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Abstract
The manuscript describes a quadrature rule that is designed for the high order dis-
cretization of boundary integral equations (BIEs) using the Nyström method. The
technique is designed for surfaces that can naturally be parameterized using a uni-
form grid on a rectangle, such as deformed tori, or channels with periodic boundary
conditions. When a BIE on such a geometry is discretized using the Nyström method
based on the Trapezoidal quadrature rule, the resulting scheme tends to converge only
slowly, due to the singularity in the kernel function. The key finding of the manuscript
is that the convergence order can be greatly improved by modifying only a very small
number of elements in the coefficient matrix. Specifically, it is demonstrated that by
correcting only the diagonal entries in the coefficient matrix, O(h3) convergence can
be attained for the single and double layer potentials associated with both the Laplace
and the Helmholtz kernels. A nine-point correction stencil leads to an O(h5) scheme.
Themethod proposed can be viewed as a generalization of the quadrature rule of Duan
and Rokhlin, which was designed for the 2D Lippmann–Schwinger equation in the
plane. The techniques proposed are supported by a rigorous error analysis that relies on
Wigner-type limits involving the Epstein zeta function and its parametric derivatives.
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1 Introduction

1.1 Nyström discretization and weakly singular kernels

Boundary value problems associated with linear elliptic partial differential equations,
such as the Laplace and Helmholtz equations, are often reformulated as boundary
integral equations (BIE) of the second kind. For concreteness, let us consider a BIE
of the form

σ(x) +
∫

Γ

K(x, y)σ (y)dS(y) = f (x), x ∈ Γ, (1)

where Γ ⊂ R
3 is a smooth surface, where dS is the surface element, and where the

kernel K ∈ L2(Γ × Γ ) is weakly singular as |x − y| → 0. We focus on the situation
where the given data function f is smooth, in which case the solution σ is smooth as
well.

We discretize (1) using a Nyström discretization [29, §12.2] based on a quadrature
rule with nodes {xi }Ni=1 ⊂ Γ and weights {wi }Ni=1 for which the approximation

∫
Γ

ϕ(x)dS(x) ≈
N∑
i=1

wi ϕ(xi ) (2)

is accurate for smooth functions ϕ. In the Nyström method, we first collocate (1) to
the quadrature nodes {xi }, and then replace the continuum integral by a quadrature
supported on the same nodes, to obtain the linear system

σ(xi ) +
N∑
j=1

K(i, j) σ (x j ) = f (xi ), i = 1, 2, . . . , N . (3)

For this to work, we need to build an N × N coefficient matrix K such that

N∑
j=1

K(i, j) σ (x j ) ≈
∫

Γ

K(xi , y)σ (y) dS(y), i = 1, 2, . . . , N , (4)

holds to high accuracy. If the kernelKwere smooth, then this task would be easy since
we could then use the standard quadrature rule (2) and simply set

K(i, j) = K(xi , x j ) w j . (5)

The challenging question in this context is how to find a matrix K for which the
approximation (4) holds to high accuracy despite the singularity in the kernel. In this
manuscript, we address it for the specific case where the surface Γ is parameterized
over a rectangle R ⊂ R

2, the nodes {xi } are the images of a uniform grid on R, and
the base quadrature (2) is the Trapezoidal rule on R.
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Corrected trapezoidal rules for boundary integral… 1027

A particular benefit of the method that we present is that the basic relation (5) holds
for almost all entries of K. This makes the technique proposed attractive to use in
combination with fast solvers such as those based on the Fast Multipole Method [22]
or fast direct solvers [32].

1.2 Prior work

Numerical evaluation of boundary integral operators, or integration of singular func-
tions in general, is a rich topic with a long history, see for example [6,16,29] for more
detailed reviews. Broadly speaking, singular quadrature techniques can be classified
into three categories:

1. Singularity cancellation methods typically apply a change of integration variables
(e.g., from Cartesian to polar coordinates) such that the singularity is (fully or
partially) cancelled by the Jacobian, then the resulting smoother integrand is inte-
grated using a regular quadrature. Examples in this category include [5,13,14,18].
A related method is the singularity regularization approach, e.g. [8], where the
singularity is “smoothed out” locally in a sophisticated way such that, when inte-
grated using a regular quadrature, the regularization error is balanced with the
discretization error.

2. Singularity subtraction methods proceed by first subtracting the singular compo-
nent from the integrand and integrating the remaining smooth component with
a regular quadrature, then the singular component is integrated analytically and
added back to the final result. Examples in this category include [25,26,33].

3. Singularity correction methods also split the integrand into regular and singular
components; while the regular component is handled by the underlying regular
quadrature, the singular component is now integrated numerically (instead of ana-
lytically) using a specially designed quadrature. The outcome of this approach is
a modified quadrature, where the original regular quadrature weights are modified
to accommodate the singularity. For example, extrapolation methods such as [24]
or product quadrature methods such as [28] modify weights globally.

Our focus in this manuscript is on uniform discretizations in parameter space,
and quadratures based on the classical Trapezoidal rule. For smooth integrands, the
trapezoidal rule converges super algebraically fast, and the existing error analysis is
very precise [40]. We observe that in the context of BIEs on toroidal domains, the
integrand is periodic, so the only loss of smoothness is due to the singularity in the
kernel. (Corrections for edge effects are described in [3].)

In order to analyze the behavior of the Trapezoidal rule for functions with isolated
singularities, it is common to introduce a “punctured trapezoidal rule” that omits the
singular point.By itself, such a rulewouldbeof lowaccuracy, but a number of strategies
for improving its convergence speed have been developed. For example, when the
integration domain coincides with the Euclidean space (Γ = R

n), high-order and
robust corrected trapezoidal rules are developed for log |x | and |x |−s,−1 < s < 1, in
R
1 [27], for log |x|, |x|−1, andH (1)

0 (κ|x|) inR
2 [2,17,30], and for |x|−1 inR

3 [1].When
the integration domain is on a curved surface (Γ � R

n), several powerful techniques
exist for the case n = 2. For example, Alpert in [4] developed a hybrid Gaussian-
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1028 B. Wu, P.-G. Martinsson

trapezoidal quadrature that introduced correction weights on a local auxiliary grid that
is unevenly-spaced; for on-grid corrections, Kapur and Rokhlin in [27] have developed
quadratures for a variety of singularities that are not directly elementary functions,
the correction weights of these quadratures grow rapidly as the order of correction
increases, hence are less stable when the correction order is six or higher, see [23];
Alpert alleviated this issue by using extra correction weights and minimizing their
sum of squares [3]. Most of these quadratures are designed based on the error analysis
of the punctured trapezoidal rule. We are not aware of any analogous techniques that
work on curved surfaces in R

3.

1.3 Contributions of the present work

We present a systematic approach to constructing locally corrected trapezoidal rules
for the Laplace and Helmholtz layer potentials on smooth surfaces in R

3. The key
innovation of our method is that we connect the error analysis of the punctured trape-
zoidal rule to lattice sum theory and the Epstein zeta function (a generalization of the
Riemann zeta function), and based on them develop fast algorithms that efficiently
compute the limiting error coefficients as the grid spacing h → 0. From there, local
correction weights are calculated based on the idea of moment fitting [41]. We prove
the convergence of the correction weights in Theorem 4 and justify their use for the
intermediate h grid by Theorem 5. Our method generalizes straightforwardly to other
on-surface integral operators such as the Stokes potentials, which share the same |x|−1

type singularity as the Laplace potentials.
We mention that the connection between the singular quadrature error of the punc-

tured trapezoidal rule and the zeta functions was first discovered by Navot with his
extend Euler-Maclaurin formulae [34,35]. Such connection was later used to develop
singular 1D quadratures, for example, in [30,37–39]. In this manuscript, we have gen-
eralized this zeta function connection to higher dimensions, which accidentally also
completes the convergence analysis of [30] for their 2D quadrature that is closely
related to ours. In addition, as is pointed out in [30], many existing locally corrected
trapezoidal methods in R

2 and R
3 are derived heuristically and lack complete con-

vergence analysis, which in turn is due to the lack of expressions for the converged
correction weights (as h → 0). The generalized zeta function connection shown in
this manuscript provides a promising tool to overcome these difficulties and serves as
an analytical foundation for many related singular trapezoidal methods.

1.4 Organization

Section 2 introduces the concept of a Wigner limit, and shows how it is connected
to the trapezoidal-rule discretization of the Laplace single-layer potential. Section 3
presents an efficient algorithm to compute the correction weights for the trapezoidal
rule based on theEpstein zeta function. Section 4 further extends themethod bymaking
the connection between the parametric derivatives of the Epstein zeta function and the
correction weights associated with the Laplace double-layer potential. Higher-order
corrected trapezoidal rules are developed and analyzed in Sect. 5; in particular, Sect.
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Corrected trapezoidal rules for boundary integral… 1029

5.2 presents the complete analysis for the zeta function connection. Numerical results
are presented in Sect. 6, where we implement the O(h5) corrected trapezoidal rules
and demonstrate the scalability of our method by combining the corrected quadratures
with the Fast Multipole Method (FMM) to solve the Laplace and Helmholtz boundary
value problems. Finally, we draw conclusions and point out future directions.

2 TheWigner limit and correction of the single-layer potential

In this section, we define the Wigner limit and demonstrate its connection to the
convergence analysis for the punctured trapezoidal rule when applied to a single layer
potential on a curved surface Γ . We assume that Γ is smooth, and that it is locally
parameterized by r : (u, v) �→ r(u, v) ∈ Γ , for u, v ∈ [−a, a]. Without loss of
accuracy, we assume that r(0, 0) = 0. We set r = |r|, and let ru(u, v) and rv(u, v)

denote the tangent vectors at (u, v). J (u, v) = |ru × rv| is the Jacobian.
Let σ denote a smooth function on Γ . To keep the notation uncluttered, we view σ

as a function over [−a, a]2 so that σ = σ(u, v). Now consider the following punctured
trapezoidal approximation of the Laplace single-layer potential (SLP) on an h-grid and
with center correction

∫ a

−a

∫ a

−a

1

4πr
σ(u, v)J (u, v) dudv

≈ 1

4π

N∑
i=−N

N∑′

j=−N

σ(ih, jh)J (ih, jh)

r(ih, jh)
h2 + σ(0, 0)J (0, 0)

4π
τ0,0,

(6)

where a = (N + 1
2 )h and the prime ′ indicates that (i, j) �= (0, 0). We assume that σ

is compactly supported in the integration domain to avoid the discussion of boundary
corrections for the trapezoidal rule. (In practical applications, σ will typically be
periodic, rather than compactly supported, but thismakes no difference in the analysis.)
Our goal is to determine the correction weight τ0,0 such that the corrected trapezoidal
rule is O(h3) accurate whenever σ and Γ are sufficiently smooth.

One can show that τ0,0 = C0 · h, where C0 is a constant that depends on the
singularity 1/r and the local geometry (we defer the analysis to Sect. 5). To determine
C0, we consider an approximation that is valid for u and v small of the form

1

r
≈ 1√

QA(u, v)
, (7)

where

QA(u, v) = Eu2 + 2Fuv + Gv2, A :=
[
E F
F G

]
, (8)

is the first fundamental form at (0, 0) with coefficients
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1030 B. Wu, P.-G. Martinsson

E = ru(0, 0) · ru(0, 0), F = ru(0, 0) · rv(0, 0), G = rv(0, 0) · rv(0, 0).

Substituting this approximation into (6), with the smooth part σ(u, v)J (u, v) ≡ 1 and
changing integration variables to u �→ h u, v �→ h v, gives

τ0,0 ≈ (−W (N )
A (1)) · h, (9)

where

W (N )
A (s) := Z (N )

A (s) − I (N )
A (s), (10)

Z (N )
A (s) :=

N∑
i=−N

N∑′

j=−N

QA(i, j)−s/2, (11)

I (N )
A (s) :=

∫ N+ 1
2

−N− 1
2

∫ N+ 1
2

−N− 1
2

QA(u, v)−s/2dudv. (12)

It is expected that

τ0,0 = −h · lim
N→∞ W (N )

A (1) =: (−WA(1)) · h. (13)

The limit WA(s) is called the Wigner limit which appears in the computation of
electron sums in chemistry (see [11, Sec. 7.1] and [10]).

Theorem 1 For any positive definite quadratic form QA, the Wigner limit WA(s)
exists in the strip 0 < Re s < 2 and coincides therein with the analytic continuation
of ZA(s) := limN→∞ Z (N )

A (s). In particular, WA(1) = ZA(1).

