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Abstract. We consider the nonlinear Schrödinger equation in three space
dimensions with combined focusing cubic and defocusing quintic nonlinearity.

This problem was considered previously by Killip, Oh, Pocovnicu, and Visan,

who proved scattering for the whole region of the mass/energy plane where the
virial quantity is guaranteed to be positive. In this paper we prove scattering

in a slightly larger region where, in particular, the virial quantity is no longer

guaranteed to be sign definite.

1. Introduction

We consider the cubic-quintic NLS in three space dimensions:{
i∂tu+∆u = −|u|2u+ |u|4u,
u|t=0 = u0 ∈ H1(R3),

(1.1)

which describes the evolution of a complex field u under the Hamiltonian

E(u) =

∫
R3

1
2 |∇u(x)|2 + 1

6 |u(x)|
6 − 1

4 |u(x)|
4 dx.

This evolution also conserves the mass, defined by

M(u) =

∫
R3

|u(x)|2 dx.

We work here in H1(R3) because this is precisely the class of initial data for
which both the mass and energy are finite. The initial value problem (1.1) was
shown to be globally well-posed for such data by Zhang in [19], building on the
paper [3] that treated the purely quintic nonlinearity.

We are concerned here with the long-time behavior of solutions. For small H1

initial data, standard arguments demonstrate that solutions scatter both forward
and backward in time. This means that there are functions u± ∈ H1 so that

lim
t→±∞

∥u(t)− eit∆u±∥H1 = 0. (1.2)

On the other hand, our equation admits solitary wave solutions which evidently do
not scatter.

The natural question then arises of determining the sharp threshold at which
scattering breaks down. There is already a large body of work on determining such
thresholds for a wide variety of models, building on the paradigm introduced in [12];
see [1, 2, 4–6,8, 9, 11,14,16], for example. This approach has two main steps: First,
one shows that the threshold for scattering is witnessed by a minimal counterexam-
ple that (by virtue of its minimality) is almost-periodic (modulo symmetries). One
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then uses the virial identity (or close analogue) to prove that such almost periodic
solutions cannot exist for initial data below the soliton threshold.

The virial identity for (1.1) takes the following form:

d
dt

⟨
u(t), 1

4i (x · ∇+∇ · x)u(t)
⟩
= V (u(t)),

where

V (u) =

∫
|∇u(x)|2 + |u(x)|6 − 3

4 |u(x)|
4 dx. (1.3)

As part of their wide-ranging investigation of the problem, the authors of [13]
adapted this strategy to the problem of determining scattering thresholds for (1.1).
In addition to many positive results, this work also served to highlight inherent
inadequacies of the virial methodology for obtaining definitive scattering thresholds.
In this paper, we will demonstrate explicitly that the region obtained in [13] is not
the largest region where scattering is guaranteed. Indeed, building on that work,
we will expand the frontier of the scattering region obtained in [13] everywhere
that such expansion is not manifestly forbidden by the existence of solitons. In
particular, we will obtain scattering in an open set containing the scattering region
of [13] in which the virial is no longer guaranteed to be positive.

Many of the results of [13] are most readily framed with reference to Figure 1.
This mass-energy diagram is purely schematic; while precise numerics are presented
in [13], the salient features live at very different length scales and so cannot be
represented intelligibly on a single graph.
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Figure 1. Schematic depiction of the mass-energy plane showing
soliton solutions (heavy curve), non-soliton virial obstruction (light
curve), and the scattering region R from [13].

The heavy line in Figure 1 traces the mass-energy curve of ground-state soliton
solutions. By ground-state soliton, we mean an H1-solution Pω to

−∆Pω + |Pω|4Pω − |P |2Pω + ωPω = 0

that is radially symmetric decreasing. Such solutions exist if and only if 0 < ω < 3
16

and are unique for each such ω; see [13].
This mass-energy curve ω ↦→ (M(Pω), E(Pω)) continues beyond the edges of

Figure 1. The convex branch is asymptotic to the M axis, while the concave
branch continues toward infinite mass and infinitely negative energy. Note that
we have only plotted the positive energy part of the mass-energy plane, since it is
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readily shown that no scattering solution can have negative energy. We write m2

for the point were the curve of solitons crosses the mass axis. It is shown in [13] that
any nonzero solution with mass less than m2 has positive energy. While individual
solutions with mass larger than m2 may scatter, scattering cannot be guaranteed
for any mass-energy pair in this regime, due to the possibility of solitons coexisting
with radiation.

