1376

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

LANDLORD: Coordinating Dynamic Software
Environments to Reduce Container Sprawl

Tim Shaffer

Abstract—Containers provide customizable software environ-
ments that are independent from the system on which they are
deployed. Online services for task execution must often generate
containers on the fly to meet user-generated requests. However, as
the number of users grows and container environments are changed
and updated over time, there is an explosion in the number of
containers that must be managed, despite the fact that there is
significant overlap among many of the containers in use. We analyze
a trace of container launches on the public Binder service and
demonstrate the performance and resource usage issues associated
with container sprawl. We present LANDLORD, an algorithm that
coalesces related container environments, and show that it can
improve container reuse and reduce the number of container builds
required in the Binder trace by 40%. We perform a sensitivity
analysis of LANDLORD using randomized synthetic workloads on
a high-energy physics (HEP) software repository and demonstrate
that LANDLORD shows benefits for container management across
a wide range of usage patterns. Finally, we compare LANDLORD
to offline clustering, and observe that the continuous churn in
software necessitates an online approach.

Index Terms—Cluster computing, containers, file systems.

I. INTRODUCTION

ONTAINERS are becoming the solution of choice for
describing and distributing customized software environ-
ments. Technologies such as Docker [1] and Singularity [2]
are increasingly used to deploy complex applications at dif-
ferent computing sites, without requiring that each software
package be manually installed at each site. Container images
being (by design) completely self-contained greatly simplifies
management and deployment, but also limits opportunities for
sharing common components. Much in the same way that a
statically linked executable contains a full copy of each library
used, container images necessarily include a complete set of
dependencies.
For complex and multi-tenant applications, on-demand gen-
eration of containers is no longer a constant, static overhead
when setting up applications; it is rather a dynamically varying

Manuscript received 18 September 2021; revised 19 January 2023; accepted
24 January 2023. Date of publication 6 February 2023; date of current version 16
March 2023. This work was supported by NSF under Grant OAC-1931348 and
a DOE Graduate Computer Science Fellowship. Recommended for acceptance
by D. Unat. (Corresponding author: Tim Shaffer.)

Tim Shaffer, Thanh Son Phung, and Douglas Thain are with the Univer-
sity of Notre Dame, Notre Dame, IN 46556 USA (e-mail: tshaffel @nd.edu;
tphung @nd.edu; dthain@nd.edu).

Kyle Chard is with the University of Chicago, Chicago, IL 60637 USA
(e-mail: chard @uchicago.edu).

Digital Object Identifier 10.1109/TPDS.2023.3241598

, Thanh Son Phung, Kyle Chard

, and Douglas Thain

Compute

Container
Service

(Landlord)

3. Prepare container
(build/match/merge)

Container Cache

python=3.7
numpy>=1.16
pandas

Package Repo python | [python | |python
python numpy parsl 3.7.0 2.6.2 3.5.1
A S
)—3:9:4)—1:20:3)-0:9:0 1.21.1 3.04 1.1.0
F3.9.3 h.20.2 }o.8.0 pandas boto3 coffea
e L Lo 1.1.5 1.8.6 0.7.5

Fig. 1. Container service architecture. In an on-demand container-based ap-
plication, user jobs include a set of software requirements, given to a Container
Service. The service may download packages from a global software repository
to build a new container or identify an existing container that satisfies the
dependency requirements. Either the container service or the compute system
will then transfer the image to a compute node in a cloud/cluster. LANDLORD is
an algorithm that can be used by a service to manage container images.

and resource-intensive part of the application infrastructure,
requiring management as a first-class activity. Adding new users,
updating applications, and executing in different environments
all require the creation, distribution, and storage of containers
with the necessary dependencies for a set of tasks. Over time,
these containers multiply: as a user’s workload evolves, different
tasks need different software (with versions changing regularly
as packages are updated), and new containers are generated.
Creation of a specialized container environment for a given task
(which often takes minutes before task execution can begin) is
one of the biggest hurdles in providing responsive service to
users. In addition, related containers share many elements so
a significant amount of storage may be wasted due to logical
duplication resulting from container sprawl.

Most container-based services are implemented with an ar-
chitecture like Fig. 1. Here a container service is responsible for
handling requests and constructing containers to satisfy those
requests. After creation, the container is stored in a container
cache and then transferred to local storage on a compute node, for
example on a cloud instance or a High Performance Computing
(HPC) node, for execution. Containers are typically cached to
service repeated requests.

We developed the LANDLORD algorithm to take advantage
of high-level information about the functionality of a container

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL

rather than the particular build steps or container contents. The
key insight for LANDLORD is that a container may include
a superset of a task’s dependency requirements, which (with
appropriate choice of packages) would allow a single container
to satisfy the requirements of multiple tasks. LANDLORD merges
compatible requirements from multiple tasks rather than build-
ing and maintaining many task-specific containers. LANDLORD
takes an incremental approach, considering only the current
service request against the currently materialized containers, and
allocating the container with the closest similarity metric. This
makes LANDLORD effective in practice as an online resource
management tool.

Based on logs of container launches from the online Binder
service, we found that employing LANDLORD to manage the set
of cached containers resulted in a 20% decrease in I/O activity
along with increased re-use of previously built containers, with
the total number of container builds reduced by up to 40%. In
addition, we prepared a synthetic workload based on high energy
physics (HEP) applications to examine LANDLORD’s sensitivity
to workload and application requirements. We demonstrate that
LANDLORD can provide benefits over a wide range of operat-
ing conditions. Finally, we examine the quality of containers
maintained by LANDLORD over time by comparing the container
hit rate of LANDLORD to an offline clustering algorithm, which
shows that LANDLORD is a more stable and robust solution to
the problem of container sprawl. This work is an extension
of a previous conference paper [3] that analyzes an additional
application workload and explores LANDLORD’s use in large
scale serverless applications.

II. BACKGROUND

The container has become a widely deployed tool for creating
isolated, portable execution environments for complex appli-
cations. A container image is a filesystem image constructed
from a declarative specification that indicates a sequence of
actions necessary to construct the image. Docker [1] is a widely
used example of a container management system, consisting of
a local server that manages the container lifecycle, and a cloud
service that permits publishing and sharing of container images.
However, Docker is not widely deployed in the HPC context
because its local service requires the use of node-local storage
and elevated privileges. Instead, several alternative technologies
have emerged, including Singularity [2], Shifter [4], and Char-
lieCloud [5], which make use of shared distributed filesystems
for storage.

In these various forms, container technologies have become
an integral building block for various services, applications, and
computing paradigms:

High Performance Computing (HPC) and High Throughput
Computing (HTC) applications often use containers in place of
esoteric module and filesystem-based methods for configuring
environments. Unlike persistent services, HPC/HTC workloads
are expressed as a stream of discrete jobs, where each job may
be associated with a pre-built container for execution. Some
systems provide optimized container deployment mechanisms
to avoid overloading the file system. HPC/HTC systems are

1377

used by many users and thus present opportunities for sharing
containers to optimize performance.

Multi-tenant web services like Binder, JupyterHub, and Who-
leTale [6] use containers to create customized execution en-
vironments for their users. These services dynamically create
containers based on stated dependencies and in some cases by
capturing environment changes by users.

Container orchestration systems such as Kubernetes [7] allow
users to declaratively define the high-level services/components
of applications, while the orchestration layer manages the con-
crete resources (persistent storage, container instances, etc.). To
aid in managing software environments in containers, Kuber-
netes package managers such as Helm [8] can instantiate specific
versions of each software component and clean up outdated
containers. These systems are often shared by many users with
overlapping container definitions.

Workflow systems, such as Parsl [9], and workflow languages,
such as CWL [10], use containers to provide a common execu-
tion environment for tasks. While workflows typically operate
on behalf of a single user, or small group of users, they may
be composed of calls to different tasks with different environ-
ment requirements. This requirement presents an opportunity
for container sharing.

Function as a Service (FaaS) systems depend on containers to
establish the environment for function execution. FaaS is anideal
use case for container sharing as environments are intentionally
opaque, services are shared by many users with overlapping
requirements, and FaaS providers aim to serve requests rapidly.
Systems like funcX [11] are designed to use a container service
to create containers on behalf of users, and deploy containers to
compute nodes on-demand for function execution.

