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We consider the problem of maximizing a monotone nondecreasing set function under multiple
constraints, where the constraints are also characterized by monotone nondecreasing set functions.
We propose two greedy algorithms to solve the problem with provable approximation guarantees.
The first algorithm exploits the structure of a special class of the general problem instance to obtain a
better time complexity. The second algorithm is suitable for the general problem. We characterize the
approximation guarantees of the two algorithms, leveraging the notions of submodularity ratio and
curvature introduced for set functions. We then discuss particular applications of the general problem
formulation to problems that have been considered in the literature. We validate our theoretical results
using numerical examples.
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1. Introduction

We study the problem of maximizing a set function over

a ground set S in the presence of n constraints, where the

constraints are also characterized by set functions. Specifically,

given monotone nondecreasing set functions1 f : 2S → R≥0 and

hi : 2
S → R≥0 for all i ∈ [n] ≜ {1, . . . , n} with n ∈ Z≥1, we

consider the following constrained optimization problem:

max
A⊆S

f (A)

s.t. hi(A ∩ Si) ≤ Hi, ∀i ∈ [n],
(P1)
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where S = ∪i∈[n]Si, with Si ⊆ S for all i ∈ [n], and Hi ∈
R≥0 for all i ∈ [n]. By simultaneously allowing nonsubmodular

set functions2 (in both the objective and the constraints) and
multiple constraints (given by upper bounds on the set func-
tions), (P1) generalizes a number of combinatorial optimization
problems (e.g., Bian, Buhmann, Krause, and Tschiatschek (2017),
Das and Kempe (2018), Iyer and Bilmes (2012), Khuller, Moss,
and Naor (1999), Kulik, Shachnai, and Tamir (2009) and Leskovec
et al. (2007)). Instances of (P1) arise in many important appli-
cations, including sensor (or measurement) selection for state
(or parameter) estimation (e.g., Jawaid and Smith (2015), Ye,
Paré and Sundaram (2021) and Zhang, Ayoub, and Sundaram
(2017)), experimental design (e.g., Bian et al. (2017) and Krause,
Singh, and Guestrin (2008)), and data subset (or client) selection
for machine learning (e.g., Das and Kempe (2011), Durga, Iyer,
Ramakrishnan, and De (2021) and Ye and Gupta (2021)). As an
example, the problem of sensor selection for minimizing the error
covariance of the Kalman filter (studied, e.g., in Jawaid and Smith
(2015) and Ye, Woodford, Roy and Sundaram (2021)) can be
viewed as a special case of (P1) where the objective function f (·)
is defined on the ground set S that contains all candidate sensors,
and is used to characterize the state estimation performance of
the Kalman filter using measurements from an allowed set A ⊆ S

of selected sensors. The constraints corresponding to hi(·) for all

2 A set function f : 2S → R≥0 is submodular if and only if f (A∪{v})−f (A) ≥
f (B ∪ {v})− f (B) for all A ⊆ B ⊆ S and for all v ∈ S \ B.
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i ∈ [n] represent, e.g., budget, communication, spatial and energy
constraints on the set of selected sensors (e.g., Mo, Ambrosino,
and Sinopoli (2011), Prasad, Hudack, Mou, and Sundaram (2022)
and Ye, Woodford et al. (2021)). We apply our results to two
specific problems in Section 4.

In general, (P1) is NP-hard (e.g., Feige (1998)), i.e., obtaining
an optimal solution to (P1) is computationally expensive. For
instances of (P1) with a monotone nondecreasing submodular
objective function f (·) and a single constraint, there is a long line
of work for showing that greedy algorithms yield constant-factor
approximation ratios for (P1) (e.g., Calinescu, Chekuri, Pal, and
Vondrák (2011), Khuller et al. (1999) and Nemhauser, Wolsey,
and Fisher (1978)). However, many important applications that
can be captured by the general problem formulation in (P1) do
not feature objective functions that are submodular (see, e.g., Das
and Kempe (2011), Elenberg, Khanna, Dimakis, and Negahban
(2018), Krause et al. (2008), Ye, Woodford et al. (2021) and
Zhang et al. (2017)). For instances of (P1) with a nonsubmodular
objective function f (·), it has been shown that the greedy algo-
rithms yield approximation ratios that depend on the problem
parameters (e.g., Bian et al. (2017), Das and Kempe (2011) and
Tzoumas, Carlone, Pappas, and Jadbabaie (2020)). As an exam-
ple, the approximation ratio of the greedy algorithm provided
in Bian et al. (2017) depends on the submodularity ratio and the
curvature of the objective function in (P1).

Moreover, most of the existing works consider instances of
(P1) with a single constraint on the set of the selected elements,
e.g., a cardinality, budget, or a matroid constraint. The objective
of this paper is to relax this requirement of a single simple con-
straint being present on the set of selected elements. For instance,
in the Kalman filtering based sensor scheduling (or selection)
problem described above, a natural formulation is to impose a
separate constraint on the set of sensors selected at different time
steps, or to consider multiple constraints such as communication
and budget constraints on how many sensors can work together
simultaneously. Thus, we consider the problem formulation (P1),
where the objective function is a monotone nondecreasing set
function and the constraints are also characterized by monotone
nondecreasing set functions. We do not assume that the objective
function and the functions in the constraints are necessarily sub-
modular. We propose approximation algorithms to solve (P1), and
provide theoretical approximation guarantees for the proposed
algorithms leveraging the notions of curvature and submodularity
ratio.

Our main contributions are summarized as follows. First, we
consider instances of (P1) with Si ∩ Sj = ∅ for all i, j ∈ [n] (i ̸= j),
and propose a parallel greedy algorithm with time complexity
O((maxi∈[n] |Si|)

2) that runs for each i ∈ [n] in parallel. We
characterize the approximation guarantee of the parallel greedy
algorithm, leveraging the submodularity and curvature of the
set functions in the instances of (P1). Next, we consider general
instances of (P1) without utilizing the assumption on mutually
exclusive sets Si. We propose a greedy algorithm with time com-
plexity O(n|S|2), and characterize its approximation guarantee.
The approximation guarantee of this algorithm again depends
on the submodularity ratio and curvature of the set functions
and the solution returned by the algorithm. Third, we specialize
these results to some example applications and evaluate these
approximation guarantees by bounding the submodularity ratio
and curvature of the set functions. Finally, we validate our the-
oretical results using numerical examples; the results show that
the two greedy algorithms yield comparable performances that
are reasonably good in practice. A preliminary version of this
paper was presented in Ye and Gupta (2021), where only the
parallel greedy algorithm was studied for a special instance of
(P1).

Notation For a matrix P ∈ R
n×n, let P⊤, Tr(P), λ1(P) and λn(P)

be its transpose, trace, an eigenvalue with the largest magnitude,

and an eigenvalue with the smallest magnitude, respectively. A

positive definite matrix P ∈ R
n×n is denoted by P ≻ 0. Let In

denote an n × n identity matrix. For a vector x, let xi (or (x)i)

be the ith element of x, and define supp(x) = {i : xi ̸= 0}.
The Euclidean norm of x is denoted by ∥x∥. Given two functions

ϕ1 : R≥0 → R and ϕ2 : R≥0 → R, ϕ1(n) is O(ϕ2(n)) if there

exist positive constants c and N such that |ϕ1(n)| ≤ c|ϕ2(n)| for
all n ≥ N .

2. Preliminaries

We begin with some definitions (see, e.g., Bian et al. (2017),

Conforti and Cornuéjols (1984), Kuhnle, Smith, Crawford, and Thai

(2018) and Nemhauser et al. (1978)).

