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Abstract—We are interested in solving linear systems aris-
ing from three applications: (1) kernel methods in machine
learning, (2) discretization of boundary integral equations from
mathematical physics, and (3) Schur complements formed in
the factorization of many large sparse matrices. The coefficient
matrices are often data-sparse in the sense that their off-diagonal
blocks have low numerical ranks; specifically, we focus on
“hierarchically off-diagonal low-rank (HODLR)” matrices. We
introduce algorithms for factorizing HODLR matrices and for
applying the factorizations on a GPU. The algorithms leverage
the efficiency of batched dense linear algebra, and they scale
nearly linearly with the matrix size when the numerical ranks
are fixed. The accuracy of the HODLR-matrix approximation
is a tunable parameter, so we can construct high-accuracy fast
direct solvers or low-accuracy robust preconditioners. Numerical
results show that we can solve problems with several millions of
unknowns in a couple of seconds on a single GPU.

Index Terms—Linear solver on GPU, boundary integral equa-
tion, kernel matrix, elliptic partial differential equations, hier-
archical low-rank approximation, batched dense linear algebra,
rank structured matrix, hierarchical matrix, LU factorization.

I. INTRODUCTION

Consider the solution of a large dense linear system

Ax = b, A ∈ F
N×N , x and b ∈ F

N , (1)

on a GPU, where F is the field of real or complex numbers.

We focus on the situation where the coefficient matrix A
can be approximated by hierarchically off-diagonal low-rank

(HODLR) matrices [1], [2]. Given a matrix X partitioned into

a 2× 2 block form:

X =

(
X11 X12

X21 X22

)

, (2)

we say X is a HODLR matrix if (1) the two off-diagonal

blocks X12 and X21 are low rank, and (2) the two diagonal

blocks X11 and X22 have the same off-diagonal low-rank

structure or have sufficiently small sizes. (See a pictorial

illustration in Fig. 2.)

Solving (1) on a GPU using the HODLR-matrix approx-

imation is particularly appealing for two reasons. (1) The

approximation reduces the required memory footprint and thus

allows solving much larger problem sizes than storing the

entire matrix A. For example, we were able to solve problems

with several millions of unknowns on a single GPU that has

only 32 GB of memory (see, e.g., Table IV). (2) Our algo-

rithms are built upon the batched matrix-matrix multiplication

and the batched LU factorization routines, which are highly

efficient on GPUs. For example, the construction of our GPU

solver achieved approximately 2 TFlop/s on an NVIDIA V100

GPU (see Fig. 9).

HODLR matrices arise from a range of applications across

science, engineering, and data analytics, including:

a) Kernel matrices: Given a (real) kernel function K,

such as the Gaussian kernel and the Matern kernel, and a

data set {yi}Ni=1, the associated kernel matrix K ∈ R
N×N is

defined as

Ki,j = K(yi, yj), ∀i, j = 1, 2, . . . , N.

Such matrices arise in machine learning [3], [4] and data

assimilation [5], [6]. Ambikasaran et al. [7], [8] demonstrated

that these matrices can be approximated efficiently by HODLR

matrices. See also our numerical results in section IV-A.

b) Boundary integral equations: Some boundary value

problems (BVPs) involving, e.g., the Laplace and the

Helmholtz equations, can be reformulated as boundary integral

equations (BIEs) of the form

a(x)u(x) +

∫

Γ

K(x, y)u(y)dy = f(x) (3)

where K(·, ·) is derived from the free-space fundamental solu-

tion associated with the elliptic operator; where a(·) and f(·)
are given functions; and where u(·) is the unknown. While it

may be challenging to discretize the original partial differential

equations (PDEs) directly, the BIEs offer several advantages

(see, e.g., [9, Chapter 10]). Although the discretization of (3)

leads to a dense linear system, the discretized integral operator

can be approximated efficiently by a HODLR matrix in many

environments. See sections IV-B and IV-C for two concrete

examples.
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c) Elliptic PDEs: The discretization of an elliptic PDE

−∇ · (a(x)∇u(x)) + b(x)u(x) = f(x),

where a(·), b(·), and f(·) are given functions, leads to a sparse

linear system to be solved. While sparse direct solvers [10]

based on Gaussian elimination are extremely robust, they

typically require significant computing resources to handle

dense Schur complements arising during the elimination. That

significant acceleration can be attained by exploiting rank-

structures in these Schur complements was established in, e.g.,

[2], [11], [12].

A. Previous work

Classical direct methods for solving (1) based on LU or

QR factorizations admit highly efficient implementations on

GPUs, but are limited by their unfavorable O(N3) scaling in

terms of operations. For GPU computing, the O(N2) storage

complexity can be even more restrictive.

This paper concerns a class of methods that exploit the

numerically low-rank property of off-diagonal blocks in the

matrix A. As many theoretical and empirical results have

demonstrated, certain off-diagonal blocks in A can be com-

pressed efficiently by their low-rank approximations. Based on

this observation, the tile low-rank (TLR) approximation [13],

[14] views matrix A as a block matrix and compresses off-

diagonal blocks using low-rank approximations. With the TLR

approximation, the LU factorization or the Cholesky factor-

ization of matrix A can be accelerated significantly. This ap-

proach has been realized efficiently on shared and distributed-

memory systems for covariance matrices [15] and BIEs [16].

It is also implemented on GPUs recently [17]. However, the

asymptotic complexity for solving (1) is generally super-linear

and the cost can be significant when the matrix size N is large.

To arrive at linear or nearly linear complexities, a hier-

archical decomposition of matrix A is needed, and several

hierarchically low-rank approximations have been proposed

including H matrices [18], [19], H2 matrices [20], hierarchi-

cally semi-separable (HSS) matrices [21]–[23] and HODLR

matrices. See related algorithms for solving (1) in, e.g., [5],

[8], [9], [24]–[32] and the references therein. However, few

of these methods have been implemented to achieve high

performance on modern computing architectures. Two recent

software packages for HODLR matrices include (1) HODL-

RLIB [33], which is an open-source code written in C++

and parallelized with OpenMP for multicore CPUs, and (2)

hm-toolbox [34], which is a MATLAB code that implements

many operations involving HODLR matrices focusing on pro-

totyping algorithms and ensuring reproducibility rather than

delivering high performance.

B. Contributions

We introduce a new data structure for HODLR matrices,

where the low-rank bases of all off-diagonal blocks are con-

catenated into two big matrices (see an example in Fig. 3). This

strategy aggregates small sub-blocks in the bases that need to

be processed during the factorization into large sub-blocks in

the big matrices. As a result, we can combine sequences of

BLAS/LAPACK calls of low arithmetic intensities into a single

kernel launch, which increases the Flop rate and mitigates the

overhead of data transfer. This approach naturally leads to (1)

a high-performance factorization algorithm that delivered up to

20 GFlop/s on a single CPU core in our experiments, and (2)

parallel algorithms for factorizing a HODLR matrix and for

applying the factorization to solve linear systems. Furthermore,

we implemented the parallel algorithms leveraging existing

high-performance batched matrix-matrix multiplication and

batched LU factorization routines on a GPU. We present

numerical benchmarks for solving large dense linear systems

arising from kernel methods and two dimensional BIEs, and

we compare the performance of our methods to existing

methods/codes.

