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Abstract—We formulate and analyze a demand-side manage-
ment framework in which an aggregator sets energy prices to
flexible consumers who have a noisy demand. The aggregator
strategizes between purchasing energy in the day-ahead market,
and settling any possible mismatches due to demand variability in
the real-time market. Because consumers are sensitive to volatility
in their electricity bill, the aggregator sets an upper bound on
the variance of the payments made by consumers. We derive the
optimal strategies for the consumers and the aggregator in this
problem, and show that the aggregator limits dynamic pricing for
consumers with too large demand variance, so as to avoid large
uncertainty in their payments. On the other hand, consumers with
low enough demand variance are charged the same price that would
emerge in a noise-free formulation. We also identify two instances
of a mean-variance trade-off: one in the consumer payment, which
can be made less uncertain at the expense of a higher mean value,
and another one in the aggregator’s utility, which becomes less
uncertain and lower on average as the consumer payment variance
constraints become binding. We corroborate our analysis with a
numerical case study.

Index Terms—Demand response, mean-variance trade-off, noisy
demand, stackelberg game.

I. INTRODUCTION

D EMAND response programs have been increasingly be-
coming part of the new paradigm of power distribution

systems, where consumer price-responsiveness can be leveraged
to increase grid flexibility. In these programs, an aggregator
can incentivize changes in the consumption pattern of flexible
consumers through changes in the electricity prices or any
other incentives. It has been shown that demand response can
help decrease the effective cost of supplying electricity, thus
improving economic efficiency in electricity markets [1]. It can
also help the integration of higher amounts of variable renewable
generation [2], and serves as an alternative to grid expansion [3],
among other benefits.
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In this work, we consider a scenario in which flexible con-
sumers are willing to adjust their demand based on the electricity
prices set by an aggregator. We model the interactions between
aggregator and consumers as a Stackelberg game in which
the aggregator is the leader, and consumers are the followers.
The aggregator is responsible for purchasing electricity in the
day-ahead energy market to supply to consumers. However,
consumers exhibit a price-dependent demand subject to random
noise, and therefore their real-time response may be different
from what was expected ahead of time. Such variability has
been identified in practice, and can be attributed to model error or
variability in control response [4]. This consumption uncertainty
leads to two implications. First, the aggregator needs to settle
any mismatches between the day-ahead supply purchased and
the actual consumer demand in the real-time market. With that,
the aggregator’s day-ahead purchase strategy needs to consider
these possible mismatches and the real-time market participa-
tion. Second, demand volatility leads to uncertainty in the elec-
tricity bill of consumers. Therefore, to attract and retain customer
participation, the aggregator bounds the payment variance of
each individual consumer when solving his problem.

The literature on demand response is very vast. To avoid a
very long literature review, we refer the reader to [5], [6] and
the references therein for a comprehensive, but non-exhaustive
survey. In this paper, we focus on the specific problem of ob-
taining the aggregator’s optimal strategy to incentivize demand
response from heterogeneous price-responsive loads. Various
works have adopted a deterministic formulation for this prob-
lem. For example, [7] considers a scenario with one aggre-
gator and multiple devices that purchase electricity and can
be interruptible or uninterruptible, and [8] models multiple
retailers, introducing company-side competition for the supply
of energy to consumers. Other streams of work have proposed
demand-side management frameworks that consider uncertainty
stemming from multiple sources. Process and measurement
noise of thermostatically controlled loads are considered in [9],
where the trade-off between consumer surplus and retailer profit
is characterized. The authors in [10] investigate the impact of net
load volatility on energy production costs, and propose a pricing
strategy to allocate the cost of volatility among customers. The
participation of the aggregator in multiple markets is considered
in [11]–[13]. Mixed integer linear programs are proposed in [11],
which considers a retailer who owns renewable resources, and
in [12], where an additional program is formulated to verify
the efficiency of the solution. In [13], an aggregator purchases
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demand reductions from consumers while taking into account
demand uncertainty and information asymmetry in consumers’
parameters.

The existing literature also incorporates risk management to
solve the aggregator’s problem of demand-side participation
with flexible and uncertain consumers in different ways. Con-
ditional Value-at-Risk (CVaR) is used in [14] for a retailer who
seeks to decrease the likelihood of low-profit outcomes when
purchasing power in the wholesale market to serve customers.
In [15], a bidding strategy for a utility company is proposed
using information-gap decision theory, so that the company
can guarantee a certain profit level. The formulation proposed
in [16] adopts a chance constraint to ensure, with a certain
probability, that the aggregator will purchase enough energy in
the day-ahead market to supply consumers, instead of possibly
paying a premium in the real-time market. Previous studies, how-
ever, have mostly focused on the problem from the aggregator’s
perspective. As against these works, we propose a formulation
which avoids large uncertainty for the end-consumer, which
could be a strategy to engage more customers in programs with
dynamic pricing.

The body of work which uses such consumer-centric strate-
gies is more scarce. In [17], a utility selection problem is formu-
lated from the perspective of consumers who aim to minimize
their consumption costs, while [18] departs from a price-driven
approach and uses aggregated consumption data to schedule
appliances based on consumer behavior. Much less attention
has been given to how volatility in electricity bills impacts
customers. The choice-based experiment in [19] suggests that
payment volatility significantly impacts a consumer’s decision
of which energy plan to enroll in. Their results show that cus-
tomers are less likely to choose a renewable energy plan as the
volatility of their monthly payment increases as compared to a
non-renewable plan. This indicates that programs that affect the
electricity bill of customers should be designed to prevent large
payment variations, so as to incentivize consumer participation.