Definition 1. The submodularity ratio of h : 2S → R≥0 is the

largest γ ∈ R such that
∑

v∈A\B

(

h({v} ∪ B)− h(B)
)

≥ γ
(

h(A ∪ B)− h(B)
)

, (1)

for all A, B ⊆ S . The diminishing return (DR) ratio of h(·) is the

largest κ ∈ R such that

h(A ∪ {v})− h(A) ≥ κ
(

h(B ∪ {v})− h(B)
)

, (2)

for all A ⊆ B ⊆ S and for all v ∈ S \ B.

Definition 2. The curvature of h : 2S → R≥0 is the smallest

α ∈ R that satisfies

h(A ∪ {v})− h(A) ≥ (1− α)
(

h(B ∪ {v})− h(B)
)

, (3)

for all B ⊆ A ⊆ S and for all v ∈ S \ A. The extended curvature

of h(·) is the smallest α̃ ∈ R that satisfies

h(A ∪ {v})− h(A) ≥ (1− α̃)
(

h(B ∪ {v})− h(B)
)

, (4)

for all A,B ⊆ S and for all v ∈ (S \ A) ∩ (S \ B).

For any monotone nondecreasing set function h : 2S → R≥0,

one can check that the submodularity ratio γ , the DR ratio κ ,

the curvature α and the extended curvature α̃ of h(·) satisfy that

γ , κ, α, α̃ ∈ [0, 1]. Moreover, we see from Definition 2 that α̃ ≥
α, and it can also be shown that γ ≥ κ (e.g., Bian et al. (2017),

Kuhnle et al. (2018) and Ye and Gupta (2021)). Further assuming

that h(·) is submodular, one can show that γ = κ = 1 (e.g., Bian

et al. (2017) and Kuhnle et al. (2018)). For a modular set function

h : 2S → R≥0,
3 we see from Definition 2 that the curvature

and the extended curvature of h(·) satisfy that α = α̃ = 0. Thus,

the submodularity (resp., DR) ratio of a monotone nondecreasing

set function h(·) characterizes the approximate submodularity

(resp., approximate DR property) of h(·). The curvatures of h(·)
characterize how far the function h(·) is from being modular.

Before we proceed, we note that the set Si in (P1) can potentially

intersect with Sj, for any i, j ∈ S with i ̸= j. Moreover, one

can show that a cardinality constraint, a (partitioned) matroid

constraint, or multiple budget constraints on the set A of selected

elements are special cases of the constraints in (P1). In particular,

hi(·) in (P1) reduces to a modular set function for any i ∈ [n]when

considering budget constraints.

3 A set function h : 2S → R≥0 is modular if and only if h(A) =
∑

v∈A h(v)

for all A ⊆ S.

2
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Algorithm 1 Parallel greedy algorithm

Input: S = ∪i∈[n]Si, f : 2
S → R≥0 and hi : 2

S → R≥0 ∀i ∈ [n],
Hi ∈ R≥0 ∀i ∈ [n]

1: for each i ∈ [n] in parallel do
2: Wi ← Si, A

r
i ← ∅

3: B
r
i ← argmaxv∈Si

f (v)
4: while Wi ̸= ∅ do

5: v⋆ ← argmaxv∈Wi

δv (A
r
i
)

δiv (A
r
i
)

6: if hi(A
r
i ∪ {v

⋆}) ≤ Hi then

7: A
r
i ← A

r
i ∪ {v

⋆}

8: Wi ← Wi \ {v
⋆}

9: A
r
i ← argmaxA∈{Ar

i
,Br

i
} f (A)

10: A
r ← ∪i∈[n]A

r
i

11: Return A
r

3. Approximation algorithms

We make the following standing assumption.

Assumption 3. The set functions f (·) and hi(·) satisfy that f (∅) =
0 and hi(∅) = 0 for all i ∈ [n]. Further, hi(v) > 0 for all i ∈ [n]
and for all v ∈ S .

Note that (P1) is NP-hard, and cannot be approximated within
any constant factor independent of any problem parameter (if
P̸=NP), even when the constraints in (P1) reduce to a cardinality
constraint |A| ≤ H (Ye, Woodford et al., 2021). Thus, we aim to
provide approximation algorithms for (P1) and characterize the
corresponding approximation guarantees in terms of the problem
parameters. To simplify the notation in the sequel, for any A,B ⊆
S , we denote

δB(A) = f (A ∪ B)− f (A)

δi
B
(A) = hi(A ∪ B ∩ Si)− hi(A ∩ Si).

(5)

Thus, δB(A) (resp., δi
B
(A)) is the marginal return of f (·) (resp.,

hi(·)) when adding B to A.

3.1. Parallel greedy algorithm for a special case

We rely on the following assumption and introduce a parallel
greedy algorithm (Algorithm 1) for (P1).

Assumption 4. The ground set S = ∪i∈[n]Si in (P1) satisfies that
Si ∩ Sj = ∅ for all i, j ∈ [n] with i ̸= j.

For each i ∈ [n] in parallel, Algorithm 1 first sets Si to
be the ground set Wi for the algorithm, and then iterates over
the current elements in Wi in the while loop. In particular, the
algorithm greedily chooses an element v ∈ Wi in line 5 that
maximizes the ratio between the marginal returns δv(A

r
i ) and

δiv(A
r
i ) for all v ∈ Wi. The overall greedy solution is given by

A
r = ∪i∈[n]A

r
i . Thus, one may view Algorithm 1 as solving the

problem maxA⊆Si
f (A) s.t. hi(A) ≤ Hi for each i ∈ [n] separately

in parallel, and then merge the obtained solutions. Note that the
overall time complexity of Algorithm 1 is O((maxi∈[n] |Si|)

2). To
provide a guarantee on the quality of the approximation for the
solution returned by Algorithm 1, we start with the following
observation, which follows directly from the definition of the
algorithm.

Observation 1. For any i ∈ [n] in Algorithm 1, denote A
r
i =

{q1, . . . , q|Ar
i
|} and A

r
i,j = {q1, . . . , qj} for all j ∈ [|Ar

i |] with

A
r
i,0 = ∅. Then, there exists li ∈ [|A

r
i |] such that (1) qk ∈

argmaxv∈Wi

δv (A
r
i,k−1)

δiv (A
r
i,k−1)

and hi(A
r
i,k) ≤ Hi for all k ∈ [li]; and (2)

hi(A
r
i,li
∪ {v⋆li+1}) > Hi, where v⋆li+1

∈ argmaxv∈Wi

δv (A
r
i,li

)

δiv (A
r
i,li

)
.

Definition 5. The greedy submodularity ratio of f : 2S → R≥0

in (P1) is the largest γ̃f ∈ R that satisfies f (Br
i ) ≥ γ̃f

(

f (Ar
i,li
∪

{v⋆li+1}) − f (Ar
i,li
)
)

for all i ∈ [n], where v⋆li+1,A
r
i,li

are given in

Observation 1, and B
r
i is given by line 3 of Algorithm 1.

For monotone nondecreasing f (·) in (P1), one can check that
the greedy submodularity ratio of f (·) satisfies γ̃f ∈ R≥0. Further
assuming that f (·) is submodular, one can show that γ̃f ∈ R≥1.

Theorem 6. Suppose that Assumption 4 holds. Let A
r and A

⋆ be

the solution to (P1) returned by Algorithm 1 and an optimal solution

to (P1), respectively. Then,

f (Ar ) ≥
(1− αf )κf min{1, γ̃f }

2

×min
i∈[n]

(1− e−(1−α̃i)γf )f (A⋆), (6)

where αf , κf , γf ∈ [0, 1] and γ̃f ∈ R≥0 are the curvature, DR

ratio, submodularity ratio and greedy submodularity ratio of f (·),
respectively, and α̃i ∈ [0, 1] is the extended curvature of hi(·) for

all i ∈ [n].

