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Abstract—We introduce GALE, an active adversarial learn-
ing framework to detect nodes with erroneous information in
attributed graphs. GALE is empowered by a new adversarial
active error detection framework, which interacts active learning
with a graph generative adversarial model to best exploit limited
labeled examples of erroneous nodes. It dynamically determines
diversified query nodes in batches with bounded size in terms
of node typicality to enrich a pool of examples, which in turn
provides representative examples to best train an adversarial
classifier to capture different types of errors. Moreover, GALE
provides an annotation algorithm to suggest a context of possible
correct attribute values and error types, to facilitate the labeling
of query nodes. We show that using limited queries and exam-
ples, GALE significantly improves competing methods such as
constraint-based detection, outlier detection, and Graph Neural
Networks (e.g. GCNs), with 32%, 31%, and 17% gain in F-1 score
on average, and is feasible in learning cost for large graphs.

I. INTRODUCTION

Error detection in attributed graphs is critical for high-

quality graph data and downstream analysis in e.g., knowledge

graphs and social networks [44]. In practice, there often exist

multiple types of errors in the node attribute values. Several

methods have been studied to detect such erroneous nodes.

(1) Errors can be defined as violations of data constraints [18],

anomalies [37], or inferred with statistical models [40]. These

methods can be accurate for specific types of errors, yet may

not achieve good recall to capture multiple types of errors [22].

(2) Node classifiers [22], [43] can be trained from examples

of errors, by solving a node classification problem. Another

approach is to train individual “base detector” with ensemble

learning [57] to improve the recall. This often requires suf-

ficient training examples from matching class of errors [56].

High-quality labeled examples require heavy manual effort,

and remain a luxury for error detection in real-world scenarios.
Consider the example below from a real knowledge graph.

Erroneous nodes are chosen from their real editing history1.

Example 1: Fig. 1 illustrates a fraction of a knowledge graph

about films (series) from Wikipedia. A node carries a type

(e.g.,film) and a set of attributes (e.g., “name”) with values

(e.g., “Avengers: Infinity War”). An edge denotes a relationship

between nodes (e.g.,“subsequent’ ). There are four erroneous

nodes with the type “film” (with the errors marked in red).
◦ Case 1: The Film node v2 has an incorrect release year

“2014”, which should be “2015”;

1https://www.wikidata.org/w/index.php?title=Q1765358&action=history
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Fig. 1: Detecting Erroneous Nodes in Knowledge Graphs

◦ Case 2: The Film node v3 has a wrong rate score “3.8/10”

that should be “7.7/10”;

◦ Case 3: The Film node v4 has an inaccurate record of

$2.048 billion at the worldwide box office; instead, a

correct value should be $2.016 billion;

◦ Case 4: Film v5 makes $2.798 billion at the worldwide

box office instead of $2.198 billion, which is inaccurate.

Consider the following options.

Data constraints. Rules and dependencies that enforce equiva-

lence on node attribute values [18] may not capture Case 1, as

the true value “2015” cannot be inferred via node equivalence

or is hard to be specified by rules for an individual node. A

“negative” rule [8] may specify that “if two films are connected
by ‘subsequent’ relation, then their release years must be
different”. Nevertheless, either v1 or v2 can have a wrong

release year “2014”, which cannot be distinguished by the rule

due to the vagueness of undirected “subsequent” relation.

Outlier detection [37], [45] may capture Case 2 error at node

v3, given its significantly low value (an outlier) over the

attribute “score”. Nevertheless, the errors of the box office

(Case 3 and Case 4) at node v4 and node v5 cannot be easily

captured by an outlier detection process, since both values are

in a “normal” range of value distribution.

A single approach may not capture all the errors. Stacking

them to a sequential process, or using simple ensemble strate-

gies (e.g., union or voting) may improve the recall but not the

overall accuracy due to overlap or false positives [1], [22].

Train a classifier [12], [22]. One may train a node classifier

to distinguish correct and erroneous nodes given their learned

representation (“node embeddings”). For example, films v5
and v4 are “close” in terms of similar embeddings from
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“score”, “release year” and “box office gross”. A classifier

may infer that v4 is likely to contain errors given v5 as

an example of an erroneous node [12], [22]. Learning-based

methods, on the other hand, require a sufficient set of labeled

examples. This can be hard to build from scratch. �

It has been verified that active learning [16], [42] can

improve error detection especially when training examples are

sparse. For example, one may choose a few nodes to query an

oracle (e.g., a data analyst) for a label (“correct” or “error”),

and update the classifier to detect errors given the enriched

examples. Although desirable, challenges remain for active

learning-based error detection, especially for graphs.

