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ABSTRACT
Modern multidisciplinary materials science routinely processes sci-
entific workflows that integrate different data resources (e.g., X-ray
data, scripts, analytical results). Most of such data resources are
isolated in research labs, created ad-hocly, and remain underutilized.
We demonstrate CRUX, a Crowdsourced platform for materials
data ResoUrces and workflow eXploration. CRUX is empowered
by coherent data-workflow modeling, knowledge-based resource
assembly for workflow search, and data provenance to support
workflow exploration. CRUX allows users to declare parameter-
ized workflows as graph patterns, and automatically recommends
crowdsourced resources with quality guarantees. We demonstrate
the ease-of-use and the performance of CRUXwith three categories
of queries: data search, workflow recommendation, and resource
exploration. We make case of CRUX for peak finding in X-ray
Diffraction (XRD) data, a cornerstone task in materials research.
We show that CRUX enables new interactive paradigms to explore
and design workflows for data analysts in general.
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1 INTRODUCTION
Data-driven Materials discovery has been on the forefront of mate-
rials science as well as other basic science fields such as chemistry
and physics, highlighted by the Materials Genome Initiative that
started in 2011[20]. Materials scientific workflows has been acceler-
ated by machine learning approaches focused on a specific material
space, feature, property or application [5, 13, 19, 21]. The success to
materials discovery strongly depends on the input data for training
and testing models [8]. Despite the need for data-driven materials
research, many high-value materials datasets where the targeted
structure was not attained or the results were not reported are often
unpublished and never available for public use.
Challenges. Nevertheless, to utilize these “failed good data” and
scientific scripts that routinely access them, there are several chal-
lenges that existing data infrastructure[7] cannot address.
Isolated Data and Workflows. (Unpublished)materials data and scripts
are mostly kept in “silos”, created ad-hocly for individual workflows,
and are often stored separately from the workflows that accessed
them. Many data platforms like AFLOW[6] and OQMD[18] col-
lected massive datasets from various materials compounds. How-
ever, data material research requires holistic methods to discover
and integrate useful data resources and streamline them to analyti-
cal pipelines. This calls for coherent, domain-specific data models
to link data, scripts and analytics results for workflow completion.
Data discovery for Scientific Workflows. Materials analysis often re-
quests proper data for experimental pipelines. For example, a query
“What is a proper value for deposition of PLD thin film in the depo-
sition process of this microstructure-explicit simulation?” requests
measurement data that reports proper deposition values. Existing
data platforms require structured query languages (e.g., SQL) to
specify such data, which is hard to write explicitly, or keywords,
like the Material Project[10], which can be ambiguous and lead to
irrelevant results. These call for expressive and user-friendly search
mechanism to channel data directly to actionable workflows.
Explore Workflow design space. Materials community also ask to
clarify the analytical results with follow-up “Why”, “What” and
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“How” questions. For example, the above user may further ask
“What if I need to introduce a dopant?” Conventional “query-response”
mechanism does not support an iterative exploratory process to ex-
plore search results and the design space of multi-phased scientific
workflows[12]. Recently, some materials workflow management
tools are sprouted (e.g., Aiida[9]), but for all we know, none of them
analyze the resulting workflow.
CRUX.Motived by these, and inspired by our prior work in ML-
based material science [4], knowledge based search [17] and prove-
nance [15, 16], we developed CRUX, a crowdsourced materials data
infrastructure to curate and recommend high-value unpublished
materials data for the need of the materials community. CRUX has
the following unique components.
Coherent Data-Workflow Modeling. CRUX is empowered by a ma-
terials knowledge graph CRUX-KB, a three-layered network of
materials-relevant entities and their semantic relationships, along
with an information extraction engine (CRUX-IE) to profile and
extracts facts from the shared raw data resources and metadata.
CRUX-KB involves three types of entities: source (data contribu-
tors), resources (dataset, scientific scripts, tasks), and facts (materi-
als properties, calculated properties). This interlinks isolated data
resources with unified representation and makes them discoverable
by workflows with specified tasks.
“Workflow-centric” Query Answering. CRUX provides a query en-
gine CRUX-Q to process queries with “workflow-centric” dataset
search. Unlike existing services that stop at returning a list of
datasets [3], CRUX provides (1) data resources along with the con-
text of matching scientific scripts, tasks and historical analysis
results, (2) a recommendation of integrated view of dataset, scripts
and tests that best fit a user-defined workflow description. None of
existing platform supports such workflow-centric search.
Exploratory Search. Beyond data search, CRUX supports a class of
“Why” and “What-if” queries, all expressed by CRUX-Q query se-
mantics. The “Why”-analysis tracks the data resources, scripts and
tests that are responsible for the occurrence of relevant analyti-
cal results of materials-specific workflows, and “What-if” analysis
discovers new relevant data resources upon changes of workflow
specification. This makes CRUX unique in exploring workflow de-
sign space beyond data search.
Visual Interfaces. CRUX provides user-friendly Web interfaces to
support data upload and sharing, visual query and workflow con-
struction, and visual result exploration.
CRUX community. Currently, CRUX is specialized to XRD data,
scripts and XRD-based workflows. These resources are contributed
by a group of CRUX community of 6 collaborative institutions.
CRUX community also includes International Centre for Diffrac-
tion Data (ICDD) and JADE database (with active users from 53
countries). CRUX platform will readily be supporting other materi-
als data (e.g., images, videos, etc) as the community grows.

