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Abstract
Markov random field is a common tool to characterize interactions among a fixed 
collection of variables. In recent biomedical research, there arise new concerns 
about the discovery of regulatory and co-expression relationships among different 
types of features across multiple biological classes. Consequently, we propose a 
data integration framework to jointly learn multiple mixed graphical models simul-
taneously. To address the common asymmetry problem in neighborhood selection, 
we construct a new estimator using regularized pseudo-likelihood, which produces 
symmetric and consistent estimates of network topologies. We demonstrate the prac-
tical merits of our method through learning synthetic networks as well as construct-
ing gene regulatory networks from TCGA data.

Keywords  Data integration · Group lasso · Joint modeling · Network · TCGA data

1  Introduction

In recent biomedical research, reconstruction of networks among a group of features 
is critical for characterizing their functions and mechanisms, so as to unveil etiol-
ogy of complex diseases and develop targeted therapies. Such correlation networks 
include typical examples like protein–protein interaction (PPI) network, co-expres-
sion network and gene regulatory network. Undirected graphical models, also known 
as Markov random fields, is a broadly applied tool to identify conditional depend-
ency structures for high-throughput data. The Gaussian graphical model is one of 
the most representative examples, which is suitable for symmetric and thin-tailed 
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continuous data [11, 43]. Broadening the application of graphical models to vari-
ous types of data, Yang et al. [39] introduced a subclass of Markov Random Fields 
by assuming all conditional distributions arise from the same univariate exponen-
tial family, such as Bernoulli, exponential and Poisson distribution. However, gene 
regulatory networks usually contain variables of heterogeneous types, for instance, 
gene expressions, mutations, copy number variations, and epigenetic states, includ-
ing binary, categorical, count and continuous data. To address this situation, a line 
of work focused on developing undirected graphical models for heterogeneous data. 
Lauritzen and Wermuth [16] introduced undirected graphical model for categorical-
Gaussian mixtures, and then Cheng et  al. [8], Lee and Hastie [17] further simpli-
fied it for better scalability. Under the framework of multivariate exponential family, 
Chen et al. [7], Park et al. [28], Tansey et al.[36], Yang et al. [40] , gradually devel-
oped a broader class of mixed Markov Random Fields, which is specified by condi-
tional distributions belonging to potentially different exponential families.

Our research is aimed at constructing regulatory networks among heterogene-
ous factors, but our data is collected from different biological conditions. These 
biological conditions can be different types of tissues, subtypes of diseases, phases 
of progression, or experimental conditions, which potentially share alike regulation 
mechanisms. Thus, exploiting the prospective similarity among multiple biological 
classes, integrative modeling is expected to lead to more efficient structural learning. 
Additionally, it is also critical to capture significant distinctions among networks of 
different conditions in order to discover class-specific correlations, which requires 
a flexible and adaptive data integration framework. With regard to joint learning of 
multiple Gaussian graphical models, Ma and Michailidis [24] assumed prior group-
ing structure to encourage supervised graph similarity. The works of Guo et  al. 
[13] and Danaher et  al. [10] took advantage of different structure-inducing penal-
ties to control network similarity across classes. Under Bayesian framework, Shad-
dox et al. [32] recently proposed a hierarchical model using Markov random field 
prior to incorporate data from different biological groups and platforms. As for 
mixed graphical models, Zhang et al. [44] developed a data-integration framework 
on mixtures of categorical and Gaussian variables using group lasso and fused lasso 
regularization.

In this paper, we introduce a joint modeling framework for mixed pairwise expo-
nential graphical models conditionally specified by heterogeneous multi-parameter 
exponential families. To make structural learning, one common approach is neigh-
borhood selection [25], which can be accomplished by nodewise regularized gener-
alized linear regressions. However, this approach estimates the neighborhood struc-
ture of each node separately, which often results in asymmetric edge recovery. To 
address this problem, our joint learning is established on pseudo-likelihood (PL) 
regularized by a hierarchical group lasso penalty. It formulates a unified optimiza-
tion problem to prevent the common asymmetry problem of nodewise regression 
type approaches, and we also provide statistical guarantee for edge selection consist-
ency. Furthermore, our proposed method is able to perform data-driven joint mod-
eling and take both similarity and divergence among different graphs into account.

To organize the rest of the paper, we first introduce the statistical model as well 
as the data integration framework in Sect.  2. Theoretical assumptions and results 
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for edge recovery consistency are discussed in Sect.  3. Then, we present an effi-
cient first-order algorithm to learn multiple networks in Sect. 4 and discuss selection 
of tuning parameters. We demonstrate the practical merits of the proposed method 
through simulation studies in Sect. 5. A simple case study is carried out in Sect. 6, 
where we implement our data integration framework to construct regulatory net-
works of two different types of human cancer.

2 � Integrative Structural Learning of Multiple Heterogeneous 
Graphical Models

2.1 � Pairwise Exponential Markov Random Field

Pairwise exponential Markov Random Field (PEMRF)  [22, 28, 36] is a class of 
Markov random fields to characterize pairwise interactions that can explicitly 
reveal the underlying conditional dependency structure. In this paper, we assume 
data come from multiple PEMRF sub-populations with known class labels. The net-
work structures of different classes are highly similar, with only a few numbers of 
distinctions.

