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Abstract: Matrix skeletonizations like the interpolative and CUR decompo-
sitions provide a framework for low-rank approximation in which subsets of
a given matrix’s columns and/or rows are selected to form approximate span-
ning sets for its column and/or row space. Such decompositions that rely on
“natural” bases have several advantages over traditional low-rank decomposi-
tions with orthonormal bases, including preserving properties like sparsity or
non-negativity, maintaining semantic information in data, and reducing storage
requirements. Matrix skeletonizations can be computed using classical deter-
ministic algorithms such as column pivoted QR, which work well for small-
scale problems in practice, but suffer from slow execution as the dimension in-
creases and can be vulnerable to adversarial inputs. More recently, randomized
pivoting schemes have attracted much attention, as they have proven capable
of accelerating practical speed, scale well with dimensionality, and sometimes
also lead to better theoretical guarantees. This manuscript provides a com-
parative study of various randomized pivoting based matrix skeletonization
algorithms that leverage classical pivoting schemes as building blocks. We
propose a general framework that encapsulates the common structure of these
randomized pivoting based algorithms, and provide an a-posteriori-estimable
error bound for the framework. Additionally, we propose a novel concretiza-
tion of the general framework, and numerically demonstrate its superior em-
pirical efficiency.

Keywords: Low rank approximation, interpolative decomposition, CUR de-
composition, randomized numerical linear algebra, column pivoted QR factor-
ization, rank revealing factorization.

1. INTRODUCTION

The problem of computing a low-rank approximation to a matrix is a classical one that has drawn in-
creasing attention due to its importance in the analysis of large data sets. At the core of low-rank matrix
approximation is the task of constructing bases that approximately span the column and/or row spaces of
a given matrix. This manuscript investigates algorithms for low-rank matrix approximations with “natural
bases” of the column and row spaces – bases formed by selecting subsets of the actual columns and rows of
the matrix. To be precise, given an m× n matrix A and a target rank k < min(m,n), we seek to determine
an m× k matrix C holding k of the columns of A, and a k × n matrix Z such that

(1)
A ≈ C Z.

m× n m× k k × n

We let Js denote the index vector of length k that identifies the k chosen columns, so that, in MATLAB
notation,

(2) C = A( : , Js).
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If we additionally identify an index vector Is that marks a subset of the rows that forms an approximate basis
for the row space of A, we can then form the “CUR” decomposition

(3)
A ≈ C U R,

m× n m× k k × k k × n

where U is a k × k matrix, and

(4) R = A(Is, : ).

The decomposition (3) is also known as a “matrix skeleton” [25] approximation (hence the subscript “s”
for “skeleton” in Is and Js). Matrix decompositions of the form (1) or (3) possess several compelling
properties: (i) Identifying Is and/or Js is often helpful in data interpretation. (ii) The decompositions (1) and
(3) preserve important properties of the matrix A. For instance, if A is sparse/non-negative, then C and R
are also sparse/non-negative. (iii) The decompositions (1) and (3) are often memory efficient. In particular,
when the entries of A itself are available, or can inexpensively be computed or retrieved, then once Js and
Is have been determined, there is no need to store C and R explicitly.

Deterministic techniques for identifying close-to-optimal index vectors Is and Js are well established.
Greedy algorithms such as the classical column pivoted QR (CPQR) [24, Sec. 5.4.1], and variations of LU
with complete pivoting [52, 34] often work well in practice. There also exist specialized pivoting schemes
that come with strong theoretical performance guarantees [27].

While effective for smaller dense matrices, classical techniques based on pivoting become computation-
ally inefficient as the matrix sizes grow. The difficulty is that a global update to the matrix is in general
required before the next pivot element can be selected. The situation becomes particularly dire for sparse
matrices, as each update tends to create substantial fill-in of zero entries.

To better handle large matrices, and huge sparse matrices in particular, a number of algorithms based on
randomized sketching have been proposed in recent years. The idea is to extract a “sketch” Y of the matrix
that is far smaller than the original matrix, yet contains enough information that the index vectors Is and/or
Js can be determined by using the information in Y alone. Examples include:
(1) Discrete empirical interpolation method (DEIM): The sketching step consists of computing approxi-

mations to the dominant left and right singular vectors of A, for instance using the randomized SVD
(RSVD) [28, 36]. Then a greedy pivot based scheme is used to pick the index sets Is and Js [21, 51].

(2) Leverage score sampling: Again, the procedures start by computing approximations to the dominant
left and right singular vectors of A through a randomized scheme. Then these approximations are used
to compute probability distributions on the row and/or column indices, from which a random subset of
columns and/or rows is sampled.

(3) Pivoting on a random sketch: With a random matrix Ω ∈ Rk×m drawn from some appropriate distri-
bution, a sketch of A is formed via Y = ΩA. Then, a classical pivoting strategy such as the CPQR is
applied on Y to identify a spanning set of columns.

The existing literature [3, 11, 13, 15, 16, 19, 21, 27, 37, 51, 58] presents compelling evidence in support
of each of these frameworks, in the form of mathematical theory and/or empirical numerical experiments.

The objective of the present manuscript is to organize different strategies, and to conduct a systematic
comparison, with the focus on their empirical accuracy and efficiency. In particular, we compare different
strategies for extracting a random sketch, such as techniques based on Gaussian random matrices [28, 32, 38,
60], random fast transforms [8, 28, 38, 48, 54, 61], and random sparse embeddings [12, 38, 39, 43, 55, 60].
We also compare different pivoting strategies such as pivoted QR [24, 58] versus pivoted LU [11, 51].
Finally, we compare how well sampling based schemes perform in relation to pivoting based schemes.

In addition to providing a comparison of existing methods, the manuscript proposes a general framework
that encapsulates the common structure shared by some popular randomized pivoting based algorithms, and
presents an a-posteriori-estimable error bound for the framework. Moreover, the manuscript introduces a
novel concretization of the general framework that is faster in execution than the schemes of [51, 58], while
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picking equally close-to-optimal skeletons in practice. In its most basic version, our simplified method for
finding a subset of k columns of A works as follows:

Sketching step: Draw Ω ∈ Rk×m from a Gaussian distribution and form Y = ΩA.

Pivoting step: Perform a partially pivoted LU decomposition of Y∗. Collect the chosen pivot
indices in the index vector Js.

What is particularly interesting about this process is that while the LU factorization with partial pivoting
(LUPP) is not rank revealing for a general matrix A, the randomized mixing done in the sketching step
makes LUPP excel at picking spanning columns. Furthermore, the randomness introduced by sketching
empirically serves as a remedy for the vulnerability of classical pivoting schemes like LUPP to adversarial
inputs (e.g., the Kahan matrix [33]). The scheme can be accelerated further by incorporating a structured
random embedding Ω. Alternatively, its accuracy can be enhanced by incorporating one of two steps of
power iteration when building the sample matrix Y.

