
1376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

LANDLORD: Coordinating Dynamic Software

Environments to Reduce Container Sprawl
Tim Shaffer , Thanh Son Phung, Kyle Chard , and Douglas Thain

Abstract—Containers provide customizable software environ-
ments that are independent from the system on which they are
deployed. Online services for task execution must often generate
containers on the fly to meet user-generated requests. However, as
the number of users grows and container environments are changed
and updated over time, there is an explosion in the number of
containers that must be managed, despite the fact that there is
significant overlap among many of the containers in use. We analyze
a trace of container launches on the public Binder service and
demonstrate the performance and resource usage issues associated
with container sprawl. We present LANDLORD, an algorithm that
coalesces related container environments, and show that it can
improve container reuse and reduce the number of container builds
required in the Binder trace by 40%. We perform a sensitivity
analysis of LANDLORD using randomized synthetic workloads on
a high-energy physics (HEP) software repository and demonstrate
that LANDLORD shows benefits for container management across
a wide range of usage patterns. Finally, we compare LANDLORD

to offline clustering, and observe that the continuous churn in
software necessitates an online approach.

Index Terms—Cluster computing, containers, file systems.

I. INTRODUCTION

C
ONTAINERS are becoming the solution of choice for

describing and distributing customized software environ-

ments. Technologies such as Docker [1] and Singularity [2]

are increasingly used to deploy complex applications at dif-

ferent computing sites, without requiring that each software

package be manually installed at each site. Container images

being (by design) completely self-contained greatly simplifies

management and deployment, but also limits opportunities for

sharing common components. Much in the same way that a

statically linked executable contains a full copy of each library

used, container images necessarily include a complete set of

dependencies.

For complex and multi-tenant applications, on-demand gen-

eration of containers is no longer a constant, static overhead

when setting up applications; it is rather a dynamically varying

Manuscript received 18 September 2021; revised 19 January 2023; accepted
24 January 2023. Date of publication 6 February 2023; date of current version 16
March 2023. This work was supported by NSF under Grant OAC-1931348 and
a DOE Graduate Computer Science Fellowship. Recommended for acceptance
by D. Unat. (Corresponding author: Tim Shaffer.)

Tim Shaffer, Thanh Son Phung, and Douglas Thain are with the Univer-
sity of Notre Dame, Notre Dame, IN 46556 USA (e-mail: tshaffe1@nd.edu;
tphung@nd.edu; dthain@nd.edu).

Kyle Chard is with the University of Chicago, Chicago, IL 60637 USA
(e-mail: chard@uchicago.edu).

Digital Object Identifier 10.1109/TPDS.2023.3241598

Fig. 1. Container service architecture. In an on-demand container-based ap-
plication, user jobs include a set of software requirements, given to a Container
Service. The service may download packages from a global software repository
to build a new container or identify an existing container that satisfies the
dependency requirements. Either the container service or the compute system
will then transfer the image to a compute node in a cloud/cluster. LANDLORD is
an algorithm that can be used by a service to manage container images.

and resource-intensive part of the application infrastructure,

requiring management as a first-class activity. Adding new users,

updating applications, and executing in different environments

all require the creation, distribution, and storage of containers

with the necessary dependencies for a set of tasks. Over time,

these containers multiply: as a user’s workload evolves, different

tasks need different software (with versions changing regularly

as packages are updated), and new containers are generated.

Creation of a specialized container environment for a given task

(which often takes minutes before task execution can begin) is

one of the biggest hurdles in providing responsive service to

users. In addition, related containers share many elements so

a significant amount of storage may be wasted due to logical

duplication resulting from container sprawl.

Most container-based services are implemented with an ar-

chitecture like Fig. 1. Here a container service is responsible for

handling requests and constructing containers to satisfy those

requests. After creation, the container is stored in a container

cache and then transferred to local storage on a compute node, for

example on a cloud instance or a High Performance Computing

(HPC) node, for execution. Containers are typically cached to

service repeated requests.

We developed the LANDLORD algorithm to take advantage

of high-level information about the functionality of a container

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1377

rather than the particular build steps or container contents. The

key insight for LANDLORD is that a container may include

a superset of a task’s dependency requirements, which (with

appropriate choice of packages) would allow a single container

to satisfy the requirements of multiple tasks. LANDLORD merges

compatible requirements from multiple tasks rather than build-

ing and maintaining many task-specific containers. LANDLORD

takes an incremental approach, considering only the current

service request against the currently materialized containers, and

allocating the container with the closest similarity metric. This

makes LANDLORD effective in practice as an online resource

management tool.

Based on logs of container launches from the online Binder

service, we found that employing LANDLORD to manage the set

of cached containers resulted in a 20% decrease in I/O activity

along with increased re-use of previously built containers, with

the total number of container builds reduced by up to 40%. In

addition, we prepared a synthetic workload based on high energy

physics (HEP) applications to examine LANDLORD’s sensitivity

to workload and application requirements. We demonstrate that

LANDLORD can provide benefits over a wide range of operat-

ing conditions. Finally, we examine the quality of containers

maintained by LANDLORD over time by comparing the container

hit rate of LANDLORD to an offline clustering algorithm, which

shows that LANDLORD is a more stable and robust solution to

the problem of container sprawl. This work is an extension

of a previous conference paper [3] that analyzes an additional

application workload and explores LANDLORD’s use in large

scale serverless applications.

II. BACKGROUND

The container has become a widely deployed tool for creating

isolated, portable execution environments for complex appli-

cations. A container image is a filesystem image constructed

from a declarative specification that indicates a sequence of

actions necessary to construct the image. Docker [1] is a widely

used example of a container management system, consisting of

a local server that manages the container lifecycle, and a cloud

service that permits publishing and sharing of container images.

However, Docker is not widely deployed in the HPC context

because its local service requires the use of node-local storage

and elevated privileges. Instead, several alternative technologies

have emerged, including Singularity [2], Shifter [4], and Char-

lieCloud [5], which make use of shared distributed filesystems

for storage.

In these various forms, container technologies have become

an integral building block for various services, applications, and

computing paradigms:

High Performance Computing (HPC) and High Throughput

Computing (HTC) applications often use containers in place of

esoteric module and filesystem-based methods for configuring

environments. Unlike persistent services, HPC/HTC workloads

are expressed as a stream of discrete jobs, where each job may

be associated with a pre-built container for execution. Some

systems provide optimized container deployment mechanisms

to avoid overloading the file system. HPC/HTC systems are

used by many users and thus present opportunities for sharing

containers to optimize performance.

Multi-tenant web services like Binder, JupyterHub, and Who-

leTale [6] use containers to create customized execution en-

vironments for their users. These services dynamically create

containers based on stated dependencies and in some cases by

capturing environment changes by users.

Container orchestration systems such as Kubernetes [7] allow

users to declaratively define the high-level services/components

of applications, while the orchestration layer manages the con-

crete resources (persistent storage, container instances, etc.). To

aid in managing software environments in containers, Kuber-

netes package managers such as Helm [8] can instantiate specific

versions of each software component and clean up outdated

containers. These systems are often shared by many users with

overlapping container definitions.

Workflow systems, such as Parsl [9], and workflow languages,

such as CWL [10], use containers to provide a common execu-

tion environment for tasks. While workflows typically operate

on behalf of a single user, or small group of users, they may

be composed of calls to different tasks with different environ-

ment requirements. This requirement presents an opportunity

for container sharing.

Function as a Service (FaaS) systems depend on containers to

establish the environment for function execution. FaaS is an ideal

use case for container sharing as environments are intentionally

opaque, services are shared by many users with overlapping

requirements, and FaaS providers aim to serve requests rapidly.

Systems like funcX [11] are designed to use a container service

to create containers on behalf of users, and deploy containers to

compute nodes on-demand for function execution.