Theorem 1 was proved in [9, Theorem 1]. Notice that the limits of Z (N )
A (s) and

I (N )
A (s) only exist when Re s > 2, and it is remarkable that the integrals IN (s) play no
role in the Wigner limit when Re s < 2. Consequently, the constant C0 is now given
by

C0 = −WA(1) ≡ −ZA(1), (14)

so it reduces to finding the analytic continuation of ZA(s) at s = 1.

Remark 1 (Epstein zeta function) The (analytically continued) function ZA(s) is the
two-dimensional Epstein zeta function [19,20]. It is analytic everywhere in C except
a simple pole at s = 2. This is a generalization of the one-dimensional Riemann zeta
function, ζ(s), which has a simple pole at s = 1.

Remark 2 For certain quadratic forms QA, the limits ZA(s) are known exactly (e.g.,
see [11, Table 1.6]). For examples:
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– when E = G = 1 and F = 0, i.e., A = I ,

ZI (s) =
∑′

i, j

1

(i2 + j2)s/2
= 4 ζ

( s
2

)
β
( s
2

)
, (15)

where β(s) = L−4(s) is the Dirichlet Beta function (or a Dirichlet-L function
modulo 4). Consequently, the correction weight for the Laplace SLP at a point
parameterized by a locally conformal map (E = G and F = 0) is

τ0,0 = −4ζ
( 1
2

)
β
( 1
2

)
√
E

h ≈ 3.900264920001956
h√
E

.

The number 3.90026 . . . has appeared in [30, Table 2] as expected.
– when E = 1, F = 1

2 ,G = 1,

ZA(s) =
∑′

i, j

1

(i2 + i j + j2)s/2
= 6 ζ

( s
2

)
L−3

( s
2

)
, (16)

where L−3(s) = 1−2−s +4−s −5−s +7−s + . . . is a Dirichlet L-functionmodulo
3. Consequently, the correction weight for E = G = 2F (i.e. ru and rv form a π

3
angle) is

τ0,0 = −6ζ
( 1
2

)
L−3

( 1
2

)
√
E

h ≈ 4.213422636136907
h√
E

.

Remark 3 (Helmholtz SLP) The correction weight for the Helmholtz SLP with
wavenumber κ , denoted τκ

0,0, is related to the Laplace weight τ0,0 by

τκ
0,0 = τ0,0 + iκ · h2 = (−ZA(1) + iκh) · h. (17)

This connection can be shown by expanding the Helmholtz SLP kernel in r ,

eiκr

r
= 1

r
+ iκ − κ2

2
r + O(r2), (18)

such that τ0,0 handles the 1
r singularity and the weight iκ · h2 handles the constant

term iκ .

Remark 4 (Different grid spacings) When the grid spacings are h1 in the u-direction
and h2 in the v-direction, a similar derivation gives the Laplace SLP correction weight

τ0,0 = (−Z Ã(1)) ·√h1h2, Ã :=
[
E · h1

h2
F

F G · h2
h1

]
, (19)
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1032 B. Wu, P.-G. Martinsson

and the corresponding Helmholtz correction weight becomes

τκ
0,0 = (−Z Ã(1) + iκ

√
h1h2) ·√h1h2. (20)

3 Evaluation of the 2D Epstein zeta function ZA(s)

Computing theWigner limitWA(s)using the definition (10) as N → ∞would result in
cancellation errors since both Z (N )

A (s) and I (N )
A (s) are divergent for s < 2. Fortunately,

Theorem1 allows us to avoid the divergent quantities by directly evaluating the Epstein
zeta function ZA(s) so that WA(s) = ZA(s).

A fast algorithm to evaluate the Epstein zeta function in general is proposed by
Crandall in the note [15]. In this section, we describe a simplified algorithm tailored
to our interests, namely, in two dimensions and for the particular value at s = 1. The
full formula for any s is provided in “Appendix E”.

The 2D Epstein zeta function for Re s > 2 is defined as

ZA(s) =
∑′

i, j

QA(i, j)−s/2 =
∑′

i, j

1

(Ei2 + 2Fi j + Gj2)s/2
(21)

for any positive definite quadratic form QA. The analytic continuation of ZA(s) to the
whole complex plane (except a simple pole at s = 2) is given by the following integral
representation [11, Eq. (1.2.8), (1.2.11)]:

π− s
2 Γ

( s
2

)
ZA(s) = 2

(s − 2)
√
D

− 2

s
+
∫ ∞

1
dt · t s/2−1

∑
i, j

′e−πQA(i, j)t

+ 1√
D

∫ ∞

1
dt · t (2−s)/2−1

∑
i, j

′e−πQA(i, j)t , (22)

where D := det A = EG−F2 and QA(i, j) := QA−1(i, j) = (Gi2−2Fi j+E j2)/D
is the quadratic form associatedwith A−1; when s = 0, ZA(0) = lims→0 ZA(s) = −1
for any QA.

Before using (22) to calculate ZA(1), we make the following simplifications:

(1) Assume that the determinant D = 1. Otherwise one can first scale E, F,G by
1/

√
D to obtain a quadratic form

Q̃ A(i, j) := QA/
√
D(i, j) = QA(i, j)√

D

with unit determinant, and then scale back the final result ZA/
√
D(s) by

√
D

−s/2
.

(2) Notice that by symmetry

∑
i, j

′e−πQA(i, j)t =
∑
i, j

′e−πQA(− j,i)t =
∑
i, j

′e−πQA(i, j) t/D,
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and in the case of unit determinant, this further simplifies to

∑
i, j

′e−π Q̃ A(i, j)t =
∑
i, j

′e−π Q̃ A(i, j)t .

Then the formula (22) simplifies to:

ZA(1) = 1
4
√
D
ZA/

√
D(1) = 1

4
√
D

⎛
⎝−4 + 2

∑
i, j

′ Γ ( 12 , π Q̃ A(i, j))√
π Q̃ A(i, j)

⎞
⎠ , (23)

where the summands are incomplete Gamma function values Γ ( 12 , x) scaled by 1√
x
,

which is positive and bounded:

1√
x
Γ

(
1

2
, x

)
= 1√

x

∫ ∞

x
t
1
2−1 e−t dt <

e−x

x
.

Since the upper bound e−x/x is strictly decreasing and less than the double-
precision machine epsilon εmachine for all x ≥ 33, we only need to sum over all
i, j such that π Q̃ A(i, j) < 33. To this end, note that

Q̃ A(i, j) ≥ λ · (i2 + j2),

where λ is the smaller eigenvalue of Q̃ A given by

λ =
(
E + G

2
−

√
(E − G)2 + 4F2

2

)
/
√
D > 0,

therefore the sum (23) can be truncated to −N ≤ i, j ≤ N where N = max{n :
πλn2 < 33}, this results in the following practical evaluation formula:

ZA(1) ≈ 1
4
√
D

⎛
⎝−4 + 2

N∑
i=−N

N∑
j=−N

′ Γ ( 12 , π Q̃ A(i, j))√
π Q̃ A(i, j)

⎞
⎠ , N =

⌊√
33

πλ−

⌋
, (24)

which guarantees to give double-precision accuracy. In practice (such as for the
examples in Sect. 6), we find that generally N � 5. Furthermore, the fact that
Q̃ A(i, j) = Q̃ A(−i,− j) can save the total work by another factor of 2 when evalu-
ating the above sum. Therefore the evaluation formula (24) is highly efficient.

Remark 5 The eigenvalueλ is in fact the singular value of the local basis (ru, rv), there-
fore using a “good” parameterization such that the local bases are close to orthonormal
everywhere will reduce the cost of evaluating ZA(s). However, the correction weights
only need to be pre-computed once, and we find that in practice this cost is typi-
cally small compared to other costs such as the iterative application of the punctured
trapezoidal rule via fast summation techniques.
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1034 B. Wu, P.-G. Martinsson

4 Double-layer potential and parametric derivatives of the Epstein
zeta function

We now turn to the derivation of the correction for the Laplace double-layer potential
(DLP). Assuming r(0, 0) = 0 such that r(0, 0) − r(u, v) ≡ −r(u, v), we look for a
correction formula of the form

∫ a

−a

∫ a

−a

−r(u, v) · n(u, v)

4πr3
σ(u, v)J (u, v)dudv

≈
N∑

i=−N

N∑′

j=−N

−r(ih, jh) · n(ih, jh)

4π r(ih, jh)3
σ(ih, jh)J (ih, jh)h2 + σ(0, 0)J (0, 0)

4π
τ0,0,

(25)

where n = ru×rv|ru×rv | is the surface unit normal at r(u, v).
As with the SLP kernel, we first approximate the DLP kernel by (again, analysis

deferred to Sect. 5)

−r · n
r3

≈ QB(u, v)/2√
QA(u, v)

3 (26)

for u, v ≈ 0, where

QB(u, v) = Eu2 + 2Fuv + Gv2, B :=
[E F
F G

]
, (27)

is the second fundamental form at (0, 0) with coefficients

E = ruu(0, 0) · n(0, 0), F = ruv(0, 0) · n(0, 0), G = rvv(0, 0) · n(0, 0).

Substituting the approximation into (25) with σ(u, v)J (u, v) ≡ 1 gives

τ0,0 ≈ (−W (N )
A,B(1)) · h, (28)

where

W (N )
A,B(s) := Z (N )

A,B(s) − I (N )
A,B(s), (29)

Z (N )
A,B(s) :=

N∑
i=−N

N∑′

j=−N

QB(i, j) · s/2
QA(i, j)s/2+1 , (30)

I (N )
A,B(s) :=

∫ N+ 1
2

−N− 1
2

∫ N+ 1
2

−N− 1
2

QB(u, v) · s/2
QA(u, v)s/2+1 dudv. (31)

Then analogous to Theorem 1, we have:
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Corrected trapezoidal rules for boundary integral… 1035

Theorem 2 The Wigner-type limit WA,B(s) := limN→∞ W (N )
A,B(s) exists in the strip

0 < Re s < 2 and coincides therein with the analytic continuation of ZA,B(s) :=
limN→∞ Z (N )

A,B(s).

Proof This is a corollary of Theorem 4 in Sect. 5.2. ��
Theorem 2 implies that the exact value of τ0,0 in (25) is

τ0,0 = (−WA,B(1)) · h ≡ (−ZA,B(1)) · h, (32)

where, once again, the integrals I (N )
A,B(s) do not play any role in this limiting value.

The problem of computing the conditionally convergent WA,B(s) is again reduced to
one of evaluating ZA,B(s).

To efficiently evaluate ZA,B , we make the following observation:

(Eu2 + 2Fuv + Gv2) · s/2
(Eu2 + 2Fuv + Gv2)s/2+1

= −
(
E ∂

∂E
+ F ∂

∂F
+ G ∂

∂G

)
1

(Eu2 + 2Fuv + Gv2)s/2
, (33)

which implies that differentiating the Epstein zeta function (21) gives

ZA,B(s) = −
(
E ∂

∂E
+ F ∂

∂F
+ G ∂

∂G

)
ZA(s). (34)

Therefore, an analytic formula for ZA,B(1) can be constructed by substituting the
above relation into (23), which yields

ZA,B(1) = 1
4
√
D

(
− 2HA,B +

∑
i, j

′
{
Q̃B

Q̃ A
· Γ ( 12 , π Q̃ A)√

π Q̃ A

+
(
2
Q̃B

Q̃ A
− HA,B

)
e−π Q̃ A

})
, (35)

where

HA,B := GE + EG − 2FF
2D

, Q̃ A = QA√
D

, Q̃B = QB√
D

,

and we have dropped the explicit dependence on (i, j) since it is clear from context.
Note that HA,B is in fact the mean curvature at r(0, 0). Truncating the above formula
the same way as (24) gives an efficient algorithm for evaluating ZA,B(1).

Note that the gamma function values in (24) can be reused in (35). Such reuse of
the gamma function values also applies to the Helmholtz kernels, reducing the cost
of pre-computing correction weights by a factor of 2 when solving the Helmholtz
problem using a combined field formulation (see Example 2 of Sect. 6).
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1036 B. Wu, P.-G. Martinsson

In “Appendix E” we also provide formulae and algorithms for computing the
higher parametric derivatives of ZA(s) efficiently, which are useful for constructing
the higher-order corrected trapezoidal rules to be introduced next.

Remark 6 (Helmholtz DLP) The correction weight of the O(h3) corrected trapezoidal
rule for the Helmholtz DLP is exactly the same as the Laplace DLP. To see this, we
use the expansion

(1 − iκr)eiκr
r · n
r3

=
(
1

r
+ κ2

2
r + O(r2)

)
r · n
r2

, (36)

where the fraction r·n
r2

is bounded near 0. Unlike the Helmholtz SLP, there is no O(1)

term in this expansion, thus an O(h2) correction is not needed.