III. THE PROBLEM OF CONTAINER SPRAWL

We define container sprawl as follows: given a large (and
probably growing) number of tasks that require many over-
lapping software dependencies, creating a container to fulfill
each task’s requirements will lead to a combinatorial explo-
sion in the number of distinct containers in use. As men-
tioned previously, container images do not allow for sharing
components as is possible with local installations, site-wide
modules, or copy-on-write filesystems. Instead, each container
carries complete copies of all components. In the naive case,
each variation in task requirements results in the creation of
a whole new container. In this scenario many identical copies
of common base components and dependencies are stored
across a set of similar but non-identical container images. In
our container workload, for example, users wrote 505 dis-
tinct version specifications for the popular Numpy package.
These specifications could be potentially complicated range
requirements (numpy<1.20.0,>=1.18.0), exact builds
(numpy==1.18.4=py37h8960a57_0), or they may lack
any version information at all (simply numpy). A single version
of Numpy could satisfy all three of the above examples, though
a naive approach to container management would prepare a
different container for each of the three requirements. Since each
task-specific variation exists as a completely separate container,

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1378

coarse-grained caching does little to alleviate this duplication.
Only tasks with identical sets of requirements can reuse existing
containers. This proliferation of container images to the point
of management difficulty is well known along with the related
phenomenon for VMs called “image sprawl” [12].

IV. CONTAINER MANAGEMENT CHALLENGES

For any choice of container management scheme, there is
some non-trivial management cost. This could be in the form of
time and manual effort on the part of individual users, or a portion
of the system’s compute and storage resources used to create,
manage, or cache containers. We briefly review several naive
solutions and outline why they fail to address requirements.

Imperfect Solution: Caching. The simplest approach is to
cache containers such that they can be redeployed quickly
without creation overheads. This approach has low per-task over-
head, and tasks and requirements may be updated as frequently
as desired. At large scale, however, the overall system efficiency
suffers. Due to duplication of packages among images, the cache
must store many identical copies of common base packages. To
support a given workload, it becomes necessary to provision
a cache much larger than the size of any repository. With the
software repositories examined in this work consuming several
terabytes of storage, the amount of cache space required grows
quickly. In the case of an extremely well-provisioned system, it
might be possible to retain every image. For large-scale and high-
throughput computing the total size of applications and data can
often grow to consume any available resources, so most effec-
tively utilizing available resources is key. Thus it is necessary to
balance management costs against system compute and storage
constraints. When supporting multiple users with a potentially
large number of container images, simply adding storage capac-
ity to accommodate each user or application is not a sustainable
solution over the life of a system [13]. Rather, it would be
preferable to make better use of what site storage is available
by reducing unnecessary duplication among container images.

Imperfect Solution: Full-repo Images. Rather than consid-
ering the precise requirements for each task, another way to
reduce the number of containers in use is to place an entire
software repository into a single image, which can then support
a large number of tasks. A complete copy of the Python Package
Index (PyPI) would be over 300,000 packages (with nearly
2.8 million released versions of those packages) and consume
approximately 8.8 TB (at the time of writing). Unfortunately,
this approach is likely to exceed a number of practical limits on
container size. Individual worker nodes may have limited local
disk space and be unable to store large container images. Even
if the large container fits, it is likely that a given task does not
need all of the repository simultaneously, so it is wasteful to
transfer unneeded data. This concept is a driving influence on
projects like Slacker [14]. It also becomes prohibitively expen-
sive to update and transfer such large container images. The US
collaboration of the ATLAS, ALICE, and CMS projects have ex-
perimented with CVMES applications on computing resources
at various supercomputers in the United States including Cori at
NERSC [15]. When full-repo images were built and scaled out

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

onto a large number of nodes inside the NERSC infrastructure,
the entire process of generating the image and distributing it
to compute nodes took around 24 hours, making it difficult to
deploy up-to-date versions of the software on a regular basis.
In addition, the process requires the administrators’ manual
involvement in image creation, deployment, and cleanup. As
additional projects want to take advantage of the resources
at NERSC, the administrative burden of managing multiple
CVMEFS images on multiple software versions increases accord-
ingly. Taking this approach negates the flexibility and hands-off
administration that containers were intended to provide.

Imperfect Solution: Layering. Docker allows container envi-
ronments to be composed from reusable image layers. Docker
can take advantage of modern filesystems like BTRFS [16] that
provide efficient snapshots and transparent sharing of files and
directories between different revisions. As a practical matter,
Docker is generally not available in HPC environments for ad-
ministrative and security reasons. Likewise, guest users at large
sites do not generally have the ability to directly manipulate file
system snapshots or export/load local filesystem volumes. More
conceptually, layering images addresses a different problem than
the issue at hand. With Docker, base images can be extended
and refined over time by appending layers. When preparing to
run external computing tasks, however, we must compose a set
of largely independent pieces to fit specific task requirements,
without any particular ordering relationship to previous images.
It is therefore difficult to map this set of semi-independent
pieces into a linear sequence of refinements that will fit future
tasks. Furthermore, since layer-based deduplication can only
operate on identical layers, any modification requires storing
the complete contents of the layer (and all subsequent layers,
since the identity of a layer depends on its parents). This leads
to significant duplication in practice, with 97% of files stored
within layers on the publicly accessible DockerHub being du-
plicates [17]. Content addressable storage has been proposed as
a solution to this issue [18], but requires substantial changes to
the container infrastructure and is not compatible with static disk
images required in HPC environments.

Imperfect Solution: Block Deduplication. Another potential
avenue to address container sprawl is data deduplication for disk
images. The virtualization community has developed a number
of solutions for efficiently deduplicating disk images [19] and
running virtual machines with many incremental changes [20].
There has also been extensive research on deduplication [21],
[22] of filesystem data [23], [24] and disk blocks [25], [26].
These techniques can be quite effective for container dedupli-
cation at the block level [27], as it is not difficult to identify
duplicated files or blocks within container images. However, we
lack the means to combine the extraneous copies; each container
image by design contains complete copies of all data, and sharing
of data across images is not possible for users of the system.
Container images are concretely stored as files that may need to
be frequently transferred between different sites or uploaded to
cloud computing environments. Block deduplication only works
with deep integration with the low-level storage infrastructure
at a single site, and therefore places significant limitations on
storage infrastructure.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL

Hit Miss and Insert Miss and Merge
< T roy_2
#hg 3" Ta,
e D ESER 5 Cm3
\K‘/\ 2 rz / I'2
Time

Fig. 2. LANDLORD fundamental operations. Hit: A new request 71 (green
circle) is satisfied by a cached container (red square), so no further action is
required. Miss and Insert: A new request g is too far from all other containers
(distance > «) so a new container is created. Miss and Merge: A new request
r3 is close to an existing container so it is merged into the closest container,
taking the union of the requirements from both.

Algorithm 1: LANDLORD Algorithm.

Given: Cached container image collection I
Input : Container specification s, maximum
container size m, similarity cutoff o
Result: Suitable container image satisfying
specification s
// Conflicts have infinite distance
C+{iel|sCind(s,i) eR};
if C # () then
// An existing image satisfies s
return arg min, - d(s, 7);
end
D« {iel|d(s,i)<aAsize(Merge(s,i)) <m};
if D # () then
// Merge with closest image
m 4 argmin;e p d(s, 1) ;
return Merge(s, m);
end
// Couldn’t re-use or merge
return Insert(s);

V. THE LANDLORD ALGORITHM

LANDLORD is an algorithm for managing a container store
which makes online decisions to efficiently satisfy the depen-
dency requirements for submitted requests. Rather than viewing
a container as a sequence of shell commands to build layers or as
a collection of arbitrary files, LANDLORD treats a container sim-
ply as an artifact that satisfies a set of requirements. It is therefore
possible to check if an existing container satisfies a different set
of requirements, or to combine sets of requirements to produce
multi-functional containers. LANDLORD’s main pseudocode and
operations are shown in and Algorithm 1 and Fig. 2, respectively.
As each request to execute a task arrives, we consider whether
the request is compatible with any existing container. If so, that
is counted as a cache hit and the container is used to execute
the task. On a cache miss, the distances between the request
and all existing containers are measured using distance metric
d(a,b), where incompatible requirements are represented as an

1379

Requests
Container

Specification Solution

5<A<=8
B=2

Cluster

Fig. 3. Clustering container requests. Similar requests for packages may be
clustered together, resulting in a common specification. The available packages
in the software repository are used to generate a solution listing a set of concrete
packages. The packages from the software repository are combined to build a
usable container. The final container contents will constrain future merges with
new requests.

infinite distance. The choice of metric is discussed in section
Section V.C. If no container is within a critical distance c,
then a new container is inserted to satisfy the current request.
Otherwise, the request is merged with the closest compatible
container by adding the minimal packages needed to satisfy
the request. If inserting or merging a container would overflow
the available container cache space, then the least recently used
container is removed. The result is that each request is satisfied
by a sufficient container, and multiple requests may share a
common container.

