2208.06290v1 [math.NA] 12 Aug 2022

arxiv

Solving Linear Systems on a GPU with
Hierarchically Off-Diagonal Low-Rank
Approximations

Chao Chen
Oden Institute for Computational Engineering and Sciences
University of Texas at Austin
Austin, United States
chenchao.nk@gmail.com

Abstract—We are interested in solving linear systems aris-
ing from three applications: (1) kernel methods in machine
learning, (2) discretization of boundary integral equations from
mathematical physics, and (3) Schur complements formed in
the factorization of many large sparse matrices. The coefficient
matrices are often data-sparse in the sense that their off-diagonal
blocks have low numerical ranks; specifically, we focus on
“hierarchically off-diagonal low-rank (HODLR)” matrices. We
introduce algorithms for factorizing HODLR matrices and for
applying the factorizations on a GPU. The algorithms leverage
the efficiency of batched dense linear algebra, and they scale
nearly linearly with the matrix size when the numerical ranks
are fixed. The accuracy of the HODLR-matrix approximation
is a tunable parameter, so we can construct high-accuracy fast
direct solvers or low-accuracy robust preconditioners. Numerical
results show that we can solve problems with several millions of
unknowns in a couple of seconds on a single GPU.

Index Terms—Linear solver on GPU, boundary integral equa-
tion, kernel matrix, elliptic partial differential equations, hier-
archical low-rank approximation, batched dense linear algebra,
rank structured matrix, hierarchical matrix, LU factorization.

I. INTRODUCTION

Consider the solution of a large dense linear system

Az =b, AcFNN zandbeFV, (D)

on a GPU, where [is the field of real or complex numbers.
We focus on the situation where the coefficient matrix A
can be approximated by hierarchically off-diagonal low-rank
(HODLR) matrices [1], [2]. Given a matrix X partitioned into
a 2 x 2 block form:

X 12)

Xoo)’

X1
X= (le

we say X is a HODLR matrix if (1) the two off-diagonal
blocks X2 and X5; are low rank, and (2) the two diagonal
blocks X;; and Xso have the same off-diagonal low-rank
structure or have sufficiently small sizes. (See a pictorial
illustration in Fig. 2.)

Solving (1) on a GPU using the HODLR-matrix approx-
imation is particularly appealing for two reasons. (1) The
approximation reduces the required memory footprint and thus

(@)

Per-Gunnar Martinsson
Department of Mathematics
Oden Institute for Computational Engineering and Sciences
University of Texas at Austin
Austin, United States
pgm@oden.utexas.edu

allows solving much larger problem sizes than storing the
entire matrix A. For example, we were able to solve problems
with several millions of unknowns on a single GPU that has
only 32 GB of memory (see, e.g., Table IV). (2) Our algo-
rithms are built upon the batched matrix-matrix multiplication
and the batched LU factorization routines, which are highly
efficient on GPUs. For example, the construction of our GPU
solver achieved approximately 2 TFlop/s on an NVIDIA V100
GPU (see Fig. 9).

HODLR matrices arise from a range of applications across
science, engineering, and data analytics, including:

a) Kernel matrices: Given a (real) kernel function /C,
such as the Gaussian kernel and the Matern kernel, and a
data set {y;} ¥, the associated kernel matrix K € RV*¥ ig
defined as

Ki,j = ’C(y’u y])v

Such matrices arise in machine learning [3], [4] and data
assimilation [5], [6]. Ambikasaran et al. [7], [8] demonstrated
that these matrices can be approximated efficiently by HODLR
matrices. See also our numerical results in section IV-A.

b) Boundary integral equations: Some boundary value
problems (BVPs) involving, e.g., the Laplace and the
Helmholtz equations, can be reformulated as boundary integral
equations (BIEs) of the form

Vi,j=1,2,...,N.

a@le) + [K@uldy=1@) G
where K (-,) is derived from the free-space fundamental solu-
tion associated with the elliptic operator; where a(-) and f(-)
are given functions; and where u(-) is the unknown. While it
may be challenging to discretize the original partial differential
equations (PDEs) directly, the BIEs offer several advantages
(see, e.g., [9, Chapter 10]). Although the discretization of (3)
leads to a dense linear system, the discretized integral operator
can be approximated efficiently by a HODLR matrix in many
environments. See sections IV-B and IV-C for two concrete
examples.

http://arxiv.org/abs/2208.06290v1

¢) Elliptic PDEs: The discretization of an elliptic PDE
=V (a(x)Vu(z)) + b(z)u(z) = f(z),

where a(-), b(-), and f(-) are given functions, leads to a sparse
linear system to be solved. While sparse direct solvers [10]
based on Gaussian elimination are extremely robust, they
typically require significant computing resources to handle
dense Schur complements arising during the elimination. That
significant acceleration can be attained by exploiting rank-
structures in these Schur complements was established in, e.g.,
(2], [11], [12].

A. Previous work

Classical direct methods for solving (1) based on LU or
QR factorizations admit highly efficient implementations on
GPUs, but are limited by their unfavorable O(N?) scaling in
terms of operations. For GPU computing, the O(N?) storage
complexity can be even more restrictive.

This paper concerns a class of methods that exploit the
numerically low-rank property of off-diagonal blocks in the
matrix A. As many theoretical and empirical results have
demonstrated, certain off-diagonal blocks in A can be com-
pressed efficiently by their low-rank approximations. Based on
this observation, the tile low-rank (TLR) approximation [13],
[14] views matrix A as a block matrix and compresses off-
diagonal blocks using low-rank approximations. With the TLR
approximation, the LU factorization or the Cholesky factor-
ization of matrix A can be accelerated significantly. This ap-
proach has been realized efficiently on shared and distributed-
memory systems for covariance matrices [15] and BIEs [16].
It is also implemented on GPUs recently [17]. However, the
asymptotic complexity for solving (1) is generally super-linear
and the cost can be significant when the matrix size [V is large.

To arrive at linear or nearly linear complexities, a hier-
archical decomposition of matrix A is needed, and several
hierarchically low-rank approximations have been proposed
including #H matrices [18], [19], #? matrices [20], hierarchi-
cally semi-separable (HSS) matrices [21]-[23] and HODLR
matrices. See related algorithms for solving (1) in, e.g., [5],
[8], [9], [24]-[32] and the references therein. However, few
of these methods have been implemented to achieve high
performance on modern computing architectures. Two recent
software packages for HODLR matrices include (1) HODL-
RLIB [33], which is an open-source code written in C++
and parallelized with OpenMP for multicore CPUs, and (2)
hm-toolbox [34], which is a MATLAB code that implements
many operations involving HODLR matrices focusing on pro-
totyping algorithms and ensuring reproducibility rather than
delivering high performance.

B. Contributions

We introduce a new data structure for HODLR matrices,
where the low-rank bases of all off-diagonal blocks are con-
catenated into two big matrices (see an example in Fig. 3). This
strategy aggregates small sub-blocks in the bases that need to
be processed during the factorization into large sub-blocks in

the big matrices. As a result, we can combine sequences of
BLAS/LAPACK calls of low arithmetic intensities into a single
kernel launch, which increases the Flop rate and mitigates the
overhead of data transfer. This approach naturally leads to (1)
a high-performance factorization algorithm that delivered up to
20 GFlop/s on a single CPU core in our experiments, and (2)
parallel algorithms for factorizing a HODLR matrix and for
applying the factorization to solve linear systems. Furthermore,
we implemented the parallel algorithms leveraging existing
high-performance batched matrix-matrix multiplication and
batched LU factorization routines on a GPU. We present
numerical benchmarks for solving large dense linear systems
arising from kernel methods and two dimensional BIEs, and
we compare the performance of our methods to existing
methods/codes.

II. PRELIMINARILES

We adopt the following MATLAB notations: (1) A(Z,:) and
A(:,7) denote the rows and columns in matrix A correspond-
ing to an index set Z, respectively; and (2) [A| B] denotes
the concatenation of two matrices A and B that have the same
number of rows. Matrices and vectors are denoted using upper
and lower case letters, respectively. In particular, I is used to
denote an identity matrix of an appropriate size. We use greek
letters to denote nodes in a tree data structure.

A. HODLR matrix

Here we give (non-recursive) definitions of a cluster tree and
the associated HODLR format, which follow closely with [9],
[34]. A cluster tree stands for a hierarchical partitioning of the
row/column indices of a matrix, which dictates a tessellation
of the matrix in a HODLR format.

Definition 1 (Cluster tree). Given an index set I =
{1,2,...,N}, a cluster tree Ty, is a binary tree that satisfies
the following three conditions:
1) There are L + 1 levels, namely, 0,1,..., L, and there
are 2° nodes at level .
2) Every tree node stands for a (nonempty) consecutive
subset of L. In particular, the root node represents L.
3) The union of two subsets owned by a pair of siblings,
respectively, equals to the subset owned by their parent.
(Nodes at the same level form a partitioning of L.)