Suppose x = {x1,… , xp} is a p-variate random vector, of which the p features 
are potentially heterogeneous, possessing different supports and measures from each 
other. The joint distribution is a multivariate exponential family specified as

where ⟨A,B⟩F = tr(A⊤B) is the Frobenius inner product. This distribution include 
many popular graphical models as special cases, such as Gaussian graphical model, 
Ising model and Gaussian–categorical mixture [17]. The collection of all natural 
parameters is denoted by � =

{

{�
r
}
p

r=1
, {�

rs
}
p

r,s=1

}

, and B(x) =
{

{Br(xr)}
p
r=1, {Br(xr)

Br(xr)Bs(xs)⊤}
p
r,s=1

}

 is the corresponding set of sufficient statistics. Since the p fea-
tures may be of different types, we define the following dimensions of natural 
parameters and sufficient statistics: �r ∈ ℝ

mr , �rs ∈ ℝ
mr×ms , and Br(xr) ∈ ℝ

mr . For 
instance, �r could be a scalar ( mr = 1 ) for a Gaussian variable or a vector ( mr > 1 ) 
for a categorical variable with more than two classes. The vertex set of p nodes is 
denoted by V, and E is the collection of connected edges containing |E| unordered 
vertex pairs. Without any loss of generality, we assume a symmetric structure in 
edge potentials, that is, 𝜃rs = 𝜃⊤

sr
 for any r < s . By the Hammersley–Clifford Theo-

rem [15], sparsity in edges potentials reflects conditional dependency, i.e. for any 
(r, s) ∉ E , 𝜃rs = 𝜃⊤

sr
= 0 , xr and xs are conditionally independent given all other vari-

ables. Correspondingly, the set of model parameters can be reduced to 

(1)

P(x;�)

= exp

{

p
∑

r=1

𝜃⊤
r
Br(xr) +

1

2

p
∑

r=1

p
∑

s=1

⟨

𝜃rs,Br(xr)Bs(xs)
⊤
⟩

F
+

p
∑

r=1

Cr(xr) − A(�)

}

,
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� =
{

{𝜃r}
p

r=1
, {𝜃rr}

p

r=1
, {𝜃rs}r<s

}

 , which still respects the symmetry in undirected 
graphical model. The normalizing term A(Θ) = log ∫ exp
exp{⟨Θ,B(x)⟩F + C(x)}�(dx) < ∞ is a finite-valued log-partition function which is 
intractable in general.

Based on the joint distribution, the conditional distribution of variable xr given all 
other variables x∖r can be easily derived, that is

where �r = �r +
∑

s∈N(r) �rsBs(xs) denotes the natural parameter of this node-condi-
tional distribution; N(r) is the neighborhood of vertex r. Consequently, we are able 
to specify mixed graphical models through their full conditional distributions [7]. 
The node conditional distributions can be a mixture of different exponential family 
distributions, for example, categorical distribution, Poisson distribution and expo-
nential distribution, by assigning different log-partition functions, measures, and 
supports. These distributions cover a majority of variable types in biomedical 
research. Please refer to the following Table 1 for details.

It is commonly observed that necessary constraints should be imposed to make 
the conditionally specified joint distribution normalizable. Yang et al. [40] as well 
as Chen et al. [7] established the conditions for several simple mixtures to be nor-
malizable in their separate works. However, such constraints can be more complex 
in general cases. In this paper, we only consider valid conditionally specified mixed 
models that can be normalized.

2.2 � Data Integration Through Pseudo‑likelihood (PL)

Although the log-likelihood is convex for exponential family, the intractable log-par-
tition function in form of high-dimensional integral still makes likelihood-based infer-
ence computationally infeasible for high-dimensional problems. To address this issue, 
a natural way to make inference is implied by the node conditional distribution (2), 

(2)
Pr|�r(xr|x�r;�)

= exp
{

𝜙⊤
r
Br(xr) +

1

2
Br(xr)

⊤𝜃rrBr(xr) + Cr(xr) − Ar

(

𝜙r;𝜃rr
)

}

,

Table 1   Conditional distributions from exponential family

Distribution Support B
r
(x

r
) �

rr
A
r
(�

r
;�

rr
) C

r
(x

r
)

Binary {0, 1} �(xr = 1) 0 log(1 + e�r ) 0
Categorical {0, 1,… ,mr} ⎡

⎢

⎢

⎣

�(xr = 1)

⋮

�(xr = mr)

⎤

⎥

⎥

⎦

0 log(1 +
∑mr

j=1
e�r∶j ) 0

Poisson {0, 1,… ,∞} xr 0 e�r − log(xr!)

Trunc. Poisson {0, 1,… ,R} xr 0 log
�

∑R

k=0
ek�r∕k!

�

− log(xr!)

