OpenMPI+Java as a High Performance Language

Joel C. Adams
Department of Computer Science
Calvin University
Grand Rapids, Michigan, USA
adams@calvin.edu

Abstract—The Message Passing Interface (MPI) is a software
platform that can utilize the parallel capabilities of most multi-
processors, making it useful for teaching students about parallel
and distributed computing (PDC). MPI provides language
bindings for Fortran and C/C++, but many university instructors
lack expertise in these languages, preventing them from using MPI
in their courses. OpenMPI is a free implementation of MPI that
also provides Java bindings, allowing instructors who know Java
but not C/C++ or Fortran to teach PDC. However, Java has a
reputation as a “slow” language, so some say it is unsuitable for
teaching PDC. This paper gives a head-to-head comparison of the
performance of OpenMPI’s Java and C bindings. Our study shows
that by default, Java can be faster than C unless one takes special
measures, and it exhibits similar speedup, efficiency, and
scalability. We conclude that Java is a suitable language for
teaching PDC.

Keywords—computing, distributed, education, exemplar, Java,
MPI, OpenMPI, parallel, performance

I. INTRODUCTION
Multiprocessors are ubiquitous in today’s world:

e Virtually all of today’s commodity desktop and laptop
computers have multicore central processing units (CPUs),
making them shared-memory multiprocessors.

e Any modern computer lab can be configured as a Network
of Workstations (NoW) distributed-memory multiprocessor
with the lab’s computers serving as computing nodes.

o A Beowulf cluster [8] is a dedicated, distributed-memory
multiprocessor made from commodity, off-the-shelf
computing nodes that communicate through a standard
network fabric, such as Ethernet. Its nodes may be
expensive high-end computers or inexpensive single-board
computers, such as the Raspberry Pi.

e Nearly all modern supercomputers are dedicated,
heterogenous distributed-memory multiprocessors, where a
high-performance network connects nodes consisting of
high-performance CPUs and accelerators.

To ensure that CS graduates can program such machines, the
NSF/IEEE TCPP Curriculum Initiative [13] and the ACM/IEEE
CS 2013 Curriculum guidelines [9] recommend that all
undergraduate CS majors learn about PDC. Likewise, the
Accreditation Board for Engineering and Technology (ABET)
requires that all CS majors in ABET-accredited CS programs be
exposed to PDC [1]. CS educators are thus expected to teach
their students how to program multiprocessors.

This work was supported by U.S. NSF grant DUE#1822486.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A. The Message Passing Interface (MPI)

The Message Passing Interface (MPI) [12] is a software
platform that is commonly used on modern supercomputers and
Beowulf clusters, but that may also be used effectively on a
Network of Workstations (NoW) or a multicore laptop or
desktop. This ability to run on virtually any hardware platform
makes MPI a useful tool for introducing students to PDC.

MPI provides: (i) a library of functions for inter-process
communication, and (ii) a runtime environment for launching a
multi-process computation across the cores of a shared-memory
multiprocessor or the computing nodes of a distributed-memory
multiprocessor. MPI uses the Single Program, Multiple Data
(SPMD) pattern of parallelism, in which copies of the same
program are launched as processes on the multiprocessor’s cores
or nodes—the Single Program part of SPMD. The MPI runtime
assigns each process a different number called its rank, which
the processes can use to perform different tasks or process
different chunks of data—the Multiple Data part of SPMD.
There are two free, open source versions of MPI available—
MPICH [5] and OpenMPI [15]—plus commercial versions.

The MPI standard [12] specifies that an implementation of
MPI must provide bindings for three languages: Fortran, C, and
C++. (Third parties have developed bindings for other
languages, but they are not part of the MPI standard.) When
installing MPI, a person just specifies their preferred language
and its compiler, and the MPI installer handles the details.

However, very few universities teach Fortran anymore, and
instruction in C/C++ appears to be slowly declining as new
languages provide more-attractive alternatives. Additionally, the
computing programs at many universities are heavily Java-
oriented for a variety of reasons, including:

e In U.S. high schools, the Advanced Placement Computer
Science ‘A’ course (AP CS-A) is taught in Java, so many
universities match that language in their CS1 course.

e QOutside the U.S., the International Baccalaureate (IB) CS
course is officially language-agnostic, but Java is
commonly used as the language of instruction.

e Java is used extensively in industry. As a result, some
universities focus on Java to prepare their students for
careers as Java developers.

e Some (many?) university instructors have extensive
expertise in Java but have limited C/C++ expertise.

