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Methods for computing x-ray absorption spectra based on a constrained core hole (possibly contain-
ing a fractional electron) are examined. These methods are based on Slater’s transition concept and
its generalizations, wherein core-to-valence excitation energies are determined using Kohn-Sham or-
bital energies. The transition-potential approximation avoids promoting electrons beyond the lowest
unoccupied molecular orbital, facilitating robust convergence. Variants of these ideas are systemat-
ically tested, revealing a best-case accuracy of 0.3–0.4 eV (with respect to experiment) for K-edge
transition energies. Absolute errors are much larger for higher-lying near-edge transitions but can be
reduced below 1 eV by introducing an empirical shift based on a charge-neutral transition-potential
method, in conjunction with functionals such as SCAN, SCAN0, or B3LYP. This procedure affords
an entire excitation spectrum from a single fractional-electron calculation, at the cost of ground-
state density functional theory and without the need for state-by-state calculations. This shifted
transition-potential approach may be especially useful for simulating transient spectroscopies or in
complex systems where excited-state Kohn-Sham calculations are challenging.

1 Introduction

X-ray absorption spectroscopy (XAS) is a power-
ful tool to elucidate structural and dynamical infor-
mation for atoms, molecules, solids, and materials.1–5

Due to the localized nature of core orbitals, XAS pro-
vides element-specific information while maintaining sen-
sitivity to chemical environment.4–12 Theoretical calcula-
tions of core-to-valence transition energies are invaluable
for interpreting such spectra.13–22 Available computa-
tional models include time-dependent density functional
theory (TD-DFT),19–24 orbital-optimized excited-state
DFT,18–21,25–28 correlated wave function models,29–32

and the Bethe-Salpeter equation (BSE) approach.33–37

Each of these methods is widely used and available in
standard electronic structure codes, but there are lim-
itations. Not least among these is cost, and only the
DFT-based approaches are scalable to large systems such
as proteins or liquid environments. Excited-state DFT
methods, which are based on finding a non-Aufbau solu-
tion to the Kohn-Sham equations,21 require tedious state-
by-state calculations if an entire excitation spectrum is
desired. In contrast, TD-DFT can furnish the entire core-
level spectrum in a single shot (when used with frozen
occupied orbitals for the valence electrons),19–21 but ab-
solute errors are often > 10 eV for light elements38–41

and much larger for heavier ones.42,43

Building on previous work,44 we seek simplified ap-
proaches based on Kohn-Sham eigenvalues only. These
encode information regarding chemical shifts and may
be useful in modeling emerging transient spectroscopies
at x-ray and extreme ultraviolet wavelengths.45–50 Thus,
we investigate “core-hole constraining” methods for XAS
that are based on time-independent (ground-state) DFT
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calculations. There are several variants,18,51 as described
in Section 2, and the unifying feature of these methods
is that an electron or a fraction of an electron is removed
from a core orbital, then orbital relaxation is incorpo-
rated by solving the Kohn-Sham equations in the pres-
ence of a (possibly fractional) core hole. Core-to-valence
excitation energies

ωυ→c = ευ − εc (1)

are estimated as differences between final-state (virtual)
energy levels ευ and the initial-state (core) level, εc.
In some cases, a fractional electron may be placed into
the lowest unoccupied molecular orbital (LUMO), as de-
scribed in Section 2, but not to higher-lying virtual MOs.
Transition intensities are computed according to

Iυ→c =
2meωυ→c

3e2~
∥∥〈ψυ|µ̂|ψc〉∥∥2 . (2)

The signature of these approaches is that no proper
excited-state calculation is performed. Instead, the req-
uisite information for XAS is extracted from ground-state
MOs and their energy levels.

The description above encompasses a vari-
ety of eigenvalue-based approaches that include
Slater’s transition method (STM)52–56 and its
generalizations.44,51,57–60 Also considered is the transi-
tion potential method (TPM)18,61–63 and generalizations
thereof,18,51,64 which are more convenient and robust
as compared to Slater’s original idea, along with the
full core-hole method (FCHM).18,65–67 Some of these
methods are based on the use of fractional-electron
self-consistent field (SCF) calculations.18,51 They differ
in whether the virtual orbitals are probed one by one,
as in Slater’s original conception, or whether the virtual
orbital energy levels (ευ) are obtained from a single
calculation. The latter approach is the basis of TPM and
its variants, which afford an entire core-level spectrum
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(at one particular edge) from a single calculation.18

These methods have the same computational cost as a
single “∆SCF” calculation (Section 2 A) but without
the need for state-by-state calculations and with less
concern about variational collapse. They may hold
some advantages for modeling complex systems or
experiments, insofar as the spectrum is computed in a
single shot and is closely tied to Kohn-Sham eigenvalue
information (chemical shifts).

Like the ∆SCF approach, however, eigenvalue-based
methods may depend sensitively on the choice of
exchange-correlation (XC) functional. The present work
systematically investigates different approaches using XC
functionals on various rungs of Jacob’s ladder.21 It fol-
lows a similar investigation of fractional-electron meth-
ods for computing core-level electron binding energies,44

as in x-ray photoelectron spectroscopy (XPS). In that
previous work, we demonstrated that an empirically-
shifted version of STM with a single fitting parameter
affords K-shell electron binding energies that are more ac-
curate than those obtained from the best ab initio meth-
ods, including GW -type methods.44 A similar empirical
shifting procedure is introduced here, for core-to-valence
excitation energies.

2 Theoretical Methods

This section introduces eigenvalue-based methods for
computing core-to-valence excitation energies based on
a time-independent, ground-state DFT formalism. Con-
ceptually, these methods are approximations to a ∆SCF
calculation, which we therefore consider first.

