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Abstract: We prove that multisoliton solutions of the Korteweg–de Vries equation are
orbitally stable in H−1(R). We introduce a variational characterization of multisolitons
that remains meaningful at such low regularity and show that all optimizing sequences
converge to the manifold of multisolitons. The proximity required at the initial time
is uniform across the entire manifold of multisolitons; this had not been demonstrated
previously, even in H1.

1. Introduction

The history of the Korteweg–de Vries equation

d

dt
q = −q ′′′ + 6qq ′ (KdV)

is profoundly intertwined with the notion of solitary waves. Indeed, the very goal of
Korteweg and de Vries [24] was to explain the empirical observation of such waves.

The fact that (KdV) admits solutions of the form

q(t, x) = −2β2 sech2(β[x − 4β2t − x0]) (1.1)

(for any β > 0 and x0 ∈ R) explains many aspects of solitary water waves, such as the
relation between their height and speed. However, the very possibility of Scott Russell’s
famous chance encounter with such a wave tells us something more: It must be stable!

The question of stability was considered already by Boussinesq in [6]. In addition to
observing the conservation of both

P(q) :=
∫

1
2q(x)2 dx and H(q) :=

∫
1
2q

′(x)2 + q(x)3 dx, (1.2)

he also notes that the solitarywave profile solves the Euler–Lagrange equation associated
to the problem of optimizing H subject to constrained P .
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Now if the solitary wave were a non-degenerate minimum of H at constrained P ,
then stability would follow immediately, following the Lyapunov model. However, it is
not! The simple act of translation shows that it is at best a degenerate minimum.

In the pioneering paper [4], Benjamin proved the H1-orbital stability of such solitary
waves: Solutions close to a soliton profile at time zero remain close to a soliton profile
at all times. This variational approach is extremely robust and has seen countless ap-
plications since. However, it does not directly give any information about the physical
location of the soliton profile, nor how this evolves with time; this is the significance of
the adjective ‘orbital’.

In numerical simulations of a discrete form of (KdV), Kruskal and Zabusky [40]
observed that solitary waves exhibit an even stronger form of stability: Pairs of solitary
waves emerged from collisions with the same profile and speed with which they had
entered. Nevertheless, the two waves did interact; each was spatially shifted from its
original trajectory. This particle-like behavior led Kruskal and Zabusky to coin the name
soliton; they presciently appreciated that this was an exotic phenomenon.

We now understand that while the orbital stability of single solitary waves is rather
common (and can often be proved variationally), stability under collisions is extremely
peculiar. The ultimate explanation for this behavior was the discovery that (KdV) is a
completely integrable Hamiltonian system; see [11,12,32,42].

Just as our notion of a solitary wave crystalizes around the concrete particular solu-
tions (1.1) to (KdV), so there is a family of special solutions to (KdV) that embody the
behavior of collections of solitons:

Definition 1.1 (Multisoliton solutions) Fix N ≥ 1. Given N distinct positive parameters
β1, . . . , βN and N real parameters c1, . . . , cN , let

Q �β,�c(x) = −2 d2

dx2
ln det

[
A(x)

]
(1.3)

where A(x) is the N × N matrix with entries

Aμν(x) = δμν + 1
βμ+βν

e−βμ(x−cμ)−βν(x−cν ). (1.4)

The unique solution to (KdV) with initial data q(0, x) = Q �β,�c(x) is

q(t, x) = Q �β,�c(t)(x) where cn(t) = cn + 4β2
n t. (1.5)

Although the definition of A(x) depends on the ordering of the parameters, det[A(x)]
and so also Q �β,�c do not.

The beautiful formula (1.3) was originally derived in [17] as a description of re-
flectionless potentials appearing in the one-dimensional Schrödinger equation. With the
discovery of the inverse-scattering approach, the significance of this result for (KdV)was
noted by several authors; see [11,12,15,37,38,41]. By analyzing these exact solutions,
the authors confirmed the particle-like interactions, described the long-time asymptotics,
and determined the (universal) spatial shifts.

The idea that these explicit solutions provide a justification for empirical observations
is necessarily predicated (at the very least) on their stability. Indeed, this question has
attracted considerable attention over the years, as we shall discuss shortly. Let us begin,
however, with our own contribution to this question:
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Theorem 1.2. Fix N ≥ 1 and distinct positive parameters β1, . . . , βN . For every ε > 0
there exists δ > 0 so that for every initial data q(0) ∈ H−1(R) satisfying

inf
�c∈RN

‖q(0) − Q �β,�c‖H−1 < δ,

the corresponding solution q(t) to (KdV) satisfies

sup
t∈R

inf
�c∈RN

‖q(t) − Q �β,�c‖H−1 < ε.

One virtue of this result is that it achieves the lowest regularity (in the Hs scale) for
which well-posedness is known [20] or possible [34]. In Sect. 6, we shall also see that
it is not difficult to recover higher-regularity results post factum:

Corollary 1.3. Fix s ≥ −1, N ≥ 1, and distinct positive parameters β1, . . . , βN . For
every ε > 0 there exists δ > 0 so that

inf
�c∈RN

‖q(0) − Q �β,�c‖Hs < δ �⇒ sup
t∈R

inf
�c∈RN

‖q(t) − Q �β,�c‖Hs < ε. (1.6)

Let us now turn toward a discussion of prior work, after which we will discuss how
the proof of Theorem 1.2 will proceed. We do not intend to dwell on the question of
well-posedness, since this is rather decoupled from the question of stability: Proving
an assertion like (1.6) only for Schwartz solutions still cuts to the heart of the matter;
the Schwartz restriction can then be trivially removed once well-posedness in Hs is
known. Indeed, Benjamin’s work on H1-stability should only grow in our estimation
when we consider that well-posedness in H1 was not achieved until many years later,
[18]. Conversely, having obtained well-posedness in H−1 in [20], it is timely to address
the orbital stability in this space.

It is also true that well-posedness alone provides little assistance in proving (1.6).
Nevertheless, it has proved useful in the consideration of slightly weaker assertions,
where δ is permitted to depend on the parameters �c of the multisoliton nearest the initial
data. The manner in which it helps is this: Exact multisolitons resolve (as t → ±∞) into
essentially a linear combination of well-separated (and increasingly separated) simple
solitary waves of the form (1.1). Thus, researchers may confine their analyses to treating
initial data in this more favorable configuration, and exploiting well-posedness to cover
the remaining compact time interval.

While Benjamin’s argument [4] was both extremely novel and compelling, it did
contain some mathematical lacunae, particularly with regard to the treatment of the
modulation parameters. These issues were thoroughly addressed by Bona [5]. This ap-
proach was further developed to treat NLS and gKdV by Weinstein [39].

Orbital stability of the single soliton (1.1) in L2 was only shown much more recently,
by Merle and Vega [31]. These authors also show a form of asymptotic stability: one has
L2-convergence to a soliton profile in any bounded window traveling with the soliton.
Stronger forms of asymptotic stability such as global L2 convergence are clearly forbid-
den by the conservative nature of the equation. We should also note that it is not claimed
that the solution is converging to a single solitary wave with fixed translation parameter
x0; indeed, subsequent analysis byMartel andMerle [29] shows that this cannot be guar-
anteed: successive interactions with a large number of wide (and so L2-small) solitary
waves can lead to logarithmic divergence of the soliton trajectory from a straight line.

The Merle–Vega proof of L2-orbital stability of single solitons combines the Miura
map with orbital stability of the kink solutions proven in [43]. (While Zhidkov focusses
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on the NLS equation, his variational analysis employs only conservation laws common
to mKdV.)

In the same paper [26] that introduced the Lax pair, Lax also discusses two-soliton
solutions with a view to explaining the properties of such waves observed in [40].
His construction of such solutions is based on a differential equation derived from the
polynomial conservation laws discovered earlier in [32]. While Lax does not explicitly
express it thus in this paper (see [27], however), his equation arises as the Euler–Lagrange
equation for optimizing the third conserved quantity with the first two constrained.
In general, N -solitons are critical points of the variational problem of optimizing the
(N + 1) polynomial conserved quantity constrained by its N predecessors (we exclude
the Casimir

∫
q dx from our enumeration).

This constrained variational problem was analyzed by Maddocks and Sachs in [28].
They showed that multisolitons are in fact local minimizers. The essential (and sub-
tle) point addressed by these authors is to understand the Hessian of the highest-order
conservation law on the manifold of multisolitons, both directly and restricted to direc-
tions parallel to the constraint manifold. By doing so, they prove that the manifold of
N -solitons is orbitally stable in HN (R). Notice that the regularity varies depending on
the complexity of the multisoliton. This appears naturally in their variational problem
because one needs to make sense of increasingly many polynomial conservation laws.

As the analysis in [28] is localized in small neighbourhoods of the soliton profiles, it
does not address either of the following questions: Are N -solitons global minimizers of
this variational problem? Are they the only minimizers? To the best of our knowledge,
both questions remain open. Theorem 1.4 below gives an affirmative answer to both
questions for the variational description we employ.

Orbital stability of multisolitons in H1 was shown byMartel, Merle, and Tsai in [30].
The principal part of the argument is showing that a system of well-separated solitons
(ordered by speed) is future-stable. Subsequently in [3], Alejo, Muñoz, and Vega proved
orbital stability of multisolitons in L2 by using Gardner’s generalization of the Miura
map and applying the ideas of [30] to the resulting Gardner equation. These works do
not yield orbital stability in the strong form of (1.6); they rely on local well-posedness
in the manner discussed earlier. Additional information on the modulation parameters
over this initial interval is obtained (a posteriori) in [2].

