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Abstract
We consider two discrete completely integrable evolutions: the Toda Lattice and the
Ablowitz–Ladik system. The principal thrust of the paper is the development of micro-
scopic conservation laws that witness the conservation of the perturbation determinant
under these dynamics. In this way, we obtain discrete analogues of objects that we
found essential in our recent analyses of KdV, NLS, and mKdV. In concert with this,
we revisit the classical topic of microscopic conservation laws attendant to the (renor-
malized) trace of the Green’s function.

Keywords Integrable systems · Conservation laws · Toda lattice · Ablowitz–Ladik ·
KdV · NLS · mKdV

Mathematics Subject Classification Primary 37K10; Secondary 35Q53 · 35Q55

1 Introduction

A typical property of completely integrable systems is that they can be expressed via
a Lax pair or zero curvature condition:

d
dt L(t; κ) = [P(t; κ), L(t, κ)]. (1.1)

Here L and P are typically operator pencils in the spectral parameter κ . Such will be
the case for the concrete models we discuss, namely, the Korteweg–de Vries equation
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(KdV), the nonlinear Schrödinger equation (NLS), the (complex) modifiedKorteweg–
de Vries equation (mKdV), the Toda Lattice (TL), and the Ablowitz–Ladik system
(AL). At this moment, however, we do not wish to narrow our focus unnecessarily.
The question that stimulated this paper remains interesting for any system admitting
the representation (1.1).

The evolution (1.1) guarantees that for each κ , the conjugacy class of L(t; κ) is
independent of time. In particular, class functions such as the trace and determinant
will be conserved—if they are defined! For many models, however, they are not; it is
necessary to renormalize.

The basic form of renormalization rests on a trivial static solution of the integrable
system. For typical models, this would be the zero solution; we deliberately choose
not to specify it as such, because in some models (such as spin chains) there is no such
thing as the zero solution.

With these ideas set, it is easy to imagine that we have the following:

d
dt log det

[
L(t; κ)/L0(κ)

] = 0, (1.2)
d
dt tr

{
L(t; κ)−1 − L0(κ)−1} = 0. (1.3)

Here L0(κ) stands for the (time-independent) Lax operator associated to the chosen
trivial solution. We take the logarithm in (1.2) because this has proved to be the more
useful quantity (compared to the pure determinant).

We merely ‘imagine’ that (1.2) and (1.3) hold because, while this is easily made
rigorous in the case of finite-dimensional HamiltonianODEwith corresponding finite-
dimensional Lax operators, there are non-trivial analytical obstacles to be overcome
in the infinite-dimensional setting: Are the dynamics well-posed? Are the trace or
determinant well-defined?

The claims (1.2) and (1.3)may be termedmacroscopic conservation laws,mirroring
notions such as the conservation of energy. In this paper, we seek microscopic con-
servation laws, which provide a local-in-space explanation of conservation: energy is
conserved globally because the time derivative of the energy density is the divergence
of (minus) the energy current.

While macroscopic conservation laws can be recovered from microscopic versions
by integrating the density over the whole space, the key advantage of the latter stems
from the possibility of interposing a weight.We know of no better witness to the power
of this idea than Kato’s seminal local smoothing estimate for the Korteweg–de Vries
equation [10]: Solutions q(t, x) to

qt = −qxxx + 6qqx also satisfy
(
q2
)
t + (−3(qx )

2 − 4q3 + (q2)xx
)
x = 0.

(1.4)

Integrating the latter against a sigmoid function, Kato proved

∫ 1

0

∫ 1

0
|qx (t, x)|2 dx dt � ‖q(0)‖2L2 + ‖q(0)‖6L2 . (1.5)
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This gain of one spatial derivative explains the ‘smoothing effect’ appellation. The
restriction to a finite spatial window is essential here; the Hamiltonian nature of the
equation shows there can be no global gain in regularity.

A crucial ingredient in Kato’s argument is the coercivity of the dominant term,
−3(qx )2, in the current. Coercivity has been an important factor in the choice and
deployment of such local conservation laws in the recent papers [4,9,12] on continuum
models. Moreover, the laws we employed in those papers remain meaningful at low-
regularity, including for Hs-valued solutions with s non-integer and/or negative. By
comparison, the traditional polynomial conservation laws are useful only for integer
values of s ≥ 0.

Another benefit of microscopic conservation laws over many of their macroscopic
counterparts is that they remain meaningful for solutions that do not decay at infinity.
The recent paper [11], which establishes the invariance of white noise under (KdV),
gives one example of how such laws can be deployed in this way.

One microscopic representation of the conservation law (1.3) presents itself imme-
diately: the trace is fundamentally an integral (or sum) over space and the conserved
density may be taken to be the diagonal entries of the Green’s function. This is by no
means a new observation. This idea and many fruitful consequences may be found
throughout the literature on integrable systems. One early application, [6], is to the
derivation of polynomial conservation laws for KdV from the asymptotic expansion
of the diagonal Green’s function (as κ → ∞).

Likewise, a systematic approach to the polynomial conservation laws for the Toda
andAblowitz–Ladik evolutions that illustrates their connection to the diagonalGreen’s
function, has been developed in [7,8].

We should pause to note that the diagonal Green’s function is not the only micro-
scopic representation of (1.3). Indeed, any microscopic conservation law may freely
be modified by any divergence-free vector field in spacetime. But then how is one to
choose the ‘correct’ representative? We do not claim that there is a unique answer;
nevertheless, our investigations in this direction have led us to value coercivity and
quantities amenable to operator-theoretic analysis.

At last, we reach the central question of this paper: Can we find microscopic rep-
resentations of (1.2)? For models such as KdV and NLS, it has been shown that the
perturbation determinant coincides with the reciprocal of the transmission coefficient.
In this guise, the conservation law has been studied extensively. In [18], for example,
a microscopic representation based on the Jost solution is demonstrated (in the KdV
setting) and shown to be a generating function for the polynomial conservation laws.
The papers [7,8] carry the same philosophy over to the discrete case. In this way, one
may say that our central problem has been solved. However, as we have discussed
earlier, microscopic representations of a macroscopic conservation law are far from
unique. In this paper, we will be presenting a different solution, one that is informed
by successes in applying these laws to the well-posedness problem.

The very idea of Jost solutions is already restricted to the class of integrable models
whose Lax operators admit a scattering theory. Traditionally, at least, this presupposes
infinite volume with rapidly decreasing initial data. The Green’s function and the
perturbation determinant transcend such restrictions. In [12,13], for example, we see
the seamless manner in which they can be applied to (KdV) posed both on the circle
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and on the line. By comparison, we see in [14], for example, how involved the analysis
of low regularity conservation laws becomes when based on the Jost solutions.

The readermaywell askwhywe seekmicroscopic representations of (1.2).Why are
we not satisfied with (1.3) and the diagonal Green’s function? Our answer stems from
a number of empirical observations we made while working on the well-posedness
problem for (KdV), (NLS), and (mKdV). We observed that our microscopic conser-
vation laws attendant to (1.2), which will be reviewed in Sects. 2 and 3, showed better
coercivity than enjoyed by the diagonal Green’s function. This was crucial in our anal-
yses in [4,9,12].Moreover, we found that we are able to express these newmicroscopic
conservation laws via nonlinear functions of the diagonal Green’s function; thus there
is no new overhead of complexity. Furthermore, the functional derivatives of macro-
scopic conservation laws also enter into our analysis. In the case of the perturbation
determinant this leads to the diagonal Green’s function—which is already needed in
the investigation. By comparison, the functional derivative of the trace of the resolvent
involves the diagonal entries of the square of the resolvent; this involves the whole
Green’s function and so adds another layer of complexity.

In this paper, we will present microscopic conservation laws for the Toda Lattice
(Sect. 4) andAblowitz–Ladik system (Sect. 5) thatmimic those that we found so useful
in our investigations of continuum models. Moreover, we will see that they share the
favorable coercivity properties of their continuum analogues.