For these and other reasons, it can be challenging for some
universities’ CS departments to teach their students about PDC
using MPI and C/C++. The author is a member of CSinParallel,

an NSF-supported project to promote PDC in undergraduate CS
education. Since 2012, this project has sponsored over twenty
faculty development workshops around the U.S. Most of these
workshops included introductions to MPI programming using
C/C++. At virtually every one of these workshops, one or more
of the participants has asked, “Is there any way to do this in
Java? My department is heavily Java-oriented.”

B. OpenMPI

The OpenMPI project seems to have heard such comments, as
OpenMPI introduced Java bindings in version 1.7 in 2013 (the
current version is 4.1). These bindings supersede those of older
3"-party efforts such as mpiJava [6] or MPJ Express [7].

OpenMPI’s Java bindings are not enabled by default. If one
downloads and installs an OpenMPI binary package for Linux,
MacOS, or Windows, the Java bindings are unlikely to be
enabled.

To use the Java bindings in OpenMPI, one must currently
configure, build, and install OpenMPI from its source code. In a
previous paper [3], we have shown the five steps needed to do
this, so we will not repeat them here, but we refer the interested
reader to that paper. Those steps should work on any Unix-
family system, such as Linux or MacOS, or on a Unix-family
subsystem such as Cygwin [16] for Windows or the Windows
Subsystem for Linux [11].

When these steps have been successfully completed,
OpenMPI’s binary, include, and library files will have been
installed in the directory /usr/local/. In particular:

e an MPI compiler-script named mpijavac , and
e an MPI run-time launcher named mpirun

will have been installed in /usr/1ocal/bin/. If that directory is
present in one’s environment’s PATH variable, then the programs
mpijavac and mpirun may be invoked from any folder on one’s
system. The mpijavac program is used to compile Java
programs using the OpenMPI bindings; the mpirun program is
used to execute the resulting Java class files. We will illustrate
their uses in Section II.

C. Previous Work

A patternlet [2] is a minimalist, complete, working program that
students or instructors can run to study the behavior of a
particular parallel design pattern [10]. By running a patternlet,
viewing its output, and comparing that output to the (minimalist)
source code that produced the output, students can see the
essence of the pattern in a way that minimizes cognitive load.

[3] illustrated OpenMPI’s Java bindings by showing 6 of the
25 OpenMPI+Java patternlets. Each patternlet is ideal for
introducing students to a parallel design pattern, as it provides
working syntax that implements and shows the behavior of the
pattern. But for students to see why a particular pattern is useful,
they need to see it being used to solve a significant problem.
Such problems are called exemplars [4].

This paper differs from [3] by: (i) presenting an exemplar
problem, (ii) solving it using MPI in both C and Java, and (iii)
comparing those solutions’ performances. The presentation of
the C and Java solutions and the comparison of their relative
performances are the primary contributions of the paper.

II. QUINN’S CIRCUIT-SOLVER PROBLEM

In Quinn’s classic PDC text [14], he presents a 16-bit circuit and
then poses the problem of writing a program that outputs:

a. All of the 16-bit inputs that cause the circuit to output the bit
1; and

b. A count of the number of inputs that cause the circuit to
output the bit 1. (This provides an easy way to check the
correctness of the computation.)

In keeping with good pedagogical practice, Quinn provided a
sequential program for readers to use as scaffolding. This
program uses a brute-force approach: a for loop iterates through
the integers 0..2!°-1, and for each integer, checks the circuit for
that value. One can easily create a parallel version by converting
that sequential loop into a parallel loop, making this an exemplar
problem for the parallel loop design pattern.

