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Summary

This paper describes efficient algorithms for computing rank-revealing factorizations

ofmatrices that are too large to fit inmainmemory (RAM), andmust instead be stored

on slow external memory devices such as disks (out-of-core or out-of-memory). Tra-

ditional algorithms for computing rank-revealing factorizations (such as the column

pivoted QR factorization and the singular value decomposition) are very communica-

tion intensive as they requiremany vector-vector andmatrix-vector operations, which

become prohibitively expensive when data is not in RAM. Randomization allows to

reformulate newmethods so that large contiguous blocks of thematrix are processed

in bulk. The paper describes two distinct methods. The first is a blocked version of

column pivoted Householder QR, organized as a “left-looking” method to minimize

the number of the expensive write operations. The second method results employs a

UTV factorization. It is organized as an algorithm-by-blocks to overlap computations

and I/O operations. As it incorporates power iterations, it is much better at revealing

the numerical rank. Numerical experiments on several computers demonstrate that

the new algorithms are almost as fast when processing data stored on slow memory

devices as traditional algorithms are for data stored in RAM.
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1 INTRODUCTION

1.1 Problem formulation

We consider the task of computing a rank-revealing factorization of a matrix that is so large that it must be stored on an external memory device

such as a spinning or solid-state disk drive. In this case, the matrix is said to be stored out-of-core. Specifically, given an m × n matrix A, we seek a

factorization of the form

A = U R V∗
,

m × n m ×m m × n n × n
(1)
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where U and V are unitary matrices, and where R is upper triangular. We use the term “rank-revealing” in an informal way, as meaning simply that

for any k with 1 ≤ k ≤ min(m, n), the truncation of (1) to the k dominant terms provides a rank-k approximation to A that is almost as good as the

theoretically optimal one. To be precise, with Ak = U(∶,1 ∶ k)R(1 ∶ k, ∶)V∗, we ask that

||A − Ak|| ≈ inf{||A − B|| ∶ where B has rank k}.

Problems which make use of such a factorization include solving ill-conditioned linear systems, rank-deficient and total least squares problems,1-3

subset selection,4 andmatrix approximation,5,6 among others.

1.2 Prior work

There are several well-established options for computing a rank-revealing factorization. If a full factorization is required, the singular value decom-

position (SVD) and the QR decomposition with column pivoting (CPQR) are two popular options. The SVD provides theoretically optimal low rank

approximations for many choices of matrix norms, but can be prohibitively expensive to compute. The most practical methods7-9 are mainly based

onHouseholder transformations. TheCPQRusually reveals rank reasonablywell (see, e.g., Reference 10 for a notable exception) and requiresmuch

less computational work than the SVD. The original method was developed by Golub and Kahan, and was later optimized and refined for current

computers.11-13 Neither factorization is easily implementedwhen thematrix is stored out-of-core, however. The traditional algorithms for comput-

ing both factorizations requiremany slowmatrix-vector operations, which in turn necessitatemany read operations (data brought froman external

device tomainmemory) andwrite operations (data sent frommainmemory to an external device).

Somesoftwareefforts in computing factorizationsofdensematrices stored inexternaldevices includePOOCLAPACK,14-16 theSOLAR17 library,

a runtime to execute algorithms-by-blocks when the matrix is stored in disk,18 as well as an out-of-core extension19 to ScaLAPACK20 that does not

appear in the current version of the library. Even for these libraries, factorization routines are usually limited to Cholesky, unpivoted QR, and LU

decompositions. A truncated SVDalgorithm that is effective for out-of-corematriceswas introduced byHalko et al.21 This technique, however, only

yields a partial factorization, and it requires that an upper bound for the target rank k is known in advance. Recent efforts have been able to compute

the SVD of large dense matrices stored in an external device. Demchik et al.22 employed randomization to compute the SVD, but no performance

results for dense matrices were shown. Kabir et al.23 used a two-stage approach to compute the SVD that reduces the dense matrix to band form

in a first stage, which allowed to factorize matrices of up to dimension 100 × 100 k. To our knowledge, there are no currently available and widely

used software for computing a full rank-revealing factorization out-of-core.

1.3 Contributions of present work

This article describes two different algorithms for computing rank-revealing factorizations of matrices stored out-of-core. The first, HQRRP_left,

is based on the HQRRP algorithm,24 which uses randomization techniques to build a fully blocked column pivoted QR factorization. HQRRP relies

largelyonmatrix-matrixoperations, reducing thenumberof readsandwrites thatmustoccurbetween theexternal deviceandmainmemory (RAM).

HQRRP_left further reduces the number of write operations required by redesigning HQRRP as a left-looking algorithm. Numerical experiments

reveal that this reduction in the writing time is critical to the algorithm’s performance, particularly when the data is stored on a spinning disk. (The

HQRRPmethod is closely related to the technique in Reference 25.)

The second contribution of this article is an out-of-core implementation of the randUTV algorithm,26 which uses randomization to build a

rank-revealing UTV factorization (see, e.g., References 27 and 28 for a good introduction to this factorization). The out-of-core implementation,

randUTV_AB, modifies randUTV in such a way as to achieve overlap of communication and floating point operations. The result, demonstrated

with numerical experiments, is thatrandUTV_AB suffers only a small extra cost by storing thematrix in an external devicewith respect to the same

factorization of amatrix stored in RAM.

Thenew techniques presented enable processing of very largematrices atmodest cost. To illustrate, in July, 2022apersonal desktopwith a2TB

high-performance SSD (like the one in themachine “ut” in Section 4.3.1) can be acquired for a few thousand dollars, whereas a workstationwith an

equivalent amount of RAM would be an order of magnitude more expensive. Since solid state storage technology is rapidly getting both cheaper

and faster, we expect to see demand for out-of-core algorithms to continue to increase.

1.4 Assessing the quality of a rank-revealing factorization

The term“rank-revealing factorization”hasbeenusedwith slightlydifferentmeanings in the literature;28-31 our requirement that theapproximation

error ||A − Ak|| is close to optimal is invariably a part of the requirement, but in more theoretical papers the statement is often made precise by

bounding how rapidly the discrepancy is allowed to increase as thematrix dimensions tend to infinity.
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The focus of the current paper is how to efficiently implement algorithms that have already been published to make them work on matrices

so large that they do not fit in the main memory of the computer. The precision at which they reveal rank has already been carefully studied: The

randomized CPQRwas analyzed in Reference 25, with additional numerical results presented in Reference 24. The conclusion of these papers was

that the randomized pivoting reveals the numerical rank to roughly the same precision as classical pivoting. The randomizedUTV factorizationwas

studied in Reference 26,with additional results reported in Reference 32. The precision ofrandUTV depends on a tuning parameter q that controls

the number of power iterations that are taken at each step. Higher q results in better precision, but a slower execution time. When no powering is

done (q = 0),randUTV is about as good at revealing the rank as CPQR,withrandUTV often having a slight edge. As q is increased to one or two, the

precision very rapidly improves, and often gets towithin striking distance of the optimal precision of the SVD.Moreover, the diagonal entries of the

middle factor T often provide excellent approximations to the true singular values of thematrix.

1.5 Outline of paper

In Section 2, we discuss the first out-of-core factorization, a rank-revealing QR factorization HQRRP which can be stopped early to yield a partial

decomposition. Section 3 explores an out-of-core implementation of randUTV, an efficient algorithm for obtaining a rank-revealing orthogonal

matrix decomposition. In Section 4, we present numerical experiments which demonstrate the performance of both algorithms. Finally, Section 5

contains themain conclusions of our work.