The mass m0 is defined as the least mass at which it is possible to have V (u) = 0
without u ≡ 0. The first big surprise is that m0 is strictly smaller than the smallest
mass of any soliton (which coincides with the cusp in the heavy curve). This was
proved rigorously in [13]. It is also shown there that 27m2

0 = 16m2
2.

One is therefore led to the following question: For masses greater than m0 but
less than that of any soliton, what functions have zero virial? Moreover, what is
the minimal value of the energy (as a function of mass) among such functions.
This problem was addressed in [13], where it was found that minimizers are given
by exotic rescalings of soliton solutions, in the sense that the rescaling preserves
neither mass nor energy. (Due to the combined nonlinearity, equation (1.1) has no
scaling symmetry.) These rescaled solitons are defined by the equation

Rω(x) :=
√

1+β(ω)
4β(ω) Pω

(
3(1+β(ω))

4
√

3β(ω)
x
)
, where β(ω) :=

∥Pω∥6
L6

∥∇Pω∥2
L2

. (1.4)

The mass-energy curve of these rescaled solitons is shown as the light weight curve
in Figure 1.

Consider now the open region R shown in Figure 1. The boundary of R, which
is not included in R, is comprised partly of the mass-energy curve of solitons (heavy
curve), partly by the curve of rescaled solitons (light curve), and partly by the mass
m0 (dotted line).

In [13], it is shown that V (u) > 0 for every state u whose mass and energy lies
in the region R. In fact, the region R is the maximal region with this property in
the following sense: Defining the function

EV
min(m) = inf{E(u) : u ∈ H1(R3), M(u) = m, and V (u) = 0}, (1.5)

we have R = {(m, e) : e < EV (m)}. Note that EV
min(m) = ∞ for m < m0.

In this paper, we prove that scattering holds in a still larger region B of the
mass-energy plane:

Theorem 1.1. There is an open region B ⊆ R2 so that every solution u to (1.1)
with

(
M(u), E(u)

)
∈ B belongs to L10(R×R3) and so scatters (in both time direc-

tions) in the sense of (1.2). The region B is larger than R:
(a) There is an m > m0 so that B ⊇ (0,m)× (0,∞); and
(b) If (m, e) ∈ ∂R is not achieved by a soliton, then (m, e) ∈ B.

With reference to Figure 1, we see from (a) that the whole dotted line on the
boundary may be moved to the right (remaining vertical!). Part (b) then completes
our promise to expand the region of scattering in every place where this is not
rigorously forbidden by the existence of solitons (which evidently do not scatter).
That is, we extend the scattering region across the entire portion of ∂R comprised
by the light-weight curve.

In Figure 1 we see that form ≥ m0, the left portion of ∂R is delimited by rescaled
solitons and the right portion by solitons. The mass at which this transition takes
place is marked m1. The validity of this description was shown in [13] via numerics.
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The purely analytical arguments given there show only that the left-most portion
is made up of rescaled solitons and that the right-most part is made up solely of
solitons; the possibility that roles are exchanged multiple times is not excluded.

The scattering claim in Theorem 1.1 follows from a more quantitative assertion
that we will prove, namely, that the spacetime bound

∥u∥L10
t,x(R×R3) ≤ C

(
M(u), E(u)

)
(1.6)

holds for every solution u with (M(u), E(u)) ∈ B (see e.g. [18, Section 5.8]). Here
C is some unspecified function. The same type of bound was proven in [13] for
(m, e) ∈ R and indeed for other equations in many papers preceding it. One
novelty of [13] is the appearance of two parameters (both mass and energy) in
RHS(1.6). It is worth emphasizing that due to the concavity of the soliton portion
of ∂R, the arguments in [13] cannot be based on a free energy of the form E+λM
as had proven successful for a number of similar problems. The need to induct
on two parameters leads us to consider the following partial order on mass-energy
pairs:

Definition 1.2. We write (m, e) ≼ (m0, e0) to indicate that m ≤ m0 and e ≤ e0.
That is, (m, e) is southwest of (m0, e0) in the mass-energy plane.