5 High-order singular quadratures

Wefirst define some simplified notations.Wewill useu ≡ (u, v) ∈ R
2 and du ≡ dudv

interchangeably, and write

∫
|u|≤a

f (u)du :=
∫ a

−a

∫ a

−a
f (u, v)dudv.

We use O(uk) = O(uk, uk−1v, . . . , vk) to denote terms of order k or higher and
Θ(uk) to denote homogeneous polynomials of order exactly k. We will also denote
i ≡ (i, j) ∈ Z

2 and |i| := max(i, j), then the punctured summation is written as

∑′

|i|≤N

f (i) :=
N∑

i=−N

N∑′

j=−N

f (i, j).

In addition, we will drop the explicit dependence of ZA(s) and QA(u, v) on A and
write Z(s) and Q(u, v) ≡ Q(u) whenever A is clear from the context.

5.1 High-order errors asWigner-type limits

To construct a high-order corrected trapezoidal rule for the Laplace SLP, a complete
picture of the singular components in the kernel is needed. To this end, we expand
the kernel 1/r(u) in terms of the fundamental form Q(u) = Eu2 + 2Fuv + Gv2 as
follows. Using the binomial series

(1 + x)−
1
2 = 1 − 1

2
x + 3

8
x2 + · · · +

(− 1
2

m

)
xm + . . . , (37)
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we can write

1

r
= 1√

Q + (r2 − Q)
= 1

Q
1
2

− r2 − Q

2Q
3
2

+ 3(r2 − Q)2

8Q
5
2

− 5(r2 − Q)3

16Q
7
2

+ . . . . (38)

Assume that P(u) is a smooth function (e.g., P(u) := σ(u)J (u)), and define

P̃(u) = P(u)η(u), (39)

where η ∈ Cc([−a, a]2) is a smooth and compactly supported function which also
satisfies

η(0) = 1, η(u) ≡ η(−u). (40)

Then the SLP can be transformed as follows

∫
|u|≤a

P̃(u)

r(u)
du =

∫
|u|≤a

(
1

r
−

M∑
m=0

(− 1
2

m

)
(r(u)2 − Q(u))m

Q(u)m+ 1
2

)
P̃(u) du

+
M∑

m=0

(− 1
2

m

)∫
|u|≤a

(r(u)2 − Q(u))m

Q(u)m+ 1
2

P̃(u) du

=
∑′

|i|≤N

P̃(ih)

r(ih)
h2 + O(hM+2)

+
M∑

m=0

(− 1
2

m

)( ∫

|u|≤a

(r(u)2 − Q(u))m

Q(u)m+ 1
2

P̃(u) du

−
∑′

|i|≤N

(r(ih)2 − Q(ih))m

Q(ih)m+ 1
2

P̃(ih) h2
)

, (41)

where in the first equality, we add and subtract the first M + 1 terms in the expansion
(38); in the second equality, the punctured trapezoidal rule with h = a/(N + 1

2 )

is applied to the first integral whose integrand is a CM
c ([−a, a]2) function therefore

resulting in a O(hM+2) error, then we group the integrals and summations into pairs,
such that each pair corresponds to one term in the expansion (38).

We call each integral-summation pair on the right-hand side of (41) a Wigner pair
and denote the m-th pair by Wm

h [P̃], m = 0, 1, 2, . . . , i.e.

Wm
h [P̃] :=

(− 1
2

m

)( ∫

|u|≤a

(
r2(u) − Q(u)

)m
P̃(u)

√
Q(u)

2m+1 du

−
∑′

|i|≤N

(
r2(ih) − Q(ih)

)m
P̃(ih)

√
Q(ih)

2m+1 h2
)

.

(42)
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To obtain practical formulae for Wm
h [P], we further expand the smooth function

r2 − Q as a Taylor-Maclaurin series

r2 − Q =
(
Q + q3 + q4 + q5 + . . .

)
− Q = q3 + q4 + O(u5), (43)

where qk denotes the Θ(uk) terms in the expansion such that

q2 ≡ Q = d1 · d1, q3 = 2d1 · d2, q4 = 2d1 · d3 + d2 · d2,
q5 = 2d1 · d4 + 2d2 · d3, . . . ,

where dk is the Θ(uk) term in the Taylor series of r(u) given by

d1 := ru(0)u + rv(0)v,

d2 := 1

2!
(
ruu(0)u2 + 2ruv(0)uv + rvv(0)v

2
)
,

d3 := 1

3!
(
ruuu(0)u3 + 3ruuv(0)u

2v + 3ruvv(0)uv2 + rvvv(0)v
3
)
,

and so on. In addition, let the expansions of the smooth functions (r2 − Q)m and P be

(r(u)2 − Q(u))m =
∞∑

k=3m

q(m)
k (u) = q(m)

3m + q(m)
3m+1 + . . . , (44)

P(u) =
∞∑
k=0

pk(u) = p0 + p1 + p2 + . . . , (45)

such that q(m)
k and pk are the Θ(uk) terms. In particular, q(1)

k ≡ qk and q
(0)
k = δ0k .

Lemma 1 The Wigner pair Wm
h [P̃] satisfies

Wm
h [P̃] =

K∑
k=�m

2 +1�
C̃ (m)
2k−1(h) h2k−1 + O(h2K+1) (46)

for any integer K ≥ ⌈m
2 + 1

⌉
, where the coefficients C̃ (m)

2k−1(h) are given by the
following Wigner-type limits

C̃ (m)
2k−1(h) =

(− 1
2

m

) ∑
r+s=2(m+k−1)

r≥3m, s≥0

( ∫

|u|<∞

q(m)
r (u)ps(u)√
Q(u)

2m+1 η(uh) du

−
∑′

|i|<∞

q(m)
r (i)ps(i)√
Q(i)2m+1 η(ih)

)
.

(47)
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Corrected trapezoidal rules for boundary integral… 1039

Consequently, Wm
h [P̃] contains aΘ(h2k−1) component if and only if 0 ≤ m ≤ 2k−2.

Proof First define Y := (r2 − Q)m · P , then using the series (44) and (45) gives

Y = (q(m)
3m + q(m)

3m+1 + · · · )(p0 + p1 + p2 + . . . ) =
2(K+m)−1∑

k=3m

yk + R,

where the remainder R(u) = O(u2(K+m)) and where

yk =
∑

r+s=k
r≥3m, s≥0

q(m)
r ps (48)

represents the Θ(uk) terms in the expansion of Y . The truncation at k = 2(K + m)

will prove convenient. Now, for each yk ,

∫
|u|≤a

yk(u)η(u)

Q(u)m+ 1
2

du −
∑′

|i|≤N

yk(ih)η(ih)

Q(ih)m+ 1
2

h2

=
(∫

|u|≤N+ 1
2

yk(u)η(uh)

Q(u)m+ 1
2

du −
∑′

|i|≤N

yk(i)η(ih)

Q(i)m+ 1
2

)
hk−2m+1

=
(∫

|u|<∞
yk(u)η(uh)

Q(u)m+ 1
2

du −
∑′

|i|<∞

yk(i)η(ih)

Q(i)m+ 1
2

)
hk−2m+1,

where the last equality holds since η is compactly supported. Note that the above
expression is O(hk−2m+1) when k is even, and vanishes when k is odd due to the
odd integral/summation. Similarly, substituting yk with the remainder R in the above
derivation gives an expression that is O(h2K+1).

Using these facts we have

Wm
h [P̃] =

(− 1
2

m

)(∫
|u|≤a

Y (u)η(u)

Q(u)m+ 1
2

du −
∑′

|i|≤N

Y (ih)η(ih)

Q(ih)m+ 1
2

h2
)

=
(− 1

2
m

) K∑
k=�m

2 +1�

( ∫

|u|<∞

y2(k+m−1)(u)η(uh)

Q(u)m+ 1
2

du

−
∑′

|i|<∞

y2(k+m−1)(i)η(ih)

Q(i)m+ 1
2

)
h2k−1 + O(h2K+1). (49)

Then substituting the above formula using (48) yields (46). ��
The next theorem gives an error expansion of the punctured trapezoidal rule.
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1040 B. Wu, P.-G. Martinsson

Theorem 3 With η as defined in (40), the punctured trapezoidal rule discretization of
the single-layer potential on a parametric surface centered at 0 has an error expansion
of the form

∫
|u|≤a

P̃(u)

r(u)
du =

∑′

|i|≤N

P̃(ih)

r(ih)
h2 +

K∑
k=1

C̃2k−1(h) h2k−1 + O(h2K+1) (50)

for any integer K > 0. The coefficients C̃2k−1 for any k ≥ 1 are given by

C̃2k−1(h) :=
2k−2∑
m=0

C̃ (m)
2k−1(h), (51)

where for eachm, the constants C̃ (m)
2k−1(h) are theWigner-type limits (47) that associate

with the Wigner pair Wm
h [P̃].

Proof Equation (41) can be written as

∫
|u|≤a

P̃(u)

r(u)
du =

∑′

|i|≤N

P̃(ih)

r(ih)
h2 +

M∑
m=0

Wm
h [P̃] + O(hM+2). (52)

Then letting M = 2K − 2, substituting the Wigner pairs Wm
h [P̃] by the estimate (46)

and interchanging summation order yield (50); note that the error is O(h2K+1) instead
of O(h2K ) since the even powers of h vanish due to the odd integrals/summations, as
stated in the proof of Lemma 1. ��

5.2 ConvergedWigner-type limits and derivatives of Epstein zeta

The Wigner-type limits C̃ (m)
2k−1(h) as defined by (47) cannot be computed efficiently.

However, using the similar ideas from Sects. 2 and 4, we will show that the converged
values limh→0 C̃

(m)
2k−1(h) can be efficiently evaluated as Epstein zeta function values

or its parametric derivatives. Furthermore, we will show in Theorem 5 that the error
analysis in Theorem 3 remains valid when these zeta function approximations are
used.

To further simplify notations, we denote

Lm
h [ f ] := lim

N→∞
∑′

|i|<N

f (i)

Q(i)m+ 1
2

η(ih) −
∫

|u|<N+ 1
2

f (u)

Q(u)m+ 1
2

η(uh) du, (53)

then (47) can be written as

C̃ (m)
2k−1(h) =

(− 1
2

m

) ∑
r+s=2(m+k−1)

r≥3m, s≥0

−Lm
h

[
q(m)
r ps

]
, k ≥

⌈m
2

+ 1
⌉

. (54)
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Note that each term q(m)
r ps is a homogeneous polynomial consisting of Θ(u2d−lvl)

terms for some even integer 2d and for l = 0, 1, . . . , 2d. Therefore C̃ (m)
2k−1(h) is a

linear combination of terms of the form Lm
h

[
u2d−lvl

]
, 3m

2 ≤ d ≤ m + K − 1.

Theorem 4 Define the converged Wigner-type limits as

Lm
[
u2d−lvl

]
:= lim

h→0
Lm
h

[
u2d−lvl

]
, 0 ≤ l ≤ d ∈ N, d ≥ 3m

2
, (55)

then

Lm
[
u2d−lvl

]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

d!(d−m− 1
2

d

)
(

∂

∂E

)d−l (1

2

∂

∂F

)l

Z
(
2(m − d) + 1

)
, l ≤ d;

1

d!(d−m− 1
2

d

)
(
1

2

∂

∂F

)2d−l (
∂

∂G

)l−d

Z
(
2(m − d) + 1

)
, l > d.

(56)

Proof Using Theorem 1 and the fact that limu→0 η(u) = 1, the following holds for
all 0 < Re s < 2,

lim
h→0

L(s−1)/2
h [1] = lim

h→0

( ∑′

|i|<∞

1

Q(i)
s
2
η(ih) −

∫

|u|<∞

1

Q(u)
s
2
η(uh) du

)

=
∑′

|i|<∞

1

Q(i)
s
2

−
∫

|u|<∞

1

Q(u)
s
2
du = Z(s). (57)

Furthermore, note that both L(s−1)/2
h [1] and the zeta function Z(s) are analytic func-

tions of s and Z(s) is defined for all s ∈ C (except at s = 2), therefore

Z(s) ≡ lim
h→0

L(s−1)/2
h [1] (58)

holds for all s ∈ C\{2}. In particular setting s = 1 in (57) proves (56) for the case
m = d = 0.