A. ∆SCF Method. The ∆SCF approach for excita-
tion energies has also been called “excited-state Kohn-
Sham theory”,21,25 as it is based on finding a non-Aufbau
Slater determinant to represent an excited state. The ex-
citation energy is then simply the energy difference,

∆E = Ef − Ei , (3)

where Ei and Ef are the total energies of the ground-
state determinant and the non-Aufbau determinant, re-
spectively, the latter of which contains a core hole. Vari-
ous algorithms have been developed to relax the MOs for
a non-Aufbau determinant while avoiding variational col-
lapse to the ground state or other lower-lying state.68–73

The maximum overlap method (MOM)69–71 often works
well for the lowest excited state (or the lowest state of
a given symmetry), and has previously been applied to
core-to-LUMO excitations.74 In our experience, however,
more sophisticated methods are often required to con-
verge higher-lying excited states.73

B. Slater-Type Methods. The use of fractional-

electron SCF calculations originated with Slater,52–54 al-

though these are now used widely as a means to diag-
nose and correct problems with delocalization error and
self-interaction in DFT.59,75–83 Fractional-electron calcu-
lations have also been used in conjunction with correlated
wave function models.84–87

Slater’s original transition method,52–54 formulated
here for a core → virtual (c → υ) excitation, is based
on promoting nc = 1/2 electron into a valence virtual
MO, so that nυ = 1/2. To understand why this is rel-
evant, imagine the energy E({ni}) of a Slater determi-
nant is expanded as a Taylor series in orbital occupation
numbers {ni}, treated as continuous variables. Setting
E0 = E({n0i }), one may write

E = E0 +
∑
i

(ni − n0i )εi

+
1

2

∑
i,j

(ni − n0i )(nj − n0j )
∂2E

∂ni∂nj
+ · · ·

(4)

where we have used the Slater-Janak theorem,88 εi =
∂E/∂ni. We wish to approximate the ∆SCF excitation
energy in eq. 3, which we write as

∆E = E(0, 1)− E(1, 0) (5)

where Ei = E(1, 0) and Ef = E(0, 1) are the initial
and final state energies, expressed in the form E(nc, nυ).
Choosing the reference state {n0

i } in eq. 4 to be nc =
1/2 = nυ, one obtains a leading-order approximation
∆E ≈ ∆ESTM, where21,53

∆ESTM = ευ(1/2, 1/2)− εc(1/2, 1/2) . (6)

In this and subsequent equations, we use the notation
εr(nc, nυ) to mean the Kohn-Sham eigenvalue for MO
ψr, obtained from an SCF calculation that employs oc-
cupancies nc and nυ for the core and virtual orbitals in
question. (We assume spin-orbitals in this notation, so
0 < nc ≤ 1 and 0 ≤ nυ ≤ 1, and all calculations are per-
formed within a spin-unrestricted formalism.) Alterna-
tive derivations of eq. 6 have also been suggested,21,58,59

e.g., based on integration of ∂E/∂nr starting from a de-
terminant with integer occupancies,58 or based on can-
cellation of self-interaction error.59

Although formulated above for c → υ excitation, the
STM has also been used to estimate core-electron binding
energies (CEBEs),44,83,89–92 via a Koopmans-style ap-
proximation but with a fractional occupancy (nc = 1/2)
for the core level in question. Using a notation similar to
that introduced above, this approximation is

CEBEc ≈ −εc(1/2) . (7)

(Variants with nc = 2/3 or nc = 3/4 have also been
suggested.44,59) In a recent study of K-shell CEBEs,44

we found that eq. 7 affords an accuracy of ∼ 0.5 eV at
the Hartree-Fock level but is significantly less accurate
at DFT levels of theory. Reasonable accuracy was recov-
ered (even for DFT) using generalized approaches that
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require more than one fractional-electron SCF calcula-
tion per CEBE.44,59,60 Similar ideas for excitation ener-
gies are explored below.

The simple STM in eq 6 overestimates excitation
energies.44 This observation motivated a generalization
in which the fractional-electron SCF calculation is mixed
with a ground-state eigenvalue difference,58 a method
that can be understood as a higher-order extension of
Slater’s original transition method.58,89 For excitation
energies, this generalized (G)STM takes the form

∆EGSTM =
1

4

[
ευ(1, 0) + 3ευ(1/3, 2/3)

− εc(1, 0)− 3εc(1/3, 2/3)
]
.

(8)

Here, εc(1, 0) and ευ(1, 0) are eigenvalues from a ground-
state calculation (nc = 1 and nυ = 0), whereas
ευ(1/3, 2/3) and εc(1/3, 2/3) come from a fractional-
occupancy calculation with nc = 1/3 and nυ = 2/3. In
the early days of molecular DFT calculations, the GSTM
approach showed promising accuracy of ∼ 0.3 eV for K-
shell electron binding energies,89–91 although this was
later shown to benefit from some error cancellation.92

Other schemes involving different fractional occupancies
have been proposed more recently,44,59,60 and we have
elsewhere evaluated some of them for CEBEs.44

C. Transition Potential Methods. As originally
formulated (to approximate a ∆SCF calculation), the
STM and its generalizations require separate SCF cal-
culations for each excited state of interest, i.e., for each
virtual level ευ into which a fractional electron is pro-
moted. Like the ∆SCF approach itself, this is a tedious
and inconvenient way to compute an entire spectrum,
and promotions beyond the LUMO are prone to vari-
ational collapse in the absence of symmetry constraints.
Alternatives are to modify the core occupancy only, leav-
ing the virtual space empty (nυ = 0), or else to promote
an electron or fraction of an electron into the LUMO,
then use the full spectrum of virtual eigenvalues to es-
timate excitation energies (∆E = ευ − εc). The latter
approximation assumes that the potential generated by
the LUMO is similar to that generated by the higher-
lying virtual orbitals.

The widely-used TPM18,51,61–63 corresponds to the
first of these alternative strategies, in which no electrons
whatsoever are placed in the virtual space. Excitation
energies within the TPM are given by

∆ETPM = ευ(1/2, 0)− εc(1/2, 0) . (9)

For obvious reasons, this method has also been called
the “half core-hole” (HCH) approach.93 A generalized
(G)TPM can then be envisioned in the spirit of eq 8:

∆EGTPM =
1

4

[
ευ(1, 0) + 3ευ(1/3, 0)

− εc(1, 0)− 3εc(1/3, 0)
]
.

(10)

Note that nc + nυ 6= 1 for the fractional-occupation cal-
culation that is used to obtain ευ(1/3, 0) and εc(1/3, 0),
so that calculation involves a charged system. This
can be a problem for DFT under periodic boundary
conditions,18,94 therefore some charge-neutral alterna-
tives have been explored.51,64 These are discussed below.