In fact, the conservation laws derived in this papermay be seen asmore fundamental
than their continuum counterparts. Early in the history of these lattice models, it was
discovered that they could reproduce continuum models in certain limiting regimes;
see, e.g., [2,3,16]. It is not difficult to verify that under the formal limiting processes
outlined in these papers, the discrete conservation laws obtained in this paper reduce to
their continuum counterparts. On the other hand, just as there is no systematic method
of deducing completely integrable discrete models from their continuum analogues,
so there is no way of passing from the continuum laws to their discrete counterparts.
Rather, we were forced to reason by analogy and employ a little trial and error.

This question of passing to the continuum limit touches upon one of ourmotivations
in developing the results presented in this paper. One driving force behind developing
a low-regularity theory of partial differential equations is to handle the small but
wild oscillations attendant to any system in (or near) thermal equilibrium. Concretely,
one may ask how the temperature of a crystal affects the propagation of large-scale
solitary waves. To tackle this type of question, which rests on taking a continuum limit
for solutions with no smoothness whatsoever, it seems necessary to develop discrete
manifestations of tools with proven efficacy in the low-regularity continuum regime.

When embarking on this project, we also hoped to find a simple unifying principle
that would essentially automate the construction ofmicroscopic laws attendant to (1.2)
for general Lax operators. This ambition has not been realized. Indeed, the results
presented here only serve to indicate that the matter is rather more subtle than we had
initially hoped. The diagonal Green’s function is ubiquitous; however, the plethora of
nonlinear ways in which it manifests seems to defy a universal explanation.

The paper is organized as follows: In Sects. 2 and 3, we recapitulate results for the
KdV and NLS hierarchies, respectively. This sets the stage for our treatments of the
Toda Lattice in Sect. 4 and the Ablowitz–Ladik system in Sect. 5.
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Microscopic conservation laws for integrable lattice models 481

2 KdV

In this section, we discuss known microscopic conservation laws for the Korteweg–
de Vries hierarchy. While these results have proven crucial in proving low-regularity
well-posedness results [4,11,12], we are content to present the key identities in the
context of Schwartz-class solutions. Indeed, the low-regularity cases are most easily
treated by continuous extension from that case.

The Korteweg–de Vries equation

qt = −qxxx + 6qqx (KdV)

is a Hamiltonian equation with respect to the Poisson structure

{F,G} :=
∫

δF

δq
(x)

(
δG

δq

)′
(x) dx . (2.1)

As Lax operator, we adopt the standard choice

L(κ) := −∂2x + q + κ2,

interpreted as an unbounded self-adjoint operator on L2(R)with form domain H1(R).
The second member of the Lax pair is

P := −4∂3x + 3
(
∂xq + q∂x

)
.

For κ sufficiently large (depending on q), the Lax operator L(κ) is invertible and
the inverse is represented by a continuous kernel, the Green’s function. The object of
central interest in this section is the diagonal Green’s function:

g(x; κ, q) := 〈
δx , L(κ)−1δx

〉
.

When q ≡ 0, which is the natural static solution in this hierarchy, we have the Lax
operator L0 = −∂2x + κ2. The corresponding diagonal Green’s function is g0 ≡ 1

2κ .
With these preliminaries set, we have the following identities:

tr
{
L(t; κ)−1 − L0(κ)−1} =

∫
g(x; κ, q) − 1

2κ dx (2.2)

− log det
[
L(t; κ)/L0(κ)

] =
∫

κ − 1
2g(x;κ,q)

dx (2.3)

valid for q ∈ S and κ 	 1. Both of these lead readily to microscopic conservation
laws. However, both also prove unsatisfactory: convergence requires too much decay.
For example, if q ≤ 0, then q ∈ L1 is required.

Our remedy is to use that
∫
q dx is preserved under the KdV hierarchy to renor-

malize in a prudent way:
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Proposition 2.1 Given q ∈ S and κ 	 1, we define

γ (x; κ) := g(x; κ) − 1
2κ + 1

4κ2
e−2κ|·| ∗ q,

ρ(x; κ) := κ − 1
2g(x;κ)

+ 1
2e

−2κ|·| ∗ q.

Both constitute conserved densities under the KdV hierarchy. For example, under the
KdV flow, qt = −qxxx + 6qqx , we have

γt =
(
−γxx + 3

4κ2
[
e−2κ|·| ∗ q2

]+ 3gxx − 6qg − 12κ2g + 6κ
)

x
, (2.4)

ρt =
(
3
2

[
e−2κ|·| ∗ q2

]+ 2q
[
κ − 1

2g

]− 4κ2ρ
)

x
. (2.5)

All of these claims are developed from first principles in [12]. The renormalization
of the diagonal Green’s function chosen here matches the head of a Neumann series
expansion:

γ (x; κ, q) = 〈
δx ,
[
L(κ)−1 − L0(κ)−1 + L0(κ)−1qL0(κ)−1]δx

〉
.

It guarantees that γ ∈ L1 for κ large, even when q ∈ H−1. In this way it is superior
to simply subtracting a numerical multiple of q itself.

We have not seen the connection between the perturbation determinant and the
reciprocal of g observed prior to [12]. This renormalization was also introduced there;
it not only guarantees that ρ ∈ L1 for q ∈ H−1, but even ensures that ρ(x) is a
non-negative convex function of q for each choice of x .

3 NLS &mKdV

In this section we review the microscopic conservation laws used in our work [9] on
optimal well-posedness for the nonlinear Schrödinger equation

i
d

dt
q = −q ′′ ± 2|q|2q (NLS)

and the (Hirota) complex modified Korteweg–de Vries equation

d

dt
q = −q ′′′ ± 6|q|2q ′. (mKdV)

Both (NLS) and (mKdV) are Hamiltonian equations with respect to the following
Poisson structure (written using Wirtinger derivatives)

{F,G} := 1
i

∫
δF
δq

δG
δr − δF

δr
δG
δq dx,

where F,G : S → R and r := ±q̄ .
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Lax pairs for (NLS) and (mKdV) were introduced in [1,19]. Our conventions in [9]
were

L(κ) :=
[
κ − ∂ q
−r κ + ∂

]
and P := i

[
2∂2 − qr −q∂ − ∂q
r∂ + ∂r −2∂2 + qr

]
(3.1)

for (NLS) and

L(κ) :=
[
κ − ∂ q
−r κ + ∂

]
and P :=

[−4∂3 + 3qr∂ + 3∂qr 3q ′∂ + 3∂q ′
3r ′∂ + 3∂r ′ −4∂3 + 3qr∂ + 3∂qr

]

for (mKdV).
By direct computation, one finds that

L0(κ)−1 =
[
(κ − ∂)−1 0

0 (κ + ∂)−1

]

admits the integral kernel

G0(x, y; κ) = e−κ|x−y|
[
1{x<y} 0

0 1{y<x}

]
for κ > 0. (3.2)

For κ sufficiently large depending on q, L(κ) is invertible as an operator on L2(R;C2)

and the inverse L(κ)−1 admits amatrix-valued integral kernelG(x, y; κ). Due to jump
discontinuities, one cannot expect to restrict G(x, y; κ) to the x = y diagonal in a
meaningful way. However, both G − G0 and G11 + G22 (where subscripts indicate
matrix entries) are continuous functions of (x, y) ∈ R

2. This allows us to unambigu-
ously define the continuous function

γ (x; κ) := tr
{[G − G0](x, x; κ)

} = [G11 + G22](x, x; κ) − 1.