III. THE PROBLEM OF CONTAINER SPRAWL

We define container sprawl as follows: given a large (and

probably growing) number of tasks that require many over-

lapping software dependencies, creating a container to fulfill

each task’s requirements will lead to a combinatorial explo-

sion in the number of distinct containers in use. As men-

tioned previously, container images do not allow for sharing

components as is possible with local installations, site-wide

modules, or copy-on-write filesystems. Instead, each container

carries complete copies of all components. In the naïve case,

each variation in task requirements results in the creation of

a whole new container. In this scenario many identical copies

of common base components and dependencies are stored

across a set of similar but non-identical container images. In

our container workload, for example, users wrote 505 dis-

tinct version specifications for the popular Numpy package.

These specifications could be potentially complicated range

requirements (numpy<1.20.0,>=1.18.0), exact builds

(numpy==1.18.4=py37h8960a57_0), or they may lack

any version information at all (simply numpy). A single version

of Numpy could satisfy all three of the above examples, though

a naïve approach to container management would prepare a

different container for each of the three requirements. Since each

task-specific variation exists as a completely separate container,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

coarse-grained caching does little to alleviate this duplication.

Only tasks with identical sets of requirements can reuse existing

containers. This proliferation of container images to the point

of management difficulty is well known along with the related

phenomenon for VMs called “image sprawl” [12].

IV. CONTAINER MANAGEMENT CHALLENGES

For any choice of container management scheme, there is

some non-trivial management cost. This could be in the form of

time and manual effort on the part of individual users, or a portion

of the system’s compute and storage resources used to create,

manage, or cache containers. We briefly review several naïve

solutions and outline why they fail to address requirements.

Imperfect Solution: Caching. The simplest approach is to

cache containers such that they can be redeployed quickly

without creation overheads. This approach has low per-task over-

head, and tasks and requirements may be updated as frequently

as desired. At large scale, however, the overall system efficiency

suffers. Due to duplication of packages among images, the cache

must store many identical copies of common base packages. To

support a given workload, it becomes necessary to provision

a cache much larger than the size of any repository. With the

software repositories examined in this work consuming several

terabytes of storage, the amount of cache space required grows

quickly. In the case of an extremely well-provisioned system, it

might be possible to retain every image. For large-scale and high-

throughput computing the total size of applications and data can

often grow to consume any available resources, so most effec-

tively utilizing available resources is key. Thus it is necessary to

balance management costs against system compute and storage

constraints. When supporting multiple users with a potentially

large number of container images, simply adding storage capac-

ity to accommodate each user or application is not a sustainable

solution over the life of a system [13]. Rather, it would be

preferable to make better use of what site storage is available

by reducing unnecessary duplication among container images.

Imperfect Solution: Full-repo Images. Rather than consid-

ering the precise requirements for each task, another way to

reduce the number of containers in use is to place an entire

software repository into a single image, which can then support

a large number of tasks. A complete copy of the Python Package

Index (PyPI) would be over 300,000 packages (with nearly

2.8 million released versions of those packages) and consume

approximately 8.8 TB (at the time of writing). Unfortunately,

this approach is likely to exceed a number of practical limits on

container size. Individual worker nodes may have limited local

disk space and be unable to store large container images. Even

if the large container fits, it is likely that a given task does not

need all of the repository simultaneously, so it is wasteful to

transfer unneeded data. This concept is a driving influence on

projects like Slacker [14]. It also becomes prohibitively expen-

sive to update and transfer such large container images. The US

collaboration of the ATLAS, ALICE, and CMS projects have ex-

perimented with CVMFS applications on computing resources

at various supercomputers in the United States including Cori at

NERSC [15]. When full-repo images were built and scaled out

onto a large number of nodes inside the NERSC infrastructure,

the entire process of generating the image and distributing it

to compute nodes took around 24 hours, making it difficult to

deploy up-to-date versions of the software on a regular basis.

In addition, the process requires the administrators’ manual

involvement in image creation, deployment, and cleanup. As

additional projects want to take advantage of the resources

at NERSC, the administrative burden of managing multiple

CVMFS images on multiple software versions increases accord-

ingly. Taking this approach negates the flexibility and hands-off

administration that containers were intended to provide.

Imperfect Solution: Layering. Docker allows container envi-

ronments to be composed from reusable image layers. Docker

can take advantage of modern filesystems like BTRFS [16] that

provide efficient snapshots and transparent sharing of files and

directories between different revisions. As a practical matter,

Docker is generally not available in HPC environments for ad-

ministrative and security reasons. Likewise, guest users at large

sites do not generally have the ability to directly manipulate file

system snapshots or export/load local filesystem volumes. More

conceptually, layering images addresses a different problem than

the issue at hand. With Docker, base images can be extended

and refined over time by appending layers. When preparing to

run external computing tasks, however, we must compose a set

of largely independent pieces to fit specific task requirements,

without any particular ordering relationship to previous images.

It is therefore difficult to map this set of semi-independent

pieces into a linear sequence of refinements that will fit future

tasks. Furthermore, since layer-based deduplication can only

operate on identical layers, any modification requires storing

the complete contents of the layer (and all subsequent layers,

since the identity of a layer depends on its parents). This leads

to significant duplication in practice, with 97% of files stored

within layers on the publicly accessible DockerHub being du-

plicates [17]. Content addressable storage has been proposed as

a solution to this issue [18], but requires substantial changes to

the container infrastructure and is not compatible with static disk

images required in HPC environments.

Imperfect Solution: Block Deduplication. Another potential

avenue to address container sprawl is data deduplication for disk

images. The virtualization community has developed a number

of solutions for efficiently deduplicating disk images [19] and

running virtual machines with many incremental changes [20].

There has also been extensive research on deduplication [21],

[22] of filesystem data [23], [24] and disk blocks [25], [26].

These techniques can be quite effective for container dedupli-

cation at the block level [27], as it is not difficult to identify

duplicated files or blocks within container images. However, we

lack the means to combine the extraneous copies; each container

image by design contains complete copies of all data, and sharing

of data across images is not possible for users of the system.

Container images are concretely stored as files that may need to

be frequently transferred between different sites or uploaded to

cloud computing environments. Block deduplication only works

with deep integration with the low-level storage infrastructure

at a single site, and therefore places significant limitations on

storage infrastructure.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1379

Fig. 2. LANDLORD fundamental operations. Hit: A new request r1 (green
circle) is satisfied by a cached container (red square), so no further action is
required. Miss and Insert: A new request r2 is too far from all other containers
(distance > α) so a new container is created. Miss and Merge: A new request
r3 is close to an existing container so it is merged into the closest container,
taking the union of the requirements from both.

Algorithm 1: LANDLORD Algorithm.

V. THE LANDLORD ALGORITHM

LANDLORD is an algorithm for managing a container store

which makes online decisions to efficiently satisfy the depen-

dency requirements for submitted requests. Rather than viewing

a container as a sequence of shell commands to build layers or as

a collection of arbitrary files, LANDLORD treats a container sim-

ply as an artifact that satisfies a set of requirements. It is therefore

possible to check if an existing container satisfies a different set

of requirements, or to combine sets of requirements to produce

multi-functional containers. LANDLORD’s main pseudocode and

operations are shown in and Algorithm 1 and Fig. 2, respectively.

As each request to execute a task arrives, we consider whether

the request is compatible with any existing container. If so, that

is counted as a cache hit and the container is used to execute

the task. On a cache miss, the distances between the request

and all existing containers are measured using distance metric

d(a, b), where incompatible requirements are represented as an

Fig. 3. Clustering container requests. Similar requests for packages may be
clustered together, resulting in a common specification. The available packages
in the software repository are used to generate a solution listing a set of concrete
packages. The packages from the software repository are combined to build a
usable container. The final container contents will constrain future merges with
new requests.

infinite distance. The choice of metric is discussed in section

Section V.C. If no container is within a critical distance α,

then a new container is inserted to satisfy the current request.