A. Container Management as Clustering

The problem of container management can be viewed as a
variation on the general problem of clustering, shown in Fig. 3.
Briefly, the system considers a set of requests, each consisting
of one or more constraints upon software packages. Multiple
requests that are ’close” may be gathered together into a cluster
that can be described by the union of the package constraints.
These constraints are solved (if possible) into a concrete list of
packages that is then used to materialize one container image.
The goal of the container management system is to find a suitable
clustering, subject to two opposing constraints: each individual
container must be small enough to deploy to an individual cluster
node, and the sum of the sizes of all containers must fit in the
shared cache space. However, there are several complicating
factors that prevent the straightforward application of a conven-
tional clustering algorithm:

1) The system must respond to requests in a timely way
as they arrive. This requires an online algorithm that
addresses both request similarity as well as cache resource
constraints. To provide an acceptable service to interactive
users, the total work for a single request must be bounded
and limited to resources relevant to that specific request.
A given user making a request should not ”pay” the cost
of operations that provide no benefit to that user.

2) The available operations that can be performed on contain-
ers are limited and relatively expensive. The manager may
create a new container from a specification, merge new
packages into an existing container, or delete an unused
container. However, there is no fundamental capability to

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1380

“transfer” packages from one container to another, short
of deleting and recreating containers to effect the transfer.
These operations may move GBs of data and take minutes.

3) Both the stream of requests and the state of the package
repository evolve over time, as new packages become
available and of interest to users. As a result, it is not
generally possible to determine compatibility of speci-
fications a priori, because they may have incompatible
implied dependencies. Instead, it is necessary to evaluate
the requests at a given point in time to determine compat-
ibility, consulting the package repository to determine if
packages actually exist that satisfy logically compatible
requirements. In practice, change in specifications and
software repositories over time is significant; our prior
study of this dataset found that due to changes in the
software repository, containers became out of date on
average ten days after they were built [28].

B. Package-Level Coordination

Rather than treating each container as a black box of arbitrary
files, we can consider it as a set of packages drawn from a
package repository. While a build script gives a sequence of steps
to produce a final container image, it does not give information
about the desired properties of the resulting image. If we were
building images by layering, there would be very limited options
for optimizing storage or safely determining whether an existing
image can be reused. Rather than trying to recover information
from build scripts or previously built images, the specifications
used to construct them offer higher-level information about their
functional characteristics and more opportunities for manage-
ment and optimization. Specifications provide minimal require-
ments that an image must fulfill without specifying anything
about the exact image contents.

Specifications afford another opportunity to a container man-
agement system: unlike build scripts or recipes, it is possible
to automatically manipulate or combine specifications. Since
LANDLORD operates by composing sets of requirements, it is
possible to add to or adjust a specification while guaranteeing
that the requirements of a request are satisfied. A composite
specification can be formed by first taking the union of all
requirements from two or more specifications, then taking the
intersection of all sets of versions for each repeated requirement
name. For instance, Fig. 3 shows the outcome of composing three
different specifications into one. This kind of composite image
could be used in place of any of its constituent specifications,
since it meets the minimum requirements given in each. Note
that in some cases, incompatibilities among requirements (e.g.,
packages or versions) make combination impossible.

While caching and merging specifications give a mecha-
nism to reduce unnecessary duplication among stored container
images, we still do not know which specifications to merge.
Choosing randomly or by order of task submission, for example,
is liable to join specifications with little in common. This would
increase the sizes of images to be transferred among worker
nodes, while doing little for de-duplication. Instead, we want to
merge specifications with many common components. We now

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

introduce a simple metric for similarity between specifications
that LANDLORD uses to automatically manage an image store,
with a tunable parameter controlling how aggressively to reduce
duplication and increase storage utilization.

C. Similarity Metric

A key requirement in improving storage behavior for a col-
lection of container images is the ability to quickly identify con-
tainers that are “similar” as candidates for optimization. Rather
than examining the containers themselves, we will compare the
specifications used to generate them. We chose the weighted
Jaccard distance under appropriate choice of set elements as it
has several desirable properties for grouping sets of packages
and is simple to compute. When working with package repos-
itories, each package is usually assigned a name/version string
that is defined to be unique within the repo. Public package
repositories generally support explicit version constraints, so
two specifications may include constraints that cannot be simul-
taneously satisfied. For LHC applications this is a non-issue,
since CVMFS is append-only and all previous versions remain
available. For other sources of software (e.g., Python package
repositories), we represent conflicting requirements as an infinite
distance between specifications. As discussed in Section V.A, we
are not concerned with the particular version strings (as long as
they are compatible, i.e. there exists a package version satisfying
all constraints). We therefore consider only the set of package
names and their storage sizes (weights) when computing dis-
tances between compatible specifications.

For sets A and B, the weighted Jaccard distance d; is:

Zie(AﬁB) S12€;

d(Aa B) =1- .
! Zie(AuB) S12€;

When considering container sprawl as a clustering problem as
discussed in Section V.A, the weighted Jaccard distance serves
as a metric on the collection of all finite sets of packages. This
metric captures several desirable properties when dealing with
specifications. First, the weighted Jaccard distance considers
specifications with significant storage overlap to be close. This
results in similar specifications being grouped together. Second,
the inclusion of unrelated components increases the weighted
Jaccard distance between two sets. In the case of a full-repo
image for example, there would be overlap with any given
specification. The large number of other packages included in
the full-repo image, however, would cause the weighted Jaccard
distance to become large for specifications that require only
a few small-sized packages. This naturally penalizes bloated
containers which are expensive to create, update, and transfer.
In addition, a constant-time approximation of the Jaccard metric
(MinHash [29]) is available for making an efficient first pass
at selecting similar images when the number of packages or
components is large.

The fundamental operation for LANDLORD’s storage opti-
mization strategy is merging container specifications that are
“close enough”. Using the weighted Jaccard distance metric,
we can quickly identify cached specifications that are similar to
anew request. To decide if two specifications are “close enough”

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL

to optimize, we define the parameter « as the maximal weighted
Jaccard distance between closely related specifications. Since
weighted Jaccard distance is by definition between 0 and 1, «
must be in the same range. This « parameter is something like
the “globbiness” of the system. Using the o parameter, we can
define a simple algorithm for managing and optimizing a central
image store.

Choosing « near zero requires that specifications are ex-
tremely similar before considering them for merging. In the
extreme case with o = 0, only identical images will be consid-
ered close, so no images will be merged. This corresponds to a
simple cache without LANDLORD’s optimization. Choosing « to
be larger makes it more likely for images to be considered similar
and merged. This results in more augmented images that serve
multiple tasks. In the extreme case of & = 1, every pair of images
is considered close and merged if possible. This results in large
container images that accumulate many specifications. Using the
« parameter, it is possible to continuously vary between these
two extreme behaviors.

Itis important to note that while specifications consist of pack-
age names and version constraints, generating an image from
a specification requires selecting a concrete version for each
package requirement. Thus building the same specification at a
later time might result in a different selection of concrete pack-
age versions. This does not present a problem for LANDLORD,
since we retain the original specifications. Thus it is always
possible to check whether a given concrete image satisfies the
requirements of a specification, and to select concrete packages
that satisfy the union of requirements from merged specifications
(or find that no such package exists and the specifications are thus
incompatible). Our previous research [28] found that version
specifications are quite lax in practice, making it easy to find
overlapping and compatible selections of package versions.

A potential issue with this automatic merging strategy is
“bloated” images that accumulate infrequently used dependen-
cies and increase overhead indefinitely for future tasks. The
weighted Jaccard distance gives a natural way to capture and
address this effect. As an image becomes bloated due to repeated
merges, its distance from any individual request increases. After
sufficient growth, the image will become too far from any request
to be considered. Without regular use, the bloated image will
eventually be evicted from the cache. Choice of « therefore
places an upper limit on the amount of undesirable bloat in
images. Later, we examine the effect of the o parameter by sim-
ulating image management over a large number of application
requests.