When Quinn wrote his text, sequentially iterating through all
216 possible inputs took long enough to motivate the use of
parallelism. But CPUs have improved since then; modern CPUs
can solve the 16-bit problem using Quinn’s sequential code in a
few seconds, reducing the motivation for parallelization. To
remotivate his students, this author developed a 32-bit version
of the problem' its circuit is shown in Figure 1:

e { Keiimisilie

_Lﬂ

Y v‘; ickig!
ﬁ =

Fig. 1. A 32-bit Version of Quinn’s Circuit-Solver Problem

A. A Sequential C Program

Fig. 2 presents the main() function of a sequential C program
that solves the problem for the 32-bit circuit in Fig. 1:

int main (int argc, char *argv[]) {
int id = 0; // process id
int count = 0; // number of solutions

printf ("\nChecking the circuit...\n";

for (long i = 0; i <= UINT MAX; ++i) {
count += checkCircuit(id, i);

}

printf ("\n%d solutions found.\n", count);

return O;
}

Fig. 2. The main() Function of circuitSolver.c (Sequential Version)

The for loop in Fig. 2 iterates through the range of values
0..232-1, invoking checkCircuit () on each value.

Fig. 3 presents a C implementation of checkCircuit():
#define SIZE 32

// Extract bit i from int value n
#define EXTRACT BIT(i, n) ((n & (1l<<i)) 2 1 : 0)

int checkCircuit(int id, long value) {
int v[SIZE]; // Each v[i] is one of the 32 bits

for (long i = 0; i < SIZE; i++) {
v[i] = EXTRACT_BIT(i, value);

}

if (((vio] || vilD)
&& (!vil] || tv(3]) && (v[2] || vI3])
&& (!v[3] || tvi4]) && (vi4] || tvI51)
&& (v[5] || vi6]) && (v[5] || vI6])
&& (v[6] || !vi15]) && (v[7] || !vI8]1)
&& (!v[7] || tv[13]) && (v[8] || vI91)
&& (v[8] || !vi91) && (!v[9] || !v[1l0])
&& (v[9] || vIl1l]) && (v[10] || v[11])
&& (v[12] || v[13]) && (v[13] || !v[14])
&& (v[14] || vI15]))
&& ((v[16] || vI[171) && (!v[17] || !v[19])
&& (v[18] || v[19])
&& (!v[19] || !v[20]) && (v[20] || !v[21])
&& (v[21] || !v[22]) && (v[21] || v[22])
&& (v[22] || !'v[31]) && (v[23] || !v[24])
&& (!v[23] || !v[29]) && (v[24] || vI25])
&& (v[24] || !v[25]) && (!v[25] || !v[26])
&& (v[25] || v[27]1) && (v[26] || v[27])
&& (v[28] || v[29]) && (v[29] || !v[30])
&& (v[30] || v[31])))

{

printf("%d) %d%d3d%d2d3d%d3dsd2d3sdsdzdsdsdzd\
$d%d2dsdsd2dsd2dsdsdsdsdsdsdsdsd \n",
id, v[31], v[30], v[29], v[28],
v[27], v[26], Vv[25], v[24],
v[23], v[22], v[21], v[20],
v[19], v[18], v[17], v[16],
v[15], v[14], v[13], v[1l2],
v[1l1], v[10], v[9], v[8],
v[7], vI[6], v[5], v[4],
vi31, vi[2], v[1], v[O]);
fflush (stdout);
return 1;
} else {
return 0;
}
}

Fig. 3. The checkCircuit() Function of circuitSolver.c

The checkcircuit() function first uses the EXTRACT BIT()
macro to create v, a bit-vector of length 32 representing the
parameter value. The if statement’s condition encodes the
Boolean logic of the circuit shown in Figure 1; if that condition
is true, the function outputs the process id and the bit-vector v,
and then returns 1; otherwise, it returns 0. Out of the 232 different
32-bit inputs, just 81 of the values cause this circuit to output 1.

To compute the speedup requires a baseline time. Since the
for loop in Fig. 2 is the “hot spot” in the computation, the
baseline time can be computed by wrapping that loop in calls to
MPI_wtime() and then calculating the difference of the calls.
The Mp1_wtime() function must be called between calls to
MPI_Init() and MPI_Finalize(), as shown in Fig. 4:

#include <mpi.h>

int main (int argc, char *argv[]) {
int id = 0; // process id
int count = 0; // number of solutions

printf ("\nChecking the circuit...\n", id);
MPI_Init(&argc, &argv);
double startTime = MPI_Wtime();

for (long i = 0; i <= UINT MAX; ++i) {
count += checkCircuit (id, 1i);

}

double totalTime = MPI_Wtime() - startTime;

printf("\n%d solutions in time %f secs.\n",
count, totalTime);

MPI_Finalize();

return 0;
}
Fig. 4. The main() Method of circuitSolver.c (Timed Sequential Version)

The program in Fig. 4 can then be compiled by entering:

mpicc -Wall -std=c99 circuitSolver.c \
-0 circuitSolver

This creates a binary executable program and stores it in a file
named circuitsolver that can be run by entering:

mpirun -np 1 ./circuitSolver

Running the program produces output like the following:

Checking the circuit...