We next introduce the general framework (Section 2) and the
system architecture(Section 3) of CRUX. We also demonstrated
scenarios in Section 4 to show how the key components work.

Figure 1: CRUX: “Materials Data-to-Knowledge” Framework
(specifying XRD-based peak finding)

2 FRAMEWORK OVERVIEW
2.1 From Raw Data to Factual Knowledge
We start with an overview of an end-to-end “data to facts” frame-
work of CRUX. A framework featuring XRD and peak analysis is
illustrated in Fig 1. (1) CRUX collects raw materials data resources
via Web forms or from materials database export services (such
as JADE database, not shown). Users upload raw materials data
resources such as (a) raw (XRD) data files (in e.g., “.xrdml” or “.raw”
format), (2) Python scripts that processes XRD-based analysis (e.g.,
peak finding tools), and (3) auxiliary analytical results, such as
peaks, generated from any “ad-hoc” routinely performed analysis.
(2) CRUX-IE automatically performs entity extraction and relation
inference, recognizing 8 types of entities and relations among them
(see CRUX-IE). These data resources are profiled uniformly as JSON
objects, validated by a built-in materials ontology CRUX-Onto, fea-
turized to attributed entities and triples, and integrated to be a
fraction of CRUX-KB (see CRUX-KB). (3) CRUX-KB will be con-
sulted for query evaluation (see CRUX-Q).

We will demonstrate the following unique components of CRUX.
Multi-layeredMaterialsKnowledgeGraph.CRUX-KB is a three-
tier knowledge graph model, which is a hierarchical network rep-
resentation of the following three types of entities: materials (e.g.,
elements, atoms, components), resources (e.g., datasets, analytics
files, ML (Python) scripts), and source (e.g., experimentalist, uni-
versities, organizations, companies). CRUX-KB consists of a set of
materials statements that describe factual knowledge frommaterials
analysis. (2) A support relation connects a statement or a materials
entity and a supporting resource entity. A resource entity may refer
to diffraction dataset, or a variety of analysis result based on the
analysis obtained from e.g., JADE software or Rietveld analysis. (3)
For each resource entity, CRUX-KB also records its sources or own-
ership entities whenever available (e.g.,, authors, contributors or
websites), connected by e.g., “uploadedBy” or “ownedBy” relation.
“Data-to-facts” Flow. X-ray Diffraction (XRD) data come with
widely adopted format such as “.raw” or “.xrdml”. CRUX-IE im-
plements an automated flow that directly transform XRD data,
along with analytical results of “ad-hoc”, routinely performed anal-
ysis such as peak finding, into data objects and triples to enrich

5015



CRUX: Crowdsourced Materials Science Resource and Workflow Exploration CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

CRUX-KB. (1) It profiles raw files into 8 types of “cards”: source,
resource (data, task, model, test), and factual cards (e.g., calculated
property). Each card is a JSON object with key-value pairs. An ex-
ample of a model card for “pf_scipy_prom200” is illustrated in Fig. 1.
(2)CRUX-IE then constructs and infers relations among the card en-
tities. This is validated by a built in materials ontology CRUX-Onto.
CRUX-Onto integrates manually designed domain-aware materials
ontologies, integrating fractions of existing ones [11]. This pipeline
is implemented by the built in API library.

Example 2.1. Auser uploaded a data file “10𝐵𝑖 (𝐶𝑑0.5𝑇 𝐼0.5).xrdml”
from an experiment. This file conforms to XML syntax, with user-
defined elements specifying experimental settings (e.g., tempera-
ture, processing method). Additional metadata are specified via on-
line forms (see “Interface”). CRUX-IE invokes built-in APIs to parse
the file andWeb form inputs into attributed entities, and creates card
entities (JSON objects) accordingly. It stores the raw files and JSON
objects on GCP, and extracts facts among the cards. For example, it
encodes statements such as “Ben from NASA contributed data file
‘10Bi(Cd0.5TI0.5).xrdml’ ”, or “ML script ‘pf_scipy_prom200’ is used
to perform ‘peak finding’ task over dataset ‘10Bi(Cd0.5TI0.5).xrdml’
with result file ‘Peaklist’”. This generates a graph of 8 entities and 8
edges to be integrated into CRUX-KB, as shown in Fig. 1.