Otherwise, the request is merged with the closest compatible

container by adding the minimal packages needed to satisfy

the request. If inserting or merging a container would overflow

the available container cache space, then the least recently used

container is removed. The result is that each request is satisfied

by a sufficient container, and multiple requests may share a

common container.

A. Container Management as Clustering

The problem of container management can be viewed as a

variation on the general problem of clustering, shown in Fig. 3.

Briefly, the system considers a set of requests, each consisting

of one or more constraints upon software packages. Multiple

requests that are ”close” may be gathered together into a cluster

that can be described by the union of the package constraints.

These constraints are solved (if possible) into a concrete list of

packages that is then used to materialize one container image.

The goal of the container management system is to find a suitable

clustering, subject to two opposing constraints: each individual

container must be small enough to deploy to an individual cluster

node, and the sum of the sizes of all containers must fit in the

shared cache space. However, there are several complicating

factors that prevent the straightforward application of a conven-

tional clustering algorithm:

1) The system must respond to requests in a timely way

as they arrive. This requires an online algorithm that

addresses both request similarity as well as cache resource

constraints. To provide an acceptable service to interactive

users, the total work for a single request must be bounded

and limited to resources relevant to that specific request.

A given user making a request should not ”pay” the cost

of operations that provide no benefit to that user.

2) The available operations that can be performed on contain-

ers are limited and relatively expensive. The manager may

create a new container from a specification, merge new

packages into an existing container, or delete an unused

container. However, there is no fundamental capability to

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1380 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

”transfer” packages from one container to another, short

of deleting and recreating containers to effect the transfer.

These operations may move GBs of data and take minutes.

3) Both the stream of requests and the state of the package

repository evolve over time, as new packages become

available and of interest to users. As a result, it is not

generally possible to determine compatibility of speci-

fications a priori, because they may have incompatible

implied dependencies. Instead, it is necessary to evaluate

the requests at a given point in time to determine compat-

ibility, consulting the package repository to determine if

packages actually exist that satisfy logically compatible

requirements. In practice, change in specifications and

software repositories over time is significant; our prior

study of this dataset found that due to changes in the

software repository, containers became out of date on

average ten days after they were built [28].

B. Package-Level Coordination

Rather than treating each container as a black box of arbitrary

files, we can consider it as a set of packages drawn from a

package repository. While a build script gives a sequence of steps

to produce a final container image, it does not give information

about the desired properties of the resulting image. If we were

building images by layering, there would be very limited options

for optimizing storage or safely determining whether an existing

image can be reused. Rather than trying to recover information

from build scripts or previously built images, the specifications

used to construct them offer higher-level information about their

functional characteristics and more opportunities for manage-

ment and optimization. Specifications provide minimal require-

ments that an image must fulfill without specifying anything

about the exact image contents.

Specifications afford another opportunity to a container man-

agement system: unlike build scripts or recipes, it is possible

to automatically manipulate or combine specifications. Since

LANDLORD operates by composing sets of requirements, it is

possible to add to or adjust a specification while guaranteeing

that the requirements of a request are satisfied. A composite

specification can be formed by first taking the union of all

requirements from two or more specifications, then taking the

intersection of all sets of versions for each repeated requirement

name. For instance, Fig. 3 shows the outcome of composing three

different specifications into one. This kind of composite image

could be used in place of any of its constituent specifications,

since it meets the minimum requirements given in each. Note

that in some cases, incompatibilities among requirements (e.g.,

packages or versions) make combination impossible.

While caching and merging specifications give a mecha-

nism to reduce unnecessary duplication among stored container

images, we still do not know which specifications to merge.

Choosing randomly or by order of task submission, for example,

is liable to join specifications with little in common. This would

increase the sizes of images to be transferred among worker

nodes, while doing little for de-duplication. Instead, we want to

merge specifications with many common components. We now

introduce a simple metric for similarity between specifications

that LANDLORD uses to automatically manage an image store,

with a tunable parameter controlling how aggressively to reduce

duplication and increase storage utilization.

C. Similarity Metric

A key requirement in improving storage behavior for a col-

lection of container images is the ability to quickly identify con-

tainers that are “similar” as candidates for optimization. Rather

than examining the containers themselves, we will compare the

specifications used to generate them. We chose the weighted

Jaccard distance under appropriate choice of set elements as it

has several desirable properties for grouping sets of packages

and is simple to compute. When working with package repos-

itories, each package is usually assigned a name/version string

that is defined to be unique within the repo. Public package

repositories generally support explicit version constraints, so

two specifications may include constraints that cannot be simul-

taneously satisfied. For LHC applications this is a non-issue,

since CVMFS is append-only and all previous versions remain

available. For other sources of software (e.g., Python package

repositories), we represent conflicting requirements as an infinite

distance between specifications. As discussed in Section V.A, we

are not concerned with the particular version strings (as long as

they are compatible, i.e. there exists a package version satisfying

all constraints). We therefore consider only the set of package

names and their storage sizes (weights) when computing dis-

tances between compatible specifications.

For sets A and B, the weighted Jaccard distance dj is:

dj(A,B) = 1−

∑
i∈(A∩B) sizei

∑
i∈(A∪B) sizei

When considering container sprawl as a clustering problem as

discussed in Section V.A, the weighted Jaccard distance serves

as a metric on the collection of all finite sets of packages. This

metric captures several desirable properties when dealing with

specifications. First, the weighted Jaccard distance considers

specifications with significant storage overlap to be close. This

results in similar specifications being grouped together. Second,

the inclusion of unrelated components increases the weighted

Jaccard distance between two sets. In the case of a full-repo

image for example, there would be overlap with any given

specification. The large number of other packages included in

the full-repo image, however, would cause the weighted Jaccard

distance to become large for specifications that require only

a few small-sized packages. This naturally penalizes bloated

containers which are expensive to create, update, and transfer.

In addition, a constant-time approximation of the Jaccard metric

(MinHash [29]) is available for making an efficient first pass

at selecting similar images when the number of packages or

components is large.

The fundamental operation for LANDLORD’s storage opti-

mization strategy is merging container specifications that are

“close enough”. Using the weighted Jaccard distance metric,

we can quickly identify cached specifications that are similar to

a new request. To decide if two specifications are “close enough”

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1381

to optimize, we define the parameter α as the maximal weighted

Jaccard distance between closely related specifications. Since

weighted Jaccard distance is by definition between 0 and 1, α

must be in the same range. This α parameter is something like

the “globbiness” of the system. Using the α parameter, we can

define a simple algorithm for managing and optimizing a central

image store.

Choosing α near zero requires that specifications are ex-

tremely similar before considering them for merging. In the

extreme case with α = 0, only identical images will be consid-

ered close, so no images will be merged. This corresponds to a

simple cache without LANDLORD’s optimization. Choosing α to

be larger makes it more likely for images to be considered similar

and merged. This results in more augmented images that serve

multiple tasks. In the extreme case ofα = 1, every pair of images

is considered close and merged if possible. This results in large

container images that accumulate many specifications. Using the

α parameter, it is possible to continuously vary between these

two extreme behaviors.

It is important to note that while specifications consist of pack-

age names and version constraints, generating an image from

a specification requires selecting a concrete version for each

package requirement. Thus building the same specification at a

later time might result in a different selection of concrete pack-

age versions. This does not present a problem for LANDLORD,

since we retain the original specifications. Thus it is always

possible to check whether a given concrete image satisfies the

requirements of a specification, and to select concrete packages

that satisfy the union of requirements from merged specifications

(or find that no such package exists and the specifications are thus

incompatible). Our previous research [28] found that version

specifications are quite lax in practice, making it easy to find

overlapping and compatible selections of package versions.