Fig. 4 shows as an example a single simulation of LANDLORD
with o = 0.75 and cache size of 1.4 TB processing 250 HEP
tasks. First, we note that most of the operations are merges.
This is to be expected, due to the high « value. The total bytes
written also closely tracks merges, indicating that merging is the
dominant source of I/0. We still see inserts over the course of
the simulation. At more extreme « values, we expect to see one
of these operations dominate. As the data in cache continues
to rise, the set of containers eventually reaches the cache limit,
after which the delete count increases. Over the course of the
simulation, inserts and deletes are filling and emptying the cache

1381

T T u T 7
B erges
100 Bytes Written (TB) —— - 6
Inserts
80 ached Data (TB) — — 4 5
Hits =
E e} Deletes 14 =}
Q 0
© 43 X
40 «
12
20 A e e
0 = -/ L wey 1 0
0 50 100 150 200 250
Requests
Fig. 4. Behavior of a single simulation. The x axis shows the number of

requests handled so far (the actual time for container creation and application
run is not available). Here the cache is filling during the first ~125 container
launches, then containers are deleted to meet the storage limit.

such that it remains close to its storage limit. We also observe
the number of cache hits continue to rise despite deletions. As
we will see, merging allows for a greater proportion of hits even
if the amount of data remains constant, due to de-duplication.
The cache limit then ensures that infrequently used parts are
eventually removed.

D. Deployment of LANDLORD

We designed LANDLORD to allow for flexible deployment,
either as an end user or an infrastructure provider. Since indi-
vidual users may need to run tasks across many sites and will
need to work without special privileges, the most straightforward
way to employ LANDLORD is as an automated step during task
submission. The first step is to prepare a specification for each
task. In the simplest case, the user explicitly provides this infor-
mation by annotating each task or providing a specification file.
Alternatively, a workflow system might automatically generate
container environments in order to portably execute tasks across
remote resources by inspecting the enclosing software environ-
ment. Users then set up their particular task submissions to wrap
invoked tasks with LANDLORD. On task submission, LANDLORD
first scans its configured cache for existing images that are
“close” to the task’s specification, creates/updates images in
the cache as necessary, and finally launches the task inside
the prepared container. LANDLORD first observes or infers the
package dependencies of submitted applications, then generates
the execution environment needed by each application. As re-
quired, it creates, merges, or deletes container images in order
to balance the total storage consumed by containers against the
size of individual containers. LANDLORD allows for a limit on the
total storage used, and removes the least recently used images
(an LRU eviction policy) to free up space when necessary as
a result of an insert or merge. As a future extension, more
sophisticated caching policies [30] may be able to achieve better
cache performance, but LANDLORD’s design does not depend on
the particular policy.

While a user-level approach is a good fit for a single unpriv-
ileged user, administrators may wish to employ LANDLORD for

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1382

site-wide container management such as a Binder-like service or
even a batch system. The same core functionality of LANDLORD
can easily be adapted into a plugin for a site’s batch system,
where the system carries out the same per-task steps as above
for each task submission. In addition to batch systems, there are
other situations where LANDLORD’s approach is applicable. With
a pilot job system, for example, users are effectively operating
a “user-level scheduler”. Users could use this same approach
to connect LANDLORD to transparently optimize container stor-
age without requiring application changes. The Binder service
could also employ LANDLORD as a sub-component, where the
main service hands off each notebook launch to LANDLORD to
optimize via merging or reuse, if possible, before performing
the actual build. Other container-based systems like WholeTale
would likewise integrate LANDLORD in a straightforward manner
as part of the container build process without requiring architec-
tural changes.

VI. CONTAINER-BASED WORKLOADS

To evaluate LANDLORD, we simulated the operation of a
container service employing LANDLORD under two different
workloads, 1) a large-scale, predominantly Python Binder exe-
cution trace; and 2) a synthetic HEP workload using software
dependencies from a large mixed repository.

A. Binder Workload

Binder [31] is an online service that allows users to launch
interactive browser-based notebook applications. Users specify
a Git repository, DOI, or other supported format which con-
tains software specifications and/or static data to be included
in the notebook environment. On receiving a user request, the
public Binder service prepares to launch a container using
JupyterHub [32] on one of several cloud compute backends. The
repo2docker [33] tool examines the specifications given in the
source repository, then carries out any necessary build steps to
produce a Docker container for the repository. Each computing
backend caches previously built Docker containers for a short
period of time, so that if another notebook is requested using
the same source repository the cached container can be used.
After the build, a container with Jupyter notebook is launched
and connected to the user’s browser. Individual sites also use the
BinderHub [34] software to provide interactive notebooks using
local compute resources, like a cluster.

Logs of notebook launches on the public Binder service
are periodically published [35], which include the time of
each launch and the specific repositories requested. In previous
work [28], we downloaded the repositories referenced in the logs
to in order to collect the actual software specifications requested
for each notebook launch. Using these software specifications,
we can replay the sequence of notebook launches to examine
usage patterns and caching on a real, large-scale workload
with 18 million container launches. A cursory analysis of these
Binder containers provides a number of interesting insights.
First, software environments specified by users are generally not
completely specified. A large proportion of container environ-
ments (55%) include one or more packages without any version

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

constraints. The contents of such environments thus depend on
when the container is prepared. This does, however, afford some
flexibility in selecting package versions.

Second, the usage patterns of containers observed on Binder
are far from uniform. The top 10 containers make up 65% of
observed launches. Most of these popular containers are demo
or example notebooks featured on the websites of projects or
software tools, including IPython, JupyterLab, and spaCy. The
most popular container, a demo notebook linked on the Jupyter
website, accounted for 35% of launches by itself. We also note a
very long tail: while some containers were only launched once,
many of the containers were launched occasionally over a long
period of time, indicating a large working set to be kept in cache.

Finally, we observed a large amount of duplication among the
Binder container environments. Popular packages like Numpy
or Python itself appeared in the majority of containers, with each
container necessarily storing a distinct copy of these packages.
Further, some of the popular packages (especially machine
learning frameworks like Tensorflow) actually consist of a large
number of subcomponents and bring with them a large set of
dependencies. We thus observed a high degree of duplication of
the data in cache during our simulations.

Our full analysis in [28] includes a more in-depth examination
of the Binder workload and the software environments in use.
In addition, the dataset we compiled based on this workload is
available at [36].

B. High Energy Physics Workload

The Worldwide LHC Computing Grid (WLCG) consists of
more than 170 computing centres in 42 countries, which provide
1.5 exabytes of storage and around 1.4 million CPU cores.
During normal operation the WLCG runs over 2 million tasks
per day, with global data transfer rates over 260 GB/s. [37].
The CernVM File System (CVMES) [38] filesystem is used to
publish the software used by all of the major LHC experiments
at computing sites around the world. Researchers at CERN use
CVMES as the primary means of distributing the analysis and
simulation software they develop to the WLCG. Each experi-
ment maintains a repository of current and previous software
versions, allowing stable and uniform access to large software
collections that vary over time. For reproducibility and reliability
of results, itis important that the same applications run at all sites
across the globe, and that all previous versions of application
code be available and usable when needed.

The upcoming High Luminosity upgrade to the LHC is ex-
pected to increase the amount of data generated by a factor
of thirty [39], so the WLCG is working to greatly expand
its computational capacity through algorithmic improvements,
use of accelerators and specialized hardware, and leveraging
additional computing resources. HPC resources are an appealing
source of computing power to supplement the WLCG, but HPC
sites often impose restrictions on network activity and system
configuration, preventing WLCG tasks from running directly on
HPC resources. Containers offer a potential means for importing
software environments to HPC sites without the CVMEFS infras-
tructure available at WLCG sites. CVMES retains all historical

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL

Minimal Image Full-Repo Image
alice-gen—-sim 6.0 GB 450 GB
atlas—gen 2.7 GB 4.8 TB
atlas-sim 7.6 GB 4.8TB
cms—-digi 8.4 GB 8.8 TB
cms—gen—-sim 6.1 GB 8.8 TB
cms—-reco 7.3 GB 8.8 TB
lhcb-gen-sim 3.7 GB 1.0 TB

Fig. 5. Benchmark applications for LHC experiments.

versions to ensure reproducibility and backwards compatibility,
making simple garbage collection impossible. Since transferring
the entire container repository for every task is prohibitively
expensive, it is necessary to create tailored images based on
a required subset of the full software repository. There are a
number of potential approaches to work around the explosion in
task-specific images but none are satisfactory.

We consulted with the developers of CVMFS as well as
HEP researchers at our university collaborating with CERN to
determine how current users interact with CVMFS. We expect
significant variability in files accessed and total size among
different users and experiments. We nonetheless observed that
certain core components are used near-universally. While mul-
tiple versions and variations might exist, these components
have a very high likelihood of appearing in every container
image. These components correspond to the base frameworks,
setup scripts, calibration data, etc. needed for most tasks. Based
on anecdotal evidence from WLCG researchers, we expect to
see these components in a large proportion of tasks across all
simulated tasks from different users and experiments. There is
also alarge set of components that must be available and are used
in some applications, but which are very rarely used overall. It
is important to make these “long tail” components available to
researchers, but it would be wasteful to include them universally
when they are rarely used.