Fig. 1 shows an example of 73. In practice, the indices
in 7 are usually associated with points in R¥, so 7 can
be computed using some recursive bisection strategies. For
example, 77, can be constructed as a k-d tree. Notice that a
cluster tree 7, naturally leads to a tessellation of a matrix
A € FNXN:

1) A leaf node « corresponds to a diagonal block

A(Z4,T,), and there are 2% of them.

2) A pair of siblings o and 3 corresponds to an off-diagonal

block A(Z,,Zs), and there are 211 — 2 of them.

For example, Fig. 2 illustrates such a tessellation.

Definition 2 (HODLR matrix). Given a cluster tree Tr, a
matrix A € FN*N is a HODLR matrix if every off-diagonal

level O

level 1

Fig. 1: An example of hierarchical decomposition of matrix
row/column indices Z = {1, 2,...,400}. The root is the entire
set 71 = Z, and there are four leaf nodes in this case. Some
of the individual index vectors are given. Node 2 has two
“children” 4 and 5, who are “siblings”.

Dy | Aus
Ass
Asa | Ds
A=
D¢ | As7
Az
Aze | Dy

Fig. 2: Matrix tessellation corresponding to the cluster tree in
Fig. 1. A diagonal block D, is defined as A(Z,,Z,), where
« is a leaf node.

block A(Z.,1Ig) that corresponds to a pair of siblings o and
B in Tr, has low rank. We say a HODLR matrix has rank r if
the maximum rank of all off-diagonal blocks is r.

B. Construction of a HODLR matrix

The construction of a HODLR matrix is straightforward
in the sense that we need to only compress certain off-
diagonal blocks in the original matrix. We refer interested
readers to Ambikasaran’s PhD thesis [5] for a review of
algebraic and analytic techniques to compute the low-rank
approximations. See also [35] for some recent advances on
randomized methods. In situations where a fast matrix-vector
product routine exists for the matrix to be compressed, the
so-called “peeling algorithms” [36]-[38] have been developed
for the construction of a HODLR approximation.

Several parallel algorithms have been developed to construct
more complicated formats than HODLR matrices, and some
of them can be used to construct a HODLR-matrix approxi-
mation. Fernando et al [39] demonstrates the construction of
an HSS matrix on multiple GPUs using an almost matrix-free
method introduced in [40]. Boukaram et al [41] introduces
a matrix-free method to construct an 2 matrix on a GPU.
Chenhan et al [42], [43] develop algorithms on multicore
and distributed-memory machines to approximate a symmetric
positive definite (SPD) matrix with hierarchically low-rank
structures.

III. ALGORITHMS
Assume a rank-r HODLR matrix A € FV*V and the un-
derlying cluster tree 77, are given. Our focus here is factorizing
the HODLR matrix and applying the factorization to solve a
linear system

Az =0. 4)

Let every off-diagonal block A(Z,,Zs) (that corresponds to a
pair of siblings in 77) be that

A(Za,T5) = UV, ®)

where U, and V3 are two skinny matrices, and we call them
the left and the right low-rank bases.

A. Recursive algorithm

Consider a partitioning of (4) into

Ao UVE (20 _ (ba
UsVy Ap zg) \bg)’

where o and 3 are the two nodes at level 1 in 77. Suppose
we can solve the following two subproblems with multiple
right-hand sides:

(6)

{ f;;z:gi and { f;;g :[bjf; %)
Then, the solution of (4) can be obtained via
G)-()-G) o
where w, and wg are from solving
ViYa I W, Vi za
(5 v ()= G5)- o

Obviously, (7) can be solved recursively when « and /3 are not
leaves in T1; otherwise, we solve (7) directly using, e.g., the
LU factorization. This recursive algorithm initially appeared

in [2], and we prove its correctness below.
Theorem 1 (Correctness of recursion). Assume the following
three matrices are invertible:
ViYa I
A, Ap, and < T VEY,B) .

Then, (8) is the solution of (6).
-1

A
Proof. Multiply < * A1> on both sizes of (6), and it is
B

sufficient to prove

I YaVﬂ* Ta) _ [Za
YgV; I xs o zB)

According to the Woodbury formula, we know that

LYV [, VAW -
YV oI - Ys Vi

—1
o\ (I VYl (v
=G)l) (7)o

Therefore, it is straightforward to verify that (8) holds. O

Observe that some calculations in the recursion do not
depend on the right-hand side b, and thus intermediate results
can be precomputed. In particular, we divide the computation
into two stages:

« Factorization: we compute Y,,, Y3, and an LU factoriza-

tion of
V*Y, I
K, 2 < A >) (11)
I VB Y3
where + is the parent of « and £.
« Solution: we compute zq, 23, Wa, Wa, Lo, and g.

Notice that some of the calculations can be done in-place
(overwriting inputs with outputs). For example, we can over-
write two U matrices with corresponding Y matrices. As a
result, the extra memory required by the algorithm mostly
comes from storing the LU factorization of the coefficient
matrix and the right-hand sides in (9), which is negligible
when the rank in (5) is small.

B. Data structure and nonrecursive algorithm

For simplicity, let us assume the rank of all off-diagonal
blocks is r. (The following presentation extends to general
cases where the ranks vary.) To motivate the new data structure
we use in our parallel algorithms, we illustrate the main idea
through the following example.

Example 1. Consider the HODLR matrix in Fig. 2, where the
underlying cluster tree has three levels (level 0, 1, and 2). An
appropriate partitioning of (4) leads to

A2 UQ ‘/3* i) _ bQ
U3 ‘/2* A3 I3 o bg ’

where Ao and As are themselves (2-level) HODLR matrices,
by = b(Z2) and by = b(Z3) are subvectors in the right-hand
side by and xo = x(Zy) and x3 = x(I3) are subvectors in the
solution x.
Let us write down the recursion steps. At the first step, we
have two subproblems:
and {

{ A222:b2 A323=b3
Rewrite them more compactly as

Ay Yo =Us AsYs = Uz

Az[22]Y2] = [b2|U2] and As[z3|Ys]=[bs|Us],

which again can be partitioned appropriately into
Dy UV (20| Yo" \ _(ba| 0"
U5 V4* D5 25 Y'Qbot - b5 Uzbot
and Ds UsVy % | V3" O\ _ (be | Us”
U7V'6* D7 27 }/?)bm‘ - b7 Uémt)
where by = b(Zy), bs = b(Zs), bs = b(Zg), and by = b(Z7) are

subvectors in the right-hand side b (notice that T, U L5 = I
and Ig UZ7; = I3 according to the cluster tree in Fig. 1).

U, Vy
U, Vs
Us Vs
Ubig = Voig =
Us Vs
Us V3
U7 V?

Fig. 3: Concatenation of all low-rank bases into two big
matrices for the HODLR matrix in Fig. 2 assuming the ranks
at the same level are the same.

D,
2 Ds 1 K 0
Dy = Ky = Ky, = | K1
Dg Ks
D~

Fig. 4: Concatenation of diagonal blocks and K matrices
defined at (11) for the HODLR matrix in Fig. 2 assuming
the ranks at the same level are the same. A superscript ¢
means a block-row view of the matrix, where matrix rows
are partitioned according to nodes at the ¢-th level in the tree.

At the second step, we have four subproblems:

{ Dy (2| V3| Ya] = [ba| UL | Us]

Ds [z5 | Y2 | Y5] = [bs |US" | Us]

na { Dolol Yol = (oo U7
D727 | Y9 | Y] = [b7 |UY U]

where the four D matrices are corresponding diagonal blocks
(that have full ranks), and we solve them directly using, e.g.,
the LU factorization.

Observe the right-hand sides in the above four subproblems,
where the U matrices have been partitioned and then concate-
nated together. This motivates the idea of concatenating all
the U bases into one big matrix Uy, as shown in Fig. 3. The
same strategy is applied to form a big matrix Vi, of all the
V' bases for reasons that will be clear when we introduce our
GPU algorithms. We also concatenate diagonal blocks and K
matrices defined at (11) for ease of presentation.

In general, we traverse 77, in a breadth-first (top-down level-
by-level) order to create the two big matrices. Consider every
node ~y that has two children « and 5 (so « and S are siblings).
First, we place U, and Ug vertically on top of each other as

Us
not have the same number of columns, and we align them to
the left. We do the same thing with V,, and V3. Second, if
is not the root of 7y, it is associated with low-rank bases U,

(the order does not matter). In general, U, and Ug may

and V,,, and we form the following concatenation

o] d | (o]]
Notice that the number of rows in U, equals to the sum
of those in U, and Ug and the same applies to the V
matrices. Finally, we obtain two big matrices Upig and Vjig
after traversing 77,. With the previous assumption of constant
rank, Uy, and Vg are two matrices of size N-by-rL. In
general, when ranks of off-diagonal blocks vary, Uy and Vg
are no longer rectangular matrices. But the algorithms we are
going to introduce can be generalized accordingly. In the same
spirit, we concatenate the D matrices and K matrices as shown
in Fig. 4.