II. PRELIMINARILES

We adopt the following MATLAB notations: (1) A(I, :) and

A(:, I) denote the rows and columns in matrix A correspond-

ing to an index set I, respectively; and (2) [A |B ] denotes

the concatenation of two matrices A and B that have the same

number of rows. Matrices and vectors are denoted using upper

and lower case letters, respectively. In particular, I is used to

denote an identity matrix of an appropriate size. We use greek

letters to denote nodes in a tree data structure.

A. HODLR matrix

Here we give (non-recursive) definitions of a cluster tree and

the associated HODLR format, which follow closely with [9],

[34]. A cluster tree stands for a hierarchical partitioning of the

row/column indices of a matrix, which dictates a tessellation

of the matrix in a HODLR format.

Definition 1 (Cluster tree). Given an index set I :=
{1, 2, . . . , N}, a cluster tree TL is a binary tree that satisfies

the following three conditions:

1) There are L + 1 levels, namely, 0, 1, . . . , L, and there

are 2ℓ nodes at level ℓ.
2) Every tree node stands for a (nonempty) consecutive

subset of I. In particular, the root node represents I.

3) The union of two subsets owned by a pair of siblings,

respectively, equals to the subset owned by their parent.

(Nodes at the same level form a partitioning of I.)

Fig. 1 shows an example of T2. In practice, the indices

in I are usually associated with points in R
k, so TL can

be computed using some recursive bisection strategies. For

example, TL can be constructed as a k-d tree. Notice that a

cluster tree TL naturally leads to a tessellation of a matrix

A ∈ F
N×N :

1) A leaf node α corresponds to a diagonal block

A(Iα, Iα), and there are 2L of them.

2) A pair of siblings α and β corresponds to an off-diagonal

block A(Iα, Iβ), and there are 2L+1 − 2 of them.

For example, Fig. 2 illustrates such a tessellation.

Definition 2 (HODLR matrix). Given a cluster tree TL, a

matrix A ∈ F
N×N is a HODLR matrix if every off-diagonal
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I1 = 1 : 400

I3 = 201 : 400

I7 = 301 : 400

I2 = 1 : 200

I5 = 101 : 200I4 = 1 : 100

Fig. 1: An example of hierarchical decomposition of matrix

row/column indices I = {1, 2, . . . , 400}. The root is the entire

set I1 = I, and there are four leaf nodes in this case. Some

of the individual index vectors are given. Node 2 has two

“children” 4 and 5, who are “siblings”.

A =

A3,2

A2,3

A5,4

A4,5

A7,6

A6,7

D4

D5

D6

D7

Fig. 2: Matrix tessellation corresponding to the cluster tree in

Fig. 1. A diagonal block Dα is defined as A(Iα, Iα), where

α is a leaf node.

block A(Iα, Iβ) that corresponds to a pair of siblings α and

β in TL has low rank. We say a HODLR matrix has rank r if

the maximum rank of all off-diagonal blocks is r.

B. Construction of a HODLR matrix

The construction of a HODLR matrix is straightforward

in the sense that we need to only compress certain off-

diagonal blocks in the original matrix. We refer interested

readers to Ambikasaran’s PhD thesis [5] for a review of

algebraic and analytic techniques to compute the low-rank

approximations. See also [35] for some recent advances on

randomized methods. In situations where a fast matrix-vector

product routine exists for the matrix to be compressed, the

so-called “peeling algorithms” [36]–[38] have been developed

for the construction of a HODLR approximation.

Several parallel algorithms have been developed to construct

more complicated formats than HODLR matrices, and some

of them can be used to construct a HODLR-matrix approxi-

mation. Fernando et al [39] demonstrates the construction of

an HSS matrix on multiple GPUs using an almost matrix-free

method introduced in [40]. Boukaram et al [41] introduces

a matrix-free method to construct an H2 matrix on a GPU.

Chenhan et al [42], [43] develop algorithms on multicore

and distributed-memory machines to approximate a symmetric

positive definite (SPD) matrix with hierarchically low-rank

structures.

III. ALGORITHMS

Assume a rank-r HODLR matrix A ∈ F
N×N and the un-

derlying cluster tree TL are given. Our focus here is factorizing

the HODLR matrix and applying the factorization to solve a

linear system

Ax = b. (4)

Let every off-diagonal block A(Iα, Iβ) (that corresponds to a

pair of siblings in TL) be that

A(Iα, Iβ) = UαV
∗
β , (5)

where Uα and Vβ are two skinny matrices, and we call them

the left and the right low-rank bases.

A. Recursive algorithm

Consider a partitioning of (4) into
(

Aα UαV
∗
β

UβV
∗
α Aβ

)(
xα

xβ

)

=

(
bα
bβ

)

, (6)

where α and β are the two nodes at level 1 in TL. Suppose

we can solve the following two subproblems with multiple

right-hand sides:
{

Aα zα = bα
Aα Yα = Uα

and

{
Aβ zβ = bβ
Aβ Yβ = Uβ

. (7)

Then, the solution of (4) can be obtained via
(
xα

xβ

)

=

(
zα
zβ

)

−
(
Yαwα

Yβwβ

)

, (8)

where wα and wβ are from solving
(
V ∗
αYα I
I V ∗

β Yβ

)(
wα

wβ

)

=

(
V ∗
α zα

V ∗
β zβ

)

. (9)

Obviously, (7) can be solved recursively when α and β are not

leaves in TL; otherwise, we solve (7) directly using, e.g., the

LU factorization. This recursive algorithm initially appeared

in [2], and we prove its correctness below.

Theorem 1 (Correctness of recursion). Assume the following

three matrices are invertible:

Aα, Aβ , and

(
V ∗
αYα I
I V ∗

β Yβ

)

.

Then, (8) is the solution of (6).

Proof. Multiply

(
A−1

α

A−1
β

)

on both sizes of (6), and it is

sufficient to prove
(

I YαV
∗
β

YβV
∗
α I

)(
xα

xβ

)

=

(
zα
zβ

)

.

According to the Woodbury formula, we know that
(

I YαV
∗
β

YβV
∗
α I

)−1

=

[

I +

(
Yα

Yβ

)(
V ∗
α

V ∗
β

)]−1

= I −
(

Yα

Yβ

)(
I V ∗

αYα

V ∗
β Yβ I

)−1 (
V ∗
α

V ∗
β

)

. (10)

Therefore, it is straightforward to verify that (8) holds.



Observe that some calculations in the recursion do not

depend on the right-hand side b, and thus intermediate results

can be precomputed. In particular, we divide the computation

into two stages:

• Factorization: we compute Yα, Yβ , and an LU factoriza-

tion of

Kγ ,

(
V ∗
αYα I
I V ∗

β Yβ

)

, (11)

where γ is the parent of α and β.

• Solution: we compute zα, zβ , wα, wβ , xα, and xβ .

Notice that some of the calculations can be done in-place

(overwriting inputs with outputs). For example, we can over-

write two U matrices with corresponding Y matrices. As a

result, the extra memory required by the algorithm mostly

comes from storing the LU factorization of the coefficient

matrix and the right-hand sides in (9), which is negligible

when the rank in (5) is small.

B. Data structure and nonrecursive algorithm

For simplicity, let us assume the rank of all off-diagonal

blocks is r. (The following presentation extends to general

cases where the ranks vary.) To motivate the new data structure

we use in our parallel algorithms, we illustrate the main idea

through the following example.