By definition, we then have

tr
{
L(t, κ)−1 − L0(κ)−1} =

∫
γ (x; κ) dx,

whenever q ∈ S and κ is taken sufficiently large (depending on q).
In [9], we found a corresponding density for the perturbation determinant. For

q ∈ S and κ sufficiently large (depending on q), we have

log det
[
L(t; κ)/L0(κ)

] =
∫

ρ(x; κ) dx,

where the density ρ is given by

ρ(x; κ) := q(x)g21(x; κ) − r(x)g12(x; κ)

2 + γ (x; κ)
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with g12(x; κ) = G12(x, x; κ) and g21(x; κ) = G21(x, x; κ).
We then have the followingmicroscopic conservations laws for (NLS) and (mKdV):

Proposition 3.1 [9] Given q ∈ S and κ sufficiently large (depending on q), the
expressions γ and ρ constitute conserved densities under the ZS–AKNS hierarchy. In
particular, under the (NLS) and (mKdV) flows

∂tγ = ∂x
γ j� and ∂tρ = ∂x j�

where

γ jNLS = −i
(
2rg12 − 2qg21 − 4κγ

)
,

γ jmKdV = −γ ′′ + 12κ(rg12 − qg21) − 12κ2γ + 6qr(1 + γ ),

jNLS = i
(
q ′·g21+r ′·g12

2+γ
− qr + 2κρ

)
,

jmKdV = − (q ′′−2q2r)·g21−(r ′′−2r2q)·g12
2+γ

+ q ′r − qr ′ + 2iκ jNLS.

The main benefits of the microscopic conservation law for ρ are its superior coer-
civity properties, whichwere crucial for our applications in [9]. Denoting the quadratic
(in q) terms in the currents by j [2]� , we have

∫
Im j [2]NLS(x; κ) dx = ∓

∫
2ξ2|q̂(ξ)|2
4κ2+ξ2

dξ,

∫
Re j [2]mKdV(x; κ) dx = ±

∫
6κξ2|q̂(ξ)|2
4κ2+ξ2

dξ.

This coercivity of the currents was crucial in proving local smoothing estimates
(cf. 1.5). Moreover, the density itself is also coercive,

∫
Re ρ[2] dx = ±

∫
2κ|q̂(ξ)|2
4κ2+ξ2

dξ,

which we used to show that precompact sets of initial data produce tight ensembles
of trajectories. (This would be a trivial consequence of well-posedness; for us, it was
a crucial step in proving well-posedness.)

4 Toda

The Toda Lattice [17] is a completely integrable chain of anharmonic oscillators. The
Hamiltonian takes the form

H :=
∑

n∈Z

[
1
2 p

2
n + V (qn+1 − qn)

]
where V (x) := e−x + x − 1. (4.1)
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Here qn represent particle positions (relative to global equilibrium) and pn their con-
jugate momenta. Correspondingly, the Poisson bracket is given by

{F,G} :=
∑

n∈Z

[
∂F
∂qn

∂G
∂ pn

− ∂F
∂ pn

∂G
∂qn

]
(4.2)

and the resulting dynamics takes the form

d

dt
qn = pn and

d

dt
pn = V ′(qn+1 − qn) − V ′(qn − qn−1). (TL)

A Lax pair representation of these dynamics was discovered by Flaschka [5], which
we will soon describe. The first step is to change variables to

an := 1
2e

1
2 (qn−qn+1) and bn := − 1

2 pn . (4.3)

In these variables, the Hamiltonian becomes

H =
∑

n∈Z

[
2b2n + V (−2 log 2an)

]
where again V (x) = e−x + x − 1, (4.4)

the Poisson bracket takes the form

{F,G} = 1
4

∑

n∈Z
an
[

∂F
∂an

(
∂G

∂bn+1
− ∂G

∂bn

)
−
(

∂F
∂bn+1

− ∂F
∂bn

)
∂G
∂an

]
, (4.5)

and the equations of motion become

d

dt
an = an

(
bn+1 − bn

)
and

d

dt
bn = 2

(
a2n − a2n−1

)
. (4.6)

We shall confine our attention in this paper to finite-energy solutions to the Toda
system. In view of the strict convexity of V (x) and its quadratic vanishing at x = 0,
we see that finite energy can be expressed by the following equivalent conditions:

∑

n∈Z
p2n + (qn+1 − qn)

2 < ∞ or
∑

n∈Z
b2n + (log 2an)

2 < ∞. (4.7)

With a view to our future needs, we define ‘balls’ in the energy space via

Bκ
δ := {

(am, bm) : H < δ2κ
}
. (4.8)

It is a trivial matter to see that the Toda Lattice is globally well-posed in the energy
space, which makes it an ideal setup for our discussion. Nevertheless, some calcula-
tions below will require stronger hypotheses, namely,

bn ∈ 	1 and log(2an) ∈ 	1. (4.9)
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In particular, these assumptions allow consideration of the conserved quantities

M :=
∑

n∈Z
(qn+1 − qn) = −

∑

n∈Z
2 log(2an) and P :=

∑

n∈Z
pn = −

∑

n∈Z
2bn .

(4.10)

These represent the net expansion of the lattice and total momentum, respectively.
Both are Casimirs: {an, M} = {bn, M} = 0 = {an, P} = {bn, P} for every n ∈ Z.

The Lax representation discovered by Flaschka [5] takes the form

d
dt L± = [±P, L±] (4.11)

in terms of the tri-diagonal operators

(L± f )n := cosh(κ) fn −
(
an fn+1 + an−1 fn−1 ± bn fn

)
, (4.12)

(P f )n := an fn+1 − an−1 fn−1. (4.13)

As we consider finite energy solutions, these are bounded operators on 	2(Z). Here,
cosh(κ) serves as the spectral parameter; the merit of this representation will become
apparent later when we discuss the Green’s function (cf. (4.14) below).

The relationship between L+ and L− is ultimately that of changing the sign of the
spectral parameter. Concretely, defining the unitary involution

(U f )n = (−1)n fn, we find L+ − 2 cosh(κ) = −UL−U .

This overcomes the restriction that the cosh(κ) parameterization leads to the spectral
parameter always being positive, while also ensuring that the conserved densities
described below are non-negative.

The natural static solution of the Toda Lattice is the minimum energy state: bn ≡ 0
and an ≡ 1

2 . In this state, L+ and L− agree; we adopt the notation L0:

(L0 f )n = cosh(κ) fn − 1
2

(
fn+1 + fn−1

)
.

This is invertible as soon as κ > 0, with corresponding Green’s function

G0(n,m; κ) = 1
sinh κ

e−κ|n−m|. (4.14)

For any finite energy state, the operators L± are invertible provided one takes κ

sufficiently large (depending on the energy). We write

G±(n,m; κ) = 〈δn, L−1± δm〉

for the corresponding Green’s function. Then,

tr
{
L−1± − L−1

0

} =
∑

n

[
G±(n, n; κ) − 1

sinh(κ)

]
. (4.15)
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It is not difficult to verify that the term in square brackets in (4.15) is a conserved
density for the Toda evolution. In fact, (4.11) yields

± d
dt G±(n,m) = anG±(n + 1,m) − an−1G±(n − 1,m)

+ amG±(n,m + 1) − am−1G±(n,m − 1).
(4.16)

While (4.15) is readily verified under the conditions (4.9), neither side of this
equation makes sense for all finite-energy solutions. Renormalization is required!

For thismodel, itwould be a folly to renormalize using the next termof theNeumann
series, namely,

〈δn, L−1
0 (L± − L0)L

−1
0 δn〉 = −

∑

m

[[
2am − 1

] e−2κ|m+ 1
2−n|

sinh2(κ)
± bm

e−2κ|m−n|
sinh2(κ)

]
,

(4.17)

because (unlike for KdV) this is not a conserved density. We propose the remedy of
using

γ ±
n := G±(n, n) − 1

sinh(κ)
−
∑

m

[
log(2am) e

−2κ|m+ 1
2−n|

sinh2(κ)
± bm

e−2κ|m−n|
sinh2(κ)

]
, (4.18)

inspired by (4.10). As we will see shortly, this is a conserved density and the corre-
sponding currents are

γ j±n := 2an−1G±(n, n − 1) − e−κ

sinh(κ)

−
∑

m

[
[4a2m−1 − 1] e−2κ|m−n|

2 sinh2(κ)
± bm

e−2κ|m+ 1
2−n|

sinh2(κ)

]
.