A different approach to orbital stability of solitons based on autoBäcklund transfor-
mations (which add or remove solitons) was demonstrated recently in [33]. This work
proves a strong form of L2-orbital stability of one-solitons for the focusing cubic NLS
on the line by combining these transformations with stability of the zero solution. This
approach was substantially advanced in [23], where low-regularity orbital stability of
NLS multisolitons (including the delicate case of multiple eigenvalues) was proved. To
the best of our knowledge, these ideas have not yet been applied to (KdV).

Let us now turn to the topic of themethods to be employed in this paper.Our discussion
will be somewhat discursive since we shall take the time to introduce the central object
of our methodology, the (doubly) renormalized perturbation determinant, as well as
historical and contextual matters that we find instructive.

As we have discussed, the stability of multisolitons is historically (and physically)
inseparable from the complete integrability of (KdV). The key question is how this
complete integrability is to be exploited.

The long-standing approach, introduced already in [11], is to employ the scattering
theory of one-dimensional Schrödinger operators with the potential given by the (KdV)
wave form at a fixed time. Despite receiving a great deal of attention over the years (with
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much impetus taken from the study of KdV), there is currently no satisfactory theory
of forward or inverse scattering in any Hs space. While non-trivial problems do attend
low regularity, it is the slow decay associated with such spaces that is most devastating.
We are truly at a loss as to how to define the reflection coefficient or how to handle
embedded eigenvalues and singular continuous spectrum.

The inverse-scattering technique is capable of providing extremely detailed long-time
asymptotics for the class of solutions to which it is applicable; see [13], for example.
However, due to the difficulties outlined above, it has not yet yielded stability of even
single-solitons in any Hs space.

While the reflection coefficient is fragile, it has long been appreciated that the trans-
mission coefficient is much more robust. One intuitive explanation for this is that the
transmission coefficient actually represents the boundary values of a function mero-
morphic in the upper half-plane. Analytically, it is preferable to consider the reciprocal
a(k; q) of the transmission coefficient. This is holomorphic in the upper half-plane and
its zeros precisely encode the discrete spectrum of the attendant Schrödinger operator.
The simplest description is as the Wronskian (divided by 2ik) of the two Jost solutions.

An alternate perspective on this function a(k; q)was introduced by Jost and Pais [16].
They observed that it could be expressed as a Fredholm determinant. In [36, Chapter 5],
Simon proves that

a(k; q) = det
(
1 + |q| 12 R0(k)|q|− 1

2 q
)
, where R0(k) = (−∂2x − k2)−1, (1.7)

coincides with the Wronskian definition provided 〈x〉1+δq ∈ L1 with δ > 0. Here the
operator is regarded as acting on L2(R) and the determinant is taken over this Hilbert
space. These are our standing conventions (exceptions will be noted).

Splitting q across the two sides of R0 is necessary in (1.7) if one wishes to treat
q with L1-type singularities: neither R0q nor qR0 could be guaranteed to be bounded
under Simon’s hypothesis. However, it turns out to be wiser to factor the free resolvent
R0, placing a square-root of this operator on either side of q; as we shall see, this will
permit potentials with much more severe singularities. On the other hand, one still needs
strong decay hypotheses on q; for otherwise, the determinant would not be defined.

The second layer of renormalization needed to treat q ∈ H−1 employs the renormal-
ized determinant introduced by Hilbert [14]; see [36, Chapter 9]. Concretely,

det2
(
1 + A

) := det
(
1 + A

)
e− tr A

extends continuously from trace class I1 to Hilbert–Schmidt class I2. Recall that I2 is
comprised of those operators whose singular values are square summable and

‖A‖2
I2 = tr

(
A∗A

)
.

Combining these two renormalizations, we are led to consider the following: For
k ∈ C

+ = {z ∈ C : Im z > 0} and Schwartz-class q,

aren(k; q) := det2
(
1 +

√
R0(k) q

√
R0(k)

) = a(k; q) exp
{
− i

2k

∫
q(x) dx

}
. (1.8)

The square-root of the resolvent is defined via analytic continuation from the case k = iκ
with κ > 0, inwhich case R0 is positive definite (andwe take the positive definite square-
root).

To the best of our knowledge, this quantity was first considered by Rybkin. In [35],
he used it to give the first proof of a priori H−1 bounds for solutions to (KdV). This
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approach was developed independently in [21]; alternate approaches to such a priori
bounds can be found in [7,22].

The fact that aren extends continuously (indeed real-analytically) from q ∈ S to
merely q ∈ H−1 rests on the basic theory of such regularized determinants and the
Hilbert–Schmidt estimate

∥∥∥√
R0(k) q

√
R0(k)

∥∥∥2
I2

≤ |k|
[Im k]2

∫ |q̂(ξ)|2
ξ2 + 4|k|2 dξ. (1.9)

Indeed, the mapping A �→ det2(1 + A) is a complex-analytic function on I2 and∣∣1 − det2(1 + A)
∣∣ � ‖A‖I2 exp

{‖A‖2I2

}; (1.10)

see [36] for details. Our justification for the bound (1.9) is quite simple. We use the ideal
property and the elementary bound

|ξ2 − k2|−1 ≤ |k|
Im k (ξ

2 + |k|2)−1 for all ξ ∈ R

to reduce matters to the κ = |k| case of
∥∥∥√

R0(iκ) q
√
R0(iκ)

∥∥∥2
I2

= 1

κ

∫ |q̂(ξ)|2
ξ2 + 4κ2 dξ for all κ > 0. (1.11)

In view of the importance of (1.11) for what follows, it will also be convenient to
employ the notation

‖ f ‖2
H−1

κ
:=

∫ | f̂ (ξ)|2
ξ2 + 4κ2 dξ.

With these preliminaries set, we may now give our variational characterization of
multisolitons:

Theorem 1.4 (Variational characterization of multisolitons) Fix N ≥ 1 and distinct
positive parameters β1, . . . , βN . If q ∈ H−1 satisfies

aren(k; q) = 0 for all k ∈ {iβm : 1 ≤ m ≤ N }, (1.12)

then

aren(iκ, q) ≤ exp

{ N∑
m=1

ln
( κ−βm

κ+βm

)
+ 2βm

κ

}
for all κ ≥ 1 + ‖q‖2H−1 . (1.13)

Equality holds in (1.13) for any one such κ if and only if q = Q �β,�c for some �c ∈ R
N .

The fact that equality holds in (1.13) for Q �β,�c is easily deduced from well-known
properties of multisolitons; indeed,

a(k; Q �β,�c) =
N∏

m=1

k − iβm

k + iβm
and aren(k; Q �β,�c) =

N∏
m=1

k − iβm

k + iβm
e2iβm/k ,

as we will discuss in Sect. 2. As each βm is a zero of the determinant a(k; Q �β,�c), we
will often refer to them as eigenvalue parameters (see also (2.25)) to better distinguish
them from the parameters �c.



Orbital Stability of KdV Multisolitons in H−1 1451

The converse claim, identifying multisolitons as the only optimizers, is more chal-
lenging. Nevertheless, it does not directly yield stability: one would also need to know
that profiles that almost optimize (1.13) are close to actual optimizers (i.e., to multisoli-
tons). This leaves us with a very clear ambition of a purely variational character: prove
that optimizing sequences converge to the manifold of multisolitons.

We cannot expect optimizing sequences to have convergent subsequences — the
manifold of optimizers is not compact! This problem arises already in the case of single
solitons, due to the translation symmetry. In the one-soliton case, compactness can be
restored by incorporating translations. This approach was convincingly demonstrated
by Cazenave and Lions [8], who proved orbital stability of ground-state solitary waves
for a variety of NLS-like equations. Their paper is a major inspiration for what follows.

In the multisoliton case, compactness cannot be restored by translation alone. Indeed
the long-time dynamics of the multisolitons themselves is to break into asymptotically
well-separated one-solitons. We need a profile decomposition! However, unlike most
applications of this concentration-compactness technique, there is no sub-additivity in
our problem: dichotomy must be embraced, not refuted. As we will discuss, this is
just one of several subtle aspects to our implementation of this classic concentration-
compactness device.

We should note that the scenario of asymptotically well-separated one-solitons is
not the only manner in which dichotomy can arise for optimizing sequences (or indeed
sequences of optimizers). One may have asymptotically well-separated multisolitons.
This ‘gas of molecules’ scenario will be analyzed in Sect. 3, where we show that a linear
combination of well-separated multisolitons can be well-approximated by a single exact
multisoliton.

Further ways in which our concentration-compactness analysis diverges from the
other examples we know are (i) we are working in trace ideals, not Lebesgue spaces;
(ii) while we do have local compactness, this is non-quantitative arising from mere
equicontinuity; and (iii) the constraints are apportioned across the profiles in an exotic
manner. We will discuss each of these in succession.

Trace ideals (which are also known as non-commutative 	p spaces) have an additional
defect of compactness beyond those of sequence spaces, namely, unitary conjugation.
This in an infinite-dimensional group.

Our concentration-compactness principle contains only translation parameters, no
scaling parameters (Lions dubbed this the locally compact case). In such cases, the
profiles are usually constructed by employing the Rellich–Kondrashov Theorem. In our
case, however, there is no such quantitative principle. We will be able to show that
individual optimizing sequences are equicontinuous (cf. Definition 4.1), but nothing
more.