2.2 From Factual Knowledge to Workflows
CRUX Queries. CRUX adopts a class of graph pattern queries as na-
tive queries. ACRUX query𝑄 is a connected graph (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ,𝑇𝑄 ),
where 𝑉𝑄 (resp. 𝐸𝑄 ⊆ 𝑉𝑄 ×𝑉𝑄 ) is a set of pattern nodes (resp. pat-
tern edges). Each pattern node 𝑢 ∈ 𝑉𝑄 (resp. pattern edge 𝑒 ∈ 𝑉𝐸 )
has a class label 𝐿𝑄 (𝑢) (resp. relation 𝐿𝑄 (𝑒)). For each node𝑢 ∈ 𝑉𝑄 ,
𝑇𝑄 (𝑢) is a set of literals. A literal is in the form of 𝑢.𝐴 op 𝑐 , where
op is from {>, >=,=, <=, <}, and 𝑐 is a constant. A pattern node can
be a designated “output node”, clarifying the entities to be returned
as matches via graph pattern matching.
Workflow-centric Querying. To help users find data resources
without writing complex queries, CRUX-Q , the query engine of
CRUX, supports a “workflow-centric” search in two modes.
(1) For novice users who are familiar with keyword search only,
CRUX-Q will directly transform a keyword query into a subgraph
of CRUX-KB. Built on our prior study [14, 23], CRUX learns a con-
ditional random field (CRF) model to (a) transform keyword terms
to a set of card entities, (b) derives a set of edges that can best
connect them, which conform to CRUX-Onto to ensure the seman-
tic relevancy, and (c) invokes a minimum spanning tree algorithm
to expand the answer to include closely relevant entities includ-
ing tasks, models, source and factual information, to help users
understand the context for workflow design.
(2) CRUX provides a built-in YAML workflow syntax for profes-
sional users to declare workflow template with variables. Users can
declare a YAML file with “placeholders”. CRUX-Q (a) parses the
YAML file into CRUX graph queries (as a directed acyclic graph),
and (b) nontrivially extends top-𝑘 subgraph search e.g., [14, 22] to
return 𝑘 instantiated workflows by replacing all the variable with
matching data resources or scripts. Here the answer quality is deter-
mined by semantic closeness derived from CRUX-Onto, or learned
from the features of model and data cards (node embeddings) [23].

Figure 2: CRUX Architecture

Better still, when the scripts are available, CRUX automate the
workflow assembly process by interacting with existing workflow
tools such as Airflow to assemble and execute the workflow to
directly generates the results of the constructed workflow.
Workflow Exploration. CRUX-Q supports interactive search ses-
sions to allow users explore query results, by posing a class of “Why”
and “What-if” queries. (a) Users can specify a “Why”-question by
selecting a particular entity 𝑣 in the query result, which asks “Why
this entity (unexpectedly) occurs in my query result?” CRUX-Q
will highlight a set of entities and relations from CRUX-KB that
are responsible for the occurrence of the entity. In a nutshell,
CRUX-Q computes a minimal set of triples, such that if removed
from CRUX-KB, 𝑣 is gone from the result of the same query. (b)
For “What-if” analysis, users can either suggest a specific entity
(e.g., a newly uploaded dataset) or change the workflow declara-
tion (query), stating “What if the workflow setting is changed?”.
CRUX-Q addresses the former by identifying theCRUX-KB entities
and triples that are to be investigated to include the the entity in the
query result; for the latter, it updates the search result to suggest a
new set of entities to be investigated.