2 PARTIAL RANK-REVEALING QR FACTORIZATION

In this section, we introduce an out-of-core implementation of a rank-revealing column pivoted QR factorization. In Subsections 2.1 and 2.2, we

review a fully blocked algorithm for computing a column pivoted QR factorization, HQRRP. In Subsection 2.3, we discuss modifications of HQRRP

which enhance its efficiency when thematrix is stored out-of-core.

2.1 Overview of HQRRP

Consider an input matrix A ∈ R
m×n withm ≥ n. HQRRP24 is a blocked algorithm for computing a column-pivotedQR factorization

A = Q R P∗
,

m × n m ×m m × n n × n

whereQ is orthogonal, R is upper trapezoidal, and P is a permutationmatrix.

The bulk of the algorithm’swork is executed in a loopwith ⌈n∕b⌉ iterations,where 1 ≤ b ≤ n is the block sizeparameter. For notational simplicity,

for the remaining discussion it is assumed that n is amultiple of b so that n = bp for some p ∈ N. At the start of theHQRRP algorithmare the following

initializations:

R(0) = A, Q(0) = I, P(0) = I.

During the i-th iteration, matricesQ(i) and P(i) are constructed such that

R(i) = (Q(i))∗R(i−1)P(i)
,

where R(i)(∶,1 ∶ ib) is upper trapezoidal. After p steps, R(p) is upper trapezoidal, and the final factorization can bewritten as

R = R(p)

P = P(1)P(2) · · ·P(p)

Q = Q(1)Q(2) · · ·Q(p)
.

Remark 1. In the casewherem > n, it is often desirable to build an “economy-size” factorizationA = QRP∗ involving a thinmatrixQ of

sizem × n.HQRRP can easily accommodate this, as it constructsQ as a sequence ofHouseholder reflectors, which can be transformed

to a thin orthonormal matrix using standard software. We also remark that in the case wherem ≫ n, it is generally advantageous to
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follow standard practice of first computing an unpivoted QR factorization, and then applying the procedure described here to the

resulting small square upper triangular factor.

2.2 Choosing the orthogonal matrices

At the i-th step of HQRRP, consider the partitioning of R(i−1)

R(i−1) →
⎛
⎜
⎜
⎝

R(i−1)
11

R(i−1)
12

R(i−1)
21

R(i−1)
22

⎞
⎟
⎟
⎠

,

where R(i−1)
11

is of size (i − 1)b × (i − 1)b. The permutation matrix P(i) is chosen to find b columns of R(i−1)
22

that form a good choice for the next set of

pivots. (Exactlywhat thismeansmathematically isaslightly intricatequestion,butacommonlyusedobjective is that thevolumeof theparallelepiped

spanned by chosen columns should be close to the volume spanned by the best possible choice of b columns. See References 33 and 34 for further

details.) We can find such a selection by projecting the columns of R(i−1)
22

into a lower dimensional space and cheaply finding b good pivot columns

there. The steps for computing P(i) are thus as follows:

1. Draw a randommatrixG(i) ∈ R
b×(m−(i−1)b), with i.i.d. entries drawn from the standard normal distribution.

2. Compute Y(i) = G(i)R(i−1)
22

∈ R
b×(n−(i−1)b).

3. Perform b steps of the traditional Golub-Businger column pivoted QR11 on the matrix Y(i) to obtain Y(i)P(i)
22

= WtrashStrash, where P(i)
22

is of size

n − (i − 1)b × n − (i − 1)b. (We use the subscript “trash” to indicate that a quantity is not actually used.)

4. Set

P(i) =
⎛
⎜
⎜
⎝

I 0

0 P(i)
22

⎞
⎟
⎟
⎠

.

Thismethod for selectingmultiple pivot columns has shown itself to be effective and reliable, consistently producing factorizations that reveal

the rank as well as traditional CPQR.24

Remark 2. There is an alternate “downdating” method for computing Y(i) during each step that reduces the asymptotic flop count of

the HQRRP algorithm.25 With this technique, HQRRP has the same asymptotic flop count as the unpivoted QR factorization and the

CPQR; the readermay see Reference 24 for details. However, this downdatingmethodwill not be used in this article’s primary imple-

mentation as the communication restrictions imposed by this downdating method make the basic scheme discussed in this section

more practical.

Once P(i) has been computed,Q(i) is built with well-established steps:

1. Perform unpivotedQR factorization on A(i−1)
22

P(i)
22
(∶,1 ∶ b) to obtain

A(i−1)
22

P(i)
22
(∶,1 ∶ b) = Q(i)

22
A(i)
22
(∶,1 ∶ b).

2. Set

Q(i) =
⎛
⎜
⎜
⎝

I 0

0 Q(i)
22

⎞
⎟
⎟
⎠

.

2.3 Executing HQRRP out-of-core

When thematrix to be factorized is large enough that itmust be stored out-of-core, communication (I/Ooperations) costs become amajor concern.

While it is desirable tominimize all forms of communication, writing to an external device is typically more expensive than reading from it. In linear

algebra, in every row, column, or block iteration, right-looking algorithms factorize the current row, column, or block and then update the rest of

the matrix, which usually requires an overall cost of(n3)writes. In contrast, left-looking algorithms apply all the previous transformations to the
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current row, column, or block and then factorize it, which usually requires an overall cost of only (n2) writes. When working on main memory,

performances are only slightly different, but when working with matrices stored in an external device with slow writes, left-looking algorithms

deliver higher performances.

The original HQRRPwas a classical right-looking algorithm, and therefore it performedmanywrite operations.We have designed a left-looking

variation of the original HQRRP algorithm, so that the number of write operations aremuch smaller.

2.3.1 Left-looking algorithms

Several standard matrix factorizations have been re-ordered as left-looking algorithms for out-of-core computations, largely with the goal of

reducing certain I/O operations.15,17,35,36

As our new algorithm employs the QR factorization, a high level description of the left-looking algorithm for computing the QR factorization

follows. LetA ∈ R
n×n andbbeablock size1 ≤ b ≤ n; for simplicity letn = bp, whereb, p ∈ N. Then for i = 0,1, … , p − 1, the algorithm for computing

theQR factorization is described by the following steps (indices start at zero):

1. Acol ← A(∶, ib ∶ (i + 1)b − 1).
2. Acol ← Q∗Acol.

3. Compute the unpivotedQR factorization of Acol(ib ∶ n − 1, ∶) yieldingQi,Ri.

4. A(0 ∶ ib − 1, ib ∶ (i + 1)b − 1) ← Acol(0 ∶ ib − 1, ∶).
5. A(ib ∶ n − 1, ib ∶ (i + 1)b − 1) ← Ri.

6. Q ← Q
(
I 0
0 Qi

)

.

In this algorithm,Q is initialized as the identitymatrix I, and after the algorithm is finished,A is overwrittenwith the upper triangularmatrixR. In

practice,Q is never formed, but instead theHouseholder vectors are stored in the lower triangularportionofRas it is computed. This overviewomits

other computational details as well, but clearly highlights the fact that only the column block of A(∶, ib ∶ (i + 1)b − 1) is updated in every iteration.
In contrast, the traditional right-looking algorithm updates the bottom-right block A(ib ∶ n − 1, ib ∶ n − 1) during each iteration of the loop, thus

requiringmuchmore writing to disk.