(4.19)

As in all sections of this paper, the principal question to be addressed is not that
of finding the right microscopic representation of (1.3), but rather of finding such a
representation of (1.2). Our answer rests on the following quantities:

ρ±
n := κ − 1

2 log
[
1 + 1

anG±(n,n+1)

]

−
∑

m

[
log(2am)e−2κ|n−m| ± bme

−2κ|n+ 1
2−m|] (4.20)

and

j±n := sinh κ − 1
G±(n,n)

−
∑

m

[
[4a2m−1 − 1] e−2κ|n− 1

2−m|
2 ± bme

−2κ|n−m|].

(4.21)
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Theorem 4.1 There exists δ > 0 so that for every κ ≥ 1 and every collection of
parameters (am, bm) ∈ Bκ

δ , the sequences ρ±
n and γ ±

n are non-negative, 	1, and
represent conserved densities for the Toda Lattice. Concretely,

± d
dt ρ

±
n = j±n+1 − j±n and ± d

dt γ
±
n = γ j±n+1 − γ j±n , (4.22)

where j±n , γ j±n ∈ 	1.
Further, for each fixed n, ρ±

n and γ ±
n are convex functions of (log 2am, bm).

Lastly, these yield macroscopic conservation laws of the sought-after form: If the
parameters also satisfy (4.9), then

∑

n

ρ±
n = − log det

[
L±/L0

]± 1
2 sinh(κ)

P + e−κ

2 sinh(κ)
M, (4.23)

∑

n

γ ±
n = tr

{
L−1± − L−1

0

}± cosh(κ)

2 sinh3(κ)
P + 1

2 sinh3(κ)
M, (4.24)

where P and M are the Casimirs written in (4.10).

The proof of this theorem will be given at the end of this section, building on a
series of preliminary lemmas. Our first lemma addresses the existence and properties
of the Green’s functions G±:

Lemma 4.2 There exists δ > 0 so that the following hold for all κ ≥ 1: The Lax
operators L± are invertible and their Green’s functions are given by the series

G±(n,m; κ) − G0(n,m; κ) =
∑

	≥1

(−1)	
〈
δn, L−1

0

[
(L± − L0)L

−1
0

]	
δm
〉
, (4.25)

which converges uniformly inHilbert–Schmidt class throughout Bκ
δ . TheGreen’s func-

tions are positive, symmetric under n ↔ m, and satisfy the identities

G±(n, n + 1)
[
1 + anG±(n, n + 1)

] = anG±(n, n)G±(n + 1, n + 1),

(4.26)
G±(n+1,k)
G±(n+1,n)

= G±(n,k)
G±(n,n)

[
1 + 1

anG±(n,n+1)1k>n

]
, (4.27)

G±(n,k)
G±(n,n+1) = G±(n+1,k)

G±(n+1,n+1)

[
1 + 1

anG±(n,n+1)1k≤n

]
, (4.28)

G±(k, 	) = G±(k,n+1)G±(n,	)
G±(n+1,n)

if k ≤ n < 	. (4.29)

Proof Fourier analysis easily yields the operator norm

‖L−1
0 ‖op = 1

cosh(κ)−1 .

Elementary manipulations show that, for parameters in Bκ
δ with κ ≥ 1 and δ > 0

small enough, we have the Hilbert–Schmidt estimate

‖L± − L0‖2I2
≤ ‖bm‖2

	2
+ ‖2am − 1‖2

	2
≤ H ,
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and so

‖[L± − L0]L−1
0 ‖I2 � δ

√
κ e−κ � δ. (4.30)

This settles the convergence of the series (4.25). The positivity of the Green’s function
follows fromamaximum-principle argument: Shrinking δ, if necessary,wemay ensure
that

cosh(κ) > 1 + ‖bm‖	∞ + ‖2am − 1‖	∞

throughout Bκ
δ . The defining property of the Green’s function,

[cosh(κ) ∓ bm]G±(m, n) = amG±(m + 1, n) + am−1G±(m − 1, n) + δmn,

then shows that for each fixed n, if the sequencem �→ G±(m, n) achieves a minimum,
it must be positive. However, the series representation shows G±(m, n) → 0 as
m → ±∞. We conclude that the infimum of G±(n,m) over all choices of n,m is
zero and that this value is never achieved.

The n ↔ m symmetry of G± is inherited from the self-adjointness of L±.
We turn now to the identities (4.26), (4.27), and (4.28). We remark that these

identities can be obtained bywriting theGreen’s function in terms of the Jost solutions.
However, we choose to prove them using elementary identities involving the Green’s
function. Fixing n, k ∈ Z, let us define

Im := am
[
G±(n,m + 1)G±(m, k) − G±(n,m)G±(m + 1, k)

]
.

Note Im → 0 as m → ±∞. As the Green’s function inverts L±, so we have

Im − Im−1 = (δmk − δnm)G±(n, k).

This may then be summed to obtain

Im =

⎧
⎪⎨

⎪⎩

−G±(n, k) if n ≤ m < k,

G±(n, k) if k ≤ m < n,

0 otherwise.

The identity (4.26) then follows by taking k = n+1 andm = n. Similarly, the identity
(4.27) follows from taking m = n, whereas the identity (4.28) from taking m = n− 1
and then replacing n by n + 1. Finally, in the case that k ≤ n < 	 we may write our
identity for Im in the form

G(k,n+1)
G(n,n+1) = G(k,n+2)

G(n,n+2) = · · · = G(k,	)
G(n,	)

,

which yields (4.29). ��
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The identity (4.26) provides an alternate expression for ρn via the identities

1
2 log

[
1 + 1

anG±(n,n+1)

]
= arcsinh

[
1√

4a2nG±(n,n)G±(n+1,n+1)

]
(4.31)

= 1
2 log

[
G±(n,n)G±(n+1,n+1)

G±(n,n+1)2

]
. (4.32)

Each resulting form of ρn has its own merits. The original expression is the most com-
pact, whereas RHS(4.31) provides the strongest link to the reciprocal of the diagonal
Green’s function in the continuum limit. However, it is RHS(4.32) that will dominate
our proof of Theorem 4.1.

Proof of Theorem 4.1 Lemma 4.2 already guarantees that ρ±
n and γ ±

n (as well as their
purported currents) are well-defined, provided δ > 0 is chosen sufficiently small.

Using (4.32) we may write ρn in the form

ρ±
n = κ − 1

2 log

[
G±(n,n)G±(n+1,n+1)

G±(n,n+1)2

]
−
∑

m

[
log(2am)e−2κ|n−m| ± bme

−2κ|n+ 1
2−m|].

The identities (4.22) then follow from (4.6), (4.16), (4.27), and (4.28).
We now turn our attention to the identities (4.23) and (4.24). Here we assume that

the parameters (am, bm) satisfy (4.9), which ensures that L−1 − L−1
0 is trace class.