Gaussian ℝ xr −
1

�2
r

−
�2
r

2�rr
−

1

2
log(−�rr) −

1

2
log(2�)

Exponential ℝ
+ xr 0 − log(−�r) 0
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which is based on nodewise regression [25, 36, 40]. This type of approach estimates 
the neighborhood of each variable separately, often resulting in asymmetric recovery 
of edges. As a result, some ad-hoc procedures have to be implemented to construct 
the final topology from all nodewise neighborhoods. Another variational likelihood 
method was proposed by Park et al. [28], which substitutes the log-partition function 
by a Gaussian entropy bound. It has good computational efficiency, but sacrifices edge 
recovery consistency in some situations, for example, graphs with cycles [21, 22]. 
Instead, we multiply all node conditional distributions to formulate a pseudo-likelihood 
[PL; 6] problem for our data integration framework. Compared to the Guassian approx-
imation, structural learning based on PL has better theoretical guarantees for cyclic 
graphs, and meanwhile has similar computational complexity.

Given observations {xi}n
i=1

 independently sampled from P(x;�) specified in (1), the 
negative log-PL can be expressed by the sum of p negative logarithms of conditional 
distribution functions

where �i
r
= �r +

∑

s≠r �rsBs(x
i
s
) is a linear function of �r and �rs . Thus, the negative 

log-PL can be viewed as a sum of p generalized linear regressions using canonical 
link, but the p regressions are not separable because we enforce symmetry in edge 
potentials. As an approximation to the intractable true likelihood, the PL can lead to 
good parameter estimates.

In many biological network studies, data of different types are observed from dis-
tinct biological conditions, but these conditions may share similar regulation mecha-
nisms. To simultaneously learn the topology of all graphs, we adopt a joint modeling 
strategy to enhance the efficiency in utilizing data. For instance, suppose the data come 
from K different biological conditions, all with the same set of features V = {1,… , p} . 
For each individual class k, the p features jointly follow a PEMRF specified by param-
eter set �(k) , from which we have nk independent samples. Next, on the basis of the PL 
of PEMRF, combining the data from all K biological conditions, we set up the follow-
ing regularized optimization problem to perform joint structural learning

where N =
∑K

k=1
nk is the total sample size. The penalty function P is identical to the 

one in Liu and Zhang [22], which is designated to encourage borrowing information 
across different classes and induce graph sparsity. To be specific, the penalty func-
tion is defined as

�(�;{xi}n
i=1

) =
1

n

n
∑

i=1

p
∑

r=1
[

−𝜙i⊤
r
Br(x

i
r
) −

1

2

⟨

𝜃rr,Br(x
i
r
)Br(x

i
r
)⊤
⟩

F
+ Ar

(

𝜙i
r
;𝜃

rr

)

]

,

(3)min
�

(1),…,�(K)

1

N

K
∑

k=1

nk�(�
(k);{xi(k)}

nk
i=1

) + P�1,�2
(�(1),… ,�(K)),
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With a similar intuition to sparse group lasso [12, 34], it consists of two parts of 
group lasso penalties [42] in a hierarchical structure. This penalty function encour-
ages similarity among different biological conditions, but also allows divergence in 
the meantime, which is helpful in capturing class-specific interactions. Graph topol-
ogies {Ê(1),… , Ê(K)} are determined by the sparsity of edge potentials in the solu-

tion {�̂
(1)
,… , �̂

(K)
}. The PL-based M-estimator is able to maintain symmetric edge 

sparsity, which helps prevent difficulties of asymmetric estimation for nodewise 
regression type approaches. We choose weights wrs = K−1∕2 ⋅ (mrms)

1∕2 to balance 
the penalty for matrices �(k)

rs
 of different sizes. The other set of weights take the form 

�(k)
rs

= (nk∕N) ⋅ (mrms)
1∕2, which adjusts for different magnitudes of PL functions 

with imbalanced sample sizes. The tuning parameters can also be parameterized by 
an overall penalty 𝜆 = 𝜆1 + 𝜆2 > 0 and a proportion � = �2∕(�1 + �2) ∈ [0, 1] con-
trolling the similarity among classes. Given � = 1, the penalty enforces all the K 
graphs to share the same structure. On the other hand, if � = 0 , the problem becomes 
separable, which is equivalent to separate modeling for each biological condition.

It is noteworthy that if our interest is to reconstruct networks consisting of heteroge-
neous types of features, using only one set of tuning parameters may lead to different 
levels of penalization on different edge types. As a remedy, we standardize the suffi-
cient statistic Br∶j, namely the jth entry of Br(xr), by pooled mean estimate 

𝜇̂r∶j = N−1
∑

k nk𝜇̂
(k)

r∶j
 and pooled sample standard deviation 𝜎̂r∶j =

�

N−1
∑

k nk𝜎̂
2(k)

r∶j
. 

As a linear transformation, standardization on sufficient statistics across all classes does 
not affect the correlation structure, but the log-partition functions Ar should be trans-
formed accordingly. This procedure can also be justified by the calibrated weighting 
proposed by Lee and Hastie [17], where edge weights should be proportional to stand-
ard deviations of sufficient statistics.