2.3.2 HQRRP as a left-looking algorithm

HQRRP as a left-looking algorithm follows the pattern of the unpivoted factorization discussed in Section 2.3.1, with the added complication of

choosing and applying the permutation matrix P. We select the permutations using precisely the same procedure as in Section 2.2. Observe that

the projection procedure used in the selection of P requires that the right-most columns of A be updated according to the elementary orthog-

onal matrices encoded in Q during each iteration. We must therefore choose whether to write out the updated columns of A to disk or repeat

some of the arithmetic operations during each iteration. Since the main idea of a left-looking algorithm is to avoid writing to the right-most

columns of A every iteration, wemust accept the repetition of operations as part of HQRRP_leftwith the current technologies. Numerical experi-

ments indicated that the I/O-saving benefits of HQRRP_left easily outweigh the costs of the extra flops as compared to the original right-looking

HQRRP.

For full clarity, we explicitly specify the entire algorithm. Let A ∈ R
n×n and b be a block size 1 ≤ b ≤ n; for simplicity let n = bp, where b, p ∈ N.

InitializeQ = P = I ∈ R
n×n. Then for i = 0,1, … , p − 1, the algorithm for computing theQR factorization is described by the following steps (indices

start at zero):

1. Acur ← AP(∶, ib ∶ n − 1).
2. Acur ← QAcur.

3. Acol ← Acur(ib ∶ n − 1, ∶).
4. Draw a randommatrixG(i) ∈ R

b×(n−(i−1)b), with i.i.d. entries drawn from the standard normal distribution.

5. Y ← G(i)Acol.

6. Perform b steps of the traditional Golub-Businger column pivotedQR11 on Y to obtain Pi,Wtrash, Strash such that YPi = WtrashStrash.

7. Compute the unpivotedQR factorization of AcolPi(∶,0 ∶ b − 1), yieldingQi,Ri such that AcolPi(∶,0 ∶ b − 1) = QiRi.

8. AP(0 ∶ ib − 1, ib ∶ (i + 1)b − 1) ← AcurPi(0 ∶ ib − 1,0 ∶ b − 1).
9. AP(ib ∶ n − 1, ib ∶ (i + 1)b − 1) ← Ri.
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10. Q ← Q
(
I 0
0 Qi

)

.

11. P ← P
(
I 0
0 Pi

)

.

3 FULL RANK-REVEALING ORTHOGONAL FACTORIZATION

In this section, we introduce an efficient implementation of a rank-revealing orthogonal decomposition for a matrix stored out-of-core. In Sub-

section 3.1, we review an efficient algorithm, randUTV, for building such a decomposition when the matrices are stored in main memory. In

Subsection 3.2, we discuss somemodifications of randUTV that optimize its efficiency in the out-of-core setting.

3.1 Overview of randUTV

Let A ∈ R
m×n withm ≥ n. The randUTV algorithm26 builds a rank-revealing UTV factorization of A, that is, a decomposition

A = U T V∗

m × n m ×m m × n n × n

such that U and V are orthogonal and T is upper triangular. The randUTV algorithm is blocked, so it proceeds by choosing first a block size b with

1 ≤ b ≤ n and performing its work inside a loop with ⌈n∕b⌉ iterations. For ease of notation, it is assumed that n = bp for b, p ∈ N. At the beginning,

we initialize

T(0) = A, U(0) = I, V(0) = I.

For thematrix T(i) (and analogously for matricesU and V), the following partitioning will be employed:

T(i) →
⎛
⎜
⎜
⎝

T(i)
11

T(i)
12

T(i)
21

T(i)
22

⎞
⎟
⎟
⎠

,

where T(i)
11
is ib × ib. At the i-th iteration, for i = 1, … , p, we formmatrices T(i)

,U(i) and V(i) as follows:

1. Construct an orthogonalmatrix ̂V
(i)
22 such that its leading b columns span approximately the same subspace as the leading b right singular vectors

of T(i−1)
22

.

2. Compute the unpivotedQR factorization of T(i−1)
22

̂V
(i)
22(∶,1 ∶ b) to obtain

T(i−1)
22

̂V
(i)
22(∶,1 ∶ b) = ̂U

(i)
22R.

3. Compute the SVD of
(
̂U
(i)
22(∶,1 ∶ b)

)∗
T(i−1)
22

̂V
(i)
22(∶,1 ∶ b), yielding

(
̂U
(i)
22(∶,1 ∶ b)

)∗
T(i−1)
22

̂V
(i)
22(∶,1 ∶ b) = USVDDV

∗
SVD.

4. Calculate V(i) with

V(i) =
⎛
⎜
⎜
⎝

I 0

0 ̂V
(i)
22

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

I 0 0

0 VSVD 0

0 0 I

⎞
⎟
⎟
⎟
⎟
⎠

.

5. CalculateU(i) with

U(i) =
⎛
⎜
⎜
⎝

I 0

0 ̂U
(i)
22

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

I 0 0

0 USVD 0

0 0 I

⎞
⎟
⎟
⎟
⎟
⎠

.
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6. Calculate T(i) with

T(i) = (U(i))∗T(i−1)V(i)
.

Once all ⌈n∕b⌉ iterations have completed, wemay compute the final factors with

T = T(p)
,

U = U(1)U(2) · · ·U(p)
,

V = V(1)V(2) · · ·V(p)
.

This leaves only the question of how the matrix ̂V
(i)
22 is formed in step 1 above. The method, inspired from work in randomized linear algebra

including References 37-39, is the following:

1. Draw a randommatrixG(i) ∈ R
(m−ib)×b, with i.i.d. entries drawn from the standard normal distribution.

2. Compute the unpivoted QR factorization of ((T(i−1)
22

)∗T(i−1)
22

)q(T(i−1)
22

)∗G, where q is some small nonnegative integer, typically less than three. The

result is

((T(i−1)
22

)∗(T(i−1)
22

)∗G = ̂V
(i)
22Rtrash.

This simplealgorithmhasbeendemonstrated toconsistentlyprovidehigh-quality subspaceapproximations to the space spannedby the leading

b right singular vectors of T(i−1)
22

, which explains why randUTV reveals rank almost as well as the SVD. The importance of power iteration depends

on the decay in the singular spectrum.When the singular values decay rapidly, power iteration is not necessary, and one may set q = 0. Conversely,

when the singular values decay slowly, oneor two steps of power iteration (q ∈ {1,2}) greatly improves the alignment of the computedorthonormal

basis with the space spanned by the dominant singular vectors we are trying to capture. See [Sec. 4.5]38 and [Sec. 11]40 for additional details on the

role of power iteration, and Reference 26 for amore through discussion of randUTV.

Likewise the SVD factorization, when factorizing tall and skinny matrices (m × nmatrices withm ≫ n), it would be muchmore efficient to first

compute a non-pivoted QR factorization and then the randUTV factorization of the resulting R factor, since in that case all the transformations

applied from the right in the randUTV factorization could be applied to only the top n rows.

3.2 Executing randUTV out-of-core: An algorithm-by-blocks

Formatrices so large theydonot fit inRAM,randUTV requires significantmanagementof I/O tasks. If theorthogonalmatricesUandV are required,

then thesemust be stored out-of-core aswell. To implementrandUTV efficiently under these constraints, it is helpful to reorganize the algorithmas

an algorithm-by-blocks. Like blocked algorithms, algorithms-by-blocks seek to cast most of the flops in a factorization in terms of the highly efficient

Level 3 BLAS (Basic Linear Algebra Subprograms). Unlike blocked algorithms, the algorithms-by-blocks take maximum advantage of the full main

memory bymaking all the data blocks being transferred of the same size, which, besides, makes easier to overlap communication and computation.