Next, consider Lm
h

[
u2d−lvl

]
for d > 1 and assume l ≤ d. By (58), we have

Z(s − 2d) = lim
h→0

L(s−2d−1)/2
h [1] ,
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then apply
(

∂
∂E

)d−l ( 1
2

∂
∂F

)l
to both sides and take the parametric derivative under the

limit sign yields

(
∂

∂E

)d−l (1

2

∂

∂F

)l

Z(s − 2d) = lim
h→0

(
∂

∂E

)d−l (1

2

∂

∂F

)l

L(s−2d−1)/2
h [1]

= lim
h→0

d!
(
d − s

2
d

)
L(s−1)/2
h

[
u2d−lvl

]

= d!
(
d − s

2
d

)
L(s−1)/2

[
u2d−lvl

]
, (59)

which by setting s = 2m + 1 yields (56). The case where l > d is proved similarly. ��
Theorem 4 is a generalization of Theorem 1 to the parametric derivatives of the

Epstein zeta function, which is the key for the efficient construction of high-order
correction weights for the punctured trapezoidal rule. It allows us to approximate the
error coefficients C̃ (m)

2k−1(h) by their converged values:

C (m)
2k−1 := lim

h→0
C̃ (m)
2k−1(h) =

(− 1
2

m

) ∑
r+s=2(m+k−1)

r≥3m, s≥0

−Lm
[
q(m)
r ps

]
, (60)

which in turn can be efficiently evaluated as parametric derivatives of the Epstein zeta
function Z(s). Detailed formulae for such computation are included in “Appendix E”.

Finally, we are ready to state the key analytical result of this paper:

Theorem 5 Let η(u) ∈ C4K
c ([−a, a]2) be as defined in (40) such that it is 4K times

continuously differentiable. In addition, assume that

∂α+β

∂uα∂vβ
η(0) = 0, (61)

for all non-negative integers α and β such that

0 < α + β ≤ 2K , (62)

i.e., all the derivatives of order up to 2K vanish at 0. Then replacing C̃2k−1(h) in (50)
by its converged value (using the definitions (51) and (60))

C2k−1 := lim
h→0

C̃2k−1(h) =
2k−2∑
m=0

C (m)
2k−1 (63)

does not change the error estimate, that is,

∫
|u|≤a

P̃(u)

r(u)
du =

∑′

|i|≤N

P̃(ih)

r(ih)
h2 +

K∑
k=1

C2k−1 h
2k−1 + O(h2K+1). (64)
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Proof Applying Theorem 7 in “Appendix F” to each term of (54) yields

∣∣C (m)
2k−1 − C̃ (m)

2k−1(h)
∣∣ = O(h2K )

for all 0 ≤ m < 2k − 1 ≤ 2K − 1. Then using the definition (51) yields

∣∣C2k−1 − C̃2k−1(h)
∣∣ ≤

2k−2∑
m=0

∣∣C (m)
2k−1 − C̃ (m)

2k−1(h)
∣∣ = O(h2K )

for all 1 ≤ k ≤ K , which implies that

∣∣∣∣
∫

|u|≤a

P̃(u)

r(u)
du −

∑′

|i|≤N

P̃(ih)

r(ih)
h2 −

K∑
k=1

C2k−1 h
2k−1

∣∣∣∣

≤
∣∣∣∣
∫

|u|≤a

P̃(u)

r(u)
du −

∑′

|i|≤N

P̃(ih)

r(ih)
h2 −

K∑
k=1

C̃2k−1(h) h2k−1
∣∣∣∣

+
K∑

k=1

∣∣C2k−1 − C̃2k−1(h)
∣∣ h2k−1

≤ O(h2K+1) + h
K∑

k=1

∣∣C2k−1 − C̃2k−1(h)
∣∣

= O(h2K+1),

where the second inequality used the estimate (50). ��
To summarize the analysis in this and the previous sections, the punctured trape-

zoidal rule has an error expansion (64) where the coefficients C2k−1 are given by
(combining (60) and (63)):

C2k−1 =
2k−2∑
m=0

C (m)
2k−1 =

2k−2∑
m=0

−
(− 1

2
m

)
Lm

[ ∑
r+s=2(m+k−1)

r≥3m, s≥0

q(m)
r ps

]
, (65)

where q(m)
r and ps are terms in the expansions (44–45). The converged Wigner-type

limitsLm[·] can be efficiently computed using the zeta function connection (56) (The-
orem 4), and the use of these limits in the error analysis for intermediate h values is
justified by Theorem 5.

Error components associated with the O(h5) quadrature. As an application, we show
how the error components associated with the O(h5) corrected quadrature can be
computed.

According to Theorem 3, a O(h5) trapezoidal rule for the SLP requires correcting
the Θ(h) and Θ(h3) errors underlying the first three Wigner pairs. By Theorem 5,
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the error coefficients can be approximated by the converged Wigner-type limits (65),
given by

C1 = C (0)
1 = −L0[q(0)

0 p0],
C3 = C (0)

3 + C (1)
3 + C (2)

3 = −L0[q(0)
0 p2] −

(
−1

2

)
L1[q(1)

4 p0 + q(1)
3 p1]

− 3

8
L2[q(2)

6 p0].

Based on the definition (53) of Lm
h [·], we define the notation

L[ f ] := lim
h→0

lim
N→∞

⎛
⎝∑′

|i|<N

f (i) η(ih) −
∫

|u|<N+ 1
2

f (u) η(uh) du

⎞
⎠ , (66)

then C1 and C3 can be written as converged Wigner-type limits:

C1 = −L[W(1)(u)p0(u)],
C3 = −L[W(1)(u)p2(u)] − L[W(2)(u)p1(u)] − L[W(3)(u)p0(u)], (67)

where we have re-grouped the terms inC (0)
3 ,C (1)

3 andC (2)
3 by pk = Θ(uk), and where

the functions W(m)(u) are defined as

W(1)(u) := q(0)
0√
Q

= 1√
Q

, (68)

W(2)(u) := −1

2

q(1)
3

Q
3
2

, (69)

W(3)(u) := −1

2

q(1)
4

Q
3
2

+ 3

8

q(2)
6

Q
5
2

, (70)

which only depend on the SLP kernel and the geometry (also see Table 1 for a sys-
tematic picture). To summarize, we define the following Wigner-type limits that will
be useful for computing the correction weights in the next section.

D0 = −L[W(1)(u)] h − L[W(3)(u)] h3 = C0 h + C01h3 = −Z(1) h + C01h3,
D1 = −L[W(2)(u) u] h2 = C1h2,
D2 = −L[W(2)(u) v] h2 = C2h2,
D3 = −L[W(1)(u) u2] h = C3 h ≡ −2

∂

∂E
Z(−1) h,

D4 = −L[W(1)(u) v2] h = C4 h ≡ −2
∂

∂G
Z(−1) h,

D5 = −L[W(1)(u) u v] h = C5 h ≡ − ∂

∂F
Z(−1)h. (71)
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Table 1 Summary of the
singularity information in the

Laplace SLP kernel. q(m)
k are as

defined in (44)

1
r

1√
Q

− 1
2
r2−Q√

Q3
3
8

(r2−Q)2√
Q5 Density

W(1) 1√
Q

O(u2), O(u0)

W(2) 0 − q(1)
3

2
√
Q3 O(u1)

W(3) 0 − q(1)
4

2
√
Q3

3 q(2)
6

8
√
Q5 O(u0)

W(i) denotes the sum of the singular functions in the same row; when
W(i) is multiplied by a Θ(u j ) component of the density function,
the corresponding Wigner-type limit is O(hi+ j ). For a O(h2K+1)

corrected trapezoidal rule, the Wigner-type limits associated with
W(i) · Θ(u j ) for i + j ≤ 2K − 1, i + j odd, account for all the
errors that require correction. Right column of the table lists all such
O(u j ) density function components associated with W(i) for K = 2

A number of remarks are in order. Firstly, these converged Wigner-type limits cor-
respond to (67), where p0, p1, p2, . . . are replaced by the corresponding monomials
so that they serve as a basis for smooth functions. Secondly, each Wigner-type limit
associated with W(m) is multiplied by hm , which corresponds to the right-hand side
of the moment equations (76) after cancelling hα+β on both sides; this will prove
convenient when we later construct the correction weights. Finally, the fact that the
constants C0, C3, C4, C5 are given by Z(s) and its derivatives is an application of Theo-
rem 4; C1, C2 and C01 have similar expressions but involve higher derivatives, thus we
leave the formulae in “Appendix A”. Formulae for evaluating the zeta function Z(s)
and its derivatives are included in “Appendix E”.

Table 1 presents a systematic approach to identify the functions that are necessary
for defining D0–D5 of (71). (Table 3 in the “Appendix” is a similar table for the
Laplace DLP.)

In general, the problem of extracting the error components for the construction of
a O(h2K+1) corrected trapezoidal rule can be broken down into 3 steps:

(1) Expand the numerators of the first 2K − 1 Wigner pairs in (41).
(2) Based on (64, 65), extract the functionsW(m)(u) involved in the Θ(h2k−1) errors

for k = 1, . . . , K . (Table 1 [or Table 3 in “Appendix B”] presents a systematic
way of doing this.)

(3) Compute the error components as converged Wigner-type limits similar to (71),
which are efficiently evaluated as appropriate Epstein zeta function values and its
parametric derivatives according to Theorem 4.

Remark 7 The fact that generally D5 �= 0 is in stark contrast to the flat-space trape-
zoidal rules in R

2, such as those in [17,30] where the analogous quantities always
vanish. Consequently, a larger stencil will be required on a curved surface to accom-
modate these extra degrees-of-freedom. See Fig. 1.

Remark 8 Helsing in [25] designed a panel-based, singularity-subtraction quadrature
method for the Laplace DLP. An expansion analogous to (38) (i.e., (91) in “Appendix
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1046 B. Wu, P.-G. Martinsson

Fig. 1 Comparison of Uflat
K (top row), the correction stencils associated with the flat space R

2, and UK
(bottom row), stencils associated with the parameter space of a curved surface, K = 1, 2, 3, 4; see the
definitions (72, 73). The order, O(h2K+1), of the associated corrected quadrature for the 1

r type singularity

is shown for each stencil. The colors are meant for comparison of how the stencil grows. Compared toUflat
K ,

the extra points needed by UK are due to the extra degrees-of-freedom required by the quantities such as
D5 in (71) (color figure online)

Fig. 2 a Use the O(h3) and O(h5) corrected trapezoidal rules to integrate the Laplace and Helmholtz
layer potentials on a quartic surface patch with a random density function. The singular point is shown
as the black dot at the center of the patch. Color represents the density σ(u, v) defined by (82) with
a = 0.809, b = −0.221. Convergence against grid size h are shown in b for Laplace and c for Helmholtz
with wavenumber κ . Circle, triangle and asterisk correspond to SLP, DLP and the normal derivative of SLP
(denoted “SLPn”), respectively (color figure online)

B”) is used, where the smooth terms such as (r2−Q)m are interpolated as a polynomial

P on each panel, then the singular functions P/Qm+ 1
2 are integrated analytically

and recursively. The numerical example in [25] used only the first 2 terms in the
singular expansion, which would only give a O(h3) scheme, but due to the dominant
interpolation error when h is large, initially O(h10) convergence was observed before
the kernel’s O(h3) error finally dominates; in contrast, our scheme is seeing this true
O(h3) error from the beginning using only one term in the singular expansion (see
Fig. 2).
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5.3 Computing the local correction weights of high-order quadratures

To construct a O(h2K+1) quadrature via local correction, we first define a stencil that
corresponds to the quadrature points in the vicinity of the singularity. LetUK , K ≥ 1,
be the stencil for the O(h2K+1) quadrature on a curved surface, and also define Uflat

K
to be the corresponding stencil in the flat space R

2 (see Remark 7 above), such that

UK := {(μ, ν) ∈ Z
2 : |μ| + |ν| ≤ K ,max{|μ|, |ν|} < K }, (72)

Uflat
K := {(μ, ν) ∈ Z

2 : |μ| + |ν| ≤ K − 1}. (73)

The stencils Uflat
K are used in [17,30] to construct quadratures on R

2. See Fig. 1 for a
comparison between UK and Uflat

K . Thus

|UK | = 2K (K + 1) − 3, (74)

|Uflat
K | = 2K (K − 1) + 1. (75)

Notice the relationship

UK = {(μ, ν) ∈ Uflat
K+1 : |μ|, |ν| < K },

that is, UK is Uflat
K+1 excluding the 4 points farthest away from (0, 0).

Using the idea ofmoment fitting (e.g., see [41]), we impose the following conditions
on the unknown correction weights τμ,ν , (μ, ν) ∈ UK .

