2023 IEEE 39th International Conference on Data Engineering (ICDE) | 979-8-3503-2227-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICDES5515.2023.00134

2023 IEEE 39th International Conference on Data Engineering (ICDE)

GALE: Active Adversarial Learning for Erroneous
Node Detection in Graphs

Sheng Guan Hanchao Ma
Case Western Reserve Univ. Case Western Reserve Univ.
sxg967 @case.edu hxm382@case.edu

Abstract—We introduce GALE, an active adversarial learn-
ing framework to detect nodes with erroneous information in
attributed graphs. GALE is empowered by a new adversarial
active error detection framework, which interacts active learning
with a graph generative adversarial model to best exploit limited
labeled examples of erroneous nodes. It dynamically determines
diversified query nodes in batches with bounded size in terms
of node typicality to enrich a pool of examples, which in turn
provides representative examples to best train an adversarial
classifier to capture different types of errors. Moreover, GALE
provides an annotation algorithm to suggest a context of possible
correct attribute values and error types, to facilitate the labeling
of query nodes. We show that using limited queries and exam-
ples, GALE significantly improves competing methods such as
constraint-based detection, outlier detection, and Graph Neural
Networks (e.g. GCNs), with 32%, 31%, and 17 % gain in F-1 score
on average, and is feasible in learning cost for large graphs.

I. INTRODUCTION

Error detection in attributed graphs is critical for high-
quality graph data and downstream analysis in e.g., knowledge
graphs and social networks [44]. In practice, there often exist
multiple types of errors in the node attribute values. Several
methods have been studied to detect such erroneous nodes.
(1) Errors can be defined as violations of data constraints [18],
anomalies [37], or inferred with statistical models [40]. These
methods can be accurate for specific types of errors, yet may
not achieve good recall to capture multiple types of errors [22].
(2) Node classifiers [22], [43] can be trained from examples
of errors, by solving a node classification problem. Another
approach is to train individual “base detector” with ensemble
learning [57] to improve the recall. This often requires suf-
ficient training examples from matching class of errors [56].
High-quality labeled examples require heavy manual effort,
and remain a luxury for error detection in real-world scenarios.

Consider the example below from a real knowledge graph.
Erroneous nodes are chosen from their real editing history!.

Example 1: Fig. 1 illustrates a fraction of a knowledge graph
about films (series) from Wikipedia. A node carries a type
(e.g.film) and a set of attributes (e.g., “name”) with values
(e.g., “Avengers: Infinity War”). An edge denotes a relationship
between nodes (e.g., “subsequent’). There are four erroneous
nodes with the type “film” (with the errors marked in red).

o Case I: The Film node v, has an incorrect release year

“2014”, which should be “2015”;

'https://www.wikidata.org/w/index.php?title=Q1765358&action=history

Mengying Wang Yinghui Wu

Case Western Reserve Univ. Case Western Reserve Univ.

mxw767 @case.edu yxw1650@case.edu

name: Captain America: The Winter Soldier!
release year: 2014
box office: $714.4 million

name: Avengers: Age of Ultron
release year: 2014
box office: $1.403 billion

score: 6.8/10 score: 7.6/10
V2 V; (film)
name: C"P;‘"'"AW’”"‘“-' (1ilm) | subsequent directedBy
Civil War P e LT Vy (director)
release year: 2016 1 1 Y0
box office: $1.153 billion vjl directedBy \[rame: Russo Brothers|
score: 3.8/10 (ilm)| sussequens {iirecreaBy

1

Vs (film)
name. Avengers:Endgame
release year: 2019
box office: $2.198 billion
score: 8.2/10

Fig. 1: Detecting Erroneous Nodes in Knowledge Graphs

name: Avengers: Infinity War
release year: 2018

box office: $2.016 billion
score: 7.6/10

o Case 2: The Film node v3 has a wrong rate score “3.8/10”
that should be “7.7/10;

o Case 3: The Film node v4 has an inaccurate record of
$2.048 billion at the worldwide box office; instead, a
correct value should be $2.016 billion;

o Case 4: Film vs makes $2.798 billion at the worldwide
box office instead of $2.198 billion, which is inaccurate.

Consider the following options.

Data constraints. Rules and dependencies that enforce equiva-
lence on node attribute values [18] may not capture Case 1, as
the true value “2015” cannot be inferred via node equivalence
or is hard to be specified by rules for an individual node. A
“negative” rule [8] may specify that “if two films are connected
by ‘subsequent’ relation, then their release years must be
different”. Nevertheless, either v; or ve can have a wrong
release year “2014”, which cannot be distinguished by the rule
due to the vagueness of undirected “subsequent” relation.

Outlier detection [37], [45] may capture Case 2 error at node
vs, given its significantly low value (an outlier) over the
attribute “score”. Nevertheless, the errors of the box office
(Case 3 and Case 4) at node vy and node vs cannot be easily
captured by an outlier detection process, since both values are
in a “normal” range of value distribution.

A single approach may not capture all the errors. Stacking
them to a sequential process, or using simple ensemble strate-
gies (e.g., union or voting) may improve the recall but not the
overall accuracy due to overlap or false positives [1], [22].

Train a classifier [12], [22]. One may train a node classifier
to distinguish correct and erroneous nodes given their learned
representation (“node embeddings”). For example, films vs
and vy are “close” in terms of similar embeddings from

2375-026X/23/$31.00 ©2023 IEEE 1705
DOI 10.1109/ICDE55515.2023.00134
Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

“score”, “release year” and “box office gross”. A classifier
may infer that v4 is likely to contain errors given vs as
an example of an erroneous node [12], [22]. Learning-based
methods, on the other hand, require a sufficient set of labeled
examples. This can be hard to build from scratch. a

It has been verified that active learning [16], [42] can
improve error detection especially when training examples are
sparse. For example, one may choose a few nodes to query an
oracle (e.g., a data analyst) for a label (“correct” or “error”),
and update the classifier to detect errors given the enriched
examples. Although desirable, challenges remain for active
learning-based error detection, especially for graphs.

Query Selection. Effective active learning often requires
proper choices of queries [34], [48], [48]. This is in particular
nontrivial for active learning in graph data, as traditional
sampling strategies may fail [38]. Moreover, there are often
more than one type of error in real-world graphs [1], [22],
[44], [49]. How to choose a representative set of queries for
the diversified error types to best exploit the oracle, especially
with limited or even no labels to start with?

Labeling Effort. Most active learning assumes an oracle with
the full capability to provide correct labels. In practice, it is not
easy to obtain a true label by inspecting the query node and
its attribute values alone. (1) The low-quality labels remain a
major issue [13]. (2) Even with the new labels obtained from
the oracles, the labeled nodes (“training examples”) may still
be sparse and biased. Adversarial learning has been verified to
be effective by augmenting training examples with synthetic
ones [22]. We are interested in combining active learning and
adversarial detection to best exploit the limited examples.

Example 2: A desirable approach allows us to “cold start”
error detection even when no example is available. One may
iteratively choose unlabeled nodes and query an oracle (a
validated detection method or a human expert) and obtain
examples to improve a node classifier. (1) An initial round
captures vs as an erroneous node (with e.g., outlier detection).
(2) Observe that (a) {v1,vs,v4,v5} forms a cluster of films
directed by the same director, and (b) v4 is closer to the
“center” of the cluster in terms of node similarity. Choosing
{v2,v4} as a query set improves the decision boundary of the
classifier, which in turn distinguishes vs and v; as erroneous
and correct nodes, respectively. (3) Moreover, the neighbors of
vy contain rich information (highlighted in Fig. 1) and can be
annotated with error types and statistics to reduce the labeling
effort and optimize the choice of follow-up queries. a

These call for an effective detection framework with the
following desirable properties. (1) It automatically selects
representative query nodes that, if labeled, can best improve a
classifier in distinguishing erroneous nodes from correct ones.
(2) The query set properly covers diversified classes of errors.
As suggested by the above example, the choice should balance
both the diversity and the coverage of different types of errors.
(3) The oracle is consulted by a bounded number of queries.

This requires effective exploitation of limited examples via
e.g., data augmentation [51]. (4) Moreover, it actively provides
useful auxiliary information to help the (human) oracle to
derive the labels for “hard” queries. Can we enable an iterative
error detection framework with all these desirable properties?

Contribution. This paper introduces GALE, a Graph Active
Learning framework for Errorenous node detection. Our ap-
proach is to improve a node classifier M for error detection, by
building an iterative framework that interacts active learning,
data augmentation, with adversarial learning that can maxi-
mally exploit the labeled examples obtained from an oracle.
GALE has the following novel features.

An Active Adversarial Framework (Section IIT and IV). GALE
interacts active learning with adversarial learning in a sin-
gle framework, where a node classifier M is continuously
improved by examples of erroneous nodes that are obtained
and enriched from a query generator. By querying high-
quality nodes for training M, GALE improves error detection
with gained new knowledge. By casting error detection as
a “two-players game”, GALE further improves the classifier
with augmented examples. These allow GALE to cold start
error detection without initial examples, achieve desirable
performance in both precision and recall using a small amount
of examples, and for capturing multiple types of errors.