With these preliminaries set, we can establish the following proposition. As we
will explain, this is essentially a recapitulation of the concentration compactness
analysis in [13].

Proposition 1.3. Fix 0 < m < m2 and e > 0. Then exactly one of the two
following possibilities hold:
(i) There exists ε > 0 so that

∥u∥L10
t,x(R×R3) ≤ ε−1 whenever (M(u), E(u)) ≼ (m+ ε, e+ ε). (1.7)

(ii) There is a global solution u ∈ Ct(R;H1) to (1.1) with (M(u), E(u)) ≼ (m, e).
Moreover, for this solution there is a function c : R → R3 so that

{u(t, x−c(t)) : t ∈ R} is precompact in H1(R3) and c(t) = o(t) as t → ±∞. (1.8)

Proof. If (i) holds at the original pair (m, e), then the matter is settled: Scattering
holds and so (1.8) cannot.

Henceforth, we assume that (i) does not hold for any ε > 0 and must prove (ii).
For this purpose, we may safely replace (m, e) with any of its ≼-predecessors. We
choose (m, e) to be a ≼-minimal pair for which (i) fails. The existence of a minimal
pair follows from the fact that the set where (i) holds is an open subset of the plane.
This implies that (i) fails at the limit (in the R2 topology) of any descending chain
of pairs where (i) fails.

As (i) fails at (m, e), there must be a sequence of solutions un(t) to (1.1) with

M(un) → m, E(un) → e, and
un


L10

t,x(R×R3)
→ ∞.

Applying [13, Proposition 9.1] exactly as in the proof of [13, Theorem 9.6] we obtain
the existence of a solution u satisfying the precompactness claim in (1.8). This
compactness relies on the minimality of (m, e). That the spatial center function
c(t) must be o(t) also follows from this minimality; see [13, Proposition 10.2]. □

We are now ready to discuss how we are to prove Theorem 1.1. The argument
has two main phases. In phase one, we prove that a point in ∂R can only support
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an almost periodic solution (that is, one satisfying (1.8)) if it supports a solitary
wave solution. The central obstacle here is that the virial can vanish without the
solution resembling a soliton. In Lemma 3.3, we show that solutions passing near
(or through) these potentially dangerous configurations nevertheless maintain a
(quantitatively) positive average virial on short time intervals. This information is
then used to preclude almost periodic solutions (and so obtain spacetime bounds)
via an elementary covering argument in Proposition 3.4. (It has been pointed out
to us that this argument could be reversed: construct an almost periodic solution
with zero virial by exploiting time translation and compactness and then observe
that this contradicts Lemma 3.3.)

While phase one provides a resulting scattering region that fulfills part (b) of
Theorem 1.1, there is no reason to believe it satisfies (a). However, it does show
that given E∗, there is an m = m(E∗) > m0 so that scattering holds in the rectangle
(0,m)×(0, E∗). To complete phase two of the proof, we show that there is a suitable
choice of E∗ that allows us to employ a different argument to prove that scattering
extends to the entire strip (0,m)× (0,∞).
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2. Preliminaries

In order to prove scattering, we must preclude solutions to (1.1) with the property
(1.8). Like many of our predecessors, we will do this using a localized version of
the virial identity. The novel aspect of this paper is how we falsify (2.1).

Proposition 2.1 (The localized virial argument). If u is a solution to (1.1) satis-
fying (1.8), then

lim
T→∞

1

T

∫ T

0

V (u(t)) dt = 0, (2.1)

where V (u) is as in (1.3).

Proof. This is the essence of the standard localized virial argument; details can be
found in [13, p. 542–543]. The only difference is that there the argument is by
contradiction since it is already known that for the solutions of interest, V (u(t)) is
bounded away from zero (uniformly for t ∈ R). □

In order to upgrade certain qualitative statements from [13] to quantitative ones,
we employ the following from [10]:

Proposition 2.2 (Profile decomposition for Gagliardo–Nirenberg). Let {un} be
a bounded sequence in H1(R3). Passing to a subsequence if necessary, there exist
J∗ ∈ {0, 1, 2, . . . } ∪ {∞}, profiles ϕj ∈ H1\{0}, and positions {xj

n} ⊂ R3, so that

un(x) =

J∑
j=1

ϕj(x− xj
n) + wJ

n(x) (2.2)
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for each finite 0 ≤ J ≤ J∗. Moreover, the following hold:

lim
J→J∗

lim sup
n→∞

∥wJ
n∥L4 = 0,

sup
J

lim sup
n→∞

⏐⏐⏐∥un∥2Ḣ1 −
J∑

j=1

∥ϕj∥2
Ḣ1 − ∥wJ

n∥2Ḣ1

⏐⏐⏐ = 0,

sup
J

lim sup
n→∞

⏐⏐⏐∥un∥qLq −
J∑

j=1

∥ϕj∥qLq − ∥wJ
n∥

q
Lq

⏐⏐⏐ = 0 for q ∈ {2, 4, 6}.

Recall that m0 denotes the least (non-zero) mass at which V (u) = 0 is possible.
This quantity is determined through a variational problem analyzed in [13], which
will be important for analyzing the vertical portion of ∂R.

Proposition 2.3 (Interpolation inequality). Every u ∈ H1(R3) satisfies

3
4

∫
|u|4 dx ≤

√
M(u)
m0

∫
|∇u|2 + |u|6 dx. (2.3)

Moreover, there is a non-empty finite set Ω ⊂ (0, 3
16 ) which characterizes optimizers

thus: M(u) = m0 and equality holds in (2.3) if and only if u(x) = eiθRω(x− c) for
some c ∈ R3, θ ∈ R, and ω ∈ Ω.

Remark 2.4. The numerics in [13] show that Ω is actually comprised of a single
point; this would also be a consequence of Conjecture 2.6 of that paper. This is
what is depicted in Figure 1. While the numerics are very stable and compelling, we
do not have a rigorous proof that there is only one value of ω so that M(Rω) = m0.
Thus, we will not make this assumption in what follows.

Proof. Choosing α = 1 in [13, Proposition 3.1] shows that the optimal constant in
the inequality

∥u∥4L4 ≤ C∥u∥L2∥∇u∥
3
2

L2∥u∥
3
2

L6 (2.4)

is realized. Moreover, every optimizer takes the form u(x) = eiθλRω(ρ(x− c)) with
θ ∈ R, λ > 0, ρ > 0, c ∈ R3, and β(ω) = 1. In [13], this is written with Pω, rather
than Rω, but these assertions are equivalent in view of (1.4).

The value of m0 was determined in [13] from the optimal constant C in (2.4) via

m0 =
√
3
[
16
9C

]2
(2.5)

for details, see [13, Lemma 3.3 and Theorem 5.2].
From [13, Theorem 2.2] we see that β is an analytic function of ω ∈ (0, 3

16 ) and

that β(ω) → 0 as ω → 0 and β(ω) → ∞ as ω → 3
16 . Thus choosing Ω to denote the

set of all ω that arise as optimizers, we are guaranteed that Ω is a finite set. Note
that, at this time, we cannot claim that every solution to β(ω) = 1 corresponds to
an optimizer.

The inequality (2.3) follows from and (2.4) via Young’s inequality in the form

31/4ab ≤ 3
4

[
a4/3 + b4

]
with equality iff a4/3 = 3b4.

This requirement for equality places one constraint on the scaling parameters ρ
and λ. Combining this with the requirement that M(u) = m0 then guarantees that
λ = 1 and ρ = 1 as stated in the proposition. Details of these computations can
also be found in [13, Lemma 5.5]. □
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3. Proof of Theorem 1.1

Let us write ∂Rs to represent the portion of ∂R represented by solitary waves:

∂Rs :=
{
(m, e) ∈ ∂R : (m, e) =

(
M(Pω), E(Pω)

)
for some ω ∈ (0, 3

16 )
}
.

The remainder of the boundary will be denoted ∂Rr. Our first goal in this section
is to prove Proposition 3.4, which shows that scattering holds in a neighborhood of
any mass-energy pair (m, e) ∈ ∂Rr.

Before we can begin on the novel portion of the analysis, we need one more
lemma recapitulating material developed in [13]:

Lemma 3.1. Fix (m, e) ∈ ∂Rr and let u ∈ H1 satisfy (M(u), E(u)) ≼ (m, e).
Then V (u) ≥ 0. Moreover, if V (u) = 0, then either u ≡ 0 or u(x) = eiθRω(x− c)
for some c ∈ R3 and θ ∈ [0, 2π). The value of ω is uniquely determined by E(u).

