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Abstract—Given a set of node groups in a graph (e.g., gender
or race groups), how to succinctly summarize their neighbors,
and meanwhile ensure a “fair” representation to mitigate under-
or over-representation of a certain group? We propose a novel
framework to compute concise summaries of node groups with
fairness guarantees. (1) We introduce a pattern-correction struc-
ture called r-summaries. An r-summary uses a graph pattern set
to specify representative nodes and an auxiliary edge correction
set to losslessly describe their r-hop neighbors. (2) We formulate
the fair group summarization problem, which is to compute
an r-summary that can select and accurately describe high
quality nodes and their neighbors with small edge corrections,
and meanwhile guarantee a desirable coverage for each group.
The need for generating such summaries is evident in social
recommendation, healthcare and graph search. We show that
the problem is X5 -complete with the verification problem already
NP-complete. (3) We present approximation algorithms that can
generate r-summaries with (a) guaranteed quality and coverage
properties, and (b) relative approximations on optimal edge
correction costs. For large groups, we introduce an efficient
algorithm that interleaves node selection and localized pattern
discovery to reduce unnecessary computation. In addition, we in-
troduce an algorithm to incrementally maintain the r-summaries
over dynamic graphs with evolving edges. Using real-world data,
we experimentally verify the efficiency and effectiveness of our
algorithms and verify their applications.

Index Terms—attributed graph, graph summarization, fairness

I. INTRODUCTION

Graph summarization has been used to support large-scale
graph analysis [26]. Given a graph G, it is to generate compact
summary structures S that (approximately) represent G that
also preserves certain properties with queryable structures. A
common practice is to follow Minimum Description Length
(MDL) principle, which aims to minimize the size of sum-
maries and the corresponding description length of the graph.
This is often implemented by frequent pattern mining [46] in
favor of subgraphs with a high compression rate, to support
downstream tasks such as graph search [29], community
detection [8] or influence analysis [25].

Emerging graph analysis with fairness requirements [37],
[39], nevertheless, poses new challenges. A common scenario
interprets fairness as group coverage constraints [44], [18],
[33], [28]. Given a set of node groups, it is desirable to (1)
select and concisely describe a set of representative nodes
with desirable quality from each group, and (2) ensure a
satisfactory “coverage” of each group to prevent under- or
over-presentation of certain groups. In practice, such groups
may refer to vulnerable social determined by groups e.g.,
gender, race or professions [15], relevant yet under-represented

TUniversity of Science and Technology of China
{hxm382,5xg967, mxw767, yxw1650} @case.edu

qisong09 @ustc.edu.cn

attern P,
pattern P, 100% p > oo
(user) Yo (user) Us
recommend recommend recommend recommend
(user) uy U, (User) male (user) ug Uy (USer)  femaie
recommendf recommend recommend
(user) u; Us(user)
53%
pattern P; 7% pattern P, i 47%
23% 3 u L8 |
(user) Us i keting']  (User) Y12 male female
recommend male female recommend recommend
(user) ug (user) Uiz U4 (user)
recommend recommend lrecommend
(user) uy, uy, (user) uys (user)

Fig. 1. Summarizing Social Connections in Talent Search.
topics [3], recommendations [17], or designated columns for
query benchmarking [5]. Consider the following scenarios.

Example 1: [Talent Search]. Consider a real-world social
network G [17] where each node in (G denotes a user
with attributes such as title and skill. Each edge indicates
a recommendation (recommend) between users. We illustrate
two most frequent subgraph patterns P; and P, (illustrated
in Fig. 1), which are separately mined from sub-networks
of G that are induced by male-only and female-only users,
respectively. They interestingly demonstrate that male and
female professional users in general have quite different social
connectivity patterns. For example, female professionals may
favor more active interactions in a small social community
(dual networks or “inner circles”), while male users benefit
from “high centrality” patterns, as also observed in [47].

A recruiter wants to explore G to promote talent search
with “equal opportunity” [17], for which a set of candidates
with balanced gender distribution are preferred. She may also
want to understand the social connections of these candidates
to improve talent search. Neither P, nor P, satisfies such

requirements due to their bias to a specific gender. A desirable
summary structure with graph patterns should draw an almost
equal number of male and female users, and describe their
neighborhood via graph pattern matching as accurately as
possible, to guide the talent search. |

One may consider summarization with frequent subgraphs.
However, this may lead to a “skewed” distribution towards
majority groups, leading to biased analysis. Another option is
to “diversify” these patterns to cover different nodes. Never-
theless, it is not easy to ensure coverage for each group.

Example 2: Consider a graph pattern P5 in Fig. 1 computed
via frequent pattern mining [12], which is among the ones
with the highest support. It indeed covers a large population
of the groups. Nevertheless, the users that match ug come
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with a biased gender distribution of 77% male and 23% of
female. This is close to the actual distribution of the gender
groups in G. It suggests that frequent patterns are sensitive to
the skewed gender distribution and over-present the majority
groups. Patterns like Ps, if suggested as queries, may lead
to both biased search results towards male candidates, but
also suggest a biased understanding of how talented candidates
benefit from social patterns (e.g., “high centrality” only). [

Example 3: [Pandemic Analysis]. In a real-world pandemic
spreading network [1], each node denotes a citizen with per-
sonal information such as age groups, gender and (infectious)
history. Each edge represents routine close contact (contact)
between two citizens [48]. Given a budget k of vaccines,
a policy maker will need to choose n citizens as “seed”
set to apply the vaccines to control the expected spread of
the pandemic following the network. That is, she wants to
select k£ nodes that may maximize the spread of the pandemic
if no vaccine is given, under a (monotonic submodular)
influence maximization function [48] (group immunization).
Meanwhile, she wants to investigate the impact of different age
distribution to the spread by enforcing configurable coverage
constraints to different age groups of the seed set, and to
extract their common social connection to better understand
the propagation mechanism. Existing frequent pattern discov-
ery and graph summarization methods cannot be used to find
summary structures that meanwhile satisfy the configurable
coverage requirement over age groups. O

The above examples call for effective graph summary struc-
tures that can simultaneously support (1) selection of a set of
high-quality nodes from groups of interests, with guaranteed
group coverage that are configurable by users, and (2) loss-
lessly summarize their neighbors, with small “reconstruction”
effort. The problem has a general form below.

o Input: A graph G, a set of groups V of the same type of

nodes in GG, where each group P; € V is associated with
a range [l;, u;] (a pair of integers where [; < u; < |P;)),
denoting required coverage;

o Output: a summary structure S with graph patterns that
(1) selects (“covers”) n; nodes from each group V; € V
via graph pattern matching, such that n; € [I;, u;], and the
covered nodes maximize a monotone submodular utility
function F', and (2) provides auxiliary structure that can
losslessly reconstruct the neighbors of the selected nodes.

Example 4: A better summary structure may present pattern
Py, which “integrates” high centrality and a circle social struc-
ture, with informative selection criteria on “work experience”
and “industry”. This pattern leads to a proper selection of 53%
males and 47% females, identified by the pattern node ui2. [

Although desirable, how to characterize and efficiently
compute such summaries for configurable utility functions and
coverage requirements over groups?

Contributions. This paper investigates group summarization
with graph patterns with fairness constraints. We characterize

the group fairness as a set of coverage constraints defined
on individual groups. We introduce feasible algorithms to
compute and maintain summaries with guarantees on user-
defined quality and coverage constraints.

(1) We introduce r-summaries, a class of “pattern-correction”
structures to summarize node groups in graphs (Section II). An
r-summary has a set of graph patterns with a designated node
type, and a set of edge corrections to guide the reconstruction
of neighborhood nodes and edges up to 7-hop, for each node
that is “covered” by the summary structure.

(2) We introduce quality measures for an r-summary, in terms
of conciseness, coverage properties and utility of the nodes
(Section III). Based on these quality measures, we formalize
the problem of graph summarization with group fairness
(denoted as FGS) as a min-max optimization problem. Given a
group V, our goal is to compute an r-summary with k patterns
that selects n nodes in V that satisfy the coverage constraints,
minimizes correction cost, and maximizes the utility.

