in Sec. IV-B.2. It is worth noting that our
proposed method can be easily applied to other potentially
stronger language models like T5-XXL [40] or GPT-3 [10];
we choose BART-large because it has a moderate number
of 406M parameters and is efficient to finetune on a single
GPU. We use the hyper-parameters from [35] for finetuning.

2) Canonical form for LTL: While exploiting the structure
in pre-trained LLMs can be fruitful, directly applying them
on LTL formulas (especially) can degrade performance. As
language models (including BART) are primarily trained on
natural language, there is a distribution shift when evaluating
on the text transcription of LTL formulas, e.g., “F B does
not resemble natural language. In [11], it was shown that
creating a one-to-one mapping from a formal language to a
“canonical” representation, which is “closer” to natural lan-
guage than the raw LTL formula, can mitigate the distribution
shift and enable stronger benefits from pre-trained LLMs.

We now describe the canonical form for LTL that we use.
Given an LTL formula, we build its equivalent parse tree
form (see Fig. 3, and [21] for details), replace the elements
of the LTL grammar with corresponding English phrases, and
starting from the parse tree’s root, we transcribe it to text,
with parentheses and commas to encompass and separate an
operator’s input arguments. For example (Fig. 3), consider
the formula F(B V R); this can be written as the parse tree
in Fig. 3, and after Anglicization and transcription, we have
“finally ( or ( go to the blue room , go to the red room ) )”.

However, canonicalization also has drawbacks, e.g., 1) it
increases the transcription length, which can hurt accuracy,

Anglicized parse tree:

Parse tree:

Canonical form:
finally (or (go to
the blue room, go
to the red room))

Fig. 3: Transforming from raw LTL to a canonical form.

and 2) for simpler tasks, the inductive bias provided by the
canonical form may not help as much. Thus, we evaluate
both raw and canonicalized LTL in the results to explore
which representation is better suited for LTL translation.

3) Constrained decoding for the language model: Con-
strained decoding [35] is a common technique used together
with LLMs in low-resource semantic parsing to guarantee
that the output will be well-formed. Given a pre-defined set
of possible outputs, the system will constrain the LM by only
considering the next-token prediction that is in the output
sets. In practice, we incorporate the constrained decoding
implementation in [35] and provide it with the set of possible
LTL formulas in the task obtained in IV-A.

To recap, we synthesize a dataset of natural language/LTL
pairs by generating possible LTL formulas, converting them
to structured English, and then using LLM paraphrasers to
get synthetic natural language commands. This data (either
in raw or canonical form) is used to finetune BART, and at
evaluation time, we use an LTL-constrained decoder.

V. RESULTS

To evaluate our approach, we compare our method (the
raw LTL and canonical variants are denoted as BART-FT-
Raw and BART-FT-Canonical in in Tab. I) with two existing
baselines for natural language-to-LTL translation: CopyNet
[29], and an RNN with attention mechanism! (denoted RNN)
[6]. We also examine several ablations of our method, to
evaluate the necessity of various components of our pipeline.
In particular, we 1) remove constrained decoding at evalua-
tion time, denoted “-NoConstrainedDecoding”, and 2) train
BART directly on structured English, without paraphrasing
(cf. Sec. IV-A.2), denoted “no augmentation” in Tab. L.

We evaluate our method on three datasets of paired LTL
formulas and natural language commands: a drone planning
dataset (Sec. V-A) [5], an robot navigation dataset (Sec. V-
B) [6], and a robot manipulation dataset (Sec. V-C) [6].
We show that 1) despite our limited human-labeled data,
we achieve competitive English to LTL translation accuracy
on these datasets, and 2) when trained on the datasets, our
architecture yields better accuracy than the baselines. Our
code is at github.com/UM-ARM-Lab/Efficient-Eng-2-LTL.
A. Drone planning

1) Definition: In this dataset (from [5]), as illustrated in
Fig. 1, the task is to translate a natural language command for
drone navigation into an LTL expression, which can then be
fed into a trajectory planner that completes the task in a pre-
defined environment (i.e., if the correspondence between an

ITwo variants of RNN models are discussed in [6], which have very
similar performance. We select the RNN + Bahdanau Attention architecture
[41] for our experiments as it has overall better performance.
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Fig. 4: The evaluation datasets. See Fig. 1 for the drone
dataset. (A) Cleanup World [6]. (B) Pick-and-place [6].

AP and its real-world region is known). This dataset contains
5 unique LTL structures and 12 different APs, with a total
of 6,185 commands for 343 different LTL formulas.

2) Experimental setup: To explain the structure and our
processing of this dataset, we present an example below. In
black, we show the instruction in natural language, followed
by the canonical form (see Sec. IV-B.2) used by our method,
and the raw LTL representation used by the baseline:

head to the yellow room , but make sure to go through
the blue room first .

finally ( and ( the blue room , finally ( the yellow
room ) )

F ( blue_room & F ( yellow_room ) )

Of the three considered datasets, the LTL formulas in this
dataset are neither too ambiguous nor too complex (see Sec.
V-B and V-C respectively for cases where it does not hold) to
stop back-translation from functioning. Thus, we first map
each original LTL representation to its canonical form via
parse tree (cf. Sec. IV-B.2), and then do the back-translation.