Example 1. Consider the HODLR matrix in Fig. 2, where the

underlying cluster tree has three levels (level 0, 1, and 2). An

appropriate partitioning of (4) leads to

(
A2 U2V

∗
3

U3V
∗
2 A3

)(
x2

x3

)

=

(
b2
b3

)

,

where A2 and A3 are themselves (2-level) HODLR matrices;

b2 = b(I2) and b3 = b(I3) are subvectors in the right-hand

side b; and x2 = x(I2) and x3 = x(I3) are subvectors in the

solution x.

Let us write down the recursion steps. At the first step, we

have two subproblems:

{
A2 z2 = b2
A2 Y2 = U2

and

{
A3 z3 = b3
A3 Y3 = U3

.

Rewrite them more compactly as

A2 [ z2 |Y2 ] = [ b2 |U2 ] and A3 [ z3 |Y3 ] = [ b3 |U3 ],

which again can be partitioned appropriately into

(
D4 U4V

∗
5

U5V
∗
4 D5

)(
z4 Y top

2

z5 Y bot
2

)

=

(
b4 U top

2

b5 U bot
2

)

and

(
D6 U6V

∗
7

U7V
∗
6 D7

)(
z6 Y top

3

z7 Y bot
3

)

=

(
b6 U top

3

b7 U bot
3

)

,

where b4 = b(I4), b5 = b(I5), b6 = b(I6), and b7 = b(I7) are

subvectors in the right-hand side b (notice that I4 ∪ I5 = I2
and I6 ∪ I7 = I3 according to the cluster tree in Fig. 1).

Ubig =

U2

U3

U7

U6

U5

U4

Vbig =

V2

V3

V7

V6

V5

V4

Fig. 3: Concatenation of all low-rank bases into two big

matrices for the HODLR matrix in Fig. 2 assuming the ranks

at the same level are the same.

D2
big =

D7

D6

D5

D4

K1
big =

K3

K2
K0

big = K1

Fig. 4: Concatenation of diagonal blocks and K matrices

defined at (11) for the HODLR matrix in Fig. 2 assuming

the ranks at the same level are the same. A superscript ℓ
means a block-row view of the matrix, where matrix rows

are partitioned according to nodes at the ℓ-th level in the tree.

At the second step, we have four subproblems:

{
D4 [ z4 |Y top

2 |Y4 ] = [ b4 |U top
2 |U4 ]

D5 [ z5 |Y bot
2 |Y5 ] = [ b5 |U bot

2 |U5 ]

and

{
D6 [ z6 |Y top

3 |Y6 ] = [ b6 |U top
3 |U6 ]

D7 [ z7 |Y bot
3 |Y7 ] = [ b7 |U bot

3 |U7 ]
,

where the four D matrices are corresponding diagonal blocks

(that have full ranks), and we solve them directly using, e.g.,

the LU factorization.

Observe the right-hand sides in the above four subproblems,

where the U matrices have been partitioned and then concate-

nated together. This motivates the idea of concatenating all

the U bases into one big matrix Ubig as shown in Fig. 3. The

same strategy is applied to form a big matrix Vbig of all the

V bases for reasons that will be clear when we introduce our

GPU algorithms. We also concatenate diagonal blocks and K

matrices defined at (11) for ease of presentation.

In general, we traverse TL in a breadth-first (top-down level-

by-level) order to create the two big matrices. Consider every

node γ that has two children α and β (so α and β are siblings).

First, we place Uα and Uβ vertically on top of each other as
(
Uα

Uβ

)

(the order does not matter). In general, Uα and Uβ may

not have the same number of columns, and we align them to

the left. We do the same thing with Vα and Vβ . Second, if γ
is not the root of TL, it is associated with low-rank bases Uγ



and Vγ , and we form the following concatenation
[

Uγ
Uα

Uβ

]

and

[

Vγ
Vα

Vβ

]

. (12)

Notice that the number of rows in Uγ equals to the sum

of those in Uα and Uβ and the same applies to the V
matrices. Finally, we obtain two big matrices Ubig and Vbig

after traversing TL. With the previous assumption of constant

rank, Ubig and Vbig are two matrices of size N -by-rL. In

general, when ranks of off-diagonal blocks vary, Ubig and Vbig

are no longer rectangular matrices. But the algorithms we are

going to introduce can be generalized accordingly. In the same

spirit, we concatenate the D matrices and K matrices as shown

in Fig. 4.

Given a cluster tree TL as defined in Definition 1, we

can unroll the previous recursive algorithm into a for-loop

based algorithm, which consists of a factorization stage and a

solution stage as described in Algorithms 1 and 2, respectively.

The advantages of the new data structure are clear. We need

only one BLAS or LAPACK call for the computation involving

multiple left low-rank bases across different levels in TL, and

there is no unnecessary data movement. For example, one

LAPACK call (getrs) is sufficient for solving all the right-hand

sides at a leaf node in TL (line 4 in Algorithm 1).

Notice that a lot of memory allocation in Algorithm 1 is

avoided by overwriting inputs with outputs. For example, Ybig

overwrites Ubig, and the factorizations of diagonal blocks are

stored in place. As a result, Algorithm 1 requires little extra

memory when the rank r is small.

C. Parallel algorithms for GPUs

Recall that in the recursive algorithm, the two subproblems

in (7) are independent of each other and can be solved in

parallel. Consider the underlying cluster tree of a HODLR

matrix. If we associate the root with the task of solving the

original linear system and every other tree node with the task

of solving a corresponding subproblem, then the cluster tree is

effectively a task graph. In the task graph, every node depends

on its two children if they exist. The same analysis applies

to the factorization stage and the solution stage as described

in Algorithms 1 and 2, respectively, and the underlying task

graphs are exactly the same (definitions of tasks differ).

Let us focus on the factorization stage, and most of the

following discussion applies to the solution stage as well. It is

clear that in the underlying task graph, all the nodes (tasks) at

the same level are embarrassingly parallel. In other words, the

two for-loops at lines 2&7 in Algorithm 1 can be parallelized.

Indeed, the HODLRLIB library [33] employs the “parallel-

for” directive in OpenMP [44] to parallelize the two for-loops.

In Algorithm 1, it is also obvious that the nodes (tasks) at the

same level work on different subblocks in Ubig and Vbig, which

correspond to a (consecutive) partitioning of the row indices.

Notice that in the factorization stage, every leaf task requires

solving a linear system with multiple right-hand sides and ev-

ery nonleaf task comprises solving a linear system and matrix-

matrix multiplications (gemm’s). Therefore, Algorithm 1 can

Algorithm 1 Nonrecursive algorithm for solving (4): factor-

ization stage

Input: diagonal blocks in A, matrix Ubig, matrix Vbig, and

cluster tree TL.

Output: matrix Ybig and stored factorizations.

1: Ybig ← Ubig // Ybig overwrites Ubig.

2: for leaf node α in TL do

3: Factorize diagonal block Dα = A(Iα, Iα) and

store its LU factorization in-place.

4: Apply D−1
α (the previous LU factorization) to solve

multiple right-hand sides Ybig(Iα, :) in-place.

5: end for

6: for level ℓ = L− 1 to 0 do

7: for tree node γ at level ℓ in TL do

8: Let the children of γ be α and β.

9: Factorize Kγ =

(
V ∗
αYα I
I V ∗

β Yβ

)

and

store its LU factorization in-place.