All these advantagesmake an algorithm-by-blocksmore efficient. In the following sections, we present the core technologies behind the design and

implementation of randUTV as an algorithm-by-blocks.

3.2.1 Algorithms-by-blocks: An overview

When working with matrices stored in RAM, blocked algorithms can improve performances by processing multiple columns (or rows) of the input

matrixA in each iteration of itsmain loop. For instance, some classical factorizations drive several columns to upper triangular form in each iteration

of themain loop. This design allowsmost of the operations to be cast in terms of the Level 3 BLAS (matrix-matrix operations), andmore specifically

inxgemm operations (matrix-matrix products). As vendor-provided and open-sourcemultithreaded implementations of the Level 3 BLAS are highly

efficient (with performances close to the peak speed), blocked algorithms usually offer high performances. Processing one column (or one row) at a

time would require the employment of the slower matrix-vector operations (Level 2 BLAS) and much more communication. Thus, a blocked imple-

mentationofrandUTV relying largelyonstandardcalls toparallelBLASwas foundtobefaster thanthehighlyoptimizedMKLCPQRimplementation

for a sharedmemory system, despite randUTV having a much higher flop count than the CPQR algorithm.26
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8 of 22 HEAVNER ET AL.

On the other side, in blocked algorithms the amount of data being processed by every iteration varies extremely. Usually, as the factorization

advances, every call to parallel BLASmust handle an increasing (or a decreasing) amount of data. For instance, to factorize an n × nmatrixwith block

size b, the first iteration of right-looking algorithms usually requires the processing of the full matrix, whereas the last iteration requires just to

process a very small amount of data (in some cases a b × b block). When the data is stored in an slow external device, this extremely high variation

in the data being transferred harms performances since external devices work optimally only for certain given transfer sizes. Moreover, these high

variation in the data being transferred and processed makes an optimal scheduling of I/O operations and computational operations much more

difficult since the cost of the operations varies even much more (the I/O cost is usually (n2), whereas the computational cost is usually (n3)). In
addition, this high variation alsomakes a poor use of mainmemory either at the beginning or at the end of the factorizations.

We are therefore led to seek a technique other than blocking to obtain higher performances, althoughwewill not abandon the strategy of cast-

ingmost operations in terms of the Level 3 BLAS. The key lies in changing themethodwithwhichwe aggregatemultiple lower-level BLAS flops into

a single Level 3 BLAS operation. Blocked algorithms do this by raising the granularity of the algorithm’s main loop. The alternative approach, called

algorithms-by-blocks, is to instead raise the granularity of thedata.With thismethod, the algorithmmaybedesignedas if only scalar elements of the

inputaredealtwithatone time.Then, thealgorithm is transformed intoLevel3BLASbyconceivingofeachscalarasa supmatrixorblockof sizeb × b.

Each scalar operation turns into amatrix-matrix operation, and operations in the algorithmwill, at the finest level of detail, operate on usually a few

(betweenoneand four, butusually twoor three)b × bblocks. Eachoperationona fewblocks is calleda task. This arrangement removes theproblems

ofblockedalgorithmssinceevery taskwillworkwitha similar amountofdata, thememorycanbeemployedasacache to storeblocksofmemory, and

an overlapping of computation and communication is much easier and more efficient. The performance benefits obtained by algorithm-by-blocks

with respect to blocked algorithms for linear algebra problems on shared-memory architectures with data stored in RAM are usually signifi-

cant41 when more than a few cores are employed, because they remove the thread synchronization points that blocked algorithms insert after

every call to the parallel BLAS. On the other side, when the data is stored in an external device, a runtime18 to execute algorithms-by-blocks was

described, but it was only applied to the following basic factorizations: Cholesky, LU with incremental pivoting, and unpivoted incremental QR.

In our work we have built an algorithm-by-blocks for computing the much more complex randUTV factorization on large matrices stored in an

external device by extending thementioned approach and runtime. Despite the originalrandUTV factorization beingmuchmore difficult and com-

plex than those basic factorizations, our approach to reveal the rank of matrices stored in an external device has obtained good performances

when compared to high-performance algorithms revealing the rank of matrices stored in RAM, thus making the revealing of the rank of very large

matrices feasible.

An algorithm-by-blocks for computing therandUTV requires that theQR factorization performed inside alsoworks on b × b blocks. In order to

design this internal QR factorization process such that each unit of work requires only b × b submatrices, the algoritm-by-blocks for computing the

QR factorizationmust employ an algorithm based on updating an existingQR factorization.We shall refer to this algorithm as QR_AB. We consider

only the part of QR_AB that makes the first column of blocks upper triangular, since that is all what is required for randUTV_AB.

Figure 1 shows this process for a 9 × 9matrix with block size 3. In this figure, the continuous lines show the 3 × 3 blocks of thematrix involved

in the current task, the ‘•’ symbol represents a non-modified element by the current task, the ‘⋆’ symbol represents a modified element by the

current task, and the ‘⋅’ symbol represents an element nullified by the current task. The nullified elements are shownbecause, as usual in linear alge-

bra factorizations, they store information about the Householder transformations that will be used later to apply these transformations. The first

task, called Compute_QR, computes the QR factorization of the leading dense block A00, thus nullifying all the elements below the main diagonal

and modifying all the elements on or above the main diagonal. The second task, called Apply_left_Qt_of_dense_QR, applies the Householder trans-

formations obtained in the previous task (and stored in A00) to block A01. The third task performs the same operation onto A02. The fourth task

annihilates blockA10, which is calledCompute_QR_of_td_QR (where ‘td’ means triangular-dense since the upper blockA00 is triangular and the lower

block A10 is dense). The fifth task, called Apply_left_Qt_of_td_QR, applies the transformations of the previous task to blocks A01 and A11. The sixth

task performs the same operation onto A02 and A12. Analogously, the seventh, eighth, and ninth tasks update the first and third row of blocks by

performing the same work as the fourth, fifth, and sixth tasks. By taking advantage of the zeros present in the factorizations for each iteration, a

well-implemented QR_AB costs essentially no more flops than the traditional blocked unpivoted QR. The algorithm is described in greater detail

in References 42 and 43.

3.2.2 Algorithms-by-blocks for randUTV

Analgorithm-by-blocks forrandUTV, whichwewill callrandUTV_AB, performsmostly the sameoperations as theoriginal, but they are rearranged

as many more tasks working on usually square blocks (except maybe the right-most and bottom-most blocks). We will discuss in some detail how

this plays out in the first step of the algorithm. First, choose a block size b. (Whenworking onmatrices storedonmainmemory, small block sizes such

as b = 128 or 256 usually workwell. In contrast, whenworking on very largematrices stored on an external device, much larger block sizes such as

b = 10,240 must be employed.) For simplicity, assume b divides both m and n evenly. Recall that at the beginning of randUTV, T is initialized with

T = A. Consider the following partitioning of thematrix T:
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HEAVNER ET AL. 9 of 22

F I GURE 1 An illustration of the first tasks performed by an algorithm-by-blocks for computing theQR factorization. The ‘•’ symbol
represents a non-modified element by the current task, ‘⋆’ represents amodified element by the current task, and ‘⋅’ represents a nullified element
by the current task (they are shown because they store information about the Householder transformations that will be later used to apply them).
The continuous lines surround the blocks involved in the current task.