In the standard analyses, a constraint, such as on the total L2 norm, is apportioned
across the profiles in an additivemanner: themass of the sequence is the sumof themasses
of the profiles, plus that of the remainder. In our case, the constraints are vanishing of the
perturbation determinant. In Sect. 5, we will see that the profiles attendant to optimizing
sequences share the constraints in a different way: different profiles satisfy different
subsets of the constraints.

The paper is organized as follows: In Sect. 2, we first develop the theory of the pertur-
bation determinant a little further. We then use this to prove Theorem 1.4. Our approach
is this: Building on the existing theory of Schwartz-class potentials, we show that the
upper-bound (1.13) holds across all q ∈ H−1. Having first proved linear independence
of the gradients of the constraints, we may analyze the case of equality using the Euler–
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Lagrange equation. Using this device, we show that optimizers are, in fact, Schwartz
class. We may then appeal to classical inverse scattering to deduce that q is an exact
multisoliton.

In Sect. 3, we show that well-separated linear combinations of multisolitons (which
may arise as optimizing sequences) can be approximated by a single multisoliton. This
is notationally very cumbersome; nevertheless, we hope that the virtues of deforming x
into the complex plane and exploiting the determinental relation (3.8) shine through.

In Sect. 4, we develop a profile decomposition attendant to the functional q �→
α(κ; q), defined in (2.1), applied to bounded and equicontinuous sequences in H−1.
Structurally speaking, our approach is the one we advanced in [19], namely, to first
prove an inverse inequality and then employ this inductively to extract profiles.

In Sect. 5, we prove Theorem 1.2, arguing by contradiction. If the theorem were
to fail, then there would exist a sequence of solutions qn so that the initial data qn(0)
converges to the manifold of solitons, and a sequence of times tn so that qn(tn) does not
converge to the manifold of solitons. Using the fact that α(q; κ) is conserved under the
flow, we show that qn is an optimizing sequence for the variational problem described
in Theorem 1.4. (Actually, this is not quite correct, the zeros may be slightly displaced.)
We then employ the profile decomposition of Sect. 4 to show (after some work) that
the optimizing sequence can be approximated by a linear combination of well-separated
multisolitons. This suffices to reach a contradiction because of the analysis in Sect. 3.

We prove Corollary 1.3 in Sect. 6. In doing so, we illustrate two basic methods for
raising the regularity. First we exploit the equicontinuity of orbits to prove the result for
s ∈ (−1, 1). The virtues of this argument are that it is simple and that it further illustrates
the advantages of equicontinuity. Our second method employs conservation laws. When
s ≥ 0 is an integer, we need only the polynomial conservation laws discovered already
in [32] and the argument is once again quite elementary. For general s > −1, we employ
the conservation laws developed in [22].

2. Variational Characterization of Multisolitons

The ultimate goal of this section is to prove Theorem 1.4. This will proceed in several
stages. First, we discuss the logarithm of aren. Then we show that (1.13) holds, first for
Schwartz-class q and then for general q ∈ H−1. The climax of the proof is showing that
all H−1 optimizers are, in fact, Schwartz class and then using this information to show
that they must be multisolitons.

Lemma 2.1. For q ∈ H−1 and κ ≥ 1 + ‖q‖2
H−1 , the series

α(κ; q) :=
∞∑

	=2

1
	
(−1)	 tr

{(√
R0(iκ) q

√
R0(iκ)

)	}
(2.1)

converges and

aren(q; iκ) = exp{−α(q; κ)}. (2.2)

Moreover,

lim inf
κ→∞ 8κ3α(κ; q) = ‖q‖2L2 , (2.3)

with the understanding that LHS (2.3) is infinite if q /∈ L2.



Orbital Stability of KdV Multisolitons in H−1 1453

Proof. Convergence of the series (2.1) under this hypothesis on κ follows immediately
from (1.11). That exponentiating this series yields the renormalized determinant is well
known; indeed, this is little more than the Newton–Girard relation between elementary
and power-sum symmetric functions.

Employing (1.11) in the series (2.1) shows

∣∣∣∣8κ3α(q; κ) −
∫

4κ2|q̂(ξ)|2
ξ2 + 4κ2 dξ

∣∣∣∣ ≤ ‖q‖H−1√
κ − ‖q‖H−1

∫
4κ2|q̂(ξ)|2
ξ2 + 4κ2 dξ, (2.4)

from which (2.3) follows immediately. ��
Incidentally, we note the inequality (2.4) is actually the basis of the proof of a priori

H−1 bounds. Indeed, combining this with a simple bootstrap argument shows that for
κ ≥ 1 + 64‖q(0)‖2

H−1
κ

and any t ∈ R,

2

3

∫ |q̂(t, ξ)|2
ξ2 + 4κ2 dξ ≤ 2κα(κ; q(t)) = 2κα(κ; q(0)) ≤ 8

7

∫ |q̂(0, ξ)|2
ξ2 + 4κ2 dξ. (2.5)

Let us now recall some known facts about the reciprocal transmission coefficient
a(k; q) in the case q is of Schwartz class. The basic analytical facts listed below can
be easily derived from the Wronskian definition of a(k; q) and rigorous proofs can
be found in many basic texts on scattering theory. The claim (2.9) is more serious.
While many introductory texts on the theory of solitons give at least a formal derivation
of (1.3) from the assumption that a(k; q) takes the stated form, a rigorous treatment
requires considerable care, especially on the question of uniqueness. We recommend
the paper [10] of Deift and Trubowitz for a complete and self-contained presentation of
the following (under rather weaker hypotheses):

Proposition 2.2. Fix q ∈ S. Then a(k; q) extends continuously to the closed upper
half-plane. It has finitely many zeroes in C+, all of which are simple and located on the
imaginary axis. Moreover,

|a(k; q)| ≥ 1 for all k ∈ R, (2.6)

|a(k; q) − 1| = O
( 1

|k|
)

as |k| → ∞ uniformly for Im k ≥ 0, (2.7)

and we have the symmetry

a(k; q) = a(−k̄; q) for all k ∈ C
+. (2.8)

Finally, given distinct β1, . . . , βN ∈ (0,∞) and q ∈ S,

a(k; q) =
N∏

m=1

k − iβm

k + iβm
⇐⇒ q ∈ {

Q �β,�c : �c ∈ R
N}

. (2.9)

This does not address the value of the renormalized perturbation determinant for such
multisolitons. The missing ingredient is the following:

∫
Q �β,�c(x) dx = −

N∑
m=1

4βm . (2.10)
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This is proved in both [12] and [42]. One simple approach that explains the additive
structure of RHS (2.10) is this: As the

∫
q is conserved by the flow, the value of LHS

(2.10) can be determined from the value for N well-separated single solitons.Alternately,
one may deduce this by comparing the large-k asymptotics of LHS (2.9) with those of
a(κ; q). From the same references or by the same method, one can also find

P
(
Q �β,�c

) = 8
3

∑
m

β3
m and H

(
Q �β,�c

) = − 32
5

∑
m

β5
m . (2.11)

Combining (1.8), (2.2), and (2.10) shows

aren(k; Q �β,�c) =
N∏

m=1

k − iβm

k + iβm
e2iβm/k for all k ∈ C

+, (2.12)

α(κ; Q �β,�c) = −
N∑

m=1

[
2βm
κ

+ ln
( κ−βm

κ+βm

)]
for all κ ≥ 1 + ‖q‖2H−1 . (2.13)

As Lemma 2.1 guarantees that aren is non-vanishing for κ ≥ 1 + ‖q‖2
H−1 , the restriction

on κ guarantees κ > supm βm and consequently, that RHS (2.13) is positive:

G
(βm

κ

) := −
[
2βm
κ

+ ln
( κ−βm

κ+βm

)] =
∑
	≥1

2
2	+1

(βm
κ

)2	+1
> 0. (2.14)

Recalling (2.2), we see that multisolitons achieve equality in (1.13). We next show
that this is indeed a bound for all q. This will be done in two steps: first for q ∈ S and
then for q ∈ H−1:

Proposition 2.3. For q ∈ S and κ ≥ 1 + ‖q‖2
H−1 ,

α(κ; q) ≥ −
N∑

m=1

[
ln

( κ−βm
κ+βm

)
+ 2βm

κ

]
, (2.15)

where {iβm : 1 ≤ m ≤ N } enumerates the 0 ≤ N < ∞ zeros of aren.

Proof. Proposition 2.2 shows that a(k; q) has only finitelymany zeros and all are simple.
Using these, we build the Blaschke product

B(k) =
N∏

m=1

k − iβm

k + iβm
.

In the case a(k; q) has no zeros, B(k) ≡ 1.
Using Proposition 2.2 again, we see that k �→ ln

∣∣ a(k;q)
B(k)

∣∣ is harmonic on C
+ and

extends continuously to ∂C+. Moreover,

ln
∣∣ a(k;q)

B(k)

∣∣ ≥ 0 for all k ∈ R and ln
∣∣ a(k;q)

B(k)

∣∣ = O
( 1

|k|
)

as |k| → ∞. (2.16)

It follows from the maximum principle that this function is non-negative throughoutC+.
The Herglotz Representation Theorem (cf. [1, Theorem 3, §59]) then guarantees

ln
[ a(k;q)

B(k)

] = −i
∫
R

dμ(t)
t−k , (2.17)
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for some finite positive measure dμ onR. This measure is also even under t �→ −t ; this
is inherited from the symmetry (2.8) enjoyed by both a(k; q) and B(k).