Fig. 5 shows several container-based LHC benchmark appli-
cations [40]. Here gen (generation), sim (simulation), digi
(digitization), and reco (reconstruction) are phases of the
experiment pipelines, with each phase running as a separate
workflow. Minimal Image indicates the size of the container
image that includes only the subset of the repo needed to run
that particular workflow, while Full-Repo Image gives the size
of the experiment’s entire software repository, which falls in the
range of terabytes. Note that while these measurements give a
rough idea of task requirements, there is substantial variation in
WLCG jobs in production. The CMS experiment for example
runs more than 1,200 unique workflows carrying out the general
phases above, with many different software builds, versions, and
customization [41].

VII. EVALUATION

Both workloads take the form of a stream of tasks to be
launched, with each task carrying some set of software require-
ments. For our evaluation, the container service is responsible
for preparing a container environment satisfying each task’s
software requirements. Software packages directly required by

1383

tasks can themselves depend on additional packages. Thus to
prepare a complete container environment, the container build
process must assemble the set of the direct and indirect de-
pendencies. To determine both the dependencies of software
packages and metadata such as the package sizes, we collected
package metadata for the repositories used in both workloads
(PyPI and Conda repositories for the Binder workload, and build
metadata from CVMES packages for the HEP workload). To
simulate a workload, we processed each task launch in turn,
recursively collecting any software dependencies and passing
the complete dependency list to LANDLORD, which built a new
container, merged with an existing one, or identified an existing
container satisfying the requirements.

A. Binder Workload

Sweeping Over a. To evaluate the behavior of LANDLORD,
we simulated the results of optimizing the container cache for
a large, varied workload. Starting from an empty container
cache, we replayed the Binder dataset at varying choices of
a. This dataset gives a sequence of container launches, along
with the software environment required for each container. We
are therefore able to compare the cache performance and 1/O
overhead as a result of LANDLORD’s merging strategy. Our goal
in this evaluation is therefore to choose « so as to minimize
the storage and compute costs associated with maintaining a
collection of images.

Sweeping over the range of a values (in steps of 0.05), we
can immediately see differences in the frequency of simulated
operations. Fig. 6(a) shows the upper range of « values where
behavior differences appear. From the lower « values on the left,
the insert and delete counts are the primary (or only) operations,
with number of hits relatively constant. This corresponds to a
simple LRU-based cache. The insert count is slightly higher due
to cache filling, but the two tend to move in lockstep (in the
figures the two nearly overlap). As « increases, image merges
become more frequent. The merge count steadily increases
throughout most of the upper range, while inserts and deletes
decrease. This suggests that at high « values, the cache space
would be more efficiently used, with some of the duplication
merged out. In the extreme case with a = 1, every request is
merged if possible, hence the reduced number of misses and
predominance of merges at the far right of Fig. 6(a).

Overhead of LANDLORD . Under LANDLORD’s approach, we
use compute and I/O capacity during task submission in order
to improve utilization of storage space. With excessive merging,
however, this additional I/O cost can become prohibitively ex-
pensive. To quantify this computational and I/O overhead, we
used package repository metadata to estimate the cumulative
amount of data written over the course of simulated cache
operation. We use cumulative write size as a metric for over-
head/latency that is independent of specific hardware or disk
performance. Fig. 6(c) shows the amount of data written during
simulations over a range of « values. “Required I/O” is the total
amount of data actually requested by each task over the course of
the simulations. Note that a cache hit would not require any 1/O,
so that even when replaying the same workload, differing cache
performance changes the required I/0. “Actual I/O” is the total

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1384

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

120 T T T T 100 T T T 35 T T T T
2 100t - 30 F
§ o | | 80 1 25 | A
= .
] | Inserts m 60 Unique Data b m 20 N
£ 0 e S ol Total Data 1l T oasr 1
g 40T Deletes - 05 pecuired Wit .
5] | Misses 20 g | equired Writes |
g 2 5 Actual Writes
0 ! ! ! ! 0 ! ! ! 0 i i ! !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Alpha Alpha Alpha

(a) Total Cache Operations

Fig. 6.

(b) Estimated Duplication in Cache

(c) Estimated I/0O Overhead

Binder workload over a range of « values. Note that in Fig. 6a the number of deletes and inserts is too close to distinguish. Compared to the length of the

Binder workload, the time spent filling the container cache is negligible. The delete count therefore very closely tracks the insert count when presenting only the

total operations at the end of the workload.

120 T T T T "MiSses' T T 35
0 -\&S Written Z 30
3

2 Y i
3 1 20
£ 60 f & %
= More Responsive Increased 1O Overhead | | 15
g 40 [(Falling Miss Rate) {Excessive Container Size) | 10
o
© 204 - MEER
0 1 1 1 1 1 1 1 1 1

0
0 0.102030405060.70.809 1
Alpha

Fig. 7. User responsiveness under LANDLORD.

amount of data written to cache over the course of simulations.
The actual I/O is greater than what was requested by the user
because LANDLORD includes additional packages in containers
as part of its merging behavior. This measurement is simply the
sum of the data written for each insert and merge. If, for example,
an image were evicted and then re-inserted later in a simulation,
then the cost of generating and writing the image would be added
again.

Without merging (low «), the actual I/O in the system closely
follows the required I/O. For a simple cache, these two metrics
would be identical. As « increases, the effects of updating and
merging images become apparent. We first note that the required
I/O falls as « increases. This is because a greater proportion
of task requests can be fulfilled directly from the cache. Since
more of the requests can be satisfied by previously merged
images in the cache the system needs to handle fewer misses,
which leads to a corresponding decrease in the required I/0 and
latency as a result of container builds. From the perspective of
the system, this is beneficial as a larger proportion of tasks can be
handled with no extra time or compute cost. For latency sensitive
applications like interactive notebooks, maximizing the hit rate
may be desirable even at the cost of increased compute. Fig. 7
highlights this tradeoff: increasing « initially leads to decreasing
miss rate and I/O overhead.

At higher «, however, we see another trend. Each time a
merge occurs, the resulting image must be written out in ifs
entirety. Thus when merges are frequent at very high «, some
data will be written and re-written many times to satisfy new
task requests. Thus while extremely high o makes better use
of available storage space, LANDLORD introduces a significant
amount of overhead in the form of repeated I/O operations. At

the far right of Fig. 7, the actual I/O increases well above that
of a naive cache configuration. Despite the decreased number
of container builds, the size of each container grows large
enough to result in a net increase in I/O. Since a merge entails
rebuilding a container image in its entirety, frequently merging
large containers becomes prohibitively expensive.

Appropriate choice of « thus gives administrators a way to
improve utilization of available storage and reduce total 1I/O
using LANDLORD. Fig. 7 suggests a wide range of o values
that result in decreased I/O cost and reduced miss rate over
the course of the Binder workload. Even at high o where the
actual I/O increases, the frequency of cache misses in Fig. 6
continues to fall to its minimum at o = 1. For situations where
minimizing latency is important (e.g., interactive computing), it
isreasonable to pay this additional overhead in order to minimize
cache misses.

While LANDLORD achieves definite improvements in respon-
siveness and storage utilization on the Binder dataset, certain
properties of that workload are particularly favorable to LAND-
LORD’s design. First, there is a very high degree of reuse of
certain individual Binder containers. In that dataset, the median
number of times a given container was launched was only 2
times, but the most popular containers were launched hundreds
of thousands of times. There is also a high degree of overlap
among the the packages that users requested in Binder contain-
ers. Common packages like Numpy and Python itself occur in
most container specifications, and despite the dataset containing
approximately 150,000 unique container specifications, there
were only a total of around 10,000 different packages requested
(not counting distinct version requirements). LANDLORD there-
fore had ample opportunities to perform optimizations. Finally,
conflicting version constraints in the container specifications
meant that it is not possible to merge containers indefinitely.
If two container specifications request different versions of the
same package, there is no way to satisfy both requirements
and therefore the specifications cannot be merged. The user-
provided specifications, therefore, naturally limit container bloat
and prevent pathological behavior such as repeatedly merging
the entire workload into one massive container (with enormous
accompanying I/O overhead).