We establish the hardness result for FGS. We show that
it is already NP-complete to verify if a summary structure
is an r-summary for a group V, and provide procedures for
the verification problem. We further show that FGS is in
general ¥¥’-complete, by establishing a connection to graph
reconstruction problem, a known £’ -complete problem. Here
©P refers to the class of problems solvable in NP with an
oracle for an NP-complete problem.

(3) We introduce an approximation scheme for FGS (Sec-
tion IV). We represent the min-max form of FGS into a bi-
level optimization problem, and use a “select-and-summarize”
strategy to compute r-summaries with small accumulated
cost at node level, all subject to coverage constraints. We
show that this ensures a relative optimality guarantee in
the form of (3,In(n))-approximation, which computes 7-
summaries that can (a) approximate optimal node set with
% ratio, and (b) simultaneously achieves In(n)-approximation
of optimal correction cost for the fixed node selection. This
is a “weaker” form of global approximation guarantee, yet
produces desirable summary structures given the guaranteed
node quality, coverage requirements, and small accumulated
cost that bounds the actual reconstruction cost.

Specifying the approximation scheme, we introduce (1)
approximations for FGS with a bounded number of patterns
(Section V), and (2) an efficient online algorithm that inter-
leaves node selection and summary generation, with a match-
ing guarantee of (%,In(n)— 1), when V is large (Section VI).
These results provide flexible summarization strategies.

(4) We further develop an incremental algorithm to maintain
r-summaries upon the arrival of new edges to the groups
(Section VII). We incrementalize the computation of the
node selection and summarization. Instead of rediscovering
new patterns from scratch, we perform an efficient swapping
strategy to control the number of r-summaries for conciseness.

(5) Using real-life graphs, we verify the effectiveness and
efficiency of our algorithms (Section VIII). Our algorithms
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can generate summaries with both desired quality and a small
amount of edge corrections in covering designated groups.
These algorithms are also feasible. For example, it takes up
to 400 seconds to generate summaries in real-life graphs with
5 million nodes and 45 million edges. Our case analysis also
verifies their applications in supporting talent search and query
processing under fair constraints.

Related Work. We categorize the related work as follows.

Graph summarization. Graph summarization has been studied
with various optimization goals (see [26] for a survey). Most
approaches follow minimum description length (MDL) prin-
ciple to discover (pre-defined) structural patterns that lead to
high compression rates of large graphs [26], [23], [10], [30],
[41], leveraging frequent subgraph pattern mining [12] . For
example, frequent stars, bipartite graphs, cliques or chains are
used as vocabularies to encode succinct descriptions of large
social or knowledge graphs [23], or for visual analysis [10].
Sparse patterns are detected to understand and sample com-
munity structures [30]. d-summaries [41] construct computa-
tionally efficient patterns to approximately describe neighbor-
hood information, which uses an efficient, lossy graph pattern
matching process to avoid expensive subgraph isomorphism
tests. To avoid information loss, Lossless graph summarization
[36], [40], [21] incorporates correction structuresand extends
MDL to minimize both summary sizes and the size of (edge)
corrections. Unlike these work, our problem aims to compute
summaries that are concise, lossless, and also ensure group
coverage. This is not addressed by prior approaches.

Subset Selection with Fairness. Subset selection with fairness
constraints has been studied [43], [35], [33]. Given a universal
set and a set of groups (subsets), it computes a diverse
subset that can cover each group with individual cardinal-
ity constraints. Approximation algorithms have been studied
to generate subsets for max-sum and max-min diversifica-
tion [35]. Submodular maximization under fairness constraints
has been studied for data streams [11], where approximations
with constant factors are presented. These methods study set
coverage properties and cannot be directly used for graph
summarization with fairness constraints. Our formal analysis
verifies the hardness of graph summarization with group
fairness, and shows the latter is more involved as a general
counterpart of these problems. We introduce both feasible
approximations and fast heuristics for fair graph summaries.

Several fairness measurements have been proposed [31],
[42]. Group fairness measures the equality of proportions
of each group from algorithm outcomes. [9] proposes a
KL-Divergence based fairness that computes the similarity
between the distribution of group members and a user-
defined target distribution. [43] ensures fairness by satisfying
cardinality constraints for protected groups. Unlike [9], our
approach evaluates the fairness of node selection with car-
dinality constraints, to help users explicitly define the desired
coverage. Compared with [43], our approach allows soft range
constraints with upper and lower bounds, which are easier to

set, and more practical to discover meaningful summaries.

Diversified Pattern Mining. Diversified subgraph pattern dis-
covery [34] aims to discover subgraph patterns that maximize
the coverage of a node set and the pairwise diversity of
individual nodes that are covered. A greedy approximation
is introduced given the submodular quality measure. The
problem is relevant to a special case of our problem when
group coverage is consistently defined on a single set. On
the other hand, it has been observed that group fairness and
diversity may come with conflict [43], [11]. We study a
more involved setting and introduce feasible algorithms that
compute the summaries under monotone submodular quality
measures and explicit group coverage constraints.

II. GRAPH PATTERNS AND SUMMARIES

Graphs. We consider directed, attributed graphs G

(V,E,L,T), where V is a node set, and £ C V x V is
set of edges. Each node v € V (resp. edge e € E) has
label L(v) (resp. L(e)). Each node v carries a tuple T'(v)
<(A1,a1),..,(Ap,an)>, where A; (i € [1,n]) from a finite
set A is a node attribute with value a;.

Il » o

We use the following notations. The r-hop neighbors (resp.
edges) of v, denoted as N, (resp. E]), refers to the nodes
(resp. edges) that can be reached from or reach v in r hops.
The r-hop neighbors of a node set X, denoted as N, refers to
the set | J,c x IV, . The r-hop edge set E’ is defined similarly.

Graph patterns. A graph pattern P(u,) is a connected graph
(Vp,Ep, Lp,Tp), where Vp (resp. Ep C Vp xVp) is a set of
pattern nodes (resp. pattern edges). Each node u € Vp (resp.
edge e € Ep) has a label Lp(u) (resp. Lp(e)). Each pattern
node u has a set of equality literals T’» () in the form of u.A
=a (A € A), where a is a constant.

The node u, is a designated focus of P. In practice, a pattern
with a focus captures a “center” of interests and its egocentric
structures, as seen in e.g., social network analysis [4], [25].

Coverage. We extend graph pattern matching with induced
subgraph isomorphism to characterize the coverage of a pat-
tern. Given a pattern P and a graph G, a matching from P
to GG is a function h : Vp — V, where (a) for each node
u € Vp, Lp(u) = L(h(u)), and for each literal u.A = a in
Tp, h(u).A = a; and (b) for each edge e = (u,u’) in P, h(e)
= (h(u), h(u')) is an edge in G where Lp(e) = L(h(e)).

A graph pattern P(u,) covers a node v (resp. edges e) if
there exists a matching h such that v = h(u) (resp. e = h(ep)).
The set of all the nodes (resp. edges) covered by P(u,) at
the focus is denoted as Py (resp. Pg). Given a set of graph
patterns P (u,) = {P1(uo), ... Pn(u,)} with a common focus
Uy, the nodes (resp. edges) covered by P(u,) in G at u,,
denoted as Py (resp. Pg), refers to the set | pep Pv (resp.
Upep PE), ie., the union of nodes (resp. edges) covered by
the graph patterns in P(u,) at u,.

Groups. A group set V = {Vi,...,V,} is a set of disjoint
node sets in G with a same type, where each group V; € V is
a subset of V, and carries a coverage constraint [l;,u;], where
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Fig. 2. Graph patterns, groups and r-summaries
0 <; <wu; < |V;]|. In practice, users may specify the group
set V as vulnerable social groups (e.g., gender, age, or race
groups)for e.g., social search and healthcare [17], [48]; and de-
fines coverage constraints [I;, u;] to express fairness constraints
such as equal opportunity [17] or disparity constraints [14].