The manuscript is organized as following: Section 2 provides a brief overview for the interpolative and
CUR decompositions (Section 2.2), along with some essential building blocks of the randomized pivoting al-
gorithms, including randomized linear embeddings (Section 2.3), randomized low-rank SVD (Section 2.4),
and matrix decompositions with pivoting (Section 2.5). Section 3 reviews existing algorithms for matrix
skeletonizations (Section 3.1, Section 3.2), and introduces a general framework that encapsulates the struc-
tures of some randomized pivoting based algorithms. In Section 4, we propose a novel concretization of
the general framework, and provide an a-posteriori-estimable bound for the associated low-rank approxima-
tion error. With the numerical results in Section 5, we first compare the efficiency of various choices for
the two building blocks in the general framework: randomized linear embeddings (Section 5.1) and matrix
decompositions with pivoting (Section 5.2). Then, we demonstrate empirical advantages of the proposed
algorithm by investigating the accuracy and efficiency of assorted randomized skeleton selection algorithms
for the CUR decomposition (Section 5.3).

2. BACKGROUND

We first introduce some closely related low-rank matrix decompositions that rely on “natural” bases,
including the CUR decomposition, and the column, row, and two-sided interpolative decompositions (ID)
in Section 2.2. Section 2.3 describes techniques for computing randomized sketches of matrices, based
on which Section 2.4 discusses the randomized construction of low-rank SVD. Section 2.5 describes how
these can be used to construct matrix decompositions. While introducing the background, we include proofs
of some well-established facts that provide key ideas, but are hard to extract from the context of relevant
references.

2.1. Notation. Let A ∈ Rm×n be an arbitrary given matrix of rank r ≤ min {m,n}, whose SVD is given
by

A = UA
m×r

ΣA
r×r

V>A
r×n

= [uA,1, . . . ,uA,r] diag (σA,1, . . . , σA,r) [vA,1, . . . ,vA,r]
>

such that for any rank parameter k ≤ r, we denote UA,k , [uA,1, . . . ,uA,k] and VA,k , [vA,1, . . . ,vA,k]

as the orthonormal bases of the dimension-k leading left and right singular subspaces of A, while U⊥A,k ,

[uA,k+1, . . . ,uA,r] and V⊥A,k , [vA,k+1, . . . ,vA,r] as the orthonormal bases of the respective orthogonal
complements. The diagonal submatrices consisting of the spectrum, ΣA,k , diag (σA,1, . . . , σA,k) and
Σ⊥A,k , diag (σA,k+1, . . . , σA,r), follow analogously. We denote Ak , UA,kΣA,kV

>
A,k as the rank-k

truncated SVD that minimizes rank-k approximation error of A ([22]). Furthermore, we denote the spectrum
of A, σ (A), as a r × r diagonal matrix, while for each i = 1, . . . , r, let σi(A) be the i-th singular value of
A.
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For the QR factorization, given an arbitrary rectangular matrices M ∈ Rd×l with full column rank (d ≥ l),
let M =

[
QM ,Q

⊥
M

]
[RM ; 0] be a full QR factorization of M such that QM ∈ Rd×l and Q⊥M ∈ Rd×(d−l)

consist of orthonormal bases of the subspace spanned by the columns of M and its orthogonal complement.
We denote ortho :

{
M ∈ Rd×l

∣∣ rank (M) = l
}
→ Rd×l (d ≥ l) as a map that identifies an orthonormal

basis (not necessary unique) for M, ortho(M) = QM .
We adapt the MATLAB notation for matrices throughout this work. Unless specified otherwise (e.g., with

subscripts), we use ‖·‖ to represent either the spectral norm or the Frobenius norm (i.e., holding simultane-
ously for both norms).

2.2. Interpolative and CUR decompositions. We first recall the definitions of the interpolative and CUR
decompositions of a given m× n real matrix A. After providing the basic definitions, we discuss first how
well it is theoretically possible to do low-rank approximation under the constraint that natural bases must be
used. We then briefly describe the further suboptimality incurred by standard algorithms.

2.2.1. Basic definitions. We consider low-rank approximations for A with column and/or row subsets as
bases. Given an arbitrary linearly independent column subset C = A (:, Js) (Js ⊂ [n]), the rank-|Js|
column ID of A with respect to column skeletons Js can be formulated as,

Â∗,Js , CC†A,(5)

where CC† is the orthogonal projector onto the spanning subspace of column skeletons. Analogously, given
any linearly independent row subset R = A (Is, :) (Is ⊂ [m]), the rank-|Is| column ID of A with respect
to row skeletons Is takes the form

ÂIs,∗ , AR†R,(6)

where R†R is the orthogonal projector onto the span of row skeletons. While with both column and row
skeletons, we can construct low-rank approximations for A in two forms – the two-sided ID and CUR
decomposition: with |Is| = |Js|, let S , A (Is, Js) be an invertible two-sided skeleton of A such that

Two-sided ID: ÂIs,Js ,
(
CS−1

)
S
(
C†A

)
(7)

CUR decomposition: ÃIs,Js , C
(
C†AR†

)
R(8)

where in the exact arithmetic, since S−1S = I, the two sided ID is equivalent to the column ID characterized
by C, i.e., ÂIs,Js = Â∗,Js . Nevertheless, the two-sided ID ÂIs,Js and CUR decomposition ÃIs,Js differ in
both suboptimality and conditioning.

Remark 1 (Suboptimality of ID versus CUR). For any given column and row skeletons C and R,∥∥∥A−CC†A
∥∥∥ ≤ ∥∥∥A−CC†AR†R

∥∥∥ ≤ (∥∥∥A−CC†A
∥∥∥2 +

∥∥∥A−AR†R
∥∥∥2) 1

2

.(9)

This comes from a simple orthogonal decomposition

A−CC†AR†R =
(
Im −CC†

)
A + CC†

(
A−AR†R

)
where

(
Im −CC†

)
and CC† are orthogonal projectors. Therefore with the Frobenius norm,∥∥∥A−CC†AR†R

∥∥∥2
F

=
∥∥∥A−CC†A

∥∥∥2
F

+
∥∥∥CC†

(
A−AR†R

)∥∥∥2
F

≤
∥∥∥A−CC†A

∥∥∥2
F

+
∥∥∥A−AR†R

∥∥∥2
F
,
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while with the spectral norm∥∥∥A−CC†AR†R
∥∥∥2
2

= max
‖v‖2≤1

∥∥∥(A−CC†A
)

v
∥∥∥2
2

+
∥∥∥CC†

(
A−AR†R

)
v
∥∥∥2
2{

≥ max‖v‖2≤1
∥∥(A−CC†A

)
v
∥∥2
2

=
∥∥A−CC†A

∥∥2
2

≤ max‖v‖2≤1
∥∥(A−CC†A

)
v
∥∥2
2

+
∥∥CC†

(
A−AR†R

)
v
∥∥2
2
≤
∥∥A−CC†A

∥∥2
2

+
∥∥A−AR†R

∥∥2
2

.

Remark 2 (Conditioning of ID versus CUR). The construction of CUR decomposition tends to be more
ill-conditioned than that of two-sided ID. Precisely, for properly selected column and row skeletons Js and
Is, the corresponding skeletons S, C, and R shares similar spectrum decay as A, which is usually ill-
conditioned in the context. In the CUR decomposition, both the bases C, R and the small matrix C†AR†

in the middle tend to suffer from large condition numbers as that of A. In contrast, the only potentially
ill-conditioned component in the two-sided ID is S (i.e., despite being expressed in S−1 and C†,

(
CS−1

)
and

(
C†A

)
in Equation (7) are actually well-conditioned, and can be evaluated without direct inversions).