A summary of different approximations is provided in
Table 1, in the form

∆E = Fυ − Fc (11)

where Fυ and Fc are simple functions of ευ and εc, respec-
tively, computed from one or more SCF calculations that
typically involve fractional occupancies and a (fractional)
core hole. In addition to methods discussed above, the
list in Table 1 also includes the FCHM approach,18,65–67

which is the nc = 0 analogue of the TPM/HCH method
in eq 9. In FCHM, a full electron is removed from the
core but nothing is placed in the virtual space:

∆EFCHM = ευ(0, 0)− εc(0, 0) . (12)

As with the TPM and GTPM methods, this procedure
creates a charged system. A charge-neutral alternative is
the extended core-hole method (XCHM),51 in which an
entire electron is removed from the core and placed in
the LUMO:

∆EXCHM = ευ(0, 1)− εc(0, 1) . (13)

D. Excitation Beyond the LUMO. Eigenvalue-
based methods can be extended to higher-lying transi-
tions, but such calculations often suffer variational col-
lapse or other SCF convergence issues if a electron (or
a fraction of an electron) must be promoted into a vir-
tual orbital above the LUMO. Transition-potential ap-
proaches sidestep this problem by using the LUMO’s po-
tential to stand in for that of higher-lying virtual orbitals,
and an especially promising protocol is the charge-neutral
XCHM procedure.51 Generalizing eq 13 for virtual or-
bitals υ lying beyond the LUMO, we have

∆EXCHM = ευ(0, nLUMO = 1)− εc(0, nLUMO = 1) .
(14)

Recently, charge-neutral variants of TPM and GTPM
have been suggested,18,51 called the extended (X)TPM
and the extended (X)GTPM, respectively. These meth-
ods correspond to the formulas

∆EXTPM = ευ(1/2, nLUMO = 1/2)

− εc(1/2, nLUMO = 1/2)
(15)

and

∆EXGTPM =
1

4

[
ευ(1, nLUMO = 0)

+ 3ευ(1/3, nLUMO = 2/3)

− εc(1, nLUMO = 0)

− 3εc(1/3, nLUMO = 2/3)
]
.

(16)
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Table 1: Eigenvalue-Based Approximations for Core-to-Valence Excitation Energiesa

Method Fυ Fc Occupancies
STM ευ(nc, 1− nc) εc(nc, 1− nc) nc = 1/2

GSTMb [ευ(nc, 1− nc) [εc(nc, 1− nc) nc = 1, n′c = 1/3
+3ευ(n′c, 1− n′c)]/4 +3εc(n

′
c, 1− n′c)]/4

TPM
ευ(nc, nυ) εc(nc, nυ) nc = 1/2, nυ = 0

GTPM
[ευ(nc, nυ) [εc(nc, nυ) nc = 1, nυ = 0,

+3ευ(n′c, nυ)]/4 +3εc(n
′
c, nυ)]/4 n′c = 1/3

FCHM ευ(nc, nυ) εc(nc, nυ) nc = 0 = nυ

XCHM ευ(nc, 1− nc) εc(nc, 1− nc) nc = 0

XTPM ευ(nc, nLUMO = 1− nc) εc(nc, nLUMO = 1− nc) nc = 1/2

XGTPMb [ευ(nc, nLUMO = 1− nc) [εc(nc, nLUMO = 1− nc) nc = 1, n′c = 1/3
+3ευ(n′c, n

′
LUMO = 1− n′c)]/4 +3εc(n

′
c, n
′
LUMO = 1− n′c)]/4

a∆E = Fυ − Fc (eq 11). bThese methods require two SCF calculations.

Lastly, we consider the ionization potential-corrected
TPM method (IP-TPM).18,61 This approach removes
nc = 1/2 from the core and uses the formula

∆EIP-TPM@1/2 = ευ(1/2, 0) + ∆EIP (17)

for the transition energies, where ∆EIP is the absolute
CEBE for the occupied orbital in question, computed
using a ∆SCF approach. We will also consider an alter-
native formulation with nc = 1/3:

∆EIP-TPM@1/3 = ευ(1/3, 0) + ∆EIP . (18)

Physically, both of these methods include the core-hole
relaxation effects in valence states, which is important for
relative peak positions and intensities, while ∆EIP helps
to incorporate core-hole screening and thus to provide
reliable chemical shifts.18 Both IP-TPM approaches can
be used for core → LUMO and higher-lying excitations.

E. Limitations. Slater-style methods are intended as
extremely simple approaches for excitation or ionization
energy calculations that exploit only the information con-
tained in ground-state Kohn-Sham eigenvalues, albeit
possibly for a fictitious fractional-electron ground state.
The simplicity of this approach may hold advantages for
complex systems but also imbues these methods with
significant limitations, some of which are worth point-
ing out. First of all, these methods do not include spin
coupling so there is no distinction between singlet and
triplet excitations starting from a singlet ground state.
The singlet–triplet excitation gap for c → υ excitation
could be estimated as95,96

Esinglet − Etriplet ≈ 2
[
(cυ|cυ)− (cc|υυ)

]
. (19)

If one is willing to introduce two-electron integrals, then
one may also correct the ∆SCF result via perturba-
tion theory.97–101 However, direct use of electron repul-
sion integrals is a step away from the purpose of using

eigenvalue-based methods in the first place. As such, we
will not attempt to compute any spin couplings in the
present work.

A separate issue is that these methods might exhibit
a state-assignment problem in certain cases, insofar as
the identification of excited states is explicitly tied to
(and therefore cannot go beyond) the MO picture. Lim-
itations of the MO picture for both excitation95,96,102

and ionization,103 due to electron correlation effects, have
been discussed elsewhere. In the context of ∆SCF calcu-
lations of core-excited states, this is sometimes discussed
in terms of the missing “many-electron response to the
core hole”.104 When using the methods described herein,
that response is taken into account (if at all) merely in
terms of the fractional nature of the core hole.

3 Computational Details

Fractional-occupancy methods have been implemented
in a locally-modified version of Q-Chem,105 and will be
made available in v. 6.1. Although various algorithms
are available to optimize a non-Aufbau determinant that
contains a fractional core hole,69–73 the calculations pre-
sented herein use either the MOM algorithm69 or else the
“initial MOM” (IMOM) algorithm.70 These differ only in
whether overlaps are computed with respect to the previ-
ous SCF cycle’s occupied MOs (in the MOM procedure),
or else with respect the MOs at the first SCF cycle (in
IMOM).

Density functionals examined here include
SCAN,106 SCAN0 (having 25% exact exchange),107

B3LYP,108,109 ωB97X-V,110 Becke’s “half-and-half”
functional (BH&HLYP) with 50% exact exchange,
and CAM-B3LYP,111 where the range-separation
parameter is ω = 0.33 bohr−1. We also examine
the long-range corrected (LRC) functionals LRC-
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ωPBE (with ω = 0.3 bohr−1) and LRC-ωPBEh
(ω = 0.2 bohr−1).112–114 Relative to LRC-ωPBE, note
that LRC-ωPBEh includes 20% exact exchange at
short range.114 The SRC1-r1 functional,40 which was
parameterized for K-edge transition energies using
TD-DFT and performs well in that capacity,40,41,115

affords extremely large errors in ∆SCF calculations; see
Tables S1 and S2. Similarly poor performance for this
functional is observed in ∆SCF calculations of CEBEs,44

and therefore SRC1-r1 is not considered further.