3 � Consistency of Edge Recovery

3.1 � Assumptions

In this section, we establish high-dimensional edge recovery consistency for 
learning of one biological condition first, and then generalize the result to our 

(4)

P𝜆1,𝜆2
(�(1),… ,�(K))

= 𝜆1
�

r<s

K
�

k=1

𝜂(k)
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�

�

�

𝜃(k)
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�

�

�F
+ 𝜆2

�
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�

�

�

�
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,… , 𝜃(K)
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�

�

�

�F

= 𝜆

⎡

⎢

⎢

⎣

(1 − 𝛼)
�
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K
�
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�
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�
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�
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F
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⎤

⎥

⎥

⎦

.
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data integration problem. For the single graph estimation, consider the following 
regularized PL problem,

The key quantity of the following analysis is the Fisher information matrix, 
Q∗ = ∇2�(�∗), which is the Hessian of negative log-PL. Denote the true sparsity set 
by Sc, which is defined as Sc = {(r, s) ∶ �∗

rs
= 0}, consisting of indices of all uncon-

nected vertex pairs. Its complement S is the support set, including edge indices, 
as well as all node potentials in model parameters. The matrix Q∗ can be thereby 
partitioned into the following 2 × 2 blocked matrix through proper permutation of 
parameters,

We assume the true graph structure is sparse, so the maximum degree of the graph is 
controlled at d. In our context, we use ‖v‖p to denote the �p norm of vector v. When 
it is applied to a matrix, it becomes the �p norm of the vectorized matrix, for exam-
ple, ‖A‖∞ = maxi,j �Aij� . The operator matrix norm induced by �p norm is denoted by 
|||A|||p . Specifically, |||A|||∞ is the maximum �1 norm of a row of the matrix. Based 
on these notations, the following assumptions are made to establish edge recovery 
consistency.

Assumption 1  (Restricted strong convexity) There exist constants L1 > 0 , L2 > 0 
and B > 0 , such that for any Θ satisfying ‖Θ − Θ∗

‖2 ≤ B and any model parameter 
vector v, we have

and the hessian of loss function obeys

Assumption 2  (Irrepresentability) There exists a constant 𝜏 > 0 , such that

where mmax = maxr mr , wmin = minr,s wrs , and wmax = maxr,s wrs.

The first two conditions are common assumptions in the literature on high-
dimensional consistency. The loss function �(�) is assumed to be twice con-
tinuously differentiable. The restricted strong convexity condition ensures the 
loss function is not “too flat" and guarantees identifiability of �∗ . The Lipschitz 
continuity is a result of the duality between strong convexity and strong smooth-
ness. The irrepresentability assumption imposes control on the influence that 

(5)�� = argmin
�

�(�;{xi}n
i=1

) + 𝜆
�

r<s

wrs‖𝜃rs‖F.

Q∗ =

[

Q∗
SS

Q∗
SSc

Q∗
ScS

Q∗
ScSc

]

.

v⊤∇2
�(�)v ≥ L1‖v‖

2
2
,

‖∇2
�(�) − ∇2

�(�∗)‖F ≤ L2‖� −�
∗
‖2.

|

|

|

|

|

|

|

|

|

Q∗
ScS

(Q∗
SS
)−1

|

|

|

|

|

|

|

|

|∞
≤

wmin(1 − �)

wmaxmmax

,
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the non-edge terms can have on the edge-related terms, so that active parameter 
groups are not be overly dependent on the inactive parameter groups.

Assumption 3  (Bounded moments) For any feature r ∈ V  , and j ∈ {1,… ,mr} , the 
first moment of sufficient statistic is bounded, i.e. |�(Br∶j)| < 𝜅m . Also, the log-parti-
tion function A of the joint distribution satisfies the following properties:

and

for some constants q, 𝜅v, 𝜅h > 0 , where er∶j ( err∶jj ) is a unit vector that is equal to one 
only at the index corresponding to �r∶j ( �rr∶jj ) and zero elsewhere.

Assumption 4  (Smoothness of conditional distributions) For any variable r ∈ V  , 
the log-partition function of the nodewise conditional distribution Ar satisfies: there 
exist functions �1(n, p) and �2(n, p) such that, for any X ∈ X,

where �∗
r
= �∗

r
+
∑

s≠r �
∗
rs
Bs , and |a| ≤ 4q−1�2(n, p)max{log n, log p}.

The assumptions on the joint and conditional distributions are to construct tail prob-
ability bound of the score function ∇�(�∗) . The third assumption requires the first 
moment of sufficient statistics to be bounded. Also, some higher order moments should 
be bounded under a small perturbation in true model parameters. Assumption 4 is a 
smoothness condition to generalize the analyses in Meinshausen et al. [25], Ravikumar 
et al.[29] to exponential family. Yang et al. [41] has explicitly verified this condition for 
most exponential family distributions.

3.2 � Edge Selection Consistency Result

Under these assumptions, we are able to establish the following edge selection consist-
ency results.