The main contribution of our work is on the formulation and
analysis of a demand-side management framework which guar-
antees a bounded uncertainty on the electricity bill of flexible
consumers. Since consumers may be unable to fully control their
response, the task of constraining consumer payment variance is
delegated to the aggregator. To the best of our knowledge, there
are no previous works which adopt this type of consumer-centric
strategy, which focuses on limiting payment volatility while
placing the responsibility of guaranteeing constraint satisfaction
on the aggregator, and not on consumers. We also focus on
deriving analytical results, which can provide insights about the
solutions that would not be readily observed if only numerical
studies were performed.

Our analysis shows that the aggregator’s optimal day-ahead
purchase depends not only on the level of flexibility of con-
sumers and the day-ahead energy prices, but also on the ag-
gregated consumer noise and on the real-time prices. Further,
when comparing our variance-constrained formulation with an
unconstrained one, we observe two different mean-variance
trade-offs: first, consumers with a binding payment variance
constraint will observe a decrease in their payment uncertainty,

but their average payment increases; second, if any consumer
has a binding payment variance constraint, the aggregator ex-
periences a decrease in his utility variance, and this decreased
risk comes at the expense of a lower mean utility. While the
first trade-off could have been expected because it occurs on
the quantity whose variance we are constraining, the second
one is less intuitive, considering that the aggregator experiences
uncertainty not only on the payments received by consumers,
but also on his participation in the real-time market. We also
show that the aggregator limits dynamic pricing to consumers
with too large demand noise, so as to avoid large uncertainty
in their payments, indicating that consumers with lower noise
levels are preferred from the aggregator’s perspective.

The remainder of this paper is organized as follows. Our
problem formulation is presented in Section II. The optimal
strategies of the consumers and the aggregator are derived in
Section III, and further analyses of these results are performed
in Section IV. We illustrate our proposed framework with a case
study in Section V, and Section VI concludes this paper with
our final remarks.

II. PROBLEM FORMULATION

We model a Stackelberg game in which an aggregator acts
as the leader and sets the energy prices for flexible consumers,
while these consumers are followers and adjust their demand
levels in response to the prices charged. The aggregator is also
tasked with purchasing energy in a day-ahead wholesale market
to meet consumers’ demands. However, consumers have a noisy
demand, which can lead to mismatches between the amount of
energy purchased and what is actually consumed in real-time.
These mismatches are settled by the aggregator in the real-time
market, where excess energy can be sold, and shortages can be
covered by purchasing more energy. Due to demand volatility,
consumers experience uncertainty in the value of their electricity
bill. To counteract this undesirable effect, we consider that
the aggregator makes his decisions so as to keep the payment
variance of every consumer below a certain upper bound.

A. Consumers’ Problem

In the Stackelberg game modeled, each consumer i ∈ I :=
{1, . . ., N} receives a price πi from the aggregator. Given this
signal, the consumers will decide on their demand levels so that
their utility, given by

ui
c = γiln(αi + di)− πidi, (1)

is maximized. In the utility function (1), the first term is con-
sumer i’s benefit from consuming di, while the second term
is the payment corresponding to this demand. The logarithmic
function has been extensively used to model consumer-side util-
ity in demand response problems [8], [20], [21]. Previous works
have also considered quadratic [9], and linear [13] functions for
similar problems, but the logarithmic function has been shown
to lead to proportional fairness [22]. Nonetheless, the general
conclusions of our analysis can be extended to a more generic
concave utility function.
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The parameters γi and αi are particular of each consumer,
and thus these agents need not have a homogeneous behavior.
We let γi > 0 and αi ≥ 1, so that the benefit from consuming
is always non-negative. Then, consumer i solves the following
problem:

max
di

ui
c (2)

s.t. 0 ≤ di ≤ Di. (2a)

The consumers solve a deterministic problem when deciding
on their demand levels. However, due to lack of full control-
lability in their electric devices, the actual realization of these
demands is noisy. Thus, we let the real-time consumption of
customer i be

d∗i = d
∗
i + ξi, (3)

where d
∗
i is the solution to (2), and ξi is assumed to be a

zero-mean, bounded noise with variance σ2
i . Further, these noise

variables have a continuous, twice differentiable probability
distribution function (pdf). These technical assumptions on the
noise pdf ensure continuity of the inverse cumulative density
function for the aggregated noise, which will be part of our
analytical results. We consider the random noises {ξi} to be
independent across consumers. Similar modeling considerations
for demand noise have been used in previous works, such as [9],
[13]. Understanding the effect of correlation among customers
would bring more complexity to our analysis, and is left as
a direction for future work. In this context, if the paradigm
is shifted to considering customers who act strategically, an
interesting approach would be to use a causation-based cost
allocation similar to what has been previously proposed for
uncertain resources [23], [24].

B. Aggregator’s Problem

The aggregator takes into account the uncertainty in con-
sumers’ demand when making his decisions. His expected utility
function is given by his expected profit:

ua = −λDA

∑
i∈I

Ci + E

[∑
i∈I

πid
∗
i

]

+E

[
λ+

(∑
i∈I

(Ci − d∗i )

)+

− λ−
(∑

i∈I
(d∗i − Ci)

)+]
, (4)

where (.)+ representsmax(., 0), and the expectation E[.] is over
the sum of the demand noises from all consumers

∑
i ξi.