B. High Energy Physics Workload

We performed a sensitivity analysis using simulated high
energy physics (HEP) tasks to evaluate LANDLORD’s worst-case

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL

behavior, and to demonstrate LANDLORD’s application to a non-
Python software repository with markedly different organization
than the Python repositories used in the Binder workload. This
simulated workload differs from the Binder dataset in a number
of key ways. First, tasks in the simulated dataset had uniform
launch frequency. This forces LANDLORD to handle a very large
“working set” of containers. Second, package selections for
containers were selected at random from the available CVMFS
repositories. This ensures that any overlap between containers is
due entirely to common dependencies inherent in the software
collection rather than bias in application or workload. Finally,
CVMES software packages are organized such that containers
can include an arbitrary selection of packages without conflict.
We therefore have the possibility of merging all task require-
ments into one large container. While real workloads are much
closer to the Binder dataset discussed earlier, this analysis allows
us to explore extremes in LANDLORD’s behavior and shows that
employing LANDLORD does not worsen performance even under
extremely unfavorable conditions. Using randomly generated
specifications also allows us to demonstrate that LANDLORD is
not suitable for compacting arbitrary collections of data, but
is specifically suited to reducing duplication among software
packages that share overlapping dependencies.

Simulating HEP Tasks.

For each simulated request, we chose a random selection of
packages and then added any dependencies, repeating until we
collected the complete set of packages and dependencies (i.e.,
the closure of the package dependencies). This image simulation
scheme captures the structure inherent in the software collection,
in that packages in addition to those requested are automatically
included so as to ensure a functional image. The initial selection
of packages, however, is simply uniformly random. To evaluate
the effects of container contents, we also generated completely
randomized images consisting of packages chosen in a uniform
random way without regard for dependency relationships. To
ensure that total size (or at least total number of packages)
is comparable to images generated by the previous method,
for this approach we started with an image request generated
via the previous scheme (uniform random core selection with
dependencies added). We considered only the total number
of software packages in the resulting image, and then chose
the same number of packages uniformly randomly from the
entire repository, ignoring package dependencies. While images
generated in this way are very unrealistic, they allow us to
isolate the effect of dependency relationships among packages.
By comparing results with random images to those with the
previous image generation scheme, we can compare the general
case of containers as collections of arbitrary data to the specific
focus of this work, i.e. containers with selections of software
packages with dependency relationships.

To generate an image for a simulated task request, we ran-
domly made an initial selection of up to 100 packages. We then
used one of the two schemes (dependency tree-based or random)
to expand the initial selection into a full image. Repeating this
procedure, we created streams of container specifications for
simulated tasks.

Since our simulation uses random simulated requests, there
is variability between individual simulations. Thus for a given

1385

choice of cache size, task count, etc. we repeated the simulation
20 times and reported the median behavior over the runs. The
bands in the plots of storage utilization show the standard
deviation over the runs. At each choice of « (in steps of 0.05) we
performed a set of 20 simulated runs, allowing us to plot various
measurements of the system versus «. Fig. 8 shows operational
metrics for cache management in the HEP workload.

Metrics for Cache Utilization. When sweeping over the range
of «v values, there are a number of metrics available to summarize
each simulation run. Many, however, are highly coupled with
the particular workload and system configuration, and difficult
to compare as we vary the parameters of the simulations. Simply
comparing cache hit rate with results for the Binder dataset, for
example, would not be meaningful due to the stark difference in
degree of container contents and reuse. In addition, storage use
and I/O overhead for the Binder workload are only estimates
based on package metadata for the Python repositories. The
repositories used in the HEP workload provide exact storage
and I/O information, allowing us to focus more strongly on the
cache and container contents. We therefore chose to define two
metrics, cache efficiency and container efficiency, to indicate
the effective utilization of the container storage independent of
system configuration.

We defined cache efficiency as the ratio of unique data to total
data in the cache. In our case, this is equivalent to the ratio of the
size of the unique packages to the total cache size taken from
Figs. 6(b) and 8(b). If many images contain copies of the same
packages, the cache efficiency decreases. This metric captures
duplication within the cache across all images. With no merging
there is a high degree of duplication, so the cache efficiency is
low. On the other end of the spectrum, maintaining a single, large
image containing all data results in cache efficiency of 100%,
because nothing is duplicated.

We defined container efficiency as the ratio of the size of
the requested container (a set of requested packages plus all
dependencies) to the size of the container the system actually
used for the task. In the absence of merging, these two are equal
so the container efficiency is 100%; tasks are run with exactly
what was requested. By merging to allow for image reuse, we
include additional, unrequested data in container images. The
container efficiency measures this difference between requests
and containers. In the extreme case of o = 1 with a single large
image, for example, the container efficiency is poor because
the entire repository is used for every request, regardless of
size. These two extreme cases, no merging among many images
and a single merged image, can both be useful in some situa-
tions. Rather than defining where these limits fall, we discuss
choosing limits and compare our two application workloads in
Section VIIIL.

Sensitivity Analysis. In Fig. 9, we plot efficiency curves for a
range of simulation conditions. The left column shows container
efficiency, while the right column shows cache efficiency. In the
first row, the number of tasks and the amount of repetition are
constant while the cache size is varied. In the second row, the
number of unique requests is varied with the other parameters
constant.

The size of the cache has an inverse relationship with both
the container and cache efficiency. As seen in Fig. 9(a) and (b),

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1386

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

2500 T T T T %‘6‘88 T T T T 250 uA IIW — T
n _ . b s L ctual Writes
- 2000 1 poserts) 2a] {%88 o] m 200 Requested Writes
S 1500 [Deletes N 9 800 | Unique Data &= 150
S 1000 | Merges 8 600 Total Data g 100
s00 | Misses I\ —
0 1 1 S| 1 0 L L L L 0 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Alpha Alpha Alpha
(a) Total Cache Operations (b) Duplication of Data in Cache (c) Cumulative I/O Overhead
Fig. 8. HEP workload over a range of o values.
T T - T T T T
& 100 100 F 1x Repo Size
= L 2 I — 2x Repo Size
-5 80 % 80 . 5x Repo Size
E 60 F ES 60 - — 10x Repo Size |
o} M
£ 40 — Ix Repo Size 2 40 T
g — 2x Repo Size g
S 20 5x Repo Size O 20 [N
— 10x Repo Size
0 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Alpha Alpha
(a) Container efficiency vs. cache size (b) Cache efficiency vs. cache size
T T T T = - T T T T =
& 100 100 100 tasks
2 L 2 L — 500 tasks
g 80 g 800 1000 tasks
£ 60 2 60
5 ial
£ 40F 2 40r
£ —— 100 tasks g
S 20— 500 tasks © 20F
---------- 1000 tasks
0 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Alpha Alpha
(c) Container efficiency vs. unique task count (d) Cache efficiency vs. unique task count
Fig. 9. Effects of simulation parameters on system efficiency.
a larger cache can of course hold a larger number of images, 100 ; T
. 90 | Deps. (Cache)
but since each image contains significant duplicated portions, 30 |-Random (Cache) ——
increasing cache size tends to decrease cache efficiency. Con- » 10F Ragggrsn- Eggg:; """""
versely, small caches more quickly evict images so that ineffec- § 28 i ’
tive merges tend not to remain in cache too long. A larger cache £ 40f
also allows for more opportunities to merge images, leading to 38 -
decreased container efficiency. When deciding how to handle 10 |
a reques't, a 1'f1rge cache full of images is rpuch more likely 0 0 0.2 0.4 0.6 0.8 1
to contain an image suitable for merging. With a small cache, Alpha
opportunities to merge are much more dependent on the order
of requests. Fig. 10. Impact of dependencies on duplication. The Cache and Container

The effect of varying the number of unique tasks is less
pronounced than the effect of cache size. As seen in Fig. 9(c) and
(d), streams of 500 and 1000 unique tasks show nearly indistin-
guishable behavior, indicating that by 500 tasks the system has
reached a steady state. Continuing with an arbitrarily long stream
should not result in significant performance changes. However,
100 unique tasks were not sufficient to fill the cache and reach
a steady state. In this case the container efficiency is slightly
decreased over «, suggesting that some ineffective merges had

efficiencies of the two image types are plotted together, showing how randomized
image contents greatly reduce the efficacy of LANDLORD.

not made their way out of the cache. Cache efficiency in this case
is slightly increased. This would suggest that before reaching a
steady state, the cache contents are more assorted and some
unnecessary data remains cached.