(1) The moment equations

∑
(μ,ν)∈UK

(μh)α(νh)βτμ,ν =
∑

m∈M(α,β)

−L[W(m)(u)uαvβ
]
hm+α+β,

M(α, β) := {m ∈ N : m + α + β = 2k − 1, 1 ≤ k ≤ K }
(76)

for α, β ≥ 0 and 0 ≤ α + β ≤ 2(K − 1). The functions W(m)(u)uαvβ are
identified systematically based on the singular kernel (e.g., see Tables 1 or 3). For
conceptual understanding, here we have kept the common factor hα+β on both
sides of (76) that associates with the monomial uαvβ , in practice they should be
cancelled to simply the equations, as done in (80). There are K (2K −1) equations
in (76).

(2) The symmetric conditions

τμ,ν = τ−μ,−ν, for all τμ,ν ∈ UK \Uflat
K . (77)

This gives another 2(K − 1) equations.
(3) The normalizing conditions

τμ,ν + τ−μ,ν + τμ,−ν + τ−μ,−ν = 0, for all τμ,ν ∈ UK \Uflat
K . (78)

This gives another (K − 1) equations.
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Together, (76–78) have 2K (K+1)−3 equationswhichmatch the number of unknowns
|UK |.

For an arbitrary K > 0, we do not have a proof that the square system (76–78)
is non-singular. However, for a given K in practice, this can be easily verified using
computer algebra packages such as Mathematica. In particular, we have:

Theorem 6 For 1 ≤ K ≤ 5, a O(h2K+1) corrected trapezoidal rule for the Laplace
SLP is given by

∫
|u|≤a

P(u)

r(u)
du =

∑′

|i|≤N

P(ih)

r(ih)
h2 +

∑
(μ,ν)∈UK

P(μh, νh)τμ,ν + O(h2K+1), (79)

where the correction weights τμ,ν must satisfy the conditions (76–78).

Proof For K = 1, . . . , 5, it can be verified that the matrix determinants associated
with the system (76–78) are given by the following table.

K = 1 K = 2 K = 3 K = 4 K = 5

Determinant 1 25 22236 26532256 214635452076

Therefore the weights τμ,ν are well defined. The moment fitting conditions (76)
guarantee that the correction weights fit the error components in the expansion (64)
up to (not including) the order O(h2K+1), which implies (79). ��
Correction weights of the O(h5) quadrature. As an application we continue to con-
struct the O(h5) corrected trapezoidal rule. Using the 9-point stencil U2 and the
quantities D0–D5 defined in (71), the conditions (76–78) yield the linear system:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 −1 0 0 1 −1 1 −1
0 0 0 1 −1 1 −1 −1 1
0 1 1 0 0 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ0,0
τ1,0
τ−1,0
τ0,1
τ0,−1
τ1,1
τ−1,−1
τ1,−1
τ−1,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0
D1
D2
D3
D4
D5
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
u
v

u2

v2

uv

(80)

where the first six equations correspond to (76) and are labeled with the associat-
ing monomials uαvβ on the right; the final three equations are the symmetric and
normalizing conditions (77–78). Solving this system gives

τ0,0 = D0 − D3 − D4, τ±1,0 = D3 ± D1

2
, τ0,±1 = D4 ± D2

2
,

τ1,1 = τ−1,−1 = −τ1,−1 = −τ−1,1 = D5

4
.

(81)
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Similarly, O(h5) corrected trapezoidal rules are constructed for the Laplace DLP
in “Appendix B”, for the normal gradient of Laplace SLP in “Appendix C”, and for
the Helmholtz potentials in “Appendix D”.

6 Numerical results

In this section, we present results of applying the locally corrected trapezoidal rules
to the Laplace and Helmholtz potentials. The O(h3) quadratures for Laplace or
Helmholtz SLP and DLP are constructed as in Sects. 2 and 4; the O(h5) quadra-
tures for Laplace SLP, DLP, and normal gradient of the SLP are constructed as in
Sect. 5.3 and “Appendices B and C”, respectively, while the corresponding quadra-
tures for Helmholtz potentials are given in “Appendix D”; the O(h3) quadrature for
the Helmholtz SLP’s normal gradient is obtained in an obvious manner from the
corresponding O(h5) quadrature. All algorithms are implemented single-threaded in
MATLAB 2019a. The FMM3D library [21] is used for the implementation of the Fast
Multipole Method (FMM).

Example 1 Figure 2 shows the results of applying the corrected trapezoidal rules to
the Laplace/Helmholtz layer potentials on a randomly generated quartic surface patch.
The density function is also randomly generated and has the form

σ(u, v) = − (a cos(a + u) + b sin(b + v)) e−c(u2+v2)4 , (82)

where a, b are standard Gaussian random numbers, and where c = 640 such that
σ is compactly supported (up to double-precision) on the patch. O(h3) and O(h5)
convergence are observed as expected.

Example 2 We solve the Dirichlet and Neumann boundary value problems (BVPs)
associated with the Laplace and Helmholtz equations exterior to a “cruller” surface
(see Fig. 3; this geometry is extracted from the BIE3D package [7]). The Laplace
BVPs are reformulated as second kind integral equations based on potential theory
[29, §6.4] and the Helmholtz BVPs as combined-field integral equations [12, §2], then
these integral equations are discretized into the form (3) using theNyströmmethodwith
the O(h5) corrected trapezoidal rules shown in Example 1. The solution procedure is
as follows: first the quadrature correction weights are pre-computed, then the integral
equations are solved iteratively usingGMRESwith a tolerance εGMRES; in each iteration,
we first apply the punctured trapezoidal rule discretization of the Laplace/Helmholtz
kernel using the FMM, then the pre-computed local correction weights are applied.
The overall computational cost is O(N ) when N discretization points are used.

Figure 3 and Table 2 show the convergence in relative sup-norm error and the
timing results. The O(h5) scaling in the errors and O(N ) scaling in time are clearly
observed. Notice that for the Helmholtz BVPs with κ = 25+ i (meaning the geometry
has a diameter of about 12 wavelengths), the errors Ediri and Eneu are higher than the
other cases since the solution is more oscillatory hence requiring higher resolutions
to resolve. The number of GMRES iterations Niter has an upper bound independent
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(a) (b)

Fig. 3 Solution of the Laplace boundary value problems exterior to a cruller surface discretized using the
O(h5) corrected trapezoidal rule. The exact solution is generated by point sources located inside the surface
shown by the block dots, the accuracy of solution is verified at a point away from the surface shown by

the red asterisk. A total number of N points are used so that grid spacing is h = O(N− 1
2 ). a O(h5)

convergence of the relative error for both BVPs. b Average times per GMRES-iteration via FMM for both
BVPs as well as the pre-computation times of the correction weights τμ,ν . Both horizontal axes are N
(color figure online)

of the number of points N , this demonstrates that under the corrected trapezoidal rule
discretization, the well-conditioning of the second kind integral operators is preserved.

Example 3 Finally, we visualize the Epstein zeta function.
The left panel of Fig. 4 shows the absolute value of ZA(s) evaluated using the

formula (96) with fixed E, F,G and varying s. This picture should look familiar to
those who are familiar with the Riemann ζ(s). Clearly, ZA(s) is smooth but with a
pole at s = 2.

The right panel of Fig. 4 shows the scaled value of the Epstein zeta function (eval-
uated using (24))

√
E · ZA(1) =̇

∑′ 1√
i2 + 2βi j + α j2

as a function of two variables α = G
E , β = F

E . The dot above the equal sign indicates
that the above expression is understood as in the sense of analytic continuation. The
function is singular near the parabola α = β2, which corresponds to EF − G2 = 0,
i.e. the local basis ru and rv are linearly dependent; away from the curve α = β2, the
graph is smooth and well-behaved, which implies that given a regular surface with a
reasonable parameterization, the correction weights as Epstein zeta function values
converge uniformly rapidly.

7 Conclusion

We have presented a new systematic and efficient approach to constructing locally
corrected trapezoidal rules for a class of weakly singular boundary integral operators
on curved surfaces in three dimension. In particular, we demonstrate that for kernels
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Table 2 Timings and convergence of solving the Dirichlet and Neumann boundary value problems associ-
ated with the Laplace and Helmholtz equations exterior to a cruller surface (see Fig. 3)

Laplace εGMRES = 10−12

N Twei T diri
iter Ndiri

iter T neu
iter Nneu

iter Ediri Eneu

256 0.6 0.02 29 0.02 21 3.7e−02 3.2e−03

1024 1.1 0.05 26 0.06 20 1.2e−04 4.1e−05

4096 3.0 0.27 25 0.26 19 1.1e−07 1.0e−06

16384 9.4 4.1 22 3.5 19 3.2e−09 3.1e−08

65536 31.1 16.3 22 13.9 19 9.9e−11 9.7e−10

262144 114.6 64.6 22 55.3 19 3.3e−12 3.0e−11

Helmholtz κ = 1.42 + 1.11i , εGMRES = 10−12

N Twei T diri
iter Ndiri

iter T neu
iter Nneu

iter Ediri Eneu

256 0.73 0.02 29 0.04 21 9.3e−03 1.3e−02

1024 1.23 0.21 23 0.32 18 3.6e−05 8.3e−05

4096 3.4 2.4 21 3.2 18 1.6e−06 2.2e−06

16384 10.5 16.6 21 19.9 18 5.1e−08 7.0e−08

65536 34.1 68.4 21 82.0 18 1.6e−09 2.2e−09

262144 127.0 248.9 21 293.8 18 5.1e−11 6.8e−11

Helmholtz κ = 25 + 1i (12 wavelengths), εGMRES = 10−9

N Twei T diri
iter Ndiri

iter T neu
iter Nneu

iter Ediri Eneu

256 1.3 0.05 40 0.09 40 1.1e+00 2.5e+01

1024 1.2 0.28 40 0.43 33 1.3e+00 3.0e+00

4096 3.4 4.2 36 5.0 22 9.7e−02 4.1e−01

16384 10.2 14.8 29 17.1 22 1.8e−03 2.7e−03

65536 34.7 58.7 29 70.0 22 5.1e−05 7.5e−05

262144 126.6 204.6 29 245.7 22 1.6e−06 2.3e−06

The superscripts “diri” and “neu” indicates Dirichlet and Neumann problems, respectively. Twei is the time
for pre-computing the O(h5) quadrature correction weights τμ,ν for all the involved integral operators: the
DLP, SLP and its normal gradient. Niter is the number of GMRES iteration and Titer is the average time of
applying the punctured trapezoidal rule via FMM in each iteration (the time to apply the correction weights
is negligible). E in the last two columns denotes the relative ∞-norm error

involving a singularity of strength O(|x|−1), the correction weights can be explicitly
computed with the help of the Epstein zeta function and its parametric derivatives.
Complete error analysis of the quadratures is presented. The O(h3) and O(h5) cor-
rected quadratures are implemented. In particular, the O(h3) quadratures are simple
and efficient to construct and can easily extend to many common Fredholm opera-
tors. We have shown that these quadratures are highly compatible with fast algorithms
such as the FMM, achieving an O(N ) overall computational complexity when solving
Laplace or Helmholtz BVPs on a cruller surface.

Codes for Examples 1 and 2 (not including the FMM) in Sect. 6 are available at
https://github.com/bobbielf2/ZetaTrap3D.
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Fig. 4 Left: log-magnitude of ZA(s) for E = 3.1, F = 0.8,G = 2.3. Clearly ZA(s) has a pole at s = 2.
Right: ZA(1) scaled by

√
E for (E, F,G) = (1, β, α) · E . Observations: (1) the constraint EG − F2 > 0

corresponds to α > β2, and the value of ZA diverges as α − β2 → 0, (2) the values on the line β = 0
(green curve) corresponds to F = 0, i.e. ru ⊥ rv , (3) the values on the line α = 1 (red curve) corresponds
to E = G, i.e. ru and rv have the same length but form different angles (color figure online)

One limitation of our method is that higher derivatives of the geometry are required
for high-order corrections. These can in practice be obtained through numerical
differentiation, although this is likely to degrade the accuracy unless high quality
parameterizations of the surface are available. Another way around this issue is,
instead of using the derivatives specific to one geometry, one can fit more general
derivative information using larger stencils; of course this will result in higher costs
for the correction step. We will report on our investigation in this direction in the
future.

The fact that the quadrature corrections are strongly localized makes them par-
ticularly well suited for use with fast direct solvers, such as those described
in [32]. Work in this direction is under way, as is an extension to other inte-
gral operators such as, e.g., Stokes kernels used to model fluid problems as in
[31].

Finally, we are also seeking to combine our quadrature with domain decomposi-
tion techniques to handle more complex surfaces using multiple patches. We see two
possible ways to do so: (1) One could use overlapping domain decomposition meth-
ods, such as the partition-of-unity approach of Bruno and Kunyansky [14], where
the integrand is decomposed into components compactly supported on each patch,
hence our quadrature applies almost unchanged. (2) When non-overlapping rectangu-
lar patches are used, singular points near the edge of a patch requires moment-fitting
on one-sided, instead of centered, stencils; such modification may lead to less stable
corrections near the edges when going to higher orders. We leave these issues to future
investigations.