We briefly explain the ideas for the proof of Theorem 6; a
detailed proof is included in Appendix A. Supposing that hi(·) is
modular for any i ∈ [n], the choice v⋆ in line 5 of the algorithm

reduces to v⋆ ← argmaxv∈Wi

δv (A
r
i
)

hi(v)
, which is an element v ∈ Wi

that maximizes the marginal return of the objective function f (·)
per unit cost incurred by hi(·) when adding v to the current
greedy solution A

r
i . This renders the greedy nature of the choice

v⋆. To leverage this greedy choice property when hi(·) is not
modular, we use the (extended) curvature of hi(·) (i.e., α̃i) to
measure how close hi(·) is to being modular. Moreover, we use
γf , γ̃f to characterize the approximate submodularity of f (·). Note
that the multiplicative factor (1−αf )κf in (6) results frommerging
A

r
i for all i ∈ [n] into A

r in line 10 of the algorithm.

Remark 7. Under the stronger assumption that the objective
function f (·) in (P1) can be written as f (A) =

∑

i∈[n] f (A ∩ Si),
similar arguments to those in the proof of Theorem 6 can be used

to show that f (Ar ) ≥
min{1,γ̃f }

2
mini∈[n](1− e−(1−α̃i)γf )f (A⋆).

3.2. A greedy algorithm for the general case

We now introduce a greedy algorithm (Algorithm 2) for gen-
eral instances of (P1), where we define the feasible set associated
with the constraints in (P1) as F =

{

A ⊆ S : hi(A∩Si) ≤ Hi,∀i ∈

[n]
}

. In the absence of Assumption 4, Algorithm 2 let S = ∪i∈[n]Si

be the ground set W in the algorithm. Algorithm 2 then iterates
over the current elements in W , and greedily chooses v ∈ W

and i ∈ [n] in line 3 such that the ratio between the marginal
returns δv(A

g ) and δiv(A
g ) are maximized for all v ∈ W and for

all i ∈ [n]. The element v⋆ will be added to A
r if the constraint

hi(A
g ∪ {v⋆}) ≤ Hi is not violated for any i ∈ [n]. Note that

different from line 5 in Algorithm 1, the maximization in line 3 of
Algorithm 2 is also taken with respect to i ∈ [n]. This is because
we do not consider the set Si and the constraint associated with
hi(·) for each i ∈ [n] separately in Algorithm 2. One can check
that the time complexity of Algorithm 2 is O(n|S|2). In order
to characterize the approximation guarantee of Algorithm 2, we
introduce the following definition.

3



L. Ye, Z.-W. Liu, M. Chi et al. Automatica 155 (2023) 111126

Algorithm 2 Greedy algorithm for general instances of (P1)

Input: S = ∪i∈[n]Si, f : 2
S → R≥0 and hi : 2

S → R≥0 ∀i ∈ [n],
Hi ∈ R≥0 ∀i ∈ [n]

1: W ← S , Ag ← ∅
2: while W ̸= ∅ do

3: (v⋆, i⋆)← argmax(v∈W,i∈[n])
δv (A

g )

δiv (A
g )

4: if (Ag ∪ {v⋆}) ∈ F then

5: A
g ← A

g ∪ {v⋆}

6: W ← W \ {v⋆}

7: Return A
g

Definition 8. Let A
g = {q1, . . . , q|Ag |} and A

⋆ be the solution
to (P1) returned by Algorithm 2 and an optimal solution to (P1),
respectively. Denote A

g

j = {q1, . . . , qj} for all j ∈ [|Ag |] with

A
g

0 = ∅. For any j ∈ {0, . . . , |Ag |−1}, the jth greedy choice ratio of

Algorithm 2 is the largest ψj ∈ R that satisfies
δqj+1 (A

g
j
)

δ
ij
qj+1

(A
g
j
)
≥ ψj

δv (A
g
j
)

δiv (A
g
j
)

for all v ∈ A
⋆ \ A

g

j and for all i ∈ [n], where ij ∈ [n] is the index

of the constraint in (P1) that corresponds to qj+1 given by line 3
of Algorithm 2.

Note that v⋆ chosen in line 3 of Algorithm 2 is not added to the
greedy solution Ag if the constraint in line 4 is violated. Thus, the
greedy choice ratio ψj given in Definition 8 is used to characterize
the suboptimality of qj+1 ∈ Ag in terms of the maximization over

v ∈ W and i ∈ [n] in line 3 of the algorithm.4 Since both f (·)
and hi(·) for all i ∈ [n] are monotone nondecreasing functions,
Definition 8 implies that ψj ∈ R≥0 for all j ∈ {0, . . . , |Ag | − 1}.
We also note that for any j ∈ {0, . . . , |Ag | − 1}, a lower bound
on ψj may be obtained by considering all v ∈ S \ A

g

j (instead of

v ∈ A
⋆ \ A

g

j ) in Definition 8. Such lower bounds on ψj for all j ∈

{0, . . . , |Ag |−1} can be computed in O(n|S|2) time and in parallel
to Algorithm 2. The approximation guarantee for Algorithm 2 is
provided in the following result proven in Appendix B.

Theorem 9. Let A
g and A

⋆ be the solution to (P1) returned by

Algorithm 2 and an optimal solution to (P1), respectively. Then,

f (Ag ) ≥
(

1− (1−
B

|Ag |
)|A

g |
)

f (A⋆)

≥ (1− e−B)f (A⋆)

(7)

with B ≜
(1−αh)γf
∑

i∈[n] Hi

∑|Ag |−1
j=0 ψjδ

ij
qj+1

(A
g

j ), where γf ∈ [0, 1] is the

submodularity ratio of f (·), αh ≜ mini∈[n] α̃i with α̃i ∈ [0, 1] to be

the extended curvature of hi(·) for all i ∈ [n], ψj ∈ R≥0 is the jth

greedy choice ratio of Algorithm 2 for all j ∈ {0, . . . , |Ag | − 1}, and
ij ∈ [n] is the index of the constraint in (P1) that corresponds to qj+1
given by line 3 of Algorithm 2.

Similarly to Theorem 6, we leverage the greedy choice prop-
erty corresponding to line 3 of Algorithm 2 and the properties
of f (·) and hi(·). However, since Algorithm 2 considers the con-
straints associated with hi(·) for all i ∈ [n] simultaneously, the
proof of Theorem 9 requires more care, and the approximation
guarantee in (7) does not contain the multiplicative factor (1 −
αf )κf .

Remark 10. Similarly to Observation 1, there exists the max-
imum l ∈ [|Ag |] such that for any qj ∈ A

g

l , qj does not violate

4 The proof of Theorem 9 shows that we only need to consider the case when

ψj is well-defined.

the condition in line 4 of Algorithm 2 when adding to the greedy
solution A

g . One can then show via Definition 8 that ψj−1 ≥ 1 for
all j ∈ [|A

g

l |]. Further assuming that Assumption 4 holds, one can
follow the arguments in the proof of Theorem 9 and show that

f (Ag ) ≥
(

1− (1−
B̃

|A
g

l |
)|A

g
l
|
)

f (A⋆)

≥ (1− e−B̃)f (A⋆),

(8)

where B̃ ≜
(1−αh)γf
∑

i∈[n] Hi

∑

i∈[n] hi(A
g

l ∩ Si).

3.3. Comparisons to existing results

Theorems 6 and 9 generalize several existing results in the
literature. First, consider instances of (P1) with a single budget
constraint, i.e., h(A) =

∑

v∈A h(v) ≤ H . We see from Definition 2
that the extended curvature of h(·) is 0. It follows from Remark 7
that the approximation guarantee of Algorithm 1 provided in

Theorem 6 reduces to f (Ar ) ≥
min{1,γ̃f }

2
(1 − e−γf )f (A⋆), which

matches with the approximation guarantee of the greedy algo-
rithm provided in Ye, Paré et al. (2021). Further assuming that
the objective function f (·) in (P1) is submodular, we have from
Definitions 1 and 5 that γf = 1 and γ̃f ≥ 1, and the approximation

guarantee of Algorithm 1 further reduces to f (Ar ) ≥ 1
2
(1 −

e−1)f (A⋆), which matches with the results in Khuller et al. (1999)
and Leskovec et al. (2007).