Effects of Package Dependencies. Fig. 10 shows a repre-
sentative simulation with both dependency-based and random

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL

synthetic image types included. In the purely random case, there
is no correlation between different images. Thus, it is much more
difficult to find images similar enough to merge until the « value
is very lax. This would indicate that our merging strategy is not
applicable to arbitrary collections of data. Random images show
little to no effect for most « values. Our merging strategy, which
takes advantage of duplicated content included as a result of
dependencies in software, would be ill advised for situations
that are not known to follow similar patterns of duplication.
Even with random task requests, the tree structure of package
dependencies is produces pronounced duplication in the cache,
leaving room for optimization.

C. Comparison With Offline Clustering

It is natural to consider whether better results could be ob-
tained by periodically performing a complete global clustering
of requests using an offline algorithm. As a comparison point,
we choose AGNES [42], a classic approach to hierarchical
clustering. AGNES first treats all points as singleton clusters.
Then at each subsequent iteration, it determines the centroids
of all clusters, computes all pairs of distances between these
centroids, and if possible groups two nearest clusters into one.
The eventual outcome is a tree structure culminating in one
cluster at the top. The algorithm can terminate early if a desired
number of clusters or other global constraint is reached.

AGNES is a natural counterpart to LANDLORD, because it
makes use of the same fundamental operations on containers,
which may be created, merged, or deleted, but not arbitrarily
changed. A few adjustments are needed to apply AGNES to the
container management problem. First, LANDLORD immediately
resolves a request into a concrete container. For example, it may
resolve python=* to python = 3.6 or python = 3.7, depending on
when each request arrives. In contrast, AGNES considers many
requests at once, clusters them together, and then resolves the
cluster into a concrete container. Thus, more information is taken
into account for each container. Second, a full application of
AGNES on n nodes requires considering all O(n?) distances at
each step to find the closest pairs to merge, which is prohibitively
expensive. To reduce this cost we instead sample 10K distance
pairs at each step, and select the closest. Third, naive AGNES
will result in at least n iterations corresponding to n merges of
clusters, as each merge removes two clusters and adds a new
one. This combining with the sampled pairs of distances also
introduces a high computational cost, thus we cap the maximum
number of iterations to 1,000 to avoid this. (A parameter study
shows increasing iterations to 2000 only increases the average hit
rate slightly from 94.6% to 94.9%) Finally, since the container
cache has a physical storage limit, we need a way to detect and
pick useful or popular clusters (each of which eventually realizes
to a container) once the clustering process finishes. To do this,
we define the popularity of each cluster to be the sum of the
frequencies of the unique requests in that cluster and continually
add the containers materialized from those clusters having the
highest popularity until the cache is full.

Fig. 11 compares the performance of LANDLORD against
periodic offline clustering with AGNES, on the entire Binder

1387

T T T T T T T
~ 100 ‘ .
1SS
o 90Ff -
g
E 80 1
g
g 170 h
S
=
8 60 Landlord —— 7
AGNES ——
50 | | | | | | |
0 05 1 1.5 2 25 3 35 4
Number of requests over time (in millions)
Fig. 11. LANDLORD versus periodic offline clustering. Because of the con-

tinuous variation in the workload, the quality of the offline cluster is initially
high but decays quickly. LANDLORD used o = 0.7. Every 10% of the dataset
the clusters were recomputed based on the most recent 5%.

dataset. Both algorithms warm their caches up with the first
20% of the dataset. The LANDLORD algorithm is run as normal,
with each request being processed as it arrives and incrementally
updating the container cache. AGNES, on the other hand, op-
erates on statically generated clusters and treats any request not
satisfied by a cached container as a miss (requiring the requested
container to be built and inserted). AGNES periodically clears
its cache every 10% of the dataset and reclusters using the most
recent 5% (most recent 200K events). The percent hit rate is
shown over time. As can be seen, LANDLORD maintains a hit
rate in excess of 98%, while periodic offline clustering with
AGNES results in a briefly higher hit rate that falls off quickly
as the request mix evolves. The fall in AGNES’ container hit rate
is significantly steeper in the interval (2.5, 3) due to an update to
the Jupyter Lab package used in a popular demo repository. This
shows that a drastic change in package specifications of popular
requests could degrade the performance of an offline algorithm,
where as LANDLORD is more robust to these frequent changes.
From this, we conclude that an offline clustering algorithm —
even if superior to AGNES— would not be suitable for this
problem space because of the rapid evolution of the requests and
software environment. Furthermore, each epoch of clustering
would require a very large expense to reconstruct (and cache)
the entire set of containers corresponding to the new clusters
discovered.

VIII. TUNING ALPHA

We close by discussing the considerations for a user or infras-
tructure provider employing LANDLORD in practice. Constraints
at each site such as the amount of scratch storage available
for caching container images and upper bounds on the com-
putational cost to prepare each container ultimately dictate the
viability of any particular approach. LANDLORD provides a good
deal of flexibility to match the properties of a given execution
site and workload(s).

Across both the Binder trace and our simulations, we found
that the choice of o was not particularly important, as long as
it falls within a wide “operational zone” (0.65 to 0.95). Despite
noticeable variation in efficiency for Binder due to sampling

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

1388

100 Cache
Container
% 80
8
é 60
m
g 40F
S
A W/“/V/
20 b
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Alpha
(a) Binder Workload
T I T T -
100 Cache
Container
% 80
8
é 60 h
m
£
40 E
o
20 E 7
O Il Il Il Il
0 0.2 0.4 0.6 0.8 1
Alpha
(b) HEP Workload
Fig. 12. Efficiency of LANDLORD. Note that since CVMFS packages for the

HEP workload cannot have version conflicts, LANDLORD is able to produce one
giant container at very high «, hence the sharp jumps in efficiencies. Version
conflicts among packages prevent this effect in the Binder workload.

from only one workload, trends in LANDLORD’s behavior are still
visible. Fig. 12 shows that choosing extreme values of « results
in a large number of overlapping container images or excessive
overhead creating and updating massive images. These extremes
correspond to the naive approaches discussed previously, i.e.
many single-use containers or a single all-purpose container,
respectively. Choosing o anywhere within the operational zone
strikes a reasonable balance between storage utilization and
overhead. A new application employing LANDLORD should
choose a moderate « (e.g., 0.8) to start, with finer tuning possible
to meet specific application or site requirements. A moderate
choice of o allows LANDLORD to avoid extremely poor behav-
ior in either direction, without attempting to attain “optimal”
performance. LANDLORD thus offers a lightweight mechanism
to avoid cases of pathologically poor performance.

The compute and transfer cost in the highly merged case and
the cache efficiency in the unmerged case, serve as limits on the
viable range of « values for a system and its users/applications.
Fig. 12 highlights the operation of LANDLORD at varying «,
serving as a guideline we have found to be applicable across a
variety of applications. Moving from the left side of the graphs,
the miss rate of the cache begins to fall significantly. Choosing o
too low results in higher job latency than necessary and makes
poor use of available storage. On the right, the likelihood of
merging increases. As shown in Figs. 6(c) and 8(c), the amount

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

of I/O and compute to update images becomes much larger if
« is set too high. Applications/workloads that prioritize latency
would be best served by setting o as high as possible, though
setting v = 1 may result in excessive overhead, especially in
the absence of other constraints (e.g., package version conflicts)
that limit merging. There is no general rule for the placement
of these limits, which depends strongly on the performance
characteristics of the execution environment, as well as the
priorities of the administrators in optimizing the system.

IX. CONCLUSIONS AND FUTURE WORK

Large-scale and multi-tenant applications based on container
technologies must increasingly treat on-demand generation of
containers as a dynamically varying and resource intensive
part of application infrastructure, requiring management as a
first-class activity. The mechanisms available to dynamically
create and manage containers, however, lead to container sprawl
without careful management and monitoring, and alternatives
like static clustering of dependencies are not suited to varying
application workloads. We analyzed two large-scale container-
based application workloads and demonstrated how LANDLORD,
despite being a simple algorithm with a single tunable parameter
a, can improve container reuse and application latency across a
range of conditions and application usage patterns. Our analysis
shows that LANDLORD’s behavior is not highly sensitive to
choice of «, and as future work it may be possible to extend
LANDLORD to automatically respond to poor system utilization
by tuning « appropriately.

REFERENCES

[1] D.Merkel, “Docker: Lightweight Linux containers for consistent develop-
ment and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014, Art. no. 2.
[Online]. Available: http://dl.acm.org/citation.cfm ?id=2600239.2600241

[2] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLoS One, vol. 12, no. 5, pp. 1-20,
2017.

[3] T. Shaffer, N. Hazekamp, J. Blomer, and D. Thain, “Solving the con-
tainer explosion problem for distributed high throughput computing,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2020, pp. 388-398,
doi: 10.1109/IPDPS47924.2020.00048.