We use the following simplified conventions. (1) We assume
a fixed designated focus u, and denote a graph pattern P(u,)
(or simply a “pattern”) and pattern set P(u,) as P and P,
respectively. (2) Given a set of sets X, we denote the set
Uxex X as UAX. (3) We use Py (resp. Px) to denote the
nodes or edges in a node or edge set X that are also covered
by a pattern P (resp. pattern set P). The symbol E refers
to the r-hop edges of a node set X.

We next introduce r-summaries, a class of summary struc-
tures for group summarization.

r-Summaries. Given a graph G with node set V, and a group
set V of n sets duin G, an r-summary of V is a two-part
“pattern-correction” structure S = (P, C), where
o P is a pattern set with a common focus u,, such that
[Py N V;| € [l;, hy]; here Py = Py NUV, ie., the group
nodes covered by P; and

o C refers to a set of edge corrections, and is defined as

C = Ep \ P, i.e., the edges in 7-hop neighbors of Py,
that are not covered by Pg.

An r-summary (P,C) of group set V in G ensures to (1)
select a set of group nodes Py from group set V as the
matches of the focus of the patterns P, which satisfies the
coverage constraints enforced by each group, and (2) losslessly
summarizes r-hop neighbors of the selected group nodes Py,
by reconstructing E - with Pg UC.

Example 5: Fig. 2 illustrates a fraction of a profession
network G, induced by the 2-hop neighbors of a candidate
set {vo, V5, Vs, V10, v12 }. Consider a gender group set )V, which
contains a male group {vg, v5 } with a coverage constraint [1, 2]
and female group {vs, v19, v12} With coverage constraint [2, 3].
A 2-summary (P,C) for V is illustrated in Fig. 2, where P
contains two patterns P5 and Fgs. (1) Ps selects candidates

TABLE I
MAJOR NOTATIONS AND SYMBOLS.

Symbol Description

G, P(uo) (or P) graph, (graph) pattern
Ny, (resp. Ey;) r-hop neighbors (resp. edges) of nodes V'
P(uo) (or P) a set of patterns with a common focus u,

, Vi a set of groups, and a group in V
[1,u] coverage constraint with lower/upper bounds I/u
Py, Pg nodes in V, edges in E that are covered by P
Pv, P group nodes and edges covered by P
S=(P,C) an r-summary, with edge corrections C
C a configuration r, k,n
F monotone submodular utility function
Ci (resp. Cp) edge correction loss of S (resp. single pattern P)

in “Internet” industry with 5 years of experience and are
recommended by other two users, each further recommended
by another user. It only covers the male group {vg,vs},
and misses 5 edges of their 2-hop neighbors. (2) Py selects
candidates with 4 years’ experience in “Internet” and are
recommended by two users. It covers females {vs, v10}, and
leaves 2 edges (vg, v7) and (v11, v12) in their 2-hop neighbors
not covered. Note that the edge (vg,v7) is covered by Ps. (3)
Putting these together, P covers all the group nodes except v12
(Py = {wo,vs, vs,v10}) and satisfies the coverage constraints,
and losslessly describes their 2-hop neighbors with a single
edge correction C = {(v11,v12)}.

The missing edge (v11,v12) may be used to interpret why
V19 18 not selected, and can be recommended to her as a new
social link. |

We summarize the major notations in Table I.

III. GROUP SUMMARIES WITH COVERAGE CONSTRAINT

A. Quality Measurement

Given a set of node groups V in G, we are interested in
finding r-summaries that can select high-quality group nodes
from V), and meanwhile describe their neighbors with small
correction. These can be characterized by the following quality
measures.

Monotone Submodular Utility. An r-summary S = (P,C)
should be able to identify a set of high quality nodes P(u,, G)
that maximizes a utility.

This is often determined by a user-specified function F',
which typically captures submodular properties. A utility func-
tion F' is submodular, if for any two node sets V; C Vo C V,
and any node v € V\Va, F(V1U{v}) - F(V1) > F(VoU{v})
- F(Va).

For example, (1) talent and social recommendation favors
candidates with high social influence as a submodular func-
tion [20]; (2) data systems use submodular informativeness
function to select training examples [32], or to diversify
solution space [38]; (3) budgeted sensor network design sam-
ple sensors that maximize submodular utilities determined
by benefits that are weighted by the distance from a root
sensor [6]; (4) Social media analysis detects blogs that are
likely to cause information outbreaks, modeled with the sum
of submodular reward functions [24]. Our summarization
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framework generally applies to the need for choosing group
nodes with submodular utility functions.

Conciseness. One also wants to inspect a small number of
representative nodes (e.g., candidates in talent search) from a
large group V. While the summary structures are often small,
it is desirable to find r-summaries that can cover a bounded
number of nodes over all the groups V. Moreover, one often
wants to inspect a bounded number of patterns.

Edge coverage loss. Tt is also desirable to ensure a small
reconstruction cost to restore the r-hop neighbors of Py, the
group nodes covered by S. This can be determined by the
accumulated number of the r-hop edges surrounding Py, that
each pattern P in P “missess”. Let Cp = EIBV \ Pg, where
Py C |V refers to the group nodes P covers. We define
an accumulated edge coverage loss as C; = ) p.p |Cp|. The
smaller C; is, the better. Note that |C| < C;, and smaller C;
indicates less uncovered edges by S.

Remarks. Another option is to simply define the cost as |C|.
We consider accumulated loss as a reasonable upperbound for
IC|, and closer to the actual algorithmic reconstruction cost,
given the need of pattern-wise inspection in practice.

Problem statement. We now formalize our problem as a
min-max optimization problem. Given a graph G, a set of
disjoint groups )V with associated coverage constraints, a
monotone submodular utility function F', and a user-specified
configuration C = {r k,n}, the fair group summarization
problem, denoted as FGS, is to compute an r-summary S =
(P,C) of the group V with the following general form:
PO = i, Az TP

The solution of FGS leads to desirable summary structures S
= (P, C) as justified by the following properties (also see “Case
study” in Section VIII). (1) The group nodes Py covered
by P can be readily suggested as high-quality answers for
e.g., talent search and recommendation with fairness con-
straints [17]. (2) The patterns P can be directly suggested as
meaningful graph queries, to guide query and graph generation
with cardinality constraints [7], for e.g., benchmarking. (3)
The “pattern-correction” structure S is queryable, where P
naturally serve as (virtual) views to support e.g., view-based
query processing [13] with small reconstruction effort. (4) The
edge corrections C also facilitate the interpretation between
selected and unselected nodes, by explicitly suggesting their
difference via edge corrections.

Example 6: Continuing the example in Fig. 2. Assuming the
utility function F' quantifies the social influence as the the
number of neighbors of the nodes covered by r-summary.
Given r = 2, n = 4 and equal cardinality constraints which is
[2,2] for both male and female groups. The 2-summary S in
Fig. 2 thus covers {vy, vs, v5 and v19} with P5, Ps (marked
as blue) that achieves a total influence 8. As node v15 is not a
match for either Ps or Fg, the edge (v11,v12) (marked as red
dashed line) can not be covered by S. While |C| = 1 with one

missing edge (v11,v12), one can verify that Cp, =0, Cp, = 2
and it takes a cost C; = 2 to reconstruct the 2-hop neighbor of
all the covered group nodes. U
B. Verification and Hardness

To understand the hardness of FGS, we first study a verifica-
tion problem. Given G, V, a configuration C' = {r, k,n}, and
constants b. and by, it is to determine if a summary structure
S = (P,C) (1) is feasible, i.e., an r-summary of V that covers
at most n nodes |Py| < n and also satisfies the coverage
constraints for every group, and (2) the covered group nodes
at u, have utility at least by, and edge coverage loss |C;| < b..