Second, consider instances of (P1) with a single cardinality
constraint h(A) = |A| ≤ H . From Definition 2, we obtain that
the curvature of h(·) is 0. It follows from Remark 10 that the
approximation guarantee of Algorithm 2 provided in Theorem 9
reduces to f (Ag ) ≥ (1 − e−γf )f (A⋆), which matches with the
approximation guarantee of the greedy algorithm provided in Das
and Kempe (2018). Further assuming that the objective function
f (·) in (P1) is submodular, we see from Definition 1 that the
approximation guarantee of Algorithm 2 reduces to f (Ag ) ≥ (1−
e−1)f (A⋆), which matches with the result in Nemhauser et al.
(1978).

Third, consider instances of (P1) with a partitioned matroid
constraint, i.e., hi(A ∩ Si) = |A ∩ Si| ≤ Hi ∀i ∈ [n] and
Assumption 4 holds. Definition 2 shows that the curvature of hi(·)
is 0 for all i ∈ [n]. Using similar arguments to those in Remark 10
and the proof of Theorem 9, one can show that Algorithm 2 yields
the following approximation guarantee:

f (Ag ) ≥
(

1− (1−
γf

∑

i∈[n] Hi

)|A
g
l
|
)

f (A⋆). (9)

Further assuming that f (·) in (P1) is submodular, i.e., γf = 1 in (9),
one can check that the approximation guarantee in (9) matches
with the result in Fisher, Nemhauser, and Wolsey (1978).

4. Specific application settings

We now discuss some specific applications that can be cap-
tured by the general problem formulation in (P1). For these
applications, we bound the parameters given by Definitions 1–2
and evaluate the resulting approximation guarantees provided in
Theorems 6 and 9.

4.1. Sensor selection

Sensor selection problems arise in many different applications,
e.g., Chepuri and Leus (2014), Joshi and Boyd (2008), Krause et al.
(2008) and Ye, Woodford et al. (2021). A typical scenario is that
only a subset of all candidate sensors can be used to estimate the
state of a target environment or system. The goal is to select this
subset to optimize an estimation performance metric. If the target

4
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system is a dynamical system whose state evolves over time, this
problem is sometimes called sensor scheduling, in which different
sets of sensors can be selected at different time steps (e.g., Jawaid
and Smith (2015)) with possibly different constraints on the set
of sensors selected at different time steps.

As an example, we can consider the Kalman filtering sensor
scheduling (or selection) problem (e.g., Chamon, Pappas, and
Ribeiro (2017), Jawaid and Smith (2015), Tzoumas, Jadbabaie,
and Pappas (2016) and Ye, Woodford et al. (2021)) for a linear
time-varying system

xk+1 = Akxk + wk

yk = Ckxk + vk,
(10)

where Ak ∈ R
n×n, Ck ∈ R

m×n, x0 ∼ N (0,Π0) with Π0 ≻ 0, wk, vk
are zero-mean white Gaussian noise processes with E[wkw

⊤
k ] =

W ≻ 0, E[vkv
⊤
k ] = diag(σ 2

1 · · · σ
2
m), for all k ∈ Z≥0 with σi > 0

for all i ∈ [m], and x0 is independent of wk, vk for all k ∈ Z≥0.
If there are multiple sensors present, we can let each row in Ck

correspond to a candidate sensor at time step k. Given a target
time step ℓ ∈ Z≥0, we let S = {(k, i) : i ∈ [m], k ∈ {0, . . . , ℓ}} be
the ground set that contains all the candidate sensors at different
time steps. Thus, we can write S = ∪k∈{0,...,ℓ}Sk with Sk = {(k, i) :
i ∈ [m]}, where Sk (with |Sk| = m) is the set of sensors available
at time step k. Now, for any Ak ⊆ Sk, let CAk

∈ R
|Ak|×n be the

measurement matrix corresponding to the sensors in Ak, i.e., CAk

contains rows from Ck that correspond to the sensors in Ak. We
then consider the following set function g : 2S → R≥0:

g(A) = Tr
(

(

P−1ℓ,A +
∑

v∈Aℓ

σ−2v C⊤v Cv
)−1

)

, (11)

where A = ∪k∈{0,...,ℓ}Ak ⊆ S with Ak ⊆ Sk, and Pℓ,A is given
recursively via

Pk+1,A = W + Ak

(

P−1k,A +
∑

v∈Ak

σ−2v C⊤v Cv
)−1

A⊤k , (12)

for k = {0, . . . , ℓ−1} with P0,A = Π0. For any A ⊆ S , g(A) is the
mean square estimation error of the Kalman filter for estimating
the system state xℓ based on the measurements (up until time
step ℓ) from the sensors in A (e.g., Anderson and Moore (1979)).
Thus, the sensor selection problem can be cast in the framework
of (P1) as:

max
A⊆S

{

fs(A) ≜ g(∅)− g(A)
}

s.t. hk(A ∩ Sk) ≤ Hk, ∀k ∈ {0, . . . , ℓ},
(13)

where Hk ∈ R≥0 and hk(·) specify a constraint on the set of sen-
sors scheduled for any time step k ∈ {0, . . . , ℓ}. By construction,
Assumption 4 holds for problem (13).

For the objective function, we have the following result for
fs(·); the proof can be adapted from Huber (2011), Kohara, Okano,
Hirata, and Nakamura (2020) and Zhang et al. (2017) and is
omitted for conciseness.

Proposition 11. The set function fs : 2S → R≥0 in (13)
is monotone nondecreasing with fs(∅) = 0. Moreover, both the

submodularity ratio and DR ratio of fs(·) given in Definition 1 are

lower bounded by γ , and both the curvature and extended curvature

of fs(·) given in Definition 2 are upper bounded by α, where γ =
λn(P

−1
ℓ,∅

)

λ1(P
−1
ℓ,S
+

∑

v∈Sℓ
σ−2v C⊤v Cv )

> 0 and α = 1− γ 2 < 1 with Pℓ,∅ and Pℓ,S

given by Eq. (12).

Remark 12. Apart from the Kalman filtering sensor selection
problem described above, the objective functions in many other
formulations such as sensor selection for Gaussian processes

(Krause et al., 2008), and sensor selection for hypothesis test-
ing (Ye & Sundaram, 2019) have been shown to be submodular
or to have a positive submodularity ratio.

For the constraints in the sensor selection problems (mod-
eled by hk(·) in (13)), popular choices include a cardinality con-
straint (Krause et al., 2008) or a budget constraint (Mo et al.,
2011; Tzoumas et al., 2020) on the set of selected sensors. Our
framework can consider such choices individually or simultane-
ously. More importantly, our framework is general enough to
include other relevant constraints. As an example, suppose that
the sensors transmit their local information to a fusion center via
a (shared) communication channel. Since the fusion center needs
to receive the sensor information before the system propagates
to the next time step, there are constraints on the communi-
cation latency associated with the selected sensors. To ease our
presentation, let us consider a specific time step k ∈ {0, . . . , ℓ}
for the system given by (10). Let [m] and A ⊆ [m] be the
set of all the candidate sensors at time step k and the set of
sensors selected for time step k, respectively. Assume that the
sensors in A transmit the local information to the fusion center
using the communication channel in a sequential manner; such
an assumption is not restrictive as argued in, e.g., Dinh et al.
(2020). For any v ∈ [m], we let tv ∈ R≥0 be the transmission
latency corresponding to sensor v when using the communication
channel, and let cv ∈ R≥0 be the sensing and computation latency
corresponding to sensor v. We assume that tv, cv are given at
the beginning of time step k (e.g., Shi, Zhou, Niu, Jiang, and
Geng (2020)). The following assumption says that the sensing and
computation latency cannot dominate the transmission latency.