3) Results: Our translation accuracy on this dataset is
presented in Tab. I. The translation output is considered
accurate if it matches exactly with the ground truth output.
This may be conservative, since some clauses in a formula
can be reordered (thus failing to match the output exactly)
while retaining identical semantic meaning (see Sec. VI
for more discussion). In the training data column of Tab.
I, “golden” refers to the human-annotated data from the
original drone planning dataset, while “synthetic” refers to
the synthetic training data that we obtained by the data
synthesis pipeline of Sec. IV-A. As there is no official
division of the training / evaluation split when evaluating on
the golden dataset, we report accuracy by its five-fold cross-
validation result. We generate 5900 synthetic data points and
as no golden data is provided to the model for training, we
evaluate the model’s performance on the full golden dataset.

4) Discussion: When using the golden dataset to train,
our model performs the best compared to the baseline
models, outperforming them in translation accuracy by about
2%. Moreover, our “-Raw” and “-Canonical” variants have
similar accuracy. This suggests our architecture has better
generalization to unseen data, which can be attributed to
1) our model’s higher capacity relative to the baselines,
and 2) the extensive pre-training provided by BART (in
contrast, only the word embedding layer in the baselines is
pre-trained). When we consider the low-resource scenario,
our method achieves an accuracy of 69%. Note that 1)
reduced accuracy compared to training on the golden dataset
is expected, due to the distribution shift between the two

datasets, and 2) while application-dependent, accuracies of
70% are common for the state-of-the-art in semantic parsing,
e.g., [35]. In contrast, all the baseline methods perform
much worse (20-30 %). The ablation of our method without
data augmentation does similarly poorly (20-30%), whereas
removing constrained decoding causes a slight degradation
of 1%. Here, canonicalization hurts performance by 1%; this
may be due to the reasons discussed in Sec. IV-B.2. On
this dataset, we posit that the combination of the pre-trained
LLM, the data augmentation, and constrained decoding en-
ables our accuracy, while canonicalization is not needed.

5) From LTL formulas to trajectories: To show that our
translated LTL formulas can specify the complex behavior
requested in natural language, we compute plans satisfying
translated formulas on a quadrotor. It is modeled as a 12D
double integrator, where the state is the 3D pose (6 states)
and the linear/angular velocity (6 states); we assume we
control the accelerations. These are linear dynamics, so
dynamically-feasible trajectories satisfying the LTL formulas
can be computed with mixed integer convex programming
[21], [2]. In Fig. 1, we visualize three plans which satisfy
the translated formulas. Here, APs are modeled as polytopes,
ie., p; & {z| Aiz <b;}. Complex behavior arises from the
plans, e.g., for the command “swing by landmark 1 before
ending up in the red room”, the drone visits the second floor
without exiting the map (gray), touches landmark 1, and then
smoothly returns to the first floor to visit the red room.

B. Cleanup World

1) Definition: The Cleanup World environment [42] (Fig.
4(A)) involves a robot interacting with its environment by
moving through different rooms, or by moving objects from
one room to another. Based on this environment, [6] collects
3,382 natural language command-LTL pairs, containing 39
LTL formulas with 4 unique LTL structures and 6 unique
APs. The task for this domain is to give a natural language
command to a simulated robot, which asks it to move through
different rooms or asks to move objects to other rooms.

2) Experiment setup: As done for the drone dataset, we
will present an example of the structure and our processing
of this dataset. The color-coding is the same as in Sec. V-A,
but this time we show two instructions in natural language

that correspond to the same LTL formula.
enter the red room and bring the chair back to the
blue room
move into the red room and push the chair back into
the purple room
finally ( and ( go to the red room , finally ( go to the
blue room with chair ) ) )
F&RFX

This dataset lacks documentation for some APs, i.e., it

is unclear what “X” corresponds to in English; without this
information, back-translation to structured English cannot be
done via our rule-based translator. Moreover, the dataset is
highly noisy, e.g., in the second natural language command,
the annotator misjudged the color as purple. To handle these
challenges, we manually inspect the dataset, and provide the
data needed to pair every LTL formula in this domain to a
corresponding canonical form/natural language description.
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TABLE I: Translation accuracy. Ours, baselines, ablations. Top: regular data regime; bottom: low-resource regime. (Number of LTL structures/formulas).