The first term in (4) is the cost incurred by the aggregator
to purchase energy in the day-ahead market at a price λDA,
where

∑
i Ci is a decision variable for the aggregator, and

corresponds to the aggregated purchase for all consumers. The
second term is the expected revenue from payments received
from the consumers, which are settled based on their actual
consumption in real-time (3). This demand is the consumer’s
best response to the price charged by the aggregator, and its
expression will be derived in Section III. The second line ex-
presses the transactions performed in the real-time market. The

first term in the expectation indicates the expected revenue from
selling energy in the real-time market at a price λ+ when the
actual demand is below the amount that was purchased in the
day-ahead market. Conversely, the second term represents the
cost of purchasing more energy at a price λ− when there is a
shortage in real-time due to the demands being higher than the
amount of energy available.

We assume the aggregator is small relative to the market, and
thus behaves as a price-taker. Therefore, all the market prices
are assumed to be fixed and known. This assumption follows
other works in the literature which investigate the participation
of demand response [13], wind [25], and storage resources [26]
in the market. The expected value of such prices could also be
used without loss of generality, as in [25], as long as they are
statistically independent of the demand noise. In such case, the
aggregator could use historical data to estimate these expected
prices. We further let λ+ < λDA < λ−. This avoids trivial re-
sults in which the aggregator acts as an arbitrageur by purchasing
large amounts of energy in the day-ahead market to resell them
in the real-time market, or in which he purchases all energy in
the real-time market.

As previously discussed, we consider a situation in which
the aggregator wants to avoid high uncertainty in how much
consumers expect to pay. The aggregator’s problem is to decide
how much energy to purchase in the day-ahead market, as
well as how much to charge each consumer, so that his own
expected profit is maximized. This problem is also subject to
the consumers’ responses to the prices set:

max
Ci,πi

ua (5)

s.t. Ci ≥ 0 ∀i ∈ N (5a)

πi ≥ 0 ∀i ∈ N (5b)

Var[πid
∗
i ] ≤ β2

i ∀i ∈ N (5c)

d∗i = d∗i (π
∗
i ) ∀i ∈ N . (5d)

The first two constraints in this problem ensure positivity
of prices and amount of energy purchased. Through (5c), the
aggregator sets an upper bound on each consumer’s payment
variance. Further, constraint (5d) is the price-dependent noisy
demand (3) found through each consumer i’s problem (2),
which is enforced so that the aggregator’s decisions lead to the
consumers choosing their best response. Here, we abuse notation
to write the price-dependent demand d∗i (π

∗
i ) as d∗i to simplify

the exposition of the expressions that involve this variable. In
this work, we ignore distribution network constraints and focus
on the demand-side management problem for noisy consumers.
Thus, the prices charged to consumers are not affected by their
location in the network, as would be the case in a scenario
that uses distribution locational marginal prices. Including such
constraints would lead to a less tractable model, limiting the
derivation of analytical results, and is left as a direction for future
work. Further, we assume the aggregator has full information of
the consumers’ parameters. Proposing a way to learn consumer
response is not in the scope of our paper, but multiple techniques
have been shown to be effective for this purpose [13], [27].
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III. OPTIMAL STRATEGIES

In the following results, we present the optimal decisions of
the consumers and the aggregator.

Lemma 1: The price-dependent noisy demand of each con-
sumer i is given by

d∗i (πi) =

⎧⎪⎨
⎪⎩
Di + ξi ifπi < γi/(αi +Di)

γi/πi − αi + ξi if γi/(αi +Di) ≤ πi < γi/αi

0 otherwise.
(6)

so that it is decreasing with the price charged πi, and becomes
zero if πi > γi/αi.

Proof: In problem (2), the utility ui
c is concave in the decision

variable di. The Lagrangian function for this problem is

Li
c = γiln(αi + di)− πidi + λidi + λi(Di − di), (7)

and the corresponding KKT conditions are

∂Li
c

∂di
=

γi

αi + di
− πi + λi − λi = 0 (8)

λidi = 0 (9)

λi(Di − di) = 0 (10)

λi, λi ≥ 0 (11)

If the demand di is non-binding, we must have λi = λi = 0. Us-
ing (8), it follows that d

∗
i = γi/πi − αi. For the demand bounds

(2a) to be satisfied, the price should satisfy γi/(αi +Di) ≤
πi ≤ γi/αi. Thus, consumer i’s demand function is

d
∗
i (πi) =

⎧⎪⎨
⎪⎩
Di ifπi < γi/(αi +Di)

γi/πi − αi if γi/(αi +Di) ≤ πi < γi/αi

0 otherwise.

(12)

Due to noise, this price-dependent demand is given by (3). �
The results on the optimal strategy for consumers show that

they set an upper bound on the price charged to begin consump-
tion. For any price beyond this point, the cost of paying for
electricity surpasses the benefit derived from consumption. We
also note that this price threshold depends on the ratio of the
consumer’s flexibility parameters γi/αi, so that consumers with
higher ratio are more willing to pay higher prices and thus can
be seen as more flexible. However, if consumers have the same
ratio γi/αi, their consumption level is not necessarily the same,
as the optimal demand (6) depends on each parameter separately,
being increasing with γi and decreasing with αi.

The optimal strategy of the consumers characterizes how
they respond for a given price, and does not take into account
the possible variance in their payments. They rely on the fact
that, for the demand-side management program proposed, the
aggregator sets the prices so that this variance is bounded. In
the following result, the consumers’ response is used to find the
optimal strategies for the aggregator.