Query Selection with Diversified Typicality. (Section V).
GALE admits high-quality query nodes that are both
representative (“typicality””) and cover different type of errors.
We formulate the intuition in Example 2 as a bi-criteria
optimization problem captured by a diversified typicality
function, and introduce a 2-approximation algorithm to
approach the best queries. It then dynamically selects query
nodes in small batches, to continuously improve the decision
boundary of the classifier M.

Query Annotation (Section VI). GALE also extracts useful
auxiliary information and annotates the query nodes and their
neighbors. We introduce an annotation algorithm to track such
information. These information help users to verify and label
the query nodes, understand possible error types, and facilitate
further inspection for query selection and data repairing.

System Evaluation (Section VII and Section VIII). We have
developed a prototype system GALE that nontrivially enhances
a pilot prototype [22] with the active adversarial framework.
Our experiments using real-world graphs verified the effective-
ness of GALE. It improves GEDet with a gain, on average, of
4.98% and 2.2% in recall and F-1 score, respectively, with a
small batch of queries in only 5 iterations and additional train-
ing cost less than 300 seconds (see details in Section VIII).

Related Work. We categorize the related work as follows.

Error detection in graphs. While error detection for relational
data has been extensively studied [26], effective error detec-
tion in emerging graph data is much less addressed. Several
methods have been proposed to detect errors in graphs. (1)
Data dependencies are extended to graphs [18], [28], [36] to

1706

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

capture errors as violations of value constraints, contextualized
by graph patterns. (2) Embedding-based methods [12], [22]
exploit node and topological features to learn node classifiers
to detect errors in graphs. For example, GEDet [22] utilizes
semi-supervised generative adversarial networks (GAN) to de-
tect heterogeneous errors and to improve the recall of error de-
tection. PGE [12] jointly leverages textual and graph structures
to learn embeddings of knowledge graphs for error detection.
Unlike prior methods, GALE is empowered by a generative
active adversarial framework, which continuously exploits new
knowledge from oracles to improve error detection.

Graph Representation Learning. Graph representation learn-
ing aims to properly map nodes to low-dimensional vectors
in the embedding space [11], [53]. Graph neural networks
(GNNs) [21] have been verified to be effective for graph
representation learning. GNNs take the topological structure
and nodal attributes as input and learn encoder functions that
aggregate the node’s local neighborhood, with variants such
as GCN [30] (which applies a first-order approximation of
spectral graph convolutions), Graph autoencoders (GAE) [31],
[52] (that learns embeddings to minimize reconstruction error).

Adversarial Learning. Adversarial classification [15] aims to
optimize classifiers given the optimal strategy of an adversary.
It treats the classifier and an adversary as “Two-players”,
where the classifier (discriminator D) tries to accurately pre-
dict the classes of instances, and the adversary (generator G)
attempts to “fool” the classifier by manipulating instances. The
competition leads to better classifiers [3], [41]. Generative
adversarial networks (GANs) are used to generate synthetic
data that approximates real data distribution by jointly learning
a generator G and a discriminator D. GALE nontrivially
interacts with GAE to learn node representation for error
detection and with GAN to mitigate the impact of biased labels.

Active Learning. Active learning has demonstrated its success
in error detection for relational data [25]. It tries to overcome
the labeling bottleneck by asking an oracle, e.g., a data analyst,
to label informative unlabeled data (“‘queries”) chosen by a
query selection strategy, to construct or enrich the training
data. As such, it maximizes the performance gain of a model
with as few annotated samples as possible. The main goal is
thus to sample a bounded number of queries that can best
(iteratively) improve model quality. Several query selection
approaches include Random sampling [48] (selecting instances
uniformly in random), Entropy-based sampling (favors in-
stances with large information entropy), and Margin-based
sampling [19] (samples instances that have lowest margin
between the two highest softmax outputs of embeddings). It
has been observed that traditional strategies may not work
well for graph data [38], due to that the choice tends to be
biased to “informative” yet suboptimal queries, which are not
necessarily reflecting true distribution. In contrast, GALE (1)
exploits adversarial learning to learn the real distribution of
errors, and (2) uses diversified typicality to choose queries that
are consistent with the distribution to avoid biased selection.

The recent Clustering-based sampling has gained attention

1707

in the low-budget active learning regime, and has been ex-
perimentally verified to outperform random- and uncertainty-
based methods (e.g., margin-based and entropy-based sam-
pling) [46]. It picks unlabeled examples that are nearest to
the clustering centroids. We propose a new query selection
strategy that maximizes typicality and diversity in terms of
both node similarity and topological features, and provide a
greedy algorithm that optimizes the query selection with 2-
approximation. These are not addressed by prior work.

Recent effort investigates active learning for graph analysis.
GraphUCB [16] issues a limited number of queries in the
unsupervised setting to detect node anomalies. RIM [55]
derives a selection criterion for active graph representation
learning based on graph convolutional networks or Label
Propagation. It mainly resolves noisy labels from oracles, by
maximizing a reliable influence from consistent labels given
by the models and oracles. These methods are not designed
to cope with multiple error scenarios in the graphs, and thus
cannot be directly applied for error detection in graphs.

Adversarial active learning. Adversarial active learning is pro-
posed to further integrate the adversarial learning with an ac-
tive learning query engine. For example, SEAL [35] proposes
a semi-supervised adversarial learning structure and shows that
the graph embedding network and the discriminator can work
together to improve the classifiers.

To the best of our knowledge, GALE is the first framework
that integrates and interacts adversarial learning, graph rep-
resentation learning and active learning with limited query
budget in an iterative error detection process, for effective
multi-type error detection in graphs. Moreover, GALE (1)
provides new query selection strategy to sample typical and
representative nodes for multiple types of errors; and (2)
exploits query annotation that can help human oracles label
the nodes and facilitate dynamic query selection during the
active learning process. These are not addressed in prior work.

II. ERROR DETECTION IN GRAPHS
We start with several notations used by GALE.

Attributed Graphs. A graph G = (V, E) consists of a set of
nodes V' and a set of edges £ C V x V. Each node v € V' is
a tuple (v.Ay,...v.A,) defined on n attributes, where v.4; =
a; (i € [1,n]) denotes that the attribute A; of v has value a;.

GALE processes attributed graphs in their feature represen-
tation. A feature representation of G is a pair G = (X¢, Ag).
(1) X¢ is a matrix of node features, where each row X, is a
vector encoding of a node tuple v € V. The encoding can be
obtained by e.g., word embedding or one-hot encoding [20].
(2) Ag is the adjacency matrix of G.

Erroneous Nodes. We assume the existence of a “ground
truth” node v* for each node v € V' that carries correct values
of all the attributes of v. A node v is erroneous if there exists
an attribute A, such that v.A % v*. A (v.A can be ‘null’ that
denotes a missing value). Otherwise, v is correct.

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

Symbol Notation
G=(V,E) Heterogeneous graph with nodes V' and edges E
o . Vr:Labeled training nodes;
Vr=Viuv V¢ erroneous nodes; V“{:gcorrect nodes
feature representation of G:

(Xe, 4c) (X¢: feature matrix; Ag: adjacency matrix)
h, (%) the embedding of node v (at layer n)
H, graph embedding matrix at layer n
g, D generator and discriminator of SGAN

L(G), L(D) loss function of G and D
Ls, Lo supervised and unsupervised loss of £(D)
S query selector
A query annotator

TABLE I: Table of Notations
An example denotes a labeled node in G, which is a pair

(v,1), where [is either ‘correct’ for a correct node v, or ‘error’
if v is an erroneous node. v is unlabeled If [is unknown.

Error Detection. We formulate error detection in a graph
G=(V, E) as a node classification problem. The training nodes
Ve =Veuve (V- C V) is a set of examples, where V*
(resp. V) refers to a set of examples of erroneous (resp.
correct) nodes. Given GG and V7, the error detection is to train
a classifier M that accesses G to infer the labels of a set of
unlabeled nodes from V' \ V.

Queries and Oracles. Given a node classifier M, GALE aims
to exploit active learning with an oracle O to improve the
performance of M. (1) A query q is an unlabeled node (v,)
that requests for the real label of a node v. Once assigned a
label, g is converted to an example (v, ‘correct’) or (v, ‘error’).
(2) An oracle O can be queried and returns the true label O(q)
of a query ¢. In practice, an oracle can be a human expert, or
be simulated by invoking and ensembling (with e.g., majority
voting) a set of user-defined classifiers called base detectors.
GALE admits a library of such detectors W.

III. FRAMEWORK OVERVIEW

A. An Adversarial Active Learning Framework

Error Detection as “Two-players Game”. GALE casts error
detection into a two-players game between a generator G and
a discriminator D, and derives the node classifier M from D.
It exploits adversarial detection, with the following principle.

o A generator G aims to “fool” the discriminator D by rep-
resenting G with synthetically generated representations
that as close to their true counterparts as possible.

o The discriminator D meanwhile learns to distinguish
nodes with real labels from the synthetic ones from G.