Acknowledgements The authors would like to thank Alex Barnett, Mike O’Neil, Vladimir Rokhlin, and
Johan Helsing for sharing valuable perspectives and insights. The work reported was supported by the
Office of Naval Research (Grant N00014-18-1-2354) and by the National Science Foundation (Grants
DMS-1620472, DMS-2012606, and DMS-1952735).
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A Wigner-type limit formulae for the Laplace SLP

To complete the expressions (71), we give formulae for C1, C2 and C01. Firstly, C1 and
C2 are the Wigner-type limits associated withW(2) defined by (69), which we restate
here

W(2)(u) = −1

2

2d1 · d2
Q

3
2

, (83)

where the numerator is a homogeneous polynomial:

2d1 · d2 = L A
30u

3 + L A
21u

2v + L A
12uv2 + L A

03v
3,

such that

L A
30 = ru · ruu, L A

21 = 2ru · ruv + rv · ruu, L A
12 = 2ruv · rv + ru · rvv,

LA
03 = rv · rvv,

where all the involved derivatives are evaluated at 0. Thus we have the following
Wigner-type limits

C1 = −L[W(2)(u) u] = −2L(A)
3,1 · �(2)ZA(−1), (84)

C2 = −L[W(2)(u) v] = −2L(A)
3,2 · �(2)ZA(−1), (85)

where

�(2) :=
(

∂2

∂E2 ,
1

2

∂2

∂E∂F
,
1

4

∂2

∂F2 ,
1

2

∂2

∂G∂F
,

∂2

∂G2

)
(86)

is a vector-valued second-derivative operator, and where the constants in the vec-
tors L(A)

3,1 and L(A)
3,2 correspond to the terms uW(2)(u) and vW(2)(u), respectively,

therefore

L(A)
3 := (L A

30, L
A
21, L

A
12, L

A
03),

L(A)
3,1 := (1, 0) ∗ L(A)

3 = (L A
30, L

A
21, L

A
12, L

A
03, 0),

L(A)
3,2 := (0, 1) ∗ L(A)

3 = (0, L A
30, L

A
21, L

A
12, L

A
03).

where “∗” represents convolution (given that these are coefficients of the product of
polynomials). Next, C01 is the Wigner-type limit associated with the function W(3),
given by

W(3)(u) = −1

2

2d1 · d3 + d2 · d2
Q

3
2

+ 3

8

(2d1 · d2)2
Q

5
2

,
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then, expanding the denominator as above, one derives that

C01 = −L[W(3)(u)] = −(2L(A)
4 · �(2) + L(A)

6 · �(3))ZA(−1), (87)

where

�(3) =
(

∂3

∂E3 ,
1

2

∂3

∂E2∂F
,
1

4

∂3

∂E∂F2 ,
1

8

∂3

∂F3 ,
1

4

∂3

∂F2∂G
,
1

2

∂3

∂F∂G2 ,
∂3

∂G3

)
(88)

is a vector-valued third-derivative operator, and where the vectors L(A)
4 and L(A)

6
correspond to the expansions of (2d1 ·d3 +d2 ·d2) and (2d1 ·d2)2, respectively, such
that

L(A)
4 = (L A

40, L
A
31, L

A
22, L

A
13, L

A
04),

L(A)
6 = L(A)

3 ∗ L(A)
3 ,

where

L A
40 = ru · ruuu/3 + ruu · ruu/4,

L A
31 = rv · ruuu/3 + ru · ruuv + ruu · ruv,

L A
22 = rv · ruuv + ru · ruvv + ruu · rvv/2 + ruv · ruv,

LA
13 = rv · ruvv + ru · rvvv/3 + ruv · rvv,

L A
04 = rv · rvvv/3 + rvv · rvv/4.

B O(h5) corrected trapezoidal rule for the Laplace DLP

Consider the DLP kernel K(u) given by

K(u) =
(
r(0) − r(u)

) · (ru(u) × rv(u))

r(u)3
= −r(u) · (ru(u) × rv(u))

r(u)3
,

then the O(h5) quadrature for the DLP is given by

∫
|u|≤a

K(u)σ (u) du =
∑′

|i|≤N

K(ih)σ (ih)h2 +
∑

(μ,ν)∈U2

σ(μh, νh)τμ,ν + O(h5), (89)

where σ is a smooth density function and U2 is the 9-point stencil as defined in (72).
The correction weights satisfy the system (80) but with the quantities D0–D5 replaced
by (92) below, which we will derive next.
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To derive the formulae for the correction weights, we follow an analysis similar to
Sect. 5.1. First the DLP kernel K(u) is expanded using the binomial series

(1 + x)−
3
2 = 1 − 3

2
x + 15

8
x2 + · · · +

(− 3
2

m

)
xm + . . . , (90)

thus

− r · (ru × rv)

r3
= −r · (ru × rv)

(
1

Q
3
2

− 3(r2 − Q)

2Q
5
2

+ 15(r2 − Q)2

8Q
7
2

+ . . .

)
.

(91)

Then the numerators O((r2 − Q)m) are further expanded as in (44); the term −r ·
(ru × rv) can be expanded as

−r · (ru × rv) = −(d1 + d2 + d3 + d4 + O(u5)) ·
(
(d1u + d2u + d3u + d4u + O(u4))

× (d1v + d2v + d3v + d4v + O(u4))
)

= q(B)
2 + q(B)

3 + q(B)
4 + O(u5),

where

q(B)
2 (u) = 1

2

(
LB
20u

2 + LB
11uv + LB

02v
2),

q(B)
3 (u) = 1

2
(LB

30u
3 + LB

21u
2v + LB

12uv2 + LB
03v

3),

q(B)
4 (u) = 1

4
(LB

40u
4 + LB

31u
3v + LB

22u
2v2 + LB

13uv3 + LB
04v

4).

where the involved constants are defined as follows (all involved derivatives are eval-
uated at 0),

LB
20 = (ru × rv) · ruu , LB

11 = 2(ru × rv) · ruv, LB
02 = (ru × rv) · rvv,

LB
30 = 2

3
(ru × rv) · ruuu − (ru × ruu) · ruv,

LB
21 = 2(ru × rv) · ruuv − (ru × ruu) · rvv − (rv × ruu) · ruv,

LB
12 = 2(ru × rv) · ruvv − (ru × ruv) · rvv − (rv × ruu) · rvv,

LB
03 = 2

3
(ru × rv) · rvvv − (rv × ruv) · rvv,

LB
40 = 1

6

(
− 6ru × ruu · ruuv + 8ru × ruv · ruuu + 3ru × rv · ruuuu − 2rv × ruu · ruuu

)
,

LB
31 = 2

3

(
− 3ru × ruu · ruvv + 2ru × rvv · ruuu + 3ru × rv · ruuuv

+3ru × ruv · ruuv − 3rv × ruu · ruuv + rv × ruv · ruuu
)
,
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Table 3 Summary of the functions whose associated Wigner-type limits are helpful for constructing the
O(h5) corrected quadrature for the Laplace DLP

−r·(ru×rv)

r3
−r·(ru×rv)√

Q3 − 3
2

−r·(ru×rv)(r2−Q)√
Q5

15
8

−r·(ru×rv)(r2−Q)2√
Q7 Density

V(1) q(B)
2√
Q3 Θ(u2), Θ(u0)

V(2) q(B)
3√
Q3 − 3

2
q(1)
3 q(B)

2√
Q5 Θ(u1)

V(3) q(B)
4√
Q3 − 3

2
q(1)
4 q(B)

2 +q(1)
3 q(B)

3√
Q5

15
8

q(2)
6 q(B)

2√
Q7 Θ(u0)

See Table 1 for how this table is organized. q(m)
k are as defined in (44)

LB
22 =

(
− ru × ruu · rvvv + 3ru × rvv · ruuv

+3ru × rv · ruuvv − 3rv × ruu · ruvv + rv × rvv · ruuu
)
,

LB
13 = 2

3

(
− ru × ruv · rvvv + 3ru × rvv · ruvv + 3ru × rv · ruvvv

−2rv × ruu · rvvv + 3rv × rvv · ruuv − 3rv × ruv · ruvv

)
,

LB
04 = 1

6

(
3ru × rv · rvvvv + 2ru × rvv · rvvv − 8rv × ruv · rvvv + 6rv × rvv · ruvv

)
.

Similar to Table 1, we summarize in Table 3 the singularity information associated
with the DLP kernel expansion (91).

Similar to (71), we define the following quantities based on Table 3which are useful
for constructing the O(h5) quadrature (89) for the DLP:

D0 = −L[V(1)(u)] h − L[V(3)(u)] h3 = L(B)
2 · �(1)Z(1) h + C01 h3,

D1 = −L[V(2)(u) u] h2 = C1 h2,
D2 = −L[V(2)(u) v] h2 = C2 h2,
D3 = −L[V(1)(u) u2] h = 2

(
(1, 0, 0) ∗ L(B)

2

) · �(2) Z(−1) h,

D4 = −L[V(1)(u) v2] h = 2
(
(0, 0, 1) ∗ L(B)

2

) · �(2) Z(−1) h,

D5 = −L[V(1)(u) uv] h = 2
(
(0, 1, 0) ∗ L(B)

2

) · �(2) Z(−1) h, (92)

where

C01 =
(
(L(B)

4 · �(2)) + 2(L(B)
6 · �(3)) + (L(A)

6 ∗ L(B)
2 · �(4))

)
Z(−1),

C1 = 2
(
(1, 0) ∗ L(B)

3 · �(2) + (1, 0) ∗ L(A)
3 ∗ L(B)

2 · �(3)
)
Z(−1),

C2 = 2
(
(0, 1) ∗ L(B)

3 · �(2) + (0, 1) ∗ L(A)
3 ∗ L(B)

2 · �(3)
)
Z(−1).
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The involved vector-valued differential operators, besides (86, 88), are defined as

�(1) :=
(

∂

∂E
,
1

2

∂

∂F
,

∂

∂G

)
,

�(4) :=
(

∂4

∂E4 ,
1

2

∂4

∂E3∂F
,
1

4

∂4

∂E2∂F2 ,
1

8

∂4

∂E∂F3 ,

1

16

∂4

∂F4 ,
1

8

∂4

∂F3∂G
,
1

4

∂4

∂F2∂G2 ,
1

2

∂4

∂F∂G3 ,
∂4

∂G4

)
, (93)

and the involved constant vectors are

L(B)
2 := (LB

20, L
B
11, L

B
02),

L(B)
3 := (LB

30, L
B
21, L

B
12, L

B
03),

L(B)
4 := (LB

40, L
B
31, L

B
22, L

B
13, L

B
04),

L(B)
6 := L(A)

4 ∗ L(B)
2 + L(A)

3 ∗ L(B)
3 ,

and where L(A)
3 , L(A)

4 and L(A)
6 are as appeared in “Appendix A” in the formulae for

the SLP.
Substituting the above constants D0–D5 into the system (80) results in the correction

weights for the DLP in (89).

C O(h5) corrected trapezoidal rule for the normal gradient of Laplace
SLP

Wewill omit the derivations in this section and just present the quadrature formula for
the normal gradient of the Laplace SLP on a surface.

The kernel of the SLP normal gradient, centered at 0, is

K(u) = −
(
r(0) − r(u)

) · n(0)

r(u)3
= r(u) · n(0)

r(u)3
.

then the associated O(h5) quadrature is given by

∫
|u|≤a

K(u)P(u) du =
∑′

|i|≤N

K(ih)P(ih)h2 +
∑

(μ,ν)∈U2

P(μh, νh)τμ,ν +O(h5), (94)

where P(u) = σ(u) |ru(u) × rv(u)| is smooth and σ is a smooth density function,
and where U2 is the 9-point stencil as defined in (72). The correction weights satisfy
the system (80) but with the quantities D0–D5 replaced by the following:

D0 = −L[W(1)
n (u)] h − L[W(3)

n (u)] h3 = L(2)
C · �(1) Z(1) h + C01h3,

D1 = −L[W(2)
n (u) u] h2 = C1 h2,
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D2 = −L[W(2)
n (u) v] h2 = C2 h2,

D3 = −L[W(1)
n (u) u2] h = 2 (1, 0, 0) ∗ L(2)

C · �(2)Z(−1) h,

D4 = −L[W(1)
n (u) v2] h = 2 (0, 0, 1) ∗ L(2)

C · �(2)Z(−1) h,

D5 = −L[W(1)
n (u) uv] h = 2 (0, 1, 0) ∗ L(2)

C · �(2)Z(−1) h, (95)

where

C01 =
(
L(4)
C · �(2) + 2 L(6)

C · �(3)Z + L(6)
A ∗ L(2)

C · �(4)
)
Z(−1),

C1 = 2
(
(1, 0) ∗ L(3)

C · �(2) + (1, 0) ∗ L(3)
A ∗ L(2)

C · �(3)
)
Z(−1),

C2 = 2
(
(0, 1) ∗ L(3)

C · �(2) + (0, 1) ∗ L(3)
A ∗ L(2)

C · �(3)
)
Z(−1),

such that

L(2)
C := (n · ruu, 2n · ruv,n · rvv),

L(3)
C := (n · ruuu/3,n · ruuv,n · ruvv,n · rvvv/3) ,

L(4)
C := (n · ruuuu/6, 2n · ruuuv/3,n · ruuvv, 2n · ruvvv/3,n · rvvvv/6) ,

L(6)
C := L(4)

A ∗ L(2)
C + L(3)

A ∗ L(3)
C ,

and where L(3)
A , L(4)

A , L(6)
A are as defined in Sect. A, and �(k), k = 1, 2, 3, 4, are as

defined in (86, 88, 93).