Remark 3 (Stable CUR). Numerically, the stable construction of a CUR decomposition ÃIs,Js can be
conducted via (unpivoted) QR factorization of C and R ([2], Algorithm 2): let QC ∈ Rm×|Js| and
QR ∈ Rn×|Is| be matrices from the QR whose columns form orthonormal bases for C and R>, respec-
tively, then

ÃIs,Js = QC

(
Q>CAQR

)
Q>R.(10)

2.2.2. Notion of suboptimality. Both interpolative and CUR decompositions share the common goal of
identifying proper column and/or row skeletons for A whose column and/or row spaces are well covered
by the respective spans of these skeletons. Without loss of generality, we consider the column skeleton
selection problem: for a given rank k < r, we aims to find a proper column subset, C = A (:, Js) (Js ⊂ [n],
|Js| = k), such that ∥∥∥A− Â∗,Js

∥∥∥ ≤ φ (k,m, n) ‖A−Ak‖(11)

where common choices of the norm ‖·‖ include the spectral norm ‖·‖2 and Frobenius norm ‖·‖F ; φ (k,m, n)

is a function with φ (k,m, n) ≥ 1 for all k,m, n, and depends on the choice of ‖·‖; and we recall that Ak ,
UA,kΣA,kV

>
A,k yields the optimal rank-k approximation error. Meanwhile, similar low-rank approximation

error bounds are desired for the row ID ÂIs,∗, two-sided ID ÂIs,Js , and CUR decomposition ÃIs,Js .

2.2.3. Suboptimality of matrix skeletonization algorithms. The suboptimality of column subset selection,
as well as the corresponding ID and CUR decomposition, has been widely studied in a variety of literature.
Specifically, [25] proved that with S = A(Is, Js) (|Is| = |Js| = k) being the the maximal-volume subma-
trix in A, the corresponding CUR decomposition (called pseudoskeleton component in the original paper)
satisfies Equation (11) in ‖·‖2 with φ = O

(√
k (
√
m+

√
n)
)

. However, [25] pointed out that skeletons
associated with the maximal-volume submatrix are not guaranteed to minimize the low-rank approximation
error in Equation (11). Moreover, from the algorithmic perspective, identification of the maximal-volume
submatrix is known to be NP-hard ([62]). As the derivation of analysis for the strong rank-revealing QR fac-
torization, [27] demonstrated the existence of a rank-k column ID with φ =

√
1 + k(n− k), and proposed

a polynomial algorithm for constructing a relaxation with φ = O
(√

k(n− k)
)

. Leveraging sampling

based strategies, [18] showed the existence of a rank-k column ID with φ =
√

(k + 1)(n− k) for ‖·‖2
and φ =

√
1 + k for ‖·‖F by upper bounding the expectation of

∥∥∥A− Â∗,Js

∥∥∥ for volume sampling. Later
on, [17, 14] proposed polynomial-time algorithms for selecting such column skeletons. The recent work
[15] unveiled the multiple-descent trend of the suboptimality factor φ with respect to the approximation
rank k, and illustrated that, depending on the spectrum decay, the suboptimality factor can be as tight as
φ = O

(
k1/4

)
for small ks, while for larger ks that fall in certain intervals, φ = Ω(

√
k).
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Randomized linear embedding Theoretical best dimension reduction Ts(l,Ak)

Gaussian embedding l = Ω
(
k/ε2

)
O(nnz(Ak)l)

SRTT l = Ω
(
k log k/ε2

)
O(mn log l)

Sparse sign matrix l = Ω
(
k log k/ε2

)
, ζ = Ω (log k/ε) O(nnz(Ak)ζ)

TABLE 1. Lower bounds of ls that provide theoretical guarantee for Equation (12), and
asymptotic complexities of sketching, Ts(l,Ak), for some common randomized linear em-
beddings.

2.3. Randomized linear embeddings. For a given matrix Ak ∈ Rm×n of rank k ≤ min (m,n) (typically
we consider k � min(m,n)), and a distortion parameter ε ∈ (0, 1), a linear map Γ : Rm → Rl (i.e.,
Γ ∈ Rl×m, typically we consider l � m for embeddings) is called an `2 linear embedding of Ak with
distortion ε if

(1− ε)‖Akx‖2 ≤ ‖ΓAkx‖2 ≤ (1 + ε)‖Akx‖2 ∀ x ∈ Rn.(12)

A distribution S over linear maps Rm → Rl (or equivalently, over Rl×m) generates randomized oblivious
`2 linear embeddings (abbreviated as randomized linear embeddings) if over Γ ∼ S , Equation (12) holds
for all Ak with at least constant probability. Given Ak and a randomized linear embedding Γ ∼ S , ΓAk

provides a (row) sketch of Ak, and the process of forming ΓAk is known as sketching ([60, 38]).
Randomized linear embeddings are closely related to various concepts like the Johnson-Lindenstrauss

lemma and the restricted isometry property, and are studied in a broad scope of literature. [38] (Section
8, 9) provided an overview for and instantiated some popular choices of randomized linear embeddings,
including
(1) Gaussian embedddings: Γ ∈ Rl×m consisting of i.i.d. Gaussian entries Sij ∼ N (µ, 1/l) ([32, 28, 60,

38]);
(2) subsampled randomized trigonometric transforms (SRTT): Γ =

√
m
l Πm→lTΦΠm→m where Πm→l ∈

Rl×m is a uniformly random selection of l out ofm rows; T is anm×m unitary trigonometric transform
(e.g., discrete Hartley transform for R, and discrete Fourier transform for C); Φ , diag (ϕ1, . . . , ϕm)
with i.i.d. Rademacher random variables {ϕi}i∈[m] flips signs randomly; and Πm→m is a random per-
mutation ([61, 28, 48, 54, 8, 38]); and

(3) sparse sign matrices: Γ =
√

m
ζ [s1, . . . , sm] for some 2 ≤ ζ ≤ l, with i.i.d. ζ-sparse columns{

sj ∈ Rl
}
j∈[m]

constructed such that each sj is filled with ζ independent Rademacher random vari-
ables at uniformly random coordinates ([39, 43, 60, 12, 55, 38]).

Table 1 summarizes lower bounds on ls that provide theoretical guarantee for Equation (12), along with
asymptotic complexities of sketching, denoted as Ts(l,Ak), for these randomized linear embeddings. In
spite of the weaker guarantees for structured randomized embeddings (i.e., SRTTs and sparse sign matrices)
in the theory by a logarithmic factor, from the empirical perpective, l = Ω

(
k/ε2

)
is usually sufficient for

all the embeddings in Table 1 when considering tasks such as constructing randomized rangefinders (which
we subsequently leverage for fast skeleton selection). For instance, [28, 38] suggested taking l = k + Ω(1)
(e.g., l = k + 10) for Gaussian embeddings, l = Ω (k) for SRTTs, and l = Ω (k), ζ = min (l, 8) ([56]) for
sparse sign matrices in practice.