10: Apply K−1
γ (the previous LU factorization) to

solve
(
V ∗
αYα I
I V ∗

β Yβ

)(
Wα

Wβ

)

=

(
V ∗
αYbig(Iα, 1 : rℓ)

V ∗
β Ybig(Iβ , 1 : rℓ)

)

.

(13)

11: Compute

Ybig(Iγ , 1 : rℓ) ← Ybig(Iγ , 1 : rℓ)−
(
YαWα

YβWβ

)

. (14)

12: end for

13: end for

Algorithm 2 Nonrecursive algorithm for solving (4): solution

stage

Input: matrix Ybig, matrix Vbig, stored LU factorizations,

cluster tree TL, and right-hand side b.
Output: solution of (4), namely, x.

1: x ← b // x overwrites b.
2: for leaf node α in TL do

3: Apply D−1
α (precomputed LU factorization) to solve

right-hand side x(Iα) in-place.

4: end for

5: for level ℓ = L− 1 to 0 do

6: for tree node γ at level ℓ in TL do

7: Let the children of γ be α and β.

8: Apply K−1
γ (precomputed LU factorization) to

solve
(
V ∗
αYα I
I V ∗

β Yβ

)(
wα

wβ

)

=

(
V ∗
αx(Iα)

V ∗
β x(Iβ)

)

. (15)

9: Compute

x(Iγ) ← x(Iγ)−
(
Yαwα

Yβwβ

)

. (16)

10: end for

11: end for



TABLE I: Notations for Algorithms 3 and 4

superscript ℓ block-row view of a matrix, where matrix rows are
partitioned according to nodes at the ℓ-th level in
TL.

operator ⊙ block-wise matrix multiplication between two block-
row matrices (the result is a block-row matrix).

Y ℓ+1 shorthand for Y ℓ+1

big
(:, rℓ+ 1 : r(ℓ+ 1)).

V ℓ+1 shorthand for V ℓ+1

big
(:, rℓ+ 1 : r(ℓ+ 1)).

(

V ℓ+1
)

∗

block-wise transpose of V ℓ+1.

(

DL
big

)

−1

applying matrix inverse (solution of linear systems)
with block-wise LU factorizations.

(

Kℓ
big

)

−1

be transformed into a parallel algorithm by simply batching

the BLAS and LAPACK calls from tasks at the same level.

In particular, we take advantage of the batched LU factor-

ization/solution (getrfBatched/getrsBatched) and the batched

gemm (gemmBatched) from cuBLAS1 in our GPU algorithms.

With our new data structure that concatenates the left low-rank

bases into one (big) matrix, we need only one cuBLAS call

for computations involving multiple left low-rank bases across

different levels in the tree. This property simplifies the imple-

mentation, avoids unnecessary data movement, and reduces

the number of kernel launches. We present the pseudocode of

our GPU factorization algorithm in Algorithm 3.

The new data structure also allows us to take advantage

of an optimization of the general batched gemm kernel—

gemmStridedBatched2—from cuBLAS when the (left) low-

rank bases at the same level have the same sizes. In other

words, there is a constant stride among the corresponding

subblocks in Ubig and Vbig that are accessed by a batched

gemm kernel. Such an optimization improves the performance

significantly when the sizes of input matrices are small.

The solution stage as described in Algorithm 2 has similar

structure as the factorization stage. It is straightforward to see

that the two for-loops at lines 2&6 in Algorithm 2 can be

parallelized. Again, we batch the BLAS and LAPACK calls

from tasks at the same level. With the precomputed data from

the factorization stage, the solution stage is relatively simple

as described in Algorithm 4.

Notice that for the first few levels the number of nodes is

small, and we empirically found that the batched gemm kernel

was outperformed by launching independent gemm kernels

using CUDA streams. Before ending this section, we point

out two variants of (9):

(
I V ∗

β Yβ

V ∗
αYα I

)(
wα

wβ

)

=

(
V ∗
β zβ

V ∗
α zα

)

and

(
I V ∗

αYα

V ∗
β Yβ I

)(
wβ

wα

)

=

(
V ∗
α zα

V ∗
β zβ

)

,

1https://docs.nvidia.com/cuda/cublas/index.html
2https://developer.nvidia.com/blog/cublas-strided-batched-matrix-multiply/

Algorithm 3 GPU algorithm for solving (4): factorization

stage (see notations in Table I)

Input: matrix Dbig, matrix Ubig, matrix Vbig, and cluster tree

TL.

Output: matrix Ybig, block-wise factorizations of matrices

DL
big, K0

big, K1
big, . . . , KL−1

big .

1: Ybig ← Ubig // Ybig overwrites Ubig.

2: BATCHED LU FACTORIZE INPLACE(DL
big)

3: BATCHED LU SOLVE INPLACE:

Y L
big ←

(
DL

big

)−1 ⊙ Y L
big

4: for level ℓ = L− 1 to 0 do

5: BATCHED GEMM:

T ℓ+1 ←
(
V ℓ+1

)∗ ⊙ Y ℓ+1

// T and W (below) are temporary variables; see (13).

6: BATCHED GEMM:

W ℓ+1 ←
(
V ℓ+1

)∗ ⊙ Y ℓ+1
big (:, 1 : rℓ)

7: Form matrix Kℓ
big with T ℓ+1. // See (11) and Fig. 4.

8: BATCHED LU FACTORIZE INPLACE(Kℓ
big)

9: BATCHED LU SOLVE INPLACE:

W ℓ ← (Kℓ
big)

−1 ⊙W ℓ

10: BATCHED GEMM:

Y ℓ+1
big (:, 1 : rℓ) ← Y ℓ+1

big (:, 1 : rℓ)− Y ℓ+1 ⊙W ℓ+1

11: end for

Algorithm 4 GPU algorithm for solving (4): solution stage

(see notations in Table I)

Input: matrix Ybig, matrix Vbig, (block-wise factorizations of)

matrices DL
big, K0

big, K1
big, . . . , KL−1

big , cluster tree TL, and

right-hand side b.
Output: solution x.

1: x ← b // x overwrites b.
2: BATCHED LU SOLVE INPLACE:

xL ←
(
DL

big

)−1 ⊙ xL

3: for level ℓ = L− 1 to 0 do

4: BATCHED GEMM:

wℓ+1 ←
(
V ℓ+1

)∗ ⊙ xℓ+1

// w is a temporary variable; see (15).

5: BATCHED LU SOLVE INPLACE:

wℓ ← (Kℓ
big)

−1 ⊙ wℓ

6: BATCHED GEMM:

xℓ+1 ← xℓ+1 − Y ℓ+1 ⊙ wℓ+1

7: end for

https://docs.nvidia.com/cuda/cublas/index.html
https://developer.nvidia.com/blog/cublas-strided-batched-matrix-multiply/


where the coefficient matrices have identities on the diagonals

but either the right-hand side or the solution is reordered.

Although (9) is mathematically equivalent to the two alter-

natives, they may perform differently on a GPU. To be con-

crete, we typically need partial pivoting for the (batched) LU

factorization (line 7 in Algorithm 3) with the formulation in

(9), which impedes performance. The alternative formulations

could circumvent this issue, but they require an extra cost of

shuffling the right-hand side or the solution.