Lemma 1: The verification problem alone is NP-complete. []

The hardness follows from the reduction from the subgraph
isomorphism problem between a single pattern and a graph.
Below we outline a procedure to show it’s in NP.

Verification. The procedure, denoted as rverify, first checks if
|P| < k, and performs subgraph isomorphism tests to decide
if P(uo, G)NJV =0 (in NP) for at most k patterns. It then
verifies if [P (u,, G)NU V| < n, and |P(uo, G)NV;i| < [I;, hi]
for each group V; € V. It finally verifies if C; < b, and
the utility is at least by. The above verification process takes
O(k-|UV|-Tr+|JV|) time. Here T7 is the cost of verifying
if a single pattern P € P covers a group node at u,, which is
typically small in practice. Note that the verification does not
require to compute the complete set P(u,, G).

We next investigate the hardness of FGS.

Theorem 2: The FGS problem is ¥5-complete. O

Proof sketch: Given G, V, a configuration C=(r, k,n) and
two constants b. and by, the decision problem of FGS is to
decide if there exists a feasible r-summary S of VV with a utility
no less than by and edge correction size no more than b.. The
problem can be solved in X5. As the verification can be done
in NP (Lemma 1), FGS can be solved in X5 by guessing an
r-summary S and verify its properties with rverify.

To show it’s Z’Q’ -complete, we describe a reduction from the
Graph Reconstruction (GR) problem [22]. Given two sets G
and G~ of graphs, GR determines whether there exists a graph
G, such that each GT € G is isomorphic to a subgraph of
Gy, and each G~ € G~ is not isomorphic to any subgraph of
G,. Our reduction constructs G as the union of augmented G+
and G, where each single graph G;r in G* (resp. G; €g)
is added an augmented edge connecting to a distinct node v;"
(resp. v; ) with unique label ‘positive’ (resp. ‘negative’). We
set V = {VT,V~}, where group V' (resp. V™) contains |G|
‘positive’ nodes (resp. |G| ‘negative’ nodes), associated with
constraints [|GT|,|GT|] (resp. [0,0]). Setting a configuration C
= (rm+1,]1G7],|GT|), with r,, the largest diameter of graphs
in G, we show there exists a solution for GR if and only if
there is an r-summary for the FGS instance. ]

IV. COMPUTING SUMMARIES WITH GROUP FAIRNESS

We next introduce practical algorithms to compute 7r-
summaries with coverage and utility guarantees.

1986

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:31:42 UTC from IEEE Xplore. Restrictions apply.



A. Approximating Summaries

Given a configuration {r,k,n}, one wants to compute an
optimal r-summary S with maximized F(Py) and smallest
edge coverage loss C;, where Py is the set of group nodes
covered by P. A naive approach enumerates and verifies all
size-k pattern sets, and invokes the verification process to
check if each set contributes to an r-summary, and if so,
chooses the one with Py, that lead to the highest utility. This
is, nevertheless, not practical for large G. We thus consider
faster algorithms with performance guarantees.

We first represent the min-max problem FGS as the follow-
ing bi-level optimization problem, in a “weaker” form:

v}ngl%\; Ci(P,V,'), where (D
vV, = arg max F(V,) (2)

Vo <ni | VpNVi|€lli )

where the “lower-level” goal aims to select n group nodes
V. that maximizes utility F'(V), and meanwhile satisfies the
coverage constraints on V; and an “upper-level” optimization
is to discover a pattern set P* that minimizes |C;(P*,V,")|,
subject to cover a fixed, desirable set of group nodes V.
We then resort to compute an r-summary structure S =
(P,C) of V, that ensures the following: (1) P covers a set
of n nodes V,, (V, C Py), where V,, satisfies the coverage
constraints of V, (2) F (V) > axF(V,’), and (3) C;(P,V,) <
BC(P*,V,), for a fixed selected set V,,. We advocate such
a solution P as an (a, 3)-approximation for FGS. This is
a weaker approximation guarantee, as a sub-optimal solution
that approximates P* subject to V},. Nevertheless, S remains
to be a desirable solution, treating V), as a “yardstick” solution
that already has a constant approximation ratio to an optimal
solution V7 of the lower-level optimization, which ensures
high utility, guaranteed group coverage constraints, and a
relative bound for C; (hence a bounded |C|, as |C| < Cp).

Below we present our main result.

Theorem 3: Given a configuration C' = {r,n} without car-
dinality constraint k, there is a (3,In(n))-approximation for
FGS. The algorithm takes O(n-N -Tr-|JV|+n-N? +|E|)
time, where N is the total number of verified patterns. O

We present a constructive proof for Theorem 3. Our idea is
to take a “select-and-summarize” strategy. (1) The selection
phase solves the lower-level problem and computes a set
of nodes V,, with coverage and quality guarantee. (2) The
summarization phase then explores patterns induced from the
r-hop neighbors of V), to ensure the coverage of V), and its r-
hop neighbors with a small reconstruction cost, by minimizing
accumulated pattern-wise correction C;.

We next present an algorithm that implements the idea.

Algorithm. The algorithm, denoted as APXFGS (Fig. 3)
performs the following.

(1) Selection phase (lines 1-4). APXFGS invokes a procedure
FairSelect to compute a set of group nodes V,, with high
utility F'(V,,) and satisfy the coverage constraint (line 2; see

Algorithm APXFGS
Input: graph G, groups V with associated coverage constraints,
utility function F, configuration C = {r,k,n}.
Output: a feasible r-summary S of V.
1. setV, :=0; set P :=0; set P :=0; set E, := 0;
set P, = 0; set Py, := 0;
V, = FairSelect(V, F,n);
for each v € V,, do
E, = E.UE.(v);
Pe := SumGen(Vy, By, T);
while V,, # () do
P’u, = @;
for each P € P.\ P do
. if Extendable(P,P,V,n) then

10. Py =Py UP;

*,_ |Pu(U01G)ﬁVp| .
11. P*:=arg maXp ecp, — 05

Py
12. P:=PU{P'}; Vp:=Vp \ P (uo, G);
13. S := (P,E{}p \ Pr);
14. return S;

Procedure FairSelect (V, F,n)
set V, = ;
while |V,| < n do
set Vy, := 10
for each v € V\ 'V, do
if ExtendableM (v, V,,,V,n)
Vi = VuU{v}
vk 1= argmax,, ey, (F(V, Uv') — F(V,));
Vp = Vp U {vx};
return Vp;

VO N LR WL

XN B W=

Fig. 3. Algorithm APXFGS

Procedure FairSelect). It then initializes an edge set E,.(V},)
to be covered by the patterns.

(2) Summarization phase (lines 5-13). It invokes procedure
SumGen to perform a constrained graph pattern mining over
V,, and their r-hop edges E,.(V,). The process exploits estab-
lished graph pattern mining, yet early terminates at patterns
with a radius up to r from u, (i.e., those with a distance up to
r between u, and any other pattern nodes) (line 5). APXFGS
then follows a greedy strategy to dynamically choose a pattern
P that maximizes a gain determined by covered nodes Py,
in V, (computed as P*(u,,G) N V,) and uncovered edge
counterpart Cp (lines 6-12). This process is guarded by an
“extendable” condition that verifies the coverage constraints
(line 9). The desired r-summary S is then constructed as
(P,E,. \ Pg) and returned (line 14).

Procedure Extendable. Given an r-summary S = (P,C) of V
and a pattern P, we say S is extendable with a pattern P if S
= (PU{P},C) remains to be feasible. Procedure Extendable
determines if a current “partial” r-summary S is extendable
with P, by checking (1) if it violates the coverage requirement
in terms of upper bound; (2) covers no new nodes (line 3),
and (3) covers more than n nodes (line 6).

Procedure FairSelect. Given graph G, groups V), utility func-
tion F' and integer n, FairSelect selects a set of nodes
Vs C UV such that Vs maximize F and covers each
group V; € V with desired number of nodes in [I;, h;]. To
this end, it solves a submodular maximization problem with

1987

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:31:42 UTC from IEEE Xplore. Restrictions apply.