In this way, we see that for κ ≥ 1 + ‖q‖2
H−1 ,

− ln a(iκ; q) = −
∑
m

ln
( κ−βm

κ+βm

)
+ i

∫
t+iκ
t2+κ2

dμ(t) = −
∑
m

ln
( κ−βm

κ+βm

) − κ

∫
dμ(t)
t2+κ2

.

On the other hand, (1.8), (2.2), and (2.3) show that as κ → ∞,

∣∣∣− ln a(iκ; q) + 1
2κ

∫
q(x) dx

∣∣∣ = O(κ−3).

Combining these two observations, we deduce that
∫

q(x) dx = lim
κ→∞

[∑
m

2κ ln
( κ−βm

κ+βm

)
+

∫
2κ2

t2+κ2
dμ(t)

]

= −4
∑
m

βm + 2
∫

dμ(t)
(2.18)

and thence that

α(κ; q) = − ln aren(iκ; q) = −
N∑

m=1

[
ln

( κ−βm
κ+βm

)
+ 2βm

κ

]
+

∫
t2

κ(t2+κ2)
dμ(t), (2.19)

for all κ ≥ 1 + ‖q‖2
H−1 . The claim (2.15) follows since dμ ≥ 0. ��

Corollary 2.4. Fix N ≥ 0 and distinct positive parameters β1, . . . , βN . Assume that
q ∈ H−1 satisfies

aren(iβm; q) = 0 for all 1 ≤ m ≤ N .

Then for κ ≥ 1 + ‖q‖2
H−1 we have

α(κ; q) ≥ −
N∑

m=1

[
ln

( κ−βm
κ+βm

)
+ 2βm

κ

]
. (2.20)

Moreover, if equality holds in (2.20) for one such κ then it holds for all such κ .

Proof. Let { fn}n≥1 be a sequence of Schwartz functions that converge to q in H−1. As
the renormalized perturbation determinant is continuous on H−1, we have

lim
n→∞ aren(k; fn) = aren(k; q) uniformly on compact subsets ofC+.

Using Hurwitz’s theorem and (1.8), we deduce that for each 1 ≤ m ≤ N and n suffi-
ciently large there exits distinct β(n)

m so that

a(iβ(n)
m ; fn) = 0 and lim

n→∞ β(n)
m = βm . (2.21)

Note that it is quite possible that a(κ; fn) and/or a(κ; q) have additional zeros.
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Using the positivity (2.14) to discard additional zeros, we see that (2.15) yields

α(κ; fn) ≥ −
N∑

m=1

ln
(

κ−β
(n)
m

κ+β
(n)
m

)
+ 2β(n)

m
κ

−−−→
n→∞ −

N∑
m=1

ln
(

κ−βm
κ+βm

)
+ 2βm

κ
. (2.22)

The claim (2.20) now follows because α is continuous on H−1.
Suppose now that equality holds in (2.20) for some single value κ0 ≥ 1 + ‖q‖2

H−1 .
Let us write dμn for the measure representing a(k; fn) in the sense of (2.17). It then
follows from (2.19) and (2.21) that

∫
t2

κ0(t2+κ20 )
dμn(t) → 0 and thence that

∫
t2

κ(t2+κ2)
dμn(t) → 0

for every κ > 0. This in turn guarantees that equality holds in (2.20) for every κ ≥
1 + ‖q‖2

H−1 . ��
We are now ready to realize the ultimate goal of this section:

Proof of Theorem 1.4. In view of Corollary 2.4, it remains to show that if (1.12) holds
and

α(κ; q) = −
N∑

m=1

ln
( κ−βm

κ+βm

)
+ 2βm

κ
for all κ ≥ 1 + ‖q‖2H−1 , (2.23)

then q = Q �β,�c for some choice of �c ∈ R
N . The first step in the proof will be to show

that all such optimizers q belong to Schwartz class. In the second step, we will prove
that

a(k; q) =
N∏

m=1

k − iβm

k + iβm
. (2.24)

In view of Proposition 2.2, this implies that q is a multisoliton, thus completing the proof
of the theorem.

From (2.3), (2.14), and (2.23), we see already that q ∈ L2. We will get further
regularity and decay by studying the Euler–Lagrange equation satisfied by q. To begin,
we note that since aren(iβm; q) = 0, there exist φm ∈ L2 such that

(
1 +

√
R0(iβm)q

√
R0(iβm)

)
φm = 0 and ‖φm‖2 = 1.

Writing ψm := √
R0(iβm)φm we obtain

(−∂2 + q + β2
m

)
ψm = 0 and ‖ψm‖H1

βm
= 1. (2.25)

Note also that the eigenvalue −β2
m must be simple. Indeed, if there were two linearly

independent eigenfunctions ψm(x), ηm(x) ∈ H1, then the Wronskian

ψ ′
m(x)ηm(x) − ψm(x)η′

m(x),

which is independent of x , would need to be both L1 and (by virtue of linear indepen-
dence) non-zero; this is clearly inconsistent.
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As q ∈ L2, we see that (2.25) implies thatψm ∈ H2 and soψ2
m ∈ L1∩H2.Moreover,

a quick computation shows that
(−∂3 + 2∂q + 2q∂ + 4κ2∂

)
ψ2
m = 4(κ2 − β2

m)(ψ2
m)′ (2.26)

in H−1 sense.
Next, we claim that the functions {ψ2

m}Nm=1 are linearly independent. Indeed, assume
(towards a contradiction) that there were aminimal collection� ⊆ {1, . . . , N } such that

∑
m∈�

cmψ2
m = 0 with cm �= 0 for all m ∈ �. (2.27)

Fixing some n ∈ � and applying
(−∂3 + 2∂q + 2q∂ + 4β2

n∂
)
to (2.27) and using (2.26)

we obtain ∑
m �=n∈�

cn(β
2
m − β2

n )(ψ
2
m)′ = 0.

As β1, . . . , βN are distinct and ψ2
m decay at infinity, this contradicts the minimality of

the collection �.
The functionsψ2

m represent the gradients of the constraints aren(iβm;φ) = 0. Indeed,

δ
δq aren(iβm; q) = det

φ⊥
m

2
(
1 +

√
R0(iβm)q

√
R0(iβm)

)
ψ2
m,

where the subscript on det2 indicates the Hilbert space over which the renormalized
determinant is computed. Concretely, in this case this is the Hilbert space of functions
orthogonal to φm . As the eigenvalues −β2

m are simple, the renormalized determinant
over φ⊥

m is non-zero.
The gradient of α is easily derived from the series (2.1):

δ
δq α(κ; q) = 1

2κ − g(κ; q),

where g(κ; q) is the diagonal Green’s function. This is discussed in greater detail in
[20]. As q ∈ L2, [20, Proposition A.2] shows that 1

2κ − g(κ;φ) ∈ H2; we also have the
long-known identity

(−∂3 + 2∂q + 2q∂ + 4κ2∂
)
g(κ; q) = 0

which holds in H−1 sense (cf. [20, Proposition 2.3]).
As the gradients ψ2

m of the constraints have been shown to be linearly independent,
we deduce that the optimizer q satisfies the Euler–Lagrange equation

1
2κ − g(κ; q) =

N∑
m=1

λmψ2
m (2.28)

for each κ ≥ 1 + ‖q‖2
H−1 and some (κ-dependent) multipliers λ1, . . . , λN ∈ R. Con-

sequently, applying
(−∂3 + 2∂q + 2q∂ + 4κ2∂

)
to (2.28) and using (2.26), we deduce

that

1
κ
q ′ =

N∑
m=1

4λm(κ2 − β2
m)(ψ2

m)′.
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However, q ∈ L2 and ψ2
m ∈ H2; thus

1
κ
q =

N∑
m=1

4λm(κ2 − β2
m)ψ2

m (2.29)

and so q ∈ H2. By alternately applying (2.25) and (2.29), we deduce that q is infinitely
smooth.

From (2.29) we see that q ∈ L1. It then follows from (2.25) that each eigenfunction
decays exponentially; see [9, §3.8]. Applying (2.29) again we deduce that q decays
exponentially. Thus q ∈ S.

It remains to prove (2.24). Now that we know q ∈ S, we may deploy the technology
used in the proof of Proposition 2.3. First we note that (2.15) and the positivity (2.14)
guarantee that aren has no zeros beyond those prescribed in (1.12). In this way, the
representation (2.17) yields

a(k; q) = exp

{
−i

∫
dμ(t)

t − k

}
·

N∏
m=1

k − iβm

k + iβm

for some finite positive measure dμ on R. On comparing (2.19) and (2.23), we see that
anymass dμ hasmust be concentrated at the origin. As the holomorphic function a(k; q)

admits a continuous extension to ∂C+, we find that dμ ≡ 0 and so (2.24) holds. ��

3. Molecular Decomposition of Multisolitons

The principal goal of this section is to prove Proposition 3.1. This shows that linear
combinations of well-separated multisolitons may be well approximated by a single
multisoliton. We refer to this as a molecular decomposition building on the analogy of
one-solitons to atoms and of multisolitons to molecules.

We will see that the eigenvalue parameters �β j of the individual multisolitons in this
rarefied gas form a partition of the eigenvalue parameters �β of the single approximating
multisoliton. Equivalently, �β is built as the concatenation of the �β j , which we write as∐ �β j . We do not allow any repetitions of individual eigenvalue parameters, not only
within individual �β j , but across the entire collection

∐ �β j .
The interrelation between the position parameters �c j of the individual molecules and

that of the approximating multisoliton is much more subtle since it must accommodate
the correct combination of phase-shifts; see (3.3).