D. Complexity analysis

Given a rank-r HODLR matrix A ∈ R
N×N with the

underlying cluster tree TL, we assume the off-diagonal blocks

in A have the same rank r and the diagonal blocks in A have

the same size m = N/2L. In practice, we usually prescribe m
to be a small constant independent of N , or equivalently we

set L = O(log(N)). The following analysis and results can

be easily extended to general cases where the ranks and sizes

of diagonal blocks vary.

Let us first consider the storage of A that includes

• Diagonal blocks: m2 × 2L = mN .

• Off-diagonal blocks (Ubig and Vbig): 2 × N × r × L =
2rNL.

As explained earlier, the factorization of the HODLR matrix

can be done in-place, which requires little extra memory. We

summarize the above as the following theorem.

Theorem 2 (Storage). The storage of the HODLR matrix A
and its factorization is

mf = mN + rNL = O(rN log(N)).

Next, we consider the computational cost for factorizing

matrix A and summarize the results in a theorem.

• Leaf level (lines 3&4 in Algorithm 1):

2

3
m3 × 2L + 2m2 × r × L× 2L =

2

3
m2N + 2mrNL,

where factorizing an m × m matrix using the LU fac-

torization requires 2/3m3 operations and solving one

right-hand side using the LU factorization requires 2m2

operations with forward and backward substitutions.

• At level ℓ (1 ≤ ℓ ≤ L), we solve (13) and compute

(14). Assuming the rank r is small, the cost is dominated

by conducting matrix-matrix multiplication3 to form the

right-hand sides in (13) and the update in (14), which is

2r2Nℓ+ 2r2Nℓ = 4r2Nℓ

operations. Notice this cost is linear with respect to ℓ.

3The computational cost for multiplying an n×k (real) matrix and a k×m
(real) matrix is 2knm operations.

Theorem 3 (Factorization cost). The factorization of the

HODLR matrix A requires the following amount of operations:

tf =
2

3
m2N + 2mrNL+

L∑

ℓ=1

4r2Nℓ

=
2

3
m2N + 2mrNL+ 2r2N(L+ L2)

= O(r2N log2(N)).

Finally, we consider the computational cost for solving an

arbitrary right-hand side using the factorization of matrix A
and summarize the results in a theorem.

• Leaf level (line 3 in Algorithm 2):

2m2 × 2L = 2mN,

where 2L is the number of leaf nodes in the cluster tree

(diagonal blocks in A).

• At level ℓ (1 ≤ ℓ ≤ L), we solve (15) and compute (16).

Assuming the rank r is small, the cost is dominated by

conducting matrix-vector multiplication to form the right-

hand side in (15) and the update in (16), which is

2rN + 2rN = 4rN

operations. Notice that this cost does not depend on ℓ.

Theorem 4 (Solution cost). The solution of an arbitrary right-

hand side using the factorization of A requires the following

amount of operations:

ts = 2mN +

L∑

ℓ=1

4rN = 2mN + 4rNL = O(rN log(N)).

(17)

It is not a coincidence that the amount of required operations

in theorem 4 is twice as many as the amount of storage in

theorem 2. The fact is that every stored entry is touched once

and is involved with two operations (a multiplication and an

addition) in the solution stage.

Remark 1 (Numerical rank). From users’ perspective, it is

usually more desirable to specify a tolerance for low-rank

compressions rather than the ranks directly. Consider using

HODLR approximations for problems that are not highly

oscillatory. When the underlying problem lies in 1D, the

ranks of all off-diagonal blocks are roughly the same and are

independent of the problem size for a prescribed tolerance. As

the above analysis shows, the factorization and the solution

both scale nearly linearly. However, when the underlying

problem is in 2D or 3D, the ranks increase with the problem

size, and the asymptotic complexities deteriorate (see, e.g.,

Remark 5.1 in [7]).

E. Two perspectives and connections

The HODLR format is relatively simple among other for-

mats that approximate off-diagonal blocks of a matrix, but

the described algorithms have close connections to algorithms

for more complicated formats. Below, let us review two other

perspectives on factorizing a HODLR matrix and discuss their

connections to related algorithms.



a) Matrix factorization: The first perspective is from a

matrix factorization point of view, which initially appeared

in [1]. Let us illustrate this with the following example.

(An interesting extension is the computation of a symmetric

factorization of a HODLR matrix that is SPD [7], which has

various applications involving covariance matrices.)

Example 2. Consider the HODLR matrix A in Fig. 2, where

the underlying cluster tree has three levels (level 0, 1, and 2).

Suppose we apply Algorithm 1 to A. Equivalently, we obtain

the following factorization (and its “inverse”)

A =

(
A2 U2V

∗
3

U3V
∗
2 A3

)

=

(
A2

A3

)(
I Y2V

∗
3

Y3V
∗
2 I

)

=







A4

A5

A6

A7







︸ ︷︷ ︸

A(3)







I Y4V
∗
5

Y5V
∗
4 I

I Y6V
∗
7

Y7V
∗
6 I







︸ ︷︷ ︸

A(2)

(
I Y2V

∗
3

Y3V
∗
2 I

)

︸ ︷︷ ︸

A(1)

.

Notice that the Y matrices are among the outputs of Algo-

rithm 1. In addition, we can apply A−1 easily because we can

apply the inverses of A(1), A(2), and A(3) easily. For example,

we have stored the factorizations of every diagonal block in

A(3) (line 3 in Algorithm 1), and every 2×2 diagonal block in

A(2) can be inverted according to (10), where the factorization

of a small matrix has been stored (line 9 in Algorithm 1). It

should not be surprising that the algorithm of applying A−1

to a vector b is just Algorithm 2. We summarize the discussion

into the following:

Theorem 5. Algorithm 1 and Algorithm 2 are equivalent

to computing a matrix factorization of a HODLR matrix

and applying the inverse of the factorization to a vector,

respectively.

Notice that the above matrix factorization of A naturally

leads to an efficient algorithm for evaluating the determinant

of A. Observe that

det(A) = det(A(1))det(A(2))det(A(3)),

where det(A(3)) can be readily obtained with the LU factor-

izations of its diagonal blocks, the determinant of every 2× 2
diagonal block in A(2) and A(1) can be evaluated efficiently

with the stored factorizations according to Sylvester’s deter-

minant theorem [8].

b) Extended sparse linear system: The other perspective

is related to sparse matrix algebra, where we embed a HODLR

matrix into a larger sparse matrix [2]. To be more specific,

the original dense problem (4) is equivalent to a larger

sparse linear system, and we solve the sparse problem with

straightforward Gaussian elimination to obtain the solution of

the original problem. The power of this approach is that it also

generalizes to solving problems involving more complicated

formats of hierarchical low-rank compression. Let us illustrate

the main idea through the following example.

Example 3. Consider solving a dense linear system
(

A2 U2V
∗
3

U3V
∗
2 A3

)(
x2

x3

)

=

(
b2
b3

)

.

With two auxiliary variables w3 = V ∗
2 x2 and w2 = V ∗

3 x3

(the subscripts of w’s are chosen for the convenience of the

following presentation), we rewrite the above dense linear

system as the following block-sparse linear system:






A2 U2

A3 U3

V ∗
2 −I

V ∗
3 −I













x2

x3

w2

w3







=







b2
b3
0
0







.