Procedure Extendable (P, P,V,n)
1 if P(uo, G)NJV = 0 then return false;
2 set P := P U {P}; integer cov := 0;

3 for each V; € V do

4 if |Pe(uo, G) N Vi| > h; then

5. return false;

6 cov = cov + max(|Pe(uo, G) N Vi, 1s);
7 if cov > n return false;

8 return true;

Fig. 4. Procedure Extendable

group cardinality constraints following [18], which performs
an iterative greedy selection strategy over group nodes. (1)
In each iteration, FairSelect initializes a candidate set V,
with all the nodes in V \ V}, that can be used to “extend”
Vp. This is determined by a procedure ExtendableM (line 5;
details omitted) by checking if: (1) for any group V; in V,
|(VoUv)NVi| < his (2) Doy, o maz(|(V,Uv) NV, 1) <= n,
similarly as in Extendable. (2) It then adds a node with
maximal marginal gain of submodular function F' (lines 7-8)
to the node set V), until up to n nodes are selected.

Example 7: Continuing with the example in Fig. 2, we
consider a configuration of » = 2, n = 4, and a same
cardinality constraint [2,2] for both male and female groups.

The selection phase performs a greedy selection of the
group nodes. APXFGS identifies a set of promising nodes V},
= {wo,vs,vs, v10}, which satisfies the coverage requirement
of the groups. In the summarization phase, APXFGS firstly
select pattern P; due to that it introduces a minimal size of
edge correction cost 0. As P = { P5} remains extendable with
Ps; € P., APXFGS next verifies Pg, and adds it to P. As
V,, has been covered by {Ps, Ps}, APXFGS terminates and
returns S with P = {Ps, P}, and C = {(v11, v12)}- O

B. Correctness and Approximability

To see the correctness and quality guarantees of FairSelect,
we show that it has the following invariants.

(1) Procedure FairSelect computes a set of nodes V), such that
F(V,) > iF (V) for all subsets of |JV with size bounded
by n that also satisfy the group coverage. This can be verified
by an approximation preserving reduction from the lower-level
node selection problem to fair submodular maximization [18].
The reduction constructs a base set as |J )V with groups and
their ranges. It has been verified that a greedy selection process
ensures a %-approximation which is simulated by FairSelect.

(2) Algorithm APXFGS computes a set of summaries that
ensures to cover Vp with a induced edge cover loss Ci,
by solving the upper-level problem as a maximum coverage
problem [45]. As each pattern P uniquely determines a set of
covered nodes P(u,,G) and an edge cover loss, a reduction
treats each P as a subset P(u,, G) N|JV, with a weight Cp
(recall ;=) p.p Cp). It then follows a greedy strategy [45]
to select P with C; < In(|V,|)C; < In(n)C/. Note that this
indicates a provable bound for the size of edge correction.

Lemma 4: APXFGS returns an r-summary S with a size-
bounded edge correction |C| < In(n)C/, where C; is the
optimal edge coverage loss. (I

(3) The two procedures ExtendableM and Extendable cor-
rectly implements the verification rverify of r-summaries
(Section III-B) into selection and summarization phases. This
guarantees the invariant that only feasible r-summaries of V
are correctly returned.

Time cost. Procedure FairSelect takes O(n - ||JV)]) time to
select V,,. Procedure SumGen takes at most IV - 77| J V| time
to generate and verify the patterns and their covered group
nodes, where N is the total number of patterns with radius up
to r from u,, and 77 is the time cost of verifying if a single
node is covered by P at u,. The total time cost of APXFGS
is thus in O(n - N - Ty - [U V| +n - N? + |E|) time.

The above analysis verifies that APXFGS ensures (1) a
solution Vp that approximates a % approximation ratio to the
optimal solution V3, and (2) an r-summary S with C; that
approximates a local optimal solution C; given V), at a ratio
In(n). It thus achieves a (1,1n(n))-approximation for FGS.
Theorem 3 hence follows.

V. COMPUTING GROUP SUMMARIES WITH k PATTERNS

The approximation scheme APXFGS considers a configura-
tion C' = (r,n) without constraints on the number of patterns,
and may return an excessive number of patterns. We next
consider a variant of FGS, which requires to compute an r-
summary with at most k& patterns, and minimizes |C| instead
of accumulated correction cost.

min |C|, where 3)
|PI<k,V;CPy
v =

arg max
[Vp | <3| VN Vi €[l hi)

We show that a slight revision of algorithm APXFGS
achieves the following relative approximation ratio.

F(Vp) )

Theorem 5: Given a configuration C:(r,k,n)r, there exists
an (3,1+ i) approximation, where v = % -1 O

Here V), is the approximate solution of V,*, which ensures
F(V,) > iF (V). The constant ratio 1 is achieved by
constructing a reduction from node selection problem to fair
submodular maximization [18]. The latter is %—approximable
via an oracle-based greedy selection process. In particular,
one can iteratively choose high-utility nodes subject to upper
bounds, and refine the selection by adding additional nodes to
fulfill the lower bounds (see [2] for detailed analysis).

Intuitively, a larger « inherently a better approximation ratio,
yet meanwhile indicates a larger correction cost. In other
words, it verifies that an optimal solution P* can be better
approximated when it inherently covers a smaller fraction
of E(,p. For example, when v = 1, there is an (%,1 + é)
approximation, yet under the assumption that even the optimal
solution can cover half of the r-hop edges.

Algorithm Outline. We next outline the variant of APXFGS.
The algorithm follows the “select-and-summarize” strategy.
It first computes V,, with procedure FairSelect (line 2 of
APXFGS), and generate patterns with procedure SumGen to
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Algorithm Online-APXFGS
Input: graph G, groups V with associated coverage constraints,
utility function F', configuration C = {r,k,n}.
Output: an r-summary S of V.
1. setV, :=0; set P :=0; set Pg :=0; set E, := 0;

set Py :=0; S :=0; B, :=0;
2 for each v € JV do /* streaming selection phase */
3 w() = F(V, U{v}) — F(V,);
4 if v € V. then B, := B. Uuw;
5. if ExtendableM(v, V,,,V,n) then
6. Vo =V U {v}s
7 else /* consult an oracle procedure */
8 Vp = UpdateVp (v, V,, V, F,n);
9. if v € V), then /* trigger local summarization phase */
10. P := UpdateP (v, V,,V, F,n);

/* post processing with bucket B. */

11.  while there is a group V. € V where |Pv,| < l; do
12. PostSelect(G,V, F,C, B, P);

13. S:=(P,E\Pr):

14. return S;

Procedure UpdateVp (v, V,, V, F\n)

1 set U := 0;

2 for each v’ €V, do

3 V, =V \ {v'};

4 if ExtendableM(v,V,,,V,n) then U := U U {v'};
5. v” = arg minvleU(F(Vu Uv') — F(V));
6 Vi = Vo \ {o~}:

7 if w( ) > 2(F (V Uwv) — F(V,)) then

8 Vp =V \ {v'}U{v};

9 return V,;

Fig. 5. Algorithm Online-APXFGS

be verified (line 5 of APXFGS). The only differences are as
follows. (1) It initializes a universal set EV , and for each
pattern P € P, a matching edge set Pr N EV (2) It revises
the summarization phase (lines 6-13), and selects k patterns by
solving a maximum coverage problem, which aims to compute
k patterns P with |P| < k, such that (Jpop Pe N E(/p
is maximized. This equivalently leads to minimizing |C| for
selected P. To this end, it greedily selects the pattern P that
maximizes a marginal gain as the currently uncovered r-hop
edges in Ey, , ie, |Ey N (PU{P})gl|, until [P| = k. (3) It
verifies if the current P covers Vp and satisfies the coverage
constraint, and if so, terminates and returns S with P and
C. Otherwise, it continues (2) with greedy swapping strategy,
until either fails to identify a k pattern set, or early terminates
with desirable P and an r-summary.