The def2-QZVPD basis set is used for all calculations,
in an effort to separate basis-set errors from method-
ological errors. Previous results for CEBEs indicate that
DFT/def2-QZVP values are converged, such that uncon-
tracting the core functions makes negligible difference,44

whereas uncontracting the basis set changes DFT/def2-
TZVP binding energies by ∼ 0.4 eV.44 We add a set
of diffuse functions here, in order to better describe the
virtual orbitals. Mean absolute errors (MAEs) for ∆SCF
calculations using SCAN, SCAN0, and B3LYP are 0.3 eV
for 1s → LUMO excitation, whereas K-shell ∆SCF ion-
ization energy errors with these same functionals are 0.2–
0.3 eV.44 Addition of a second set of diffuse functions to
def2-QZVPD reduces the MAE from 0.31 eV to 0.25 eV
(see Table S3), for a data set that includes excitations
beyond the LUMO, and excitation energy differences be-
tween the two basis sets are < 0.2 eV, on average. As
such, we regard that the present results are well con-
verged.

For XC functionals that are generalized gradient ap-
proximations (GGAs) or hybrids thereof, we use the SG-1
quadrature grid.116 The SG-3 grid117 is used for meta-
GGA functionals and their hybrids. However, tests us-
ing the smaller SG-2 grid117 showed no differences, even
for functionals such as SCAN with well-documented grid
sensitivity.118 This suggests that SG-2 would have been
sufficient for the calculations reported here.

All calculations are performed using a spin-
unrestricted formalism. We apply Boys localization119

prior to the fractional-electron or other non-Aufbau SCF
calculation (including ∆SCF), in order to avoid problems
in cases where symmetry-equivalent atoms give rise to
delocalized core orbitals. This issue is not unique to
DFT calculations,120–123 and a detailed analysis suggests
that orbital relaxation and electron correlation effects
are comparable in magnitude for ionization from a delo-
calized core state, whereas relaxation effects dominate
when localized orbitals are used.121 This explains the
success of the ∆SCF approach with low-level electron
correlation methods (or with no correlation at all), and
argues for the use of a localized initial state even in
the presence of symmetry-equivalent atoms.18,122–126

Although Boys localization was used for all calculations
reported here, spot checks suggest that its effect is
practically nil for the examples that we consider, even
for a molecule like ethylene with symmetry-equivalent
C(1s) orbitals. The effect of localization is somewhat
larger for CEBEs.

Element-specific relativistic corrections have been in-
cluded in all theoretical results, as in previous work,44

so that they may be compared directly to experiment.
These corrections were taken from Ref. 127 and they
are 0.14 eV for C(1s), 0.28 eV for N(1s), 0.51 eV for
O(1s), and 0.85 eV for F(1s), which are close to values
reported elsewhere.36 These corrections are added to the
non-relativistic excitation energy, meaning that the cor-
rected excitation energy is larger than the non-relativistic
result, e.g., by 0.14 eV for carbon K-edge excitation en-
ergies.

4 Results and Discussion

We survey the methods introduced above as applied
to 1s → LUMO transitions, in Section 4 A, as well as
higher-lying transitions (1s→ LUMO+1,LUMO+2, . . .)
in Section 4 B. Statistical assessments in terms of MAEs
are given here but all computational results can be found
in the Supporting Information. An empirically-shifted
approach is presented in Section 4 C, and finally we con-
sider full XAS spectra (including oscillator strengths) in
Section 4 D.

A. K-Edge Transitions. Table 2 reports MAEs ver-
sus experiment for a data set of 1s → LUMO transitions
that is taken from Ref. 128. These data consist of ex-
citation energies at the elemental K-edge for carbon (14
data points), nitrogen (8 data points), oxygen (11 data
points), and fluorine (4 data points).

When only the elemental K-edge (and not any higher-
lying states) is desired, the ∆SCF procedure is usually
straightforward and ∆SCF results therefore serve as a
baseline (for a given XC functional) to evaluate alter-
native Slater-style methods based on Kohn-Sham eigen-
values. At the ∆SCF level, several functionals afford
results within ∼ 0.3 eV of experiment when atomic rel-
ativistic corrections are included: SCAN, SCAN0, and
B3LYP. The functionals BH&HLYP, CAM-B3LYP, and
ωB97X-V afford MAEs that are slightly larger but still
below 0.5 eV. These errors are comparable to statis-
tical errors in K-shell ionization energies for the same
functionals.44 Whereas an early study129 suggested that
∆SCF calculations of core-level excitation energies might
be significantly more accurate than those for core ioniza-
tion (due to error cancelation involving the core hole in
the former case), that conclusion is not borne out for the
present data set and functionals.

The LRC-ωPBE and LRC-ωPBEh functionals do not
fare particularly well at the ∆SCF level yet afford the
smallest MAEs for the STM approach, whereas STM er-
rors for other functionals lie in the range 1–2 eV. Note
that LRC functionals have been used in the past to im-
prove the agreement between valence Kohn-Sham energy
levels and ionization energies,79,130,131 but these func-
tionals are inferior to B3LYP for K-edge excitation en-
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Table 2: Error Statistics (Versus Experiment) for 1s → LUMO Transitions.a