The beauty is that we can solve this sparse linear system

with Gaussian elimination in a straightforward manner: we

factorize the block-sparse matrix with the block-LU factoriza-

tion and then solve with block-forward and block-backward

substitutions. To be concrete, we first apply two steps of block

Gaussian elimination (for x2 and x3) and obtain the resulting

linear system involving the resulting Schur complement
(
V ∗
2 Y2 I
I V ∗

3 Y3

)(
w2

w3

)

=

(
V ∗
2 z2

V ∗
3 z3

)

,

where Y2 = (A2)
−1U2, Y3 = (A3)

−1U3, z2 = (A2)
−1b2,

and z3 = (A3)
−1b3. Readers may recognize this small linear

system as (9). After solving the above system, we get the

original solution via forward and backward substitutions,

which turns out to be exactly the same as (8):
(
x2

x3

)

=

(
z2
z3

)

−
(
Y2w2

Y3w3

)

.

This approach extends to solving linear systems involving

HSS matrices4. It is shown in [5] (Section 7.2.3) that applying

Gaussian elimination to an extended sparse linear system in-

troduces no fill-in with an appropriate ordering. Alternatively,

we can feed an extended sparse linear system directly to a

highly optimized sparse direct solver as proposed by Ho and

Greengard [45] for computational efficiency and stability.

Both the HODLR and the HSS formats rely on the so-

called weak admissibility, and related algorithms are relatively

simple. By contrast, the compression format associated with

the FMM employs the strong admissibility, and solving a

linear system involving such a matrix is still an active research

question. Recent advances [28], [46], [47] demonstrate that the

approach of creating an extended sparse linear system is still

viable as long as we compress fill-in blocks during Gaussian

elimination. It turns out that this improvement can also be

applied to solve large sparse linear systems arising from the

discretization of linear elliptic partial differential equations that

are not highly indefinite [48]–[51].

4If the low-rank bases in a HODLR matrix are nested (the bases of a nonleaf
node can be constructed from those of its two children), then the HODLR
matrix is an HSS matrix.



TABLE II: Notations for numerical results

N problem size/matrix size/degrees of freedom/number of points
tf factorization time in seconds
ts solution time for a random right-hand side in seconds

mem memory of the factorization in gigabytes (GB)
relres relative residual of a solution x̃, i.e., ‖b− Ax̃‖/‖b‖

IV. NUMERICAL RESULTS

We benchmark the speed and the accuracy of our GPU

solver and compare it against existing methods in the literature.

In section IV-A, we apply our GPU solver to kernel matrices

and compare to HODLRLIB [33]. In sections IV-B and IV-C,

we apply our HODLR solver to linear systems coming from

the discretization of BIEs with a Laplace double-layer poten-

tial and a Helmholtz potential, respectively. We compare to

the block-sparse solver proposed by Ho and Greengard [45],

which can leverage state-of-the-art sparse direct solvers. The

machine where our numerical experiments were performed has

• two Intel Xeon Gold 6254 CPUs, each with 18 cores at

3.10 GHz (peak performance ≈ 1.27 TFlop/s),

• an NVIDIA GPU that is a Tesla V100 GPU with 32 GB

of memory (peak performance ≈ 7 TFlop/s).

• a PCIe 3.0 ×16 between the CPU and the GPU that can

deliver up to 15.75 GB/s.

Our GPU code was compiled with the NVIDIA compiler nvcc

(version 11.3.58) and linked with the cuBLAS library (version

11.4.2.10064) on the Linux OS (5.4.0-72-generic.x86 64).

Calculations are performed with double-precision floating-

point arithmetic unless stated otherwise. Notations that we use

to report results are shown in Table II, and the timings were

taken as the average of five consecutive runs.

A. Kernel matrix

Consider solving (1), where matrix A is generated from

the Rotne-Prager-Yamakawa (RPY) tensor kernel [52], [53],

which is frequently used to model the hydrodynamic inter-

actions in simulations of Brownian dynamics. Given a set of

points {yi}Ni=1, the kernel matrix A is defined as

Ai,j =







kT
8πη|r|

[

I + r
⊗

r

|r|2 + 2a2

3|r|2 (I − 3 r
⊗

r

|r|2 )
]

if r ≥ 2a,

kT
6πηa

[

(1− 9
32

|r|
a
)I + 3

32a
r
⊗

r

|r|

]

if r < 2a,

(18)

where r = yi − yj and |r| denotes its two norm.

We approximated matrix A with a HODLR matrix and

obtained an approximate solution for (1). In the following,

we compare our GPU solver to the HODLRLIB library [33],

which is a C++ code parallelized with OpenMP for shared-

memory multicore architectures. To be consistent with the

benchmark of HODLRLIB5, we randomly generated {xi}Ni=1

with a uniform distribution over [−1, 1], and set k = T =
η = 1, a = |r|min/2 with |r|min being the minimum distance

among all pairs of xi and xj . We compiled HODLRLIB with

5https://hodlrlib.readthedocs.io/en/latest/benchmarks.html

TABLE III: Results for solving (1) with the RPY kernel defined

in (18). The low-rank approximation accuracy is prescribed to

be 10−12.

N
HODLRLIB GPU Solver

mem relres
tf ts tf ts

217 = 131, 072 1.47 0.22 7.39e-2 4.37e-3 0.88 1.68e-11

218 = 262, 144 5.09 0.61 1.81e-1 7.43e-3 1.93 2.57e-9

219 = 524, 288 10.9 1.26 3.86e-1 1.27e-2 4.23 5.28e-11

220 = 1, 048, 576 23.1 2.76 7.75e-1 2.12e-2 8.94 1.32e-9

221 = 2, 097, 152 51.7 5.42 1.89e-0 4.23e-2 19.2 1.10e-9
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Fig. 5: Comparison between (1) the HODLRLIB library [33]

running on two Intel Xeon Gold 6254 18-core CPUs and (2)

our GPU solver running on an NVIDIA Tesla V100 GPU.

g++ 7.5.0 and linked it with the (sequential) Intel MKL library

of version 20.0. Timing results of HODLRLIB were obtained

on two Intel Xeon CPUs of 36 cores combined.

We constructed HODLR approximations on the CPUs,

where diagonal blocks have size 64 × 64 and off-diagonal

blocks are compressed using the LowRank::rookPiv() function,

an approximate partial-pivoted LU, in HODLRLIB. For our

GPU solver, we copied data including Dbig, Ubig, and Vbig to

the GPU, where we typically used a significant portion of the

bandwidth, around 12 GB/s, in our experiments.

With a prescribed accuracy of 10−12 for low-rank com-

pression, we obtained the results in Table III, where the

factorization time and the solution time are plotted in Fig. 5.

From these results, we make two observations. First, the

factorization time, the solution time, and the memory footprint

all scale nearly linearly as the theory in section III-D predict.

The increase of the solution time is slower than N log(N) as

given in (17) and is close to being linear. The reason is that

the GPU utilization increases as the problem size N increases.

Second, our GPU solver achieved significant speedups against

HODLRLIB. In particular, the speedup becomes larger as the

problem size increases, and the acceleration of the solution

time is larger than that of the factorization time. As mentioned

earlier, the parallelization in HODLRLIB is only across nodes

at the same level (no parallelization within a tree node),

while our GPU solver also employs parallelization inside every

tree node. For N = 221, the factorization and the solution

of our GPU solver achieved 878 Gflop/s and 119 Gflop/s,

respectively.

https://hodlrlib.readthedocs.io/en/latest/benchmarks.html


TABLE IV: Results for solving (21) discretized with a 2nd-order quadrature. In (b), all calculations were performed in single

precision except for the sequential block-sparse solver (Matlab backslash for sparse matrices does not support single precision).