Given a cluster tree 7; as defined in Definition 1, we
can unroll the previous recursive algorithm into a for-loop
based algorithm, which consists of a factorization stage and a
solution stage as described in Algorithms 1 and 2, respectively.
The advantages of the new data structure are clear. We need
only one BLAS or LAPACK call for the computation involving
multiple left low-rank bases across different levels in 7, and
there is no unnecessary data movement. For example, one
LAPACK call (getrs) is sufficient for solving all the right-hand
sides at a leaf node in 77, (line 4 in Algorithm 1).

Notice that a lot of memory allocation in Algorithm 1 is
avoided by overwriting inputs with outputs. For example, Yy;g
overwrites Uyig, and the factorizations of diagonal blocks are
stored in place. As a result, Algorithm 1 requires little extra
memory when the rank r is small.

12)

C. Parallel algorithms for GPUs

Recall that in the recursive algorithm, the two subproblems
in (7) are independent of each other and can be solved in
parallel. Consider the underlying cluster tree of a HODLR
matrix. If we associate the root with the task of solving the
original linear system and every other tree node with the task
of solving a corresponding subproblem, then the cluster tree is
effectively a task graph. In the task graph, every node depends
on its two children if they exist. The same analysis applies
to the factorization stage and the solution stage as described
in Algorithms 1 and 2, respectively, and the underlying task
graphs are exactly the same (definitions of tasks differ).

Let us focus on the factorization stage, and most of the
following discussion applies to the solution stage as well. It is
clear that in the underlying task graph, all the nodes (tasks) at
the same level are embarrassingly parallel. In other words, the
two for-loops at lines 2&7 in Algorithm 1 can be parallelized.
Indeed, the HODLRLIB library [33] employs the “parallel-
for” directive in OpenMP [44] to parallelize the two for-loops.
In Algorithm 1, it is also obvious that the nodes (tasks) at the
same level work on different subblocks in Uy and Ve, which
correspond to a (consecutive) partitioning of the row indices.

Notice that in the factorization stage, every leaf task requires
solving a linear system with multiple right-hand sides and ev-
ery nonleaf task comprises solving a linear system and matrix-
matrix multiplications (gemm’s). Therefore, Algorithm 1 can

Algorithm 1 Nonrecursive algorithm for solving (4): factor-
ization stage

Input: diagonal blocks in A, matrix Upjg, matrix Viig, and
cluster tree 77,.
Output: matrix Y}, and stored factorizations.
1: Yyig < Ubig N Yyig overwrites Upg.
2: for leaf node « in 77, do
Factorize diagonal block D, =
store its LU factorization in-place.
4: Apply D! (the previous LU factorization) to solve
multiple right-hand sides Yig(Za, :) in-place.

A(Z,,Z,) and

5: end for
6: for level / =L — 1 to 0 do
7: for tree node «y at level £ in 77, do
8: Let the children of v be o and .
. ViYa I
9: Factorize K, = < T V,Q*YB> and
store its LU factorization in-place.
10: Apply K L (the previous LU factorization) to

solve

VY, 1 Wo\ (ViYsig(Za,1:1L)
I ViYs) \Ws) Vﬁ*Yi,ig(Ig,l:M) '
13)
11: Compute

Y W,
Yoig(Zy, 1 : 70) < Yoig(Zy,1 : 1) — <YBW,8> . (14

12: end for
13: end for

Algorithm 2 Nonrecursive algorithm for solving (4): solution
stage

Input: matrix Yy, matrix Vg, stored LU factorizations,
cluster tree 77, and right-hand side b.
Qutput: solution of (4), namely, z.
1. x<b
2: for leaf node « in T, do
3: Apply D, ! (precomputed LU factorization) to solve
right-hand side z(Z,) in-place.

// x overwrites b.

4: end for
5: for level /=L — 1 to 0 do
6: for tree node + at level £ in T, do
7: Let the children of v be o and 3.
8: Apply K 1 (precomputed LU factorization) to
solve
ViYs I wa\ (Vix(Za) (15)
1 ViYs) \ws) Vﬁ*x(Iﬂ) ‘
9: Compute
Y, we
z(Zy) « x(Zy) — (ng;) . (16)

10: end for
11: end for

TABLE I: Notations for Algorithms 3 and 4

block-row view of a matrix, where matrix rows are
partitioned according to nodes at the ¢-th level in

TL.

superscript £

operator block-wise matrix multiplication between two block-
row matrices (the result is a block-row matrix).
yt+1 shorthand for Ybl;;rl(:, rd+1:r(+1)).
Vvt shorthand for V{f;rl(:, rd+1:r(+1)).
(vet)® block-wise transpose of V¢+1,

(n) "~

applying matrix inverse (solution of linear systems)
with block-wise LU factorizations.

be transformed into a parallel algorithm by simply batching
the BLAS and LAPACK calls from tasks at the same level.
In particular, we take advantage of the batched LU factor-
ization/solution (getrfBatched/getrsBatched) and the batched
gemm (gemmBatched) from cuBLAS' in our GPU algorithms.
With our new data structure that concatenates the left low-rank
bases into one (big) matrix, we need only one cuBLAS call
for computations involving multiple left low-rank bases across
different levels in the tree. This property simplifies the imple-
mentation, avoids unnecessary data movement, and reduces
the number of kernel launches. We present the pseudocode of
our GPU factorization algorithm in Algorithm 3.

The new data structure also allows us to take advantage
of an optimization of the general batched gemm kernel—
gemmStridedBatchedz—from cuBLAS when the (left) low-
rank bases at the same level have the same sizes. In other
words, there is a constant stride among the corresponding
subblocks in Uy, and V4, that are accessed by a batched
gemm kernel. Such an optimization improves the performance
significantly when the sizes of input matrices are small.

The solution stage as described in Algorithm 2 has similar
structure as the factorization stage. It is straightforward to see
that the two for-loops at lines 2&6 in Algorithm 2 can be
parallelized. Again, we batch the BLAS and LAPACK calls
from tasks at the same level. With the precomputed data from
the factorization stage, the solution stage is relatively simple
as described in Algorithm 4.

Notice that for the first few levels the number of nodes is
small, and we empirically found that the batched gemm kernel
was outperformed by launching independent gemm kernels
using CUDA streams. Before ending this section, we point
out two variants of (9):

I VYs\ (wa) _ (Vi

ViYe I) \ws Vi Za

‘ I VEYL\ (ws\ _ (Viza
an ViYs 1) \wa) ” \Vizs)°

Uhttps://docs.nvidia.com/cuda/cublas/index.html
Zhttps://developer.nvidia.com/blog/cublas-strided- batched-matrix-multiply/

Algorithm 3 GPU algorithm for solving (4): factorization
stage (see notations in Table I)

Input: matrix Dy;,, matrix Uy;e, matrix Vi, and cluster tree
TL.
Output: matrix Yy, block-wise factorizations of matrices
L 0 1 L—1
Dbig, Kbig, Kbig, Kbig .
1: Yiig <= Ubig W Yyig overwrites Upig.
2: BATCHED_LU_FACTORIZE_INPLACE(Dkﬁg)
3: BATCHED_LU_SOLVE_INPLACE:

vk« (DE) oYk

4: for level { =L —1 to 0 do
BATCHED_GEMM:

TEJrl «— (VlJrl)* ® YEJrl

W

/T and W (below) are temporary variables; see (13).
6: BATCHED_GEMM:

WL (VHl)* ©) Yif;rl(:,l :rd)

7. Form matrix K, with 7", // See (11) and Fig. 4.

BATCHED_LU_FACTORIZE_INPLACE(K fig)
BATCHED_LU_SOLVE_INPLACE:

W (Kh) P oW’

10: BATCHED_GEMM:
Ybf;rl(:, 1:78) Yif;rl(:,l crl) =Y o Wit
11: end for

Algorithm 4 GPU algorithm for solving (4): solution stage
(see notations in Table I)

Input: matrix Yy;e, matrix Ve, (block-wise factorizations of)

: L 0 1 L—1
matrices Dbig, Kbig, Kbig, e, Kbig , cluster tree 77, and

right-hand side b.
Output: solution z.

. x < b // x overwrites b.

2: BATCHED_LU_SOLVE_INPLACE:
—1
ot (DbLig) ok

3: forlevel / =L —1 to O do
4: BATCHED_GEMM:

wz+1 - (V”l)* o Ie+1

// w is a temporary variable; see (15).
5: BATCHED_LU_SOLVE_INPLACE:
wt (Kfig)_l ow'
6: BATCHED_GEMM:
S S O

: end for

~

https://docs.nvidia.com/cuda/cublas/index.html
https://developer.nvidia.com/blog/cublas-strided-batched-matrix-multiply/

where the coefficient matrices have identities on the diagonals
but either the right-hand side or the solution is reordered.
Although (9) is mathematically equivalent to the two alter-
natives, they may perform differently on a GPU. To be con-
crete, we typically need partial pivoting for the (batched) LU
factorization (line 7 in Algorithm 3) with the formulation in
(9), which impedes performance. The alternative formulations
could circumvent this issue, but they require an extra cost of
shuffling the right-hand side or the solution.