2.4. Randomized rangefinder and low-rank SVD. Given A ∈ Rm×n, the randomized rangefinder prob-
lem aims to construct a matrix X ∈ Rl×n such that the row space of X aligns well with the leading right
singular subspace of A ([38]):

∥∥A−AX†X
∥∥ is sufficiently small for some unitary invariant norm ‖·‖

(e.g., ‖·‖2 or ‖·‖F ). When X admits full row rank, we call X a rank-l row space approximator of A. The
well-known optimality result from [22] demonstrated that, for a fixed rank k, the optimal rank-k row space
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approximator of A is given by its leading k right singular vectors:
∥∥∥A−AVA,kV

>
A,k

∥∥∥2
F

= ‖A−Ak‖2F =∑min{m,n}
i=k+1 σi (A)2.
A row sketch X = ΓA generated by some proper randomized linear embedding Γ is known to serve as

a good solution for the randomized rangefinder problem with high probability. For instance, [28] demon-
strated that, with the Gaussian embedding, a small constant oversampling l − k ≥ 4 is sufficient for a good
approximation:

E
[∥∥∥A−AX†X

∥∥∥2
F

]
≤ l − 1

l − k − 1
‖A−Ak‖2F ,(13)

and moreover,
∥∥A−AX†X

∥∥2
F
. l(l − k) log (l − k) ‖A−Ak‖2F with high probability. Similar guaran-

tees hold for spectral norm ([28], Section 10). The randomized rangefinder error depends on the spectral
decay of A, and can be aggravated by a flat spectrum. In this scenario, power iterations (with proper orthog-
onalization, [28]), as well as Krylov and block Krylov subspace iterations ([42]), may be incorporated after
the initial sketching as a remedy. For example, with a randomized linear embedding Ω of size l × n, a row
space approximator with q power iterations (q ≥ 1) is given by

X = Ω
(
A>A

)q
,(14)

and takes X takes O (Ts(l,A) + (2q − 1) nnz(A)l) operations to construct. However, such plain power
iteration in Equation (14) is numerically unstable, and can lead to large errors when A is ill-conditioned and
q > 1. For a stable construction, orthogonalization can be applied at each iteration:

Y(1) = AΩ>

Y(i) = ortho
(
A ortho

(
A>Y(i−1)

))
∀ i = 2, . . . , q (if q > 1)

X = ortho
(
Y(q)

)>
A(15)

with an additional cost of O
(
q(m+ n)l2

)
overall.

In addition, with a proper l that does not exceed the exact rank of A, the row sketch X ∈ Rl×n has full
row rank almost surely. Precisely, recall r = rank(A) ≤ min {m,n} from Section 2.1:

Lemma 1. Let Γ ∈ Rl×m be a randomized linear embedding with i.i.d. entries drawn from some absolutely
continuous distribution (with respect to the Lebesgue measure). Then with l ≤ r, the row sketch X = ΓA
has full row rank with probability 1.

Proof of Lemma 1. We first claim that all l × l submatrices in Γ are invertible with probability 1. It is
sufficient to show that all l × l submatrices have nonzero determinants almost surely. The determinant
of an l × l matrix can be expressed as a polynomial in l2 entries of Γ, where zero set of the polynomial
has Lebesgue measure 0 in Rl2 . Then since the distribution of entries in Γ is absolutely continuous, the
determinant is nonzero with probability 1. Second, for X = ΓA admitting full row rank, we observe that
rows in Γ can be interpreted as independent random vectors in Rm with i.i.d. entries from some absolutely
continuous distribution. We aim to show that projection of the dimension-l row space of Γ onto the range
of A remains dimension l almost surely. But since any proper subspaces of Rm have Lebesgue measure 0
in Rm, projection of the row space of Γ onto the range of A is dimension l, and therefore X admits full row
rank, almost surely. �

A low-rank row space approximator X can be subsequently leveraged to construct a randomized rank-l
SVD. Assuming l is properly chosen such that X has full row rank, let QX ∈ Rn×l be an orthonormal basis
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for the row space of X. [28] pointed out that the exact SVD of the smaller matrix AQX ∈ Rm×l:[
ÛA
m×l

, Σ̂A
l×l
, ṼA
l×l

]
= svd

AQX︸ ︷︷ ︸
m×l

, ‘econ’

 , V̂A
n×l

= QXṼA,(16)

can be evaluated efficiently in O
(
ml2

)
operations (and O

(
nl2
)

additional operations for constructing V̂A)
such that A ≈ AX†X = ÛAΣ̂AV̂>A .

2.5. Matrix decompositions with pivoting. We next briefly survey how pivoted QR and LU decomposi-
tions can be leveraged to resolve the matrix skeleton selection problem. In this section, X ∈ Rl×n denotes
a matrix of full row rank (that will typically arise as a “row space approximator”). Let X(t) ∈ Rl×n be the
resulted matrix after the t-th step of pivoting and matrix updating, so that X(0) = X.

2.5.1. Column pivoted QR (CPQR). Applying the CPQR to X gives:

X Πn
n×n

= X [Πn,1
n×l

, Πn,2]
n×(n−l)

= Ql
l×l

RQR

l×n
= Ql

[
RQR

1

l×l

, RQR
2

]
l×(n−l)

,(17)

where Ql is an orthogonal matrix; RQR
1 is upper triangular; and Πn ∈ Rn×n is a column permutation.

QR decompositions rank-1 update the active submatrix at each step for orthogonalization (e.g., [31], [52],
Algorithm 10.1). For each t = 0, . . . , l − 2, at the (t + 1)-th step, the CPQR searches the entire active
submatrix X(t) (t+ 1 : l, t+ 1 : n) for the (t+ 1)-th column pivot with the maximal `2-norm:

jt+1 = argmax
t+1≤j≤n

∥∥∥X(t) (t+ 1 : l, j)
∥∥∥
2
.

[27] illustrated that CPQR satisfies maxi,j

∣∣∣∣∣
((

RQR
1

)−1
RQR

2

)
ij

∣∣∣∣∣ ≤ 2l−i, and instantiated the classical

Kahan matrix ([33]) as a pathological case that admits exponential growth. Nevertheless, these adversarial
inputs are scarce and sensitive to perturbations. The empirical success of CPQR also suggests that ex-
ponential growth with respect to l almost never occurs in practice ([53]). Meanwhile, there exist more
sophisticated variations of CPQR, like the rank-revealing ([10, 30]) and strong rank-revealing QR ([27]),

guaranteeing that maxi,j

∣∣∣∣∣
((

RQR
1

)−1
RQR

2

)
ij

∣∣∣∣∣ is upper bounded by some low-degree polynomial in l, but

coming with higher complexities as trade-off.

2.5.2. LU with partial pivoting (LUPP). Applying the LUPP columnwise to X yields:

X Πn
n×n

= X [Πn,1
n×l

, Πn,2]
n×(n−l)

= Ll
l×l

RLU

l×n
= Ll

[
RLU

1
l×l

, RLU
2

]
l×(n−l)

,(18)

where Ll is lower triangular; RLU
1 is upper triangular; RLU

1 (i, i) = 1 and
∣∣RLU (i, j)

∣∣ ≤ 1 for all i ∈ [l],
i ≤ j ≤ n; and Πn ∈ Rn×n is a column permutation. LU decompositions update active submatrices via
Shur complements (e.g., [52], Algorithm 21.1): for t = 0, . . . , l − 2,

X(t+1) (t+ 2 : l, t+ 2 : n) = X(t) (t+ 2 : l, t+ 2 : n)−X(t) (t+ 2 : l, t) X(t) (t, t+ 2 : n) /X(t) (t, t) .