0) 10011001111101011001100111110101
0) 10011001111101011001100111110110
0) 10011001111101011001100111110111
0) 10011001111101011001101111110101
0) 10011001111101011001101111110110
... 75 similar lines omitted ...

0) 10011101111101111001110111110111

81 solutions found in 136.579118 secs.

For this paper, we compiled and ran all of the programs using
MPI installed over: (i) Apple gcc (clang 13.0) on a 2022
MacBook Pro with Apple’s 10-core M1 Pro CPU (whose 8
performance cores run at 3.2 GHz), and (ii) gcc 7.1 on a Linux
workstation with a 3.6 GHz 8-core Intel 17 CPU. The results we
present in Section III were similar on both platforms; in this
paper we report the times from the MacBook Pro, since it has
more cores.

As can be seen above, the program took over 2 minutes to
identify the 81 solutions to the circuit. This lengthy time
provides strong motivation to explore a parallel solution.

B. A Parallel OpenMPI+C Program

With a baseline time for the sequential version, the next task is
to ‘parallelize’ the program in Fig. 4 by converting its sequential
loop into a parallel loop. Fig. 5 shows a relatively simple way to
do this, using the “slices” version of the parallel loop pattern,
with some of the key differences from Fig. 4 highlighted in blue:

int main (int argc, char *argv[]) {
int id = 0; // process id
int numProcs 0; // number of processes
int localCount 0; // solutions for process p
int totalCount 0; // total solutions

MPI_Init(&argc, &argv);
MPI_Comm_ rank (MPI_COMM WORLD, &id);
MPI_Comm size(MPI_COMM WORLD, &numProcs);

if (id == 0) {
printf ("\nChecking using %d processes...\n",
numProcs) ;

}

MPI_Barrier (MPI_COMM_WORLD) ;
double startTime = MPI_Wtime();

for (long i = id; i <= UINT_MAX; i += numProcs) {
localCount += checkCircuit (id, i);

}

MPI_Reduce(&localCount, &totalCount, 1,
MPI_INT, MPI_SUM, O, MPI_COMM_WORLD);

double totalTime = MPI_Wtime() - startTime;

if (id == 0) {
printf("\n%d solutions found in %f secs.\n\n",
total_count, totalTime);

}
MPI_Finalize();

return 0O;
}

Fig. 5. The main() Function of circuitSolver.c (Parallel Version)

Fig. 5 uses the “slices” version of the parallel loop pattern rather
than the “equal chunks” parallel loop because: (i) “slices” is
much simpler, (ii) “slices” may balance the workloads better if
some circuits take longer to check than others, and (iii) “equal
chunks” offers no performance advantage for this problem.

In Fig. 5, each print£() is guarded by an if statement that
ensures only process 0 performs that output operation. However,
we do not guard the print£ () in function checkCircuit () (see
Fig. 3), so each process outputs the solutions it discovers. The
identification of the 81 solutions is thus spread across different
processes, making their ordering non-deterministic, but the
output produced by this parallel program has a similar overall
structure to that of the sequential program:

Checking using 8 processes...

7) 10011001111101011001100111110111
7) 10011001111101011001101111110111
7) 10011001111101011001110111110111
6) 10011001111101011001100111110110
6) 10011001111101011001101111110110
... 75 similar lines omitted ...

5) 10011101111101111001110111110101

81 solutions found in 19.904344 secs.

This problem is almost embarrassingly parallel; the only inter-
process communication in Fig. 5 occurs after the parallel loop,
where MPI_Reduce() is used to combine the process’s
localCount values into the totalcount. As a result, this
program exhibits nearly linear scaling as we increase the number
of processes, as we will see in Section III.