A potential issue with this automatic merging strategy is

“bloated” images that accumulate infrequently used dependen-

cies and increase overhead indefinitely for future tasks. The

weighted Jaccard distance gives a natural way to capture and

address this effect. As an image becomes bloated due to repeated

merges, its distance from any individual request increases. After

sufficient growth, the image will become too far from any request

to be considered. Without regular use, the bloated image will

eventually be evicted from the cache. Choice of α therefore

places an upper limit on the amount of undesirable bloat in

images. Later, we examine the effect of the α parameter by sim-

ulating image management over a large number of application

requests.

Fig. 4 shows as an example a single simulation of LANDLORD

with α = 0.75 and cache size of 1.4 TB processing 250 HEP

tasks. First, we note that most of the operations are merges.

This is to be expected, due to the high α value. The total bytes

written also closely tracks merges, indicating that merging is the

dominant source of I/O. We still see inserts over the course of

the simulation. At more extreme α values, we expect to see one

of these operations dominate. As the data in cache continues

to rise, the set of containers eventually reaches the cache limit,

after which the delete count increases. Over the course of the

simulation, inserts and deletes are filling and emptying the cache

Fig. 4. Behavior of a single simulation. The x axis shows the number of
requests handled so far (the actual time for container creation and application
run is not available). Here the cache is filling during the first ∼125 container
launches, then containers are deleted to meet the storage limit.

such that it remains close to its storage limit. We also observe

the number of cache hits continue to rise despite deletions. As

we will see, merging allows for a greater proportion of hits even

if the amount of data remains constant, due to de-duplication.

The cache limit then ensures that infrequently used parts are

eventually removed.

D. Deployment of LANDLORD

We designed LANDLORD to allow for flexible deployment,

either as an end user or an infrastructure provider. Since indi-

vidual users may need to run tasks across many sites and will

need to work without special privileges, the most straightforward

way to employ LANDLORD is as an automated step during task

submission. The first step is to prepare a specification for each

task. In the simplest case, the user explicitly provides this infor-

mation by annotating each task or providing a specification file.

Alternatively, a workflow system might automatically generate

container environments in order to portably execute tasks across

remote resources by inspecting the enclosing software environ-

ment. Users then set up their particular task submissions to wrap

invoked tasks with LANDLORD. On task submission, LANDLORD

first scans its configured cache for existing images that are

“close” to the task’s specification, creates/updates images in

the cache as necessary, and finally launches the task inside

the prepared container. LANDLORD first observes or infers the

package dependencies of submitted applications, then generates

the execution environment needed by each application. As re-

quired, it creates, merges, or deletes container images in order

to balance the total storage consumed by containers against the

size of individual containers. LANDLORD allows for a limit on the

total storage used, and removes the least recently used images

(an LRU eviction policy) to free up space when necessary as

a result of an insert or merge. As a future extension, more

sophisticated caching policies [30] may be able to achieve better

cache performance, but LANDLORD’s design does not depend on

the particular policy.

While a user-level approach is a good fit for a single unpriv-

ileged user, administrators may wish to employ LANDLORD for

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

site-wide container management such as a Binder-like service or

even a batch system. The same core functionality of LANDLORD

can easily be adapted into a plugin for a site’s batch system,

where the system carries out the same per-task steps as above

for each task submission. In addition to batch systems, there are

other situations where LANDLORD’s approach is applicable. With

a pilot job system, for example, users are effectively operating

a “user-level scheduler”. Users could use this same approach

to connect LANDLORD to transparently optimize container stor-

age without requiring application changes. The Binder service

could also employ LANDLORD as a sub-component, where the

main service hands off each notebook launch to LANDLORD to

optimize via merging or reuse, if possible, before performing

the actual build. Other container-based systems like WholeTale

would likewise integrate LANDLORD in a straightforward manner

as part of the container build process without requiring architec-

tural changes.

VI. CONTAINER-BASED WORKLOADS

To evaluate LANDLORD, we simulated the operation of a

container service employing LANDLORD under two different

workloads, 1) a large-scale, predominantly Python Binder exe-

cution trace; and 2) a synthetic HEP workload using software

dependencies from a large mixed repository.

A. Binder Workload

Binder [31] is an online service that allows users to launch

interactive browser-based notebook applications. Users specify

a Git repository, DOI, or other supported format which con-

tains software specifications and/or static data to be included

in the notebook environment. On receiving a user request, the

public Binder service prepares to launch a container using

JupyterHub [32] on one of several cloud compute backends. The

repo2docker [33] tool examines the specifications given in the

source repository, then carries out any necessary build steps to

produce a Docker container for the repository. Each computing

backend caches previously built Docker containers for a short

period of time, so that if another notebook is requested using

the same source repository the cached container can be used.

After the build, a container with Jupyter notebook is launched

and connected to the user’s browser. Individual sites also use the

BinderHub [34] software to provide interactive notebooks using

local compute resources, like a cluster.

Logs of notebook launches on the public Binder service

are periodically published [35], which include the time of

each launch and the specific repositories requested. In previous

work [28], we downloaded the repositories referenced in the logs

to in order to collect the actual software specifications requested

for each notebook launch. Using these software specifications,

we can replay the sequence of notebook launches to examine

usage patterns and caching on a real, large-scale workload

with 18 million container launches. A cursory analysis of these

Binder containers provides a number of interesting insights.

First, software environments specified by users are generally not

completely specified. A large proportion of container environ-

ments (55%) include one or more packages without any version

constraints. The contents of such environments thus depend on

when the container is prepared. This does, however, afford some

flexibility in selecting package versions.

Second, the usage patterns of containers observed on Binder

are far from uniform. The top 10 containers make up 65% of

observed launches. Most of these popular containers are demo

or example notebooks featured on the websites of projects or

software tools, including IPython, JupyterLab, and spaCy. The

most popular container, a demo notebook linked on the Jupyter

website, accounted for 35% of launches by itself. We also note a

very long tail: while some containers were only launched once,

many of the containers were launched occasionally over a long

period of time, indicating a large working set to be kept in cache.

Finally, we observed a large amount of duplication among the

Binder container environments. Popular packages like Numpy

or Python itself appeared in the majority of containers, with each

container necessarily storing a distinct copy of these packages.

Further, some of the popular packages (especially machine

learning frameworks like Tensorflow) actually consist of a large

number of subcomponents and bring with them a large set of

dependencies. We thus observed a high degree of duplication of

the data in cache during our simulations.

Our full analysis in [28] includes a more in-depth examination

of the Binder workload and the software environments in use.

In addition, the dataset we compiled based on this workload is

available at [36].

B. High Energy Physics Workload

The Worldwide LHC Computing Grid (WLCG) consists of

more than 170 computing centres in 42 countries, which provide

1.5 exabytes of storage and around 1.4 million CPU cores.

During normal operation the WLCG runs over 2 million tasks

per day, with global data transfer rates over 260 GB/s. [37].

The CernVM File System (CVMFS) [38] filesystem is used to

publish the software used by all of the major LHC experiments

at computing sites around the world. Researchers at CERN use

CVMFS as the primary means of distributing the analysis and

simulation software they develop to the WLCG. Each experi-

ment maintains a repository of current and previous software

versions, allowing stable and uniform access to large software

collections that vary over time. For reproducibility and reliability

of results, it is important that the same applications run at all sites

across the globe, and that all previous versions of application

code be available and usable when needed.

The upcoming High Luminosity upgrade to the LHC is ex-

pected to increase the amount of data generated by a factor

of thirty [39], so the WLCG is working to greatly expand

its computational capacity through algorithmic improvements,

use of accelerators and specialized hardware, and leveraging

additional computing resources. HPC resources are an appealing

source of computing power to supplement the WLCG, but HPC

sites often impose restrictions on network activity and system

configuration, preventing WLCG tasks from running directly on

HPC resources. Containers offer a potential means for importing

software environments to HPC sites without the CVMFS infras-

tructure available at WLCG sites. CVMFS retains all historical

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1383

Fig. 5. Benchmark applications for LHC experiments.

versions to ensure reproducibility and backwards compatibility,

making simple garbage collection impossible. Since transferring

the entire container repository for every task is prohibitively

expensive, it is necessary to create tailored images based on

a required subset of the full software repository. There are a

number of potential approaches to work around the explosion in

task-specific images but none are satisfactory.