Method
Core Mean Absolute Error (eV)b

Orbital SCAN SCAN0 B3LYP BH&HLYP CAM-B3LYP LRC-ωPBE LRC-ωPBEh ωB97X-V
∆SCF all 0.33 0.29 0.29 0.43 0.36 1.10 0.82 0.41
∆SCF C(1s) 0.51 0.43 0.42 0.39 0.49 1.35 1.02 0.33
∆SCF N(1s) 0.26 0.22 0.29 0.43 0.31 1.03 0.70 0.41
∆SCF O(1s) 0.14 0.17 0.19 0.34 0.21 0.98 0.74 0.39
∆SCF F(1s) 0.38 0.25 0.08 0.80 0.39 0.64 0.53 0.72
STMc all 2.43 1.86 1.03 1.16 1.18 0.85 0.88 1.87
STMc C(1s) 1.82 1.45 0.79 0.85 0.80 0.50 0.57 1.53
STMc N(1s) 2.47 1.97 1.02 1.33 1.22 0.89 0.89 1.89
STMc O(1s) 2.82 2.05 1.18 1.26 1.37 1.01 1.10 2.08
STMc F(1s) 3.43 2.50 1.44 1.65 1.94 1.51 1.32 2.43
GSTM all 0.90 0.68 0.30 0.53 0.40 0.53 0.42 0.73
GSTM C1s 0.54 0.43 0.33 0.40 0.38 0.78 0.64 0.62
GSTM N1s 0.77 0.68 0.14 0.72 0.43 0.53 0.47 0.77
GSTM O1s 1.18 0.83 0.28 0.47 0.32 0.37 0.25 0.75
GSTM F1s 1.67 1.13 0.61 0.74 0.68 0.07 0.04 0.99
TPM all 3.84 4.26 2.92 4.34 4.44 4.83 4.55 6.02
TPM C1s 3.50 4.22 2.86 4.40 4.32 4.59 4.49 5.91
TPM N1s 3.64 3.49 2.77 4.21 4.25 4.72 4.02 5.85
TPM O1s 4.11 4.58 2.99 4.23 4.55 5.05 4.88 6.13
TPM F1s 4.72 5.07 3.22 4.74 4.95 5.29 4.92 6.46
GTPM all 2.23 2.96 2.13 4.06 3.26 3.56 3.38 4.61
GTPM C1s 2.13 2.77 2.02 4.33 3.12 3.41 3.22 4.57
GTPM N1s 1.98 2.85 1.95 3.99 2.98 2.94 3.34 4.34
GTPM O1s 2.32 3.04 2.33 3.60 3.39 4.03 3.43 4.55
GTPM F1s 2.85 3.64 2.29 4.50 3.97 3.99 3.85 5.40
FCHM all 2.38 2.33 5.85 1.84 5.46 7.74 3.45 6.47
FCHM C1s 1.31 2.27 4.64 1.11 4.23 5.21 2.19 4.95
FCHM N1s 1.80 2.49 5.45 2.30 4.94 7.14 3.01 5.99
FCHM O1s 3.09 2.50 6.56 2.42 6.21 9.50 4.23 7.46
FCHM F1s 5.38 1.75 8.90 1.86 8.72 12.95 6.61 10.07
XCHM all 1.65 6.77 2.51 7.15 2.24 2.88 4.04 2.74
XCHM C1s 1.65 7.14 1.07 6.59 3.07 3.38 5.94 4.24
XCHM N1s 1.03 7.03 1.94 7.29 1.96 2.12 3.79 2.11
XCHM O1s 1.27 6.55 3.51 8.10 1.08 1.91 2.74 1.31
XCHM F1s 3.87 5.55 5.94 6.23 3.12 5.33 1.43 2.72
IP-TPM@1/2 all 1.20 2.16 1.68 3.58 3.10 2.97 3.02 4.58
IP-TPM@1/2 C1s 1.16 2.03 1.85 3.68 3.13 2.98 3.03 4.60
IP-TPM@1/2 N1s 1.04 1.95 1.54 3.45 2.94 2.84 2.95 4.40
IP-TPM@1/2 O1s 1.23 2.26 1.52 3.37 3.04 2.95 2.96 4.54
IP-TPM@1/2 F1s 1.59 2.74 1.82 4.06 3.50 3.24 3.27 4.97
IP-TPM@1/3 all 0.72 0.82 0.39 1.89 1.52 1.37 1.43 3.03
IP-TPM@1/3 C1s 0.72 0.94 0.60 2.06 1.52 1.32 1.41 3.01
IP-TPM@1/3 N1s 0.67 0.72 0.16 1.50 1.44 1.36 1.46 2.97
IP-TPM@1/3 O1s 0.69 0.69 0.26 1.80 1.49 1.40 1.41 3.01
IP-TPM@1/3 F1s 0.89 0.99 0.44 2.29 1.76 1.49 1.52 3.27

aData set consists of 37 K-edge transitions from Ref. 128 and all theoretical values include an atomic relativistic correction. bThe smallest
MAE in each row is presented in boldface and the largest is underlined. cFor core → LUMO excitation, STM is equivalent to XTPM.

ergies in TD-DFT.132 The performance might be im-
proved via “optimal tuning”,133 adjusting ω such that
εHOMO = −∆EIP, but we have not pursued this strat-
egy, in the interest of obtaining a black-box method that
does not need to be adjusted for each new molecule.
(Optimally-tuned values of ω are often strongly depen-
dent on system size, even for a sequence of homologous
systems.134–137)

In previous work on CEBEs, we showed that STM is

not competitive with ∆SCF but that some variants of
GSTM approach the accuracy of ∆SCF.44 This can be
understood based on the fact that GSTM amounts to
a higher-order Taylor series approximation,89 a higher-
order quadrature scheme (for a type of thermodynamic
integration),58 or as more effective cancellation of self-
interaction error.59 The same is true for these K-edge
excitations, where all functionals tested afford MAEs
smaller than 1 eV at the GSTM level. Using B3LYP,
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the GSTM and ∆SCF results are quite similar.

We next consider the transition-potential approaches:
TPM (eq 9) and GTPM (eq 10). These methods modify
only the core occupancy nc and do not put any electrons
into the virtual space, resulting in underestimation of the
electron–hole attraction and thus a shift to higher exci-
tation energies.18 This is evident in the data presented in
Table 2, where GTPM errors are generally smaller than
TPM errors yet even the former are larger than 2 eV for
all functionals tested. FCHM (eq 12), which also does
not place electrons into the virtual space, affords simi-
larly large errors. Given that these methods also create
a charged system, and are therefore problematic under
periodic boundary conditions, neither TPM, GTPM, nor
FCHM can be recommended. Nevertheless, these con-
tinue to be widely-used methods.67,94,138–142 Results for
relative peak positions in near-edge XAS spectra are bet-
ter than absolute excitation energy predictions.51

The XCHM approach (eq 13) creates a charge-neutral
excitation but we find that results are erratic, improving
somewhat with respect to TPM-style methods for certain
functionals (e.g., SCAN and CAM-B3LYP) yet seriously
degraded as compared to TPM approaches when some
other functionals are used, such as BH&HLYP for which
the XCHM error exceeds 7 eV. The XCHM also contin-
ues to enjoy widespread use in materials science and other
condensed-phase applications,142–150 despite its wild sen-
sitivity with respect to the choice of XC functional.