The identity (4.24) follows directly from the definition (4.18). To justify (4.23), we
apply the resolvent identity combined with (4.27) and (4.28) to write

1
sinh κ

∂κρ±
n

= 1
sinh κ

−
∑

m

[
G±(n+1,m)G±(m,n)

G±(n+1,n)
− G±(n,m)G±(m,n)

2G±(n,n)
− G±(n+1,m)G±(m,n+1)

2G±(n+1,n+1)

]

+
∑

m

[
log(2am)

2|n−m|e−2κ|n−m|
sinh κ

± bm
2|n+ 1

2−m|e−2κ|n+ 1
2−m|

sinh κ

]

= −γ ±
n + σ±

n+1 − σ±
n ,

where we take

σ±
n = 1

2 sinh κ
+ 1

2

∑

m

sgn(n − m − 1
2 )

G±(n,m)G±(m,n)
G±(n,n)

−
∑

m

[
log(2am)

(n−1−m)e−2κ|n−m− 1
2 |

sinh2(κ)
± bm

(n− 1
2−m)e−2κ|n−m|
sinh2(κ)

]
.

Note that σ±
n is well-defined and vanishes as n → ∞ thanks to Lemma 4.2. Under

the assumption (4.9), we have σ±
n ∈ 	1 and hence

1
sinh κ

∂κ

∑

n

ρ±
n = −

∑

n

γ ±
n . (4.33)
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On the other hand, (4.30) implies that the expression

F± := − log det
[
L±/L0

] =
∑

	≥1

1
	
(−1)	 tr

{([L± − L0]L−1
0

)	} (4.34)

converges uniformly for κ ≥ 1 and parameters (am, bm) ∈ Bκ
δ satisfying (4.9). When

taking the derivative with respect to the spectral parameter, we get

1
sinh κ

∂κF± =
∑

	≥1

(−1)	+1 tr
{
L−1
0

([L± − L0]L−1
0

)	} = − tr
{
L−1± − L−1

0

}
.

Subtracting this from (4.33) and integrating with respect to the spectral parameter to
infinity, we obtain (4.23).

Next, we turn to the issue of convexity. This trivializes verifying non-negativity,
which in turn aids in the proof of summability. We will prove convexity via the second
derivative test. (In view of (4.25), differentiability is not an issue.) Given a direction
(cm, dm) ∈ 	2(Z) × 	2(Z) and a function F on Bκ

δ , we define

DkF = dk

dsk

∣∣∣
s=0

F
(
ame

scm , bm + sdm
)
.

Our goal is to show D2γ ±
n ≥ 0 and D2ρ±

n ≥ 0. Note that the renormalization terms,
appearing as sums over m in (4.18) and (4.20), are linear in log(2am) and in bm and
so these will not affect the convexity computations.

Let us begin with γn ; we will suspend the ± notations since the distinction plays
virtually no role in the computations that follow. For concreteness, we consider the +
case. As a preliminary, we compute

D2G(n,m) = 2〈δn, L−1(DL)L−1(DL)L−1δm〉 − 〈δn, L−1(D2L)L−1δm〉, (4.35)

using the resolvent identity. The derivatives of the operator L are given by

(DL f )n = −ancn fn+1 − an−1cn−1 fn−1 − dn fn,

(D2L f )n = −anc
2
n fn+1 − an−1c

2
n−1 fn−1.

Note that the first term in (4.35) is positive when m = n because L−1 is positive
definite. Regarding the second term in (4.35), we have

−〈δn, L−1(D2L)L−1δm〉 ≥ 0 for all m, n ∈ Z. (4.36)

This is because the Green’s function is positive and the individual matrix entries of
D2L are less than or equal to zero. Thus γn is convex. This convexity also guarantees
the non-negativity of γn because

γn = 0 and Dγn = 0 when am ≡ 1
2 and bm ≡ 0,
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492 B. Harrop-Griffiths et al.

irrespective of the direction in which the derivative is taken.
Let us begin our discussion of ρn in the same place. Direct computation shows

ρn = 0 and Dρn = 0 when am ≡ 1
2 and bm ≡ 0, (4.37)

irrespective of the direction in which the derivative is taken. One other first derivative
computation is important. Using (4.26) we obtain

∂
∂an

ρn =
∂

∂an
[anG(n, n + 1)]

2anG(n, n + 1)[1 + anG(n, n + 1)] − 1

an
= 0.

This shows that ρn fails to be strictly convex. More constructively, it shows that all
terms in D2ρn involving cn vanish. Thus we may assume that cn = 0 henceforth. This
will simplify matters considerably when we invoke it later. For the moment however,
we use (4.32) to compute

D2ρn = −
[
DG(n+1,n)
G(n+1,n)

]2 + 1
2

[
DG(n,n)
G(n,n)

]2 + 1
2

[
DG(n+1,n+1)
G(n+1,n+1)

]2

+ D2G(n+1,n)
G(n+1,n)

− D2G(n,n)
2G(n,n)

− D2G(n+1,n+1)
2G(n+1,n+1) .

(4.38)

The next step is to expand out the second line here using (4.35). Rather than writing
down the result immediately, let us focus on the resulting terms that involve D2L (as
opposed to those quadratic in DL):

− 〈δn+1,L−1(D2L)L−1δn〉
G(n+1,n)

+ 〈δn ,L−1(D2L)L−1δn〉
2G(n,n)

+ 〈δn+1,L−1(D2L)L−1δn+1〉
2G(n+1,n+1)

= − 1
2

∑

m,k

〈δm, (D2L)δk〉G(k, n)
[
G(n+1,m)
G(n+1,n)

− G(n,m)
G(n,n)

]

− 1
2

∑

m,k

G(n + 1,m)〈δm, (D2L)δk〉
[

G(k,n)
G(n+1,n)

− G(k,n+1)
G(n+1,n+1)

]
.

By (4.27) and (4.28), each quantity in square brackets here is non-negative. Combining
this with the fact that every entry in the matrix D2L is less than or equal to zero, we
see that this whole expression is non-negative. Thus,

D2ρn ≥
∑

m,k,r ,	

〈δm, (DL)δk〉〈δ	, (DL)δr 〉Kn(m, k, 	, r), (4.39)

where

Kn(m, k, 	, r) = G(n+1,m)G(k,	)G(r ,n)
G(n+1,n)

+ G(n,m)G(k,	)G(r ,n+1)
G(n+1,n)

− G(n+1,m)G(k,n)G(n+1,	)G(r ,n)

2G(n+1,n)2
− G(n,m)G(k,n+1)G(n,	)G(r ,n+1)

2G(n+1,n)2

− G(n,m)G(k,	)G(r ,n)
G(n,n)

+ G(n,m)G(k,n)G(n,	)G(r ,n)

2G(n,n)2
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− G(n+1,m)G(k,	)G(r ,n+1)
G(n+1,n+1) + G(n+1,m)G(k,n+1)G(n+1,	)G(r ,n+1)

2G(n+1,n+1)2
.

Due to the vanishing of cn , we see that 〈δm, (DL)δk〉 vanishes unless m, k ≤ n or
m, k > n. Similarly, 〈δ	, (DL)δr 〉 vanishes unless 	 and r lie on the same side of n.
This allows us to restrict our attention to just three cases, in each of which we may
then simplify the formula for Kn by exploiting (4.27), (4.28), and (4.29):

Kn =0, if m, k ≤ n < 	, r or 	, r ≤ n < m, k,

Kn =
[
G(k,	)
G(n,n)

− G(k,n)G(n,	)

G(n,n)2

]
G(n,m)G(r , n)

[
1 − G(n+1,n)2

G(n,n)G(n+1,n+1)

]

+ G(n,m)G(k,n)G(n,	)G(r ,n)

2G(n,n)2

[
1 − G(n+1,n)2

G(n,n)G(n+1,n+1)

]2
, if m, k, 	, r ≤ n,

Kn =
[

G(k,	)
G(n+1,n+1) − G(k,n+1)G(n+1,	)

G(n+1,n+1)2

]
G(n + 1,m)G(r , n + 1)

[
1− G(n+1,n)2

G(n,n)G(n+1,n+1)

]

+ G(n+1,m)G(k,n+1)G(n+1,	)G(r ,n+1)
2G(n+1,n+1)2

[
1 − G(n+1,n)2

G(n,n)G(n+1,n+1)

]2
, if m, k, 	, r > n.