[4] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
HPC,” in Proc. Conf. Cray User Group, 2015, pp. 33-49.

[5] R.Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers for
user-defined software stacks in HPC,” in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., ser. SC ’17. New York, NY, USA: ACM,
2017, pp. 36:1-36:10. [Online]. Available: http://doi.acm.org/10.1145/
3126908.3126925

[6] A. Brinckman et al., “Computing environments for reproducibility: Cap-
turing the “Whole Tale”,” Future Gener. Comput. Syst., vol. 94, pp. 854—
867, 2019.

[7] Kubernetes: Production-grade container orchestration, 2021. [Online].
Available: https://kubernetes.io/

[8] Helm: The package manager for Kubernetes, 2021. [Online]. Available:
https://helm.sh/

[9] Y. Babuji et al., “Parsl: Pervasive parallel programming in Python,” in

Proc. 28th ACM Int. Symp. High-Perform. Parallel Distrib. Comput.,2019,

pp. 25-36.

M. R. Crusoe et al., “Methods included: Standardizing computa-

tional reuse and portability with the common workflow language,”

2021, arXiv:2105.07028.

R. Chard et al., “FuncX: A federated function serving fabric for science,”

in Proc. 29th Int. Symp. High-Perform. Parallel Distrib. Comput., 2020,

pp. 65-76.

[10]

[11]

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

SHAFFER et al.: LANDLORD: COORDINATING DYNAMIC SOFTWARE ENVIRONMENTS TO REDUCE CONTAINER SPRAWL 1389

[12]

(13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]

(34

[35]
[36]

[37]

D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and V.
Bala, “Opening black boxes: Using semantic information to combat virtual
machine image sprawl,” in Proc. 4th ACM SIGPLAN/SIGOPS Int. Conf.
Virtual Execution Environ., 2008, pp. 111-120.

J. Bent et al., “Storage challenges at Los Alamos national lab,” in Proc.
IEEE 28th Symp. Mass Storage Syst. Technol., 2012, pp. 1-5.

T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast Distribution with Lazy Docker Containers,” in
Proc. 14th USENIX Conf. File Storage Technol., 2016, pp. 181-195.

L. Gerhardt et al., “Shifter: Containers for HPC,” J. Phys. Conf. Ser.,
vol. 898, no. 8, 2017, Art. no. 082021.

0O.Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree filesystem,”
ACM Trans. Storage, vol. 9, no. 3, pp. 1-32, Aug. 2013.

N. Zhao et al., “Large-scale analysis of docker images and performance
implications for container storage systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 4, pp. 918-930, Apr. 2021.

H. Fan, S. Bian, S. Wu, S. Jiang, S. Ibrahim, and H. Jin, “Gear: Enable
efficient container storage and deployment with a new image format,” in
Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst., 2021, pp. 115-125.

K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in Proc. Isr.i Exp. Syst. Conf., ser. SYSTOR ’09,
2009, pp. 7:1-7:12.

H. A. Lagar-Cavilla, “SnowFlock: Rapid virtual machine cloning for cloud
computing,” in Proc. 4th ACM Eur. Conf. Comput. Syst., 2009, pp. 1-12.
N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani, “Demys-
tifying data deduplication,” in Proc. ACM/IFIP/USENIX Middleware’08
Conf. Companion. ACM, 2008, pp. 12—17.

P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey, “Redundancy
elimination within large collections of files,” in Proc. USENIX Annu. Tech.
Conf., Gen. Track, 2004, pp. 59-72.

B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file system,” in Proc. 6th USENIX Conf. File
Storage Technol., 2008, pp. 1-14.

C. Policroniades and I. Pratt, “Alternatives for detecting redundancy in
storage systems data,” in Proc. USENIX Annu. Tech. Conf., Gen. Track,
2004, pp. 73-86.

P. Nath et al., “Design tradeoffs in applying content addressable storage to
enterprise-scale systems based on virtual machines,” Management, vol. 7,
no. 5, 2006, Art. no. 20.

K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in Proc. Israeli Exp. Syst. Conf.. ACM, 2009,
Art. no. 7.

Z. Cao, H. Wen, F. Wu, and D. H. Du, “ALACC: Accelerating restore
performance of data deduplication systems using adaptive Look-Ahead
window assisted chunk caching,” in Proc. 16th USENIX Conf. File Storage
Technol.. Oakland, CA: USENIX Association, 2018, pp. 309-324. [On-
line]. Available: https://www.usenix.org/conference/fast18/presentation/
cao

T. Shaffer, K. Chard, and D. Thain, “An empirical study of package
dependencies and lifetimes in binder Python containers,” in Proc. IEEE
17th Int. Conf. E-Sci., 2021, pp. 215-224.

A. Z. Broder, “On the resemblance and containment of documents,” in
Proc. IEEE Compression Complexity SEQUENCES, 1997, pp. 21-29.

S. Jin and A. Bestavros, “Popularity-aware greedy dual-size web proxy
caching algorithms,” in Proc. IEEE 20th Int. Conf. Distrib. Comput. Syst.,
2000, pp. 254-261.

Project Jupyter et al., “Binder 2.0: Reproducible, interactive, sharable
environments for science at scale,” in Proc. 17th Python Sci. Conf., F.
Akici, D. Lippa, D. Niederhut, and M. Pacer, Eds., 2018, pp. 113-120.
Project Jupyter, “JupyterHub,” 2021. [Online]. Available: https://jupyter.
org/hub

Project Jupyter, “repo2docker,” 2021. [Online]. Available: https://github.
com/jupyterhub/repo2docker

Project Jupyter, “BinderHub,” 2021. [Online]. Available: https://github.
com/jupyterhub/binderhub

Mybinder.org Events Archive. Accessed: Jul. 2021. [Online]. Available:
https://archive.analytics.mybinder.org/

T. Shaffer, K. Chard, and D. Thain, “Binder software environments,”
Zenodo Dataset, 2021, doi: 10.5281/zenodo.4891790.

“The worldwide { LHC} computing grid.” 2023. [Online]. Available: https:
/Iwlcg-public.web.cern.ch

[38] J. Blomer, P. Buncic, R. Meusel, G. Ganis, 1. Sfiligoi, and D. Thain, “The

evolution of global scale filesystems for scientific software distribution,”
IEEE/AIP Comput. Sci. Eng., vol. 17, no. 6, pp. 61-71, Nov./Dec. 2015,
doi: 10.1109/MCSE.2015.111.

[39] The HEP Software Foundation et al., “A roadmap for HEP software and

computing R&D for the 2020s,” Comput. Softw. Big Sci., vol. 3, no. 1,
Mar. 2019, Art. no. 7.

[40] B. Gonzalo, “HEP workloads archive,” 2023. [Online]. Available: https:

/lgitlab.cern.ch/hep-benchmarks/hep-workloads

[41] H. Dirk, “Review on current workflows and production on {HPC}

centers,” in Proc. Joint HSF/OSG/WLCG Workshop, 2019. [Online].
Available: https://indico.cern.ch/event/759388/contributions/3311664/
attachments/1814435/2964911/hpc_production.pdf

[42] Z.-H. Zhou, Machine Learning. Berlin, Germany: Springer, 2021.

Tim Shaffer received the bachelor’s degrees in math-
ematics and chemistry from Youngstown State Uni-
versity, the master’s degree in computer science from
Notre Dame, and the PhD degree from the Depart-
ment of Computer Science and Engineering, the
University of Notre Dame. His research focuses on
proactive management of storage and software envi-
ronments for scientific workflows.

Thanh Son Phung received the BS degree in math-
ematics and computer science from Trinity College-
Hartford. He is currently working toward the PhD
degree with the Department of Computer Science and
Engineering, the University of Notre Dame. His re-
search focuses on resource management and schedul-
ing for large-scale workflow systems.

Kyle Chard received the PhD degree in computer
science from the Victoria University of Wellington
in 2011. He is a research associate professor with
the Department of Computer Science, the University
of Chicago. He also holds a joint appointment with
Argonne National Laboratory. He co-leads the Globus
Labs research group which focuses on a broad range
of computer systems research problems.

Douglas Thain received the BS degree in physics
from the University of Minnesota - Twin Cities and
the MS and PhD degrees in computer sciences from
the University of Wisconsin - Madison. He is pro-
fessor and associate chair with the Department of
Computer Science and Engineering, the University of
Notre Dame. At Notre Dame, he studies and created
distributed systems that enable large scale scientific
computing on clusters, clouds, and grids.

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on September 04,2023 at 20:07:22 UTC from IEEE Xplore. Restrictions apply.