D. Complexity analysis

Given a rank-r HODLR matrix A € RM*Y with the
underlying cluster tree 71, we assume the off-diagonal blocks
in A have the same rank r and the diagonal blocks in A have
the same size m = N/2%. In practice, we usually prescribe m
to be a small constant independent of N, or equivalently we
set L = O(log(N)). The following analysis and results can
be easily extended to general cases where the ranks and sizes
of diagonal blocks vary.

Let us first consider the storage of A that includes

o Diagonal blocks: m? x 21’ = mN.
« Off-diagonal blocks (Upig and Vyig): 2 x N x r x L =
2rN L.

As explained earlier, the factorization of the HODLR matrix
can be done in-place, which requires little extra memory. We
summarize the above as the following theorem.

Theorem 2 (Storage). The storage of the HODLR matrix A
and its factorization is

my =mN +rNL = O(rN log(N)).

Next, we consider the computational cost for factorizing
matrix A and summarize the results in a theorem.

o Leaf level (lines 3&4 in Algorithm 1):
2 2
§m3 x 2l 4 om? xrx L x2F = §m2N+ 2mrNL,

where factorizing an m X m matrix using the LU fac-
torization requires 2/3m?> operations and solving one
right-hand side using the LU factorization requires 2m?
operations with forward and backward substitutions.

e At level (1 < ¢ < L), we solve (13) and compute
(14). Assuming the rank r is small, the cost is dominated
by conducting matrix-matrix multiplication® to form the
right-hand sides in (13) and the update in (14), which is

2r* Nl + 2r° Nl = 4r> N¢
operations. Notice this cost is linear with respect to ¢.

3The computational cost for multiplying an n X k (real) matrix and a k X m
(real) matrix is 2knm operations.

Theorem 3 (Factorization cost). The factorization of the
HODLR matrix A requires the following amount of operations:
9 L
tp=-m>N +2mrNL+ Z4T2N€
3
=1
2
= §m2N +2mrNL + 2r2N(L + L?)
= O(r*Nlog?(N)).

Finally, we consider the computational cost for solving an
arbitrary right-hand side using the factorization of matrix A
and summarize the results in a theorem.

o Leaf level (line 3 in Algorithm 2):

2m? x 21 = 2mN,

where 27 is the number of leaf nodes in the cluster tree
(diagonal blocks in A).

o Atlevel £(1 < ¢ < L), we solve (15) and compute (16).
Assuming the rank 7 is small, the cost is dominated by
conducting matrix-vector multiplication to form the right-
hand side in (15) and the update in (16), which is

2rN 4+ 2rN =4rN
operations. Notice that this cost does not depend on £.

Theorem 4 (Solution cost). The solution of an arbitrary right-
hand side using the factorization of A requires the following
amount of operations:
L
te=2mN + > 4rN =2mN +4rNL = O(rN log(N)).
=1
a7
It is not a coincidence that the amount of required operations
in theorem 4 is twice as many as the amount of storage in
theorem 2. The fact is that every stored entry is touched once
and is involved with two operations (a multiplication and an
addition) in the solution stage.

Remark 1 (Numerical rank). From users’ perspective, it is
usually more desirable to specify a tolerance for low-rank
compressions rather than the ranks directly. Consider using
HODLR approximations for problems that are not highly
oscillatory. When the underlying problem lies in ID, the
ranks of all off-diagonal blocks are roughly the same and are
independent of the problem size for a prescribed tolerance. As
the above analysis shows, the factorization and the solution
both scale nearly linearly. However, when the underlying
problem is in 2D or 3D, the ranks increase with the problem
size, and the asymptotic complexities deteriorate (see, e.g.,
Remark 5.1 in [7]).

E. Two perspectives and connections

The HODLR format is relatively simple among other for-
mats that approximate off-diagonal blocks of a matrix, but
the described algorithms have close connections to algorithms
for more complicated formats. Below, let us review two other
perspectives on factorizing a HODLR matrix and discuss their
connections to related algorithms.

a) Matrix factorization: The first perspective is from a
matrix factorization point of view, which initially appeared
in [1]. Let us illustrate this with the following example.
(An interesting extension is the computation of a symmetric
factorization of a HODLR matrix that is SPD [7], which has
various applications involving covariance matrices.)

Example 2. Consider the HODLR matrix A in Fig. 2, where
the underlying cluster tree has three levels (level 0, 1, and 2).
Suppose we apply Algorithm 1 to A. Equivalently, we obtain
the following factorization (and its “inverse”

A= (Az URVEY (A I YW
UsVy Az As) \Y3V5 I
Ay I e
B As YsVp I
= A6 I Y'GV’?*
A VA
ABG) A2)
I YV
YV I
A

Notice that the Y matrices are among the outputs of Algo-
rithm 1. In addition, we can apply A™' easily because we can
apply the inverses of A, A@) and A®) easily. For example,
we have stored the factorizations of every diagonal block in
A®) (line 3 in Algorithm 1), and every 2 x 2 diagonal block in
A® can be inverted according to (10), where the factorization
of a small matrix has been stored (line 9 in Algorithm 1). It
should not be surprising that the algorithm of applying A~
to a vector b is just Algorithm 2. We summarize the discussion
into the following:

Theorem 5. Algorithm 1 and Algorithm 2 are equivalent
to computing a matrix factorization of a HODLR matrix
and applying the inverse of the factorization to a vector,
respectively.

Notice that the above matrix factorization of A naturally
leads to an efficient algorithm for evaluating the determinant
of A. Observe that

det(A) = det(A™M))det(A®)der(A®),

where det(A®)) can be readily obtained with the LU factor-
izations of its diagonal blocks, the determinant of every 2 x 2
diagonal block in A®) and AV can be evaluated efficiently
with the stored factorizations according to Sylvester’s deter-
minant theorem [8].

b) Extended sparse linear system: The other perspective
is related to sparse matrix algebra, where we embed a HODLR
matrix into a larger sparse matrix [2]. To be more specific,
the original dense problem (4) is equivalent to a larger
sparse linear system, and we solve the sparse problem with
straightforward Gaussian elimination to obtain the solution of
the original problem. The power of this approach is that it also
generalizes to solving problems involving more complicated

formats of hierarchical low-rank compression. Let us illustrate
the main idea through the following example.

Example 3. Consider solving a dense linear system

AQ UQ‘/?)* i) _ b2
UsVy As x3) \b3)’

With two auxiliary variables w3 = Vy'xo and we = V3'x3
(the subscripts of w’s are chosen for the convenience of the
following presentation), we rewrite the above dense linear
system as the following block-sparse linear system:

A U, T2 b2
As Us z3 | |03
vy 1w | |0
Ve -1 ws 0

The beauty is that we can solve this sparse linear system
with Gaussian elimination in a straightforward manner: we
factorize the block-sparse matrix with the block-LU factoriza-
tion and then solve with block-forward and block-backward
substitutions. To be concrete, we first apply two steps of block
Gaussian elimination (for xo and x3) and obtain the resulting
linear system involving the resulting Schur complement

oYy T w2\ _ (Vo2
I ‘/3*}/3 w3 - ‘/3* 23)
where Yo = (Ag)_lUg, Y; = (Ag)_lUg,, Z9 = (Ag)_lbg,
and z3 = (Ag)_1b3. Readers may recognize this small linear
system as (9). After solving the above system, we get the

original solution via forward and backward substitutions,
which turns out to be exactly the same as (8):

()= (2)- (o)

This approach extends to solving linear systems involving
HSS matrices*. It is shown in [5] (Section 7.2.3) that applying
Gaussian elimination to an extended sparse linear system in-
troduces no fill-in with an appropriate ordering. Alternatively,
we can feed an extended sparse linear system directly to a
highly optimized sparse direct solver as proposed by Ho and
Greengard [45] for computational efficiency and stability.

Both the HODLR and the HSS formats rely on the so-
called weak admissibility, and related algorithms are relatively
simple. By contrast, the compression format associated with
the FMM employs the strong admissibility, and solving a
linear system involving such a matrix is still an active research
question. Recent advances [28], [46], [47] demonstrate that the
approach of creating an extended sparse linear system is still
viable as long as we compress fill-in blocks during Gaussian
elimination. It turns out that this improvement can also be
applied to solve large sparse linear systems arising from the
discretization of linear elliptic partial differential equations that
are not highly indefinite [48]-[51].

41f the low-rank bases in a HODLR matrix are nested (the bases of a nonleaf
node can be constructed from those of its two children), then the HODLR
matrix is an HSS matrix.