We consulted with the developers of CVMFS as well as

HEP researchers at our university collaborating with CERN to

determine how current users interact with CVMFS. We expect

significant variability in files accessed and total size among

different users and experiments. We nonetheless observed that

certain core components are used near-universally. While mul-

tiple versions and variations might exist, these components

have a very high likelihood of appearing in every container

image. These components correspond to the base frameworks,

setup scripts, calibration data, etc. needed for most tasks. Based

on anecdotal evidence from WLCG researchers, we expect to

see these components in a large proportion of tasks across all

simulated tasks from different users and experiments. There is

also a large set of components that must be available and are used

in some applications, but which are very rarely used overall. It

is important to make these “long tail” components available to

researchers, but it would be wasteful to include them universally

when they are rarely used.

Fig. 5 shows several container-based LHC benchmark appli-

cations [40]. Here gen (generation), sim (simulation), digi

(digitization), and reco (reconstruction) are phases of the

experiment pipelines, with each phase running as a separate

workflow. Minimal Image indicates the size of the container

image that includes only the subset of the repo needed to run

that particular workflow, while Full-Repo Image gives the size

of the experiment’s entire software repository, which falls in the

range of terabytes. Note that while these measurements give a

rough idea of task requirements, there is substantial variation in

WLCG jobs in production. The CMS experiment for example

runs more than 1,200 unique workflows carrying out the general

phases above, with many different software builds, versions, and

customization [41].

VII. EVALUATION

Both workloads take the form of a stream of tasks to be

launched, with each task carrying some set of software require-

ments. For our evaluation, the container service is responsible

for preparing a container environment satisfying each task’s

software requirements. Software packages directly required by

tasks can themselves depend on additional packages. Thus to

prepare a complete container environment, the container build

process must assemble the set of the direct and indirect de-

pendencies. To determine both the dependencies of software

packages and metadata such as the package sizes, we collected

package metadata for the repositories used in both workloads

(PyPI and Conda repositories for the Binder workload, and build

metadata from CVMFS packages for the HEP workload). To

simulate a workload, we processed each task launch in turn,

recursively collecting any software dependencies and passing

the complete dependency list to LANDLORD, which built a new

container, merged with an existing one, or identified an existing

container satisfying the requirements.

A. Binder Workload

Sweeping Over α. To evaluate the behavior of LANDLORD,

we simulated the results of optimizing the container cache for

a large, varied workload. Starting from an empty container

cache, we replayed the Binder dataset at varying choices of

α. This dataset gives a sequence of container launches, along

with the software environment required for each container. We

are therefore able to compare the cache performance and I/O

overhead as a result of LANDLORD’s merging strategy. Our goal

in this evaluation is therefore to choose α so as to minimize

the storage and compute costs associated with maintaining a

collection of images.

Sweeping over the range of α values (in steps of 0.05), we

can immediately see differences in the frequency of simulated

operations. Fig. 6(a) shows the upper range of α values where

behavior differences appear. From the lowerα values on the left,

the insert and delete counts are the primary (or only) operations,

with number of hits relatively constant. This corresponds to a

simple LRU-based cache. The insert count is slightly higher due

to cache filling, but the two tend to move in lockstep (in the

figures the two nearly overlap). As α increases, image merges

become more frequent. The merge count steadily increases

throughout most of the upper range, while inserts and deletes

decrease. This suggests that at high α values, the cache space

would be more efficiently used, with some of the duplication

merged out. In the extreme case with α = 1, every request is

merged if possible, hence the reduced number of misses and

predominance of merges at the far right of Fig. 6(a).

Overhead of LANDLORD . Under LANDLORD’s approach, we

use compute and I/O capacity during task submission in order

to improve utilization of storage space. With excessive merging,

however, this additional I/O cost can become prohibitively ex-

pensive. To quantify this computational and I/O overhead, we

used package repository metadata to estimate the cumulative

amount of data written over the course of simulated cache

operation. We use cumulative write size as a metric for over-

head/latency that is independent of specific hardware or disk

performance. Fig. 6(c) shows the amount of data written during

simulations over a range of α values. “Required I/O” is the total

amount of data actually requested by each task over the course of

the simulations. Note that a cache hit would not require any I/O,

so that even when replaying the same workload, differing cache

performance changes the required I/O. “Actual I/O” is the total

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 6. Binder workload over a range of α values. Note that in Fig. 6a the number of deletes and inserts is too close to distinguish. Compared to the length of the
Binder workload, the time spent filling the container cache is negligible. The delete count therefore very closely tracks the insert count when presenting only the
total operations at the end of the workload.

Fig. 7. User responsiveness under LANDLORD.

amount of data written to cache over the course of simulations.

The actual I/O is greater than what was requested by the user

because LANDLORD includes additional packages in containers

as part of its merging behavior. This measurement is simply the

sum of the data written for each insert and merge. If, for example,

an image were evicted and then re-inserted later in a simulation,

then the cost of generating and writing the image would be added

again.

Without merging (low α), the actual I/O in the system closely

follows the required I/O. For a simple cache, these two metrics

would be identical. As α increases, the effects of updating and

merging images become apparent. We first note that the required

I/O falls as α increases. This is because a greater proportion

of task requests can be fulfilled directly from the cache. Since

more of the requests can be satisfied by previously merged

images in the cache the system needs to handle fewer misses,

which leads to a corresponding decrease in the required I/O and

latency as a result of container builds. From the perspective of

the system, this is beneficial as a larger proportion of tasks can be

handled with no extra time or compute cost. For latency sensitive

applications like interactive notebooks, maximizing the hit rate

may be desirable even at the cost of increased compute. Fig. 7

highlights this tradeoff: increasingα initially leads to decreasing

miss rate and I/O overhead.

At higher α, however, we see another trend. Each time a

merge occurs, the resulting image must be written out in its

entirety. Thus when merges are frequent at very high α, some

data will be written and re-written many times to satisfy new

task requests. Thus while extremely high α makes better use

of available storage space, LANDLORD introduces a significant

amount of overhead in the form of repeated I/O operations. At

the far right of Fig. 7, the actual I/O increases well above that

of a naïve cache configuration. Despite the decreased number

of container builds, the size of each container grows large

enough to result in a net increase in I/O. Since a merge entails

rebuilding a container image in its entirety, frequently merging

large containers becomes prohibitively expensive.

Appropriate choice of α thus gives administrators a way to

improve utilization of available storage and reduce total I/O

using LANDLORD. Fig. 7 suggests a wide range of α values

that result in decreased I/O cost and reduced miss rate over

the course of the Binder workload. Even at high α where the

actual I/O increases, the frequency of cache misses in Fig. 6

continues to fall to its minimum at α = 1. For situations where

minimizing latency is important (e.g., interactive computing), it

is reasonable to pay this additional overhead in order to minimize

cache misses.

While LANDLORD achieves definite improvements in respon-

siveness and storage utilization on the Binder dataset, certain

properties of that workload are particularly favorable to LAND-

LORD’s design. First, there is a very high degree of reuse of

certain individual Binder containers. In that dataset, the median

number of times a given container was launched was only 2

times, but the most popular containers were launched hundreds

of thousands of times. There is also a high degree of overlap

among the the packages that users requested in Binder contain-

ers. Common packages like Numpy and Python itself occur in

most container specifications, and despite the dataset containing

approximately 150,000 unique container specifications, there

were only a total of around 10,000 different packages requested

(not counting distinct version requirements). LANDLORD there-

fore had ample opportunities to perform optimizations. Finally,

conflicting version constraints in the container specifications

meant that it is not possible to merge containers indefinitely.