Theorem 1: The aggregator’s optimal decision on how much
energy to purchase in the day-ahead market is given by∑

i∈I
C∗

i =
∑
i∈I

(
γi
π∗
i

− αi

)
+ F−1

(
λ− − λDA

λ− − λ+

)
, (13)

where F−1 is the quantile function of the aggregated demand
noise,

∑
i ξi. The optimal price for each consumer i is

π∗
i =

{√
λDAγi/αi ifσ2

i <
β2
i αi

λDAγi

βi/σi otherwise.
(14)

Consumers will respond with a non-zero demand if π∗
i < γi/αi.

Further, these prices should be no lower than γi/(αi +Di),
which is the level that leads to maximum consumer demand
Di.

Proof: We use backwards induction to solve for the aggre-
gator’s decisions in this Stackelberg game. Substituting the
noisy demands for the non-binding demand case from (6) in
the aggregator’s utility function (4), we find

ua = − λDA

∑
i∈I

Ci + E

[∑
i∈I

(γi − αiπi + ξiπi)

]

+ E

[
λ+

(∑
i∈I

(
Ci − γi

πi
+ αi − ξi

))+]

− E

[
λ−
(∑

i∈I

(
γi
πi

− αi + ξi − Ci

))+]
, (15)

which can be shown to be concave in the decision variables
for this problem. Making the same substitution in the variance
constraint (5c), we can write

Var[πid
∗
i ] = Var[γi − αiπi + ξiπi] = π2

i Var[ξi]

= π2
i σ

2
i ≤ β2

i ⇒ πiσi ≤ βi. (16)

Then, the Lagrangian for the aggregator’s problem (5) is

La = ua +
∑
i∈I

νiCi +
∑
i∈I

μiπi +
∑
i∈I

ρi(βi − πiσi), (17)

from which the KKT stationarity conditions are as follows

∂La

∂Ci
= − (λ− − λ+)F

(∑
i∈I

(
Ci − γi

πi
+ αi

))

− λDA + λ− + νi = 0∀i (18)

∂La

∂πi
= − γi

π2
i

(λ− − λ+)F

(∑
i∈I

(
Ci − γi

πi
+ αi

))

− αi +
λ−γi
π2
i

+ μi − ρiσi = 0∀i. (19)

Further, the complementary slackness and dual feasibility con-
ditions are given by

νiCi = 0∀i (20)

μiπi = 0∀i (21)
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ρi(βi − πiσi) = 0∀i (22)

νi, μi, ρi ≥ 0∀i, (23)

and the inequalities (5a)–(5c) of the original problem must be
satisfied. For non-zero prices πi and purchase amounts Ci, we
must have νi = μi = 0∀i. Then, from (18), we find that

F

(∑
i∈I

(
C∗

i −
γi
π∗
i

+ αi

))
=

λ− − λDA

λ− − λ+
, (24)

from which the optimal day-ahead purchase (13) is derived.
Substituting (24) in (19), we end up with

−αi + λDAγi/π
∗2
i − ρiσi = 0∀i. (25)

If the variance constraint (5c) is binding for a certain consumer
i, then ρi > 0 and π∗

iσi = βi ⇒ π∗
i = βi/σi. Using (25),

ρi =
λDAγi − π∗2

i αi

π∗2
i σi

> 0 ⇒ π∗
i <

√
λDAγi/αi. (26)

Then, both conditions hold if

βi/σi <
√

λDAγi/αi ⇒ σ2
i >

β2
i αi

λDAγi
. (27)

If this condition does not hold, then constraint (5c) cannot be
binding. Thus ρi = 0, and the corresponding optimal price can
be found from (25). Consumers will respond with maximum or
zero demand according to the bounds established in the first and
last cases of (12), respectively. �

From the optimal amount of day-ahead energy to purchase
presented in Theorem 1, we note that the aggregator is only
concerned with the overall amount of energy

∑
i Ci, rather

than the individual allocations Ci. This follows because, when
settling deviations in the real-time market, the aggregator pools
the demand of consumers, so that the collective deviation from
the total demand already purchased is considered. The quantile
term in (13) is related to the well-known newsvendor problem.
Similarly to the discussion in [28], the numerator in this quantile
term represents the opportunity cost of purchasing an extra
demand unit in the real-time market due to a low day-ahead
purchase, λ− − λDA. The denominator is the sum of this so-
called underage cost with the overage cost, which in this problem
represents the cost of having purchased an extra unit in the
day-ahead market, and having to sell it back at a lower cost,
λDA − λ+.

The expression (13) can be rewritten to find that

Prob

(∑
i∈I

d∗i ≤
∑
i∈I

C∗
i

)
=

λ− − λDA

λ− − λ+
, (28)

that is, the probability that there will be excess energy to be sold
in the real-time market depends on the price ratio given. This
probability is increasing with the cost of purchasing energy in
the real-time market λ−, indicating that the aggregator attempts
to decrease the likelihood of having a supply shortage when this
price is too high. A similar scenario is observed with increasing
price to sell back in the real-time market λ+. Here, the reason is
the added value that excess supply would have in the aggregator’s
utility. Conversely, larger day-ahead prices λDA lead to lower

probability that the total demand will be below the supply
already secured.