Finally, the performance of IP-TPM@1/2 and IP-
TPM@1/3 is quite interesting. For a given functional,
these methods typically afford smaller errors as compared
to any of the TPM-based approaches that do not place
electrons in the virtual space, and they also perform bet-
ter than XCHM in many cases. IP-TPM@1/3 is con-
sistently better than other eigenvalue-based approaches,
affording MAEs below 1 eV when used in conjunction
with SCAN, SCAN0, or B3LYP. For B3LYP the MAE is
0.3 eV when using IP-TPM@1/3, essentially identical to
the statistical error in ∆SCF results for the same func-
tional.

B. Higher-Lying Near-Edge Transitions. Table 3
reports error statistics for a data set of 20 higher-lying,
dipole-allowed transitions originating from C(1s) orbitals
(8 transitions), N(1s) orbitals (6 transitions), and O(1s)
orbitals (6 transitions). These are “higher-lying” transi-
tions in the sense that the final state is not the LUMO.
Experimental excitation energies are taken from various
sources as detailed in the Supporting Information. For
each of the methods except ∆SCF, the full XAS spec-
trum is evaluated by populating the LUMO (only) with
a fractional electron. As discussed above, this makes
the eigenvalue-based methods more robust against varia-
tional collapse, as compared to the ∆SCF procedure that
does involve excitation beyond the LUMO.

The accuracy for these higher-lying transitions is not
as good as what we reported for 1s → LUMO transi-

tions, and this conclusion holds across a variety of XC
functionals. For the best-performing functionals (SCAN,
SCAN0, and B3LYP), the accuracy of the ∆SCF pro-
cedure is only slightly worse than it was for the 1s →
LUMO transitions, and MAEs are smaller than 0.5 eV
even for the higher-lying transitions, although (perhaps
surprisingly) the ωB97X-V functional exhibits a MAE of
1.2 eV for this data set, as compared to 0.4 eV for the
K-edge transitions.

It has been noted that transition-potential methods do
not exhibit the correct asymptotic electron–ion poten-
tial for high-lying Rydberg states,151 which may place
some limitations on the accuracy of higher-lying ex-
citation energies. Regarding the eigenvalue-based ap-
proaches examined here, the widely-used XCHM affords
MAEs larger than 1 eV for every functional that we
tested, including very large MAEs of 5.0 eV for XCHM-
SCAN0 and 2.8 eV for XCHM-B3LYP. XGTPM is the
best-performing eigenvalue method, with MAEs of 0.7–
0.8 eV when used with either SCAN, SCAN0, or B3LYP.
To reduce these errors, we turn to an empirical shifting
scheme that proved quite successful for core-level electron
binding energies.44

C. Empirically-Shifted Method. In previous

work,44 we demonstrated that introduction of a single,
functional-specific shifting parameter turned the prim-
itive STM approach into the most accurate electronic
structure method for K-shell CEBEs, outperforming
not only ∆SCF calculations but also more expensive
methods including variants of the GW approach. In a
similar spirit, we introduce an empirically-shifted version
of XTPM,

∆Eshifted
XTPM = ∆EXTPM + δυ . (20)

Here, ∆EXTPM is the XTPM excitation energy defined
in eq 15, and the shift δυ is given by

δυ = β
[
εc(1, 0)− εc(1/2, nLUMO = 1/2)

− ευ(1, 0) + ευ(1/2, nLUMO = 1/2)
] (21)

where β is an empirical parameter. The shift corrects
for excitation energies that are overestimated by XTPM.
Note that eqs. 20 and 21 can be rewritten in the form

∆Eshifted
XTPM = (1 + β)∆EXTPM − β

[
ευ(1, 0)− εc(1, 0)

]
,

(22)
which demonstrates that the shifted XTPM approach
can also be viewed as a weighted average of the original
XTPM excitation energy (∆EXTPM) and the unrelaxed
orbital energy difference, ευ(1, 0)− εc(1, 0).

Unlike the shifted-STM approach for CEBEs that was
introduced in Ref. 44, for excitation energies the shift δυ
depends on the virtual MO ψυ, even for a given x-ray
edge (corresponding to a given occupied MO, ψc). To
determine β, we use the same data set of 20 higher-lying
excitation energies used to obtain the error statistics in
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Table 3: Error Statistics (Versus Experiment) for Higher-Lying K-Edge Transitions.a

Method
Mean Absolute Error (eV)b

SCAN SCAN0 B3LYP BH&HLYP CAM-B3LYP LRC-ωPBE LRC-ωPBEh ωB97X-V
∆SCF 0.35 0.48 0.31 0.98 0.45 0.67 0.35 1.23
XCHM 1.14 5.00 2.78 5.26 1.87 3.58 1.59 2.98
XTPM 2.05 1.57 0.68 1.54 1.23 1.73 1.31 2.43
XGTPM 0.68 0.68 0.79 1.32 0.92 1.47 0.92 1.55
IP-TPM@1/2 2.52 2.60 1.93 3.09 2.72 2.60 2.64 3.82
IP-TPM@1/3 1.48 1.65 0.90 2.12 1.75 1.86 1.70 2.90

aData set consists of 20 transitions from C(1s), N(1s), and O(1s) orbitals and all theoretical values include
an atomic relativistic correction. bThe smallest MAE in each row is presented in boldface and the largest is
underlined.

Table 4: Errors for Higher-Lying K-Edge Transitions,a Using
the Shifted-XTPM Approach (eq 20).

Functional β
MAE
(eV)

SCAN 4.0 0.63
SCAN0 6.0 0.73
B3LYP 1.5 0.66
BH&HLYP −8.0 1.61
CAM-B3LYP 3.0 0.68
LRC-ωPBE 2.0 1.26
LRC-ωPBEh 3.5 0.75
ωB97X-V 6.0 0.72

aSame data set as in Table 3, def2-
QZVPD basis set.

Table 3. Fitted values of β for several different XC func-
tionals are listed in Table 4 along with MAEs for the
corresponding shifted-XTPM approach defined by eq. 20.
(The best-fit values do have some basis-set sensitivity.)

For most of the XC functionals considered here, this
empirical shift considerably improves the accuracy of the
XTPM approach, although BH&HLYP and B3LYP, and
LRC-ωPBE are exceptions that show little improvement.
MAEs of 0.6–0.7 eV are obtained from shifted XTPM
calculations using any of the functionals SCAN, SCAN0,
B3LYP, or CAM-B3LYP.