TABLE II: Notations for numerical results

N problem size/matrix size/degrees of freedom/number of points
ty factorization time in seconds
ts solution time for a random right-hand side in seconds

mem memory of the factorization in gigabytes (GB)

relres relative residual of a solution Z, i.e., ||b — AZ||/||b]|

IV. NUMERICAL RESULTS

We benchmark the speed and the accuracy of our GPU
solver and compare it against existing methods in the literature.
In section IV-A, we apply our GPU solver to kernel matrices
and compare to HODLRLIB [33]. In sections IV-B and IV-C,
we apply our HODLR solver to linear systems coming from
the discretization of BIEs with a Laplace double-layer poten-
tial and a Helmholtz potential, respectively. We compare to
the block-sparse solver proposed by Ho and Greengard [45],
which can leverage state-of-the-art sparse direct solvers. The
machine where our numerical experiments were performed has

o two Intel Xeon Gold 6254 CPUs, each with 18 cores at
3.10 GHz (peak performance ~ 1.27 TFlop/s),

o an NVIDIA GPU that is a Tesla V100 GPU with 32 GB
of memory (peak performance ~ 7 TFlop/s).

e a PCle 3.0 x16 between the CPU and the GPU that can
deliver up to 15.75 GB/s.

Our GPU code was compiled with the NVIDIA compiler nvce
(version 11.3.58) and linked with the cuBLAS library (version
11.4.2.10064) on the Linux OS (5.4.0-72-generic.x86_64).
Calculations are performed with double-precision floating-
point arithmetic unless stated otherwise. Notations that we use
to report results are shown in Table II, and the timings were
taken as the average of five consecutive runs.

A. Kernel matrix

Consider solving (1), where matrix A is generated from
the Rotne-Prager-Yamakawa (RPY) tensor kernel [52], [53],
which is frequently used to model the hydrodynamic inter-
actions in simulations of Brownian dynamics. Given a set of
points {y;}¥ ,, the kernel matrix A is defined as

KT [I+”’%+%(I—3%)] if r > 2a,

Aij = s ’
6];:;1 (1_?%%)]4_ 3%%} if r < 2a,
(18)

where r = y; — y; and |r| denotes its two norm.

We approximated matrix A with a HODLR matrix and
obtained an approximate solution for (1). In the following,
we compare our GPU solver to the HODLRLIB library [33],
which is a C++ code parallelized with OpenMP for shared-
memory multicore architectures. To be consistent with the
benchmark of HODLRLIB%, we randomly generated {z;}¥ ;
with a uniform distribution over [—1,1], and set k = T =
7 =1, a = |r|min/2 With |r|m;, being the minimum distance
among all pairs of z; and z;. We compiled HODLRLIB with

Shttps://hodIrlib.readthedocs.io/en/latest/benchmarks.html

TABLE III: Results for solving (1) with the RPY kernel defined
in (18). The low-rank approximation accuracy is prescribed to
be 10712,

HODLRLIB GPU Solver

t; ts ‘ t; ts mem relres

v

217 = 131,072 1.47 022 | 7.39-2 4.37e-3 | 0.88 1.68e-11
218 = 262, 144 509 0.61 | 1.8le-1 7.43e-3 1.93 2.57e-9
219 — 524, 288 109 1.26 | 3.86e-1 1.27e-2 | 423 5.28e-11
220 = 1,048,576 | 23.1 276 | 7.75e-1 2.12e-2 | 8.94 1.32e-9
221 = 2,097,152 | 51.7 542 | 1.89e-0 4.23e2 | 19.2 1.10e-9

—+HODLRIib
=»=GPU Solver

..... O(N log(N),

time [sec]
time [sec]

problem size problem size

(a) Factorization time (b) Solution time

Fig. 5: Comparison between (1) the HODLRLIB library [33]
running on two Intel Xeon Gold 6254 18-core CPUs and (2)
our GPU solver running on an NVIDIA Tesla V100 GPU.

g++ 7.5.0 and linked it with the (sequential) Intel MKL library
of version 20.0. Timing results of HODLRLIB were obtained
on two Intel Xeon CPUs of 36 cores combined.

We constructed HODLR approximations on the CPUs,
where diagonal blocks have size 64 x 64 and off-diagonal
blocks are compressed using the LowRank::rookPiv() function,
an approximate partial-pivoted LU, in HODLRLIB. For our
GPU solver, we copied data including Dyig, Upig, and Vg to
the GPU, where we typically used a significant portion of the
bandwidth, around 12 GB/s, in our experiments.

With a prescribed accuracy of 107! for low-rank com-
pression, we obtained the results in Table III, where the
factorization time and the solution time are plotted in Fig. 5.
From these results, we make two observations. First, the
factorization time, the solution time, and the memory footprint
all scale nearly linearly as the theory in section III-D predict.
The increase of the solution time is slower than N log(N) as
given in (17) and is close to being linear. The reason is that
the GPU utilization increases as the problem size N increases.
Second, our GPU solver achieved significant speedups against
HODLRLIB. In particular, the speedup becomes larger as the
problem size increases, and the acceleration of the solution
time is larger than that of the factorization time. As mentioned
earlier, the parallelization in HODLRLIB is only across nodes
at the same level (no parallelization within a tree node),
while our GPU solver also employs parallelization inside every
tree node. For N = 22! the factorization and the solution
of our GPU solver achieved 878 Gflop/s and 119 Gflop/s,
respectively.

https://hodlrlib.readthedocs.io/en/latest/benchmarks.html

TABLE 1V: Results for solving (21) discretized with a 2nd-order quadrature. In (b), all calculations were performed in single
precision except for the sequential block-sparse solver (Matlab backslash for sparse matrices does not support single precision).

Serial HODLR Solver

Serial Block-Sparse Solver

Parallel Block-Sparse Solver

GPU HODLR Solver

N t f ts mem t f ts mem t f ts mem t f ts mem relres

218 = 262,144 | 45letl 593e-1 1.09 | 2.87e+0 1.33e-l1 057 | 7.03e+0 1.85¢2 356 | 6.94e2 4.87e-3 1.09 | 2.10e-9

219 = 524,288 | 9.73e+1 1.05e-0 225 | 588e+0 2.86e-1 1.14 | 1.37e+1 3.74e-2 7.08 | 1.40e-1 8.19e-3 225 | 7.13e-9

220 — 1,048,576 | 2.20e+2 2.18¢-0 4.63 1.21le+1 5.09e-1 2.28 | 2.89e+1 8.30e-2 14.2 2.90e-1 1.28e-2 4.63 | 5.60e-9

221 = 2,097,152 | 4.76e+2 4.99e-0 946 | 2.35e+1 1.00e-0 4.56 | 6.20e+1 1.82e-1 28.6 | 6.10e-1 2.40e-2 9.46 | 7.82e-9

222 — 4,194,304 | 1.05e+2 9.81e-0 19.3 | 4.90e+] 2.29¢-0 9.15 1.29e+2 5.18e-1 56.9 1.25e-0 4.6le-2 193 1.31e-8

(a) High-accuracy solver
Serial HODLR Solver Serial Block-Sparse Solver | Parallel Block-Sparse Solver GPU HODLR Solver
N relres
tf ts mem tf ts mem tf ts mem tf ts mem
218 — 262,144 1.4le+0 3.07e-1 0.27 1.66e+0 8.44e-2 0.35 | 4.50e+1 9.80e-3 2.40 1.74e-2 2.66e-3 0.27 | 3.13e-5
219 = 524, 288 2.95¢+0 5.82e-1 0.55 | 3.32e+0 1.68e-1 0.69 | 9.42e+1 1.77e-2 479 | 33%-2 3.92¢e-3 055 | 1.49e4
220 — 1,048,576 5.88¢+0 1.16e-0 1.09 | 6.55e+0 3.42e-1 1.39 1.99e+1 3.71le-2 9.56 5.79%-2 6.48e-3 1.09 | 7.20e-5
221 =2 097, 152 1.21e+1 2.48e-0 2.13 1.32e+1 6.89e-1 2.77 | 3.86e+1 7.83e-2 19.1 1.29e-1 1.09¢-2 2.13 | 6.1le-4
222 — 4,194, 304 247e+1 5.40e-0 426 | 2.79e+1 1.36e-0 555 | 8.49e+1 2.04e-1 38.3 2.70e-1 2.05e-2 426 | 2.07e-4
223 = 8,388, 608 5.03e+1 1.08e+1 845 | 5.8le+l 2.87e-0 11.1 1.73e+2 3.9%-1 76.2 4.26e-1 4.06e-2 8.45 | 4.04e-4
224 = 16,777,216 | 1.19e+2 1.93e+1 17.0 1.18e+2 6.23e-0 23.1 | 3.77e+2 7.83e-1 152 8.58e-1 8.38e-2 17.0 | 7.12¢-4
(b) Low-accuracy solver

5 Q and where z is a fixed point in the interior of I' [54], [55].

1 We chose z to be the origin and discretized (19) using the

05 Trapezoidal rule. To solve the resulting linear system, we

0 constructed a HODLR approximation using the proxy surface

os technique (see, e.g., [9, Chapter 17]) on a CPU and copied the

- HODLR matrix to the GPU.
B For comparison, we implemented the block-sparse solver
15, » o ; p by Ho and Greengard [45]. The block-sparse solver builds an

Fig. 6: A smooth contour I" on the plane. The problem domain
Q, where PDEs (19) and (22) are defined, is exterior to T'.