Proposition 3.1. Let multisoliton parameters �β j and �c j be given for each 1 ≤ j ≤ J ,
with no eigenvalue parameter repeated. For any J -tuple of sequences x j

n satisfying

lim
n→∞

(
x j
n − xin

) = ∞ for all 1 ≤ i < j ≤ J, (3.1)

there exists a sequence �cn so that setting �β = ∐ �β j , we have

Q �β,�cn (x) −
J∑

j=1

Q �β j ,�c j (x − x j
n ) −→ 0 (3.2)

in L2(R) sense as n → ∞.
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The decoupling requirement (3.1) could be statedwith absolute values without affect-
ing the conclusion of the theorem. However, ordering the translation parameters from
the start makes the proof much easier to explain.

The scenario analyzed here is something of a reverse of the long-time asymptotics of
multisolitons. In that scenario, one startswith amultisoliton Q �β,�c(t), with the components

of �c(t) satisfying an analogue of (3.1) as t → ∞, and the goal is to find positions x j (t)
so that Q �β,�c(t) can be approximated by a linear combination of one-solitons as t → ∞.
Despite these differences, we still feel that our approach to treating the error terms could
streamline discussions of that subject too.

Each of the multisolitons appearing in (3.2) is defined via the determinant of a matrix
and each matrix is potentially of a different size. We need a prudent means of indexing
all these matrices. For each 1 ≤ j ≤ N , let I j denote (disjoint) index sets of size # �β j

(the number of entries in �β j ). We will then use I = ∐
I j as our indexing set of size # �β.

Our first application of these notations is to give a formula for the sequence cn needed
for Proposition 3.1: For μ ∈ I j ,

(cn)μ = x j
n + c jμ − 1

βμ

∑
σ

ln
[

βσ −βμ

βσ+βμ

]
, (3.3)

where the sum extends over all σ ∈ I 	 for all 	 > j .
We also need to construct two families of matrices: For fixed 1 ≤ j ≤ J we define a

matrix B( j)(x; �β, �c) indexed over I × I by

B( j)
μν (x; �β, �c) ν ∈ I 	, 	 < j ν ∈ I j ν ∈ I 	, 	 > j

μ ∈ I 	, 	 < j δμν 0 0

μ ∈ I j 0 Aμν(x)
1

βμ+βν
e−βμ(x−cμ)

μ ∈ I 	, 	 > j 0 1
βμ+βν

e−βν(x−cν ) 1
βμ+βν

(3.4)

where Aμν(x) is as in (1.4). Similarly, we define

E ( j)
μν (x; �β, �c) ν ∈ I 	, 	 < j ν ∈ I j ν ∈ I 	, 	 > j

μ ∈ I 	, 	 < j Aμν(x) − δμν Aμν(x)
1

βμ+βν
e−βμ(x−cμ)

μ ∈ I j Aμν(x) 0 0

μ ∈ I 	, 	 > j 1
βμ+βν

e−βν(x−cν ) 0 δμνeβμ(x−cμ)+βν(x−cν )

(3.5)

As we shall see, B( j) is the dominant term for those x near xkn , while E ( j) functions
as an error term.

Lemma 3.2. Fix L > 0. Then under the hypotheses of Proposition 3.1,

lim sup
n→∞

∥∥B( j)(x j
n + z; �β, �cn)

∥∥ < ∞ and lim sup
n→∞

∥∥E ( j)(x j
n + z; �β, �cn)

∥∥ = 0 (3.6)

uniformly for z ∈ [−L , L] + i[−1, 1]. Moreover, for all x ∈ R,

Q �β,�cn (x) = −2 d2

dx2
ln det

[
B( j)(x; �β, �cn) + E ( j)(x; �β, �cn)

]
. (3.7)



1460 R. Killip, M. Vişan

Proof. As we are dealing with finite matrices, our claims about the operator norm can
be verified considering each matrix entry individually. From this perspective, the claim
(3.6) follows simply from the behavior of x j

n − (cn)μ: this is bounded when μ ∈ I j ; it
diverges to +∞ when μ ∈ I 	 with 	 < j ; and it diverges to −∞ when μ ∈ I 	 with
	 > j .

The claim (3.7) follows readily from the identity

det
[
A �β,�cn (x)

] = det
[
B( j)(x; �β, �cn) + E ( j)(x; �β, �cn)

] ×
∏

e−2βμ(x−cμ),

where the product is taken over those μ ∈ I 	 for each 	 < j . This product appears
because common factors have been extracted from these rows and columns. ��

As a stepping-stone to our analysis of B( j) in Lemma 3.4, we first make preparations
for evaluating its determinant. In the case Dμν ≡ 0, our next lemma relates two Cauchy
determinants (as they are known); indeed, it provides the basic inductive step for the
complete evaluation of such determinants.

Lemma 3.3 (A Cauchy-like Determinant). Given an N × N matrix D, real numbers
a1, . . . , aN , and positive β1, . . . , βN+1, we define

ãμ = βN+1−βμ

βN+1+βμ
aμ.

Then we have the following identity between two determinants:

∣∣∣∣∣
Dμν +

aμaν

βμ+βν

aμ

βμ+βN+1
aν

βN+1+βν

1
βN+1+βN+1

∣∣∣∣∣ = 1
2βN+1

∣∣∣Dμν +
ãμãν

βμ+βν

∣∣∣ . (3.8)

On the right, we have an N × N determinant. The one on the left is (N + 1) × (N + 1),
with the extra row and column as indicated.

Proof. This is a simple matter of applying row and column operations: First we subtract
aμ times the bottom row of LHS (3.8) from the μth row and use the identity

1
βμ+βν

− 1
βN+1+βν

= βN+1−βμ

(βN+1+βν)(βμ+βν)
.

Extracting the common factor from the final column, this yields

LHS(3.8) = 1
2βN+1

∣∣∣∣∣
Dμν +

âμǎν

βμ+βν

âμ

βμ+βN+1

ǎν 1

∣∣∣∣∣
with âμ = (βN+1 − βμ)aμ and ǎν = aν

βN+1+βν
.

Next we subtract ǎν times the last column from the νth and apply the identity

1
βμ+βν

− 1
βμ+βN+1

= βN+1−βν

(βμ+βν)(βμ+βN+1)
.

The result then follows since the bottom row is now populated by zeros, excepting a one
in the final position. ��
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Lemma 3.4. Fix L > 0. Under the hypotheses on Proposition 3.1, there exists δ > 0 so
that

∣∣ det[B( j)(x j
n + z; �β, �cn)

]∣∣ � 1 (3.9)

uniformly for n ∈ N and z ∈ [−L , L] + i[−δ, δ]. Moreover, for every x ∈ R,

−2 d2

dx2
ln det

[
B( j)(x; �β, �cn)

] = Q �β j ,�c j (x − x j
n ). (3.10)

Proof. Applying Lemma 3.3 iteratively, we find that

det
[
B( j)(x; �β, �cn)

] =
(∏

σ

1
2βσ

)
· det

[
δμν +

ãμãν

βμ+βν

]
I j×I j

(3.11)

where the parameters ãμ (which also depend on n) are given by

ãμ = exp{−βμ(x − (cn)μ)} ·
∏
σ

βσ −βμ

βσ+βμ
,

and both products extend over all σ ∈ I 	 for all 	 > j . Referring back to Definition 1.1
and (3.3), we see that we have succeeded in proving (3.10).

When z is real, the inequality (3.9) follows from (3.11) because the matrix C with

entriesCμν = ãμãν

βμ+βν
is bounded and (strictly) positive definite (as is easily verified from

(3.8) and Sylvester’s criterion).
To extend the bound to complex z, it suffices to show that we can choose δ > 0 so

that every eigenvalue of the matrix C has positive real part. Writing z = x + iy, we see
that it suffices to prove that

∑
ψμ

[
cos(βμy) cos(βν y) − sin(βμy) sin(βν y)

] ãμ(x)ãν (x)
βμ+βν

ψν ≥ 0

for every complex vector ψμ. Thus, we see that there is such a choice of δ > 0 because
of the boundedness and positive-definiteness of C for z real. ��
Proof of Proposition 3.1. Our first goal is to prove the following variant of (3.2):

Q �β,�cn (x + x j
n ) −→ Q �β j ,�c j (x) as n → ∞, (3.12)

uniformly for x ∈ [−L , L] for each fixed j and any fixed L > 0.
Combining Cramer’s rule with the Hadamard inequality, we find

∥∥B( j)(x; �β, �cn)−1E ( j)(x; �β, �cn)
∥∥ �

∥∥B( j)(x; �β, �cn)
∥∥# �β−1∥∥E ( j)(x; �β, �cn)

∥∥∣∣det B( j)(x; �β, �cn)
∣∣

where the implicit constant dependsonlyon# �β . Thus, it follows from(3.9) andLemma3.2
that for each L > 0 there is a δ > 0 so that

ln det
[
B( j)(x j

n + z; �β, �cn) + E ( j)(x j
n + z; �β, �cn)

] = ln det
[
B( j)(x j

n + z; �β, �cn)
]
+ o(1)

as n → ∞ uniformly for z ∈ [L ,−L] + i[−δ, δ]. Because we have convergence in
a complex neighbourhood of each x , this convergence extends to all derivatives. Thus
(3.12) follows from (3.7) and (3.10).
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From (3.12) we may then infer that as n → ∞,

∫
En

∣∣∣Q �β,�cn (x) −
J∑

j=1

Q �β j ,�c j (x − x j
n )

∣∣∣2 dx −→ 0, (3.13)

where En = ∪ j [x j
n − L , x j

n + L]. On the other hand, from (2.11) we get

∫
R

∣∣Q �β,�cn (x)
∣∣2 dx =

∑
μ∈I

16
3 β3

μ =
J∑

j=1

∫ ∣∣Q �β j ,�c j (x − x j
n )

∣∣2 dx .