T →

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T11 T12 · · · T1N

T21 T22 · · · T2N

⋮ ⋮ ⋱ ⋮

TM1 TM2 · · · TMN

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where each supmatrix or block Tij is b × b, N = n∕b, and M = m∕b. Note that the rest of matrices (G, Y, U, and V) must also be accord-

ingly partitioned. The submatrices Tij (and those of the rest of matrices) are treated as the fundamental unit of data in the algorithm,
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10 of 22 HEAVNER ET AL.

so that each operation is expressed only in these terms. For the first step of the algorithm when no orthonormal matrices are built,

for instance:

1. Constructing V(0): The first step, Y(0) = (T∗T)qT∗G(0), is broken into several tasks, each one of which computes the product of two blocks. In the

simplified case where q = 0, we have M × N products of two blocks. The second step, the QR factorization of Y(0), uses the QR_AB algorithm

previously described. Thus, the decomposition of each Y(0)
i

is computed separately, and the resulting upper triangular factor R(0) (stored in Y(0)
1
)

is updated after each step. Then, matrix T is updated with the previous transformations obtained in the factorization of Y(0), that is, T ← TV(0).

See, for example, References 14, 18, and 42 for details on an approach to a full unpivotedQR factorization.

2. ConstructingU(0): This step requires anunpivotedQRfactorizationof the first columnblockofT. A similar algorithmto thepreviousone,QR_AB,

has been employed, themain difference being that the transformations are applied from the left int this case. Then, the rest of thematrix Tmust

be updatedwith the previous transformations, that is, T ← (U(0))∗T.
3. Computing the SVDofT11: This step is the sameone as inrandUTV andrandUTV_AB. In both cases, T11 is interactedwith as a single unit. Then,

matrix Tmust be properly updatedwith the transformations obtained in this step.

3.2.3 The FLAME abstraction for implementing algorithm-by-blocks

Anontrivial obstacle to implementing an algorithm-by-blocks is the issue of programmability. The FLAME (Formal LinearAlgebraMethods Environ-

ment) project44,45 helps to solve this issue. FLAME is a framework fordesigning linear-algebra algorithms. In this approach the inputmatrix is viewed

as a collection of submatrices, basing its loops on re-partitionings of the input data. The FLAME API46 for the C programming language enables a

user to codehigh-performance implementations of linear-algebra algorithms at a high level of abstraction. Besides, thismethodologymakes it a nat-

ural fit for use with an algorithm-by-blocks. Thus, the actual code for the implementation of randUTV_AB looks very similar to the written version

of the algorithm given in Figure 2.

3.2.4 Scheduling and dispatching the operations for an algorithm-by-blocks

The runtime described in Reference 18 allows to execute algorithms-by-blocks for single factorizations that work on data stored in an exter-

nal device. We have employed and extended that runtime to compute the randUTV factorization. This algorithm is called the randUTV_AB. To

understand how this OOC runtimeworks, consider the problem of factorizing amatrix of 2 × 2 blocks

A ←

⎛
⎜
⎜
⎜
⎝

A00 A01

A10 A11

⎞
⎟
⎟
⎟
⎠

,

where each block is of size b × b. Wewill consider the case where the power iteration parameter q = 0 for simplicity. The execution of the program

proceeds in two phases: the analysis stage and the execution stage.

In the first stage (analysis), instead of executing the code sequentially, the runtime builds a list or queue of tasks recording the operands associ-

ated with each task or operation. Figure 3 shows an example of the list built up by the runtime for randUTV_AB for the case A ∈ R
n×n, b = n∕2, and

q = 0. The S factors obtained in theQR factorization of theY blocks are stored in blocks calledB, whereas the S factors obtained in the factorization

of the blocks of the current column block of A are stored in blocks called C.

In the second stage (execution), the runtime executes (or dispatches) all the tasks in the list. Several method can be employed to execute these

tasks.

1. Traditionalmethod. This is an straightforward implementation. For each task, all the input operands are read from the external device, then the

task is executed with its operands stored in RAM, and finally all the output operands are written to the external device. The main advantage is

its simplicity, but it obviously performsmany I/O operations.

Figure 4 illustrates the execution of the first six tasks of randUTV_AB for a matrix A ∈ R
n×n with block size b = n∕2.

2. Methodwith cache. Since thework to do has been decomposed intomany “small” tasks, a fastmethod to accelerate performances is to store as

many blocks as possible inmainmemory. By efficiently using a part of themainmemory as a cache of the blocks stored in the external device, the

number of I/O operations can be reduced. Sincemost blocks are of the same size, themanagement of the cache is very efficient. The only blocks

with different sizes (smaller) are those that store the S factors of the unpivotedQR factorizations, but all blocks will be treated in the sameway

to simplify theprogramming andaccelerate theexecution.When the cache is fullwithblocks andanewblockmust be loaded, the Least-Recently
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HEAVNER ET AL. 11 of 22

F I GURE 2 The randUTV algorithm adapted for algorithms-by-blocks written with the FLAMEmethodology/notation. In this algorithm,WV

andWU are the unit lower trapezoidal matrices stored below the diagonal of Y and
(

A11
A21

)

, respectively.
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12 of 22 HEAVNER ET AL.

F I GURE 3 A list of the tasks or operations queued up by the runtime during the analyzer stage in the simplified case that the block size is
b = n∕2. The “In” column specifies pieces of required input data. The “Out” column specifies required pieces of data that will be altered upon
completion of the operation.

Used (LRU) block is selected. If the block has been modified while staying in RAM, it must be written to the external device. Otherwise, it can

plainly be discarded and overwritten with the new block.

Figure5 illustrates theexecutionof the first six tasksofrandUTV_AB for amatrixA ∈ R
n×nwithblock sizeb = n∕2andacachewith7blocks.

To reduce the length of the example but still show the benefits of this approach, the matrix is small and the cache of blocks is rather large. Note

that when the cache is full, a blockmust be replaced. For instance, to load A11 block, the least-recently used block (A00) is selected. As it has not

beenmodified, it need not be written to disk.

3. Method with cache+ overlapping of computation and communication. Though the use of a cache allows the reuse of blocks currently stored

in main memory, when a block is not already in main memory, it must be read from the slow external device. An additional problem happens if

the cache is full and the block selected to be replaced has been modified, because it must be written to the external device before loading the

new block. During all this time, the cores cannot compute and therefore overall performances drop. One way to avoid this is to use one core to

perform all the I/O operations (communications) while the other cores compute. The disadvantage of this method is that the computations will

be slower than the two previousmethods since they employ one fewer core. However, the communications can bemade transparent (or at least

be reduced) since I/O operations are performed at the same time as the computation.

The I/O thread and the rest of the threads (computational threads) are completely decoupled. The I/O thread works by bringing data into

the cache of blocks inmainmemory in advance, and sometimes itmust remove data that is currently in cache tomake room for newer data. This

decouplingmakes the programmingmoredifficult, but it accelerates the execution since the speedof cores and the speedof the external devices

can be very different between computers (or even between different external devices in the same computer).

Figure 6 illustrates the execution with overlapping of computation and communication of the first six tasks of randUTV_AB for a matrix

A ∈ R
n×n with block size b = n∕2, and a cache with seven blocks. In this case the execution of tasks is not clearly marked since the execution

of different tasks can overlap. For instance reading or writing of operands of one task can be executed at the same time as the computation of

another task. For ease of notation, the figure shows that each I/O operation takes exactly the same as a computational task. In practice, the I/O

operations and the computational tasks are decoupled.
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HEAVNER ET AL. 13 of 22

F I GURE 4 Execution of the first tasks by using the traditional approach. The execution of the six first tasks requires 16 I/O operations (6

writes and 10 reads). Double horizontal lines mark the boundaries between consecutive tasks.