B. Laplace equation on an exterior domain

We next consider a boundary integral equation obtained by
rewriting the BVP

{ —Au(z) =0
u(z) = f(x)
where () is the infinite domain that is exterior to the smooth
contour I' shown in Fig. 6. To ensure a unique solution that is

physically meaningful, we also require that there exists a real
number @) € R such that

(u(x)+—§%logLﬂ) =0.

We reformulate (19) as

o)+ [(a0 5 togle =51) e)ds(s) = 7o)
(21
where

in Q,

on I, (19)

lim (20)

|| =00

n(y) - (z—y)
d(a,y) = 5 ————5—

27|w — y|

is the “double layer kernel” associated with the Laplace
equation, where n(y) is a normal vector at a point y € T,

HSS approximation [56] in a block sparse format and employs
a sparse direct solver to solve the block sparse matrix. This
approach takes advantage of the stability and the efficiency
of state-of-the-art sparse direct solvers. We refer interested
readers to [45] for comparisons between the block-sparse
solver and an iterative solver employing the fast multipole
method. For our problems, we empirically found that the
Matlab backslash (calling UMFPACK [57], [58]) and the MKL
PARDISO solver [59], [60] performed best on a single core
and on all 36 cores of two Intel Xeon CPUs, respectively®. We
refer to them as the sequential and the parallel block-sparse
solvers.

Table IV shows the comparison between the block-sparse
solver and our GPU solver, where the factorization time and
the solution time are plotted in Fig. 7. In practice, it is not
necessary to use as many discretization points for (21) on
the smooth contour I'. Here, our purpose is to benchmark the
speed and the accuracy of our GPU solver. From the results,
we make the following observations. First, the scaling of the
factorization, the solution time, and the memory footprint of
our GPU solver increase nearly linearly with the problem size.

%For UMFPACK, we used the [L,U,p] = lu(A,‘vector’) routine in Matlab,
which applied only row-permutation on the input sparse matrix and avoided
the overhead of computing a column permutation. For parallel performance
on the two Intel Xeon Gold 6254 CPUs, we compared several popular
sparse direct solvers for our matrices, and our conclusion is consistent with
observations in the literature (see, e.g., [61]).

2 10°
10 i
—#-Serial Block-Sparse Solver
_-* -0~ Parallel Block-Sparse Solver _*
- —w 10° -%-GPU HODLR Solver PR
/g rial Block-Sparse Solver
@ -0~ Parallel Block-Sparse Solver
© ¥-+GPU HODLR Solver
£ o0 L ot iog?n)

108 108
problem size problem size

(a\ Hich_acrnrary fartarization (K Hich_arrnraryu enlntinn

1
10
—%-Serial Block-Sparse Solver - L3
-0~ Parallel Block-Sparse Solver| _y— =
e =»-GPU HODLR Solver

102 o

=
i -#-Serial Block-Sparse Solver
-0~ Parallel Block-Sparse Solver

o
°

=»-GPU HODLR Solver
---- O(N log*(N))

time (sec)
=
>

time (sec)

e

S
o

-2
10
10° 107 10° 107
problem size problem size

(c) Low-accuracy factorization (d) Low-accuracy solution

Fig. 7: Comparison between the block-sparse solver [45] and
our GPU solver for solving (21) discretized with a 2nd-order
quadrature.

Second, our GPU solver achieved significant speedups com-
pared to the block-sparse solver, as shown in Fig. 7. Although
the sequential HODLR solver is slower than the sequential
block-sparse solver, it is well understood that parallelizing a
sparse direct solver, which the block-sparse solver relies on,
is challenging [62]. In fact, the parallel factorization stage,
which consists of a symbolic factorization and a numerical
factorization, is slower than the sequential counterpart. What
happened here was that we did not compute any fill-in re-
ducing ordering in the sequential method (the block-sparse
matrix has a special structure that natural ordering turns out
working well), but the parallel method spent a lot of time
(and storage) in symbolic factorization to find parallelism (so
the subsequent numerical factorization and the solution can be
accelerated). Compared to the sequential method, the parallel
block-sparse solver also consumed more memory from the
analysis in the symbolic factorization phase that the solver
needs in the numerical factorization and solve phases.

Third, one advantage of our method is that the accuracy
is tunable. With highly accurate low-rank compressions, we
obtained fast direct solvers as shown in Table IVa. With rea-
sonably accurate low-rank compressions, we obtained results
in Table IVb, where we were able to take advantage of single-
precision floating-point arithmetic. The use of single-precision
calculations accelerated the factorization and the solution by
approximately 2x, and it also reduced the memory footprint
by 2x.

C. Helmholtz equation on an exterior domain

Consider the following exterior BVP that models, e.g., time-
harmonic wave problems,

{ —Au(z) — K2u(z) =0
u(z) = f(x)
Observe that (22) is defined on an infinite domain, as shown

in Fig. 6. To ensure a well-posed problem, we also require the
radiation condition at infinity: for every unit vector z

lim /7 (M - mu(m)> =0.

T—00 87’

in €,

on I (22)

(23)

Solving (22) by directly discretizing the PDE is quite chal-
lenging. Instead, we use a BIE formulation. Define the single-
and double-layer kernels

$(T,y) = du(r —y),
de(z,y) = n(y) - Vyou(z —y),

where ¢, (z) = %Hél)(lﬂid) is the fundamental solution of

the Helmholtz operator and Hél) is the zeroth-order Hankel
function of the first kind, and where n(y) is the inward normal
at y € I'. We reformulate (22) as a second-kind Fredholm
equation [54], [55]

37+ [(@:(o9) +inse(a,) o(@)ds(s) = @), 24
where x € I' and 7 is a parameter that is often chosen as =
4. The BIE is defined on a finite domain and automatically
satisfies (20). We chose = x = 100 and discretized (24) with
the 6-th order quadrature proposed by Kapur and Rokhlin [63].
The resulting linear system is notoriously difficult to solve
iteratively.

Again, we constructed a HODLR approximation using the
proxy surface technique (see, e.g., [9, Chapter 17]) on a CPU
and copied the HODLR matrix to the GPU. We applied our
HODLR solver and the block-sparse solver, and the results
are shown in Table V. The factorization time and the solution
time are plotted in Fig. 8, and Fig. 9 shows the floating point
operations per second (Flop/s). Due to the oscillatory nature
of the fundamental solution of the Helmholtz operator, the
numerical ranks from low-rank compressions are higher than
those in section IV-B associated with the Laplace operator
for the same accuracy. As a result, the costs for solving (24)
are generally higher. However, the observations are similar
to before: (1) the costs of our GPU solver scaled nearly
linearly; (2) our GPU solver achieved significant speedups
over the parallel block-sparse solver (the factorization of
the latter is faster than that of the sequential method); (3)
we obtained a fast direct solver with highly accurate low-
rank compressions as shown in Table Va. When relatively
low-accuracy compressions were employed, we computed a
reasonably accurate preconditioner much faster using much
less memory.

TABLE V: Results for solving (24) with n = k =

100, discretized with a 6-th order quadrature.