Assumption 13. For any v ∈ [m], there exists rv ∈ R>0 such
that cv + tv − cu ≥ rv for all u ∈ [m] with cu ≥ cv .

Note that given a set A ⊆ [m], the total latency (i.e., the com-
putation and transmission latency) depends on the order in which
the sensors in A transmit. Denote an ordering of the elements in
A as Â = ⟨a1, . . . , a|A|⟩. Define hs

c : Ŝ → R≥0 to be a function that
maps a sequence of sensors to the corresponding total latency,
where Ŝ is the set that contains all possible sequences of sensors
chosen from the set [m]. We know from Ye and Gupta (2021) that
the total latency corresponding to Â can computed as

hs
c(Âj) =

{

hs
c(Âj−1)+ taj if caj < hs

c(Âj−1),

caj + taj if caj ≥ hs
c(Âj−1),

(14)

where Âj = ⟨a1, . . . , aj⟩ for all j ∈ [|A|], with Â0 = ∅ and
hs
c(∅) = 0.
We further define a set function hc : 2

[m] → R≥0 such that for
any A ⊆ [m],

hc(A) = hs
c(⟨a1, . . . , a|A|⟩), (15)

where ⟨a1, . . . , a|A|⟩ orders the elements in A such that ca1 ≤
· · · ≤ ca|A| . We may now enforce hc(A) ≤ H , where H ∈

R≥0. Thus, for any A ⊆ [m], we let the sensors in A transmit
the local information in the order given by (15) and require
the corresponding total latency to be no greater than H .5 The
following result justifies the way hc(·) orders the selected sensors,
and characterizes the curvature of hc(·).

Proposition 14. Consider any A ⊆ [m] and let Â be an arbitrary
ordering of the elements in A. Then, hc(A) ≤ hs

c(Â), where h(·)
and hs

c(·) are defined in (14) and (15), respectively. Under Assump-
tion 13, it holds that hc(·) is monotone nondecreasing and that
α̃hc ≤ α̃′hc ≜ 1 − minv∈[m]

rv
tv
, where α̃hc ∈ [0, 1] is the extended

curvature of hc(·), rv ∈ R>0 is given in Assumption 13 and tv ∈ R≥0
is the transmission latency corresponding to sensor v.

5 A similar constraint can be enforced for each time step k ∈ {0, . . . , ℓ}.
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Proof. First, for any A ⊆ [m], denote an arbitrary order-
ing of the elements in A as Â = ⟨a1, . . . , a|A|⟩. Then, there
exists τ ∈ Z≥1 such that ca1 ≤ · · · ≤ caτ and caτ+1 ≥
caτ , where cv ∈ R≥0 is the computation latency corresponding
to sensor v ∈ [m]. Moreover, using the definition of hs

c(·) in

(14), one can show that hs
c(·) satisfies the expression hs

c(Â) =

Vc(Â) +
∑|A|

j=1 tj, where Vc(Â) ∈ R≥0 is a function of Â that
characterizes the time during which the communication channel
(shared by all the sensors in A) is idle. Switching the order of
aτ and aτ+1, one can further show that Vc(⟨a1, . . . , aτ+1, aτ ⟩) ≤
Vc(⟨a1, . . . , aτ , aτ+1⟩), which implies via the above expression of
hs
c(·) that hs

c(⟨a1, . . . , aτ+1, aτ ⟩) ≤ hs
c(⟨a1, . . . , aτ , aτ+1⟩). It then

follows from (14) that hs
c(⟨a1, . . . , aτ−1, aτ+1, aτ , . . . , a|A|⟩) ≤

hs
c(Â). Repeating the above arguments yields hc(A) ≤ hs

c(Â) for

any A ⊆ [m] and any ordering Â of the elements in A.
Next, suppose that Assumption 13 holds. We will show that

hc(·) is monotone nondecreasing and characterize the curvature
of hc(·). To this end, we leverage the expression of hs

c(·) given
above. Specifically, consider any A ⊆ [m] and let the elements in
A be ordered such that Â = ⟨a1, . . . , a|A|⟩ with ca1 ≤ · · · ≤ ca|A| .

One can first show that Vc(Â) = 0. Further considering any
v ∈ [m] \ A, one can then show that

hc(A ∪ {v}) =

{

hc(A)+ tv if cv ≥ ca1 ,

hc(A)− ca1 + cv + tv if cv < ca1 .

It follows from Assumption 13 that hc(·) is monotone nondecreas-
ing, and that hc(A)+rv ≤ hc(A∪{v}) ≤ hc(A)+tv , for anyA ⊆ [m]
and any v ∈ [m] \ A. Recalling Definition 2 completes the proof
of the proposition. ■

Recalling (6) (resp., (8)), substituting γf , κf with γ , substituting

αf with α from Proposition 11, and substituting α̃i with α̃′hc from
Proposition 14, one can obtain the approximation guarantee of
Algorithm 1 (resp., Algorithm 2) when applied to solve (13).

Remark 15. Many other types of constraints in the sensor selec-
tion problem can be captured by (P1). One example is if the se-
lected sensors satisfy certain spatial constraints, e.g., two selected
sensors may need to be within a certain distance (e.g., Gupta,
Chung, Hassibi, and Murray (2006)); or if a mobile robot collects
the measurements from the selected sensors (e.g., Prasad et al.
(2022)), the length of the tour of the mobile robot is constrained.
Another example is that the budget constraint, where the total
cost of the selected sensors is not the sum of the costs of the
sensors due to the cost of a sensor can (inversely) depend on the
total number of selected sensors (e.g., Iyer and Bilmes (2012)).
Such constraints lead to set function constraints on the selected
sensors.

4.2. Client selection for distributed optimization

In a typical distributed optimization framework such as Feder-
ated Learning (FL), there is a (central) aggregator and a number of
edge devices (i.e., clients) (e.g., Li, Huang, Yang, Wang, and Zhang
(2020)). Specifically, let [m] be the set of all the candidate clients.
For any v ∈ [m], we assume that the local objective function

of client v is given by Fv(w) ≜
1
|Dv |

∑|Dv |
j=1 ℓj(w; xv,j, yv,j), where

Dv = {(xv,j, yv,j) : j ∈ [|Dv|]} is the local dataset at client v, ℓj(·) is
a loss function, and w is a model parameter. Here, we let xv,j ∈ R

n

and yv,j ∈ R for all j ∈ Dv , w ∈ R
n, and Fv(w) ∈ R≥0 for all

w ∈ R
n. The goal is to solve the following global optimization in

a distributed manner:

min
w

{

F (w) ≜
∑

v∈[m]

|Dv|

D
Fv(w)

}

, (16)

where D =
∑

v∈[m] |Dv|. In general, the FL setup contains multiple
rounds of communication between the clients and the aggregator,
and solves (16) using an iterative method (e.g., Li et al. (2020)).
Specifically, in each round of FL, the aggregator first broadcasts
the current global model parameter to the clients. Each client
then performs local computations in parallel, in order to update
the model parameter using its local dataset via some gradient-
based method. Finally, the clients transmit their updated model
parameters to the aggregator for global update (see, e.g. Li et al.
(2020), for more details).