F I GURE 5 Execution of the first tasks by using a cachewith 7 blocks. The execution of the six first tasks requires only 4 I/O operations (all of
them reads). Double horizontal lines mark the boundaries between consecutive tasks.
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14 of 22 HEAVNER ET AL.

F I GURE 6 Execution of the first tasks by using a cachewith seven blocks and overlapping of computation and communication. The execution
of the six first tasks requires only four I/O operations (all of them reads), and all of them are performed at the same time as the computation. No
double horizontal lines are employed tomark the boundaries between consecutive tasks since I/O operations and computations of different tasks

can be executed simultaneously.

4 NUMERICAL RESULTS

In this section,wepresent the experiments demonstrating the accuracy, scalability, and computational costs of implementations ofHQRRP andran-

dUTV_AB for matrices stored out-of-core. In Subsection 4.2, we compare several implementations of HQRRPwith different strategies for handling

the I/O. In Subsection 4.3, we examine computational cost of an implementation of randUTV.

4.1 Accuracy

The codes for computing the randUTV_AB factorization on matrices stored out-of-core were thoroughly tested in the platforms described below

to analyze their accuracy. The following residuals of the randUTV_AB factorizations of many matrices stored out-of-core with different matrix

dimensions and block sizes were computed: ||A − UTV∗||F , ||I − U∗U||F , ||I − V∗V||F , and ||sv(A) − sv(T)||F , where sv(X) is a vector containing the

sorted singular values of matrix X. All the above residuals were similar to those obtained by other factorizations such as the SVD, QR, and CPQR.

Moreover, since the out-of-core randUTV factorization works in the same way as the in-core tiled randUTV factorization (also called randUTV

algorithm-by-blocks),manycaseswereanalyzed indetail to check that the resultsofourout-of-corecodesmatched the in-corecodes. Inall analyzed

codes, the results were identical or very close tomachine precision.

4.2 Partial CPQR factorizationwith HQRRP

Themachineused for these experiments had fourDIMMmemory chipswith16GiBofDDR4memoryeach. TheCPUwasan Intel®Core™i7-6700K

(4.00 GHz) with four cores. Experiments were run on two different hard drives. One was a Toshiba P300 HDD with 3 TB of memory and 7200

RPM; the otherwas a SamsungV-NANDSSD950Prowith 512GiB ofmemory. The codewas compiledwithgcc (version 5.4.0) and linkedwith the

Intel®MKL library (Version 2017.0.3).

The computational cost of three different implementations of HQRRP for matrices stored out-of-core were assessed.

1. Algorithm 1 – In place: This implementation of the HQRRP did not carry out physical permutations on the columns of A but instead applied the

permutation information during each I/O task. In otherwords, the routine returns RP∗ rather than R. As a result, nomore data than necessary is

transferred to and from the hard drive, but many reads occur from noncontiguous locations in the drive.

2. Algorithm2–Physical pivoting:Permutations are physically performedduring the computation, so that upon completionR is stored in the hard

drive. This implementation reads andwritesmore data than the “in place” version, but the data transfermostly occurs in contiguous portions of

memory.

3. Algorithm3– Left-looking:An implementation of a left-looking version ofHQRRP, outlined in Section 2.3. This version requires only(n2)write
operations, but the total number of operations (including reading, writing, and flops) is asymptotically higher than the “in place” and “physical

pivoting” implementations.

Figure7 shows the times scaledby the squareof thematrix dimensionof several factorizations. Twokeyobservations canbemadeof the results

depicted in this figure. The first observation is that the number of writes required by the implementation has a dramatic effect on its performance,
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HEAVNER ET AL. 15 of 22

F I GURE 7 A comparison of the computational cost for three different algorithms for computing a partial CPQRwhen thematrix may be too

large to fit in RAM. In the left figure, 1000 columns of the input matrix were processed. In the right figure, 500 columns were processed. The block
size b in each case was 250.

especially when the matrix is stored on a hard disk drive. Algorithms 2 and 3, while performing reasonably well on the SSD, did not even scale

correctly on the HDD, or at the very least did not reach asymptotic behavior as early as the SSD experiments. Algorithm 3, which requires (n2)
write operations rather than (n3), outperforms the right-looking alternatives on both hard drives for large matrices. The second observation is

that the best-performing algorithm takes roughly three times longer than the predicted performance for an in-core factorization of a matrix of the

same size on the SSD. On the HDD, it takes about 5.4 times longer.

4.3 Full factorizationwith randUTV

In this subsection, we assess the performances of our new implementations for computing the randUTV factorization when the data are stored in

a disk drive, and compare it to the performances of highly optimizedmethods for computing the SVD, the column pivotedQR (CPQR) factorization,

and the randUTV factorizationwhen the data are stored in RAM.

To fairly compare the different implementations included in this study, the usual flop rate or the usual flop count cannot be employed since the

computation of the SVD, the CPQR, and the randUTV factorizations require a very different number of flops (the dominant n3-term in the asymp-

totic flop count is very different). Absolute computational times are not shown either as they vary greatly because of the huge range of matrix

dimensionsemployed in theexperiments.Therefore, scaledcomputational times (absolutecomputational timesdividedbyn3) areemployed instead.

The lower the scaled computational times, the better theperformances are. Since all the implementations being assessedhave asymptotic complex-

ityO(n3)when applied to an n × nmatrix, these graphs better reveal the computational speed. The scaled times aremultiplied by a constant tomake

the figures in the vertical axis more readable. The value of this constant is shown in the vertical axis, and it is usually 1010.

For the implementations of randUTV, both in-core and out-of-core, results are shown for 0, 1, and 2 iterations (q = 0, q = 1, and q = 2, respec-

tively) in the power iteration process. Recall that the higher q, the higher the approximation to the singular values obtained in the main diagonal of

matrix T.

The following out-of-core implementations were assessed in the experiments of this subsection:

1. OOC-RANDUTV-T: This is the traditional implementation for computing the randUTV factorization of a matrix stored in the disk by using an

algorithm-by-blocks.

2. OOC-RANDUTV-V: This is the implementation for computing the randUTV factorization of a matrix stored in the disk by using an

algorithm-by-blocks with a cache of blocks and overlapping of computation and I/O. Unlike the previous implementation, this one

uses all the cores but one for computation and one core for I/O. Not all of the RAM in the computer is employed in the cache

for matrix blocks, and a large amount of memory is left available for the operating system, since some initial experiments supported

this approach.
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16 of 22 HEAVNER ET AL.

3. OOC-QR-T: This is the traditional right-looking implementation for computing the QR factorization of a matrix stored in the disk by using an

algorithm-by-blocks.

4. OOC-QR-V: This is the right-looking implementation for computing the QR factorization of a matrix stored in the disk by using an

algorithm-by-blockswith a cacheof blocks andoverlapping of computation and I/O.One core is employed for I/Oand the rest, for computations.

Not all of the RAM in the computer is employed in the cache of matrix blocks.

Although the two methods for computing the QR factorization included in the experiments do not reveal the rank, they were included as a

performance reference for the others.

In order to be included in this study, we asked some authors to send us their out-of-core codes to reveal the rank (e.g., SVD). Unfortunately, no

codes weremade available to us.