Analysis. The correctness and approximation analysis follows
the analysis of APXFGS and a reduction from pattern selection
to maximum coverage problem with a known approximation
ratio 1 — L. Specifically, let |C*| be the smallest correction size
achieved by optimal solution P*. As |C*| = |Ey, | - [PpNEY, |,
ICl = |Evp| ‘,PEQEV |, and |7)EﬂEv | > 11 |PE0EV B
|[PENET, | .

we have |C] < (1 + (B |E |P*Y‘F1ET ) )|C*|. The algorithm
takes the same time cost as APXFGS.

We present the detailed analysis in [2].
VI. ONLINE GROUP SUMMARIZATION

The algorithm APXFGS requires to compute V), first, and
then generates and verifies patterns from E(,p. This may be

Procedure UpdateP (v, Vp,P,V,n)

1. Pu := SumGen(v, £, r);

2. while |P| < k do

3. P:=argmaxp ¢p, |Pu(ug},)j)nivp|;
4. P =PuU{P};

5. Pu =P \{P"};

6. AP :=10

7. for each P € P, do

8. for each P’ € P do

9. P =P \{P'}u{P};

10. if V,, C Py, then

11. /* ensuring covering all the nodes in V, */
12. AP:= APU{P};

13.  PTi=argmaxp cap M;
14. P [P (uo, G)ﬂVp|

=arg minpcp —p
15. P:=P\{P~ }U{P*}
16. return P;

Fig. 6. Procedure UpdateP
expensive for large groups V. We next introduce an online

algorithm that can process V as a “stream” of nodes, without
pre-computing Vj,. Our idea is to (1) streamline the node
selection procedure FairSelect with a streaming submodular
maximization process [18], and (2) upon a group node v is
accepted to V), triggers ad-hoc, localized pattern discovery
(which only involves E7) to only perform small-scale and nec-
essary maintenance of P. A post processing is then performed
to ensure coverage properties.

Theorem 6: Given a configuration C={r,n,k}, there is an
online algorithm that ensures a (%,In(n) + 0)-approximation

for FGS, with 0 € [1, @] The online algorithm process each

k
group node v in O(logk + N, - Ty) time, where N, is the
number of patterns induced from E,. ]

Online Summarization. The online algorithm, denoted
as Online-APXFGS, is illustrated in Fig. 5. It maintains, for
each group V. € V, a bucket B, to store the processed nodes
in V.. Upon receiving a group node v € V, Online-APXFGS
performs the following two major steps.

(1) Streaming selection (lines 3-8). Online-APXFGS performs

streaming submodular maximization selection following [18].
In particular, it first verifies if V), is extendable (by invoking
Procedure ExtendableM; line 5), and if so, either directly
accept v to V), (line 5); otherwise, consults a greedy streaming
selection procedure (an “oracle” algorithm; lines 8-16) to
decide whether to replace a node v’ € Vp with v, following a
greedy strategy, or to reject v, and put it in B..

(2) Local pattern update (lines 9-10). For each new node v

that enters V), directly or via replacement, it performs a pattern
generation and verification. Unlike APXFGS which needs to
verify all patterns with a radius up to r from u, induced by
E{}p, the process only needs to verify the patterns induced by
E7. In particular, for each batch of new patterns P, derived
from E;, and current P, it determines two processes: (a)
nodes from P, that dynamically
maximize the gain determined by current node coverage and
correction cost Cp (line 22), to add to P, or (b) dynamically
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decide a pattern set P™ C P, to be added to P, and a
pattern set P~ C P to be replaced out of P, and perform
the “swapping” process.

(3) Post-processing (lines 11-12). The above process repeats

until all the nodes in V are processed. While ExtendableM
ensures no group is “overly covered”, it is possible that for
some group V. with coverage constraint [I., k.|, |[V,NV,| < I,
due to the rejection of the nodes. Unlike [18] that simply
take random nodes to fill in the gap, for each such group,
Online-APXFGS invokes a procedure PostSelect to enrich
both V), and P with the nodes in B. to ensure coverage
constraints and guarantees on correction error.

Procedure PostSelect (not shown). For each group V., € V
where |V}, N V.| < I, procedure PostSelect performs another
round of “select-and-summarize” process to make P satisfy
the coverage constraint. It (a) dynamically selects the top (I, —
|VpNV;| nodes from B,, where each node v maximizes F'(V,U
{v})-F(V,); and (b) follows the swapping strategy (lines 13-
14, UpdateP) to update P with new patterns from the r-hop
neighbors of the new nodes added to V},. This repeats until V},
covers all groups with desired lower bounds.

Analysis. The algorithm Online-APXFGS iteratively processes
each group node v € | JV and ensures the following. (1) The
dynamic decisions made by procedure updateVp on accepting
or rejecting a node v to V), follows the greedy streaming sub-
modular maximization [18]. (2) Procedure updateP ensures
that V,, € Py during the swapping strategy; and the proce-
dure ExtendableM ensures that no group is overly covered
by P. (3) The procedure PostSelect ensures that no group
is insufficiently covered, by enriching both V,, and P. These
ensure that Online-APXFGS correctly maintains an r-summary
of “revealed” V in each iteration and when terminates.

Approximability. The approximation guarantees follow from
the i approximation ensured by streaming submodular max-
imization, and online optimization of maximum coverage. In
particular, assume P* incurs C; at each round, we show that
the swapping strategy in procedure UpdateP, which exchanges
P~ with smallest marginal gain with a new counterpart P+
having the maximized marginal gain, incurs a gap between C;

and C; that is bounded by 6 € 1, |Ek’m], given that |P| < k.

Time cost. There are at most ||JV)| iterations, and in each
iteration, (1) it takes procedure UpdateVp O(logk) time to
process each group node v € (JV; (2) procedure UpdateP
takes O(k - T7) time to verify if v is a match, O(|E}|) time
to update the marginal gain, and O(N,, - T7) time to generate
and verify patterns from E;, with N, bounded by N, the
total number of patterns verified. The post processing takes
>> 1.+ N - Ty time to enrich P, where >_ [, is the sum of all
the lower bounds. Hence the total cost is in O(||J V|- (logn+
N -Tr)+> 1. N-Ty) time.

Theorem 6 follows from the above analysis (see [2]).

Algorithm Inc-FGS
Input: graph G, groups V, utility function F, batch update AFE;
configuration C={r,n}, set V,; r-summary S=(P,C).
Output: an updated feasible r-summary S’ for G ® AE.
1. initializes set AV with V and AF;
2. if AV:=0) return S;
3. else update V; set AFE,.:=0; set P,:=0;
/* incrementalized node selection */
4 set V, := IncFairSel (Vp,, AV, V, F,n); set AV, =V \ Vs
5 for each P € P do
6. if P(uo,G® AE)NY ={ then P := P\ {P};
7.  for each v € AV, do
8 AE, = AE,.UE];
9 set AP, := SumGen (V,,AE,,r);
/* incrementalized summarization ¥/
10. while AV, # () do

11. Pu:=0;

12. for each P € AP.\ P do

13. if Extendable (P, P,V,n) then P,:=P, U {P};
14 P*:zarg maXPuG'Pu w

15. P:=P U {P*}; AV,:=AV, \ P*(uo, G ® AE);
16. set S’ = (P,AE.\ Pg);
17. return S';

Fig. 7. Algorithm Inc-FGS
VII. MAINTENANCE OF GROUP SUMMARIES

Real graphs are constantly changing. When new nodes
join the interested groups V or new links are formed among
group nodes, it is expensive to recompute an r-summary from
scratch. We next present an incremental algorithm to maintain
a feasible r-summary upon the arrival of new nodes and edges,
and preserves “anytime” utility guarantee and group fairness.