C. A Sequential Java Program

Converting the sequential C code in Fig. 2 from C to Java is
fairly straightforward, as can be seen in Fig. 6:

public class CircuitSolver {

public static void main (String args[]) {
int id = 0; // process id
int count = 0; // solutions
final long UINT MAX = 4294967295L; // 2732 - 1

System.out.printf ("\nChecking the circuit...\n");

for (long i = 0; i <= UINT MAX; ++i) {
count += checkCircuit(id, i);

}

System.out.printf("%d solutions found.\n", count);

1

// ... method checkCircuit() omitted to save space
}
Fig. 6. The main() Method of CircuitSolver.java (Sequential Version)

Unlike C, Java has no unsigned primitive type, so it has no
predefined constant vint max. We therefore define our own
vINT_MaX using the ‘hardwired’ value 4,294,967,295 (232-1).

Fig. 6 omits the definitions of the checkcircuit () method,
as converting the C function in Fig. 3 into a Java method is fairly
straightforward.

To time this Java computation, we can use the Mp1 class’s
Init (), wtime(), and Finalize () methods, as shown in Fig. 7:

public static void main (String args[])
throws MPIException {
MPI.Init (args);
int id = 0; // process id
int count 0; // solutions
final long UINT_ MAX 4294967295L; // 2732 — 1

System.out.printf ("\nChecking the circuit...\n");
double startTime = MPI.wtime();

for (long i = 0; i <= UINT MAX; ++i) {
count += checkCircuit(id, i);

}

double totalTime = MPI.wtime() - startTime;

String fmt = "\n2%d solutions found in %f secs.\n";
System.out.printf (fmt, count, totalTime);

MPI.Finalize();
1

Fig. 7. The main() Method of CircuitSolver.java (Timed Sequential Version)

The program in Fig. 7 can then be compiled using mpijavac:
mpijavac CircuitSolver.java

This creates a Java bytecode program and stores it in the file

CircuitSolver.class. That file can then be run using mpirun:
mpirun -np 1 java CircuitSolver

This launches the Java Virtual Machine (JVM), which then runs

the bytecode program in the CircuitSolver.class file. The output

is identical to the sequential C version, except for the time,
which we found very surprising, as we discuss in Section III.

D. A Parallel OpenMPI+Java Program

With a baseline time for one process, the next task is to convert
the sequential program in Fig. 7 into a parallel program using
OpenMPI’s Java bindings. Fig. 8 shows the result, with the key
changes highlighted in blue:

public static void main (String args[])
throws MPIException {

MPI.Init(args);

Comm comm = MPI.COMM WORLD;
int id = comm.getRank();
int numProcs = comm.getSize();
int localCount = 0;
int totalCount = 0;

final long UINT MAX = 4294967295L;

if (id == 0) {
System.out.printf ("\nChecking the circuit
+ "with %d processes...\n",
numProcs) ;

}

comm.barrier();
double startTime = MPI.wtime();

for (long i = id; i <= UINT_MAX; i += numProcs) {
localCount += checkCircuit(id, i);

}

IntBuffer localCountBuffer = MPI.newIntBuffer(l);
localCountBuffer.put(localCount);

IntBuffer totalCountBuffer = MPI.newIntBuffer(1l);

comm.reduce (localCountBuffer, totalCountBuffer,
1, MPI.INT, MPI.SUM, 0);

totalCount = totalCountBuffer.get(0);
double totalTime = MPI.wtime() — startTime;

String fmt = "\n%d solutions found in %f secs.\n";
if (id == 0) {

System.out.printf (fmt, totalCount, totalTime);
}

MPI.Finalize();
}
Fig. 8. The main() Method of CircuitSolver.java (Parallel Version)

An mMp1.1Init() call launches a multi-process computation of ¥
processes, using the command-line argument -np N of mpirun.
That call also creates an object named Mp1 . coMM_woRLD that can
be thought of as the set of those ¥ processes. In OpenMPI’s Java
bindings, MPI.coMM_WORLD is an instance of a class named comm,
and getRank() and getsize() are comm class methods. Each
process uses these methods to discover: (i) its process id and (ii)
how many processes are performing the computation. These
values are then used to implement the same “slices” parallel
loop pattern used in Fig. 5. OpenMPI’s Java bindings for the
reduction operation use strongly typed buffer objects, so after
the parallel loop completes, we build capacity-1 buffers for the
localcount and totalcount values. We then use those buffers
in the reduction operation, which OpenMPI’s Java bindings
provide via a comm class method named reduce(). Following
the call to reduce(), we retrieve the totalcount value from its
buffer for subsequent reporting.