D O(h5) corrected trapezoidal rules for the Helmholtz potentials

The Helmholtz SLP, DLP, and the normal gradient of SLP (denoted SLPn) are related
to the Laplace potentials by the following expansions:

SLP:
eiκr

r
= 1

r
+ iκ − κ2

2
r + O(r2),

DLP:
eiκr (1 − iκr)

r

(r(0) − r) · (ru × rv)

r2
=
(
1

r
+ κ2

2
r + O(r2)

)
(r(0) − r) · (ru × rv)

r2
,

SLPn: − eiκr (1 − iκr)

r

(r(0) − r) · n(0)
r2

=
(
1

r
+ κ2

2
r + O(r2)

)
(r − r(0)) · n(0)

r2
,

where the first term in each expansion is the corresponding Laplace kernel. Therefore
basedon theO(h5)quadratures for theLaplacepotentials, oneonlyneeds to include the
errors up toΘ(h3) from the additional terms to construct the correspondingquadratures
for the Helmholtz kernels. Specifically, these relevant additional terms are

SLP: iκ − κ2

2
r ,
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DLP:
κ2

2

(r(0) − r) · (ru × rv)

r
,

SLPn:
κ2

2

(r − r(0)) · n(0)
r

,

where the term iκ is regular, all other terms associate to Wigner-type limits that are
O(h3), hence only the leading errors need correction. By analyses similar to Sect. 5,
quadratures for the Helmholtz potentials are constructed as follows:

– The O(h5) quadrature for the Helmholtz SLP uses the same correction weights as
the Laplace SLP constructed by (71) and (81), except that D0 is modified as

D0 ← D0 +
(
i(κh) + (κh)2

2
Z(−1)

)
h.

– The O(h5) quadrature for the Helmholtz DLP uses the same correction weights
as the Laplace DLP constructed by (92) and (81), except that D0 is modified as

D0 ← D0 − (κh)2

2
(L(B)

2 · �(1))Z(−1) h.

– The O(h5) quadrature for the normal gradient of the Helmholtz SLP uses the same
correction weights as the corresponding Laplace potential constructed by (95) and
(81), except that D0 is modified as

D0 ← D0 − (κh)2

2
(L(C)

2 · �(1))Z(−1) h.

E Formulae for Z(s) and its parametric derivatives

To simplify notations, first define s1 := s
2 , s2 := 1− s1 and the customed incomplete

gamma function

g(s, x) :=
∫ ∞

1
t s−1e−πxtdt = Γ (s, πx)(πx)−s,

then

Z(s) = Cs1(D)

⎛
⎝− 1

s2
− 1

s1
+
∑
i, j

′(g(s1, Q̃ A) + g(s2, Q̃ A)
)⎞⎠ , (96)

where

D = EG − F2, Cs(D) := π s

Γ (s)
√
D

s , Q̃ A(u, v) = QA(u, v)√
D
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= Eu2 + 2Fuv + Gv2√
D

.

E.1 Scalar derivatives of Z(s)

We denote the scalar parametric k-th derivative of Z(s) as

�k Z(s) = �k Z(s)
∣∣
(L,M,N )

:=
(
L

∂

∂E
+ M

∂

∂F
+ N

∂

∂G

)k

Z(s).

To derive the derivative formulae based on (96), first note the following properties
of g(s, x)

� g(s, x) = g(s + 1, x) · (−π�x),

g(s + 1, x) = s g(s, x) + e−πx

πx
, g(s + 2, x) = (s + 1) g(s + 1, x) + e−πx

πx
,

g(−s1, x) = g(1 − s1, π Q̃ A) · (πx) − e−πx

−s1
= g(s2, x) · (πx) − e−πx

−s1
.

These recurrence relations will allow one to evaluate all the derivatives of Z(s) with
only one gamma function evaluation at each point, greatly reducing the cost.

The formulae �k Z(s) for k ≤ 4 are then given by

�Z(s) = −s1HD Z(s) − Cs1 (D)
∑
i, j

′(g(s1 + 1, Q̃ A) + g(s2 + 1, Q̃ A)
)

· π�Q̃ A, (97)

�2Z(s) = − (
s1�HD + (s1HD)2

)
Z(s) − 2s1HD � Z(s)

+Cs1 (D)
∑
i, j

′(g(s1 + 2, Q̃ A) + g(s2 + 2, Q̃ A)
)

·
(
π�Q̃ A

)2

−Cs1 (D)
∑
i, j

′(g(s1 + 1, Q̃ A) + g(s2 + 1, Q̃ A)
)

· π�2 Q̃ A, (98)

�3Z(s) = − (
s1�2HD + 3s21HD � HD + (s1HD)3

)
Z(s)

− (
3s1�HD + 3(s1HD)2

)
� Z(s) − 3s1HD �2 Z(s)

−Cs1 (D)
∑
i, j

′(g(s1 + 3, Q̃ A) + g(s2 + 3, Q̃ A)
)

·
(
π�Q̃ A

)3

+Cs1 (D)
∑
i, j

′(g(s1 + 2, Q̃ A) + g(s2 + 2, Q̃ A)
)

· 3(π�Q̃ A)(π�2 Q̃ A)

−Cs1 (D)
∑
i, j

′(g(s1 + 1, Q̃ A) + g(s2 + 1, Q̃ A)
)

· π�3 Q̃ A, (99)

�4Z(s) = − (
s1�3HD + 3s21 (�HD)2 + 4s21HD�2HD + 6s31H

2
D�HD + (s1HD)4

)
Z(s)

− (
4s1�2HD + 12s21HD�HD + 4(s1HD)3

)
�Z(s)

− (
6s1�HD + 6(s1HD)2

)
�2Z(s) − 4s1HD �3Z(s)
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+Cs1 (D)
∑
i, j

′(g(s1 + 4, Q̃ A) + g(s2 + 4, Q̃ A)
)

·
(
π�Q̃ A

)4

−Cs1 (D)
∑
i, j

′(g(s1 + 3, Q̃ A) + g(s2 + 3, Q̃ A)
)

· 6(π�Q̃ A)2(π�2 Q̃ A)

+Cs1 (D)
∑
i, j

′(g(s1 + 2, Q̃ A) + g(s2 + 2, Q̃ A)
)

·
(
4(π�Q̃ A)(π�3 Q̃ A) + 3(π�2 Q̃ A)2

)

−Cs1 (D)
∑
i, j

′(g(s1 + 1, Q̃ A) + g(s2 + 1, Q̃ A)
)

· π�4 Q̃ A. (100)

To further reduce costs, recall for example the O(h3) errors used Z(−1) while the
O(h) errors used Z(1), thus one can compute Z(s + 2) along the way of computing
Z(s), with

Z(s + 2) = Cs1+1(D)

⎛
⎝ 1

s1
− 1

s1 + 1
+
∑
i, j

′(g(s1 + 1, Q̃ A) + g(−s1, Q̃ A)
)⎞⎠ ,

�Z(s + 2) = −(s1 + 1)HD Z(s + 2)

− Cs1+1(D)
∑
i, j

′(g(s1 + 2, Q̃ A) + g(s2, Q̃ A)
)

· π�Q̃ A.

In all the formulae for the Epstein zeta function, the various involved quantities are
defined as follows.

Firstly, the involved quadratic forms and their derivatives are

�Q̃ A = Q̃B − HD Q̃A, �2 Q̃ A = �Q̃B − (�HD Q̃A + HD �Q̃ A),

�3 Q̃ A = �2 Q̃B − (�2HD Q̃A + 2�HD � Q̃ A + HD �2 Q̃ A),

�4 Q̃ A = �3 Q̃B −
(
�3HD Q̃A + 3�2HD�Q̃ A + 3�HD�2 Q̃ A + HD�3 Q̃ A

)
,

�Q̃B = −HD Q̃B, �2 Q̃B = (−� HD + H2
D)Q̃B,

�3 Q̃B = (−�2HD + 3HD�HD − H3
D)Q̃B,

where

Q̃B(u, v) := QB(u, v)√
D

, QB(u, v) := Lu2 + 2Muv + Nv2,

and the other involved constants such as HD and their parametric derivatives are given
by

�Cs(D) = −sHD · Cs(D), Cs+1(D) = Cs(D) · π/(s
√
D),

HD := (GL + EN − 2FM)/(2D) =: (G̃ L̃ + Ẽ Ñ − 2F̃ M̃)/2,
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KD := L̃ Ñ − M̃2, �KD = −2HD KD,

�HD = KD − 2H2
D, �2HD = −2HD KD − 4HD � HD,

�3HD = (4H2
D − 2�HD)KD − 4(�HD)2 − 4HD �2HD.

Note that if L, M, N are the second fundamental form coefficients, then HD and KD

become the mean and Gaussian curvatures.

E.2 Vector-valued derivatives�(k)Z(s) via the scalar derivatives�kZ(s)

We show that the vector-valued k-th derivative �(k)Z(s), as defined in (86, 88, 93),
can be expressed as a combination of scalar derivatives �k Z(s), for k = 2, 3, 4.

Firstly, the 5-component vector �(2)Z(s) can be computed via 5 scalar second
derivatives:

a = ∂2

∂E2 ZA, b = 1

4

∂2

∂F2 ZA, c = ∂2

∂G2 ZA,

d =
( ∂

∂E
+ 1

2

∂

∂F

)2
ZA, e =

( ∂

∂G
+ 1

2

∂

∂F

)2
ZA,

1

2

∂2

∂E∂F
ZA = d − a − b

2
,

1

2

∂2

∂F∂G
ZA = e − b − c

2
,

so

�(2)ZA =
(
a,

d − a − b

2
, b,

e − b − c

2
, c

)
.

Secondly, the 7-component vector�(3)Z(s) can be computed via 7 scalar third deriva-
tives:

a = ∂3

∂E3 ZA, b = 1

8

∂3

∂F3 ZA, c = ∂3

∂G3 ZA,

d =
( ∂

∂E
+ 1

2

∂

∂F

)3
ZA, e =

( ∂

∂E
− 1

2

∂

∂F

)3
ZA,

f =
( ∂

∂G
+ 1

2

∂

∂F

)3
ZA, g =

( ∂

∂G
− 1

2

∂

∂F

)3
ZA,

1

4

∂3

∂E∂F2 ZA = d + e − 2a

6
,

1

2

∂3

∂E2∂F
ZA = d − e − 2b

6
,

1

4

∂3

∂F2∂G
ZA = f + g − 2c

6
,

1

2

∂3

∂F∂G2 ZA = f − g − 2b

6
,

so

�(3)ZA =
(
a,

d − e − 2b

6
,
d + e − 2a

6
, b,

f + g − 2c

6
,
f − g − 2b

6
, c

)
.
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Lastly, to compute �(4), we first define

ap,q,r := �4
∣∣
(L,M,N )=(p,q/2,r) =

(
p

∂

∂E
+ q

2

∂

∂F
+ r

∂

∂G

)4

,

and denote the 9 components of �(4) as �(4)
i , i = 1, . . . , 9, then

�(4)
1,2,3,4,5 = M−1aEF , �(4)

9,8,7,6,5 = M−1aGF ,

where

M−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

− 1
8

1
4 − 1

24 − 1
12

1
2

− 1
6

1
12 0 1

12 − 1
6

1
8 − 1

8
1
24 − 1

24 − 1
2

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, aEF =

⎡
⎢⎢⎢⎢⎣

a1,0,0
a1,1,0
a1,2,0
a1,−1,0
a0,1,0

⎤
⎥⎥⎥⎥⎦ , aGF =

⎡
⎢⎢⎢⎢⎣

a0,0,1
a0,1,1
a0,2,1
a0,−1,1
a0,1,0

⎤
⎥⎥⎥⎥⎦ .