Using this and (3.13) we find that the integral over the complementary region Ec
n makes

an asymptotically negligible contribution for L large. Thus (3.2) follows. ��

4. Concentration Compactness

The goal of this section is to prove Proposition 4.2, which provides a concentration-
compactness principle for the functional α(κ; q) acting on bounded equicontinuous
sequences in H−1. We begin by recalling the definition of H−1-equicontinuity.

Definition 4.1. A subset F ⊆ H−1(R) is H−1-equicontinuous if

lim sup
y→0

sup
f ∈F

∥∥ f (x − y) − f (x)
∥∥
H−1
x

= 0. (4.1)

While this definitionmakes a strong parallel with those used in the Arzelà–Ascoli and
Fréchet–Kolmogorov Theorems, we shall primarily employ the equivalent formulation
(4.7) discussed below.

Proposition 4.2 (Concentration compactness principle) Assume that {un}n≥1 is a boun-
ded and equicontinuous sequence in H−1. Passing to a subsequence there exist J∗ ∈
{0, 1, 2, . . .} ∪ {∞}, non-zero profiles φ j ∈ H−1, and positions x j

n ∈ R such that for
any finite 0 ≤ J ≤ J ∗ we have the decomposition

un(x) =
J∑

j=1

φ j (x − x j
n ) + r Jn (x)

with the following properties: for each fixed κ ≥ 1 + supn ‖un‖2H−1 ,

lim
J→J∗ lim

n→∞ tr
{(√

R0(iκ)r Jn
√
R0(iκ)

)4} = 0, (4.2)

sup
J

lim
n→∞

[
α(κ; un) −

J∑
j=1

α(κ;φ j ) − α(κ; r Jn )
]

= 0, (4.3)

lim
n→∞ |x j

n − x	
n | = ∞ for all j �= 	. (4.4)

Moreover,

lim
J→J∗ lim

n→∞

∣∣∣∣α(κ; r Jn ) − 1

2κ

∫ |r̂ Jn (ξ)|2
ξ2 + 4κ2 dξ

∣∣∣∣ = 0. (4.5)
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Equation (4.2) shows that the remainder is small in the sense that a certain operator is
small in I4, the trace ideal modeled on 	4. In fact, it is negligible in any Ip with p > 2.
This follows from (4.2) by means of the basic inequality

‖A‖Ip ≤ ‖A‖θ
Ip1

‖A‖1−θ
Ip2

when 1 ≤ p1 < p < p2 ≤ ∞ and θ = p1
p · p2−p

p2−p1
. (4.6)

Nonetheless, as (4.5) shows, the remainder term may make a significant contribution
to α. We shall ultimately see that optimizing sequences must have negligible remainder
term because it contributes too much to α.

The nucleus of the proof of Proposition 4.2 is the inverse inequality Lemma 4.3. It
shows that non-trivial I4 norm may be attributed to the existence of a non-trivial profile
common to a subsequence of the original sequence un . Before stating this lemma, let us
quickly discuss our notations for basic Littlewood-Paley theory; these will be needed in
the proof.

For M ∈ 2Z, we write PM for the Fourier multiplier operators defined via a partition
of unity adapted to the partition {ξ ∈ R : 1

2M < |ξ | ≤ 2M} of R. We then define
projections onto high and low frequencies via

P≤M f =
∑

2Z�M ′≤M

PM ′ f and P≥M f =
∑

2Z�M ′≥M

PM ′ f.

It is not difficult to verify (cf. [20, Lemma 4.2]) that a bounded subset F ⊆ H−1(R)

is H−1-equicontinuous if and only if

lim sup
M→∞

sup
f ∈F

‖P≥M f ‖H−1 = 0. (4.7)

One of the key estimates we need is the Bernstein inequality,

‖P≤M f ‖Lq � M
1
p − 1

q ‖ f ‖L p whenever 1 ≤ p ≤ q ≤ ∞.

Lemma 4.3. (Inverse inequality)Assume {un}n≥1 are equicontinuous in H−1 and satisfy

ε < lim inf
n→∞ tr

{(√
R0(iκ)un

√
R0(iκ)

)4}
and lim sup

n→∞
‖un‖H−1 < A

for some positive ε, finite A, and some κ ≥ 1+ A2. Then passing to a subsequence there
exist a non-zero profile φ ∈ H−1 and positions xn ∈ R such that

un(x + xn) ⇀ φ(x) weakly in H−1,

lim
n→∞

[
α(κ; un) − α(κ; un(· + xn) − φ)

]
= α(κ;φ). (4.8)

Proof. Passing to a subsequence, we may assume that for all n we have

1
2ε < tr

{(√
R0(iκ)un

√
R0(iκ)

)4} and ‖un‖2H−1 < 2A2.

For M ∈ 2N, we use (1.11) to estimate

tr
{(√

R0(iκ)[P≥Mun]
√
R0(iκ)

)4} �
∥∥√

R0(iκ)[P≥Mun]
√
R0(iκ)

∥∥4
I2

� κ−2‖P≥Mun‖4H−1
κ

� ‖P≥Mun‖4H−1 < 1
8ε,

(4.9)
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provided M is sufficiently large depending on ε, in view of the equicontinuity of un .
On the other hand, for dyadic M ≤ 1 we may use Bernstein to estimate

‖P≤Mun‖2L∞ � M‖P≤Mun‖2L2 � M3‖un‖2H−1

and so, also using (1.11), deduce that

tr
{(√

R0(iκ)[P≤Mun]
√
R0(iκ)

)4}
�

∥∥√
R0(iκ)[P≤Mun]

√
R0(iκ)

∥∥2
I2

‖P≤Mun‖2L∞
∥∥√

R0(iκ)
∥∥4
L2→L2

� κ−5M3A4 < 1
8ε, (4.10)

provided M is sufficiently small depending on ε and A.
Therefore, passing to a further subsequence, we deduce that there exists a dyadic M

such that

tr
{(√

R0(iκ)[PMun]
√
R0(iκ)

)4} ≥ c(ε, A) for all n,

where c(ε, A) is a positive continuous function on [0,∞) × [0,∞). As

tr
{(√

R0(iκ)[PMun]
√
R0(iκ)

)4} � κ−1‖un‖2H−1
κ

κ−4‖PMun‖2∞ � A2‖PMun‖2∞,

there exists xn ∈ R such that

|[PMun](xn)| � c(ε, A)A−2. (4.11)

As the sequence un(x + xn) is bounded in H−1, passing to a subsequence we find
φ ∈ H−1 such that

un(x + xn) ⇀ φ(x) weakly inH−1. (4.12)

In view of (4.11), we see that φ �= 0. In fact, it is not difficult to verify that

tr
{(√

R0(iκ)φ
√
R0(iκ)

)4} ≥ c̃(ε, A), (4.13)

where c̃(ε, A) is a positive continuous function on [0,∞) × [0,∞). Indeed, even the
operator norm of

√
R0(iκ)φ

√
R0(iκ) satisfies such a lower bound.

It remains to prove the asymptotic decoupling (4.8). To this end, it suffices to show
that for all 	 ≥ 2 we have

lim
n→∞ tr

{(√
R0(iκ)un

√
R0(iκ)

)	} − tr
{(√

R0(iκ)
[
un(· + xn) − φ

]√
R0(iκ)

)	}

= tr
{(√

R0(iκ)φ
√
R0(iκ)

)	}
. (4.14)

The case 	 = 2 of (4.14) follows easily from the weak convergence (4.12) and the
fact that H−1

κ is a Hilbert space. Indeed, by (1.11),

tr
{(√

R0(iκ)un
√
R0(iκ)

)2} − tr
{(√

R0(iκ)
[
un(· + xn) − φ

]√
R0(iκ)

)2}
= κ−1‖un‖2H−1

κ
− κ−1‖un(· + xn) − φ‖2

H−1
κ

= κ−1‖φ‖2
H−1

κ
+ 8Re〈R0(2iκ)φ, un(· + xn) − φ〉L2

= tr
{(√

R0(iκ)φ
√
R0(iκ)

)2} + o(1) as n → ∞.
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We now turn to the case 	 ≥ 3 in (4.14). First, combining (4.6) with (4.9) and (4.10),
we see that we may discard very high and very low frequencies from further consid-
eration. Specifically, we must prove that (4.14) holds when un and φ are replaced by
Pmedun and Pmedφ, respectively, for any fixed choice of projection Pmed = P≥M0 P≤M1

onto middle frequencies.
From (4.12) and Rellich’s Theorem, we may pass to a further subsequence, if neces-

sary, to ensure that

vn := Pmed
[
un(· + xn) − φ

] → 0 uniformly on compact sets. (4.15)

We use this as follows: From the explicit kernel of R0, we have that as n → ∞,

∥∥vn R0(iκ)[Pmedφ]∥∥2
I2

=
∫∫

1
4κ e

−2κ|x−y||vn(x)|2|Pmedφ(y)|2 → 0. (4.16)

To continue, we write

tr
{(√

R0(iκ)[Pmedun]
√
R0(iκ)

)	} − tr
{(√

R0(iκ)[Pmedφ]√R0(iκ)
)	}

− tr
{(√

R0(iκ)vn
√
R0(iκ)

)	}
=

∑
tr
{
R0(iκ)F1R0(iκ)F2 · · · R0(iκ)F	

}
,

where the sum is over all choices of F1, . . . , F	 ∈ {vn, Pmedφ} that are not all identical.
We estimate

∣∣tr{R0(iκ)F1R0(iκ)F2 · · · R0(iκ)F	

}∣∣
�

∥∥vn R0(iκ)Pmedφ
∥∥
I2

‖√R0(iκ)‖2L2→L2

×
[∥∥√

R0(iκ)[Pmedun]
√
R0(iκ)

∥∥
I2

+
∥∥√

R0(iκ)[Pmedφ]√R0(iκ)
∥∥
I2

]	−2

which converges to zero as n → ∞ in view of (4.16) and (1.11). ��
We are now ready to complete the

Proof of Proposition 4.2. Fix κ0 = 1 + supn ‖un‖2H−1 . We will apply Lemma 4.3 at

spectral parameter κ0 inductively, extracting one profile at a time. To start, we set r0n :=
un . Now suppose we have a decomposition up to level J ≥ 0 satisfying (4.3). Passing
to a subsequence if necessary, we set

AJ := lim
n→∞ ‖r Jn ‖Ḣ−1 and εJ := lim

n→∞ tr
{(√

R0(iκ0)r
J
n

√
R0(iκ0)

)4}
.