If two container specifications request different versions of the

same package, there is no way to satisfy both requirements

and therefore the specifications cannot be merged. The user-

provided specifications, therefore, naturally limit container bloat

and prevent pathological behavior such as repeatedly merging

the entire workload into one massive container (with enormous

accompanying I/O overhead).

B. High Energy Physics Workload

We performed a sensitivity analysis using simulated high

energy physics (HEP) tasks to evaluate LANDLORD’s worst-case

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1385

behavior, and to demonstrate LANDLORD’s application to a non-

Python software repository with markedly different organization

than the Python repositories used in the Binder workload. This

simulated workload differs from the Binder dataset in a number

of key ways. First, tasks in the simulated dataset had uniform

launch frequency. This forces LANDLORD to handle a very large

“working set” of containers. Second, package selections for

containers were selected at random from the available CVMFS

repositories. This ensures that any overlap between containers is

due entirely to common dependencies inherent in the software

collection rather than bias in application or workload. Finally,

CVMFS software packages are organized such that containers

can include an arbitrary selection of packages without conflict.

We therefore have the possibility of merging all task require-

ments into one large container. While real workloads are much

closer to the Binder dataset discussed earlier, this analysis allows

us to explore extremes in LANDLORD’s behavior and shows that

employing LANDLORD does not worsen performance even under

extremely unfavorable conditions. Using randomly generated

specifications also allows us to demonstrate that LANDLORD is

not suitable for compacting arbitrary collections of data, but

is specifically suited to reducing duplication among software

packages that share overlapping dependencies.

Simulating HEP Tasks.

For each simulated request, we chose a random selection of

packages and then added any dependencies, repeating until we

collected the complete set of packages and dependencies (i.e.,

the closure of the package dependencies). This image simulation

scheme captures the structure inherent in the software collection,

in that packages in addition to those requested are automatically

included so as to ensure a functional image. The initial selection

of packages, however, is simply uniformly random. To evaluate

the effects of container contents, we also generated completely

randomized images consisting of packages chosen in a uniform

random way without regard for dependency relationships. To

ensure that total size (or at least total number of packages)

is comparable to images generated by the previous method,

for this approach we started with an image request generated

via the previous scheme (uniform random core selection with

dependencies added). We considered only the total number

of software packages in the resulting image, and then chose

the same number of packages uniformly randomly from the

entire repository, ignoring package dependencies. While images

generated in this way are very unrealistic, they allow us to

isolate the effect of dependency relationships among packages.

By comparing results with random images to those with the

previous image generation scheme, we can compare the general

case of containers as collections of arbitrary data to the specific

focus of this work, i.e. containers with selections of software

packages with dependency relationships.

To generate an image for a simulated task request, we ran-

domly made an initial selection of up to 100 packages. We then

used one of the two schemes (dependency tree-based or random)

to expand the initial selection into a full image. Repeating this

procedure, we created streams of container specifications for

simulated tasks.

Since our simulation uses random simulated requests, there

is variability between individual simulations. Thus for a given

choice of cache size, task count, etc. we repeated the simulation

20 times and reported the median behavior over the runs. The

bands in the plots of storage utilization show the standard

deviation over the runs. At each choice of α (in steps of 0.05) we

performed a set of 20 simulated runs, allowing us to plot various

measurements of the system versus α. Fig. 8 shows operational

metrics for cache management in the HEP workload.

Metrics for Cache Utilization. When sweeping over the range

ofα values, there are a number of metrics available to summarize

each simulation run. Many, however, are highly coupled with

the particular workload and system configuration, and difficult

to compare as we vary the parameters of the simulations. Simply

comparing cache hit rate with results for the Binder dataset, for

example, would not be meaningful due to the stark difference in

degree of container contents and reuse. In addition, storage use

and I/O overhead for the Binder workload are only estimates

based on package metadata for the Python repositories. The

repositories used in the HEP workload provide exact storage

and I/O information, allowing us to focus more strongly on the

cache and container contents. We therefore chose to define two

metrics, cache efficiency and container efficiency, to indicate

the effective utilization of the container storage independent of

system configuration.

We defined cache efficiency as the ratio of unique data to total

data in the cache. In our case, this is equivalent to the ratio of the

size of the unique packages to the total cache size taken from

Figs. 6(b) and 8(b). If many images contain copies of the same

packages, the cache efficiency decreases. This metric captures

duplication within the cache across all images. With no merging

there is a high degree of duplication, so the cache efficiency is

low. On the other end of the spectrum, maintaining a single, large

image containing all data results in cache efficiency of 100%,

because nothing is duplicated.

We defined container efficiency as the ratio of the size of

the requested container (a set of requested packages plus all

dependencies) to the size of the container the system actually

used for the task. In the absence of merging, these two are equal

so the container efficiency is 100%; tasks are run with exactly

what was requested. By merging to allow for image reuse, we

include additional, unrequested data in container images. The

container efficiency measures this difference between requests

and containers. In the extreme case of α = 1 with a single large

image, for example, the container efficiency is poor because

the entire repository is used for every request, regardless of

size. These two extreme cases, no merging among many images

and a single merged image, can both be useful in some situa-

tions. Rather than defining where these limits fall, we discuss

choosing limits and compare our two application workloads in

Section VIII.

Sensitivity Analysis. In Fig. 9, we plot efficiency curves for a

range of simulation conditions. The left column shows container

efficiency, while the right column shows cache efficiency. In the

first row, the number of tasks and the amount of repetition are

constant while the cache size is varied. In the second row, the

number of unique requests is varied with the other parameters

constant.

The size of the cache has an inverse relationship with both

the container and cache efficiency. As seen in Fig. 9(a) and (b),

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1386 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 8. HEP workload over a range of α values.

Fig. 9. Effects of simulation parameters on system efficiency.

a larger cache can of course hold a larger number of images,

but since each image contains significant duplicated portions,

increasing cache size tends to decrease cache efficiency. Con-

versely, small caches more quickly evict images so that ineffec-

tive merges tend not to remain in cache too long. A larger cache

also allows for more opportunities to merge images, leading to

decreased container efficiency. When deciding how to handle

a request, a large cache full of images is much more likely

to contain an image suitable for merging. With a small cache,

opportunities to merge are much more dependent on the order

of requests.

The effect of varying the number of unique tasks is less

pronounced than the effect of cache size. As seen in Fig. 9(c) and

(d), streams of 500 and 1000 unique tasks show nearly indistin-

guishable behavior, indicating that by 500 tasks the system has

reached a steady state. Continuing with an arbitrarily long stream

should not result in significant performance changes. However,

100 unique tasks were not sufficient to fill the cache and reach

a steady state. In this case the container efficiency is slightly

decreased over α, suggesting that some ineffective merges had

Fig. 10. Impact of dependencies on duplication. The Cache and Container
efficiencies of the two image types are plotted together, showing how randomized
image contents greatly reduce the efficacy of LANDLORD.

not made their way out of the cache. Cache efficiency in this case

is slightly increased. This would suggest that before reaching a

steady state, the cache contents are more assorted and some

unnecessary data remains cached.

Effects of Package Dependencies. Fig. 10 shows a repre-

sentative simulation with both dependency-based and random

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1387

synthetic image types included. In the purely random case, there

is no correlation between different images. Thus, it is much more

difficult to find images similar enough to merge until the α value

is very lax. This would indicate that our merging strategy is not

applicable to arbitrary collections of data. Random images show

little to no effect for most α values. Our merging strategy, which

takes advantage of duplicated content included as a result of

dependencies in software, would be ill advised for situations

that are not known to follow similar patterns of duplication.

Even with random task requests, the tree structure of package

dependencies is produces pronounced duplication in the cache,

leaving room for optimization.

C. Comparison With Offline Clustering

It is natural to consider whether better results could be ob-

tained by periodically performing a complete global clustering

of requests using an offline algorithm. As a comparison point,

we choose AGNES [42], a classic approach to hierarchical

clustering. AGNES first treats all points as singleton clusters.