Serial HODLR Solver Serial Block-Sparse Solver

Parallel Block-Sparse Solver GPU HODLR Solver

N ty ts mem ty ts mem ty ts mem tr L mem relres
215 — 32 768 4.53e+0 1.92e-1 0.81 4.08e+0 8.28e-2 0.28 2.05e+0 2.40e-2 1.21 1.14e-1 691e-3 0.81 2.02e-9
216 — 65, 536 1.18e+1 4.86e-1 1.70 6.40e+0 1.5le-1 0.51 3.63e+0 3.98e-2 2.08 1.85e-1 9.18e-3 1.70 1.34e-9
217 = 131,072 | 2.66e+1 1.0le-0 3.58 1.10e+1 2.87e-1 096 | 7.39e+0 6.33e-2 3.97 3.6le-1 1.35e-2 3.58 1.67e-9
218 = 9262,144 | 6.3le+l 2.15e-0 7.48 1.99e+1 5.69e-1 1.84 1.3%e+1 1.14e-1 7.55 7.42e-1 2292 7.48 7.23e-10
219 — 524,288 | 145e+2 5.22e-0 15.7 3.75e+1 1.12e-0 3.59 2.68e+1 2.47e-1 14.7 1.59¢-0 3.80e-2 15.7 1.02e-9
(a) High-accuracy fast direct solver
Serial HODLR Solver Serial Block-Sparse Solver | Parallel Block-Sparse Solver GPU HODLR Solver
N relres
t f ts mem t f ts mem t f ts mem t f ts mem
215 — 32,768 2.94e+0 1.57e-1 0.58 1.74e+0 4.31le-2 0.14 1.12e+0 1.73e-2 0.76 6.24e-2 4.44e-3 0.58 1.25e-4
216 = 65,536 6.63e+0 3.24e-1 1.17 2.6le+0 8.72e-2 0.25 1.84e+0 1.98e-2 1.24 1.00e-1 6.73e-3 1.17 1.98e-4
217 = 131,072 1.5le+1 6.71e-1 2.37 | 4.10e+0 1.37e-1 0.45 3.42e+0 4.06e-2 2.37 1.77e-1 ~ 9.19¢-3 2.37 3.04e-4
218 = 262,144 3.45e+1 1.51e-0 4.83 7.42e+0 2.69e-1 0.86 6.99¢+0 7.09e-2 4.44 3.42e-1 1.71e-2 4.83 3.62e-4
219 = 524,288 | 7.76e+1 3.19e-0 9.83 | ldle+tl 524e-1 1.68 | 1.35e+1 1.39%e-1 894 | 6.72e-1 3.07e2 9.83 | 3994
220 = 1,048,576 1.75e+2 6.92e-0 19.8 2.72e+1 1.05e-0 3.32 2.82e+1 2.53e-1 17.5 1.38¢-0 4.86e-2 19.8 7.21e-4
(b) Low-accuracy robust preconditioner
. V. GENERALIZATIONS AND CONCLUSIONS
o o e Solver e Bock Sparse S°'Ve'/f We introduce algorithms for factorizing a HODLR matrix
..... 2] [feneen
R 8101 o 6.5X and for solving linear systems using the factorization on a
|5}
3 8 GPU. The algorithms are based on a new data structure of
[0} (o . . .
£ £ storing the HODLR matrix and leverage efficient batched
3bx dense linear algebra kernels. We benchmarked the performance
107 of our codes on kernel matrices and discretized BIEs, for
10° 10° 1° which we constructed fast solvers with different levels of
problem size problem size . . .
accuracies. In our numerical experiments, our GPU solver
(a\ Hich_acenracvy factarization (A Hich_arruracry cenlntinn
s achieved significant speedups against reference methods.
10 -9~ Parallel Block-Sparse Solver -0~ Parallel Block-Sparse Solver
—+GPU HODLR Solver —GPU HODLR Solver APPENDIX
b O(N |ng(N)) /I 10-1 O(N) 51X
B 10 20x 3 OFF-DIAGONAL RANKS IN HODLR APPROXIMATIONS
g o0 g - Below are the ranks of off-diagonal blocks from level 1 to
........................ the leaf level:
BX T e Ax 21
= Yy e Table III, N = 24! (15 tree levels):
10° 10° 10° 10°
problem size problem size 56 54 45 52 44 30 41 38 38 25 33 24 22 19 18.
_ 922 .
(c) Low-accuracy factorization (d) Low-accuracy solution o Table IVa, N = 277 (16 tree levels):

Fig. 8: Speedups for solving (24) discretized with a 6-th order
quadrature.

/’.‘——w 103
103 ——GPU HODLR Solver
—9-Parallel Block-Sparse Solver| 2
- -Serial HODLR Solver 10
» ~0-Serial Block-Sparse Solver »
%)\e/e—"e\o § 1
° = 10
402
o 10 6 F_#/A—H
100.-—- ————— =% - =
. LR it i S
RN
10" <= O--—6--0 107!
10° 10° 10° 10°
problem size problem size
(a) High-accuracy factorization (b) High-accuracy solution

24221514 131313131414 1516 16 17 17 18.
Table IVb, N = 224 (18 tree levels):
11123344556778891011.
Table Va, N = 2!° (13 tree levels):
225 134 97 69 54 46 41 39 37 35 33 31 29.
Table Vb, N = 220 (14 tree levels):
166 92 63 39 28 22 19 17 17 17 17 17 17 17.

REFERENCES

S. Ambikasaran and E. Darve, “An O (N log N) fast direct solver
for partial hierarchically semi-separable matrices,” Journal of Scientific
Computing, vol. 57, no. 3, pp. 477-501, 2013.

A. Aminfar, S. Ambikasaran, and E. Darve, “A fast block low-rank
dense solver with applications to finite-element matrices,” Journal of
Computational Physics, vol. 304, pp. 170-188, 2016.

A. G. Gray and A. W. Moore, “N-Body problems in statistical learning,”

[1]

[2]

[3]

Fig. 9: GFlop/s for solving (24). For the block-sparse solver,
only the numerical factorization phase is considered in Fig. 9a.

[4]

Advances in neural information processing systems, pp. 521-527, 2001.
T. Hofmann, B. Scholkopf, and A. J. Smola, “Kernel methods in machine
learning,” The annals of statistics, vol. 36, no. 3, pp. 1171-1220, 2008.

[5]
[6]

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. Ambikasaran, Fast algorithms for dense numerical linear algebra and
applications. Stanford University, 2013.

J. Y. Li, S. Ambikasaran, E. F. Darve, and P. K. Kitanidis, “A kalman
filter powered by-matrices for quasi-continuous data assimilation prob-
lems,” Water Resources Research, vol. 50, no. 5, pp. 3734-3749, 2014.
S. Ambikasaran, M. O’Neil, and K. R. Singh, “Fast symmetric fac-
torization of hierarchical matrices with applications,” arXiv preprint
arXiv:1405.0223, 2014.

S. Ambikasaran, D. Foreman-Mackey, L. Greengard, D. W. Hogg,
and M. O’Neil, “Fast direct methods for Gaussian processes,” [EEE
transactions on pattern analysis and machine intelligence, vol. 38, no. 2,
pp. 252-265, 2015.

P.-G. Martinsson, Fast direct solvers for elliptic PDEs. SIAM, 2019.
T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, “A survey of
direct methods for sparse linear systems,” Acta Numerica, vol. 25, pp.
383-566, 2016.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Superfast multifrontal
method for large structured linear systems of equations,” SIAM Journal
on Matrix Analysis and Applications, vol. 31, no. 3, pp. 1382-1411,
2010.

P-G. Martinsson, “A fast direct solver for a class of elliptic partial
differential equations,” J. Sci. Comput., vol. 38, no. 3, p. 316-330, mar
2009. [Online]. Available: https://doi.org/10.1007/s10915-008-9240-6
H. Ltaief, J. Cranney, D. Gratadour, Y. Hong, L. Gatineau, and D. Keyes,
“Meeting the real-time challenges of ground-based telescopes using
low-rank matrix computations,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1-16.

P. R. Amestoy, A. Buttari, J.-Y. L’excellent, and T. Mary, “Performance
and scalability of the block low-rank multifrontal factorization on
multicore architectures,” ACM Transactions on Mathematical Software
(TOMS), vol. 45, no. 1, pp. 1-26, 2019.

K. Akbudak, H. Ltaief, A. Mikhalev, and D. Keyes, “Tile low rank
cholesky factorization for climate/weather modeling applications on
manycore architectures,” in International Supercomputing Conference.
Springer, 2017, pp. 22-40.

N. Al-Harthi, R. Alomairy, K. Akbudak, R. Chen, H. Ltaief, H. Bagci,
and D. Keyes, “Solving acoustic boundary integral equations using high
performance tile low-rank lu factorization,” in International Conference
on High Performance Computing. Springer, 2020, pp. 209-229.

W. Boukaram, S. Zampini, G. Turkiyyah, and D. Keyes, “H2opus-tlr:
High performance tile low rank symmetric factorizations using adaptive
randomized approximation,” arXiv preprint arXiv:2108.11932, 2021.
W. Hackbusch, “A sparse matrix arithmetic based on H-matrices. part
I: Introduction to H-matrices,” Computing, vol. 62, no. 2, pp. 89-108,
1999.

W. Hackbusch and B. N. Khoromskij, “A sparse H-matrix arithmetic.
part ii: Application to multi-dimensional problems,” Computing, vol. 64,
no. 1, p. 21-47, Jan. 2000.

W. Hackbusch and S. Borm, “Data-sparse approximation by adaptive
H?2-matrices,” Computing, vol. 69, no. 1, pp. 1-35, 2002.

P.-G. Martinsson and V. Rokhlin, “A fast direct solver for boundary in-
tegral equations in two dimensions,” Journal of Computational Physics,
vol. 205, no. 1, pp. 1-23, 2005.

S. Chandrasekaran, M. Gu, and T. Pals, “A fast ULV decomposition
solver for hierarchically semiseparable representations,” SIAM Journal
on Matrix Analysis and Applications, vol. 28, no. 3, pp. 603-622, 2006.
J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Fast algorithms for
hierarchically semiseparable matrices,” Numerical Linear Algebra with
Applications, vol. 17, no. 6, pp. 953-976, 2010.