Using (4.39), wemay now see that D2ρn ≥ 0. Let us explain here why the sum over
m, k, 	, r ≤ n is non-negative; the argument in the case m, k, 	, r > n is analogous.
When m, k, 	, r ≤ n, the contribution of the second line in the expression of Kn is
given by

1
2G(n,n)2

[
1 − G(n+1,n)2

G(n,n)G(n+1,n+1)

]2
⎧
⎨

⎩

∑

m,k≤n

G(n,m)G(k, n)〈δm, (DL)δk〉
⎫
⎬

⎭

2

≥ 0.

We turn now to the contribution of the first line in the expression of Kn . Using (4.26),
we observe that

1 − G(n+1,n)2

G(n,n)G(n+1,n+1) = 1
1+anG(n,n+1) ≥ 0.

Moreover, writing

ψk :=
∑

m≤n

G(n,m)〈δm, (DL)δk〉,

and recalling that cn = 0, we find

∑

m,k,	,r≤n

[
G(k,	)
G(n,n)

− G(k,n)G(n,	)

G(n,n)2

]
G(n,m)G(r , n)〈δm, (DL)δk〉〈δ	, (DL)δr 〉

= 1
G(n,n)2

〈ψ, L−1ψ〉〈δn, L−1δn〉 − 〈δn, L−1ψ〉2 ≥ 0,

where the inequality follows from the fact that L−1 is positive definite and an appli-
cation of Cauchy–Schwarz. This completes the proof of the convexity of ρn .

The non-negativity of ρn follows from its convexity and (4.37).
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Finally, we turn to the issue of summability. For sequences satisfying (4.9), we use
(4.17) to write the identities (4.23), (4.24) as

∑

n

ρ±
n =

∑

	≥2

1
	
(−1)	 tr

{([L± − L0]L−1
0

)	}+ e−κ

sinh(κ)

∑

m

V
(− log(2am)

)
,

∑

n

γ ±
n =

∑

	≥2

(−1)	 tr
{
L−1
0

([L± − L0]L−1
0

)	}+ 1
sinh3(κ)

∑

m

V
(− log(2am)

)
.

From (4.30), the right-hand sides converge for parameters (am, bm) ∈ Bκ
δ . That the

sequences ρ±
n , γ ±

n ∈ 	1 for parameters (am, bm) ∈ Bκ
δ then follows from the positivity

of ρ±
n , γ ±

n , approximating the parameters by sequences satisfying (4.9).
Turning to the summability of the currents, it is evident from the resolvent expansion

(4.25) and the estimate (4.30) that γ j±n ∈ 	1. For jn , first note that (4.30) ensures that
G±(n, n) � 1, uniformly in n, and consequently that

sinh(κ) + sinh2(κ)〈δn, L−1
0 (L± − L0)L

−1
0 δn〉 − 1

G±(n,n)
∈ 	1.

That jn ∈ 	1 then follows from (4.17). ��

5 Ablowitz–Ladik

The Ablowitz–Ladik system [2,3] is an integrable discrete form of the cubic nonlinear
Schrödinger equation. It comes in two flavors, which we may write together via the
expedient of defining βn := ᾱn in the defocusing case and βn := −ᾱn in the focusing
case:

i∂tαn = 2αn − (1 − αnβn)(αn+1 + αn−1). (AL)

In the defocusing case, it is required that all αn ∈ D, the open unit disk in C; as we
will see below, this property is preserved by the flow. In the focusing case, αn ∈ C are
unrestricted.

It is a trivial matter to see that these flows are locally well-posed on 	2. This extends
to global well-posedness via the conservation of

M := −
∑

n∈Z
log(1 − αnβn).

This conservation law also guarantees that the restriction |αn| < 1 is preserved by the
defocusing flow. Another important conserved quantity is

H :=
∑

n∈Z

(
−αnβn+1 − αn+1βn − 2 log(1 − αnβn)

)
,
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which serves as the Hamiltonian for (AL) with respect to the Poisson structure

{F,G} := 1
i

∑

n∈Z
(1 − αnβn)

[
∂F
∂αn

∂G
∂βn

− ∂F
∂βn

∂G
∂αn

]
.

The evolutions (AL) admit a zero curvature representation based on the matrices

Un(z) :=
[
z αn

βn z−1

]
and Vn(z) := i

[
z2 − 1 − αnβn−1 zαn − z−1αn−1

zβn−1 − z−1βn 1 + αn−1βn − z−2

]
.

Concretely, (AL) is equivalent to ∂tUn = Vn+1Un −UnVn . This representation can be
reorganized into one resembling (1.1) in several different ways. Although it is possible
to give such a Lax representation where the spectral parameter appears in the classical
way (see [15]), we choose a different path that is more conducive to drawing analogies
with Sect. 3.

Let U and V denote the operators on 	2(Z) ⊗C
2 defined by applyingUn and Vn at

each lattice site. Specifically,

(
U
[
a
b

])

n
= Un

[
an
bn

]
.

We also define S to be the scalar (left-)shift operator (S f )n = fn+1 and S = S ⊗ I as
the vector analogue on 	2(Z) ⊗ C

2:

(
S
[
a
b

])

n
=
[
an+1
bn+1

]
.

Writing I = I ⊗ I , it is elementary to see that

∂t (S−1U − I) = [V, S−1U − I] (5.1)

is equivalent to the zero curvature condition stated earlier. Nevertheless, we do not
choose S−1U − I as our basic object, but rather

L(z;α) := U − S =
[
z − S α

β z−1 − S

]
. (5.2)

In the special case α ≡ 0, we write U0 and L0.
Our naive expectations (1.2) and (1.3) were expressed in terms of the operator

appearing in (1.1). Our analogue, (5.1), involves S−1U − I rather than L. From the
simple relation between the two, we find that our original predictions are equivalent
to

∂t log det
[
LL−1

0

] = 0, (5.3)

∂t tr
{(
L−1 − L−1

0

)
S
} = 0. (5.4)
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However, the second of these is vacuous. Indeed, the identity (5.19) shows that

tr
{(
L−1 − L−1

0

)
S
} = 0. (5.5)

Instead, we employ the Pauli matrix σ3 = [
1 0
0 −1

]
and replace (5.4) by

∂t tr
{(
L−1 − L−1

0

)
Sσ3

} = 0. (5.6)

The introduction of σ3 is easily intuited by comparing the continuum limit of L to
the Lax operator used in Sect. 3: there is sign flip in the bottom row. The presence of
the shift operator cannot be explained by such naive reasoning—it drops out in the
continuum limit. This underlines the point made in the introduction that the discrete
laws discussed here are more fundamental than their continuum analogues.

To describe ourmicroscopic conservation laws, we first introduce thematrix-valued
Green’s function G(n,m; z) for L−1, which will shortly be shown to be well-defined
whenever |z| > 1 is sufficiently large relative to the mass. Further, from (5.1) we
obtain

∂tG(n,m) = VnG(n,m) − G(n,m)Vm+1. (5.7)

We then introduce the densities attendant to the conservation laws (5.3) and (5.6)

ρn := 1
2 log

[
1 + αnG21(n,n)

zG11(n,n)

]
+ 1

2 log
[
1 + βn+1G12(n+1,n+1)

zG11(n+1,n+1)

]
, (5.8)

γn := G11(n + 1, n) − G22(n + 1, n) − 1, (5.9)

and the corresponding currents

jn := i
2

[
zαn − z−1αn−1

]G21(n,n)
G11(n,n)

+ i
2

[
zβn − z−1βn+1

]G12(n,n)
G11(n,n)

(5.10)

− i
2αnβn−1 − i

2αn+1βn,

γ jn := 2i zG11(n + 1, n − 1) + 2i z−1
[
G22(n + 1, n − 1) + z−1

]
. (5.11)

Analogously to the Toda Lattice, for |z| > 1 we introduce the ball

Bz
δ =

{
αm : |M |e|M| < δ2

|z|2−1
|z|

}
.