The price charged to each individual consumer (14) depends
not only on their flexibility level, represented by their parameters
γi and αi, but also on their individual demand variance σ2

i .
The first price presented corresponds to situations where the
consumer variance is low enough for the payment variance
constraint (5c) not to be binding at optimality. This situation
only holds if the demand variance σ2

i satisfies the upper bound
established. Note that this threshold becomes tighter for higher
λDA, since the price π∗

i , and thus the payment variance, is
increasing with the day-ahead energy price. Thus, this approach
limits dynamic pricing as the day-ahead price increases, pro-
tecting customers from being exposed to high market prices.1

Further, the price charged to each individual customer only
depends on their own characteristics, being agnostic to the
characteristics or behavior of other consumers. Therefore, the
proposed pricing scheme leverages consumer heterogeneity and
compensates consumers based on the value each one of them
brings to the demand response program.

When the demand variance of a consumer is too high, the price
charged is capped at the second expression in (14) to ensure that
the constraint (5c) is not violated. We remark that, if a consumer
is consistently in this category, then they will be charged this flat
rate more often as compared to other less uncertain consumers,
whose price will vary with the day-ahead energy price. This
indicates that a consumer whose response is too uncertain may be
exposed to an amount of risk that is beyond the acceptable level,
and this volatility in payment can be avoided by limiting dynamic
pricing for this consumer in lieu of a static, more traditional
approach to pricing. Because of their limitation in following
a dynamic pricing scheme, such consumers would not be able
to contribute extensively towards tasks such as peak demand
reduction. Therefore, the flexibility offered by consumers with
high demand variance is not as useful to the aggregator.

IV. MODEL IMPLICATIONS

In this section, we analyze the optimal strategies derived
previously to provide further insights about the interactions
between aggregator and consumers.

A. Consumer Participation

We start by analyzing the payment incurred by consumers
who have large demand variance.

Corollary 1: When a consumer’s demand variance surpasses

the threshold β2
i αi

λDAγi
and the payment variance demand (5c)

becomes binding,
1) the per unit price π∗

i charged by the aggregator is lowered
to bound the payment variance,

2) consumer i increases the mean value of his demand d
∗
i ,

3) the expected payment for consumer i, π∗
id

∗
i , increases.

1We note that market prices may surge in extreme weather events. However,
such scenarios are beyond the scope of this paper, as they may lead to the
violation of the assumption that demand noise variables are independent across
consumers.
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Proof: Proof follows directly from Theorem 1 results on the
aggregator’s optimal pricing strategy (14), and the consumer’s
price-dependent function (6). �

We can observe a mean-variance trade-off on the payments
performed by consumers with large demand variance. When the
aggregator bounds the uncertainty that these consumers may
experience in their payments, he adjusts the per unit price so
that the mean payment from these customers is higher than if
the payment variance constraint were not present. Thus, these
consumers incur a financial cost to ensure that their payment
variance does not exceed a certain threshold. As compared to a
scenario without the payment variance constraint, the increase
in payment observed by a consumer with a binding constraint is

√
λDAγiαi − αiβi

σi
, (29)

which is higher for consumers with higher demand variance σi,
and, as expected, decreases as the upper bound β2

i is relaxed.
In the following, we take a closer look at the price charged

for consumers with low enough demand variance.
Corollary 2: For a consumer with low enough demand noise

that the corresponding variance constraint (5c) is not binding,
the price charged π∗

i is the same as in a noiseless case.
Proof: If demands are deterministic, then there are no mis-

matches between the supply purchased in the day-ahead market
and the actual consumer demand, so that Ci = di∀i. Thus, the
aggregator does not participate in the real-time market, and his
deterministic utility becomes

ud
a =

∑
i∈N

πidi − λDA

∑
i∈N

di. (30)

From the consumers’ price-dependent demand curve (12), we
can find the inverse demand function

πi(d
∗
i ) = γi/(αi + d

∗
i )∀i, (31)

which can be substituted in (30), so that the aggregator solves
for di ≥ 0∀i. The resulting utility can be shown to be concave in
these decision variables. Letting μd

i be the Lagrange multiplier
of the positivity constraint for consumer i’s demand, we have
the Lagrangian function

Ld
a =

∑
i∈N

[
γidi

αi + di
− λDAdi + μd

i di

]
. (32)

The corresponding KKT conditions are

∂Ld
a

∂di
=

γiαi

(αi + di)2
− λDA + μd

i = 0∀i (33)

μd
i di = 0∀i (34)

μd
i ≥ 0∀i. (35)

For non-zero demands, μd
i = 0 and we use (33) to find

d
∗
i =

√
γiαi/λDA − αi > 0, (36)

whose positivity holds for λDA < γi/αi. Substituting this opti-
mal demand in the inverse demand function (31), we find that

the optimal price that leads to this demand is

π∗
i =

√
λDAγi/αi, (37)

which matches the noisy case for low enough σ2
i . �

Corollary 2 states that consumers will be charged as if they
had deterministic load, provided that their demand variance is
low enough. This implies that the aggregator handles demand
uncertainty mostly by adjusting his purchase in the day-ahead
market, instead of finely modifying the price charged to these
consumers. From the threshold on σ2

i presented in (14), we
remark that consumers are less likely to be considered of low
enough demand variance at times of peak demand. Thus, flexible
consumers can become more valuable during moments in which
load reduction is desirable by adopting measures which help
them decrease their demand variance, such as using appliances
that allow for more precise consumption control. As shown in
Corollary 1, this would allow them to achieve lower payments
in their electricity bill on average.

B. Aggregator’s Outcome

We now evaluate the implications of the proposed model from
the aggregator’s perspective.