Proposition 1  Under Assumptions 1, 2, 3, 4, for some constant 𝜅v < 𝜅3 ≤ 𝜅hq + 𝜅v , 
when sample size n is large enough, we are able to set the regularization parameter 
� to satisfy

max
|v|≤q

�2

��2
r∶j

A(�∗ + ver∶j) ≤ �v,

max
|v|≤q

�2

��2
rr∶jj

A(�∗ + verr∶jj) ≤ �h

�2

��2
r∶j

Ar(�
∗
r
+ aer∶j;�

∗
rr
) ≤ �1(n, p),
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where M is the total number of parameters in the model. Then, with probability of 
at least 1 − c1p

�−2 − exp(−c2n) − exp(−c3n) , the solution �̂ satisfies the following 
properties: 

1.	 Consistency ‖�̂ −�
∗
‖2 ≤

2

L1

�

�wmin

√

M

4(mmax+1−�)
+ wmax

√

pd

�

�;

2.	 Edge selection consistency �̂Sc = 0,

where p� = max{n, p};c1, c2, c2 are positive constants. Furthermore, if the true 
model satisfies

all edges are correctly estimated, i.e. Ê = E∗.

The proof of this proposition follows the standard primal-dual witness 
approach. In our analysis, we only consider unrestricted solution. If the model 
space is a subspace of ℝM , similar consistency result of constrained solution can 
be derived through the general framework in Lee et  al. [18]. Our consistency 
statements are general, which are not limited to Ising and Gaussian graphical 
models. For Gaussian graphical models where we can choose �1(n, p) = 1 and 
�2 = ∞ , the sample size required on �n to achieve consistent sparsity recovery is 
O(

√

log p∕n) , the same as nodewise regression [41]. Our result indicates that 
when the sample size is large enough compared to dimension and graph density, 
our estimator (5) can recover the correct edge structure with high probability, 
with a proper selection of tuning parameter.

For the joint modeling problem with fixed K specified by (3), we slightly mod-
ify Assumption 2 and obtain a similar consistency result.

Assumption 5  (Irrepresentability) Denote �min = mink,i,j �
(k)

ij
 and �max = maxk,i,j �

(k)

ij
 . 

There exists some 𝜏 > 0 such that for all k = 1,… ,K,

16(mmax + 1 − �)

�wmin

√

�1(n, p)�3

�

2 log p + 2 logmmax + log 2

n

≤ � ≤ min

⎧

⎪

⎨

⎪

⎩

8(mmax + 1 − �)

�wmin

�1(n, p)�2(n, p)�3,

�

�wmin

√

M

4(mmax + 1 − �)
+ wmax

√

pd

�−2

L2
1
�wmin

16L2(mmax + 1 − �)

�

,

min
(r,s)∈S

‖𝜃∗
rs
‖F >

2

L1

�

𝜏wmin

√

M

4(mmax + 1 − 𝜏)
+ wmax

√

pd

�

𝜆,
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Proposition 2  Suppose Assumptions  1, 3, 4, 5 are satisfied for all classes, given 
n1 = ⋯ = nK = n , for some constant 𝜅v < 𝜅3 ≤ 𝜅hq + 𝜅v , when sample size n is 
large enough, we are able to set the regularization parameter �1 to satisfy

 and �2 ≤
�max�

4wmax(1−�)
⋅ �1 = h�1 . Then, with probability of at least 

1 − Kc1p
�−2 − K exp(−c2n) − K exp(−c3n) , the solution to the joint learning prob-

lem �̂ = (�̂
(1)
,… , �̂

(K)
) satisfies the following properties: 

1.	 C o n s i s t e n c y  maxk ‖Θ̂(k) − Θ∗(k)
‖2 ≤

2
L1

(

�K2�min
√

M
4(mmax+1−�)

+ K2�max
√

pd + hwmaxpK3∕2
)

�1

maxk ‖Θ̂(k) − Θ∗(k)
‖2 ≤

2
L1

(

�K2�min
√

M
4(mmax+1−�)

+ K2�max
√

pd + hwmaxpK3∕2
)

�1;

2.	 Edge selection consistency �̂
(k)

S(k)c
= 0 for all classes.

Furthermore, if the true model of the kth class satisfies

all edges of that class are correctly estimated, i.e. Ê(k) = E∗(k).

In order to achieve full consistency for all K classes, the tuning parameter �2 for 
joint modeling must be sufficiently small. However, in our scenario when data come 
from distinct but similar conditions, more joint modeling leads to superior performance 
compared with no data integration. Detailed proofs are provided in the Supplementary 
Information.
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4 � Algorithm

4.1 � Proximal Gradient Algorithm

The joint structural learning framework is summarized by an optimization problem 
specified in (3). It can be solved in the scheme of proximal gradient and accelerated 
proximal gradient algorithms [4]. The proximal gradient algorithm is a first-order 
method frequently applied in statistical learning when the optimization objective can 
be decomposed into f (x) + g(x) , where f is smooth and convex and g is convex but pos-
sibly non-smooth. Another requirement is that the following proximal operator of the 
second function g can be computed in an efficient manner:

When all these requirements are met, the proximal gradient method solves the origi-
nal minimization problem with the following first-order model iteratively,

where xj is the current value after the jth iteration. Therefore, the (j + 1) th iteration 
updates the argument value by xj+1 = proxtj (xj − tj∇f (xj)) . The first-order model can 
also be viewed as a quadratic approximation to f at xj , with ∇2f (xj) replaced by I∕tj . 
For better convergence of the algorithm, step size tj is usually determined by back-
tracking line search. Many acceleration tactics have been further established, such as 
Auslender and Teboulle [3], Nesterov [26, 27], which slightly change the argument 
passed to the proximal operator for optimal convergence rate. The theoretical prop-
erties of the class of proximal gradient algorithms have been well-studied. The 
accelerated proximal gradient method can achieve sub-linear to linear convergence 
rate [4], depending on the strong convexity of the problem.