III. PERFORMANCE ASSESSMENT

The author has taught high performance computing for more
than two decades, and has for many years used Quinn’s Circuit-
Solver problem to introduce students to MPI, C, and the simpler
“slices” parallel loop pattern. The problem is accessible to most
students; the multi-minute runtime of the sequential version,
plus the near-linear scaling lets parallel coimputing novices
viscerally experience the benefits of parallel execution.

The author implemented the Java solution in Figs. 6-8 to see
how much of a performance penalty one would incur for using
Java instead of C. After all, the command:

mpirun -np N java CircuitSolver

launches ¥ JVMs, each running the Java bytecode program in
CircuitSolver.class. How could a JVM interpreting a bytecode
program possibly be competitive with a native-binary
executable program running directly on the hardware?

Imagine the author’s surprise—and consternation—to find
that not only was Java competitive; it was significantly faster!
On the author’s M1-equipped MacBook Pro, running the C
version with one process took about 137 secs to find the 81
solutions; the Java corresponding version took about 60 secs.
From these baseline times, each version’s execution times
decreased smoothly as more processes were used, until the M1’s
cores were oversubscribed, as can be seen in Fig. 9:

CircuitSolver Times Using OpenMPI, clang vs. javac
== OpenMPI+C (clang) == == OpenMPIl+Java (javac)

150

100

Lower is Better

Time (secs)

50 ~

Number of Processes

Fig. 9. Runtimes of circuitSolver.c and CircuitSolver.java

The author was rather vexed by this outcome, as it was the exact
opposite of what was expected. This result was so counter to his
intuition, he re-ran each program multiple times, both on his
laptop and on an Intel i7-equipped Linux workstation. While the
precise execution times were different, the pattern was the same
on each platform: the OpenMPI+Java version was more than
twice as fast as the OpenMPI+C version.

After spending time pondering how this could occur, the
author recalled that the JVM incorporates “HotSpot” technology
that at runtime, identifies Aot spots—portions of code that are
being executed repeatedly—such as the for loop in Fig. 6. When
it identifies such a hot spot, the JVM performs a just-in-time
(JIT) compilation to build a highly optimized version of that hot-
spot, and then seamlessly switches to run that optimized code.

The key phrase in that sentence is “highly optimized”—it led
to a hypothesis: that the difference in performance between the
OpenMPI+C and the OpenMPI+Java versions was the result of
differing levels of optimization.

More precisely, recall from Section II that we built the
OpenMPI+C version with the following command:

mpicc -Wall -std=c99 circuitSolver.c \
-0 circuitSolver

Since this command does not specify any optimization switches,
it is invoking the C compiler that underlies mpicc and having it
use its default (i.e., minimal) optimization settings.

By contrast, once the JVM has identified the hot spot in
CircuitSolver.class and compiled a native version of it, it
switches to that JIT-compiled, highly optimized native code.
Our hypothesis is that the performance difference seen in Fig. 9
stems from running an unoptimized binary (the C version)
against a JIT-optimized binary (the Java version).

To test this hypothesis, we rebuilt the OpenMPI+C version
using the following modified command:

mpicc -Wall -std=c99 -03 circuitSolver.c \
-0 circuitSolver

The -o03 switch tells the compiler underlying mpice (i.e., gcc or
clang) to generate highly optimized code. We then re-ran our
computations; Fig. 10 shows the results:

CircuitSolver Times Using OpenMPI, clang -03 vs. javac

== == QOpenMPIl+Java (javac) == OpenMPI+C (clang -03)

80

60

40 3

Lower is Better

Time (secs)

20 e ~—

Number of Processes

Fig. 10. Runtimes of circuitSolver.c (-O3 Optimized) and CircuitSolver.java

Comparing Fig. 10 to Fig. 9, we see that the highly optimized C
version has now leapfrogged the HotSpot-optimized Java
version. For example, where the single-process Java version
takes about 60 secs to find the 81 instances (the same as before),
the highly optimized C version has gone from about 137 secs to
about 23 secs. From their baselines, both versions exhibit good
scaling as we increase the number of processes, though we see
diminishing returns after all of the M1 chip’s eight performance
cores are in use. (Apple’s M1 Pro CPU has two 1.2 GHz
efficiency cores and eight 3.2 GHz performance cores; MacOS
initially schedules a process on the efficiency cores; if it is
computationally intensive, the system migrates that process to a
performance core.) The difference in performance between the
C and Java versions narrows as more processes are used, until
the chip’s eight performance cores are oversubscribed. Beyond
that point, Java’s performance degrades much more than C’s.