A “competition” between G and D should improve the
performance of both: G learns how to better simulates the
distribution of the real labels with synthetic ones, and D learns
the node embeddings that better discriminates the synthetic
errors, real errors, and correct nodes.

Intuition. Let us consider a labeled set L = {(x,y)}, where x
represents a node and y € {‘error’(y = 1), ‘correct’ (y =
2)}. GALE introduces a third type of label called ‘synthetic
error’ (y = 3) to annotate nodes with synthetic errors from G.
We then enforce a learning objective of D in the form of:

ngXEIN]L log Pp(y|lz,y < 2) +Eyplog Pp(y < 2|z)
+ Eppg log Pp(3lz) (1)

where p and pg refers to the distribution of the real data and
its synthetic counterpart from G, respectively. The first, second,
and third terms are to maximize the log conditional probability
for (1) the labeled nodes with true labels (examples), (2) the
unlabeled nodes (as either ‘error’ or ‘correct’), and (3) the
generated synthetic examples (‘synthetic error’). As such, D
is able to better distinguish synthetic errors, real errors, and
real correct nodes. This yields more accurate classifiers M.

Joint Learning Scheme. In a nutshell, GALE improves G and
D in a joint learning process computes a node embedding ma-
trix (derived from the classification layer of D) that minimizes
a weighted combination of supervised loss (from examples
V) and an unsupervised (feature matching) loss. A node
classifier M is yielded by converting the matrix (via a softmax
function) to a matrix of class probabilities for the unlabeled
nodes in G. The label with largest probability is chosen for
each node (as either “error” or “correct” for error detection).

Graph Augmentation. This scheme has been verified to be
effective for error detection in graphs [22], [23]. The specific
scheme is enabled by a graph augmentation process [22],
which (1) leverages a library U of base detectors (rules,
constraints or string transformations) to inject synthetic errors,
and (2) convert the augmented graph to a compact featurized
encoding (Section II) by learning a graph autoencoder GAE of
G, yielding representations of real data Xz and synthetic data
Xg, respectively. The generator and discriminator then play
a competitive game over the compact encodings to improve
the decision boundary by specifying and optimizing the above
objective. GALE adapts the above scheme to iteratively update
the discriminator D and the classifier M upon receiving new
examples from the oracle O (see Section IV).

Active Adversarial Detection. Despite its effectiveness [22],
[23], the above scheme requires sufficient high-quality exam-
ples. Moreover, the learning of M is a “one-shot” process, and
cannot evolve upon new error types. To adapt M to sparse,
biased and possibly new examples, GALE interacts active
learning and adversarial learning in an iferative framework.
(1) Given an oracle O, graph G, and a current classifier M,
it chooses from unlabeled nodes a set of queries and consults
O to obtain their labels. The selection of the queries follows
a general strategy that favors nodes that properly represents
multiple error types in G. This enriches a pool of examples that
are in turn used by the adversarial detection scheme. GALE
then updates the discriminator D in the “two-players game”,
and derives the classifier M accordingly from D.
(2) The learned classifier M is applied to detect new erroneous
nodes in GG. This in turn improves the quality of future query
selection, mitigating the bias of active learning [38].

The above steps runs in multiple iterations. As such, GALE
allows us to query the oracle and gain new knowledge that

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

graph G=(X, A) Query Selection __ Query Annotation _
b T ; 5
TS S H L ; v |
1 \\0 o QV /’ \\ \‘/,\ v/l : : :
I I : queries | —
GAE ! —a > .
- s 9 Al
augment. '____[____4\ ________ ; . :
annotated
XS Xg| . . new queries
v N > examples o}
L 9 D | H,(Xp) 0(9)
. — =
. _generator d i?‘?r_"l*‘_“?a_‘t_o_r o o'correct’ Vr
M e ‘error' . Examples Oracle
(Classifier) o'error' (synthetic) %)

Fig. 2: Overview of GALE Framework

approach the real distribution of unknown erroneous nodes,
thus improving the accuracy of error detection by continuously
refining the decision boundary of M.

B. Modules and Models

We next introduce the major modules in GALE. These mod-
ules and associated models specify the principled adversarial
active framework into an iterative error detection process.

Semi-supervised Adversarial Module. How to maintain and
improve a node classifier M for error detection as “two-
players game”? GALE specifies the adversarial training of M
in an iterative semi-supervised generative adversarial module
(SGAN). This module is responsible for dynamically main-
taining M upon new examples from the oracle O for error
detection. Given a set of new examples, it works in two stages.

Initialization. SGAN initializes the joint learning of G and D
from scratch, and derives the classifier M from D. SGAN
takes as input the node representation from graph G that in-
cludes synthetic erroneous node features X g and real example
features X via the graph augmentation process (see Section
IV). The classification layer of D predicts the class label for
unlabeled nodes (“real” or “error’).

Update D. Upon receiving changes in Xr due to the new
examples obtained from the oracle O, SGAN incrementally
updates D by updating its parameters in response to the
changed examples V-. M® is derived accordingly.

That is, D* is maintained at iterations 1 as follows:

(G,D°) = SGAN(G, V2, X, X5);
D' = SGAN(G, V}, Xg, X5s)

The module also forwards H:(Xg), the node embeddings
learned on an intermediate n-th layer of the discriminator D to
Query Selection module Q to facilitate the selection of queries
from unlabeled nodes in future iterations.

Query Selection Module. How fo select a small set of queries
to improve error detection? GALE aims to improve M by

obtaining additional labels from oracle O. The query selection
module utilizes a Query Selector S to generate promising
queries from the unlabeled training node set, and query O for
additional true labels. The model S initializes k queries with
clustering-based sampling [46] from unlabeled nodes. Here k
is a local budget that specifies the number of queries allowed
per iteration. In the follow-up iteration ¢, it exploits the node
embeddings H:~!(Xg) learned by D*~*, and examples V!
from the last iteration, and returns query set Q' with bounded
size k, with a goal to represent diversified errors.

Q" =S8(0,0,G,k);
Q' =S(H. ' (Xg), Vi, G, k)

The queries are sent to be enriched with available auxiliary
information (see Query Annotation Module), assigned with
true labels (thus converted to examples AV7), and featurized
to enrich the example features X to improve M.

Query Annotation Module. How to adapt active adversarial
[framework for iterative error detection? To escape from lo-
cally biased choices [38], GALE dynamically chooses promis-
ing queries by extracting and aggregating useful annotated
information of the queries Q, and enrich Q to an annotated
counterpart Q. By default, GALE collects and encodes the fol-
lowing information, whenever applicable: 1-hop neighborhood
induced subgraph of Q, most influential labeled nodes to Q,
degree assortativity [38], erroneous attribute values detected by
base detectors from W [22], among others (see Section VI).
The benefit is twofold: it provides useful local and global
structural information of query nodes in G that facilitate the
oracle O for labeling, and allow query selector S to re-estimate
the node importance for dynamic selection in future iterations.

Specifically, a query annotator A provides O and S with
annotated Q in each iteration as follows:

Q0 = A(Q%, ¥, G);
Qi = A(Q",1,G)

1709

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

The module also naturally augments the examples with the
new ones by querying the oracle O with the queries Q:

V7 = 0(Q%;
Vi=Vituo(Qi)

C. Workflow of GALE

Putting the modules together, we next describe the workflow
of GALE (illustrated in Fig. 2, with an algorithmic description
of the learning process in Fig. 3). It works with a graph G,
an oracle O, and (optionally) a library of base detectors W.

Initialization. GALE “cold starts” the framework by initial-
izing a set of queries Q with annotated information from W,
which provides an initial set of detected errors in attributes,
whenever applicable (lines 1-2). It then consults an initial
verification of Q with oracle O (line 3) to initialize the
examples. It also invokes a procedure GAugment to preprocess
G and generates the feature representation of real (resp.
synthetic) examples X (resp. Xg) following [22], to enable
the adversarial learning of the generator G and discriminator
D. This yields an initial node classifier M (lines 5-6).

Iterative Improvement. At iteration i, GALE interacts the
modules as follows. (1) With the learned embeddings H,,(Xr)
of the real examples from D in the last round, it selects a
representative query set Q (line 8), and enrich the queries with
their auxiliary annotated information (line 9). (2) It consults
the oracle O with the batch of new queries and augments a
sampled set Vr from initially labeled examples V7 as V7.
The purpose of sampling is to let the representative query set
Q' weigh more when updating the classifier M compared to
using the whole Vi (line 10-11). (3) The adversarial learning
is then activated to update D with newly updated examples;
The classifier M along with the learned embeddings are then
updated accordingly (lines 12-13). Here the procedure SGAND
is a variant of SGAN. Instead of retraining both G and D
from scratch, it incrementally updates D in response to the
necessary change of the examples Vir (see Section IV).