Our problem is perfectly suitable for the proximal gradient method. In our case, f 
is the negative log-PL and g is the hierarchical group lasso penalty. The negative log-
PL is convex and smooth, and the gradient can be computed efficiently through matrix 
multiplications. Time complexity of computing the gradient is O[N(

∑p

r=1
mr)

2] . The 
proximal operator of the penalty function (4) has an analytical solution. Evaluate the 
following problem,
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which is separable across vertex pairs. For a vertex pair r < s of a given class k, the 
proximal operator takes the form:

where S(x, �) = sign(x)(|x| − �)+ is the soft-thresholding operator and 
(x)+ = max(x, 0) denotes the positive part of a real function. As for non-regularized 
node potentials �(k)

r
 and �(k)

rr
 , the solutions are simply

In our practice, we realize the above algorithm using the Matlab package TFOCS 
[5], which allows us to experiment with different variants of proximal gradient and 
accelerated proximal gradient methods. To check convergence of our algorithm, the 
following stopping criterion is adopted:

which is a combination of absolute and relative tolerance. With a moderate tolerance 
of 10−5 , the algorithm usually converges in an acceptable number of iterations and 
results in satisfactory estimate of sparsity structure.

However, computation of this algorithm for large graphs can be very slow, and it 
cannot be easily paralleled. Therefore, the application of our method should be lim-
ited to problems with tens to hundreds of nodes. Methods which can take advantage 
of parallel computing such as nodewise regression may be a better option for infer-
ence of large complex networks.

4.2 � Selection of Tuning Parameters

The proposed estimator reconstructs the structure of K graphs simultaneously, which 
is associated with two tuning parameters, namely, � and � to control the overall spar-
sity and homogeneity of estimated networks. In this section, we introduce a G-fold 
stratified cross-validation (CV) scheme to perform tuning parameter selection. As a 
purely data-driven method, it is adaptive to multi-class data with different levels of 
homogeneity.

We apply a group-wise G-fold partition to create the training and validation sets 
by excluding and including each fold. Let us denote 
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g-th fold excluded for each biological condition. Therefore, the cross-validation 
error for the g-th fold can be computed by

which is the sum negative log-PL derived from trained solution and validation data. 
Taking arithmetic average of G folds, the CV score regarding a combination of tun-
ing parameters is CV(�, �) = (1∕G)

∑G

g=1
CV[g](�, �).

In practice, we specify a few values of � to define several rough levels of homo-
geneity, but a relatively dense sequence of � . Using grid search, we are able to locate 
the optimal combination of tuning parameters:

Due to the fact that CV is computationally costly, we can also follow an alternative 
line search strategy implemented in Danaher et  al. [10]. To be more specific, we 
first fix � at the median level of the searching range, and search the best � minimiz-
ing the CV score. Next, we use the tuned optimal 𝜆̂ for the best level of � , namely 
𝛼̂ . In order to further reduce false discovery rate, the “1-SE rule" can be applied to 
choose � with extra penalization on sparsity. Starting from (𝜆̂, 𝛼̂) , we fix � at 𝛼̂ and 
increase the regularization as much as we can, such that the CV score is still within 
one standard error of CV(𝜆̂, 𝛼̂) . In other words, we aim to find the maximum of � 
maintaining

where the standard error is computed by SE(�̂, �̂) = G−1∕2 ⋅ SD
(

CV[1](�̂, �̂),
… , CV[G](�̂, �̂)

)

 . The effectiveness of our method to select tuning parameters is 
validated in the following artificial data experiments.

5 � Numerical Studies

5.1 � Illustration of Single Graph Consistency

In this part, we illustrate the difference in edge selection consistency between our 
pseudo likelihood based method with the approximate inference approach proposed 
by Park et al. [28]. A simple binary Ising model for a cycle of four nodes is consid-
ered in this example, whose distribution is expressed by

Park et  al. [28] introduced an approximate maximum likelihood approach for 
PEMRF via a Gaussian entropy bound, which has similar form to graphical group 
lasso. However, the performance highly depends on the real inverse covariance 
matrix of sufficient statistics, and Loh and Wainwright [23] showed the inverse 

CV[g](�, �) =
1

N

K
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nk�
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(k)

[−g]
(�, �);X

(k)
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,

(𝜆̂, 𝛼̂) = argmin
𝜆,𝛼

CV(𝜆, 𝛼).