N
Serial HODLR Solver Serial Block-Sparse Solver Parallel Block-Sparse Solver GPU HODLR Solver

relres
tf ts mem tf ts mem tf ts mem tf ts mem

218 = 262, 144 4.51e+1 5.93e-1 1.09 2.87e+0 1.33e-1 0.57 7.03e+0 1.85e-2 3.56 6.94e-2 4.87e-3 1.09 2.10e-9

219 = 524, 288 9.73e+1 1.05e-0 2.25 5.88e+0 2.86e-1 1.14 1.37e+1 3.74e-2 7.08 1.40e-1 8.19e-3 2.25 7.13e-9

220 = 1, 048, 576 2.20e+2 2.18e-0 4.63 1.21e+1 5.09e-1 2.28 2.89e+1 8.30e-2 14.2 2.90e-1 1.28e-2 4.63 5.60e-9

221 = 2, 097, 152 4.76e+2 4.99e-0 9.46 2.35e+1 1.00e-0 4.56 6.20e+1 1.82e-1 28.6 6.10e-1 2.40e-2 9.46 7.82e-9

222 = 4, 194, 304 1.05e+2 9.81e-0 19.3 4.90e+1 2.29e-0 9.15 1.29e+2 5.18e-1 56.9 1.25e-0 4.61e-2 19.3 1.31e-8

(a) High-accuracy solver

N
Serial HODLR Solver Serial Block-Sparse Solver Parallel Block-Sparse Solver GPU HODLR Solver

relres
tf ts mem tf ts mem tf ts mem tf ts mem

218 = 262, 144 1.41e+0 3.07e-1 0.27 1.66e+0 8.44e-2 0.35 4.50e+1 9.80e-3 2.40 1.74e-2 2.66e-3 0.27 3.13e-5

219 = 524, 288 2.95e+0 5.82e-1 0.55 3.32e+0 1.68e-1 0.69 9.42e+1 1.77e-2 4.79 3.39e-2 3.92e-3 0.55 1.49e-4

220 = 1, 048, 576 5.88e+0 1.16e-0 1.09 6.55e+0 3.42e-1 1.39 1.99e+1 3.71e-2 9.56 5.79e-2 6.48e-3 1.09 7.20e-5

221 = 2, 097, 152 1.21e+1 2.48e-0 2.13 1.32e+1 6.89e-1 2.77 3.86e+1 7.83e-2 19.1 1.29e-1 1.09e-2 2.13 6.11e-4

222 = 4, 194, 304 2.47e+1 5.40e-0 4.26 2.79e+1 1.36e-0 5.55 8.49e+1 2.04e-1 38.3 2.70e-1 2.05e-2 4.26 2.07e-4

223 = 8, 388, 608 5.03e+1 1.08e+1 8.45 5.81e+1 2.87e-0 11.1 1.73e+2 3.99e-1 76.2 4.26e-1 4.06e-2 8.45 4.04e-4

224 = 16, 777, 216 1.19e+2 1.93e+1 17.0 1.18e+2 6.23e-0 23.1 3.77e+2 7.83e-1 152 8.58e-1 8.38e-2 17.0 7.12e-4

(b) Low-accuracy solver
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Fig. 6: A smooth contour Γ on the plane. The problem domain

Ω, where PDEs (19) and (22) are defined, is exterior to Γ.

B. Laplace equation on an exterior domain

We next consider a boundary integral equation obtained by

rewriting the BVP
{

−∆u(x) = 0 in Ω,
u(x) = f(x) on Γ,

(19)

where Ω is the infinite domain that is exterior to the smooth

contour Γ shown in Fig. 6. To ensure a unique solution that is

physically meaningful, we also require that there exists a real

number Q ∈ R such that

lim
|x|→∞

(

u(x) +
Q

2π
log |x|

)

= 0. (20)

We reformulate (19) as

1

2
σ(x) +

∫

Γ

(

d(x, y)− 1

2π
log |x− z|

)

σ(x)ds(y) = f(x),

(21)

where

d(x, y) =
n(y) · (x− y)

2π|x− y|2

is the “double layer kernel” associated with the Laplace

equation, where n(y) is a normal vector at a point y ∈ Γ,

and where z is a fixed point in the interior of Γ [54], [55].

We chose z to be the origin and discretized (19) using the

Trapezoidal rule. To solve the resulting linear system, we

constructed a HODLR approximation using the proxy surface

technique (see, e.g., [9, Chapter 17]) on a CPU and copied the

HODLR matrix to the GPU.

For comparison, we implemented the block-sparse solver

by Ho and Greengard [45]. The block-sparse solver builds an

HSS approximation [56] in a block sparse format and employs

a sparse direct solver to solve the block sparse matrix. This

approach takes advantage of the stability and the efficiency

of state-of-the-art sparse direct solvers. We refer interested

readers to [45] for comparisons between the block-sparse

solver and an iterative solver employing the fast multipole

method. For our problems, we empirically found that the

Matlab backslash (calling UMFPACK [57], [58]) and the MKL

PARDISO solver [59], [60] performed best on a single core

and on all 36 cores of two Intel Xeon CPUs, respectively6. We

refer to them as the sequential and the parallel block-sparse

solvers.

Table IV shows the comparison between the block-sparse

solver and our GPU solver, where the factorization time and

the solution time are plotted in Fig. 7. In practice, it is not

necessary to use as many discretization points for (21) on

the smooth contour Γ. Here, our purpose is to benchmark the

speed and the accuracy of our GPU solver. From the results,

we make the following observations. First, the scaling of the

factorization, the solution time, and the memory footprint of

our GPU solver increase nearly linearly with the problem size.

6For UMFPACK, we used the [L,U,p] = lu(A,‘vector’) routine in Matlab,
which applied only row-permutation on the input sparse matrix and avoided
the overhead of computing a column permutation. For parallel performance
on the two Intel Xeon Gold 6254 CPUs, we compared several popular
sparse direct solvers for our matrices, and our conclusion is consistent with
observations in the literature (see, e.g., [61]).
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Fig. 7: Comparison between the block-sparse solver [45] and

our GPU solver for solving (21) discretized with a 2nd-order

quadrature.

Second, our GPU solver achieved significant speedups com-

pared to the block-sparse solver, as shown in Fig. 7. Although

the sequential HODLR solver is slower than the sequential

block-sparse solver, it is well understood that parallelizing a

sparse direct solver, which the block-sparse solver relies on,

is challenging [62]. In fact, the parallel factorization stage,

which consists of a symbolic factorization and a numerical

factorization, is slower than the sequential counterpart. What

happened here was that we did not compute any fill-in re-

ducing ordering in the sequential method (the block-sparse

matrix has a special structure that natural ordering turns out

working well), but the parallel method spent a lot of time

(and storage) in symbolic factorization to find parallelism (so

the subsequent numerical factorization and the solution can be

accelerated). Compared to the sequential method, the parallel

block-sparse solver also consumed more memory from the

analysis in the symbolic factorization phase that the solver

needs in the numerical factorization and solve phases.