To put this level of accuracy in context alongside other
state-of-the-art approaches, Fig. 1 illustrates the errors
alongside some of the competing alternatives. The data
set consists of 29 K-edge and near-edge excitation ener-
gies for which BSE@G0W0 results are available,36 and
the latter method is compared to ∆SCF and also to four
different eigenvalue-based methods, using the B3LYP
functional for all but the BSE@G0W0 calculations. We
also juxtapose results in which a TD-DFT excitation
spectrum is shifted so that its lowest excitation energy
matches the 1s→ LUMO excitation energy from a ∆SCF
calculation.23 This shift serves to eliminate what are oth-
erwise rather large38–43 (but systematic152) errors in TD-
DFT excitation energies.

Several alternative methods are able to match or out-
perform BSE@G0W0, for which the MAE is 0.67 eV.36

Even without empirical shifting, the eigenvalue-based
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Fig. 1: MAEs for a data set of 29 C(1s), N(1s), and O(1s)
core-to-valence excitation energies, using various approaches.
Methods in blue are eigenvalue-based approaches. All calcu-
lations use the B3LYP functional except for the BSE@G0W0

values, which are taken from Ref. 36 and use LRC-ωPBEh.
The TD-DFT+∆SCF results are from Ref. 23, where a ∆SCF
calculation of the 1s → LUMO excitation energy is used to
shift the spectrum from a TD-DFT calculation. Numerical
values of the MAE (in eV) are shown for each entry.

XTPM performs almost as well (MAE = 0.76 eV), and
even better with empirical shifting (MAE = 0.57 eV),
while XGTPM performs about as well as BSE@G0W0

(MAE = 0.64 eV). The accuracy of both methods is com-
parable to that of TD-DFT with a ∆SCF shift (MAE =
0.53 eV).23 The ∆SCF approach remains the most accu-
rate (even as compared to BSE@G0W0 ), with a MAE
of 0.31 eV, but requires a separate calculation for each
state.

Finally, we examine the performance of the shifted-
XTPM approach for 1s → LUMO excitations that were
not included in the training set that was used to deter-
mine the β parameter. For this, we use the same data
set as in Table 2, with results summarized in Table 5 for
a variety of XC functionals. The empirical shift signifi-
cantly narrows the accuracy gap between different func-
tionals, all of which afford overall errors smaller than
1 eV. Importantly, for SCAN, B3LYP, and CAM-B3LYP
the MAEs are . 0.7 eV even when the higher-lying tran-
sitions are considered. Shifted-XTPM using SCAN or
B3LYP is therefore recommended for full-spectrum XAS
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Table 5: Error Statistics (Versus Experiment) for 1s → LUMO Transitions Using Shifted-XTPM.a

Core Mean Absolute Error (eV)b

Orbital SCAN SCAN0 B3LYP BH&HLYP CAM-B3LYP LRC-ωPBE LRC-ωPBEh ωB97X-V
all 0.29 0.64 0.51 0.85 0.35 0.47 0.41 0.50
C(1s) 0.35 0.70 0.45 0.50 0.38 0.54 0.44 0.58
N(1s) 0.27 0.54 0.55 1.11 0.40 0.39 0.30 0.21
O(1s) 0.19 0.52 0.41 0.83 0.23 0.37 0.35 0.41
F(1s) 0.18 0.50 0.59 0.99 0.24 0.34 0.43 0.72

aSame data set as in Table 2, including atomic relativistic corrections, and with values of β from Table 4. bThe smallest MAE in each
row is presented in boldface and the largest is underlined.

Table 6: Errors in the Lowest Dipole-Allowed Transition Energies Using B3LYP-Based Methods.

Molecule Transition
Error (eV)a

Expt.
∆SCF XTPM XGTPM

IP- IP- shifted-
TPM@1/2 TPM@1/3 XTPM

Thymine O2(1s → π∗) 0.76 1.58 0.45 0.96 0.02 0.77 531.4b

O1(1s → π∗) −0.22 1.04 0.22 0.90 −0.16 0.30 532.3b

N4(1s → π∗) 0.14 1.31 0.57 0.84 −0.09 0.62 401.7b

N3(1s → π∗) −0.20 1.02 0.22 0.66 −0.32 0.33 401.5c

C8(1s → π∗) 1.01 0.89 −0.51 1.33 0.03 0.31 284.9b

C7(1s → π∗) −0.42 0.78 −0.10 1.26 0.04 0.24 285.9b

C6(1s → π∗) 0.03 1.18 0.38 0.09 −1.11 0.67 287.8b

C5(1s → π∗) 0.16 1.26 0.51 1.55 0.46 0.72 289.4b

Mean Error 0.16 1.13 0.22 0.95 −0.14 0.49
MAE 0.37 1.13 0.37 0.95 0.28 0.49

Oxazole O(1s → π∗) −0.10 1.18 0.37 1.86 −0.04 0.44 535.0d

O(1s → σ∗) −0.99 −0.14 −0.97 1.39 −1.22 −0.94 538.3d

O(1s → σ∗) −1.45 −0.76 −1.60 1.01 −1.77 −1.79 539.5d

N(1s → π∗) −0.21 1.10 0.16 1.86 −0.01 0.48 399.7d

N(1s → π∗) 0.81 1.24 0.32 0.52 −0.13 0.41 401.5d

C2(1s → π∗) −0.34 0.79 −0.01 1.80 −0.08 0.29 287.3d

C5(1s → π∗) 0.07 1.21 0.38 1.64 0.24 0.69 286.5d

C4(1s → π∗) 0.16 1.36 0.49 1.62 0.34 0.81 286.0d

Mean Error −0.26 0.75 −0.11 1.46 −0.33 0.05
MAE 0.52 0.97 0.54 1.46 0.48 0.73

aError defined as theory minus experiment, including atomic relativistic corrections. bFrom Ref. 153. cFrom Ref. 154. dFrom Ref. 155.

calculations, as a convenient and robust alternative to
state-by-state approaches such as ∆SCF. Like XGTPM
(eq 16), the shifted-XTPM approach requires two dif-
ferent SCF calculations (from which a full spectrum is
obtained), yet the latter is somewhat more accurate and
also more consistent (or perhaps less erratic) across XC
functionals.

D. Other Applications. As illustrative applications,
we use several different methods to compute carbon,
oxygen, and nitrogen K-edge excitation energies for the
thymine and oxazole molecules. Errors (relative to exper-
iment) are listed in Table 6 for a variety of methods, all
based on the B3LYP functional. The transitions in ques-
tion represent the lowest dipole-allowed excitation from

each indicated 1s orbital. In the case of thymine, the
shifted-XTPM approach affords a MAE of 0.5 eV across
the 8 K-edge excitations that are considered, which com-
pares well to ∆SCF results, for which the MAE is 0.4 eV.
(The IP-TPM@1/3 method also performs very well but
is not charge-neutral and thus not preferred.) Similar
trends amongst methods are observed for oxazole, al-
though the MAEs are slightly larger.