Model architecture Training data Test data Drone (5/343)  Cleanup (4/39)  Pick (1/5)
RNN [6] 4/5 golden 1/5 golden 87.18 95.51 93.78
CopyNet [29] 4/5 golden 1/5 golden 88.97 95.47 93.14
BART-FT-Raw (ours) 4/5 golden 1/5 golden 90.78 97.84 95.97
BART-FT-Canonical (ours) 4/5 golden 1/5 golden 90.56 97.81 95.70
RNN [6] synthetic full golden 2241 52.54 32.39
CopyNet [29] synthetic full golden 36.41 53.40 40.36
BART-FT-Raw (ours) synthetic full golden 69.39 78.00 81.45
BART-FT-Canonical (ours) synthetic full golden 68.99 77.90 78.23
BART-FT-Raw-NoConstrainedDecoding synthetic full golden 68.23 76.26 81.05
BART-FT-Canonical-NoConstrainedDecoding  synthetic full golden 67.45 72.06 69.49
BART-FT-Raw (ours) synthetic; no augmentation  full golden 29.43 52.51 80.38
BART-FT-Canonical (ours) synthetic; no augmentation  full golden 39.21 53.16 67.88

Naively, this requires 39 annotations (one for each LTL for-
mula in the dataset), but we reduce this to 10 annotations by
exploiting the compositional structure of LTL. Specifically,
we collect one natural language description for each of the
six APs, and the canonical form/natural language description
for each of the four LTL structures. It is worth discussing
the comparability of data collection costs. Providing a natural
language description for the four LTL structures may require
the human annotator to be more familiar with LTL, while
annotating LTL formulas case by case may be easier (has
been done with crowd-sourcing [6], though accuracy is still
a challenge). Since our pipeline is flexible, one can choose
between 10 natural language annotations on LTL structures
(more expensive) or 39 cheaper annotations of LTL formulas.

3) Results and Discussion: We report our accuracy in Tab.
I. The evaluation criteria (exact matching) is the same. When
using the golden dataset to train the model, like before, both
the raw and canonical variants of our method outperform the
baselines by 2%. In the low-resource scenario, we generate
594 synthetic data points, and our method achieves ~=~78%
accuracy (for both raw and canonical); this is higher than
the drone example, and is a ~20% drop from training on
the golden dataset (expected due to distribution shift). In
contrast, all baselines perform much worse (=50%). The
ablations also degrade (=74% when removing constrained
decoding, ~253% when removing augmentation), and the ab-
lated raw and canonical variants perform similarly. Overall,
this corroborates the conclusions of Sec. V-A.

C. Pick-and-place

1) Definition: In this dataset [6] (see Fig. 4(B)), the
robot conducts repetitive actions based on a user command
specified in natural language. It has 5 different LTL formulas
with 5 different APs and 1 unique LTL structure.

2) Experiment setup: As done for the previous datasets,
we will present an example of the structure and our process-
ing of this dataset; color-coding is as before.

scan the empty area of the table and pick up any non
green objects moving them to the basket

globally ( and ( until ( scan , not ( any non green
cubes ) ), finally ( any non green cubes ) ) )
G&US!CFC

As the LTL structure has a parse tree of depth 5 (i.e., the
task is complex), it would require extensive engineering to
design the LTL-to-English translator. Thus, we follow the
process in Sec. V-B.2, and manually inspect the dataset, giv-
ing a total of 5 canonical form/natural language annotations.

3) Results and Discussion: Our accuracy on the pick-and-
place dataset is presented in Tab. I. The evaluation criteria
(exact matching) is the same as before. Again, when training
on the golden dataset, our model (both variants) outperforms
the baselines by ~2%. For the low-resource scenario, we
generate 55 synthetic data points, and our method (raw) gives
an accuracy of 81%; this is comparable with Sec. V-B, and
is around a 14% drop from training on the golden dataset,
which is a slightly smaller drop compared to the other two
datasets. Here, canonicalization hurts accuracy by 3%; this
is consistent with Sec. V-A. In contrast, all the baselines
perform much worse (32 and 40 %). The ablations of our
method also worsen (=~80% for the raw variants and ~68%
for the canonical variants). Surprisingly, “-Raw” degrades
less than “-Canonical” (drop of 1 vs. 13%). This may be
since: 1) there is only one LTL structure, so only the APs
need to be correctly translated for overall correctness, and 2)
raw LTL is more compact than the canonical form, so there
are fewer words to distract the model in identifying the APs.

Overall, these results are as expected. However, we did
not expect “-Raw” to consistently outperform ‘““-Canonical”,
in contrast to established results, e.g., [34], [12], [35]. We
believe that the most likely reason for this (see Sec. I'V-
B.2 for other ideas) is that our evaluation datasets are not
complex enough to benefit from canonicalization. This is
consistent with how the accuracy gap for pick-and-place is
smaller than the gap for e.g., the more complex drone dataset.

VI. DISCUSSION AND CONCLUSION

In this paper, we present an approach for translating
natural language commands into corresponding LTL formu-
las. Our method is highly data-efficient, and can achieve
75% translation accuracy with only a handful of (< 12)
human annotations. We achieve this efficiency through data
augmentation and by using this data to finetune an LLM.

Our work has limitations that are interesting directions for
future work. First, exploiting the language models’ uncer-
tainty (e.g., the top k& best formulas) by grounding them to
the environment may improve accuracy. Second, we assume
a natural language command maps to one LTL formula;
however, many natural language commands are inherently
ambiguous. Thus, we will study uncertainty-aware planning
(e.g., [43], [44]) at the task level, with uncertainty driven by
natural language. Third, we assumed we know all possible
LTL structures; we will explore automatic synthesis of LTL
structures to improve accuracy on unseen LTL structures.
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