Theorem 2: In a scenario where some of the payment variance
constraints (5c) are binding, the optimal utility of the aggregator
� is upper bounded by his optimal utility in a case without

these constraints, and
� has lower variance than in a case without these constraints.
Proof: To find the optimal utility of the aggregator, we substi-

tute the noisy demands (6) and the optimal day-ahead purchase
(13) in the aggregator’s utility function (4). This yields

ua = − λDA

[∑
i∈I

(
γi
π∗
i

− αi

)
+ F−1

(
λ− − λDA

λ− − λ+

)]

+ E

[∑
i∈I

(γi − αiπ
∗
i + ξiπ

∗
i )

]

+ E

[
λ+

(
F−1

(
λ− − λDA

λ− − λ+

)
−
∑
i∈I

ξi

)+]

− E

[
λ−
(∑

i∈I
ξi − F−1

(
λ− − λDA

λ− − λ+

))+]
. (38)

The terms corresponding to the real-time market transactions are
independent of the prices π∗

i charged to consumers. The same
is true for the quantile term in the first line. Thus, these terms
do not change if any of the constraints (5c) is binding, and we
focus on the remaining terms, which we denote ũa. In a case
without the payment variance constraints, the optimal prices are
the same as in the first case in (14). It follows that

ũa = −λDA

∑
i∈I

(√
γiαi

λDA
− αi

)
+
∑
i∈I

(
γi −

√
λDAγiαi

)
,

(39)
where we used the fact that the noises are zero-mean. Let B ⊆ I
be a subset of consumers which have binding payment variance
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constraint, and are charged as in the second case of (14). For this
binding case, we can write

ũb
a = − λDA

⎡
⎣∑
i∈I\B

(√
γiαi

λDA
− αi

)
+
∑
i∈B

(
γiσi

βi
− αi

)⎤⎦

+
∑
i∈I\B

(
γi −

√
λDAγiαi

)
+
∑
i∈B

(
γi − αiβi

σi

)
.

(40)

Comparing the unconstrained (39) and the binding (40) cases,
we find that ũa ≥ ũb

a, as detailed below

− λDA

∑
i∈B

(√
γiαi

λDA
− αi

)
+
∑
i∈B

(
γi −

√
λDAγiαi

)

≥ −λDA

∑
i∈B

(
γiσi

βi
− αi

)
+
∑
i∈B

(
γi − αiβi

σi

)

⇒ −2
∑
i∈B

(√
λDAγiαi

)
≥ −

∑
i∈B

(
λDAγiσi

βi
+

αiβi

σi

)

∑
i∈B

(√
λDAγiσi

βi
−
√

αiβi

σi

)2

≥ 0. (41)

For the utility variance, we note from (38) that the terms in the
first line have zero variance, while the real-time market terms
may have non-zero variance, but are independent of the prices
charged to consumers. Thus, we focus on the term in the second
line, whose variance is given by

Var

[∑
i∈I

(γi − αiπ
∗
i + ξiπ

∗
i )

]
=
∑
i∈I

π∗2
i σ2

i , (42)

since the random noises are independent. From Corollary 1, we
know that the per unit price π∗

i charged to consumers with bind-
ing payment variance constraint is lower than if this constraint
is non-binding. It follows that, if constraint (5c) is binding for
a subset B ⊆ I of consumers, then the aggregator’s utility will
have a lower variance as compared to an unconstrained case.

Similarly to consumers, the aggregator also observes a mean-
variance trade-off due to the payment variance constraints.
While the uncertainty in his utility is decreased with the addition
of these constraints, allowing him to avoid high volatility, he also
observes a decrease in his expected utility. We also highlight
that the expected real-time transactions at the optimal solution
remain unaffected as these constraints become binding, as they
only depend on the energy market prices and the noise proba-
bilistic model. Thus, the change in the aggregator’s utility is due
to the variations in his day-ahead purchase and in the payments
received from consumers. The analysis presented in Theorem 2
leads to the following results on the aggregator’s utility as the
number of consumers becomes large.

Corollary 3: The aggregator’s expected profit decreases as
the number of consumers with binding payment variance con-
straint becomes larger.

Proof: Proof follows from Theorem 2. As shown in (41), the
gap in the aggregator’s expected profit in the constrained case,

as compared to the unconstrained one, is increasing with the
number of consumers in the set with binding constraints. �

C. Comparison With a Uniform Pricing Approach

The proposed pricing strategy considers each customer’s flex-
ibility and noise levels, as well as their individual upper limits
on payment variance. However, current policies may impose
barriers against such price discrimination. In previous works,
the evaluation of the effects of price discrimination across con-
sumers have mostly focused on discriminatory pricing strategies
for excess energy. In this context, it has been shown that main-
taining fairness in programs with discriminatory pricing, such
that the price distribution reflects the contribution of each agent
in the system, is important to keep the customer participation in
the program from diminishing [29]. Further, these schemes can
also benefit the central entity responsible for managing energy
trades in a smart community [30]. For a scenario where only base
demand is considered, early works analyzed price discrimination
while categorizing consumers into different classes depending
on their demand patterns [31], and it has been shown that a
conventional uniform pricing approach may fail to incentivize
different groups to participate in demand response [32].