Then at each subsequent iteration, it determines the centroids

of all clusters, computes all pairs of distances between these

centroids, and if possible groups two nearest clusters into one.

The eventual outcome is a tree structure culminating in one

cluster at the top. The algorithm can terminate early if a desired

number of clusters or other global constraint is reached.

AGNES is a natural counterpart to LANDLORD, because it

makes use of the same fundamental operations on containers,

which may be created, merged, or deleted, but not arbitrarily

changed. A few adjustments are needed to apply AGNES to the

container management problem. First, LANDLORD immediately

resolves a request into a concrete container. For example, it may

resolve python=* to python= 3.6 or python= 3.7, depending on

when each request arrives. In contrast, AGNES considers many

requests at once, clusters them together, and then resolves the

cluster into a concrete container. Thus, more information is taken

into account for each container. Second, a full application of

AGNES on n nodes requires considering all O(n2) distances at

each step to find the closest pairs to merge, which is prohibitively

expensive. To reduce this cost we instead sample 10K distance

pairs at each step, and select the closest. Third, naive AGNES

will result in at least n iterations corresponding to n merges of

clusters, as each merge removes two clusters and adds a new

one. This combining with the sampled pairs of distances also

introduces a high computational cost, thus we cap the maximum

number of iterations to 1,000 to avoid this. (A parameter study

shows increasing iterations to 2000 only increases the average hit

rate slightly from 94.6% to 94.9%) Finally, since the container

cache has a physical storage limit, we need a way to detect and

pick useful or popular clusters (each of which eventually realizes

to a container) once the clustering process finishes. To do this,

we define the popularity of each cluster to be the sum of the

frequencies of the unique requests in that cluster and continually

add the containers materialized from those clusters having the

highest popularity until the cache is full.

Fig. 11 compares the performance of LANDLORD against

periodic offline clustering with AGNES, on the entire Binder

Fig. 11. LANDLORD versus periodic offline clustering. Because of the con-
tinuous variation in the workload, the quality of the offline cluster is initially
high but decays quickly. LANDLORD used α = 0.7. Every 10% of the dataset
the clusters were recomputed based on the most recent 5%.

dataset. Both algorithms warm their caches up with the first

20% of the dataset. The LANDLORD algorithm is run as normal,

with each request being processed as it arrives and incrementally

updating the container cache. AGNES, on the other hand, op-

erates on statically generated clusters and treats any request not

satisfied by a cached container as a miss (requiring the requested

container to be built and inserted). AGNES periodically clears

its cache every 10% of the dataset and reclusters using the most

recent 5% (most recent 200K events). The percent hit rate is

shown over time. As can be seen, LANDLORD maintains a hit

rate in excess of 98%, while periodic offline clustering with

AGNES results in a briefly higher hit rate that falls off quickly

as the request mix evolves. The fall in AGNES’ container hit rate

is significantly steeper in the interval (2.5, 3) due to an update to

the Jupyter Lab package used in a popular demo repository. This

shows that a drastic change in package specifications of popular

requests could degrade the performance of an offline algorithm,

where as LANDLORD is more robust to these frequent changes.

From this, we conclude that an offline clustering algorithm –

even if superior to AGNES– would not be suitable for this

problem space because of the rapid evolution of the requests and

software environment. Furthermore, each epoch of clustering

would require a very large expense to reconstruct (and cache)

the entire set of containers corresponding to the new clusters

discovered.

VIII. TUNING ALPHA

We close by discussing the considerations for a user or infras-

tructure provider employing LANDLORD in practice. Constraints

at each site such as the amount of scratch storage available

for caching container images and upper bounds on the com-

putational cost to prepare each container ultimately dictate the

viability of any particular approach. LANDLORD provides a good

deal of flexibility to match the properties of a given execution

site and workload(s).

Across both the Binder trace and our simulations, we found

that the choice of α was not particularly important, as long as

it falls within a wide “operational zone” (0.65 to 0.95). Despite

noticeable variation in efficiency for Binder due to sampling

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1388 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 12. Efficiency of LANDLORD. Note that since CVMFS packages for the
HEP workload cannot have version conflicts, LANDLORD is able to produce one
giant container at very high α, hence the sharp jumps in efficiencies. Version
conflicts among packages prevent this effect in the Binder workload.

from only one workload, trends in LANDLORD’s behavior are still

visible. Fig. 12 shows that choosing extreme values of α results

in a large number of overlapping container images or excessive

overhead creating and updating massive images. These extremes

correspond to the naïve approaches discussed previously, i.e.

many single-use containers or a single all-purpose container,

respectively. Choosing α anywhere within the operational zone

strikes a reasonable balance between storage utilization and

overhead. A new application employing LANDLORD should

choose a moderateα (e.g., 0.8) to start, with finer tuning possible

to meet specific application or site requirements. A moderate

choice of α allows LANDLORD to avoid extremely poor behav-

ior in either direction, without attempting to attain “optimal”

performance. LANDLORD thus offers a lightweight mechanism

to avoid cases of pathologically poor performance.

The compute and transfer cost in the highly merged case and

the cache efficiency in the unmerged case, serve as limits on the

viable range of α values for a system and its users/applications.

Fig. 12 highlights the operation of LANDLORD at varying α,

serving as a guideline we have found to be applicable across a

variety of applications. Moving from the left side of the graphs,

the miss rate of the cache begins to fall significantly. Choosingα

too low results in higher job latency than necessary and makes

poor use of available storage. On the right, the likelihood of

merging increases. As shown in Figs. 6(c) and 8(c), the amount

of I/O and compute to update images becomes much larger if

α is set too high. Applications/workloads that prioritize latency

would be best served by setting α as high as possible, though

setting α = 1 may result in excessive overhead, especially in

the absence of other constraints (e.g., package version conflicts)

that limit merging. There is no general rule for the placement

of these limits, which depends strongly on the performance

characteristics of the execution environment, as well as the

priorities of the administrators in optimizing the system.

IX. CONCLUSIONS AND FUTURE WORK

Large-scale and multi-tenant applications based on container

technologies must increasingly treat on-demand generation of

containers as a dynamically varying and resource intensive

part of application infrastructure, requiring management as a

first-class activity. The mechanisms available to dynamically

create and manage containers, however, lead to container sprawl

without careful management and monitoring, and alternatives

like static clustering of dependencies are not suited to varying

application workloads. We analyzed two large-scale container-

based application workloads and demonstrated how LANDLORD,

despite being a simple algorithm with a single tunable parameter

α, can improve container reuse and application latency across a

range of conditions and application usage patterns. Our analysis

shows that LANDLORD’s behavior is not highly sensitive to

choice of α, and as future work it may be possible to extend

LANDLORD to automatically respond to poor system utilization

by tuning α appropriately.

REFERENCES

[1] D. Merkel, “Docker: Lightweight Linux containers for consistent develop-
ment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014, Art. no. 2.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[2] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLoS One, vol. 12, no. 5, pp. 1–20,
2017.

[3] T. Shaffer, N. Hazekamp, J. Blomer, and D. Thain, “Solving the con-
tainer explosion problem for distributed high throughput computing,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2020, pp. 388–398,
doi: 10.1109/IPDPS47924.2020.00048.

[4] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
HPC,” in Proc. Conf. Cray User Group, 2015, pp. 33–49.

[5] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers for
user-defined software stacks in HPC,” in Proc. Int. Conf. High Perform.

Comput., Netw., Storage Anal., ser. SC ’17. New York, NY, USA: ACM,
2017, pp. 36:1–36:10. [Online]. Available: http://doi.acm.org/10.1145/
3126908.3126925

[6] A. Brinckman et al., “Computing environments for reproducibility: Cap-
turing the “Whole Tale”,” Future Gener. Comput. Syst., vol. 94, pp. 854–
867, 2019.