The above process repeats up to (user-defined) 7" iterations,
and issues at most 7"+ k queries. The improved classifier M is
then returned (line 14). In practice, GALE can be “interrupted”
at any iteration to respond to error detection with a current M.

We next introduce the details of iterative semi-supervised
GAN mododule, query selection module and annotation mod-
ule, in Sections IV,V, and VI, respectively.

IV. ITERATIVE ADVERSARIAL DETECTION

SGAN enforce G and D to compete in a two player’s game,
yet assumes fixed examples. We formulate an optimization
problem to minimize a bi-criteria loss in an iterative semi-
supervised setting. We use the following construction.

Loss Function of D. To adapt the discriminator D to recognize
new erroneous nodes and differentiate real and synthetic labels,
we quantify the loss of D as L£!(D) = LL + AL, where (1)

Algorithm GALE

Input: G(V, E), library U, integers k, sampling rate n and T,
Output: (improved) SGAN classifier M.

1. set V= ; set Q := (; integer i:=1;

matrix Xg := (), matrix Xy := (); matrix H,, := (;

/* preprocess G and initialize models */
Q:=8(0,0,G.k); Q= AQ,¥,G);

Vr = 0(0);

(Xgr, Xs) := GAugment (G,V);

(G,D) := SGAN (G, V1, XRr, Xs);

derive an initial classifier M and H,, from discriminator D;
/* iteratively improve the classifier */

7. while : < T do

S

8. set Q° = S(Hw(XRr), VT,G, k);
9. set QF := A(Q', ¥, G);

10. set Vir := sample(Vr, n)

11. set Vi = VU 0(90);

12. D' := SGAND(G, Vi, X g, Xs);

13. update M and H,, from D';
14. return updated M,

Fig. 3: GALE: Learning Framework

a supervised loss L% quantifies the loss of accuracy on node
label classification (‘error’ or ‘correct’) for a current set of
examples V7i—; and (2) an unsupervised loss L, quantifies the
loss of accuracy on distinguishing synthetic or real labels.
Unlike [22] that assume a fixed learning objective, we guide
the learning of D to minimize the supervised and unsupervised
loss given the current examples and latest error distribution.

Supervised Loss. We define the supervised loss as:

‘C; = Z E(f@(XU)JU)

veVi

where V.- is the i-th batch of the examples obtained from
the oracle O, with [, the ground truth label of query v. 6 is
the learnable parameter and fy(x,) is the prediction of node v.
£(-,-) measures the difference between prediction and ground
truth label using e.g., cross entropy.

Unsupervised Loss. The discriminator D also aims to classify
the real or synthetic examples as accurately as possible by
minimizing the unsupervised loss £,. We define £, as:

Ly = ~Eq xyllog(l — D(@,))] ~ Ea,mgixsllog Dla,)

where D(x,) is the predicted synthetic probability of v.

Loss Function of G. The generator G aims to minimize the
difference between the synthetic graph embeddings Xg and
the real counterpart from Xp. We define the loss function
L(G) of G to measure the feature matching loss [47].

L(9) = ||Ex,exph(x0) — Exs ex h(G(x)))| 2

where E(-) computes the expected value of a graph feature
matrix. The generator is trained to match the expected value
of the embeddings on an intermediate layer of D between
the features of real examples h(x,) and synthetic erroneous
counterpart h(G(x/)). Intuitively, G has higher chance to fool

1710

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

Procedure: SGAN (G, Vr, Xgr, Xs)
initialize the parameters of G and D;
update £(D) with Vy Xg, and Xg;
while G and D do not reaches a Nash equilibrium do
update G(-) by descending gradients of losses:
Vog L(G)
update D(-) by descending gradients of losses:
Vo, L(D)
reduce learning rate 3
return D;

Procedure: SGAND (G, V7, Xg, X5s)

XA R W~

1. update £'(D) with V7 Xg, and Xg;

2. Update D(-) by descending gradients of losses:
3. Vo, L(D)

4. return D;

Fig. 4: Procedure SGAN and SGAND

the discriminator D by faking node embeddings closer to the
real counterpart, by minimizing £(G).

The models G and D consist of a sequence of transpose
convolution and batch normalization layers, adding regulariza-
tion layers e.g., dropout layers to prevent overfitting. D takes
real feature matrix X r and its synthetic counterpart X that is
generated from G as inputs. Letting h,, (x,) be the embeddings
on an intermediate layer of D. H! (Xp) refers to the learned
real node embeddings for real feature matrix X at iteration .
The matrix H: (X) is then passed to Query Selection module.

Procedures SGAN and SGAND. GALE trains generator G and
discriminator D by iteratively minimizing their corresponding
losses in procedure GANDet, as shown as Fig. 4. The main
training loop (lines 3-8) jointly optimize the generator loss
L(G) and discriminator loss £(D). We optimize the gradients
by applying Adam [29] and update D and G.

We distinguish SGAND with SGAN, a variant that follows
the joint learning scheme as in SGAN but only maintains the
discriminator D, by iteratively minimizing the corresponding
supervised loss. It incrementalizes the learning of SGAN, by
performing necessary updates to D in response to the change
of the supervised loss L£!(D) (line 1) due to enriched V7.

V. QUERY SELECTION MODULE

We next describe the query selection strategy of GALE. We
first introduce a notion of diversified typicality to measure the
quality of the queries in terms of “typicality” and diversity.

A. Diversified Typicality

Clustering Typicality. The typicality of a query in active
learning strategies [24], [46] measures the quality of a query
in terms of its closeness to the centroid of a proper clustering.

An intuition is that when the clustering is treated as a density
function mapping, the data point that is closer to the centroid
indicates that it falls into a high density region that is easier
to be classified. It has been observed that such queries [24],
[46] achieves good performance especially in the low-budget
regime (where only limited queries are allowed). Example 2

consistently illustrates this intuition. Based on this intuition,
we define the clustering typicality of a node v as follows:

clusT(v) = (||h(v) — C(U)Hz)_l

where (1) ¢(v) is the centroid of the cluster that v belongs
to, where the clustering is performed on the node embedding
space, and (2) h(v) refers to the embedding of v. The
embedding is readily obtained from H’ (Xr) at the i-th round
of execution of SGAND (line 11 of Fig. 3). Intuitively, it
computes the inverse of the Euclidean distance of the node
embeddings between v and its cluster centroid.

Topological Typicality. The influence of topology plays an
important role in message-passing based graph learning [10],
[38], [50]. Given an unlabeled training node v € V, the label
of v is influenced by the labels of other nodes that can reach
v via aggregation through edges. This can be characterized by
label propagation [50], approximated by performing a random
walk from the labeled nodes to v to derive an aggregated “soft
label”. The node v bears “influence conflict” [10], if other
nodes with different labels are likely to cause a “conflict” to
the soft label. The smaller the likelihood is, the closer v is to
the center of its topologically determined label class.

Given an unlabeled node v, the topological typicality of v,
denoted as topoT(v)), is defined as:

topoT(v) =1—-E,up, . Z
1€]1,2],1#L, (v)

1

! 1€Cy

where [€ {’error’:1, ’correct’:2}, which is predicted by
discriminator D; C; denotes the unlabeled training node set
with predicted label [. |C;| denotes the total number of nodes
in C;. The normalization item 1/|C;| is added to make the
influence from the “error” and “correct” classes comparable
when computing topoT(v). Ls(v) denotes the estimated class
type of node v with soft-label obtained in Label Propagation
algorithm [58], and P, is the Personalized PageRank prob-
ability vector for node v, which indicates a distribution of
influence exerted outward to all the nodes in G from node v.

Updating soft labels. In each iteration, GALE maintains the
soft labels for unlabeled nodes as follows.
o LI(v) = argmax; Y", where Y is the initial label
distribution from X Ry
o Li(v) = argmax; PY""; where (1) Y"* is obtained by
incorporating new node labels from oracles (if any) to Y™*
in iteration i — 1, and P = a(I — (1—a)D~2 AD~2)~ 1,
Here I is the identity matrix, « is the random walk restart
probability, A = A + I, A is the adjacency matrix, and
D is the diagonal degree matrix of A.

Typicality. We define the typicality of a node v as
T (v) = clusT(v) - topoT(v)

Given a set of queries Q, the typicality of Q is defined as
T(Q) =2 e T(v).