For the sake of completeness, we rebuilt and reran the
OpenMPI+C version twice more: once with -02 optimization
and then again with -o1 optimization. The results of the -o02
optimization were very similar to Fig. 10, but the results of the
-o01 optimization were quite different, as seen in Fig. 11:

CircuitSolver Times Using OpenMPI, clang -01 vs. javac

== == OpenMPI+Java (javac) == OpenMPI+C (clang -01)

80

—
Q
+—
. e
.)
60 A o
A% wn
— o oA
§ 3 =
o, 40 AR ()
o N 2
g S 3
S N
~ e
20 St
[}
1 2 3 4 5 6 7 8 9 10 1" 12

Number of Processes

Fig. 11. Runtimes of circuitSolver.c (-O1 Optimized) and CircuitSolver.java

Fig. 11 shows that prior to the M1 chip’s performance cores
becoming fully saturated, the Java version slightly outperforms
and tracks closely with the -o1 optimized C version.

From Figures 10 and 11, it is evident that HotSpot is doing
more optimization than -o1 level gcc optimization, but either:
(1) it is doing less than -o02 or -03, or (ii) is optimizing at a -02
or -03 level but some of the performance-gain being offset or
lost elsewhere in the execution. The latter is a strong possibility;
Fig. 12 shows the timeline of the Java execution:

JVM Switch to End of
Process Hot Spot Hot Spot Hot Spot Compiled Hot Spot
Launched Reached Identified Compiled Hot Spot Reached
Time ¥ v v v v v ,
Pre-Hot Spot Hot Spot Hot Spot |Post-Hot Spot
Code Running Code Running Code Running Code Running
(In_terpreted}_ (Interpreted) (Compiled) \ (Interpreteq)

Fig. 12. Execution Timeline of HotSpot-Optimized CircuitSolver.java

This program has just one hot spot, represented by the second
and third boxes in Fig. 12. (The first and last boxes represent
executions of untimed, interpreted, non-optimized bytecode.)
The second box represents timed, interpreted, non-optimized
bytecode; the third box is timed, optimized binary native code.
Since interpreted, bytecode runs much slower than highly
optimized native code, the time taken to (i) recognize the hot
spot, (ii) compile it, and (iii) switch to the compiled binary
contribute to the hot spot’s overall execution time. The time
spent in the second box thus reduces the performance gains
achieved by the third box. We have no tools to find the time
spent in the second box, but it should be of a fixed length, so the
longer the hot spot’s overall time, the higher the percentage of
time will be spent in that third (better-performing) box.

Java’s HotSpot technology thus has a significant positive
effect: its optimizations make Java faster than equivalent C code
optimized at the -o1 level; C must be optimized at higher levels
to beat it. This implies that our hypothesis is correct: different
optimization levels are causing the differences seen in Fig. 9.

IV. CONCLUSIONS

Historically, instructors wanting to use MPI to teach their
students PDC concepts were limited to languages named in the
MPI standard: Fortran, C, and C++. This is no longer the case,
now that OpenMPI has added Java bindings to their
implementation of the MPI standard.

In this paper, we have presented an exemplar problem,
shown C and Java sequential solutions to that problem, and
shown how to turn those sequential solutions into parallel
solutions using OpenMP’s C and Java bindings. Comparing the
performance of those parallel solutions, we have seen that
OpenMPI+]Java performs surprisingly well: for a CPU-bound
computation like our exemplar, the OpenMPI+Java solution
performs better than the OpenMPI+C solution compiled at the
default or -o1 optimization levels. While a highly optimized C
version outperforms the Java version, we have also seen that the
performance gap between the two versions narrows as more
parallel processes are used. The Java version exhibits speedup,
efficiency, and scalability that are similar to the C version,
making it a suitable language for teaching these concepts.