Similarly to our discussions in Section 4.1, one has to consider
constraints (e.g., communication constraints) in FL, which leads
to partial participation of the clients (e.g., Reisizadeh, Mokhtari,
Hassani, Jadbabaie, and Pedarsani (2020)). Specifically, given a
set A ⊆ [m] of clients that participate in the FL task, it has
been shown (e.g., Li et al. (2020)) that under certain assump-
tions on F (·) defined in Eq. (16), the FL algorithm (based on
the clients in A) converges to an optimal solution, denoted as

w⋆
A
, to minw

{

FA(w) ≜
∑

v∈A
|Dv |
D

Fv(w)
}

. We then consider the

following client selection problem:

max
A⊆S

{

fc(A) ≜ F (w∅)− F (w⋆
A
)
}

s.t. hF (A) ≤ T ,

(17)

where w∅ is the initialization of the model parameter.6 Similarly
to our discussions in Section 4.1, we use hF : 2

S → R≥0 in (17) to
characterize the computation latency (for the clients to perform
local updates) and the communication latency (for the clients to
transmit their local information to the aggregator) in a single
round of the FL algorithm.7 Moreover, we consider the scenario
where the clients communicate with the aggregator via a shared
channel in a sequential manner. In particular, we may define
hF (·) similarly to hc(·) given by Eq. (15), and thus the results in
Proposition 14 shown for hc(·) also hold for hF (·). The constraint
in (17) then ensures that the FL algorithm completes within a
certain time limit, when the number of total communication
rounds is fixed. Hence, problem (17) can now be viewed as an
instance of problem (P1). We also prove the following result for
the objective function fc(·) in problem (17).

Proposition 16. Suppose that for any A ⊆ B ⊆ [m], it holds

that (1) F (w⋆
A
) ≤ F (w) for all w ∈ R

n with supp(w) ⊆ supp(w⋆
A
);

(2) supp(w⋆
A
) ⊆ supp(w⋆

B
); and (3) F (w⋆

A
) ≥ F (w⋆

B
). Moreover,

suppose that for any v ∈ [m], the local objective function Fv(·) of

client v is strongly convex and smooth with parameters µ ∈ R>0

and ρ ∈ R>0, respectively. Then, fc(·) in problem (17) is monotone

nondecreasing, and both the DR ratio and submodularity ratio of fc(·)
given by Definition 1 are lower bounded by µ/ρ.

Proof. First, since F (w⋆
A
) ≥ F (w⋆

B
) for all A ⊆ B ⊆ [m], we

see from (17) that fc(·) is monotone nondecreasing. Next, one
can show that the global objective function F (·) defined in (16)
is also strongly convex and smooth with parameters µ and ρ,
respectively. That is, for any w1,w2 in the domain of F (·), µ

2
∥w2−

w1∥
2 ≤ −F (w2) + F (w1) + ∇F (w1)

⊤(w2 − w1) ≤
ρ

2
∥w2 − w1∥

2.
One can now adapt the arguments in the proof of Elenberg et al.

6 We assume that the FL algorithm converges exactly to w⋆
A

for any

A ⊆ [m]. However, the FL algorithm only finds a solution w̃⋆
A

such that

|FA(w̃⋆
A
)− FA(w⋆

A
)| = O(1/Tc ), where Tc is the number of communication

rounds between the aggregator and the clients (Li et al., 2020). Nonetheless,

one can use the techniques in Ye, Paré et al. (2021) and extend the results

for the greedy algorithms provided in this paper to the setting when there are

errors in evaluating the objective function f (·) in (P1).
7 We ignore the latency corresponding to the aggregator, since it is typically

more powerful than the clients (e.g., Shi et al. (2020)).
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(2018, Theorem 1) and show that the bounds on the DR ratio
and submodularity ratio of fc(·) hold. Details of the adaption are
omitted here in the interest of space. ■

Recalling (8), substituting γf with µ/ρ from Proposition 16,
and substituting α̃i with α̃′hc from Proposition 14, one can obtain
the approximation guarantee of Algorithm 2 when applied to
solve (17).

One can check that a sufficient condition for assumptions
(1)–(3) made in Proposition 16 to hold is that the datasets
from different clients in [m] are non-i.i.d. in the sense that
different datasets contain data points with different features,
i.e., supp(xu,i) ∩ supp(xv,j) = ∅ for any u, v ∈ [m] (with u ̸= v),
and for any i ∈ Du and any j ∈ Dv , where xu,i, xv,j ∈ R

n.
In this case, an element wi in the model parameter w ∈ R

n

corresponds to one feature (xu,j)i of the data point xu,j ∈ R
n,

and supp(w⋆
A
) = ∪u∈A,i∈Dusupp(xu,i) for any A ⊆ [m] (Elenberg

et al., 2018). Note that the datasets from different clients are
typically assumed to be non-i.i.d. in FL, since the clients may
obtain the local datasets from different data sources (Li et al.,
2020; McMahan, Moore, Ramage, Hampson, & y Arcas, 2017; Shi
et al., 2020). Moreover, strong convexity and smoothness hold
for the loss functions in, e.g., (regularized) linear regression and
logistic regression (Li et al., 2020; Shi et al., 2020). If assumptions
(1)–(3) in Proposition 16 do not hold, one may use a surrogate
for fc(·) in (17) (see Ye and Gupta (2021) for more details).

The FL client selection problem has been studied under various
different scenarios (e.g., Balakrishnan et al. (2021), Nishio and
Yonetani (2019) and Shi et al. (2020)). In Nishio and Yonetani
(2019), the authors studied a similar client selection problem
to the one in this paper, but the objective function considered
in Nishio and Yonetani (2019) is simply the sum of sizes of the
datasets at the selected clients. In Shi et al. (2020), the authors
studied a joint optimization problem of bandwidth allocation and
client selection, under the training time constraints. However,
these works do not provide theoretical performance guarantees
for the proposed algorithms. In Balakrishnan et al. (2021), the
authors considered a client selection problem with a cardinality
constraint on the set of selected clients.

5. Numerical results

We consider the sensor scheduling problem introduced in
(13) in Section 4.1, where hk(·) corresponds to a communication
constraint on the set of sensors scheduled for time step k and
is defined in Eq. (15), for all k ∈ {0, . . . , ℓ}. Let the target time
step be ℓ = 2, and generate the system matrices Ak ∈ R

3×3 and
Ck ∈ R

3×3 in a random manner, for all k ∈ {0, . . . , ℓ}. Each row
in Ck corresponds to a candidate sensor at time step k. We set
the input noise covariance as W = 2I3, the measurement noise
covariance as σ 2

v I3 with σv ∈ {1, . . . , 30}, and the covariance
of x0 as Π0 = I3. The ground set S = {si,k : i ∈ [m], k ∈
{0, . . . , ℓ}} that contains all the candidate sensors satisfies |S| =
3 × 3 = 9. For any k ∈ {0, . . . , ℓ} and any i ∈ [m], we generate
the computation latency and transmission latency of sensor si,k,
denoted as ci,k and ti,k, respectively, by sampling exponential
distributions with parameters 0.5 and 0.2, respectively. Finally,
for any k ∈ {0, . . . , ℓ}, we set the communication constraint to
be Hk = hk(Sk)/2. We apply Algorithms 1 and 2 to solve the
instances of problem (13) constructed above. In Fig. 1(a), we plot
the actual performances of Algorithms 1–2 for σv ∈ {1, . . . , 30},
where the actual performance of Algorithm 1 (resp., Algorithm 2)
is given by fs(A

r )/fs(A
⋆) (resp., fs(A

g )/fs(A
⋆)), where fs(·) is given

in (13),Ar (resp.,Ag ) is the solution to (13) returned by Algorithm
1 (resp., Algorithm 2), and A

⋆ is an optimal solution to (13)
(obtained by brute force). In Fig. 1(b), we plot the approximation
guarantees of Algorithms 1 and 2 given by Theorems 6 and 9,

Fig. 1. Actual performances and approximation guarantees of Algorithms 1–2.