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

Procedure: QSelect (H,(Xr), V71, G, k)

1 set @ :=0;set U=V \Vr,;

2 C(U) := ClusterU(U, Hn(XR));

3. while |Q| < &k do

4. compute v € U \ Q that maximizes B, (Q, C);
5 Q=QU{vhEU=U\Q;

6

return Q ;

Fig. 5: Algorithm QSelect

Remark. Clustering-based strategies [24], [46] captures typ-
icality by choosing queries that are close to their cluster
centroids, yet ignores the impact via the topological properties.
PageRank centrality [38] measures the level of topological
influence of a node and favors nodes with large PageRank
centrality. Nevertheless, node attribute values are ignored [38].
We introduce diversity typicality that (1) integrates clustering
typicality, node attribute embeddings (with feedback from
H;/(X r)), and topological influences as a whole; (2) dynami-
cally determines node importance in each iteration. This makes
GALE more robust to various error distributions and as new
examples arrive, as verified in Section VIIL

Diversified Typicality Selection. Given a graph GG with unla-
beled training node set U, a graph node embedding H,,(XRr),
and query budget k, the diversified typicality selection problem
is to compute a set of queries Q C U such that

Q = argmax(7(Q') + A

S d(h(v), h(v"))))

v, €Q’

Here d(-) computes the Euclidean distance of the node em-
beddings of v and v’.

While the diversified typicality selection problem is NP-
hard, we next present an efficient query selection algorithm.

B. Query Selection Algorithm

We present an algorithm, denoted as QSelect, to implement
the query selector S (line 8 in Fig. 3). We focus on the query
selection per iteration.

Lemma 1: Given a graph G with unlabeled node set U, a
graph node embedding H,,(Xg), a query budget k, there exists
a 2-approximation algorithm that selects a set of query Q for
the diversified typicality selection problem. O

Proof sketch: We show that our diversified typicality selec-
tion problem can be reduced to the max-sum p-diversification
problem [6]. The latter is to choose a size-p subset S from a
set that maximizes the sum of a utility function and pairwise
distances of the elements in S. We show that 7 (Q) is a mono-
tone (submodular) set function, and there is an approximation
preserving reduction to the max-sum p diversification. a

Algorithm. We next outline the algorithm QSelect (Fig. 5).
It first performs a clustering algorithm ClusterU over the
node features H, (Xg), and induces the clusters C(U) for
the unlabeled nodes U (line 2). It then adopts a greedy
strategy to prioritize the selection of an unlabeled node v

Procedure: QAnnotate (Q, ¥,G)

Q=10
for each v € Q do
map v.M := (;
GetAnnotate (v, G, ¥); /* Type 1%/
for each base detector f € ¥ do
detect erroneous attribute values; /*Type 2*/
infer correct values at v; /*Type 3%/
update error distribution II,, at v; /*Type 4*/
update v.M; Q = QU {v};
0. return Q;

S0 N U R W~

Fig. 6: Algorithm QAnnotate

that has the largest marginal gain B, (Q,C) = F,(Q) +
A pweo dh(v),h(v')), where F,(Q) = iT(QU {v}) -
17(Q). By default, GALE implements ClusterU with &'-
means clustering with &’ between k and 3k.

The 2-approximability can be verified by the approximation
preserving reduction to the max-sum p-dispersion problem.
For the time cost, it takes O(|U|k'm) times for m rounds of
k’-means grouping. The cost of the greedy selection process is
in O(k|U|) time [4], [6]. The total time cost of query selection
is thus in O(k|V|m), with &/ < 3%k in our setting.

VI. QUERY ANNOTATION

While active learning often assumes oracles to have full
capability to provide correct labels, it is not an easy task
for error detection. Meanwhile, downstream analysis such as
error diagnosis [1], descriptive [9] and statistics-based repair-
ing [13], [32], [54] benefits from useful auxiliary information
that are generated from error detection. Accordingly, the role
of a query annotator A is to collect, profile and share useful
data from O and base detectors ¥ to components of GALE, to

(a) reduce manual effort of labeling (for oracle O), and (b)
reduce the cost of query selection (for query selector S). The
auxiliary data can also be re-used to facilitate follow-up data
repairing, and to reduce unnecessary computation. We next
describe the query annotation module A in GALE.

Auxiliary Information. GALE initializes a map structure v. M
for unlabeled nodes in Q. Given a node v € Q, it collects and
stores in v.M the following information, whenever applicable:

o (Type 1: “soft subgraphs™) a subgraph that is induced
by the neighbors influenced by or to v via random walks,
and induced soft labels (Section V);

o (Type 2: detected errors) a list of erroneous values
v.A ="a’ that are captured by base detectors in W, with
confidence scores;

o (Type 3: suggested corrections) for each erroneous value
v.A =’a’, a set of suggested correct counterparts, which
may be obtained from the value bindings enforced by
data constraints [14], [18], [36]; and

o (Type 4: error distribution) a statistical error distribu-
tion detected by the base detectors W alone at v.

1712

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

GALE shares these global structures with the oracle O and
the query selector S to facilitate label generation and query
selection. We remark that the auxiliary data can be user-
defined to satisfy the need of other typicality measures, query
selection strategies, and oracles.

Annotation Generation. Algorithm QAnnotate (illustrated
in Fig. 6) implements the annotator 4. (1) For each query
node in Q, it invokes procedure GetAnnotate to incrementally
update the neighborhood information (Type 1: soft graphs)
via Label Propagation [58]. (2) QAnnotate utilizes ¥ to
generate error probability distribution of each training node
and derive Types 2-4 data as follows. (a) For each base detector
fi € U of a particular class C;, it runs f; over the nodes V'
to evaluate the number of erroneous nodes that are captured
by f; (denoted as |¥;|), and computes the counterpart |V, |
that counts all the erroneous nodes captured by the same
class of base detectors. This yields a normalized confidence
score for each base detector f; as H;I'Cf‘I‘ (Type 2: detected
errors). (b) The overall error distribution 1s then estimated as a
weighted sum of the scores to represent the probability that v is
“polluted” by particular error type (Type 4: error distribution).
(3) When applicable, a list of correct values for a detected error
is attached to v. M by e.g., “enforcing” the data constraints [5],
suggesting majority of domain values [7], or applying string
transformations at v (Type 3: suggested corrections).

VII. IMPLEMENTATION AND OPTIMIZATION

Memorization. GALE optimizes the iterative learning of the
active adversarial framework (lines 7-12 in Fig. 3) with a
memorization strategy. The general idea is to record previ-
ously computed model parameters and reduce unnecessary
calculation, and avoid unnecessary update of the model pa-
rameters if the changes to the node embeddings are small.
We make a case of the optimization for the query selector S
(algorithm QSelect), a major source of redundant computa-
tion. Indeed, it requires (a) pairwise comparison of the large
amount of unlabeled nodes, and (b) repeated computation of
Personalized PageRank matrix P. On the other hand, we
observe that the distance measure satisfies triangle inequality,
and P remains static once computed. GALE thus maintains
the following structures: (a) a matrix to store the node pair
embedding distance d(u,v) for unlabeled node pair (v, v’)
whenever u,v € {U U C}; (b) a vector of flags to indicate
whether the learned embedding of unselected nodes changes
or not in two consecutive iterations, (c) a dictionary that
records the typicality of Q, where the key is the size of the
Q, and (d) pre-computed matrix P. GALE simply retrieves
an “approximate” distance d’(u,v) that is stored before if the
embeddings of node v and v’ are not significantly changed
even D’ is updated. If the embedding of u and v are element-
wise equal within a tolerance, then d(u,v) is not updated.

The optimization is quite effective. As shown in Sec-
tion VIII, GALE incurs a feasible additional learning cost to
improve error detection with significant gain on accuracy, and
the optimization reduces the learning cost by 64%.

1713

Dataset 4 |E] # node types | # edge types | avg. # attr
DBP 2.2M | 7.4M 73 584 4
OAG 0.6M | 1.7TM 5 6 2
Yelp 1.5M | 1.6M 42 20 5

TABLE II: Overview of Real-world Graphs
Dataset [Vr] [Ep] | avg.# awrs | [Vr] | [VE]
Species(SP:DBP) 17.7K 20K 4 1062 134
Data Mining(DM:OAG) 11.2K | 12.9K 3 670 158
Machine Learning(ML:OAG) 3.4K 3.3K 3 203 54
UserGroupl(UG1:Yelp) 34K 2.6K 3 202 57
UserGroup2(UG2:Yelp) 33K 2.5K 3 196 45

TABLE III: Examples of Processed Graphs

System Implementation. We have developed a prototype
system GALE, built on our pilot system GEDet [22].

Feature Engineering. GALE adopts word embedding [20]
that maps attribute-level tokens (e.g., words) to vectors of
real numbers. We firstly feed the node attribute embedding
to a graph autoencoder GAE, which exploits graph structure
information to learn node representations. GALE concatenates
the attribute-level representation and node-level representation
as the input of the SGAN. Furthermore, Principal Component
Analysis (PCA) [33] is used to reduce training cost.

Built-in Library. By default, GALE has three classes of built-
in base detectors: (1) “ constraints-based detectors”, which
detects errors as violations of data constraints, e.g., graph
functional dependencies [18], (2) “outlier detectors”, which
encodes the algorithm in e.g., [7] to detect errors. (3) “string
error detectors”, including the detection of string noises such
as spelling errors. GALE keeps track of a set of “invertable”
base detectors f, such that their consequence can be used to
generate Type 3: suggested corrections (See Section VI).