Our aim is to factorize very large matrices that do not usually fit in RAM unless a very expensive main memory is available. However, as a

performance reference for our out-of-core implementations, we have included the following in-core implementations:

1. MKL SVD: The routine called dgesvd fromMKL’s LAPACKwas used to compute the Singular Value Decomposition of matrices stored in RAM.

2. MKL CPQR: The routine called dgeqp3 fromMKL’s LAPACKwas used to compute the column-pivoting QR factorization of matrices stored in

RAM.

3. RANDUTV PBLAS (randUTV with parallel BLAS): This is the traditional implementation for computing the randUTV factorization of matrices

stored inRAMthat relies on the parallel BLAS to take advantage of all the cores in the system. Theparallel BLAS library fromMKLwas employed

with these codes for the purpose of a fair comparison.

4. RANDUTVAB (randUTVwithAlgorithm-by-Blocks): This is the new implementation for computing therandUTV factorization by scheduling all

the tasks to be computed in parallel, and then executing themwith serial BLAS. The serial BLAS library fromMKLwas employedwith these new

codes for the purpose of a fair comparison.

5. MKLQR: The routine called dgeqrf fromMKL’s LAPACKwas used to compute the QR factorization of matrices stored in RAM. Although this

routine does not reveal the rank, it was included in some experiments as a performance reference for the others.

For most of the experiments, two plots are shown. The left plot shows the performances when no orthonormal matrices are computed. In

this case, just the upper triangular factor R is computed for the CPQR and QR, just the upper triangular factor T is computed for the ran-

dUTV, and just the singular values are computed for the SVD. In contrast, the right plot shows the performances when all orthonormal matrices

are explicitly formed in addition to the previously mentioned factors. In this case, matrix Q is computed for the CPQR and QR, and matri-

ces U and V are computed for the randUTV and for the SVD. The right plot slightly favors the CPQR and QR since only one orthonormal

matrix is formed.

4.3.1 Experimental setup

The experiments reported in this section were performed on three computers. Next they are briefly described.

1. ua: This HP computer contained two Intel Xeon® CPU X5560 processors at 2.8 GHz, with 12 cores and 48 GiB of RAM in total. Its OS was

GNU/Linux (Version 3.10.0-514.21.1.el7.x86_64). Intel’s icc compiler (Version 12.0.0 20101006) was employed. LAPACK and BLAS routines

were taken from the Intel(R) Math Kernel Library (MKL) Version 10.3.0 Product Build 20100927 for Intel(R) 64 architecture, since this library

usually delivers much higher performances than LAPACK and BLAS from the Netlib repository. The Hard Disk Drive (HDD) employed in the

experiments tostoreall thedata in theout-of-core implementationswasanHPMM0500EANCR(FirmwareRevisionHPG3).Though its capacity

was about 500GiB, only about 400GiBwere available for users, whichwas about 8.3 times as large as themainmemory. According to the Linux

operating system hdparm tool, the read speed of this drive was 91.13MB/s.

2. ut: This Dell computer contained two Intel Xeon® Gold 6254 processors at 3.10 GHz, with 36 cores and 754 GiB of RAM in total. Its

OS was GNU/Linux (Version 5.0.0-37-generic). Intel’s icc compiler (Version 19.0.5.281 20190815) was employed. LAPACK and BLAS rou-

tines were taken from the Intel(R) Math Kernel Library (MKL) Version 2019.0.5 Product Build 20190808 for Intel(R) 64 architecture for

the same reason as before. The disk drive (SDD) employed in the experiments to store all the data in the out-of-core implementations

was a Toshiba KXG50PNV2T04 NVMe (Firmware Revision AFDA4105) with a capacity of 2 TiB. According to the Linux operating system

hdparm tool, the read speed of this disk was 9744.21 MB/s on cached reads and the read speed of this disk was 2410.66 MB/s on buffered

disk reads.

3. ucm: ThisSupermicrocomputercontainedtwoIntelXeon®processorsE5-2695v3at2.30GHz,with28coresand125GiBofRAMintotal. In this

computer the so-called Turbo Boostmode of theCPUwas turned off in our experiments. ItsOSwasGNU/Linux (Version 2.6.32-504.el6.x86_64).
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Intel’s icc compiler (Version 18.0.1 20171018) was employed. LAPACK and BLAS routines were taken from the Intel(R) Math Kernel Library

(MKL) Version 2018.0.1 Product Build 20171007 for Intel(R) 64 architecture for the same reason as before. The disk drive (SDD) employed in

the experiments to store all the data in the out-of-core implementations was a Samsung SSD 850 EVO (Firmware Revision EMT02B6Q) with a

capacity of 1 TB. According to the Linux operating systemhdparm tool, the read speed of this diskwas 10,144.81MB/s on cached reads and the

read speed of this disk was 441.48MB/s on buffered disk reads.

In our out-of-core implementations the block cache employed 16 GiB (of the 48 GiB), 256 GiB (of the 754 GiB), and 32 GiB (of the 128 GiB) in

ua, ut, and ucm, respectively. The rest was left for the operating system kernel and buffers, and the application’s code.

In contrast, unless explicitly stated otherwise, all the experiments employed all the cores in the computer.

Notice that the ua computer has a very slow spinning disk as well as a low computational power. Notice also that both ut and ucm have SSD

disks, but their performances are different. The ucm computer has an SSD with a SATA interface, which is limited to 600 MiB/s, whereas the ut

computer has an SSDwith anM.2 interface, which does not have that limitation.

In all the experiments double-precision real matrices were processed. All the matrices used in these experiments were randomly generated

since generation is fast.

4.3.2 Effect of block sizes

Figure 8 shows the scaled computational times obtained by our implementations for computing both theQR factorization and therandUTV factor-

ization versus several block sizes whenmatrices of dimension 81,920 × 81,920 are processed in ua. The aim of these two plots is to determine the

optimal block sizes. As can be seen, performances of the QR factorization do not strongly depend on the block size. In contrast, for the randUTV

factorization performances do depend on the block size, and block sizes between 7680 and 11,264 usually offer optimal results.

From now on, in ua the block size 10,240 will be employed for both the out-of-core QR and the out-of-core randUTV factorizations since it

returns near-optimal results in most cases. As ut and ucm have larger central memories than ua, larger matrices will be assessed in those two

computers. Since in linear algebra the larger thematrix sizes being tested, the larger the optimal block sizes usually are, inut anducm the block size

20,480will be employed.

4.3.3 Comparison of out-of-core variants

The plots in all the next figures include a vertical dashed gray line showing the largest theoretical matrix size that can be stored in the RAM

of the computer when the randUTV factorization is computed. For instance, in ua this size is about 80,000 when no orthonormal matrices are

built, and therefore matrices U and V do not need to be stored. In contrast, this size is about 46,000 when orthonormal matrices are built, and

therefore matrices U, and V must be stored. In practice, the actual threshold must be slightly smaller than those in the pictures since main mem-

ory must be also employed for the operating system kernel, operating system’s disk cache and buffers, application’s code, application’s other

data, etc.

F I GURE 8 Performances of QR and randUTV implementations versus block sizes onmatrices of dimension 81,920 × 81,920 in ua.
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18 of 22 HEAVNER ET AL.

F I GURE 9 Performances versusmatrix dimensions for the different implementations of theQR and randUTV factorizations in ua.