At the (t + 1)-th step, the (column-wise) LUPP searches only the (t + 1)-th row in the active submatrix,
X(t) (t+ 1 : l, t+ 1 : n), and pivots

jt+1 = argmax
t+1≤j≤n

∣∣∣X(t) (t+ 1, j)
∣∣∣ ,

such that RLU (i, j) = X(i−1) (i, j) /X(i) (i, i) for all i ∈ [l], i + 1 ≤ j ≤ n (except for RLU (i, ji) =

X(i−1) (i, i) /X(i) (i, i)), and therefore
∣∣RLU (i, j)

∣∣ ≤ 1.
Analogous to CPQR, the pivoting strategy of LUPP leads to a loose, exponential upper bound:
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Lemma 2. The column-wise LUPP in Equation (18) satisfies that

max
i,j

∣∣∣∣((RLU
1

)−1
RLU

2

)
ij

∣∣∣∣ ≤ 2l−i,

where the upper bound is tight, for instance, when RLU
1 (i, j) = −1 for all i ∈ [l − 1], i + 1 ≤ j ≤ l and

RLU
2 (i, j) = 1 for all i ∈ [l], j ∈ [n− l] (i.e., a Kahan-type matrix ([33, 47])).

Proof of Lemma 2. We start by observing the following recursive relations: for all j = 1, . . . , n− l,((
RLU

1

)−1
RLU

2

)
lj

= RLU
2 (l, j)

((
RLU

1

)−1
RLU

2

)
ij

= RLU
2 (i, j)−

l∑
ι=i+1

RLU
1 (i, ι)

((
RLU

1

)−1
RLU

2

)
ι,j

∀ i = l − 1, . . . , 1,

given RLU
1 (i, i) = 1. Then both the upper bound and the Kahan example in Lemma 2 follow from the fact

that
∣∣RLU (i, j)

∣∣ ≤ 1 for all i ∈ [l], i ≤ j ≤ n. �

In addition to the exponential worse-case scenario in Lemma 2, LUPP is also vulnerable to rank defi-
ciency since it only views one row for each pivoting step (in contrast to CPQR which searches the entire
active submatrix). The advantage of the LUPP type pivoting scheme is its superior empirical efficiency and
parallelizability ([23, 35, 26, 50]). Fortunately, as with CPQR, adversarial inputs for LUPP are sensitive to
perturbations (e.g., flip the signs of random off-diagonal entries in RLU

1 ), and rarely encounted in practice.
LUPP can be further stabilized with randomization ([45, 46, 53]). In terms of the worse-case exponential

entry-wise bound in Lemma 2, [53] investigated average-case growth factors of LUPP on random matrices
drawn from a variety of distributions (e.g., the Gaussian distribution, uniform distributions, Rademacher
distribution, symmetry / Toeplitz matrices with Gaussian entries, and orthogonal matrices following Haar
measure), and conjectured that the growth factor increases sublinearly with respect to the problem size in
average cases.

Remark 4 (Conjectured in [53]). With randomized preprocessing like sketching, LUPP is robust to adver-

sarial inputs in practice, with maxi,j

∣∣∣∣((RLU
1

)−1
RLU

2

)
ij

∣∣∣∣ = O(l) in average cases.

Some common alternatives to the partial pivoting for LU decompositions include (adaptive) cross ap-
proximations ([5, 57, 34]), and complete pivoting. Specifically, the complete pivoting is a more robust (e.g.,
to rank deficiency) alternative to partial pivoting that searches the entire active submatrix, and permutes
rows and column simultaneously. In spite of lacking theoretical guarantees for the plain complete pivoting,
like for QR decompositions, there exists modified complete pivoting strategies for LU that come with better
rank-revealing guarantees ([44, 41, 3, 11]), but higher computational cost as trade-off.

3. SUMMARY OF EXISTING ALGORITHMS

A vast assortment of algorithms for interpolative and CUR decompositions have been proposed and an-
alyzed (e.g., [18, 17, 20, 37, 6, 59, 13, 9, 7, 51, 2, 1, 58, 3, 49, 14, 11, 15]) in the past decades. From the
skeleton selection perspection, these algorithms broadly fall in two categories:
(1) sampling based methods that draw matrix skeletons (directly, adaptively, or iteratively) from some

proper distributions, and
(2) pivoting based methods that pick matrix skeletons greedily by constructing low-rank matrix decompo-

sitions with pivoting.
In this section, we discuss existing algorithms for matrix skeletonizations, with a focus on algorithms based
on randomized linear embeddings and matrix decompositions with pivoting.
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3.1. Sampling based skeleton selection. The idea of skeleton selection via sampling is closely related
to various topics including graph sparsification ([4]) and volume sampling ([18]). Concerning volume
sampling, [17, 2, 14, 15] discussed adaptive sampling strategies that lead to matrix skeletons with close-
to-optimal error guarantees, as discussed in Section 2.2.2. [20, 37, 6, 19] pointed out the effect of matrix
coherence, an inherited property of the matrix, on skeleton sampling, and proposed the idea of leverage score
sampling for constructing CUR decompositions, as well as efficient estimations for the leverage scores. Be-
ginning with uniform sampling, [13] provided extensive analysis on sampling based matrix approximations,
and proposed an iterative sampling scheme for skeleton selection. Some more sophisticated variations of
sampling based skeleton selection algorithms were proposed in [9, 7, 59] that combined varieties of sampling
methods.

3.2. Skeleton selection via deterministic pivoting. Greedy algorithms based on column and row pivoting
can also be used for matrix skeletonizations. For instance, with proper rank-revealing pivoting like the
strong rank-revealing QR proposed in [27], a rank-k (k < r) column ID can be constructed with the first k
column pivots

A[Πn,1
n×l

, Πn,2]
n×(n−l)

= [QA,1
m×k

, QA,2]
m×(r−k)

[
RA,11 RA,12

0 RA,22

]
≈ (AΠn,1)

[
Ik, R−1A,11RA,12

]
where Πn = [Πn,1,Πn,2] is a permutation of columns; and RA,11 and RA,22 are non-singular and upper
triangular. C = (AΠn,1) are the selected column skeletons that satisfies

∥∥A−CC†A
∥∥ = ‖RA,22‖ .√

k(n− k) ‖A−Ak‖. As a more affordable alternative to the rank-revealing pivoting, the CPQR dis-
cussed in Section 2.5 also works well for skeleton selection in practice ([58]), despite the weaker theoretical
guarantee (i.e.,

∥∥A−CC†A
∥∥ . 2k ‖A−Ak‖) due to the known existence of adversarial inputs. In ad-

dition to the QR based pivoting schemes, [44, 41, 1, 3, 49, 11] proposed various (randomized) LU based
pivoting algorithms with rank-revealing guarantees that can be leveraged for greedy matrix skeleton selec-
tion (as discussed in section 2.5). Meanwhile, relaxing the rank-revealing requirements on pivoting schemes
by pre-processing A, [51, 21] proposed the DEIM skeleton selection algorithm that apply LUPP on the
leading singular vectors of A.