Deployment. GALE builders and servers are deployed in
Google Colab environment with Tensorflow libraries and
NVIDIA TESLA P100 with 16GB GPU memory. The base
detector library, graph augmentation module, and an initial
GUI has been well supported by the established implementa-
tion based on HTMLS5, Bootstrap and Vis.js in a pilot system
GEDet [23]. Resources of GALE are made available 2.

VIII. EXPERIMENT

We experimentally verify the effectiveness and the training
cost of GALE for error detection in real-world graphs.

A. Experiment settings

Datasets. We used the following real-world graph data. (1)
DBP? is a knowledge graph extracted from Wikipedia, in-
cludes entities such as “plant” or “animal” and relationships
among entities such as “studiedBy”; (2) OAG, a fraction
of the open academic graph*, contains nodes such as e.g.,
articles, authors, organizations, and edges such as “cite” or
“affiliatedTo”; (3) Yelp® is a graph that contains entities such
as users and services (e.g., plumbers, restaurants), and edges

Zhttps://github.com/CWRU-DB-Group/GALE/tree/main/code
3htlps://wiki.dbpedia.org/clevelop/dalasels
“https://www.aminer.org/open-academic-graph
Shttps://www.yelp.com/dataset

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

such as “friendWith” and “reviews”. We also show the sizes
of graphs that are induced by specific types (e.g., ‘Machine
Learning’ from OAG denotes an induced subgraph with nodes
that belong to the topic of ‘Machine Learning’). Tables II
and III provide the details of the original and several examples
of processed graphs, respectively.

Error Generation. We injected erroneous values into the
real graphs with a configurable error generator. The generator
enhances BART [2], a tool that pollutes attributes to evaluate
error detection. Three error types were introduced with the
help of stand-alone base detectors in a built-in library W.

(1) Constraint violations are violations of a set of data
constraints > [18]. We discovered data constraints > by
invoking the algorithm in [17]. Matching the condition in
the data constraints, the generator perturbed values to violate
the consequent. We ensure meaningful constraints > with
high minimum support (the number of node matches) and
confidence (the nodes that satisfy the consequent of a data
constraint). Setting minimum support as 1000, 10, and 20 and
confidence as 0.9, 0.8, and 0.85 for DBP, OAG, and Yelp, we
discover 89, 21, and 112 data constraints, respectively.

(2) Outliers are injected disturbed values that are significantly
different from the distribution of peer attribute values. Some
can be captured by outlier detectors in V.

(3) String noises are generated from multiple scenarios in-
cluding misspelling, missing values (‘null’), and random string
disturbance. We ensured that injecting these errors alone are
not leading to violations of X or as detectable outliers.

We set the node error rate, which denotes the probability
that a node in the graph is erroneous; attribute error rate,
which denotes the probability that an attribute is perturbed
as an erroneous attribute; and detectable rate, which denotes
the chance an error is captured by a base detector. The
node error rate, attribute error rate and detectable rate are
set as 0.01, 0.33, and 0.5 by default, respectively. For each
graph, we randomly partition the nodes to obtain 6 folds for
training examples, 1 fold for the validation set, and 3 folds for
testing nodes (see Table III). The constraint-based detectors
and outlier detectors are integrated into the annotation module
for attribute value suggestion if consulted, to test how well
GALE exploits external knowledge.

Oracle. For controlled tests, we simulated the oracle with the
set of base detectors W. An ‘error’ label is assigned if a base
detector identified erroneous attribute values of the query. For
our case study, we have invited students who are experienced
in verifying knowledge graphs and Wikipedia editing history
to manually verify the errors and correct nodes.

Algorithms. We implemented GALE, along with 3 other
variants that interacts with the adversarial learning with dif-
ferent query selection strategies, one variant that removes the
memoization optimization, and compared their performances
with 5 additional baselines, all categorized as follows.

(1) Four variants of GALE, that replace query selector S with
different strategies, including (a) GALE (-Ran.), a uniformly

sampling of the unlabeled nodes; (b) GALE (-Ent.), entropy-
based uncertainty sampling using the softmax outputs; (c)
GALE (-Kme.), sampling the unlabeled nearest nodes to K-
means clustering centroids [27], and (d) U_GALE, a variant
without the memorization strategy for query selection.

(2) Alad [37], a state-of-the-art anomaly node detection frame-
work that measures normality of the nodes by considering both
the topological structures of the graph and attribute distribution
estimation within local context of nodes.

(3) VioDet, a constraint-based error detection that detects
errors as the union of the violations of a set of graph data
constraints > mined from the original datasets.

(4) Raha [39] is a state-of-the-art method to detect errors in
relational data. It configures a library of built-in detectors e.g.,
outlier detection, to generate error detection strategies.

(5) Two Graph Neural Network-based error detectors: (a)
GCN [30] applies a graph convolutional architecture to en-
code local graph structure and features of nodes as a semi-
supervised node classifier; (b) GEDet [22], a state-of-the-art
few-shot learning based error detection framework. It uses
graph augmentation to enhance examples with synthetic ones,
and adopts adversarial learning to train a classifier.

Configuration. We use consistent settings for fair comparison.
(1) As Alad ranks nodes and is evaluated by AUC-PR
curve [37], we applied the default setting to learn Alad,
selected the thresholds that enable its best performance in
terms of AUC-PR curve, and derived anomalies as errors.
(2) We used the same set of data constraints > for GALE
variants, GEDet, and VioDet. We used the same settings
for shared hyperparameters in variants of GALE. GALE and
its variants are consistently trained with the same number of
iterations 7' and local budget k, within ranges [7,17] and
[5,100], respectively. (3) As Raha is designed for relational
data, we applied it to node tables with one table per node type.

Evaluation metrics. We evaluate the performance in effec-
tiveness and efficiency. For effectiveness, we report precision,
recall, and F-score. Denote Errg as the set of erroneous nodes
detected from the graph, and Err as the set of nodes that are
erroneous in the graph. The precision, recall and F;-score are
defined as P = 7|Er|rEd:dE|rr| ,R = 7|EYT%2|E"I ,and F = %,
respectively. For efficiency, we report the training time of
GALE (-Ent.), GALE (-Ran.), GALE (-Kme.), and GALE.

All Experiments were executed on a Unix environment with
Intel 2.6GHz CPUs, and 16GB memory. All the algorithms
were implemented in Python on Tensorflow. Each experiment
was run 5 times and the median results were reported.

B. Experiment results

We first evaluate the effectiveness of GALE and baseline
algorithms, and the impact of several factors. We then evaluate
the training cost of GALE. In addition, we conduct case studies
to evaluate the usability of query annotation.

Exp-1: Accuracy of GALE. We report the accuracy of the
methods over all the datasets in Table IV. GALE variants are

1714

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

Data | Met VioDet | Alad | Raha | GCN | GEDet | GALE (-Ent.) | GALE (-Ran.) | GALE (-Kme.) GALE
P 0.85 0.26 0.40 0.57 0.9085 0.8237 0.8831 0.8530 0.8173
SP R 0.24 0.80 0.60 0.35 0.6009 0.6801 0.6311 0.6859 0.7219
Fi 0.38 0.39 0.48 0.43 0.7233 0.7451 0.7361 0.7604 0.7666
P 0.26 0.23 0.50 0.35 0.9812 0.9814 0.9813 0.9814 0.9814
DM R 0.30 0.77 0.43 0.74 0.4541 0.4578 0.4566 0.4578 0.4578
Fi 0.28 0.35 0.47 0.47 0.6209 0.6244 0.6232 0.6244 0.6244
P 0.24 0.23 0.62 0.63 0.9725 0.9725 0.9561 0.9643 0.9487
ML R 0.27 0.40 0.45 0.43 0.4569 0.4569 0.4698 0.4655 0.4784
Fi 0.25 0.30 0.52 0.51 0.6217 0.6217 0.6301 0.6279 0.6361
P 0.33 0.27 0.63 0.51 0.7764 0.7640 0.7640 0.7755 0.7586
UG1 R 0.55 0.55 0.60 0.52 0.6389 0.6632 0.6632 0.6597 0.6875
Fi 0.41 0.36 0.62 0.52 0.7010 0.7100 0.7100 0.7129 0.7213
P 0.31 0.27 0.59 0.66 0.9576 0.8881 0.8627 0.8836 0.8599
UG2 R 0.54 0.73 0.56 0.33 0.4502 0.5060 0.5259 0.5139 0.5378
Fi 0.39 0.39 0.57 0.44 0.6125 0.6447 0.6535 0.6499 0.6618
TABLE IV: Performance of Error Detection. Bold: best result; Underlined: second best.
initialized by using 10% of the training nodes Vi (summa- " GON o8
. . . . GEDet -
rized in Table IIT). The total budget size for Species(DBP), o8y GALE(Kme) X 1
Data Mining (OAG), Machine Learning (OAG), UserGroupl £ 0-6§éﬁ;’4\}\ﬁ\ g s
(Yelp), and UserGroup2 (Yelp) are 800, 490, 25, 50, and 50, ; L i E
respectively. We report our findings below.] 0af Gitbet 3% |
GALE(Kme.) —%
(1) We first inspect the 5 competing methods (all excluding B T TR = T
GALE yarlapts). .The low recall of VioDet suggests the errors (a) Varying error rate pe (b) Varying pr
are quite diversified. GCN (graph neural network learning) o ‘ ‘ ‘ 000 ‘
and Raha (assembles multiple learning methods) are able to o7 GAtEcram) 5 PR T 3500 CALEEE;; =4
improve Fj-scores, but may come with a cost of significant oorl 1 ;(5)82 CALE 222 |
precision drop (e.g.,GCN on ‘UG2’ dataset). Among the Gos| 1 20 s
competing methods, GEDet achieves the best F-scores since Eoml y E 000 §
: ; ; o7 1 500 N g
its few-shot learning module and graph augmentation module 07k | 0 N NE/
ensure the coverage of heterogeneous errors. R T — Mo GerGrow?