Figure 9 shows the performances for the different implementations of theQRandrandUTV factorizations on several largematrix sizes. As can

be seen, the overlapping of computation and I/O for the QR factorization increases performances slightly: The speedup is about between 3% and

20%whennoorthonormalmatrices are built, and it is about between8%and22%whenorthonormalmatrices are built. In contrast, the overlapping

of computationand I/Ofor therandUTVclearly improveperformances:Thespeedup isaboutbetween25%and37%whennoorthonormalmatrices

are built, and it is about between 18% and 42%when orthonormal matrices are built.

To check the benefits of the overlapping of computation and I/O in the other platforms, Table 1 reports the total and decomposed times of the

computation of the randUTV factorization of large matrices that do not fit in main memory in both ut and ucm when no orthornormal matrices

are built and q = 0 (the power iteration process). To build this table, each operation in the factorization (both computational and I/O) was recorded.

As can be seen, in ut the performances are very encouraging because the I/O time is much smaller than the computational time (about 18%), thus

making the application computation-bound. However, in ucm the results are different since the disk of ut is 5.4 times as fast as the disk of ucm. The

slower disk ofucmmakes that the overall computational time and the overall I/O time are similar, the latter being slightly larger.On the other side, in

ut the overlapping of computation and I/O is perfect since the real time is only 0.12% larger than the computational time. In ucm the overlapping of

computation and I/O is almost perfect since the real time is only 27% larger than the computational time, and 13% larger than the I/O time (in this

case larger than the computational time).

Figure10 showsa real exampleof the schedulingof thedifferent tasks during some timeof therandUTV factorizations of a348,160 × 348,160

matrix in utwhen no orthonormalmatrices are built and q = 0. The left plot shows the scheduling during one hour of the experiment; the right plot

is a zoom of the first ten minutes of the left plot. The top part of the two plots shows the I/O tasks performed by the application: A red rectangle

is a write operation, whereas a green rectangle is a read operation. The bottom part of the two plots shows the computation performed by the

application. The names of the tasks are only shown when there is enough room. As can be seen, the overlapping of computation and I/O is almost

perfect: The computer performs I/O operations and computation at the same time. Another interesting remark obtained from this plot is the fact

that the I/O operations are usually smaller than the computational operations despite the high processing power of the computer (36 cores), which

TAB L E 1 Decomposed times (in seconds) of the randUTV factorization of largematrices of dimension n × n on the ut and ucm platforms.

ut ucm

n = 348,160 n = 143,360

Computational time 229,627.6 34,165.5

I/O time 41,312.9 38,253.5

Computational time+ I/O time 270,940.5 72,419.0

Real time 229,910.0 43,326.0

Ratio Real time / Computational time 1.001 1.268

Ratio Computational time / I/O time 5.558 0.893
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HEAVNER ET AL. 19 of 22

F I GURE 10 Example of the scheduling of the tasks in the execution of the randUTV factorization of a 348,160 × 348,160matrix in ut in two
different periods. The left plot shows the scheduling during 1 h; the right plot is a zoom of the first 10min of the left plot.

makes the application still computation-bound in this case (ut). This means that higher computational power could further reduce the processing

time of the factorizations.

4.3.4 Performances of out-of-core codes versus in-core codes

Figure 11 shows the performances of the best out-of-core implementations as a function of the matrix dimensions. This plot also shows perfor-

mances of in-core factorizations so that the speed of both types of implementations can be compared. Notice that when no orthonormal matrices

are built (left plots) the in-coreMKL SVD is much faster on ut and ucm than on ua. In those cases, theMKL SVD is evenmuch faster than theMKL

CPQRdespite having amuchhigher computational cost. These high performances are causedby the employment of a new implementation for com-

puting the SVD in MKL that replaces the traditional implementation for parallel architectures on matrices with dimensions larger than 4000. We

think that some of the techniques employed by Intel for this new implementation of the SVD inMKL could also be applied to our randUTV tomake

it faster when no orthornormal matrices are built.

The top row of plots of Figure 11 shows the results obtained in ua. In these results the best out-of-core QR factorization is about 28%

slower than the in-core QR factorization when no orthonormal matrices are built, and about 29% slower than the in-core QR factorization when

orthonormal matrices are built. On the other side, the out-of-core randUTV is about 51% slower than the in-core randUTV factorization when no

orthonormalmatrices are built, and between 41% (q = 0) and 33% (q = 2) slower than the in-corerandUTV factorizationwhen orthonormalmatri-

cesarebuilt. In all thesecases thecomparisonhasbeenperformedconsidering thebestperformanceof theout-of-core implementationsagainst the

bestperformanceof the in-core factorizations,which is usually obtainedonvery largematrices (but smaller than those factorizedby theout-of-core

implementations).

The center row of plots of Figure 11 shows the results obtained in ut. In these results the out-of-core QR factorization is about 2.58 times as

slow as the in-core QR factorization when no orthonormal matrices are built, and about 2.10 times as slow as the in-core QR factorization when

orthonormal matrices are built. On the other side, the out-of-core randUTV is between 1.89 (q = 0) and 1.48 (q = 2) times as slow as the in-core

randUTV factorization when no orthonormal matrices are built, and between 2.07 (q = 0) and 1.80 (q = 2) times as slow as the in-core randUTV

factorization when orthonormal matrices are built.

The bottom row of plots of Figure 11 shows the results obtained in ucm. In these results the out-of-core QR factorization is about 1.76 times

as slow as the in-coreQR factorizationwhen no orthonormal matrices are built, and about 2.00 times as slow as the in-coreQR factorizationwhen

orthonormal matrices are built. On the other side, the out-of-core randUTV is between 2.15 (q = 0) and 2.36 (q = 2) times as slow as the in-core

randUTV factorization when no orthonormal matrices are built, and between 2.10 (q = 0) and 2.03 (q = 2) times as slow as the in-core randUTV

factorization when orthonormal matrices are built.

Therefore, as can be seen, in the worst cases the speed of revealing the rank of matrices stored in the slow external devices is only about two

times as slow as the speed of revealing the rank of matrices already stored in the much faster main memory, which shows the good performances

attained by the new implementations presented here.

In conclusion, our out-of-core implementations of the randUTV factorization are able to efficiently process very large data that do not fit in

RAM and must be stored in the disk drive. Despite the slow speed of the hard drive with respect to the main memory, these methods are able to

process matrices with only aminor loss of performances.
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20 of 22 HEAVNER ET AL.

F I GURE 11 Performances versus matrix dimensions for the best implementations of theQR and randUTV factorizations. In-core
implementations are included as a reference. Recall that theQR factorization does not reveal the rank, and it is included as a reference. The top
row shows results in ua, the center row shows results in ut, and the bottom row shows results in ucm.
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5 CONCLUSIONS

This paper describes a set of algorithms for computing rank-revealing factorizations of matrices that are stored on external memory devices such

as solid-state or spinning disk hard drives. Standard techniques for computing rank-revealing factorizations of matrices perform very poorly in this

environment, as they inherently consist of a sequenceofmatrix-vector operations,whichnecessitate a largenumberof readandwrite operations to

the disk.We use randomization to reorganize the computation to operate on large blocks of the matrix, thereby dramatically reducing the amount

of communication required.

Numerical experiments demonstrate that the speed of the new randomizedmethods that operate on data stored on external devices is compa-

rable to traditional methods that operate on data stored in main memory. This enables the processing of very large matrices in a cost efficient way.

As the performance of solid state hard drives is rapidly improving in terms of both speed and capacity, themethods described are likely to gain even

more of a competitive advantage in coming years.
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