3.3. Randomized pivoting based skeleton selection. In comparison to the sampling based skeleton selec-
tion, the deterministic pivoting based skeleton selection methods suffer from two major drawbacks. First,
pivoting is usually unaffordable for large-scale problems in common modern applications. Second, classical
pivoting schemes like the CPQR and LUPP are vulnerable to antagonistic inputs. Fortunately, randomized
pre-processing with sketching provides remedies both problems:
(1) Faster execution speed is attained by executing classical pivoting schemes on a sketch X = ΓA ∈ Rl×n,

for some randomized embedding Γ, instead on A directly.
(2) With randomization, classical pivoting schemes like the CPQR and LUPP are robust to adversarial inputs

in practice (Remark 4, [53]).
Algorithm 1 describes a general framework for randomized pivoting based skeleton selection. Grounding
this framework down with different combinations of row space approximators and pivoting schemes, [58]
took X = ΓA as a row sketch, and applied CPQR to X for column skeleton selection. Alternatively, the
DEIM skeleton selection algorithm proposed in [51] can be accelerated by taking X as an approximation of
the leading-l right singular vectors of A (Equation (16)), where LUPP is applied for skeleton selection.

First, we recall from Lemma 1 that when taking X as a row sketch, with Gaussian embeddings, Γ and
X = ΓA are both full row rank with probability 1. Moreover, when taking X as an approximation of right
singular vectors constructed with a row space approximator consisting of l linearly independent rows, X
also admits full row rank.

Second, when both column and row skeletons are inquired, Algorithm 1 selects the column skeletons first
with randomized pivoting, and subsequently identifies the row skeletons by pivoting on the selected columns.
With X being full row rank (almost surely when Γ is a Gaussian embedding), the column skeletons C are
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Algorithm 1 Randomized pivoting based skeleton selection: a general framework

Input: A ∈ Rm×n of rank r, rank l ≤ r (typically l� min(m,n)).
Output: Column and/or row skeleton indices, Js ⊂ [n] and/or Is ⊂ [m], |Js| = |Is| = l.

1: Draw an oblivious `2-embedding Γ ∈ Rl×m.
2: Construct a row space approximator X ∈ Rl×n via sketching with Γ.

e.g., X can be 1) a row sketch or 2) approximations of right singular vectors.
3: Perform column-wise pivoting on X. Let Js index the l column pivots.
4: Perform row-wise pivoting on C = A(:, Js). Let Is index the l row pivots.

linearly independent. Therefore, the row-wise skeletonization of C is exact, without introducing additional
error. That is, the two-sided ID constructed by Algorithm 1 is equal to the associated column ID in exact
arithmetic, ÂIs,Js = Â∗,Js .

4. A SIMPLE BUT EFFECTIVE MODIFICATION: LUPP ON SKETCHES

Inspired by the idea of pivoting on sketches ([58]) and the remarkably competitive performance of LUPP
when applied to leading singular vectors ([51]), we propose a simple but effective modification – applying
LUPP directly to a sketch of A. In terms of the general framework in Algorithm 1, this corresponds to taking
X as a row sketch of A, and then selecting skeletons via LUPP on X and C, as summarized in Algorithm 2.

Algorithm 2 Randomized LUPP skeleton selection

Input: A ∈ Rm×n of rank r, rank l ≤ r (typically l� min(m,n)).
Output: Column and/or row skeleton indices, Js ⊂ [n] and/or Is ⊂ [m], |Js| = |Is| = l.

1: Draw an oblivious `2-embedding Γ ∈ Rl×m.
2: Construct a row sketch X = ΓA.
3: Perform column-wise LUPP on X. Let Js index the l column pivots.
4: Perform row-wise LUPP on C = A(:, Js). Let Is index the l row pivots.

Comparing to pivoting with CPQR ([58]), Algorithm 2 with LUPP is empirically faster, as discussed
in Section 2.5, and illustrated in Figure 2. Meanwhile, assuming that the true SVD of A is unavailable, in
comparison to pivoting on the approximated leading singular vectors ([51]) from Equation (16), Algorithm 2
saves the effort of constructing randomized SVD which takes O

(
nnz(A)l + (m+ n)l2

)
additional opera-

tions. Additionally, with randomization, the stability of LUPP conjectured in [53] (Remark 4) applies, and
Algorithm 2 effectively circumvents the potential vulnerability of LUPP to adversarial inputs in practice. A
formal error analysis of Algorithm 1 in general reflects these points:

Theorem 1 (Column skeleton selection by pivoting on a row space approximator). Given a row space
approximator X ∈ Rl×n (l ≤ r) of A that adimits full row rank, let Πn ∈ Rn×n be the resulted permutation
after applying some proper column pivoting scheme on X that identifies l linearly independent column
pivots: for the (l, n − l) column-wise partition XΠn = X [Πn,1,Πn,2] = [X1,X2], the first l column
pivots X1 = XΠn,1 ∈ Rl×l admits full column rank. Moreover, the rank-l column ID Â∗,Js = CC†A,
with linearly independent column skeletons C = AΠn,1, satisfies that∥∥∥A−CC†A

∥∥∥ ≤ η ∥∥∥A−AX†X
∥∥∥ ,(19)

where η ≤
√

1 +
∥∥∥X†1X2

∥∥∥2
2
, and ‖·‖ represents the spectral or Frobenius norm.

Theorem 1 states that when selecting column skeletons by pivoting on a row space approximator, the low-
rank approximation error of the resulting column ID is upper bounded by that of the associated row space
approximator up to a factor η > 1 that can be computed a posteriori efficently in O

(
l2(n− l)

)
operations.
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Equation (19) essentially decouples the error from the row space approximation with X (
∥∥A−AX†X

∥∥
corresponding to Line 1 and 2 of Algorithm 1) and that from the skeleton selection by pivoting on X (η
corresponding to Line 3 and 4 of Algorithm 1). Now we ground Theorem 1 with different choices of row
space approximation and pivoting strategies:
(1) With Algorithm 2,

∥∥A−AX†X
∥∥ is the randomized rangefinder error (Equation (13), [28] Section 10),

and η ≤
√

1 +
∥∥∥(RLU

1

)−1
RLU

2

∥∥∥2
2

(recall Equation (18)). Although in the worse case scenario (where

the entry-wise upper bound in Lemma 2 is tight), η = Θ
(
2l
√
n− l

)
, with a randomized row sketch X,

assuming the stability of LUPP conjectured in [53] holds (Remark 4), η = O
(
l3/2
√
n− l

)
.

(2) Skeleton selection with CPQR on row sketches (i.e., randomized CPQR proposed by [58]) shares the

same error bound as Algorithm 2 (i.e., analogous arguments hold for
∥∥∥∥(RQR

1

)−1
RQR

2

∥∥∥∥2
2

).

(3) When applying LUPP on the true leading singular vectors (i.e., DEIM proposed in [51], assuming
that the true SVD is available),

∥∥A−AX†X
∥∥ = ‖A−Al‖, but without randomization, LUPP is

vulnerable to adversarial inputs which can lead to η = Θ
(
2l
√
n− l

)
in the worse case.

(4) When applying LUPP on approximations of leading singular vectors (constructed via Equation (16), i.e.,
randomized DEIM suggested by [51]),

∥∥A−AX†X
∥∥ corresponds to the randomized rangefinder error

with power itertions ([28] Corollary 10.10), while η follows the analogous analysis as for Algorithm 2.

Proof of Theorem 1. We start by defining two oblique projectors

PX
n×n
, Πn,1 (XΠn,1)

†X, PC
n×n
, Πn,1

(
C>C

)†
C>A,

and observe that, since C consists of linearly independent columns,
(
C>C

)†
C>AΠn,1 = Il, and

PCPX = Πn,1

(
C>C

)†
C>AΠn,1 (XΠn,1)

†X = PX .