(2) Active learning can effectively improve error detection.
Despite the diversified errors, GALE variants achieve either the
top or the second best results in precision, recall or F-score
in almost all the cases. This is not recognized in individual
competing methods. On average, GALE has improved the F-
score of VioDet, Alad, Raha, GCN and GEDet, with a margin
as 0.33, 0.31, 0.14, 0.20, and 0.02, respectively.

(3) In general, GALE variants with active adversarial frame-
work achieve desirable, and robust performance in accuracy
despite of the presence of multiple types of errors and datasets.
For example, in all cases, GALE and the three variants achieve
at least 0.74 in precision, 0.45 in recall and 0.62 in F}. Other
methods demonstrate higher variance given different datasets.
For example, VioDet has a high precision of 0.85 on SP, and
only achieves 0.24 precision on ML; similarly for GCN.

(4) For all the datasets, GALE achieves the best performance
among all the GALE variants. This verifies the effectiveness
of the typicality-based query selection. We found that typical
nodes from diversified clusters should be recommended to be
queried in the low budget regime, instead of choosing those
with the high uncertainty, or random selection (GALE (-Ran.)).

Exp-2: Impact of factors. We next investigate the Jimpact of
the following factors: (1) the data imbalance p, = %, and (2)

the training data ratio p; = %,

size K (the total # queries T - k).

and (3) a cumulative query

(c) Varying budget size K (d) Model Learning cost

12

U_GALE %

GALE(-Ent) =— GALE(Kme.) —¥| 160[GALE
ALE

GALE(-Ran.) =% G

Time (seconds)
2 = 2
& & 8

S

14

i p 3 3 5 i p 3 3 5
(e) AL cost: varying iteration T’ (f) Optimization: varying T
Fig. 7: Impact of factors to model performance

Impact of Data Imbalance. Fixing p; = 10% and K = 80,
we vary the imbalance p. from 0.1 to 0.9 over Machine
Learning (OAG). Fig. 7(a) tells us that while all methods
achieve better performance over more balanced data, GALE (-
Ent.), GALE (-Ran.), GALE (-Kme.), GALE, GEDet, are more
stable than GCN, due to the graph augmentation can counteract
imbalanced examples. Table IV consistently justifies this as the
fraction of |V¢| varies over different datasets (summarized in
Table IIT): compared with GCN, the methods GALE (-Ent.),
GALE (-Ran.), GALE (-Kme.), and GALE are less sensitive.

Impact of Error Distribution. We also evaluated the accuracy
of GALE under different error distribution: violations-heavy,
where 50% of injected errors are constraint violations, and
the rest two are of equal chances; similarly for outliers-
heavy, and string-noise-heavy. GALE is able to pertain robust

1715

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

performance as 82.59 4+ 1.15% in F;-score on ‘UGI1’ datasets
with different error distributions since its adversarial active
learning consistently learns the real error distribution.

Varying example size. Fixing K = 80 and p. = 50%, we
vary p; over dataset UserGroupl(Yelp) from 15% to 1% and
report the result in Fig. 7(b) (the result of VioDet and Alad
are insensitive and constantly 0.41 and 0.36, respectively;
not shown). While the accuracy decreases for all models as
less training data is available, GALE (-Ent.), GALE (-Ran.),
GALE (-Kme.), GEDet is the least sensitive (remains a recall
above 0.6; not shown). Indeed, active learning variants in
GALE effectively counteract the impact of lack of labels, with
the graph augmentation model that improves recall, and the
adversarial module that improves the accuracy.

Varying cumulative budget K. Keeping other parameters by
default, we varied cumulative budget K from 400 to 700 (with
a fixed £=100) and report the result in Fig. 7(c). While the F;-
scores increase as more unlabeled nodes are queried and get
labeled by oracles for all active learning sampling strategies
in general, GALE and GALE (-Kme.) achieves the better Fi-
scores compared with the other two methods, which affirms
our claim that the typical and diversified nodes should be
preferred to get selected over atypical (uncertain) nodes when
the query budget is low. Hence, K-means clustering based
sampling strategies (including GALE and GALE (-Kme.)) help
active learning select typical graph nodes that are suited for
low budgets. Furthermore, GALE outperforms GALE (-Kme.),
which indicates the diversity that makes selected nodes be far
apart benefits active learning in low-budget regime.

Exp-3: Learning cost. We compare the learning costs of
GALE variants and other baselines. GALE and variants do not
incur much additional cost especially in a desirable low-budget
regime when local budget % is small. We compare the learning
cost of different query selection strategies in both low-budget
regime and high-budget regime among GALE variants.

Model Learning cost. We set the number of epochs as 220 for
all the methods (200 epochs for the GAN in GALE variants
to reach a Nash equilibrium and 20 epochs for the generative
adversarial active learning module to query unlabeled nodes
in the graph) and apply an “early-stop” strategy based on
validation performance and make GEDet and GALE variants
terminate early if no improvement is observed within con-
secutive 20 epochs. As shown in Fig. 7(d), (1) it is quite
feasible to learn GALE. For example, it takes 520 seconds to
learn GALE to achieve a recall at 0.48 over UG2; (2) GALE
although is with the most sophisticated optimization goal, it
still has a comparable running time with other GALE variants
and improves the accuracy of error detection at a cost of small
overhead. For example, it introduces on average 33%, 45%,
15% and 62% additional cost compared with GALE (-Kme.),
GALE (-Ent.) (the running time of GALE (-Ran.) is close to
GALE (-Ent.), not shown), GEDet and GCN, respectively.

Active Learning cost. We fix the queried nodes as 10 in each
epoch on the Data Mining (OAG) of all GALE variants. After

the labels of these queried nodes are provided by the oracle,
we keep updating the model parameters of GALE variants.
In the low-budget regime of Fig. 7(e), GALE introduces on
average 53.8%, 42.9%, and 33.3% additional cost compared
with GALE (-Ent.), GALE (-Ran.) and GALE (-Kme.). In
general, the additional overhead of GALE is not significantly
increased due to our memorization strategies to skip unneces-
sary computation in the iterative learning and model updating.

Optimization of GALE. Using the same low-budget regime, we
compare the cost of GALE and U_GALE. As Fig. 7(f) shows,
the optimization strategy significantly reduces the learning
cost. For example, it reduces the cost of U_GALE by 40%
on the Data Mining (OAG) when k = 10.

Exp-4: Case study: Usability of Query Annotation.
We illustrate a “hard” test case when detecting errors in
Species(DBP). The test node v has attributes v.name =
“cavanillesia” and v.order with a wrong value “Lepidoptera”,
which should be “Marvales”. No graph constraint or outlier
detector in W detects this error. The student who is requested
to label the nodes also has little knowledge of species. (1)
In an iterative process, GALE selected a typical node v’ that
is semantically similar to v, where v and v’ were from the
same cluster after embedding-based clustering. Finer analysis
showed that v and v’ share one common attribute kingdom
=“plantae”, which indicates their semantic similarity. (2) The
annotator A successfully associated node v’ with the following
auxiliary data: (a) a detected error “Melvaceae” that violates
a graph constraint in ¥, (b) a suggested correct value “Mal-
vaceae” by enforcing the graph constraint, (c) the distribution
of errors at v/, and (d) the distribution of influence that comes
from the labeled nodes in Personalized PageRank matrix P
from A, where the most influential labeled node also came
with an “error” label. The student was able to correctly label
node v as “error”. (3) With v’ correctly labeled, the node
classifier is further improved, which successfully detected the
test node v as an erroneous node in the next iteration.

IX. CONCLUSION

We have introduced GALE, a graph error detection frame-
work empowered by an active adversarial learning framework.
GALE exploits active learning to best exploit the new knowl-
edge from oracles by issuing a bounded number of queries.
Moreover, we introduce new quality measures for selecting
queries in graph data in terms of diversified typicality, and in-
troduced approximation algorithms for query selection, query
annotation schemes to facilitate oracle and query selection, and
optimization strategies. Our experimental study verifies that
the active learning and adversarial error detection of GALE
achieve significant gain on accuracy compared with state-of-
the-art baselines. A future topic is to enhance GALE for large-
scale and more types of errors with distributed learning.