CV(𝜆, 𝛼̂) ≤ CV(𝜆̂, 𝛼̂) + SE(𝜆̂, 𝛼̂),

P(x) ∝ exp{�1x1 + �2x2 + �3x3 + �4x4 + �12x1x2 + �23x2x3 + �34x3x4 + �14x1x4}, x ∈ {0, 1}4.
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covariance matrix of the above Ising model does not reflect the true sparsity of 
edge structure. Specifically, let (�1, �2, �3, �4) = (0.5, 4.3, 2.3,−2.3) , �12 = −4.3 , 
�23 = −1.3 , �34 = −2.8 , �14 = 3.9 , and then the inverse covariance matrix is as 
follows,

where we find that the element corresponding to (x2, x4) overtakes the entry for edge 
(x2, x3) in scale. Thus, Liu and Zhang [22] illustrated that consistent edge recovery 
could not be attained in such situation using the variational likelihood inference. 
However, our proposed pseudo likelihood based approach shows a different story. 
In this case, we fix the regularization parameter to be � = 0.01 , and then inspect the 
probability of completely correct structure recovery (no false positives or false nega-
tives) given different sample sizes. The probabilities are estimated through Monte 
Carlo simulation built on 1000 replicates, which results in Table 2 indicating con-
sistent result of structural learning. In addition, Fig. 1 depicts the solution paths for 
the two methods under n = 10000 , where we can find their differences in edge selec-
tion consistency.

[Cov(X)]−1 =

⎛

⎜

⎜

⎜

⎝

19.334 11.014 0.015 − 8.790

11.014 16.491 1.043 − 1.124

0.015 1.043 5.421 3.078

−8.790 − 1.124 3.078 18.783

⎞

⎟

⎟

⎟

⎠

,

Table 2   Monte Carlo probabilities of correct estimation for pseudo-likelihood single class inference

n 200 500 1000 2000 5000 10000

Pr(correct recovery) 0.380 0.634 0.820 0.930 0.996 1.000
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Fig. 1   Solution paths for PL- and AL-based methods with sufficient statistics standardized. The PL 
method can select the right model with proper � , but the AL method cannot
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5.2 � Simulations

In this part, we assess the performance of our proposed method in jointly estimating 
multiple pairwise exponential graphical models with high topological similarity. Let 
us consider K = 2 sub-populations composed of p = 60 features in our design. Each 
network consists of two mutually unconnected sub-networks. The first sub-network 
( p1 = 40 ) is shared by both classes, but the second network ( p2 = 20 ) is separately 
generated for each class. All artificial sub-networks are scale-free following power 
law degree distributions [1]. As a result, the two true graphs are similar but distinct. 
Specifically, we evaluate two types of mixtures in our study. The first type of mix-
ture (P-E) is composed of 30 truncated Poisson nodes and 30 exponential nodes. 
The second type of mixture (C–P–G) contains 20 categorical nodes (3-category), 20 
truncated Poisson nodes and 20 Gaussian nodes. Within each mixture, all kinds of 
interactions are present. Model parameters are set up as follows.

•	 C–P–G mixture: �r = 0 for categorical and Gaussian nodes; �r = 0.8 for trun-
cated Poisson nodes; �rr = −3 for Gaussian nodes; �rs = ±0.03 for Poisson-
Poisson edges; �rs = ±0.1 for Poisson-categorical and Poisson-Gaussian edges; 
�rs = ±0.3 for other types of edges. All signs of interactions are randomly 
selected.

•	 P–E mixture: �r = 1 for truncated Poisson nodes; �r = −0.5 for exponential 
nodes; �rs = −0.2 for all types of edges.

We adopt Gibbs sampling to generate synthetic data with per-class sample size 
n = 50, 100, 200, 500 . All truncated Poisson variables are truncated at 10 during 
data generation. However, since truncation points are usually unknown in reality, 
all truncated Poisson variables are treated as Poisson as we implement our PL-based 
structural learning.

To elucidate the advantage of joint modeling, we compare the edge selection per-
formance for partial joint modeling ( � = 0.5 ) and separate modeling ( � = 0 ) using 
our PL-based data integration (PLDIG). We also assess the difference between 
PLDIG and the data integration framework based on approximate likelihood 
(ALDIG) [22]. To compare with these joint learning methods, we also apply node-
wise regression (NR) to each individual sub-population so that structures of the two 
networks are separately learned without data integration. The NR approach is done 
by the R package mgm [14], in which exponential variables are modeled as Gauss-
ian, and categorical variables are addressed by regularized multinomial regression. 
The Receiver Operating Characteristic (ROC) curves averaged across 20 independ-
ent experiments using a sequence of � are exhibited in Fig. 2, which reflect the over-
all prediction power at different levels of data integration. We illustrate the running 
times for these methods in Fig. 3, on a Mac with 2.3 GHz dual-core Intel i5 proces-
sor and 16 GB of RAM.

From Fig. 2, we can easily observe that partial data integration is beneficial to 
edge recovery accuracy for both mixture types. The lines representing no data inte-
gration, either PLDIG (red dashed line) or NR (blue dash-dotted line), are inferior to 
the others in all scenarios. As for the comparison between PLDIG and ALDIG, we 
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find that PLDIG is slightly better than ALDIG in most cases, given that we use the 
same level of joint modeling. The running time for PLDIG is comparable to ALDIG, 
and is slightly faster in some cases.