With PC , we can express the column ID as

Â∗,Js = CC†A = A

(
Πn,1

(
C>C

)†
C>A

)
= APC ,

Therefore, the low-rank approximation error of Â∗,Js satisfies∥∥∥A−CC†A
∥∥∥ = ‖A (I−PC)‖

= ‖A (In −PC) (In −PX)‖

=
∥∥∥(Im −CC†

)
A (In −PX)

∥∥∥
≤
∥∥∥Im −CC†

∥∥∥
2
‖A (In −PX)‖ ,

where
∥∥Im −CC†

∥∥
2

= 1, and since XPX = X1X
†
1X = X with X1 being full-rank,

‖A (In −PX)‖ =
∥∥∥A(In −X†X

)
(In −PX)

∥∥∥ = ‖In −PX‖2
∥∥∥A(In −X†X

)∥∥∥ .
As a result, we have ∥∥∥A−CC†A

∥∥∥ ≤ ‖In −PX‖2
∥∥∥A(In −X†X

)∥∥∥ ,
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and it is sufficient to show that η , ‖In −PX‖2 ≤
√

1 +
∥∥∥X†1X2

∥∥∥2
2
. Indeed,

In −PX = Π>nΠn −Π>nΠn,1 (XΠn,1)
†XΠn = In −

[
Il

0

]
X†1

[
X1X2

]
=

[
0 −X†1X2

0 In−l

]

such that η =
∥∥∥[−X†1X2; In−l

]∥∥∥
2
≤
√

1 +
∥∥∥X†1X2

∥∥∥2
2
. �

Here, the proof of Theorem 1 is reminiscent of [51], while it generalizes the result for fixed right leading
singular vectors to any proper row space approximators of A (e.g., V̂A in Equation (16), or simply a row
sketch). The generalization of Theorem 1 leads to a factor η that is efficiently computable a posteriori, which
can serve as an empirical replacement of the exponential upper bound induced by the scarce adversarial
inputs.

In addition to empirical efficiency and robustness discussed above, Algorithm 2 has another potential
advantage: the skeleton selection algorithm can be easily adapted to the streaming setting. The streaming
setting considers A as a data stream that can only be accessed as a sequence of snapshots. Each snapshot of
A can be viewed only once, and the storage of the entire matrix A is infeasible ([55, 56, 38]).

Algorithm 3 Streaming LUPP/CPQR skeleton selection

Input: A ∈ Rm×n of rank r, rank l ≤ r (typically l� min(m,n)).
Output: Column and/or row skeleton indices, Js ⊂ [n] and/or Is ⊂ [m], |Js| = |Is| = l.

1: Draw independent oblivious `2-embeddings Γ ∈ Rl×m and Ω ∈ Rl×n.
2: Construct row and column sketches, X = ΓA and Y = AΩ>, in a single pass through A.
3: Perform column-wise pivoting (LUPP/CPQR) on X. Let Js index the l column pivots.
4: Perform row-wise pivoting (LUPP/CPQR) on Y. Let Is index the l row pivots.

Remark 5. When only the column and/or row skeleton indices are required (and not the explicit construction
of the corresponding interpolative or CUR decomposition), Algorithm 2 can be adapted to the streaming
setting (as shown in Algorithm 3) by sketching both sides of A independently in a single pass, and pivoting
on the resulting column and row sketches. Moreover, with the column and row skeletons Js and Is from
Algorithm 3, Theorem 1 and its row-wise analog together, along with Equation (9), imply that∥∥∥A− ÃIs,Js

∥∥∥ ≤ ηX ∥∥∥A−AX†X
∥∥∥+ ηY

∥∥∥A−YY†A
∥∥∥ ,

where ηX and ηY are small in practice with pivoting on randomized sketches, and have efficiently a posteriori
computable upper bounds given X and Y, as discussed previously.

∥∥A−AX†X
∥∥2
F

and
∥∥A−YY†A

∥∥
are the randomized rangefinder errors with well-established upper bounds ([28] Section 10).

We point out that, although the column and row skeleton selection can be conducted in streaming fash-
ion, the explicit stable construction of ID or CUR requires two additional passes through A: one pass for
retrieving the skeletons C and/or R, and the other pass to construct C†AR† for CUR, or C†A, AR† for
IDs. In practice, for efficient estimations of the ID or CUR when revisiting A is expensive, it is possible to
circumvent the second pass through A with compromise on accuracy and stability, albeit the inevitability of
the first pass for skeleton retrieval.

Precisely for the ID, C†A (in Equation (5)) or AR† (in Equation (6)) can be estimated without revisiting
A leveraging the associated row and column sketches:

C†A ≈ X†1X, AR† ≈ YY†1,

where X1 = X (:, Js) and Y1 = Y (Is, :) are the l column and row pivots in X and Y, respectively.
Meanwhile for the CUR, by retrieving the skeletons S = A (Is, Js), C = A (:, Js) and R = A (Is, :), we
can construct a CUR decomposition CS−1R, despite the compromise on both accuracy and stability.
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5. NUMERICAL EXPERIMENTS

In this section, we study the empirical performance of various randomized skeleton selection algorithms.
Starting with the randomized pivoting based algorithms, we investigate the efficiency of two major compo-
nents of Algorithm 1: (1) the sketching step for row space approximator construction, and (2) the pivoting
step for greedy skeleton selection. Then we explore the suboptimality (in terms of low-rank approximation
errors of the resulting CUR decompositions

∥∥∥A− ÃIs,Js

∥∥∥), as well as the efficiency (in terms of empirical
run time), of different randomized skeleton selection algorithms.

We conduct all the experiments, except for those in Figure 1 on the efficiency of sketching, in MATLAB
R2020a. In the implementation, the computationally dominant processes, including the sketching, LUPP,
CPQR, and SVD, are performed by the MATLAB built-in functions. The experiments in Figure 1 are
conducted in Julia Version 1.5.3 with the JuliaMatrices/LowRankApprox.jl package ([29]).

5.1. Computational speeds of different embeddings. Here, we compare the empirical efficiency of con-
structing sketches with some common randomized embeddings listed in Table 1. We consider applying an
embedding Γ of size l × m to a matrix A of size m × n, which can be interpreted as embedding n vec-
tors in an ambient space Rm to a lower dimensional space Rl. We scale the experiments with respect to
the ambient dimension m, at several different embedding dimension l, with a fixed number of repetitions
n = 1000. Figure 1 suggests that, with proper implementation, the sparse sign matrices are more efficient
than the Gaussian embeddings and the SRTTs, especially for large scale problems. The SRTTs outperform
Gaussian embeddings in terms of efficiency, and such advantage can be amplified as l increases. These
observations align with the asymptotic complexity in Table 1. While we also observe that, with MATLAB
default implementation, the Gaussian embeddings usually enjoy matching efficiency as sparse sign matrices
for moderate size problems, and are more efficient than SRTTs.

FIGURE 1. Run time of applying different randomized embeddings Γ ∈ Rl×m to some
dense matrices of size m × n, scaled with respect to the ambience dimension m, with
different embedding dimension l, and a fixed number of embeddings n = 100.