Proof. When m = m0, both V (u) ≥ 0 and the identification of cases of equality
follow from Proposition 2.3. When m > m0, we rely instead on [13, Theorem 5.6],
which identifies optimizers for (1.5) at fixed mass, and [13, Theorem 5.2], which
shows strict monotonicity of m ↦→ EV

min(m).
Finally, the monotonicity [13, Equation (5.19)] guarantees that E(Rω) uniquely

determines ω. □

For our purposes, it is not enough merely to understand which functions achieve
zero virial. Rather, we need to understand minimizing sequences:

Lemma 3.2. Fix (m, e) ∈ ∂Rr and let un be a sequence in H1(R3) with M(un) =
m and E(un) = e. If V (un) → 0 then there are xn ∈ R3 and θn ∈ [0, 2π) so that

eiθnun(x− xn) −→ Rω(x) in H1(R3), (3.1)

where ω is uniquely determined by E(Rω) = e.

Proof. We apply the profile decomposition of Proposition 2.2 to the sequence un.
The remaining analysis will be confined to the resulting subsequence where (2.2)
holds. This suffices, for if the claim were false, there would be a sequence un without
any subsequence satisfying (3.1).

From the conclusions of Proposition 2.2, we know that the profiles satisfy

lim sup
J→J∗

lim sup
n→∞

[
M(wJ

n) +

J∑
j=1

M(ϕj)

]
= m,

J∗∑
j=1

E(ϕj) ≤ e, (3.2)

and moreover,

0 = lim sup
J→J∗

lim sup
n→∞

[
∥∇wJ

n∥2L2 + ∥wJ
n∥6L6 +

J∑
j=1

V (ϕj)

]
. (3.3)

From these relations and Lemma 3.1, we see that any ϕj (which are always
non-zero) must agree with some (a priori j-dependent) rescaled soliton Rω up to
a translation and phase rotation. Modifying the symmetry parameters in (2.2), if
necessary, we may assume that the profile is exactly Rω. Lemma 3.1 and (3.3) also
show that ∇wJ

n → 0 in L2.
In view of the mass and energy constraints in (3.2) and the monotonicity of

m ↦→ EV
min(m) for m ≥ m0, we are left with two possibilities: Either there is

exactly one profile ϕ1 = Rω and wn → 0 in L2-sense, or un = wn for all n. The
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former case yields (3.1). The latter case is incompatible with V (un) → 0, because
wn → 0 in L4 and so lim infn→∞ V (wn) ≥ E(wn) ≡ e. □

Recalling that our ambition is to contradict (2.1) (and thereby preclude solutions
obeying (1.8)), we can now see how Lemma 3.2 helps: It shows that the virial will
remain bounded away from zero unless the trajectory passes near Rω. To handle
the remaining case, we introduce the notation

ρω(u) := inf
{u(x)− eiθRω(x− c)


H1 : c ∈ R3, θ ∈ R

}
(3.4)

and prove the following:

Lemma 3.3. Fix ω ∈ (0, 3
16 ). Then there exists δ > 0 so that every solution u to

(1.1) with ρω(u(0)) ≤ δ satisfies∫ 1

−1

V (u(t)) dt ≥ δ. (3.5)

Proof. The crux of the proof is the following: If v is the solution to (1.1) with initial
data v(0) = Rω, then ∫ 1

−1

V (v(t)) dt > 0. (3.6)

We will prove this shortly. As V is continuous on H1, it follows from this assertion
and local well-posedness that there is a δ > 0 so that (3.5) holds for every solution
with ∥u(0)−Rω∥H1 ≤ δ. This extends to solutions with ρω(u) ≤ δ due to the gauge
and translation symmetries of (1.1).