3 SYSTEM ARCHITECTURE
The architecture of CRUX is depicted in Fig. 2.
(1) At the core of the platform is the curated materials knowledge
graph CRUX-KB. CRUX-KB is maintained as property graph over
JanusGraph. The entities are profiled and separately stored over
MongoDB as JSON objects, where their location are stored as URI
in the cards entities in CRUX-KB. This is to reduce the overhead of
loading content-heavy raw data objects, and provide “lightweighted”
access via card objects by default. The loading of the original data
file or script is only triggered when the answer of a CRUX query
(e.g., an instantiated workflow) is requested to be executed.
(2)CRUX-IE transforms the shared data resources to curated knowl-
edge graph CRUX-KB, and consult CRUX-Onto for validation.
(3) Underlying CRUX-Q is (a) a query parser that transform key-
words or workflow declaration to native CRUX query, and (b) a
wrapper that invokes JanusGraph and Gremlin to produce results
for CRUX graph pattern query. The parser and wrapper are sup-
ported by scripts from the built in CRUX API library (not shown).
(4) The workflow tier of CRUX (CRUX-WF) is responsible for work-
flow declaration and execution. (a) CRUX-WF interacts with work-
flow assembly that instantiate the workflow query results into
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Figure 3: CRUX Interface: Materials Data Search (Keywords)

executable workflows. (b) For the instantiated workflow, it invokes
Apache Airflow, a workflow execution tool, to generate results (e.g.,
peak files) with available scripts and datasets.
(5) CRUX stores large raw data files in Google Cloud Platform. The
query and workflows are tracked by the logging system for query
processing and optimization.

4 DEMOSTRATION OVERVIEW
The demonstration consists of the following. (1)We demonstrate the
“one-click” upload and transformation of raw XRD files. We show
the visualized curated knowledge graphCRUX-KB andCRUX-Onto
to illustrate the coherent data resource representation. (2) We illus-
trate CRUX query processing, for both novice users, with keyword
search, and professional users with YAML coding. (3) We illus-
trate the “Why” and “What-if” search with interactive sessions,
where users can track responsible resources and explore new data
resources, specified for finding the peaks in XRD-based analysis.
Environment. The prototype CRUX [2] is implemented in Java
and Python. We demonstrate CRUX in a cluster of Linux servers,
equipped with Intel Core i7 processor with 2.6 GHz and 16G mem-
ory. An online interface is available [1].
“One-click” Upload. We will start a walkthrough of the end-to-
end “data-to-knowledge” framework. We start by clarifying X-ray
Diffraction Data, data format of XRDML, and their common ana-
lytical tasks and roles in materials research. We then introduce the
upload interface (not shown). Users can share a raw XRDML file
with a simple “one-click” manner, with the option to fill in addi-
tional metadata including temperature, atmosphere, among other
conditions. The interface of CRUX has built-in term suggestion
function, based on crowedsourced upload history and log files.
“Data-to-Knowledge”. We will then illustrate the visualized mate-
rials ontology CRUX-Onto, including its components that are used
to validate source, resource and factual statements. In accordance,
we will illustrate the design of the 8 types of cards of CRUX-KB,
and demonstrate their interactions. We finally execute the built in
pipeline to show how CRUX transforms a raw XRDML file into a
corresponding fraction of knowledge graphs via “one-click”.
Data Discovery. We invite the audience to experienceCRUX query
interface with both modes. In the novice user mode, users can input
a set of keyword terms and view the suggested graph pattern query.
The professional users can directly use YAML-based workflow tem-
plates, and the suggested workflow queries as DAGs.

Figure 4: CRUX Interface: Workflow Queries (with YAML)
Example 4.1. As illustrated in Fig. 3, a list of matched subgraphs

are returned for a keyword query “NASA, peak_finding, 2022”.CRUX
interprets the query as to “find the tests that use scripts (model)
uploaded in 2022 that perform peak finding over XRD data shared by
contributors from NASA”. Three subgraphs are returned. (a) The first
is returned due to its closest description given the keywords. (b) The
second discovers a ‘test’ with models that has no “year” information,
yet still serves as a proper match as it accessed a dataset that is
uploaded in 2022 with additional contributor’s information. (c) The
third has lowest relevancy due to more missing information.

Fig. 4 illustrates an example of a workflow template, with a
visualized CRUX query shown on its right. The matched result is
an instantiated workflow as illustrated in Fig. 4. for user to browse.

WorkflowExploration.Wewill demonstrate the interactive search
sessions to allow users investigate the changes of the search results
upon the specified entities for “Why” or “What-if” analysis. Contin-
uing with the above example, a user may choose a model script and
specify a “What-if” question with a dataset (“What if my dataset is
changed to a new one”), to explore more shared datasets and scripts.

Example 4.2. We demonstrate an scenario to recommend pre-
trained models (scripts) for new XRD data without retraining or
inference. A workflow query is suggested that (1) load datasets
that are pre-processed by GSAS-II similar to the uploaded one, (2)
recommend 𝑘 (𝑘=20) models that are used to process the datasets
for the task “peak finding”, with hightest accuracy. With a retesting
of the pretrained models, CRUX is able to achieve at least 70% in
terms of both precision@k and recall@k, without retesting models.
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