We intentionally chose a CPU-bound computation to
compare the performance of OpenMPI+C and OpenMPI+Java,
because a computation that exercises the CPU’s arithmetic logic
unit lets us directly compare the two languages’ number-
crunching capabilities. We expected that Java’s performance
would be far inferior to that of C, but we were wrong. Thanks to
its HotSpot technology, Java performed much better than
unoptimized or lightly optimized C, but was surpassed by highly
optimized C, most likely due to a portion of the Java bytecode
program being interpreted in the JVM. The HotSpot technology
is included in the JVMs from both Oracle Java and OpenJDK
Java; the work presented in this paper used OpenJDK Java 17.

The only inter-process communication needed to solve this
problem was the reduction operation. With respect to MPI’s
communication operations (e.g., send, receive, broadcast,
reduce, scatter, gather, etc.), we hypothesize that OpenMPI’s C
and Java bindings both use the same underlying core
functionality—the language bindings should essentially be APIs
to access that core functionality. If this is indeed the case, then a
given MPI communication operation should exhibit similar
performance regardless of the language used to invoke it. We
hope to test this hypothesis in a future paper.

Finally, the clean syntax of OpenMPI’s Java bindings
combined with the JVM’s HotSpot technology make Java a
reasonable choice as a language for teaching PDC / HPC topics
such as speedup, efficiency, and scalability. For instructors or
departments with Java expertise, OpenMPI+Java provides a
very good software platform for giving students practical,
hands-on learning experiences to improve their understanding of
abstract PDC concepts.

REFERENCES

(1]
(2]

[10]
(1]
[12]

[13]

[14]

[15]

[16]

ABET, The Accreditation Board for Engineering and Technology.
Online, accessed 2021-11-01, http://abet.org.

J. Adams. “Patternlets: A Teaching Tool for Introducing Students to
Parallel Design Patterns,” Journal of Parallel and Distributed
Computing, April 2017, 105 (2017), pp. 31-41, doi:
10.1016/j.jpdc.2017.01.008.

J. Adams, “Teaching Parallel and Distributed Computing Concepts Using
OpenMPI and Java”, 2021 IEEE 28th International Conference on High
Performance Computing, Data and Analytics Workshop (HiPCW), Dec.
2021, pp. 4-11. . DOI=10.1109/HiPCW54834.2021.00008.

J. Adams, R. Brown and E. Shoop, "Patterns and Exemplars: Compelling
Strategies for Teaching Parallel and Distributed Computing to CS
Undergraduates," 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, 2013, pp. 1244-
1251, doi: 10.1109/IPDPSW.2013.275.

Argonne National Labs, MPICH. Online, accessed 2021-11-01.

https://www.mpich.org/.

B. Carpenter, et al, mpiJava Home Page. Online, accessed 2021-11-01,
http://www.hpjava.org/mpiJava.html.

B. Carpenter, et al, MPJ Express. Online, accessed 2021-11-01,
http://mpjexpress.org.

W. Gropp, E. Lusk, and T. Sterling, Beowulf Cluster Computing with
Linux (Sec. Ed.), Nov. 2003, MIT Press.

Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society. 2013. Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. Association for Computing Machinery,
New York, NY, USA.

T. Mattson, et al., Patterns for Parallel Programming. 2004. Addison-
Wesley.

Microsoft Corp, Windows Subsystem for Linux. Online, accessed 2021-
11-01, https://docs.microsoft.com/en-us/windows/wsl/.

MPI Forum, MPI Documents. accessed 2021-11-01,
https://www.mpi-forum.org/docs/.

S. Prasad, et al., NSF/IEEE-TCPP Curriculum Initiative on Parallel and
Distributed Computing - Core Topics for Undergraduates. Online,
accessed 2021-11-01, https://tcpp.cs.gsu.edu/curriculum/.

M. Quinn, Parallel Programming In C With MPI And OpenMP, McGraw-
Hill, 2003.

Software in the Public Interest,
Performance Computing. Online,
https://www.open-mpi.org/.

Online,

OpenMPI: Open Source High
accessed 2021-11-01,

C. Vinschen, et al, Cygwin: Get that Linux Feeling on Windows. Online,
accessed 2021-11-01, https://www.cygwin.com.