L. Grasedyck, R. Kriemann, and S. Le Borne, “Domain decomposition
based H-LU preconditioning,” Numerische Mathematik, vol. 112, no. 4,
pp. 565-600, 2009.

R. Kriemann, “H-LU factorization on many-core systems,” Computing
and Visualization in Science, vol. 16, no. 3, pp. 105-117, 2013.

K. L. Ho and L. Ying, “Hierarchical interpolative factorization for
elliptic operators: integral equations,” Comm. Pure Appl. Math, vol. 69,
no. 7, pp. 1314-1353, 2016.

F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, “A distributed-memory
package for dense hierarchically semi-separable matrix computations
using randomization,” ACM Transactions on Mathematical Software
(TOMS), vol. 42, no. 4, pp. 1-35, 2016.

P. Coulier, H. Pouransari, and E. Darve, “The inverse fast multipole
method: using a fast approximate direct solver as a preconditioner for

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

dense linear systems,” SIAM Journal on Scientific Computing, vol. 39,
no. 3, pp. A761-A796, 2017.

V. Minden, K. L. Ho, A. Damle, and L. Ying, “A recursive skeletoniza-
tion factorization based on strong admissibility,” Multiscale Modeling &
Simulation, vol. 15, no. 2, pp. 768-796, 2017.

J. Xia, “Multi-layer hierarchical structures,” CSIAM Transaction of
Applied Mathematics, vol. 2, pp. 263-296, 2021.

Y. Liu, P. Ghysels, L. Claus, and X. S. Li, “Sparse approximate
multifrontal factorization with butterfly compression for high-frequency
wave equations,” SIAM Journal on Scientific Computing, vol. 43, no. 5,
pp. S367-S391, 2021.

D. Sushnikova, L. Greengard, M. O’Neil, and M. Rachh, “FMM-LU:
A fast direct solver for multiscale boundary integral equations in three
dimensions,” arXiv preprint arXiv:2201.07325, 2022.

S. Ambikasaran, K. R. Singh, and S. S. Sankaran, “HODLRIib: A library
for hierarchical matrices,” Journal of Open Source Software, vol. 4,
no. 34, p. 1167, 2019.

S. Massei, L. Robol, and D. Kressner, “hm-toolbox: Matlab software
for HODLR and HSS matrices,” SIAM Journal on Scientific Computing,
vol. 42, no. 2, pp. C43-C68, 2020.

Y. Dong and P.-G. Martinsson, “Simpler is better: A comparative study
of randomized algorithms for computing the cur decomposition,” arXiv
preprint arXiv:2104.05877, 2021.

L. Lin, J. Lu, and L. Ying, “Fast construction of hierarchical matrix
representation from matrix—vector multiplication,” Journal of Computa-
tional Physics, vol. 230, no. 10, pp. 40714087, 2011.

P.-G. Martinsson, “Compressing rank-structured matrices via random-
ized sampling,” SIAM Journal on Scientific Computing, vol. 38, no. 4,
pp- A1959-A1986, 2016.

J. Levitt and P.-G. Martinsson, “Linear-complexity black-box random-
ized compression of hierarchically block separable matrices,” arXiv
preprint arXiv:2205.02990, 2022.

I. D. Fernando, S. Jayasena, M. Fernando, and H. Sundar, “A scalable
hierarchical semi-separable library for heterogeneous clusters,” in 2017
46th International Conference on Parallel Processing (ICPP). 1EEE,
2017, pp. 513-522.

P.-G. Martinsson, “A fast randomized algorithm for computing a hier-
archically semiseparable representation of a matrix,” SIAM Journal on
Matrix Analysis and Applications, vol. 32, no. 4, pp. 1251-1274, 2011.
W. Boukaram, G. Turkiyyah, and D. Keyes, “Randomized GPU algo-
rithms for the construction of hierarchical matrices from matrix-vector
operations,” SIAM Journal on Scientific Computing, vol. 41, no. 4, pp.
C339-C366, 2019.

C. D. Yu, J. Levitt, S. Reiz, and G. Biros, “Geometry-oblivious FMM for
compressing dense SPD matrices,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1-14.

D. Y. Chenhan, S. Reiz, and G. Biros, “Distributed-memory hierarchical
compression of dense SPD matrices,” in SCI8: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 183-197.

R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan kaufmann, 2001.
K. L. Ho and L. Greengard, “A fast direct solver for structured
linear systems by recursive skeletonization,” SIAM Journal on Scientific
Computing, vol. 34, no. 5, pp. A2507-A2532, 2012.

S. Ambikasaran and E. Darve, “The inverse fast multipole method,”
arXiv preprint arXiv:1407.1572, 2014.

T. Takahashi, C. Chen, and E. Darve, “Parallelization of the inverse fast
multipole method with an application to boundary element method,”
Computer Physics Communications, vol. 247, p. 106975, 2020.

H. Pouransari, P. Coulier, and E. Darve, “Fast hierarchical solvers for
sparse matrices using extended sparsification and low-rank approxima-
tion,” SIAM Journal on Scientific Computing, vol. 39, no. 3, pp. A797-
A830, 2017.

D. A. Sushnikova and I. V. Oseledets, ““compress and eliminate”
solver for symmetric positive definite sparse matrices,” SIAM Journal
on Scientific Computing, vol. 40, no. 3, pp. A1742-A1762, 2018.

C. Chen, H. Pouransari, S. Rajamanickam, E. G. Boman, and E. Darve,
“A distributed-memory hierarchical solver for general sparse linear
systems,” Parallel Computing, vol. 74, pp. 49-64, 2018.

C. Chen, L. Cambier, E. G. Boman, S. Rajamanickam, R. S. Tuminaro,
and E. Darve, “A robust hierarchical solver for ill-conditioned systems

https://doi.org/10.1007/s10915-008-9240-6

[52]

[53]

(541
[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

with applications to ice sheet modeling,” Journal of Computational
Physics, vol. 396, pp. 819-836, 2019.

J. Rotne and S. Prager, “Variational treatment of hydrodynamic inter-
action in polymers,” The Journal of Chemical Physics, vol. 50, no. 11,
pp. 48314837, 1969.

H. Yamakawa, “Transport properties of polymer chains in dilute so-
lution: hydrodynamic interaction,” The Journal of Chemical Physics,
vol. 53, no. 1, pp. 436-443, 1970.

R. Kress, V. Maz’ya, and V. Kozlov, Linear integral equations. Springer,
1989, vol. 82.

W. McLean and W. C. H. McLean, Strongly elliptic systems and
boundary integral equations. Cambridge university press, 2000.

A. Gillman, P. M. Young, and P.-G. Martinsson, “A direct solver with
O(N) complexity for integral equations on one-dimensional domains,”
Frontiers of Mathematics in China, vol. 7, no. 2, pp. 217-247, 2012.
T. A. Davis and L. S. Duff, “An unsymmetric-pattern multifrontal method
for sparse lu factorization,” SIAM Journal on Matrix Analysis and
Applications, vol. 18, no. 1, pp. 140-158, 1997.

T. A. Davis, “Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern
multifrontal method,” ACM Transactions on Mathematical Software
(TOMS), vol. 30, no. 2, pp. 196-199, 2004.

0. Schenk, K. Girtner, and W. Fichtner, “Efficient sparse lu factorization
with left-right looking strategy on shared memory multiprocessors,” BIT
Numerical Mathematics, vol. 40, no. 1, pp. 158-176, 2000.

O. Schenk and K. Girtner, “Solving unsymmetric sparse systems of
linear equations with pardiso,” Future Generation Computer Systems,
vol. 20, no. 3, pp. 475-487, 2004.

J. Kwack, G. Bauer, and S. Koric, “Performance test of parallel linear
equation solvers on blue waters—cray xe6/xk7 system,” in Preceedings
of the Cray Users Group Meeting (CUG2016), London, England, 2016.
K. gwirydowicz, E. Darve, W. Jones, J. Maack, S. Regev, M. A.
Saunders, S. J. Thomas, and S. Peles, “Linear solvers for power grid
optimization problems: a review of gpu-accelerated linear solvers,”
Parallel Computing, p. 102870, 2021.

S. Kapur and V. Rokhlin, “High-order corrected trapezoidal quadrature
rules for singular functions,” SIAM Journal on Numerical Analysis,
vol. 34, no. 4, pp. 1331-1356, 1997.

	I Introduction
	I-A Previous work
	I-B Contributions

	II Preliminariles
	II-A HODLR matrix
	II-B Construction of a HODLR matrix

	III Algorithms
	III-A Recursive algorithm
	III-B Data structure and nonrecursive algorithm
	III-C Parallel algorithms for GPUs
	III-D Complexity analysis
	III-E Two perspectives and connections

	IV Numerical Results
	IV-A Kernel matrix
	IV-B Laplace equation on an exterior domain
	IV-C Helmholtz equation on an exterior domain

	V Generalizations and Conclusions
	Appendix
	References