Our idea is to incrementalize the “selection-and-
summarization” phases. (1) Upon a batch of edge insertions
AFE, it updates the current Vj, to V, that satisfies both
coverage constraints with approximated optimal utility F'.
This is achieved by invoking a streaming process to select
new nodes induced from AF, following [18]. (2) The
summarization phase then finds the new nodes AV, not in
Vp, and their r-hop edges and creates a small instance for
the summarization task. Due to the strong data locality of
subgraph isomorphism, it suffices to incrementally update P
to ensure the coverage of AV,

Algorithm. The algorithm, denoted as Inc-FGS and illustrated
in Fig. 7, processes edge insertions in batches AE. (1) It first
verifies if the edge insertions affect group nodes and their
neighbors. If not, the original r-summary S is returned as there
is no need to update the summary (lines 1-2). Otherwise, it
updates V and invokes a procedure IncFairSel that follows
a streaming fair submodular maximization process [18] to
update V), to Vp’ (lines 3-4). It also refines P by removing any
patterns that do not contribute to group coverage in G & AFE,
where @ means “applying” the edge insertions to G (lines 5-6).
(2) Inc-FGS then invokes SumGen only in a (small) bounded
fraction of affected nodes and r-hop neighbors, to generate
new patterns. It incrementalizes the pattern selection as in
APXFGS (lines 10-16) and update P necessarily with patterns
that incurs small C;. This repeats until AV, is covered by P
(line 10). The updated S’ is then returned (line 17).
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Dataset V] |E| # node types | # edge types | avg. # attr
DBP M 3.18M 115 398 10
LKI 3M 26M 2 2 7
Cite 4.9M 46M 2 2 6

TABLE IT

OVERVIEW OF REAL-LIFE GRAPHS
Analysis. It has been verified that an n-set for fair sub-
modularity maximization can be maintained at a competitive
ratio i, with a greedy swapping strategy [18]. At any time,
algorithm Inc-FGS maintains a feasible r-summary which has
the matching quality guarantees on F' and covers the updated
V that satisfies the coverage constraints.

The delay time on processing a batch of edge insertion takes
(1) O(min(n, |AE])-||JV)]) to update V,,, (2) O(|AE|-T;-|P|)
to refine P (lines 5-6), and (3) O(n-m?) to update S, where m
is the number of newly generated patterns from the small frac-
tion of E'%,,. Our tests verified that Inc-FGS can process batch
update efficiently and significantly outperforms APXFGS in
efficiency with comparable utility (see Section VIII).

VIII. EXPERIMENTS

Using real-world attributed graphs, we experimentally verify
the effectiveness and efficiency of our algorithms'.

Experiment Setting. We used the following setting.

Datasets and Groups.

We use three real-life data graphs (summarized in Table II).
(1) DBP [27] is a movie knowledge graph induced from
DBpedia. Each node has a label (e.g., movie, director or
actors) and attributes such as title, genre, and years, and on
average 10 attributes. Each relation has a label (e.g., directed,
collaboration). We induce up to 5 movie groups based on their
genres or countries for diversified and fair movie recommen-
dations. We induced group constraints varied from [20, 30] to
[50,60]. (2) For talent search, we use LKI [49]. with nodes
denoting e.g., users organizations and edges denoting e.g.,
co-review, works. Each node has attributes such as “Major”.
we induced 6 groups of users in LKI based on their gender
and degree, e.g., ({gender:male; degree:BS},{gender:female;
degree: BS},{gender:female; degree:MS}). We induced group
constraints varied from [50, 60] to [250, 260] (3) For diversified
and fair academic recommendation, we induced up to 4
groups of papers with different topics (e.g., “Machine Learn-
ing”,“Networking”) and from Cite and same group constraints
with LKI.

Utility Functions. We used the following functions.

(1) For fair movie recommendation, We set the utility
function F' for a set of movies Vs in DBP as F(Vs) =
> vevs Rating(v). (2) For diversified and fair talent search,
we defined F' over LKl as F(Vs) = [U,ey, V(v)|, where
Nw) = {u : (u,v) € E}. This function, adapted from
social influence maximization [20], [16], favors candidates
that maximize the professional impact across their peers
via “co-reviewed” relation. (3) We adopted the same impact
function F' for Cite, yet via relation “citation”, to summarize

ISource code: github.com/PanCakeMan/FGS
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interdisciplinary papers of desired coverage of topics and their
influenced research.

We set r in a principled manner to preserve comprehensive
information. For each group, we inspected their r-hop neigh-
bors as r grows from 1 (one-hop neighbors) until no new
information e.g., node labels are included. For DBP, LKI and
Cite, 7 is set to be 3, 5 and 3, respectively. We set diameter d =
r consistently for d-summaries in d-sum. We also investigated
the impact of &, the number of patterns in S, and set k=20 by
default to allow a large enough coverage of groups V.

Algorithms. We implemented the following summarization
approaches for FGS, all in Java. (1) Our lossless approaches
are APXFGS, Online-APXFGS and Inc-FGS. (2) Grami is
adapted from [12]. It mines top-k frequent subgraphs as
summary patterns. (3) d-sum is a lossy summary approach
adapted from [41]. It generates k graph patterns that approxi-
mately match their counterparts. d-sum encourages “larger”
patterns to balance the informativeness and frequency of
summary structures. (4) MMPG is a lossy summary approach
adapting [34]. It computes k reformulated patterns from a
specified one to diversify the nodes they cover. (5) Mosso [21]
is a lossless graph compression method. It incrementally
updates super nodes and edges to summarize a dynamic graph
with small edge corrections. APXFGS was compared with
Grami, MMPG, and d-sum as pattern-based summarization ap-
proaches [26]. Inc-FGS is compared with Mosso (both lossless)
over dynamic edge streams to evaluate online performances.

Experimental results. We next presented our findings.

Exp-1: Effectiveness. Given a summarization algorithm A4,
groups V and a summary structure S, we used two normalized
measures below. (1) The coverage error of A, adapted from set
selection with fairness [18], quantifies the accumulated “gap”
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between the nodes covered by S from A (denoted as V) and

the required coverage of all groups. It is defined as C.(A)
max il —hili— il ‘
= ZVZ-EV a {leﬁV‘ |VSHV| 0}. Ce( ) € [0, 1] The

smaller C,(A) is, tllljel better. (2) We adapted the compression
ratio of A consistently with Mosso [21]. It quantifies the
representation size of S (including the edge size of summary
patterns |S| and correction sizes |S.C|), normalized by the
edge size of r-hop graphs of V (denoted as |Gy |). It is defined

as C,(8) = P Eses 2C (©,(8) € [0,1]). Smaller C,(S)

indicates more “compact” S with smaller reconstruction cost.

Effectiveness. Setting group size card(V) = 2, r = 2, k = 20,
and n = 100, and the cardinality constraint as [40,60] for
both groups, we reported the coverage error and compression
ratio of all the algorithms in Figs. 8(a) and 8(b), respectively.
Fig. 8(a) verifies the following. (1) Our algorithm APXFGS
and Online-APXFGS achieve the optimal coverage with C.
= 0, as they compute the summaries that satisfy the group
coverage constraints. (2) Grami discovers summary patterns
as frequent subgraphs and is more sensitive to cover major
population. Mosso focuses on compressed representation of
dense edge connections rather than group coverage. Both
have higher coverage errors. (3) d-sum and MMPG have a
comparable performance in C,, and both outperform Mosso
and Grami. This is because they both optimize a bi-criteria
objectives that balance pattern size and diversity, and allow
better node coverage compared with Mosso and Grami.

Fig. 8(b) tells us the following. (1) While achiev-
ing the optimal coverage, APXFGS achieves the small-
est (on average 0.39) compression ratio. It outperforms
Online-APXFGS,Grami, d-sum and MMPG by 8%, 27%,
41% and 79% in C,., respectively. (2) Mosso has comparable
performance and achieves 0.44 on average, due to its design
for compact summaries. (3) MMPG favors larger summaries
(by adding edges) to diversify the covered nodes. On the
other hand, d-sum introduces more compact structures with
approximate pattern matching.

We next evaluated the impact of several factors.