Third, one advantage of our method is that the accuracy

is tunable. With highly accurate low-rank compressions, we

obtained fast direct solvers as shown in Table IVa. With rea-

sonably accurate low-rank compressions, we obtained results

in Table IVb, where we were able to take advantage of single-

precision floating-point arithmetic. The use of single-precision

calculations accelerated the factorization and the solution by

approximately 2×, and it also reduced the memory footprint

by 2×.

C. Helmholtz equation on an exterior domain

Consider the following exterior BVP that models, e.g., time-

harmonic wave problems,

{
−∆u(x)− κ2u(x) = 0 in Ω,

u(x) = f(x) on Γ.
(22)

Observe that (22) is defined on an infinite domain, as shown

in Fig. 6. To ensure a well-posed problem, we also require the

radiation condition at infinity: for every unit vector z

lim
r→∞

√
r

(
∂u(rz)

∂r
− iκu(rz)

)

= 0. (23)

Solving (22) by directly discretizing the PDE is quite chal-

lenging. Instead, we use a BIE formulation. Define the single-

and double-layer kernels

sκ(x, y) = φκ(x− y),

dκ(x, y) = n(y) · ∇yφκ(x − y),

where φκ(x) = i
4H

(1)
0 (κ|x|) is the fundamental solution of

the Helmholtz operator and H
(1)
0 is the zeroth-order Hankel

function of the first kind, and where n(y) is the inward normal

at y ∈ Γ. We reformulate (22) as a second-kind Fredholm

equation [54], [55]

1

2
σ(x)+

∫

Γ

(dκ(x, y) + iηsκ(x, y)) σ(x)ds(y) = f(x), (24)

where x ∈ Γ and η is a parameter that is often chosen as η =
±κ. The BIE is defined on a finite domain and automatically

satisfies (20). We chose η = κ = 100 and discretized (24) with

the 6-th order quadrature proposed by Kapur and Rokhlin [63].

The resulting linear system is notoriously difficult to solve

iteratively.

Again, we constructed a HODLR approximation using the

proxy surface technique (see, e.g., [9, Chapter 17]) on a CPU

and copied the HODLR matrix to the GPU. We applied our

HODLR solver and the block-sparse solver, and the results

are shown in Table V. The factorization time and the solution

time are plotted in Fig. 8, and Fig. 9 shows the floating point

operations per second (Flop/s). Due to the oscillatory nature

of the fundamental solution of the Helmholtz operator, the

numerical ranks from low-rank compressions are higher than

those in section IV-B associated with the Laplace operator

for the same accuracy. As a result, the costs for solving (24)

are generally higher. However, the observations are similar

to before: (1) the costs of our GPU solver scaled nearly

linearly; (2) our GPU solver achieved significant speedups

over the parallel block-sparse solver (the factorization of

the latter is faster than that of the sequential method); (3)

we obtained a fast direct solver with highly accurate low-

rank compressions as shown in Table Va. When relatively

low-accuracy compressions were employed, we computed a

reasonably accurate preconditioner much faster using much

less memory.



TABLE V: Results for solving (24) with η = κ = 100, discretized with a 6-th order quadrature.

N
Serial HODLR Solver Serial Block-Sparse Solver Parallel Block-Sparse Solver GPU HODLR Solver

relres
tf ts mem tf ts mem tf ts mem tf ts mem

215 = 32, 768 4.53e+0 1.92e-1 0.81 4.08e+0 8.28e-2 0.28 2.05e+0 2.40e-2 1.21 1.14e-1 6.91e-3 0.81 2.02e-9

216 = 65, 536 1.18e+1 4.86e-1 1.70 6.40e+0 1.51e-1 0.51 3.63e+0 3.98e-2 2.08 1.85e-1 9.18e-3 1.70 1.34e-9

217 = 131, 072 2.66e+1 1.01e-0 3.58 1.10e+1 2.87e-1 0.96 7.39e+0 6.33e-2 3.97 3.61e-1 1.35e-2 3.58 1.67e-9

218 = 262, 144 6.31e+1 2.15e-0 7.48 1.99e+1 5.69e-1 1.84 1.39e+1 1.14e-1 7.55 7.42e-1 2.29e-2 7.48 7.23e-10

219 = 524, 288 1.45e+2 5.22e-0 15.7 3.75e+1 1.12e-0 3.59 2.68e+1 2.47e-1 14.7 1.59e-0 3.80e-2 15.7 1.02e-9

(a) High-accuracy fast direct solver

N
Serial HODLR Solver Serial Block-Sparse Solver Parallel Block-Sparse Solver GPU HODLR Solver

relres
tf ts mem tf ts mem tf ts mem tf ts mem

215 = 32, 768 2.94e+0 1.57e-1 0.58 1.74e+0 4.31e-2 0.14 1.12e+0 1.73e-2 0.76 6.24e-2 4.44e-3 0.58 1.25e-4

216 = 65, 536 6.63e+0 3.24e-1 1.17 2.61e+0 8.72e-2 0.25 1.84e+0 1.98e-2 1.24 1.00e-1 6.73e-3 1.17 1.98e-4

217 = 131, 072 1.51e+1 6.71e-1 2.37 4.10e+0 1.37e-1 0.45 3.42e+0 4.06e-2 2.37 1.77e-1 9.19e-3 2.37 3.04e-4

218 = 262, 144 3.45e+1 1.51e-0 4.83 7.42e+0 2.69e-1 0.86 6.99e+0 7.09e-2 4.44 3.42e-1 1.71e-2 4.83 3.62e-4

219 = 524, 288 7.76e+1 3.19e-0 9.83 1.41e+1 5.24e-1 1.68 1.35e+1 1.39e-1 8.94 6.72e-1 3.07e-2 9.83 3.99e-4

220 = 1, 048, 576 1.75e+2 6.92e-0 19.8 2.72e+1 1.05e-0 3.32 2.82e+1 2.53e-1 17.5 1.38e-0 4.86e-2 19.8 7.21e-4

(b) Low-accuracy robust preconditioner
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Fig. 8: Speedups for solving (24) discretized with a 6-th order

quadrature.
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Fig. 9: GFlop/s for solving (24). For the block-sparse solver,

only the numerical factorization phase is considered in Fig. 9a.

V. GENERALIZATIONS AND CONCLUSIONS

We introduce algorithms for factorizing a HODLR matrix

and for solving linear systems using the factorization on a

GPU. The algorithms are based on a new data structure of

storing the HODLR matrix and leverage efficient batched

dense linear algebra kernels. We benchmarked the performance

of our codes on kernel matrices and discretized BIEs, for

which we constructed fast solvers with different levels of

accuracies. In our numerical experiments, our GPU solver

achieved significant speedups against reference methods.

APPENDIX

OFF-DIAGONAL RANKS IN HODLR APPROXIMATIONS

Below are the ranks of off-diagonal blocks from level 1 to

the leaf level:

• Table III, N = 221 (15 tree levels):

56 54 45 52 44 30 41 38 38 25 33 24 22 19 18.

• Table IVa, N = 222 (16 tree levels):

24 22 15 14 13 13 13 13 14 14 15 16 16 17 17 18.

• Table IVb, N = 224 (18 tree levels):

1 1 1 2 3 3 4 4 5 5 6 7 7 8 8 9 10 11.

• Table Va, N = 219 (13 tree levels):

225 134 97 69 54 46 41 39 37 35 33 31 29.

• Table Vb, N = 220 (14 tree levels):

166 92 63 39 28 22 19 17 17 17 17 17 17 17.
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