If εJ = 0, we stop and set J ∗ = J . If not, we apply Lemma 4.3 at spectral parameter
κ0 to r Jn . Passing to a subsequence in n, this yields a non-zero profile φ J+1 ∈ Ḣ−1 and
positions x J+1

n ∈ R such that

φ J+1(x) = w-lim
n→∞ r Jn

(
x + x J+1

n

)
. (4.17)

To continue, we define r J+1n (x) := r Jn (x) − φ J+1
(
x − x J+1

n

)
. From Lemma 4.3,

lim
n→∞

[
α(κ0; r Jn ) − α(κ0; r J+1n ) − α(κ0;φ J+1)

]
= 0,
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which combined with the inductive hypothesis gives (4.3) at the level J + 1 and spectral
parameter κ0. Moreover, from (4.14) we get

lim
n→∞ tr

{(√
R0(iκ0)r

J
n

√
R0(iκ0)

)4} − tr
{(√

R0(iκ0)r
J+1
n

√
R0(iκ0)

)4}

= tr
{(√

R0(iκ0)φ
J+1

√
R0(iκ0)

)4}
,

which combined with (4.13) yields

εJ+1 ≤ εJ − cJ+1(εJ , AJ ) (4.18)

for some positive function cJ+1 which is continuous on [0,∞) × [0,∞).
If εJ+1 = 0, we stop and set J ∗ = J + 1; in this case, (4.2) at spectral parameter κ0

is automatic. If εJ+1 > 0 we continue the induction. If the algorithm does not terminate
in finitely many steps, we set J ∗ = ∞; in this case, (4.18) guarantees that εJ → 0 as
J → ∞ and so (4.2) at spectral parameter κ0 follows.

Next we confirm that (4.2) and (4.3) hold at all spectral parameters κ ≥ κ0. The
asymptotic decoupling (4.3) carries over because our argument relies solely on the
weak convergence (4.17), as evinced by the proof of (4.14). The claim (4.2) at spectral
parameter κ follows from that at spectral parameter κ0 since

∥∥R0(iκ)
1
2 R0(iκ0)

− 1
2
∥∥
L2→L2 ≤ 1.

Next we verify the asymptotic orthogonality condition (4.4). We argue by contradic-
tion. Assume (4.4) fails to be true for some pair ( j, 	). Without loss of generality, we
may assume that this is the first pair for which (4.4) fails, that is, j < 	 and (4.4) holds
for all pairs ( j,m) with j < m < 	. Passing to a subsequence, we may assume

lim
n→∞

(
x j
n − x	

n

) = x0. (4.19)

From the inductive relation

r	−1
n = r j

n −
	−1∑

m= j+1

φm(· − xmn ),

we get

φ	(x) = w-lim
n→∞ r	−1

n (x + x	
n)

= w-lim
n→∞ r j

n (x + x	
n) −

	−1∑
m= j+1

w-lim
n→∞ φm(x + x	

n − xmn ), (4.20)

where the weak limits are in the H−1 topology. That the first limit on the right-hand side
of (4.20) is zero follows from (4.19) and the observation that by construction,

w-lim
n→∞ r j

n (· + x j
n ) = 0.

That the remaining limits are zero follows from our assumption that (4.4) holds for
all pairs ( j,m) with j < m < 	. Thus (4.20) yields φ	 = 0, which contradicts the
nontriviality of φ	. This completes the proof of (4.4).
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Lastly, we prove (4.5):

∣∣∣α(κ; r Jn ) − 1
2κ

∫ ∣∣r̂ Jn (ξ)

∣∣2
ξ2+4κ2

dξ

∣∣∣
≤

∑
	≥3

1
	

∥∥√
R0(iκ)r Jn

√
R0(iκ)

∥∥	

I	

≤ ∥∥√
R0(iκ)r Jn

√
R0(iκ)

∥∥2
I4

∥∥√
R0(iκ)r Jn

√
R0(iκ)

∥∥
I2

+
∑
	≥4

∥∥√
R0(iκ)r Jn

√
R0(iκ)

∥∥4
I4

∥∥√
R0(iκ)r Jn

√
R0(iκ)

∥∥	−4
L2→L2

�
∥∥√

R0(iκ)r Jn
√
R0(iκ)

∥∥2
I4

κ− 1
2 ‖r Jn ‖H−1

κ

+
∥∥√

R0(iκ)r Jn
√
R0(iκ)

∥∥4
I4

∑
	≥4

κ− 	−4
2 ‖r Jn ‖	−4

H−1
κ

�A
∥∥√

R0(iκ)r Jn
√
R0(iκ)

∥∥2
I4

+
∥∥√

R0(iκ)r Jn
√
R0(iκ)

∥∥4
I4

.

Thus, using (4.2) we deduce (4.5) ��

5. Orbital Stability

This section is dedicated to the proof of Theorem 1.2. We argue by contradiction.
Fix N ≥ 1 and distinct positive parameters β1, . . . , βN . Assume, towards a con-

tradiction, that there exist ε0 > 0, initial data qn(0) ∈ H−1, and times tn ∈ R such
that

inf
�c∈RN

‖qn(0) − Q �β,�c‖H−1 −→ 0 as n → ∞ (5.1)

but

inf
�c∈RN

‖qn(tn) − Q �β,�c‖H−1 ≥ ε0 for all n ≥ 1. (5.2)

Recalling that aren and α are continuous functions on H−1 and conserved by the KdV
flow, (5.1), (2.12), and (2.13) imply that

lim
n→∞ aren(k; qn(tn)) = lim

n→∞ aren(k; qn(0)) =
N∏

m=1

k − iβm

k + iβm
e
2iβm
k (5.3)

uniformly for k in compact subsets of C+ and

lim
n→∞ α(κ; qn(tn)) = lim

n→∞ α(κ; qn(0)) = −
N∑

m=1

ln
( κ−βm

κ+βm

)
+ 2βm

κ
(5.4)

uniformly for κ ≥ 1+ 512
3

∑
m β3

m .With a view to future needs, our bound on κ combines
the restriction needed for (2.5) with (2.11) and the embedding L2 ↪→ H−1.
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By Hurwitz’s theorem and (5.3), we deduce that for each 1 ≤ m ≤ N and n suffi-
ciently large, there exist β(n)

m such that

aren
(
iβ(n)

m ; qn(tn)
) = 0 and lim

n→∞ β(n)
m = βm . (5.5)

Using (2.5), (5.4), and the notation from (2.14), we obtain

‖qn(tn)‖2H−1
κ

≤ 4κα(κ; qn(tn)) −−−→
n→∞

N∑
m=1

4κG
(βm

κ

)
.

As the right-hand side above converges to zero as κ → ∞, invoking (4.7) we deduce
that the sequence un := qn(tn) is equicontinuous in H−1 and so we may apply Propo-
sition 4.2. Along a subsequence we may decompose

un(x) =
J∑

j=1

φ j (x − x j
n ) + r Jn (x) (5.6)

satisfying the properties (4.2) and (4.3).
Our goal is to prove that there are finitely many profiles, each having the shape of a

(multi)soliton, and that r Jn converges to zero in H−1. First, we rule out the possibility
of vanishing. Assume, towards a contradiction, that there are no profiles in (5.6) and so
un = rn . Invoking (4.5), we obtain

1
2κ

∫
|ûn(ξ)|2
ξ2+4κ2

dξ −−−→
n→∞ −

N∑
m=1

[
ln

(
κ−βm
κ+βm

)
+ 2βm

κ

]
=

N∑
m=1

G
(βm

κ

)
.

This immediately leads to a contradiction since the functions

κ �→ κ3

2κ

∫
|ûn(ξ)|2
ξ2+4κ2

dξ and κ �→
N∑

m=1

κ3G
(βm

κ

)

have opposite monotonicity.
Therefore, we may assume that there exists at least one non-trivial profile. From

(1.10) and (1.9), we have∣∣1 − aren(k; q)
∣∣ � exp

{
C(k)‖q‖2H−1

}
(5.7)

with C(k) bounded for k in compact subsets of C+. Consequently, for J ≥ 1 fixed, the
functions

fn : k �→ aren(k; un) exp
{
− i

2k

∫ ∣∣r̂ Jn (ξ)

∣∣2
ξ2−4k2

dξ
}

are holomorphic and locally bounded on C
+. Invoking Montel’s theorem and passing

to a subsequence, we find that this sequence converges as n → ∞ to a holomorphic
function f . Moreover, by (5.5) we have f (iβm) = 0 for all 1 ≤ m ≤ N .