ACKNOWLEDGMENT

This work is supported by NSF under CNS-1932574, OIA-
1937143, ECCS-1933279, CNS-2028748, OAC-2104007 and
DoE under DE-EE0009353 and DE-NA0004104 .

1716

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

(1]

[2]

[3]

[4]

[51

[6]

[71
[8

=

[91
[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

REFERENCES

Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,
P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors: Where
are we and what needs to be done? VLDB, 2016.

P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and
D. Santoro. Messing up with bart: error generation for evaluating data-
cleaning algorithms. VLDB, 2015.

B. Biggio, G. Fumera, and F. Roli. Multiple classifier systems for
adversarial classification tasks. In International Workshop on Multiple
Classifier Systems, pages 132—141. Springer, 2009.

B. Birmbaum and K. J. Goldman. An improved analysis for a
greedy remote-clique algorithm using factor-revealing Ips. Algorithmica,
55(1):42-59, 2009.

P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by value modification.
In SIGMOD, 2005.

A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, monotone
submodular functions and dynamic updates. In Proceedings of the 31st
ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database
Systems, pages 155-166, 2012.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying
density-based local outliers. In SIGMOD, 2000.

G. Castagna, D. Colazzo, and A. Frisch. Error mining for regular
expression patterns. In [ltalian conference on Theoretical Computer
Science, pages 160-172. Springer, 2005.

A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti. Descriptive and
prescriptive data cleaning. In SIGMOD, 2014.

D. Chen, Y. Lin, G. Zhao, X. Ren, P. Li, J. Zhou, and X. Sun. Topology-
imbalance learning for semi-supervised node classification. Advances in
Neural Information Processing Systems, 34:29885-29897, 2021.

F. Chen, Y.-C. Wang, B. Wang, and C.-C. J. Kuo. Graph representation
learning: a survey. APSIPA Transactions on Signal and Information
Processing, 9, 2020.

K. Cheng, X. Li, Y. E. Xu, X. L. Dong, and Y. Sun. Pge: Robust
product graph embedding learning for error detection. arXiv preprint
arXiv:2202.09747, 2022.

X. Chu, L. F. Ilyas, S. Krishnan, and J. Wang. Data cleaning: Overview
and emerging challenges. In SIGMOD, 2016.

X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting
violations into context. In ICDE, 2013.

N. Dalvi, P. Domingos, S. Sanghai, and D. Verma. Adversarial
classification. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 99-108,
2004.

K. Ding, J. Li, and H. Liu. Interactive anomaly detection on attributed
networks. In Proceedings of the twelfth ACM international conference
on web search and data mining, 2019.
W. Fan, C. Hu, X. Liu, and P. Lu.
dependencies. In SIGMOD, 2018.

W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs.
SIGMOD, 2016.

Y. Fu, X. Zhu, and B. Li. A survey on instance selection for active
learning. Knowledge and information systems, 35(2):249-283, 2013.
M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu,
M. Peters, M. Schmitz, and L. Zettlemoyer. Allennlp: A deep semantic
natural language processing platform. arXiv preprint arXiv:1803.07640,
2018.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning
in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., 2005.

S. Guan, P. Lin, H. Ma, and Y. Wu. Gedet: Adversarially learned few-
shot detection of erroneous nodes in graphs. In IEEE Big Data, 2020.
S. Guan, H. Ma, S. Choudhury, and Y. Wu. Gedet: detecting erroneous
nodes with a few examples. Proceedings of the VLDB Endowment,
14(12):2875-2878, 2021.

G. Hacohen, A. Dekel, and D. Weinshall. Active learning on a
budget: Opposite strategies suit high and low budgets. arXiv preprint
arXiv:2202.02794, 2022.

A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-
shot learning for error detection. In SIGMOD, 2019.

I. F. Ilyas, X. Chu, et al. Trends in cleaning relational data: Consistency
and deduplication. Foundations and Trends® in Databases, 2015.

Discovering graph functional

In

1717

[27]

[28]

[29]
[30]
(31]

[32]

[33]
[34]

[35]

[36]
(371
[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]
[49]

[50]
[51]

[52]

[53]
[54]

[55]

[56]

X. Jin and J. Han. K-means clustering. In Encyclopedia of Machine
Learning, 2010.

Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti,
J.-A. Quiané-Ruiz, N. Tang, and S. Yin. Bigdansing: A system for big
data cleansing. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data, pages 1215-1230, 2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
T. N. Kipf and M. Welling. Variational graph auto-encoders.
preprint arXiv:1611.07308, 2016.

S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg. Active-
clean: Interactive data cleaning for statistical modeling. Proceedings of
the VLDB Endowment, 9(12):948-959, 2016.

R. Lebret and R. Collobert. Word emdeddings through hellinger pca.
arXiv preprint arXiv:1312.5542, 2013.

D. D. Lewis and W. A. Gale. A sequential algorithm for training text
classifiers. In SIGIR’94, 1994.

Y. Li, J. Yin, and L. Chen. Seal: Semisupervised adversarial active
learning on attributed graphs. IEEE Transactions on Neural Networks
and Learning Systems, 32(7):3136-3147, 2020.

P. Lin, Q. Song, Y. Wu, and J. Pi. Repairing entities using star constraints
in multirelational graphs. In /CDE, 2020.

N. Liu, X. Huang, and X. Hu. Accelerated local anomaly detection via
resolving attributed networks. In IJCAI, 2017.

K. Madhawa and T. Murata. Active learning for node classification: an
evaluation. Entropy, 22(10):1164, 2020.

M. Mahdavi, Z. Abedjan, R. Castro Fernandez, S. Madden, M. Ouzzani,
M. Stonebraker, and N. Tang. Raha: A configuration-free error detection
system. In SIGMOD, 2019.

C. Mayfield, J. Neville, and S. Prabhakar. Eracer: a database approach
for statistical inference and data cleaning. In SIGMOD, 2010.

B. Miller, A. Kantchelian, S. Afroz, R. Bachwani, E. Dauber, L. Huang,
M. C. Tschantz, A. D. Joseph, and J. D. Tygar. Adversarial active
learning. In Proceedings of the 2014 Workshop on Artificial Intelligent
and Security Workshop, pages 3—-14, 2014.

F. Neutatz, M. Mahdavi, and Z. Abedjan. Ed2: A case for active
learning in error detection. In Proceedings of the 28th ACM international
conference on information and knowledge management, pages 2249—
2252, 2019.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of
relational machine learning for knowledge graphs. Proceedings of the
IEEE, 104(1):11-33, 2015.

H. Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic web, 2017.

Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng. Anomalous: A joint
modeling approach for anomaly detection on attributed networks. In
IJCAI 2018.

K. Pourahmadi, P. Nooralinejad, and H. Pirsiavash. A simple baseline
for low-budget active learning. arXiv preprint arXiv:2110.12033, 2021.
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. Improved techniques for training gans. In NeurIPS, 2016.

B. Settles. Active learning literature survey. 2009.

D. J. Wang, X. Shi, D. A. McFarland, and J. Leskovec. Measurement
error in network data: A re-classification. Social Networks, 2012.

H. Wang and J. Leskovec. Unifying graph convolutional neural networks
and label propagation. arXiv preprint arXiv:2002.06755, 2020.

Y. Wang, Q. Yao, J. Kwok, and L. M. Ni. Generalizing from a few
examples: A survey on few-shot learning. In arXiv: 1904.05046. 2019.
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A
comprehensive survey on graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2020.

M. Xu. Understanding graph embedding methods and their applications.
SIAM Review, 63(4):825-853, 2021.

J. N. Yan, O. Schulte, M. Zhang, J. Wang, and R. Cheng. Scoded:
Statistical constraint oriented data error detection. In SIGMOD, 2020.
W. Zhang, Y. Wang, Z. You, M. Cao, P. Huang, J. Shan, Z. Yang,
and B. Cui. Rim: Reliable influence-based active learning on graphs.
Advances in Neural Information Processing Systems, 34:27978-27990,
2021.

C. Zhao, Y. Xin, X. Li, Y. Yang, and Y. Chen. A heterogeneous
ensemble learning framework for spam detection in social networks with
imbalanced data. Applied Sciences, 10(3):936, 2020.

arXiv

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

[57]1 Y. Zhong, W. Chen, Z. Wang, Y. Chen, K. Wang, Y. Li, X. Yin,
X. Shi, J. Yang, and K. Li. Helad: A novel network anomaly detection
model based on heterogeneous ensemble learning. Computer Networks,
169:107049, 2020.

[58] X. Zhu. Semi-supervised learning with graphs. Carnegie Mellon
University, 2005.

1718

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore. Restrictions apply.