Our main result is then the following:

Theorem 5.1 There exists δ > 0 so that for every |z| ≥ 2 and every αm ∈ Bz
δ , the

sequences ρn, γn ∈ 	1 represent conserved densities for the Ablowitz–Ladik equation.
Concretely,

∂tρn = jn+1 − jn and ∂tγn = γ jn+1 − γ jn, (5.12)

where jn, γ jn ∈ 	1.
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Further, these yield macroscopic conservation laws of the sought-after form:

∑

n

ρn = log det
[
LL−1

0

]
, (5.13)

∑

n

γn = tr
{(
L−1 − L−1

0

)
Sσ3

}
. (5.14)

We begin our analysis with some basic properties of the resolvent of the (scalar)
shift operator:

Lemma 5.2 For αm ∈ 	2(Z) and |z| > 1,

〈δn, (z − S)−1δm〉 = zn−m−11n≤m and 〈δn, (S − z−1)−1δm〉 = zm−n+11n>m .

In particular, the Green’s function for L−1
0 is

G0(n,m; z) =
[
zn−m−11n≤m 0

0 −zm−n+11n>m

]
. (5.15)

Moreover, defining operators

� := α(S − z−1)−1 and � := β(z − S)−1, (5.16)

we have the following Hilbert–Schmidt norms:

∥∥�
∥∥2
I2

= |z|2
|z|2−1

‖α‖2
	2

and
∥∥�
∥∥2
I2

= 1
|z|2−1

‖α‖2
	2

. (5.17)

Using the previous lemma, it is easy to construct L−1 by Neumann series:

Lemma 5.3 There exists δ > 0 so that for every |z| ≥ 2 and αm ∈ Bz
δ , L is invertible.

The matrix-valued Green’s function has entries

G11(n,m) =
∑

k≥0

(−1)k〈δn, (z − S)−1[��]kδm〉,

G12(n,m) =
∑

k≥0

(−1)k〈δn, (z − S)−1�[��]kδm〉,

G21(n,m) =
∑

k≥0

(−1)k〈δn, (S − z−1)−1�[��]kδm〉,

G22(n,m) = −
∑

k≥0

(−1)k〈δn, (S − z−1)−1[��]kδm〉.

Moreover, we have the following identities:

det G(n,m) = 0, (5.18)
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tr G(n + 1, n) = −1. (5.19)

In addition, we have

G12(n+1,k)
1+G11(n+1,n)

= G12(n,k)
G11(n,n)

+ αnG22(n+1,k)1k<n
(1−αnβn)(1+G11(n+1,n))G11(n,n)

, (5.20)

G21(k,n)
1+G11(n+1,n)

= G21(k,n+1)
G11(n+1,n+1) + βn+1G22(k,n)1k>n+1

(1−αn+1βn+1)(1+G11(n+1,n))G11(n+1,n+1) , (5.21)

δnk+G11(n+1,k)
1+G11(n+1,n)

= G11(n,k)
G11(n,n)

+ αnG21(n+1,k)1k<n
(1−αnβn)G11(n,n)(1+G11(n+1,n))

, (5.22)

δn+1,k+G11(k,n)

1+G11(n+1,n)
= G11(k,n+1)

G11(n+1,n+1) + βn+1G12(k,n)1k>n+1
(1−αn+1βn+1)G11(n+1,n+1)(1+G11(n+1,n))

, (5.23)

and the denominators of these expressions are non-zero.

Proof The series for the entries of G(n,m) are a simple matter of book-keeping in the
Neumann series. The question of convergence is settled by the fact that

‖α‖2
	2

≤ |M |e|M| ≤ |z|2−1
|z| δ2,

and so from (5.17),

‖�‖2I2
≤ |z|δ2 and ‖�‖2I2

≤ 1
|z|δ

2. (5.24)

Using that

‖(z − S)−1‖op ≤ 1
|z|−1 and ‖(S − z−1)−1‖op ≤ |z|

|z|−1 ,

we have

∑

n,m

|G12(n,m)|2 �
{
‖(z − S)−1‖op‖�‖I2

∑

	≥0

‖�‖	
I2

‖�‖	
I2

}2
� |z|

(|z|−1)2
δ2,

(5.25)
∑

n,m

|G21(n,m)|2 �
{
‖(S − z−1)−1‖op‖�‖I2

∑

	≥0

‖�‖	
I2

‖�‖	
I2

}2
� |z|

(|z|−1)2
δ2,

(5.26)

and recalling (5.15),

∑

n,m

|G11(n,m) − zn−m−11n≤m |2

�
{
‖(z − S)−1‖op

∑

	≥1

‖�‖	
I2

‖�‖	
I2

}2
� 1

(|z|−1)2
δ4. (5.27)
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By observing that all but the first terms in the Neumann series are products of
Hilbert–Schmidt operators, the Cauchy–Schwarz inequality yields

sup
m

∑

n

|G11(n, n + m) − z−m−11m≥0|

� ‖(z − S)−1‖op
∑

	≥1

‖�‖	
I2

‖�‖	
I2

� 1
|z|−1δ

2, (5.28)

sup
m

∑

n

|G22(n, n + m) + zm+11m<0|

� ‖(S − z−1)−1‖op
∑

	≥1

‖�‖	
I2

‖�‖	
I2

� |z|
|z|−1δ

2. (5.29)

The remaining identities can again be derived by considering the Jost solutions.
However, as in the preceding section, we instead choose to derive these from elemen-
tary identities involving the Green’s function. We introduce

In(m, k) := G11(n,m)G22(n, k) − G12(n, k)G21(n,m),

Jn(m, k) := G11(m, n)G22(k, n) − G12(m, n)G21(k, n),

and note that In, Jn → 0 as n → ±∞. As G inverts L, we have

In+1(m, k) = (1 − αnβn)In(m, k) − δnkG11(n + 1,m) − δnmG22(n + 1, k),
(5.30)

Jn−1(m, k) = (1 − αnβn)Jn(m, k) − δnkG11(m, n − 1) − δnmG22(k, n − 1).
(5.31)

In particular

In(m, k) = 0 if n ≤ min{m, k} or n > max{m, k}, (5.32)

Jn(m, k) = 0 if n < min{m, k} or n ≥ max{m, k}. (5.33)

The identity (5.18) follows from taking k = m in the formula defining In and
invoking (5.32). The identity (5.19) follows from (5.18) by taking the determinant of
both sides of the expression

1 + G(n + 1, n) = UnG(n, n).

Next we turn to the proof of (5.20) through (5.23). As |z| ≥ 2 we may use (5.28)
to show that

|G11(n, n)| � 1
|z| and |1 + G11(n + 1, n)| � 1, (5.34)

uniformly in n, whenever δ > 0 is sufficiently small. Consequently, the denominators
appearing in (5.20) through (5.23) do not vanish.
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To prove (5.20), we use (5.30) with m = n together with (5.32) to obtain

G11(n, n)G22(n, k) − G12(n, k)G21(n, n) = 1k<n
G22(n+1,k)
1−αnβn

.