5.2. Computational speeds of different pivoting schemes. Given a sketch of A, we isolate different piv-
oting schemes in Algorithm 1, and compare their run time as the problem size n increases. Specifically,
the LUPP and CPQR pivot directly on the given row sketch X = ΓA ∈ Rl×n, while the DEIM involves
one additional power iteration with orthogonalization (Equation (15)) before applying the LUPP (i.e., with
a given column sketch Y = AΩ ∈ Rm×l, for DEIM, we first construct an orthonormal basis QY ∈ Rm×l
for columns of the sketch, and then we compute the reduced SVD for Q>Y A ∈ l×n, and finally we column-
wisely pivot on the resulting right singular vectors of size l×n). In Figure 2, we observe a considerable run
time advantage of the LUPP over the CPQR and DEIM, especially when l is large. (Additionally, we see
that DEIM slightly outperforms CPQR, which is perhaps surprising, given the substantially larger number
of flops required by DEIM.)



SIMPLER IS BETTER: A COMPARATIVE STUDY OF RANDOMIZED ALGORITHMS FOR CUR AND ID 15

FIGURE 2. Run time of different pivoting schemes, scaled with respect to the problem size
n, with different embedding dimension l.

5.3. Randomized skeleton selection algorithms: accuracy and efficiency. As we move from measuring
speed to measuring the precision of revealing the numerical rank of a matrix, the choice of test matrix
becomes important. We consider four different classes of test matrices, including some synthetic random
matrices with different spectral patterns, as well as some empirical datasets, as summarized below:
(1) large: a full-rank 4, 282 × 8, 617 sparse matrix with 20, 635 nonzero entries from the SuiteSparse

matrix collection, generated by a linear programming problem sequence [40].
(2) YaleFace64x64: a full-rank 165 × 4096 dense matrix, consisting of 165 face images each of size

64 × 64. The flatten image vectors are centered and normalized such that the average image vector is
zero, and the entries are bounded within [−1, 1].

(3) MNIST training set consists of 60, 000 images of hand-written digits from 0 to 9. Each image is of size
28 × 28. The images are flatten and normalized to form a full-rank matrix of size N × d where N is
the number of images and d = 784 is the size of the flatten images, with entries bounded in [0, 1]. The
nonzero entries take approximately 20% of the matrix for both the training and the testing sets.

(4) Random sparse non-negative (SNN) matrices are synthetic random sparse matrices used in [58, 51] for
testing skeleton selection algorithms. Given s1 ≥ · · · ≥ sr > 0, a random SNN matrix A of size m×n
takes the form,

(20) A = SNN
(
{si}ri=1; m,n

)
:=

r∑
i=1

sixiy
T
i

where xi ∈ Rm, yi ∈ Rn, i ∈ [r] are random sparse vectors with non-negative entries. In the experi-
ments, we use two random SNN matrices of distinct sizes:

(i) SNN1e3 is a 1000× 1000 SNN matrix with r = 1000, si = 2
i for i = 1, . . . , 100, and si = 1

i for
i = 101, . . . , 1000;

(ii) SNN1e6 is a 106 × 106 SNN matrix with r = 400, si = 2
i for i = 1, . . . , 100, and si = 1

i for
i = 101, . . . , 400.

Scaled with respect to the approximation ranks k, we compare the accuracy and efficiency of the following
randomized CUR algorithms:
(1) Rand-LUPP (and Rand-LUPP-1piter): Algorithm 1 with X = ΓA being a row sketch (or with one plain

power iteration as in Equation (14)), and pivoting with LUPP;
(2) Rand-CPQR (and Rand-CPQR-1piter): Algorithm 1 with X = ΓA being a row sketch (or with one

power iteration as in Equation (14)), and pivoting with CPQR ([58]);
(3) RSVD-DEIM: Algorithm 1 with X being an approximation of leading-k right singular vectors (Equa-

tion (16)), and pivoting with LUPP ([51]);
(4) RSVD-LS: Skeleton sampling based on approximated leverage scores ([37]) from a rank-k SVD ap-

proximation (Equation (16));
(5) SRCUR: Spectrum-revealing CUR decomposition proposed in [11].



16 YIJUN DONG AND PER-GUNNAR MARTINSSON

The asymptotic complexities of the first three randomized pivoting based skeleton selection algorithms based
on Algorithm 1 are summarized in Table 2.

Algorithm Row space approximator construction (Line 1,2) Pivoting (Line 3)
Rand-LUPP O(Ts(l,A)) O(nl2)

Rand-LUPP-1piter O(Ts(l,A) + nnz(A)l) O(nl2)

Rand-CPQR O(Ts(l,A)) O(nl2)

Rand-CPQR-1piter O(Ts(l,A) + nnz(A)l) O(nl2)

RSVD-DEIM O
(
Ts(l,A) + (m+ n)l2 + nnz(A)l

)
O(nl2)

TABLE 2. Asymptotic complexities of various randomized pivoting based skeleton selec-
tion algorithms based on Algorithm 1.

For consistency, we use Gaussian embeddings for sketching throughout the experiments. With the se-
lected column and row skeletons, we leverage the stable construction in Equation (10) to form the corre-
sponding CUR decompositions ÃIs,Js . Although oversampling (i.e., l > k) is necessary for multiplicative
error bounds with respect to the optimal rank-k approximation error (Equation (13), Theorem 1), since over-
sampling can be interpreted as a shift of curves along the axis of the approximation rank, for the comparison
purpose, we simply treat l = k, and compare the rank-k approximation errors of the CUR decompositions
against the optimal rank-k approximation error ‖A−Ak‖.

(A) Frobenius norm error. (B) Spectral norm error. (C) Runtime.

FIGURE 3. Relative error and run time of randomized skeleton selection on the large
data set.

(A) Frobenius norm error. (B) Spectral norm error. (C) Runtime.

FIGURE 4. Relative error and run time of randomized skeleton selection on the
YaleFace64x64 data set.
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(A) Frobenius norm error. (B) Spectral norm error. (C) Runtime.

FIGURE 5. Relative error and run time of randomized skeleton selection on the training set
of MNIST.

(A) Frobenius norm error. (B) Spectral norm error. (C) Runtime.

FIGURE 6. Relative error and run time of randomized skeleton selection on a 1000× 1000
sparse non-negative random matrix, SNN1e3.

(A) Frobenius norm error. (B) Frobenius norm error zoomed. (C) Runtime.

FIGURE 7. Relative error and run time of randomized skeleton selection on a 106 × 106

sparse non-negative random matrix, SNN1e6.

From Figure 3-6, we observe that the randomized pivoting based skeleton selection algorithms that fall in
Algorithm 1 (i.e., Rand-LUPP, Rand-CPQR, and RSVD-DEIM) share the similar approximation accuracy,
which is considerably lower than the RSVD-LS and SRCUR. From the efficiency perspective, Rand-LUPP
provides the most competitive run time among all the algorithms, especially when A is sparse. Meanwhile,
we observe that, for both Rand-CPQR and Rand-LUPP, constructing the sketches with one plain power
iteration (i.e., with Equation (14)) can observably improve the accuracy, without sacrificing the efficiency
significantly (e.g., in comparison to the randomized DEIM which involves one power iteration with or-
thogonalization as in Equation (15)). In Figure 7, the similar performance is also observed on a synthetic
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large-scale problem, SNN1e6, where the matrix is only accessible as a fast matrix-vector multiplication
(matvec) oracle such that each matvec takes o(mn) (i.e., O((m+ n)r) in our construction) operations.
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