F Proof of the convergence rate of Wigner-type limits

Remark 9 The proofs of Theorem 8 and Lemma 2 in this section are inspired by [30,
Theorem 3.1, Lemma 3.3], which are the one-dimensional analogs. As a result, our
proofs complete the convergence analysis in [30] for their two-dimensional quadrature.

Throughout this section, η(u) ∈ Cβ
c ([−a, a]2) is a β-times continuously differen-

tiable function that is compactly supported in [−a, a]2, and satisfies

η(0) = 1, η(u) ≡ η(−u), and
∂ i+ j

∂ui∂v j
η(0) = 0 (101)

for all non-negative integers i and j such that 0 < i + j ≤ 2K .

We restate the definition (53) as follows:

Lm
h [ f ] := lim

N→∞
∑′

|i|<N

f (i)

Q(i)m+ 1
2

η(ih) −
∫

|u|<N+ 1
2

f (u)

Q(u)m+ 1
2

η(uh) du

=
∑′

|i|<∞

f (i)

Q(i)m+ 1
2

η(ih) −
∫

|u|<∞

f (u)

Q(u)m+ 1
2

η(uh) du,

(102)

with

Q(u) = Eu2 + 2Fuv + Gv2, where E, G, EG − F2 > 0.
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Theorem 7 Using the notations inTheorem4, then for any integer K ≥ 1andm, d ≥ 0
such that

0 ≤ m ≤ 2K − 1,

3m

2
≤ d ≤ m + K − 1,

the estimate

∣∣∣Lm
h

[
u2d−lvl

] − Lm[u2d−lvl
]∣∣∣ = O(h2K ), l = 0, 1, . . . , 2d, (103)

holds provided that η(u) satisfies (101) and is 4K-times contiuously differentiable.

Proof Let s = 2(m − d) + 1 then 3 − 2K ≤ s ≤ 1, then using Theorem 8 (to be
proved below) with β = 4K yields

Lm−d
h [1] = Z(2(m − d) + 1) + O(h2K ).

Taking appropriate parametric derivatives on both sides according to Theorem 4 gives

Lm
h

[
u2d−lvl

] = Lm[u2d−lvl
]+ O(h2K ),

where the order of the error term remains unchanged because of the following reason.
Parametric differentiation in the form of Theorem 4 only acts on the component

Q(u)−s/2 and is in such away that does not change its homogeneous order inu,which is
Θ(|u|−s). Therefore the analysis in Theorem 8 holds under parametric differentiation.

��

Theorem 8 If s ∈ R, s ≤ 1 < 2K and η satisfies (101) and is at least β times
continuously differentiable such that β + s ≥ 2K + 3, K ≥ 1, then

L(s−1)/2
h [1] = Z(s) + O(h2K ).

Proof To analyze the convergence property of

L(s−1)/2
h [1] =

∑′

|i|<∞

η(ih)

Q(i)
s
2

−
∫

|u|<∞
η(uh)

Q(u)
s
2
du,

we define a smooth cutoff function φ(u), such that φ(u) ≡ φ(−u) and

φ(u) =
{
0, |u| ≤ 1

2 ,

1, |u| ≥ 1,
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and denote f (u, h) := η(uh) Q(u)− s
2 , then a partition of unity using φ(u) gives

L(s−1)/2
h [1] =

∑′

|i|<∞
f (i, h)φ(i) −

∫
|u|<∞

f (u, h)φ(u) du

+
∑′

|i|<∞
f (i, h)(1 − φ(i)) −

∫
|u|<∞

f (u, h)(1 − φ(u)) du

=
⎛
⎝ ∑

|i|<∞
f (i, h)φ(i) −

∫
|u|<∞

f (u, h)φ(u) du

⎞
⎠

−
∫

|u|≤1
f (u, h)(1 − φ(u)) du

:= I1 − I2,

where the fact that f (0, h)φ(0) = 0 and 1 − φ(i) = 0 if i �= 0 are used. We then
estimate the quantities I1 and I2.

– We first bound I2. Use |η(uh) − 1| ≤ C ′|uh|2K for some constant C ′, then
∣∣∣∣
∫

|u|≤1
(η(uh) − 1) Q(u)−

s
2 (1 − φ(u)) du

∣∣∣∣
≤ C ′h2K

∫
|u|≤1

|u|2K |Q(u)|− s
2 |1 − φ(u)|du ≤ Ch2K ,

where we used the fact |u|2K |Q(u)|−s/2 = O(|u|2K−s) is integrable since 2K −
s > 0. So, if we define

Z2(s) =
∫

|u|≤1
Q(u)−

s
2 (1 − φ(u)) du,

which is independent of h and integrable for s ≤ 1, then

|I2 − Z2(s)| =
∣∣∣∣
∫

|u|≤1
(η(uh) − 1) Q(u)−

s
2 (1 − φ(u)) du

∣∣∣∣ ≤ Ch2K .

– For the summation and integral in I1, since the function f (u, h) is compactly
supported, the Poisson summation formula (cf. [36, Chapter 4]) gives

∑
|i|<∞

f (i, h)φ(i) −
∫

|u|<∞
f (u, h)φ(u) du =

∑
|k|�=0

f̂φ(k, h), (104)

where k = (k1, k2) ∈ Z
2, and where

f̂φ(k, h) :=
∫

|u|<∞
f (u, h)φ(u)e−2π ik·u du.
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Using Lemma 2 which we will prove next, there is a smooth function Z1(s) inde-
pendent of h, such that

∣∣∣∣∣∣
∑
|k|�=0

f̂φ(k, h) − Z1(s)

∣∣∣∣∣∣ = O(h2K+1).

Combining all of above, we have

∣∣∣L(s−1)/2
h [1] − Z1(s) + Z2(s)

∣∣∣ = O(h2K ).

On the other hand, by Theorem 4,

lim
h→0

L(s−1)/2
h [1] = Z(s)

is analytic. Since both Z1 and Z2 are smooth and neither of them depend on h, one
must have

Z1(s) − Z2(s) ≡ Z(s).

��
Lemma 2 Assume that s ≤ 1 and η satisfies (101) and is at least β times continuously
differentiable such that β + s ≥ 2K + 3, K ≥ 1. Then for f̂φ(k, h) as defined in
the Poisson summation formula (104), there is a smooth function Z1(s) that does not
depend on h, such that

∣∣∣∣∣∣
∑
|k|�=0

f̂φ(k, h) − Z1(s)

∣∣∣∣∣∣ = O(h2K+1).

Before proving the lemma, we define the following simplified notations to be used
throughout the proof. Denote the function

S(u, s) = Q(u)−
s
2 ,

and for k = (k1, k2) and u = (u, v) define the following

k := |k|∞ = max{k1, k2},

D j = D j (k) :=
{

(∂/∂u) j if k1 ≥ k2
(∂/∂v) j if k1 < k2

for any j ∈ N.

We also use the shorthand notation

g( j)(u) ≡ D j g(u)
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to denote the derivatives of any smooth function g when the associated k is clear from
context.

Proof Since η(uh)φ(u)S(u, s) is compactly supported in 1
2 ≤ u ≤ a

h and at least
β-times continuously differentiable, then after integration-by-parts β times we have

I (h,k) :=
∫

|u|<∞
η(uh)φ(u)S(u, s)eik·udu

= iβ

kβ

∫
|u|<∞

(
Dβη(uh)φ(u)S(u, s)

)
eik·udu.

Define

W (k) := iβ
∫

|u|<∞
(
Dβ φ(u)S(u, s)

)
eik·udu,

then, since φ( j)(u) is compactly supported for j ≥ 1 and |S(β)(u, s)| = O(|u|−s−β)

integrable for β + s ≥ 2K + 3 ≥ 5, we have

|W (k)| ≤
∫

|u|<∞
|φ(u)S(β)(u, s)| du +

β∑
j=1

dβ, j

∫
|u|<∞

|φ( j)(u)S(β− j)(u, s)|du ≤ C

for some constant C , where dβ, j are binomial coefficients. SoW (k) is independent of
h and uniformly bounded with the appropriate k and D j correspondence as defined
before the proof.

Next, define c(u) := φ(u)η(uh) and consider

I (h,k) − W (k)

kβ
= iβ

kβ

∫
|u|<∞

(
Dβ(c(u) − φ(u))S(u, s)

)
eik·udu

= iβ

kβ

β∑
j=1

dβ, j

∫
|u|<∞

(
c( j)(u) − φ( j)(u)

)
S(β− j)(u, s)eik·udu.

(105)

Using the fact that φ( j)(u) ≡ 0 for j > 0 and |u| > 1, we have

c( j)(u) =
{∑ j

�=0 d j,� φ( j−�)(u) η(�)(uh) h�, 1
2 ≤ |u| ≤ 1,

η( j)(uh) h j , 1 < |u| ≤ a
h ,
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therefore, using the fact that φ(u) ≡ 0 for |u| ≤ 1
2 , φ(u) ≡ 1 for |u| ≥ 1 and

η(uh) ≡ 0 for |u| ≥ a
L , the integrals in (105) can be rewritten as follows

∫
|u|<∞

(
c( j)(u) − φ( j)(u)

)
S(β− j)(u, s)eik·udu

=
∫

1
2≤|u|≤1

( j∑
�=0

d j,� φ( j−�)(u) η(�)(uh) h� − φ( j)(u)

)
S(β− j)(u, s)eik·udu

+
∫
1<|u|≤∞

(
η( j)(uh) h j − δ0, j

)
S(β− j)(u, s)eik·udu

=
j∑

�=0

d j,� h
�

∫
1
2≤|u|≤1

φ( j−�)(u)
(
η(�)(uh) − δ0,�

)
S(β− j)(u, s)eik·udu

+ h j
∫
1<|u|≤ a

h

(
η( j)(uh) − δ0, j

)
S(β− j)(u, s)eik·udu

− δ0, j

∫
a
h <|u|<∞

S(β)(u, s)eik·udu

:=
j∑

�=0

d j,� I
(�)
1 + I2 + I3,

where δi, j is the Kronecker delta. Note that η(�)(0) = 0 for � ≤ 2K , so by Taylor’s
theorem, and using the fact η(0) = 1, we have

|η(�)(uh) − δ0,�| = |η(�)(uh) − η(�)(0)| ≤ C ′ |uh|2K+1−�

for some constant C ′. Then we can estimate each of I (�)
1 , I2, I3 as follows.

– For the first sum of integrals

|I (�)
1 | ≤ h� (C ′ h2K+1−�)

∫
1
2≤|u|≤1

|u|2K+1−� |S(β− j)(u, s)|du ≤ C h2K+1,

so
∣∣∣∣∣∣

j∑
�=0

d j,� I
(�)
1

∣∣∣∣∣∣ ≤
j∑

�=0

d j,�|I (�)
1 | ≤ C h2K+1.
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– For the second integral

|I2| ≤ h j (C ′ h2K+1− j )

∫
1<|u|≤ a

h

|u|(2K+1− j)+(−s−β+ j)du

= C ′ h2K+1
∫
1<|u|≤ a

h

|u|2K+1−s−βdu

≤ C(h2K+1 + hs+β−2).

– For the third integral

|I3| ≤
∫

a
h <|u|<∞

|u|−s−βdu ≤ C hs+β−2.

Therefore, substituting all above estimates back into (105) yields

∣∣∣∣I (h,k) − W (k)

kβ

∣∣∣∣ ≤ 1

kβ

β∑
j=1

dβ, j

⎛
⎝

j∑
�=0

d j,�|I (�)
1 | + |I2| + |I3|

⎞
⎠

≤ C

kβ
(h2K+1 + hβ+s−2).

By assumption, β + s ≥ 2K + 3 and s ≤ 1, so substitute k �→ 2πk in the above
formula yields

∣∣∣∣ f̂φ(k, h) − W (2πk)

(2πk)β

∣∣∣∣ ≤ C

kβ
h2K+1 ≤ C

k2(K+1)
h2K+1.

Therefore, if we define

Z1(s) :=
∑
|k|�=0

W (2πk)

(2πk)β
,

which converges since β ≥ 2K + 3 − s ≥ 4 given s ≤ 1 and K ≥ 1, then

∣∣∣∣∣∣
∑
|k|�=0

f̂φ(k, h) − Z1(s)

∣∣∣∣∣∣ ≤ C ′ h2K+1
∑
|k|�=0

1

k2(K+1)
≤ Ch2K+1.

��
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