Oscillator strengths for the eigenvalue-based methods
have been implemented based on eq 2. For methods such
as GSTM that involve more than one fractional-electron
SCF calculation, Nakajima et al.60 suggest weighting the
transition intensities Iv→c with the same coefficients that
are used to combine the eigenvalues. However, we find
that the shifted-XTPM approach works somewhat better
than GSTM, and requires the same number of SCF cal-
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Fig. 2: XAS atomic K-edge spectra for (a) thymine,153 (b)
1,3-butadiene,156 and (c) 4-nitroaniline,157 computing using
the SCAN- and B3LYP-based XTPM procedures and their
empirically-shifted analogues. Gaussian broadening with σ =
0.3 eV is used to obtain spectra from transition energies and
oscillator strengths.

culations, therefore we have not computed spectra with
GSTM. For the shifted XTPM approach, we use oscilla-
tor strengths corresponding to the unshifted method.

Figure 2 shows XAS spectra of thymine (at its car-
bon K-edge), 1,3-butadiene (carbon K-edge), and 4-
nitroaniline (nitrogen K-edge), as compared to experi-
ment, for both the shifted and unshifted XTPM proce-

dure using either SCAN or B3LYP. Empirical shifting
corrects the peak positions for either functional, leading
to better absolute agreement with experiment, although
the peak spacing is scarcely affected. The shifted-XTPM
approach may therefore be a useful alternative to TD-
DFT for low-lying core-to-valence XAS.

5 Conclusions

The performance of various XC functional approxima-
tions has been tested for K-edge excitation energies (1s
→ virtual) involving 1s orbitals of second-row elements.
These methods include both ∆SCF and also fractional-
electron approaches that originate in Slater’s transition
approximation, which use Kohn-Sham eigenvalues (only),
from one or more modified SCF calculations, in order to
obtain an excitation spectrum. The overall conclusions
are as follows.

• For ∆SCF calculations, the SCAN, SCAN0 and
B3LYP functionals are recommended. Each ex-
hibits a statistical accuracy (for the absolute ex-
citation energy) of 0.3 eV when an atomic rela-
tivistic correction is used. In contrast, the LRC-
ωPBE functional that is widely used in TD-DFT
calculations, and the SRC1-r1 functional that was
specifically parameterized for for K-edge TD-DFT,
exhibit MAEs greater than 1 eV and are not rec-
ommended for ∆SCF calculations.

• For the same benchmarks, a generalized version of
Slater’s method (GSTM) is also useful, if the func-
tional is carefully selected. In conjunction with ei-
ther B3LYP or LRC-ωPBEh, GSTM affords an ab-
solute accuracy of 0.3–0.4 eV. This method requires
two fractional-occupancy SCF calculations per el-
emental edge but not state-by-state calculation of
the higher-lying excitations, and should therefore
be more robust against variational collapse as com-
pared to ∆SCF calculations.

• Other methods including TPM, GTPM, FCHM,
and XCHM afford larger errors and cannot be rec-
ommended, despite their continued widespread use.
For example, the best we are able to do with XCHM
is an overall error of about 1.6 eV when used with
the SCAN functional; this is much larger than the
∆SCF error (0.3 eV) obtained using the same func-
tional. For TPM, the smallest overall error is 2.9 eV
(using B3LYP), for GTPM it is 2.2 eV (again using
B3LYP), and for FCHM it is 1.8 eV (in conjunc-
tion with BH&HLYP). Each of these errors is sig-
nificantly larger than the ∆SCF error for the same
functional.

• The IP-TPM@1/3 protocol introduced here affords
errors of about 0.3 eV when used with B3LYP,
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which is comparable to the ∆SCF accuracy. How-
ever, this method requires the creation of a charged
excitation, which is not well suited for periodic cal-
culations.

• For higher-lying excitations (involving virtual or-
bitals beyond the LUMO), errors are larger for the
eigenvalue-based methods although XTPM-B3LYP
and XGTPM-B3LYP afford absolute accuracies of
0.7 and 0.8 eV, respectively. B3LYP-based ∆SCF
calculations afford an accuracy of 0.3 eV for the
same data set.

• To improve XTPM, which is based on a single
fractional-occupancy SCF calculations, we intro-
duce a simple shifting procedure. When used with
SCAN or B3LYP, this approach achieves an accu-
racy of 0.3 eV (SCAN) or 0.5 eV (B3LYP), for 1s
→ LUMO transitions. For higher-lying excitations,
the MAE is 0.6 eV for both functionals and this
is as good as far more expensive many-body tech-
niques such as BSE@G0W0. When combined with
oscillator strengths based on transition dipole mo-
ments between MOs, reasonable XAS spectra are
obtained for several molecules.

Overall, the shifted-XTPM approach is competitive with
the best ab initio techniques for K-edge core-to-valence
transition energies, just as the shifted-STM procedure is
one of the most accurate methods for K-shell CEBEs.44

This method is based on an easy-to-converge fractional-

electron procedure that does not require promotion of
any electrons beyond the LUMO, making it relatively
robust against variational collapse. The shifted-STM ap-
proach should be a useful tool for simulating core-level
XAS and XPS in complicated environments and large
molecular systems.

Supporting Information

Complete results for each of the data set, methods, and
XC functionals considered here.
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Møller, K. B.; Coriani, S. An assessment of different elec-
tronic structure approaches for modeling time-resolved
x-ray absorption spectroscopy. Struct. Dynam. 2021, 8,
024101:1–15.

18 Klein, B. P.; Hall, S. J.; Mauer, R. J. The nuts and bolts
of core-hole constrained ab initio simulation for K-shell x-
ray photoemission and absorption spectra. J. Phys.: Con-
dens. Matt. 2021, 33, 154005:1–20.

19 Besley, N. A. Density functional theory based methods
for the calculation of x-ray spectroscopy. Acc. Chem. Res.
2020, 53, 1306–1315.

20 Besley, N. A. Modeling of the spectroscopy of core elec-
trons with density functional theory. WIREs Comput.
Mol. Sci. 2021, 12, e1527:1–22.

21 Herbert, J. M. Density-functional theory for electronic
excited states. In Theoretical and Computational Pho-
tochemistry: Fundamentals, Methods, Applications and
Synergy with Experimental Approaches ; Garćıa-Iriepa, C.;
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