To continue, we combine (4.3) with (4.5) and (5.4) to obtain

J∗∑
j=1

α(κ;φ j ) ≤
N∑

m=1

G
(βm

κ

)
(5.8)
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and so by (2.3),

1
8

J∗∑
j=1

‖φ j‖22 = lim
κ→∞

J∗∑
j=1

κ3α(κ;φ j ) ≤
N∑

m=1

lim
κ→∞ κ3G

(βm
κ

)
< ∞. (5.9)

Using this and (5.7), we see that the function k �→ ∏J∗
j=1 aren(k;φ j ) is well defined and

holomorphic on C+. Invoking (4.3) and (4.5) one more time, we conclude that

J∗∏
j=1

aren(k;φ j ) = f (k) for all k ∈ C
+. (5.10)

Let �β j denote the collection of all zeros of aren(iκ;φ j ). Evidently,
∐

j
�β j enumerates

the zeros (with multiplicity) of f (ik), which contains each βm , 1 ≤ m ≤ N . Also, by
Corollary 2.4,

α(κ, φ j ) ≥
∑
β∈ �β j

G
(β

κ

)
. (5.11)

Contrasting (5.8) and (5.11), we see that
∐

j
�β j = �β without any repetitions. More-

over, each �β j must be non-empty, for otherwise α(κ, φ j ) ≡ 0 and so φ j ≡ 0, which is
impossible; all profiles are non-zero by construction.

From thiswe deduce that J ∗ is finite and, after reviewing (4.3) and (4.5), that r J∗
n → 0

in H−1 sense. More importantly, the comparison of (5.8) and (5.11) shows that each φ j

must be an optimizer for the variational problem of Theorem 1.4 with parameters �β j .
This theorem then tells us that each φ j is indeed a multisoliton.

Putting this all together, we deduce that

un(x) =
J∗∑
j=1

Q �β j ,�c j (x − x j
n ) + rn(x) with lim

n→∞ ‖rn‖H−1 = 0. (5.12)

In view of Proposition 3.1, this contradicts (5.2) and so completes the proof of The-
orem 1.2. ��

6. Higher Regularity

The purpose of this section is to prove Corollary 1.3. In fact, we will exhibit twomethods
for deducing orbital stability at higher regularity from Theorem 1.2. Our first method
exploits equicontinuity in the following form:

Lemma 6.1. Fix s ∈ [−1, 1) and distinct positive parameters β1, . . . , βN . For every
ε > 0, there exist δ > 0 and M ∈ 2Z so that

inf
�c

‖q(0) − Q �β,�c‖Hs < δ �⇒ sup
t∈R

‖q≥M (t)‖Hs < ε. (6.1)
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Proof. If this assertion were to fail, then there would exist a sequence of solutions qn
and a sequence of times tn so that

lim sup
n→∞

inf
�c

‖qn(0) − Q �β,�c‖Hs = 0,

but {qn(tn) : n ∈ N} is not equicontinuous in Hs .
As �c varies, themultisolitonsQ �β,�c remain uniformlybounded in H1; see, for example,

(2.11). Thus this family is Hs-equicontinuous and then somust be the sequence of initial
data qn(0).

When s = −1, this directly contradicts the equicontinuity result [20, Proposition 4.4].
The analogous equicontinuity result for −1 < s < 0 appears in the proof of [20,
Corollary 5.3]. Finally, when 0 ≤ s < 1, we may appeal to [21, Proposition 3.6]. While
this last-quoted result does not explicitly assert equicontinuity, the simplicity with which
this may be derived from what is presented there is illustrated (in the s = 0 case) in [20,
Proposition A.3(c)]. ��

We do not believe that the restriction s ∈ [−1, 1) appearing in Lemma 6.1 represents
an intrinsic limitation: it merely reflects the range for which equicontinuity of orbits (for
equicontinuous sets of initial data) has already been proven in the literature. We now
demonstrate Corollary 1.3 for this range of s:
Proof of Corollary 1.3 for s ∈ (−1, 1). For any M ∈ 2Z and any pair of solutions,

‖q(t)−Q(t)‖2Hs � M2+2s‖q(t) − Q(t)‖2H−1 + M2s−2‖P≥MQ(t)‖2H1 +‖P≥Mq(t)‖2Hs .

The result now follows from Theorem 1.2 and Lemma 6.1. ��
Let us turn now to a second method for deducing orbital stability at higher regularity.

This is based on conservation laws. The precise propertywe need from such conservation
laws is given in the next lemma.

Lemma 6.2. For each s > −1 there is a continuous function Es : Hs(R) → R that is
conserved under the KdV hierarchy and admits the representation

Es(q) = ‖q‖2Hs + Ẽs(q)

where the function Ẽs : Hs(R) → R admits the Hölder-type estimate
∣∣Ẽs(q) − Ẽs(r)

∣∣ � ‖q − r‖θ
H−1 exp

{‖q‖2Hs + ‖r‖2Hs

}
(6.2)

for some θ > 0, which depends only on s.

Proof. For integer s ≥ 0, we may use the traditional polynomial conservation laws
discovered in [32]. For example, using the notation from (1.2), we may define E0(q) =
2P(q) and E1(q) = 2H(q) + 2P(q). In the former case, Ẽ0 ≡ 0 and (6.2) is trivial; in
the latter case, (6.2) follows from the estimate

∣∣‖q‖2L2 − ‖r‖2L2

∣∣ + ‖q3 − r3‖L1 � ‖q − r‖L2 exp
{ 1
2‖q‖2H1 +

1
2‖q‖2H1

}

� ‖q − r‖
1
2
H−1 exp

{‖q‖2H1 + ‖r‖2H1

}
.

Of course, the exponential factor is very wasteful; however, there is no advantage in
keeping track of the optimal power-law dependence.
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For larger s ∈ N, we use the fact that the polynomial conservation laws can be
normalized so that they take the form

Es(q) =
∫ [

q(s)(x)
]2 + Ps

(
q(s−1)(x), . . . , q ′′(x), q ′(x), q(x)

)
dx

where Ps is a polynomial with all terms of degree two or higher. (This was shown in
[25].) The fact that Es is homogeneous under the rescaling q(x) �→ λ2q(λx) further
constrains the structure of this polynomial; however, this additional information is not
required to verify (6.2). Indeed, Hölder’s inequality shows∣∣Ẽs(q) − Ẽs(r)

∣∣ � ‖q − r‖Hs−1 exp
{ 1
2‖q‖2Hs + 1

2‖r‖2Hs

}

� ‖q − r‖
1

s+1
H−1 exp

{‖q‖2Hs + ‖r‖2Hs

}
.

The existence of conservation laws that control the Hs norm for non-integer s > −1
is a very recent discovery. The lemma in this case, follows from [22, Theorem 9.1].
As written, this theorem only gives pointwise bounds on Ẽs ; however, these guarantee
derivative bounds because it is shown that Es(q) is an analytic functionofq.Additionally,
[22, Theorem9.1] is stated for a small neighborhood of the origin; this restriction is easily
removed by employing scaling. ��
Proof of Corollary 1.3 for s > −1. For any pair of functions q, r ∈ Hs , we have

‖q − r‖2Hs = ‖q‖2Hs − ‖r‖2Hs − 2〈q − r, r〉Hs

= Es(q) − Es(r) − 2〈q − r, r〉Hs + Ẽs(q) − Ẽs(r).

Here Es denotes the conserved quantity discussed in Lemma 6.2. Employing that result,
we deduce that for some θ ∈ (0, 1),∣∣∣‖q − r‖2Hs − Es(q) + Es(r)

∣∣∣ � ‖q − r‖H−1‖r‖H2s+1

+ ‖q − r‖θ
H−1 exp

{‖q‖2Hs + ‖r‖2Hs

}
� ‖q − r‖θ

H−1 exp
{‖q‖2Hs + ‖r‖2H2s+1

}
.

Now let us choose q to be an Hs-solution of (KdV) and use that Es(q(t)) is indepen-
dent of t . We take r = Q �β,�c with �β fixed, but �c allowed to vary. As Es(q) is determined
through a(k; q), it follows that Es(Q �β,�c) is independent of �c. In this way, we deduce
that

inf
�c

‖q(t) − Q �β,�c‖2Hs ≤ inf
�c

‖q(0) − Q �β,�c‖2Hs

+ C inf
�c

‖q(0) − Q �β,�c‖θ
H−1 exp

{
‖q(0)‖2Hs + ‖Q �β,�c‖2H2s+1

}

+ C inf
�c

‖q(t) − Q �β,�c‖θ
H−1 exp

{
‖q(t)‖2Hs + ‖Q �β,�c‖2H2s+1

}

for some s-dependent constant C > 0.
To complete the proof of the corollary, it merely remains to invoke Theorem 1.2 and

to use the conservation laws of [22,32] in a more traditional way:

‖q(t)‖L∞
t Hσ �σ ‖q(0)‖Hσ exp

{‖q(0)‖2Hσ

}
and sup

�c
‖Q �β,�c‖Hσ < ∞

for any σ > −1 and any fixed �β. ��
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