Fig. 2. Running times of Algorithms 1–2.

respectively. For any σv ∈ {1, . . . , 30}, the results in Fig. 1(a)–(b)
are averaged over 50 random instances of problem (13) con-
structed above. From Fig. 1(a), we see that the actual performance
of Algorithm 2 is slightly better than that of Algorithm 1. We also
see that as σv increases from 1 to 30, the actual performances of
Algorithms 1 and 2 first tends to be better and then tends to be
worse. Compared to Fig. 1(a), (b) shows that the approximation
guarantees of Algorithms 1 and 2 provided by Theorems 6 and 9,
respectively, are conservative. However, a tighter approximation
guarantee potentially yields a better actual performance of the
algorithm.

In Fig. 2, we plot the running times of Algorithms 1 and 2
when applied to solve similar random instances of problem (13)
to those described above but with Ak ∈ R

10×10 and Ck ∈ R
m×10

for m ∈ {20, . . . 30}. Note that the simulations are conducted
on a Mac with 8-core CPU, and for any m ∈ {20, . . . , 30} the
results in Fig. 2(a)–(b) are averaged over 5 random instances of
problem (13). Fig. 2 shows that Algorithm 1 runs faster than
Algorithm 2 matching with our discussions in Section 3.

6. Conclusion

We studied the problem of maximizing a monotone nonde-
creasing set function under multiple constraints, where the con-
straints are upper bound constraints characterized by monotone
nondecreasing set functions. We proposed two greedy algorithms
to solve the problem, and analyzed the approximation guarantees
of the algorithms, leveraging the notions of submodularity ratio
and curvature of set functions. We discussed several important
real-world applications of the general problem, and provided
bounds on the submodularity ratio and curvature of the set func-
tions in the corresponding instances of the problem. Numerical
results show that the two greedy algorithms yield comparable
performances that are reasonably good in practice.

Appendix A. Proof of Theorem 6

Lemma 17. Under the setting of Theorem 6, we have

f (Ar
i ) ≥

min{1, γ̃f }

2
(1− e−(1−α̃i)γf )f (A⋆

i ), (A.1)

for all i ∈ [n].

7
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Proof. Under Assumption 4, we see from the definitions of (P1)

and Algorithm 1 that Ar = ∪i∈[n]A
r
i and A

⋆ = ∪i∈[n]A
⋆
i , where

A
r
i ,A

⋆
i ⊆ Si for all i ∈ [n], and A

r
i ∩ A

r
j = ∅, A

⋆
i ∩ A

⋆
j = ∅ for

all i, j ⊆ [n] with i ̸= j. Now, considering any i ∈ [n], we note

that (A.1) trivially holds if γ̃f = 0, γf = 0 or α̃i = 1. Thus, in

the remaining of this proof, we let γ̃f ∈ R>0, γf ∈ (0, 1] and
α̃i ∈ [0, 1). Recalling that we have assumed that hi(v) > 0 for

all v ∈ S , we then have from Definition 2 that δiv(A) > 0 for

all A ⊆ S and for all v ∈ S \ A, which implies that line 5

of Algorithm 1 is well-defined. Recall from Observation 1 that

A
r
i,j = {q1, . . . , qj} for all j ∈ [|Ar

i |] with A
r
i,0 = ∅. Moreover,

denote Ãi,j = {q̃1, . . . , q̃j} for all j ∈ [li + 1] with Ãi,0 = ∅, where

q̃i = qi for all i ∈ [li] and q̃j+1 = v⋆li+1
, where li and v

⋆
li+1

are
given in Observation 1. Now, considering any j ∈ {0, 1, . . . , li}
and denoting Ã

⋆
i = A

⋆
i \ Ã

r
i,j = {p1, . . . , p|Ã⋆

i
|}, we have

f (A⋆
i ∪ Ã

r
i,j)− f (Ãr

i,j) ≤
1

γf

|Ã⋆
i
|

∑

k=1

δpk (Ã
r
i,j)

=
1

γf

|Ã⋆
i
|

∑

k=1

δpk (Ãi,j)

δipk (Ã
r
i,j)
δipk (Ã

r
i,j) ≤

δq̃j+1 (Ã
r
i,j)

γf δ
i
q̃j+1

(Ãr
i,j)

|Ã⋆
i
|

∑

k=1

δipk (Ã
r
i,j)

≤
δq̃j+1 (Ã

r
i,j)

δi
q̃j+1

(Ãr
i,j)γf (1− α̃i)

|Ã⋆
i
|

∑

k=1

δipk ({p1, . . . , pk−1})

=
δq̃j+1 (Ã

r
i,j)

(hi(Ã
r
i,j+1)− hi(Ã

r
i,j))γf (1− α̃i)

hi(Ã
⋆
i ), (A.2)

where the first inequality follows from Definition 1, the second

inequality follows from the greedy choice in line 5 of Algorithm

1, and the third inequality follows from Definition 2. To proceed,

denoting ∆j ≜ f (A⋆
i ) − f (Ãr

i,j) for all j ∈ {0, 1, . . . , li + 1},

and noting that hi(Ã
⋆
i ) ≤ hi(A

⋆
i ) ≤ Hi, we have from (A.2) the

following:

∆j+1 ≤
(

1−
γf (1− α̃i)(hi(Ã

r
i,j+1)− hi(Ã

r
i,j))

Hi

)

∆j

⇒∆li+1 ≤ ∆0

li
∏

j=0

(

1−
γf (1− α̃i)(hi(Ã

r
i,j+1)− hi(Ã

r
i,j))

Hi

)

≤ ∆0

li
∏

j=0

(

1−
γf (1− α̃i)(hi(Ã

r
i,j+1)− hi(Ã

r
i,j))

hi(Ã
r
i,li+1

)

)

,

where the third inequality follows from hi(Ã
r
i,li+1

) > Hi as we
argued above. Note the fact that if a1, . . . , an ∈ R>0 such that
∑n

i=1 ai = αG, where G ∈ R>0 and α ∈ (0, 1], then the function

Πn
i=1(1−

ai
G
) achieves its maximum at a1 = · · · = an =

αG
n

(Kulik

et al., 2009). Since
∑li

j=0(hi(Ã
r
i,j+1) − hi(Ã

r
i,j)) = hi(Ã

r
i,li+1

) and

γf (1− α̃i) < 1, we have

li
∏

j=0

(

1−
γf (1− α̃i)(hi(Ã

r
i,j+1)− hi(Ã

r
i,j))

hi(Ã
r
i,li+1

)

)

≤

li
∏

j=0

(

1−
γf (1− α̃i)

hi(Ã
r
i,li+1

)

li+1

hi(Ã
r
i,li+1

)

)

=
(

1−
γf (1− α̃i)

li + 1

)li+1
.

It follows that

∆li+1 ≤
(

1−
γf (1− α̃i)

li + 1

)li+1
∆0 ≤ e−γf (1−α̃i)∆0

⇒ f (Ãr
i,li+1

) ≥ (1− e−γf (1−α̃i))f (A⋆
i ). (A.3)

Recalling from Definition 5 that f (Ãr
i,li+1

) − f (Ãr
i,li
) ≤ 1

γ̃f
f (Br

i ),

we obtain from (A.3) that f (Ãr
i,li
)+ 1

γ̃f
f (Br

i ) ≥ (1−e−γf (1−α̃i))f (A⋆
i ).

Since f (·) is monotone nondecreasing, it follows that f (Ar
i ) +

1
γ̃f
f (Br

i ) ≥ (1− e−γf (1−α̃i))f (A⋆
i ), which implies that at least one of

f (Ar
i ) and

1
γ̃f
f (Br

i ) is greater than or equal to 1
2
(1−e−γf (1−α̃i))f (A⋆

i ).