As G is a right inverse for L, we then have

G11(n, n)G12(n + 1, k)

= zG11(n, n)G12(n, k) + αnG11(n, n)G22(n, k)

= zG11(n, n)G12(n, k) + αn

[
G12(n, k)G21(n, n) + 1k<n

G22(n+1,k)
1−αnβn

]

=
[
1 + G11(n + 1, n)

]
G12(n, k) + 1k<n

αnG22(n+1,k)
1−αnβn

,

which gives (5.20). The proof of (5.21) is similar, using (5.31) with m = n together
with (5.33) to obtain

G11(n, n)G22(k, n) − G12(n, n)G21(k, n) = 1k>n
G22(k,n−1)
1−αnβn

,

then using that G is a left inverse for L, and finally replacing n by n + 1.
The proof of (5.22) and (5.23) is essentially identical to the proof of (5.20) and

(5.21), except we replace In , Jn by

Ĩn(m, k) = G11(n,m)G21(n, k) − G11(n, k)G21(n,m),

J̃n(m, k) = G11(m, n)G12(k, n) − G12(m, n)G11(k, n),

and compute

Ĩn+1(m, k) = (1 − αnβn) Ĩn(m, k) − δnkG21(n + 1,m) − δnmG21(n + 1, k),

J̃n−1(m, k) = (1 − αnβn) J̃n(m, k) − δnkG12(m, n − 1) − δnmG12(k, n − 1).

Again setting m = n, we obtain the identities

G11(n, n)G21(n, k) − G11(n, k)G21(n, n) = 1k<n
G21(n+1,k)
1−αnβn

,

G11(n, n)G12(k, n) − G12(n, n)G11(k, n) = 1k>n
G12(k,n−1)
1−αnβn

,

and arguing as before, the first gives (5.22), and the second yields (5.23). ��
Having constructed the Green’s function for L, we now turn to the perturbation

determinant:

Lemma 5.4 There exists δ > 0 so that the series

− log det
[
LL−1

0

] =
∞∑

	=1

1
	
(−1)	 tr

{[
��
]	} (5.35)
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converges uniformly for |z| ≥ 2 and αm ∈ Bz
δ . Further, we have the identity

z∂z log det
[
LL−1

0

] = tr
{(
L−1 − L−1

0

)
Sσ3

}
. (5.36)

Proof Convergence of the series (5.35) follows from (5.24). This also guarantees
that we can compute the left-hand side of (5.36) by summing the derivatives of the
summands in (5.35). Thus, (5.36) follows from

z∂z� = � − �S(S − z−1)−1, z∂z� = −� − �S(z − S)−1,

and the resolvent expansions derived in Lemma 5.3 ��
Using that G inverts L, we have

UnG(n, n) = 1 + G(n + 1, n) = G(n + 1, n + 1)Un+1. (5.37)

Employing the top left entries in (5.37) as well as (5.19), we may write

ρn = − 1
2 log

[
1 − 2αnG21(n,n)

2+γn

]
− 1

2 log
[
1 − 2βn+1G12(n+1,n+1)

2+γn

]
(5.38)

= 1
2 log

[ [
1+G11(n+1,n)

]2

G11(n,n)G11(n+1,n+1)

]
− log z, (5.39)

where these expressions are seen to be well-defined using (5.34). While RHS(5.38)
demonstrates the link to the continuum case, the expression RHS(5.39) will prove to
be the most useful in our proof of Theorem 5.1.

Proof of Theorem 5.1 From (5.19) we obtain

γn = 2G11(n + 1, n).

Thus (5.28) shows that γn ∈ 	1. Similarly, recalling (5.25), (5.26), and (5.34) we see
that ρn ∈ 	1.

Next we turn to the derivation of the currents. Applying (5.7) we obtain

∂tγn = 2i
[
zαn+1 − z−1αn

]
G21(n + 1, n) − 2i

[
zβn − z−1βn+1

]
G12(n + 1, n).

As G inverts L, we have

Un+1G(n + 1, n) = G(n + 2, n) and G(n + 1, n)Un = G(n + 1, n − 1).

Using the diagonal entries in these identities we get ∂tγn = γ jn+1 − γ jn . The fact that
γ jn ∈ 	1 follows from (5.28) and (5.29).

Recalling (5.39), wemay use (5.7) to compute ∂tρn and simplify using the identities
(5.20) and (5.21). The fact that jn ∈ 	1 follows from (5.25), (5.26), and (5.34).
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The expression (5.14) follows directly from the definition of γn , so it remains to
prove (5.13). Differentiating with respect to the spectral parameter, we get

z∂zG11(n,m) = −z
∑

k

G11(n, k)G11(k,m) + z−1
∑

k

G12(n, k)G21(k,m),

so from (5.39) we obtain

z∂zρn = z
2

∑

k

[
G11(n,k)G11(k,n)

G11(n,n)
+ G11(n+1,k)G11(k,n+1)

G11(n+1,n+1) − 2G11(n+1,k)G11(k,n)
1+G11(n+1,n)

]

− 1
2z

∑

k

[
G12(n,k)G21(k,n)

G11(n,n)
+ G12(n+1,k)G21(k,n+1)

G11(n+1,n+1) − 2G12(n+1,k)G21(k,n)
1+G11(n+1,n)

]
− 1.

We then apply (5.20), (5.22) whenever k ≥ n and (5.21), (5.23) whenever k < n to
replace the last term in each summand. This yields the expression

z∂zρn = ψn+1 − ψn + z G11(n+1,n)G11(n,n+1)
G11(n+1,n+1) + z G11(n,n)

1+G11(n+1,n)

− z−1 G12(n+1,n)G21(n,n+1)
G11(n+1,n+1) − 1,

where we define

ψn := 1
2

∑

k

sgn(k + 1
2 − n)

[
z G11(n,k)G11(k,n)

G11(n,n)
− 1

z
G12(n,k)G21(k,n)

G11(n,n)

]
− 1

2 .

To further simplify our expression for z∂zρn , we use (5.20), (5.21), (5.23), and
(5.18) to write

z G11(n+1,n)G11(n,n+1)
G11(n+1,n+1) + z G11(n,n)

1+G11(n+1,n)
− z−1 G12(n+1,n)G21(n,n+1)

G11(n+1,n+1)

= zG11(n, n) − z−1G22(n, n).

The identity (5.37) gives the expressions

zG11(n, n) − z−1G22(n, n) = βnG12(n, n) − αnG21(n, n) + [1 + γn
]

= αnG21(n, n) − βnG12(n, n) + [1 + γn−1
]
,

so, after taking the mean of the right-hand sides, we arrive at

z∂zρn = ψn+1 − ψn + 1
2

[
γn + γn−1

]
.

Recalling (5.34), we may apply (5.25)–(5.28) to see that ψn ∈ 	1. This gives

z∂z
∑

n

ρn =
∑

n

γn,
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which combined with (5.14) and (5.36) yields

∂z
∑

n

ρn = ∂z log det
[
LL−1

0

]
. (5.40)

Using Lemma 5.4 and (5.17), we find that

lim
z→∞ log det

[
LL−1

0

] = 0 = lim
z→∞

∑

n

ρn .

Thus, integrating (5.40) with respect to the spectral parameter we obtain (5.13). ��
As in the continuum case, the quadratic part of the current jn associated to ρn has

good coercivity properties. This is what is needed for proving local smoothing.
Let us define the Fourier transform of a sequence, say αn , via

α̂(θ) :=
∑

n

αne
inθ .

Then, writing j [2] for the quadratic part of the current, we have positive-definite
expression

∑

n

Im j [2]n = ∓
∫ 2π

0

2z2 sin2(θ)

|z2 − eiθ |2 |α̂(θ)|2 dθ

2π
. (5.41)

This is the analogue of [9, Lemma 4.8] relevant to (AL).
The real part of ρn is not itself coercive in the same sense. However, this is readily

remedied by switching to

ρ̃n = ρn − 1
2 log

(
1 − αnβn) with current j̃n = jn + i

2 (αnβn−1 − αn−1βn).

Specifically, we find that

∑

n

Re ρ̃[2]
n = ±

∫ 2π

0

z4 − 1

2|z2 − eiθ |2 |α̂(θ)|2 dθ

2π
. (5.42)

Advantageously, this modification does not affect the coercivity (5.41) at all; indeed,∑
Im( jn − j̃n) = 0. Moreover, this modification drops out in the continuum limit.
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