Afterwards, we utilize the C–P–G mixture to demonstrate how CV selects the 
level of joint modeling and how CV adapts to different similarity scenarios. In addi-
tion to the “similar but distinct" scenario described previously, we also take the situ-
ation that the two sub-populations are identical into consideration, where we use 
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figure online)
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the previous class 1 network to simulate data for both classes. In each of the 20 
independent experiments, 5-fold CV with line search is adopted to select � from 
{0, 0.1,… , 1}.

The boxplots of selected � are shown in Fig. 4. In general, our CV scheme auto-
matically selects the level of network similarity. That is, higher levels of joint mod-
eling are selected given the two sub-populations are identical. We can also observe 
a trend that increasing n for each class leads to lower level of joint modeling, which 
is beneficial in detecting class-specific correlations when the graphs are not com-
pletely the same. High level of data integration may increase the risk of selecting 
false positives, canceling out the benefit of joint modeling provided that the network 
structures are not identical.

6 � Real Application to TCGA Data

Cancer is a complex group of diseases, which arise from accumulation of genetic 
and epigenetic factors. A number of molecular features have been found to be asso-
ciated with human cancer, such as gene expression, mutation, copy number varia-
tion and DNA methylation. In this part, we base our study on the Cancer Genome 
Atlas (TCGA) project [38], which compiles multiple types of omic data from a large 
number of cancer patients. Instead of the entire cancer genome, we limit our interest 
to the BRAF signaling pathway [45], a smaller gene module consisting of 10 most 
popular cancer-related genes: NRAS, RAF1, BRAF, MAP2K1, MAP2K2, MAPK1, 
PIK3CA, PTEN, AKT1, MTOR, regulating cell growth, migration, and prolifera-
tion. It has been shown that overexpressions, mutations and amplifications in these 
genes are linked to different malignancies [9, 35].

We adopt the proposed data integration technique to jointly learn the gene reg-
ulatory networks of breast invasive carcinoma (BRCA) ( n1 = 750 primary tumor 
samples) and kidney renal clear cell carcinoma (KIRC) ( n2 = 389 primary tumor 
samples). A mixture of different types of omic features, including RNA sequencing, 
somatic copy number variation (CNV), non-silent somatic mutation are incorporated 
into our study. The raw RNA-Seq count data are processed according to the proce-
dure in Allen and Liu [2], which adjusts for sequencing depth and overdispersion 
[19]. Then the processed mRNA-seq data are Poisson-like, thereby modeled as Pois-
son variables. Gene level mutation data are considered binary. Among all these 10 
genes, only 3 of them have enough variation in both cancer types, namely, MTOR, 
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PIK3CA and PTEN. Copy number variation (CNV), as a common type of structural 
variation, is a phenomenon of duplication or deletion events in the genome. The 
CNV data are presented as log-ratios, which are continuous and roughly symmetric. 
Thus, we use our proposed PLDIG approach to simultaneously learn the structures 
of two C–P–G mixed models.

Among � ∈ {0, 0.1,… , 1} , the 5-fold CV suggests an optimal joint modeling 
level at � = 0.5 , indicating moderate homogeneity among the two networks. We 
use bootstrap resampling to select edges getting voted by more than 95 times out 
of 100 bootstrapped samples, so as to find interactions with high confidence and to 
reduce the false discovery rate [20]. The corresponding topology estimates are dem-
onstrated in Fig. 5.

In general, gene co-expression relationships as well as mutation-expression of 
CNV-expression regulatory interactions form the skeletons of the two networks. 
The two graphs consisting of edges with high confidence are very similar. For both 
graphs, we find RAF1 expression is identified as a hub node for both cancer types, 
which is aligned with the discovery that RAF1 and BRAF are critical upstream 
kinases and activators of the MAP kinase signaling pathway [37]. The CNV of 
RAF1 is also an important regulatory factor, which is consistent with the existing 
literature [30, 33]. Several breast cancer specific interactions are selected, such as 
the interaction between the CNV of MTOR and RAF1 expression, which is sup-
ported by the finding that PI3K/AKT/mTOR and Raf/MEK/ERK cascades are inter-
connected [31].

7 � Conclusion and Discussion

When data are collected from different biological conditions with similar interac-
tion mechanisms, by conducting joint analysis of multiple sub-populations, we can 
borrow information from different biological conditions. In this paper, we have 
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established a joint pseudo-likelihood estimation framework named PLDIG for mul-
tiple mixed graphical models. Given that we have a limited sample size for each 
sub-population, but these graph structures are sparse and highly homogeneous, our 
proposed data integration framework shows great practical benefits.

This paper focuses on a similar joint graphical model estimation problem to Liu 
and Zhang [22]. However, the PL-based approach in this paper is in possession of 
edge selection consistency for general graph structures, whereas the approximation 
in ALDIG has difficulties in recovering cyclic graphs. Using a proximal gradient 
algorithm rather than ADMM in Liu and Zhang [22], we find that the computa-
tion burden of PLDIG is comparable to ALDIG in small to moderate graphs via 
simulations.

The application of our proposed method should be limited to networks with tens 
to hundreds of nodes due to speed restriction. For large and complex systems, a fea-
ture filtering based on existing knowledge is necessary to computational efficiency. 
Modules of features with high numbers of mutual correlations should be prioritized.
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