Varying k. Fixing card (V) = 2, n = 100, and r = 2, we
varied k from 10 to 50 and evaluated its impact to compression
ratio over DBP (Fig. 8(c)). (1) Larger k allows APXFGS,
d-sum and MMPG to summarize the neighborhood better with
more summary patterns and smaller edge errors. On the other
hand, using 50 patterns, APXFGS achieves a compression
ratio at 0.26 for an underlying graph of 1M nodes and 3.2M
edges, and outperforms Online-APXFGS, d-sum and MMPG.
(2) Mosso only generates a single summary graph and is
insensitive to k. APXFGS achieves a comparable compression
ratio, and outperforms Mosso when k > 20. This shows that
APXFGS can effectively exploit extendable summaries and
edge corrections to avoid introducing too many new ones. Our
results over other datasets are consistent, thus omitted.

Varying card(V). Fixing n = 240 r = 2, and k = 20, we
varied card(V) from 2 to 6 and evaluated its impact to C. over
LKI. For all groups, APXFGS ensures optimal group coverage
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Fig. 11. Case study: Graph Summaries for Talent Search

(Ce = 0) as its capability to guarantee the group coverage.
It outperforms d-sum, Grami and Mosso by 8%, 17% and
19% on average in C., respectively. As card()) increases,
all other pattern-based summarization methods have degraded
performance in coverage, due to that it becomes more difficult
for them to maintain the coverage error over more groups.

Varying n. Fixing card(V) = 2, k = 20, and r = 2, we varied
n (the size of nodes to be summarized) from 50 to 250 and
evaluate its impact on compression ratio over LKI. Fig. 8(e)
verifies that it is more difficult to maintain the compression
ratio when more representative nodes are to be covered even
when the group size is fixed. This is due to that larger amount
of neighborhood information needs to be summarized, causing
more edges to be either missed or added to edge correction.

Varying lower bounds. Fixing |V| = 2, k = 20 r = 2 and
n = 500, we varied the lower bound [ from 50 to 250, while
keeping the upper bound h to be 260, and evaluated impact of
coverage requirement to compression ratio over LKI. As shown
in Fig. 8(f), all methods perform worse in compression ratio
as more nodes and neighbors are required to be summarized.
With fixed number of summary patterns, APXFGS responses
with larger representation size to ensure optimal coverage,
yet still achieves a comparable compactness with Mosso. This
verifies its effectiveness under various coverage requirements.

Exp-2: Efficiency. For a fair comparison, we only com-
pared the cost of pattern-based summarization APXFGS,
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Online-APXFGS, Grami and d-sum. Using the same setting
as in Figs. 8(a) and 8(b), we report the efficiency of APXFGS,
Grami and d-sum in Fig. 9(a). APXFGS outperforms Grami
by,1.13 times on average. Indeed, APXFGS discovers sum-
mary patterns over selected representative nodes and their
neighbors, while Grami performs frequent pattern mining over
all group nodes. On the other hand, d-sum takes the least time
with lossy graph pattern matching, at the cost of high coverage
error (see Fig. 8(a)). Besides, Online-APXFGS outperforms
APXFGS by 1.2 times due to that Online-APXFGS only
incrementally evaluates patterns that are generated locally.

Varying k. Using the same setting as in Fig. 8(c), we report the
efficiency of APXFGS, and d-sum in Fig. 9(b). Grami always
output all the frequent subgraphs and is not sensitive to k
(thus not shown). All the algorithms take more time to output
the k£ summaries as k becomes larger. APXFGS outperforms
Grami 1.85 times and Online-APXFGS outperforms APXFGS
1.25 times om average. d-sum remains to be the fastest due
to lossy matching, yet does not guarantee group coverage.

Varying n and r. Using the same setting as in Fig. 8(e),
Fig. 9(c) reports the efficiency of APXFGS, Online-APXFGS,
Grami and d-sum. As n increases, all four methods take more
time to summarize more nodes from the group, due to larger
underlying neighborhood graphs to be covered. APXFGS
outperforms Grami by 1.6 times on average. Fixing n = 50,
k = 20 and card(V) = 2, we varied the hop constraint » from
1 to 5. Fig. 9(d) shows that APXFGS takes more time, and up
to 310 seconds, to generate larger patterns that can cover the
r-hop neighbors of the group nodes as needed. Grami (resp.
d-sum with d=5) lacks the support to such flexibility and yields
same results as top-k most frequent (resp. diversified and
lossy) summary patterns without group coverage guarantees.

Exp-3: Online Summarization. We simulated a sequence of
edges of LKI by (a) randomly selecting from 2 groups of
in total 10K nodes, and (b) inducing r-hop neighbor graphs
(r = 2) of the selected nodes and extract edges. We reported
the anytime performance of Inc-FGS and Mosso upon the
“seen” fraction of the graph. (1) As more subgraphs arrive,
all the algorithms require larger summary structures that lead
to higher compression ratio (Fig. 10(a)). APXFGS recomputes
the summaries from scratch with smaller error corrections and
summary patterns, and outperforms Mosso by 19% in C,.. (2)
On the other hand, Inc-FGS outperforms APXFGS by 1.56
times in processing batches of edge insertions, with summaries
of comparable size and optimal coverage (C. = 0), and
improves the efficiency of APXFGS better as larger batches
arrive (Fig. 10(b)). This verifies the incremental summarization
strategy in Inc-FGS is feasible for large graphs.

Exp-4: Case Study. We also report two case analysis to
evaluate how r-summaries support graph analytics with group
fairness requirement.

Talent Search. A pattern query Pg aims to search for candi-
dates in Internet industry. Over LKI, it retrieves 15200 can-
didates, among which 77% are males, and 23% are females,
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Fig. 12. Summarizing Pandemic Spreading for Immunization Strategies

which is not very desirable for the need of equal opportunity.
(Given r = 2, n = 100 and two gender groups V where each
group V; € V is enforced with an equal constraint [40, 60],
APXFGS identifies Sg as a 2-summary with pattern Pj.
Treating Sy as a “materialized view” over LKI, Ss efficiently
retrieves a smaller, representative, high quality candidates with
57% male candidates and 43% female candidates over 90
candidates in “Internet” industry. So helps reduced 82% of
the time cost for processing the query Ps. Finally, Py suggests
revisions to Pg to understand the results towards new queries.

Pandemic Analysis. Our second case study investigates how 7-
summaries help pandemic analysis and group immunization.
Recall the real-world pandemic spreading network G’ [1] in
Example 3. There are 10000 citizens, among which 58% are
young citizens (age < 50) and 42% are seniors (age > 50).
Given 10 seed nodes, and 100 vaccine budgets, we simulated
the group immunization [48] over G’. We tested different
configurations for the group immunization, and report two
vaccine distributions [80,20] (by setting the bound (80,30)
for age group 1 and (20,20) for age group 2) and [20,80],
respectively. By setting vaccine distribution as [80, 20], 315
citizens are infected while 116 are infected for [20,80],
indicating the latter a possible better vaccine strategy. The
patterns Pjg and Pj; further suggests frequent social contact
patterns from the selected seeds. Both well summarize the
spreading patterns close to “individual popularity” (P;o) and
“nominations contact” (P;1), as consistently observed in [19].

In general, 85% (resp. 90%) summaries are trees, and 15%
(resp. 10%) are DAGs, for LKI (resp. pandemic network). We
remark that these results only apply to the selected require-
ments. Our algorithms readily apply to various configurations.

IX. CONCLUSIONS

We have introduced a class of r-summaries to summarize
node groups and their neighbors with fairness constraints (in
terms of group coverage constraints) in graphs. We have veri-
fied the hardness of the summarization problem, and provided
feasible approximation algorithms and incremental algorithms
to compute and maintain r-summaries, with guarantees on
coverage and quality properties. As verified analytically and
experimentally, our methods are feasible to support graph
summarization among other applications. A future topic is to
support more types of fairness constraints.
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