To complete our analysis, we compare our proposed strategy
with a scenario with no price discrimination across different
consumers, so that the aggregator charges the same price re-
gardless of how flexible or noisy each consumer is individually,
i.e.πi = π∀i. In this uniform price scenario, the price-dependent
demand function of each consumer (12) remains the same, only
now the price chargedπ is the same across all customers. Further,
the payment variance constraint (5c) is modified to become

Var[πd∗i ] ≤ β2
i ∀i ⇒ π ≤ min(βi/σi). (43)

Following these changes, the Lagrangian of aggregator’s
problem under a uniform pricing strategy becomes

Lu
a = uu

a +
∑
i∈I

νui Ci + μuπ + ρu(min(βi/σi)− π), (44)

where uu
a is the expected profit of the aggregator (15) with πi =

π∀i. For non-zero uniform price π and purchase amounts Ci,
the same expression for the optimal day-ahead purchase (13)
can be derived, but with πi = π∀i. As for the pricing strategy,
for Γ =

∑
i γi and A =

∑
i αi, the optimal uniform price is

π∗ =

{√
λDAΓ/A if [min(βi/σi)]

2 > λDAΓ/A

min(βi/σi) otherwise.
(45)

These results indicate that the uniform price charged is limited
by the customer with the lowest payment variance threshold-to-
noise ratio, βi/σi. Further, this customer also limits the overall
adoption of dynamic pricing. As a consequence, consumers who
are able to reliably contribute towards grid flexibility might
not receive enough incentive to do so when a uniform price
is adopted. When consumers are homogeneous in their maxi-
mum demand and their flexibility parameters, that is Di = D∀i,
γi = γ∀i, andαi = α∀i, the uniform pricing leads to consumers
having the same expected demand, and thus the same expected
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Fig. 1. Consumers’ payments as a function of their demand variance.

payment. In this scenario, the only difference among the cus-
tomers would be on the real-time noise realizations, but the
uniform pricing would guarantee the desired bounded payment
variance for every consumer.

V. CASE STUDY

For our numerical analysis, we consider a scenario with
50 consumers. We let the day-ahead energy price be λDA =
$0.25/kWh, and the real-time prices be λ+ = $0.20/kWh for
selling and λ− = $0.30/kWh for buying. Further, let the con-
sumers have the same flexibility parameters, γi = 10∀i and
αi = 1∀i, so that we can analyze the effect of their different
demand noises in the results.2 The parameters used are illus-
trative, as their estimation is not in the scope of this paper. We
again refer the reader to [13], [27] and the references therein for
examples of literature that focus on parameter learning and es-
timation. The following results represent the outcome of 50000
noise realizations. We reiterate, however, that the decisions are
taken ex-ante, based on the noise probabilistic model, and each
realization gives a possible final outcome given the decisions
taken.

We begin by comparing the payments performed by con-
sumers in an unconstrained case where the aggregator does not
enforce the payment variance constraint (5c) versus when this
constraint is present with β2

i = 1∀i. The noise variables ξi are
assumed to follow a zero-mean Gaussian distribution truncated
in the interval [−2500, 2500]. We set the demand variance of
the consumers to be distributed uniformly from σ2

i = 0.01 to
σ2
i = 1. The results are plotted in Fig. 1, where the error bars are

centered at the mean of all the realized values for each consumer,
and the end caps mark the intervals within one standard deviation
of the mean. In the unconstrained case, in blue, we notice that the

2The different noise levels can be representative of different types of con-
sumer. For example, industrial consumers have better capability for demand
control than residential customers, and thus can be less noisy. In reality, these
consumers would also have different flexibility parameters. However, better
insights can be drawn from the analysis if not all parameters are varied at the
same time. Nonetheless, the general results are also observed in the case of
heterogeneous consumers, as was shown in our analytical findings.

Fig. 2. Variance of consumers’ payments as a function of their demand
variance.

Fig. 3. Fitted probability density function for the aggregator’s utility (top)
and payments from a consumer with binding payment variance constraint in the
constrained problem (bottom).

payment variance increases with the consumer demand variance.
Further, the mean payment remains flat, which follows because
the consumers have the same flexibility parameters. Then, on
average, consumers who are equally flexible will incur the same
payments, even though they have different response uncertainty.

The results for the variance-constrained case match the un-
constrained one for consumers who are below the threshold
which indicates a binding payment variance constraint. For
consumers beyond this threshold, the price adjustment made
by the aggregator is such that their mean payments increase.
However, their payment variance decreases to satisfy the desired
upper bound, as can be seen in Fig. 2. In this plot, the instances
where the payment variance is slightly above the β2 threshold
are due to the sample size of the simulation, and they diminish
as more realizations are added.

The mean-variance utility trade-off for the aggregator can be
observed in Fig. 3 (top). For this plot, the realizations calculated
for the unconstrained and variance-constrained cases were fitted
to a Gaussian distribution, whose probability density functions
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Fig. 4. Fitted probability density function for the aggregator’s utility (top)
and payments from a consumer with binding payment CVaR constraint in the
constrained problem (bottom).

are presented. As discussed in Section IV-B, the fact that the pay-
ment variance constraints are binding for some consumers leads
to a decrease in the mean utility of the aggregator as compared
to an unconstrained case. However, the aggregator can achieve
a decrease in the variance of his utility, avoiding undesirable
volatility. In Fig. 3 (bottom), we can observe the trade-off in the
payment from a consumer whose payment variance constraint
is binding in the constrained problem. The fitted Gaussian dis-
tribution for the unconstrained case is shown to have a lower
mean and higher variance than the one corresponding to the
constrained scenario, so that the consumer is subject to a higher
mean payment in order to achieve a lower payment uncertainty.
We note that other risk metrics can be used in the proposed
model, and the insights still hold for other convex metrics. To
illustrate this, Fig. 4 shows the results achieved for the same
analysis if the payment variance constraint (5b) is substituted
with its Conditional Value at Risk (CVaR) counterpart, given by

CVaRδi [πid
∗
i ] = E [πid

∗
i |πid

∗
i ≥ VaRδi [πid

∗
i ]] ≤ βi∀i,

where VaRδi [πid
∗
i ] is the value at risk. In the case considered, the

CVaR was limited to be at most 11 for the worst 5% scenarios
(i.e. the 5% highest payments) for all consumers.