[7] Kubernetes: Production-grade container orchestration, 2021. [Online].
Available: https://kubernetes.io/

[8] Helm: The package manager for Kubernetes, 2021. [Online]. Available:
https://helm.sh/

[9] Y. Babuji et al., “Parsl: Pervasive parallel programming in Python,” in
Proc. 28th ACM Int. Symp. High-Perform. Parallel Distrib. Comput., 2019,
pp. 25–36.

[10] M. R. Crusoe et al., “Methods included: Standardizing computa-
tional reuse and portability with the common workflow language,”
2021, arXiv:2105.07028.

[11] R. Chard et al., “FuncX: A federated function serving fabric for science,”
in Proc. 29th Int. Symp. High-Perform. Parallel Distrib. Comput., 2020,
pp. 65–76.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1389

[12] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and V.
Bala, “Opening black boxes: Using semantic information to combat virtual
machine image sprawl,” in Proc. 4th ACM SIGPLAN/SIGOPS Int. Conf.

Virtual Execution Environ., 2008, pp. 111–120.
[13] J. Bent et al., “Storage challenges at Los Alamos national lab,” in Proc.

IEEE 28th Symp. Mass Storage Syst. Technol., 2012, pp. 1–5.
[14] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau, “Slacker: Fast Distribution with Lazy Docker Containers,” in
Proc. 14th USENIX Conf. File Storage Technol., 2016, pp. 181–195.

[15] L. Gerhardt et al., “Shifter: Containers for HPC,” J. Phys. Conf. Ser.,
vol. 898, no. 8, 2017, Art. no. 082021.

[16] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree filesystem,”
ACM Trans. Storage, vol. 9, no. 3, pp. 1–32, Aug. 2013.

[17] N. Zhao et al., “Large-scale analysis of docker images and performance
implications for container storage systems,” IEEE Trans. Parallel Distrib.

Syst., vol. 32, no. 4, pp. 918–930, Apr. 2021.
[18] H. Fan, S. Bian, S. Wu, S. Jiang, S. Ibrahim, and H. Jin, “Gear: Enable

efficient container storage and deployment with a new image format,” in
Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst., 2021, pp. 115–125.

[19] K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in Proc. Isr.i Exp. Syst. Conf., ser. SYSTOR ’09,
2009, pp. 7:1–7:12.

[20] H. A. Lagar-Cavilla, “SnowFlock: Rapid virtual machine cloning for cloud
computing,” in Proc. 4th ACM Eur. Conf. Comput. Syst., 2009, pp. 1–12.

[21] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani, “Demys-
tifying data deduplication,” in Proc. ACM/IFIP/USENIX Middleware’08

Conf. Companion. ACM, 2008, pp. 12–17.
[22] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey, “Redundancy

elimination within large collections of files,” in Proc. USENIX Annu. Tech.

Conf., Gen. Track, 2004, pp. 59–72.
[23] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the

data domain deduplication file system,” in Proc. 6th USENIX Conf. File

Storage Technol., 2008, pp. 1–14.
[24] C. Policroniades and I. Pratt, “Alternatives for detecting redundancy in

storage systems data,” in Proc. USENIX Annu. Tech. Conf., Gen. Track,
2004, pp. 73–86.

[25] P. Nath et al., “Design tradeoffs in applying content addressable storage to
enterprise-scale systems based on virtual machines,” Management, vol. 7,
no. 5, 2006, Art. no. 20.

[26] K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in Proc. Israeli Exp. Syst. Conf.. ACM, 2009,
Art. no. 7.

[27] Z. Cao, H. Wen, F. Wu, and D. H. Du, “ALACC: Accelerating restore
performance of data deduplication systems using adaptive Look-Ahead
window assisted chunk caching,” in Proc. 16th USENIX Conf. File Storage

Technol.. Oakland, CA: USENIX Association, 2018, pp. 309–324. [On-
line]. Available: https://www.usenix.org/conference/fast18/presentation/
cao

[28] T. Shaffer, K. Chard, and D. Thain, “An empirical study of package
dependencies and lifetimes in binder Python containers,” in Proc. IEEE

17th Int. Conf. E-Sci., 2021, pp. 215–224.
[29] A. Z. Broder, “On the resemblance and containment of documents,” in

Proc. IEEE Compression Complexity SEQUENCES, 1997, pp. 21–29.
[30] S. Jin and A. Bestavros, “Popularity-aware greedy dual-size web proxy

caching algorithms,” in Proc. IEEE 20th Int. Conf. Distrib. Comput. Syst.,
2000, pp. 254–261.

[31] Project Jupyter et al., “Binder 2.0: Reproducible, interactive, sharable
environments for science at scale,” in Proc. 17th Python Sci. Conf., F.
Akici, D. Lippa, D. Niederhut, and M. Pacer, Eds., 2018, pp. 113–120.

[32] Project Jupyter, “JupyterHub,” 2021. [Online]. Available: https://jupyter.
org/hub

[33] Project Jupyter, “repo2docker,” 2021. [Online]. Available: https://github.
com/jupyterhub/repo2docker

[34] Project Jupyter, “BinderHub,” 2021. [Online]. Available: https://github.
com/jupyterhub/binderhub

[35] Mybinder.org Events Archive. Accessed: Jul. 2021. [Online]. Available:
https://archive.analytics.mybinder.org/

[36] T. Shaffer, K. Chard, and D. Thain, “Binder software environments,”
Zenodo Dataset, 2021, doi: 10.5281/zenodo.4891790.

[37] “The worldwide {LHC} computing grid.” 2023. [Online]. Available: https:
//wlcg-public.web.cern.ch

[38] J. Blomer, P. Buncic, R. Meusel, G. Ganis, I. Sfiligoi, and D. Thain, “The
evolution of global scale filesystems for scientific software distribution,”
IEEE/AIP Comput. Sci. Eng., vol. 17, no. 6, pp. 61–71, Nov./Dec. 2015,
doi: 10.1109/MCSE.2015.111.

[39] The HEP Software Foundation et al., “A roadmap for HEP software and
computing R&D for the 2020s,” Comput. Softw. Big Sci., vol. 3, no. 1,
Mar. 2019, Art. no. 7.

[40] B. Gonzalo, “HEP workloads archive,” 2023. [Online]. Available: https:
//gitlab.cern.ch/hep-benchmarks/hep-workloads

[41] H. Dirk, “Review on current workflows and production on {HPC}
centers,” in Proc. Joint HSF/OSG/WLCG Workshop, 2019. [Online].
Available: https://indico.cern.ch/event/759388/contributions/3311664/
attachments/1814435/2964911/hpc_production.pdf

[42] Z.-H. Zhou, Machine Learning. Berlin, Germany: Springer, 2021.

Tim Shaffer received the bachelor’s degrees in math-
ematics and chemistry from Youngstown State Uni-
versity, the master’s degree in computer science from
Notre Dame, and the PhD degree from the Depart-
ment of Computer Science and Engineering, the
University of Notre Dame. His research focuses on
proactive management of storage and software envi-
ronments for scientific workflows.

Thanh Son Phung received the BS degree in math-
ematics and computer science from Trinity College-
Hartford. He is currently working toward the PhD
degree with the Department of Computer Science and
Engineering, the University of Notre Dame. His re-
search focuses on resource management and schedul-
ing for large-scale workflow systems.

Kyle Chard received the PhD degree in computer
science from the Victoria University of Wellington
in 2011. He is a research associate professor with
the Department of Computer Science, the University
of Chicago. He also holds a joint appointment with
Argonne National Laboratory. He co-leads the Globus
Labs research group which focuses on a broad range
of computer systems research problems.

Douglas Thain received the BS degree in physics
from the University of Minnesota - Twin Cities and
the MS and PhD degrees in computer sciences from
the University of Wisconsin - Madison. He is pro-
fessor and associate chair with the Department of
Computer Science and Engineering, the University of
Notre Dame. At Notre Dame, he studies and created
distributed systems that enable large scale scientific
computing on clusters, clouds, and grids.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