We now turn our attention to (3.6), arguing by contradiction. From Lemma 3.2,
we know V (v(t)) ≥ 0 and thus the failure of (3.6) ensures that V (v(t)) ≡ 0 for
t ∈ [−1, 1]. But this in turn guarantees

v(t, x) = eiθ(t)Rω(x− x(t))

for some (continuous) functions θ(t) and x(t). In view of the uniqueness of H1-
solutions to (1.1), the rotational symmetry of (1.1) and the initial data v(0) guar-
antee that x(t) ≡ 0. Analogously, combining gauge symmetry and time-translation
invariance guarantee that θ(t+s) = θ(t)+θ(s) whenever s, t, s+t ∈ [−1, 1]. This in
turn shows that θ(t) = ξt for some ξ ∈ R and consequently that v(t, x) = eiξtRω(x)
for t ∈ [−1, 1]. By gauge invariance this shows v to be a solitary wave solution for
all t ∈ R, which is inconsistent with the assumption (M(Rω), E(Rω)) ∈ ∂Rr. □

With Lemmas 3.2 and 3.3 in place, we are now ready to demonstrate the existence
of the new, larger scattering region that satisfies property (b) listed in Theorem 1.1,
completing phase one of our argument. The region will be further enlarged in
Proposition 3.5 so that property (a) also holds.

Proposition 3.4. Given any pair (m, e) ∈ ∂Rr, there exist ε > 0 and C < ∞ so
that for any solution u to (1.1),

(M(u), E(u)) ≼ (m+ ε, e+ ε) implies ∥u∥L10
t,x(R×R3) ≤ C.

Proof. In view of Proposition 1.3, it suffices to show that there are no solutions
u satisfying (1.8) with (M(u), E(u)) ≼ (m, e). This in turn will be effected by
falsifying (2.1).
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Suppose that u is a solution satisfying (1.8) and (M(u), E(u)) ≼ (m, e). By
the main theorem from [13], we must have (M(u), E(u)) ∈ ∂Rr. We first consider
the case that this mass-energy pair does not coincide with that of any Rω. This
assumption combined with Lemma 3.2 shows that V (u(tn)) → 0 is impossible for
any sequence of times tn. Thus it follows that

V (u(t)) ≳ 1 uniformly for t ∈ R, (3.7)

which clearly contradicts (2.1).
Suppose now that the mass and energy of u do coincide with those of a (neces-

sarily unique) rescaled solitary wave Rω. Let δ > 0 be that given by Lemma 3.3
for this value of ω. By Lemma 3.2, there exists ε > 0 so that

V (u(t)) ≥ ε whenever ρω(u(t)) ≥ δ. (3.8)

Now given T > 0 large, let KT = {t ∈ [1, T − 1] : ρω(u(t)) ≥ δ}. The (trivial) one-
dimensional Besicovich covering lemma shows that one can find a finite collection
of times ti ∈ KT so that

KT ⊆ K∗
T :=

⋃
[ti − 1, ti + 1]

and no t ∈ R belongs to more than two intervals [ti − 1, ti + 1]. Applying (3.5) to
each such interval, (3.8) on [1, T − 1] \K∗

T , and neglecting the positive contribution
of any points not included, we find∫ T

0

V (u(t)) dt ≥ 1
2δ|K

∗
T |+ ε

⏐⏐[1, T − 1] \K∗
T

⏐⏐.
As neither δ nor ε depend on T , this conclusion is inconsistent with (2.1) and
so completes the proof of the proposition in the case that the pair (m, e) ∈ ∂Rr

coincides with that of some rescaled soliton. □

Proposition 3.5. There exists m > m0 and a function C : [0,∞) → R so that any
solution u to (1.1) with M(u) ≤ m satisfies

∥u∥L10
t,x(R×R3) ≤ C(E(u)). (3.9)

Proof. Proposition 3.4 together with a simple covering argument shows that for
any choice of E∗, there is an m > m0 so that (3.9) holds for all solutions with
M(u) ≤ m and E(u) ≤ E∗.

To proceed, we will fix a sufficiently large energy E∗. It is convenient to choose
E∗ = m2, which is guaranteed to be larger than the corresponding m due to the
existence of solitary waves. It follows that if M(u) ≤ m and E(u) ≥ E∗, then

V (u) = 2E(u)− 3
64M(u) + 1

3

∫
|u|2

[
|u|2 − 3

8 ]
2 dx ≥ 2m2 − 3

64m ≥ m2.

It is evident from Proposition 2.1 that no solution to (1.1) can satisfy both these
mass-energy constraints and (1.8). On the other hand, m was chosen so that no
solutions can satisfy (1.8) with (M(u), E(u)) ≼ (m,E∗). This proves the proposi-
tion, since Proposition 1.3 shows that the failure of (3.9) would produce exactly
the type of solution that we have just precluded. □
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