Next, we simulate a scenario in which all 50 consumers are
homogeneous and have a demand variance of σ2

i = 0.62∀i. We
then vary the upper bound on the payment variance constraintβ2

from 0.3 through 0.6 in increments of 0.1, and also consider an
unconstrained case. For all of the β2 scenarios, we evaluated the
aggregator’s average utility by breaking down each component
of his revenues and costs, as shown in Table I. As this constraint
is relaxed, the aggregator spends less in day-ahead purchases,
but his income from consumer payments also reduces. We also
note that the real-time trades are the same regardless of the
level of payment variance of the problem. This corroborates the
findings in Theorem 2, where it was shown that the real-time
transactions depend only on the demand noise statistics and
the energy prices both in the day-ahead and in the real-time

TABLE I
BREAKDOWN OF AGGREGATOR’S OPTIMAL UTILITY (AVERAGE OF ALL RUNS)

WITH INCREASING β2

markets. Therefore, the aggregator’s strategy is to adjust his
day-ahead purchases to increase supply availability when the
payment variance constraint is tight. This extra cost is balanced
with higher revenue from consumers’ payments, which increases
on average in such situations. For the parameters in this case
study, we can use the expression (28) to find that the theoretic
outcome of the aggregator’s strategy is to achieve a probability
of excess day-ahead purchase of

Prob

(∑
i∈I

d∗i ≤
∑
i∈I

C∗
i

)
=

0.30− 0.25

0.30− 0.20
= 0.5.

Numerically, 49.7% of the simulation trials yielded an excess
supply, which had to be sold in the real-time market, while 50.3%
of the outcomes had a supply shortage.

Lastly, to illustrate how the flexibility coming from consumers
with low demand noise is more useful to the aggregator, we
consider a scenario with increasing day-ahead prices. We again
let the real-time prices for selling and buying be 20% lower and
higher than the day-ahead price, respectively. We maintain the
same flexibility parameters from consumers throughout all cases
considered, so that, for each λDA, we can observe the differences
in the results due to demand variance only. We start with a
scenario in which all 50 consumers have a demand variance
of σ2

i = 1. Then, we simulate cases in which 30%, 50%, 70%,
and 100% of the consumers have σ2

i = 0.12, while the others
still have the variance σ2

i = 1.
For the first case, the demand noise of all consumers exceed

the threshold in (14) for all day-ahead price scenarios, and thus
they are considered to be high-noise and receive a flat energy
price. The aggregator’s optimal day-ahead purchase for this case
is shown in Fig. 5, and we notice that this amount is the highest
one across all scenarios. As we increase the number of low-noise
consumers, the average day-ahead purchase starts decreasing,
and we can also notice a more pronounced correlation between
the day-ahead prices and the amount of energy purchased by
the aggregator. This is due to the presence of more low-noise
type consumers, who are charged the dynamic price. With that,
the aggregator is able to incentivize higher consumption when
the day-ahead price is low, and lower demand, with respect to
the average, at times of high prices. These results indicate that
consumers with low demand noise are better suited to respond
reliably to the proposed dynamic pricing, and thus the aggregator
benefits from having more consumers of this type.

The results of this case study show that the proposed
consumer-centric approach benefits high-noise consumers by
reducing their payment volatility. At the same time, low-noise
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Fig. 5. Aggregator’s optimal purchase in the day-ahead market as a function
of the day-ahead energy price for increasing percentage of low-noise consumers.

consumers are able to participate more actively in dynamic
pricing strategies. This shifts the responsibility of how much
exposure to dynamic prices certain types of customers should
have from the customers themselves, who may not always be
well informed about the implications of market price fluctua-
tions, to the aggregator. These insights would also apply for other
scenarios, such as having consumers with different flexibility
parameters. The only difference would be the fact that each
consumer would have a different threshold indicating whether
they should receive a flat rate or a dynamic price, as showed in
Theorem 1.

VI. CONCLUSION AND FUTURE WORK

We propose a demand-side management framework in which
an aggregator sets energy prices to flexible consumers with
noisy demand response. The aggregator decides on the energy
supply to be purchased in the day-ahead market, and settles
any mismatches between supply and realized demand in the
real-time market. To avoid high volatility in the electricity bills of
consumers, the aggregator sets an upper bound on their payment
variance. We show that the aggregator’s optimal pricing decision
is to establish a threshold-based price, so that consumers with
low enough demand variance receive a price that is a function
of the day-ahead energy price, while consumers with too high
demand variance are charged a constant price. When any of the
payment variance constraints is binding, the consumer with the
binding constraint will experience lower payment uncertainty
and higher mean payments, while the aggregator observes a
decrease both in his utility variance and mean.

Avenues for future work include extending the proposed
formulation to incorporate randomness from distributed
renewable generation, so that customers have the additional
decision about whether to supply to the network or consume
their generation locally. Moreover, allowing customer flexibility
to be correlated, considering network constraints, and analyzing
scenarios with information asymmetry and strategic consumers
constitute interesting directions for further investigation, along

with the possibility of using a distributed implementation for
the Stackelberg game.
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