Thus, we see from line 9 in Algorithm 1 that (A.1) holds. ■

Proof of Theorem 6. Since (6) naturally holds if κf = 0, we let

κf ∈ (0, 1] in this proof. Considering A
r = ∪i∈[n]A

r
i returned by

Algorithm 1, and denoting A1 = ∪i∈[n−1]A
r
i and A2 = A

r
n =

{q1, . . . , q|Ar
n|
}, we have

f (A1 ∪ A2) = f (A1)+

|Ar
n|

∑

j=1

δqj (A1 ∪ {q1, . . . , qj−1})

≥ f (A1)+ (1− αf )

|Ar
n|

∑

j=1

δqj ({q1, . . . , qj−1})

= f (A1)+ (1− αf )f (A2). (A.4)

where the inequality uses the fact that qj /∈ A1 (from Assump-

tion 4) and Definition 2. Repeating the above arguments for (A.4),

one can show that f (∪i∈[n]A
r
i ) ≥ (1 − αf )

∑n

i=1 f (A
r
i ), which

implies via (A.1) that

f (Ar ) ≥
(1− αf )min{1, γ̃f }

2

×min
i∈[n]

(1− e−(1−α̃i)γi )

n
∑

i=1

f (A⋆
i ). (A.5)

Now, consider the optimal solution A
⋆ = ∪i∈[n]A

⋆
i . Using similar

arguments to those above, and recalling the definition of the

DR ratio κf of f (·) given in Definition 1, one can show that

f (∪i∈[n]A
⋆
i ) ≤

1
κf

∑n

i=1 f (A
⋆
i ), which together with (A.5) complete

the proof of (6). ■

Appendix B. Proof of Theorem 9

First, note that (7) trivially holds if γf = 0, αh = 1, or

f (A⋆) = 0. Thus, we let γf ∈ (0, 1], α̃i ∈ [0, 1), and f (A⋆) > 0

in this proof. For our analysis in this proof, we assume without

loss of generality that f (·) is normalized such that f (A⋆) = 1. Also

recalling that we have assumed that hi(v) > 0 for all v ∈ S , we

know from Definition 2 that δiv(A) = hi(A ∪ {v}) − hi(A) > 0

for all A ⊆ S and for all v ∈ S \ A, which implies that ψj in

Definition 8 and line 3 of Algorithm 1 are well-defined. Denote

A
g = {q1, . . . , q|Ag |}, and A

g

j = {q1, . . . , qj} for all j ∈ [|Ag |]

with A
g

0 = ∅. We claim that in the remaining of this proof, we

can further assume without loss of generality that ψj > 0 for all

j ∈ {0, . . . , |Ag | − 1}. To prove this claim, we first assume (for

contradiction) that there exists j ∈ {0, . . . , |Ag | − 1} such that

δqj+1 (A
g

j ) = 0. Since γf ∈ (0, 1] as we argued above, we see from

Definition 1 and the greedy choice that δW (A
g

j ) = 0, where W is

defined and iteratively updated in Algorithm 2. Recalling that f (·)

is monotone nondecreasing as we assumed before, we then have

that f (A
g

j ∪ W1) = f (A
g

j ∪ W2) for all W1,W2 ⊆ W . It follows

that δqj′+1 (A
g

j′
) = 0 for all j′ ∈ {j, . . . , |Ag | − 1}. In other words,

Algorithm 2 is vacuous after adding qj to the greedy solution A
g .

Thus, we can assume without loss of generality that δqj+1 (A
g

j ) > 0
for all j ∈ {0, . . . , |Ag | − 1}, which implies via Definition 8 that

ψj > 0 for all j ∈ {0, . . . , |Ag | − 1}.

8
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To proceed, let us consider any j ∈ {0, . . . , |Ag |−1}. Denoting
Ã
⋆
j = A

⋆ \ A
g

j , we have

f (A⋆) ≤ f (A
g

j )+
1

γf

∑

v∈Ã⋆
j

δv(A
g

j )

≤ f (A
g

j )+
1

γf

∑

i∈[n]

∑

v∈Ã⋆
j
∩Si

δv(A
g

j )

δiv(A
g

j )
δiv(A

g

j )

≤ f (A
g

j )+
δqj+1 (A

g

j )

γfψjδ
ij
qj+1

(A
g

j )

∑

i∈[n]

∑

v∈Ã⋆
j
∩Si

δiv(A
g

j ), (B.1)

where the first inequality follows from Definition 1 and the
monotonicity of f (·), and the third inequality follows from Def-
inition 8. Denoting Ã

⋆
j ∩ Si = {p

i
1, . . . , p

i

|Ã⋆
j
∩Si|
} for all i ∈ [n], we

further obtain from Definition 2 that
∑

i∈[n]

∑

v∈Ã⋆
j
∩Si

δiv(A
g

j )

≤
1

1− αh

∑

i∈[n]

|Ã⋆
j
∩Si|

∑

k=1

δi
pi
k

({pi1, . . . , p
i
k−1})

=
1

1− αh

∑

i∈[n]

hi(Ã
⋆
j ∩ Si) ≤

∑

i∈[n] Hi

1− αh

. (B.2)

Denoting

Mj =

∑

i∈[n] Hi

(1− αh)γfψjδ
ij
qj+1

(A
g

j )
, (B.3)

and δj = δqj+1 (A
g

j ) for all j ∈ {0, . . . , |Ag | − 1}, we can combine
(B.1)–(B.2) and obtain that

Mjδj +

j−1
∑

k=0

δk ≥ 1, ∀j ∈ {0, . . . , |Ag | − 1}, (B.4)

where we use the facts that f (A
g

j ) =
∑j−1

k=0 δk and f (A⋆) = 1 as
we argued before.

In order to prove the approximation guarantee of Algorithm
2 given by (7), we aim to provide a lower bound on f (Ag )/f (A⋆)

and we achieve this by first minimizing f (Ag )/f (A⋆) =
∑|Ag |−1

j=0 δj
subject to the constraints given in (B.4). In other words, we
consider the following linear program and its dual:

min
δj

|Ag |−1
∑

j=0

δj

s.t. Mjδj +

j−1
∑

k=0

δk ≥ 1, ∀j ∈ {0, . . . , |Ag | − 1},

(B.5)

max
µk

|Ag |−1
∑

k=0

µk

s.t. µk ≥ 0, ∀k ∈ {0, . . . , |Ag | − 1}

Mjµj +

|Ag |−1
∑

k=j+1

µk = 1, ∀j ∈ {0, . . . , |Ag | − 1}.

(B.6)

We will then show that the optimal cost of (B.5) and (B.6) satisfies
(7). Noting from Eq. (B.3) that Mj > 0 for all j ∈ {0, . . . , |Ag | −
1}, we can obtain the optimal solution to (B.6) by solving the
equations in uk given by the equality constraints in (B.6), which

yields µ⋆k =
1
Mk

∏|Ag |−1
j=k+1 (1 − 1

Mj
) ∀k ∈ {0, . . . , |Ag | − 1}. Noting

from Eq. (B.3) that
∑|Ag |−1

k=0
1
Mk
= B, we can further lower bound

∑|Ag |−1
k=0 µ⋆k by solving

min
νk

|Ag |−1
∑

k=0

νk

|Ag |−1
∏

j=k+1

(1− νj) s.t.

|Ag |−1
∑

k=0

νk = B. (B.7)

One can obtain the optimal solution to (B.7) by considering a
Lagrangian multiplier corresponding to the equality constraint
in (B.7), which yields the optimal solution νk =

B
|Ag |
∀k ∈

{0, . . . , |Ag | − 1}. It then follows from our arguments above that

|Ag |−1
∑

k=0

µ⋆k ≥

|Ag |−1
∑

k=0

B

|Ag |

|Ag |−1
∏

j=k+1

(1−
B

|Ag |
)

= 1− (1−
B

|Ag |
)|A

g | ≥ 1− e−B. ■
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