Query Selection. Effective active learning often requires

proper choices of queries [34], [48], [48]. This is in particular

nontrivial for active learning in graph data, as traditional

sampling strategies may fail [38]. Moreover, there are often

more than one type of error in real-world graphs [1], [22],

[44], [49]. How to choose a representative set of queries for

the diversified error types to best exploit the oracle, especially

with limited or even no labels to start with?

Labeling Effort. Most active learning assumes an oracle with

the full capability to provide correct labels. In practice, it is not

easy to obtain a true label by inspecting the query node and

its attribute values alone. (1) The low-quality labels remain a

major issue [13]. (2) Even with the new labels obtained from

the oracles, the labeled nodes (“training examples”) may still

be sparse and biased. Adversarial learning has been verified to

be effective by augmenting training examples with synthetic

ones [22]. We are interested in combining active learning and

adversarial detection to best exploit the limited examples.

Example 2: A desirable approach allows us to “cold start”

error detection even when no example is available. One may

iteratively choose unlabeled nodes and query an oracle (a

validated detection method or a human expert) and obtain

examples to improve a node classifier. (1) An initial round

captures v3 as an erroneous node (with e.g., outlier detection).

(2) Observe that (a) {v1, v3, v4, v5} forms a cluster of films

directed by the same director, and (b) v4 is closer to the

“center” of the cluster in terms of node similarity. Choosing

{v2, v4} as a query set improves the decision boundary of the

classifier, which in turn distinguishes v5 and v1 as erroneous

and correct nodes, respectively. (3) Moreover, the neighbors of

v4 contain rich information (highlighted in Fig. 1) and can be

annotated with error types and statistics to reduce the labeling

effort and optimize the choice of follow-up queries. �

These call for an effective detection framework with the

following desirable properties. (1) It automatically selects

representative query nodes that, if labeled, can best improve a

classifier in distinguishing erroneous nodes from correct ones.

(2) The query set properly covers diversified classes of errors.

As suggested by the above example, the choice should balance

both the diversity and the coverage of different types of errors.

(3) The oracle is consulted by a bounded number of queries.

This requires effective exploitation of limited examples via

e.g., data augmentation [51]. (4) Moreover, it actively provides

useful auxiliary information to help the (human) oracle to

derive the labels for “hard” queries. Can we enable an iterative
error detection framework with all these desirable properties?

Contribution. This paper introduces GALE, a Graph Active

Learning framework for Errorenous node detection. Our ap-

proach is to improve a node classifier M for error detection, by

building an iterative framework that interacts active learning,

data augmentation, with adversarial learning that can maxi-

mally exploit the labeled examples obtained from an oracle.

GALE has the following novel features.

An Active Adversarial Framework (Section III and IV). GALE
interacts active learning with adversarial learning in a sin-

gle framework, where a node classifier M is continuously

improved by examples of erroneous nodes that are obtained

and enriched from a query generator. By querying high-

quality nodes for training M, GALE improves error detection

with gained new knowledge. By casting error detection as

a “two-players game”, GALE further improves the classifier

with augmented examples. These allow GALE to cold start

error detection without initial examples, achieve desirable

performance in both precision and recall using a small amount

of examples, and for capturing multiple types of errors.

Query Selection with Diversified Typicality. (Section V).

GALE admits high-quality query nodes that are both

representative (“typicality”) and cover different type of errors.

We formulate the intuition in Example 2 as a bi-criteria

optimization problem captured by a diversified typicality

function, and introduce a 2-approximation algorithm to

approach the best queries. It then dynamically selects query

nodes in small batches, to continuously improve the decision

boundary of the classifier M.

Query Annotation (Section VI). GALE also extracts useful

auxiliary information and annotates the query nodes and their

neighbors. We introduce an annotation algorithm to track such

information. These information help users to verify and label

the query nodes, understand possible error types, and facilitate

further inspection for query selection and data repairing.

System Evaluation (Section VII and Section VIII). We have

developed a prototype system GALE that nontrivially enhances

a pilot prototype [22] with the active adversarial framework.

Our experiments using real-world graphs verified the effective-

ness of GALE. It improves GEDet with a gain, on average, of

4.98% and 2.2% in recall and F-1 score, respectively, with a

small batch of queries in only 5 iterations and additional train-

ing cost less than 300 seconds (see details in Section VIII).

Related Work. We categorize the related work as follows.

Error detection in graphs. While error detection for relational

data has been extensively studied [26], effective error detec-

tion in emerging graph data is much less addressed. Several

methods have been proposed to detect errors in graphs. (1)

Data dependencies are extended to graphs [18], [28], [36] to
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capture errors as violations of value constraints, contextualized

by graph patterns. (2) Embedding-based methods [12], [22]

exploit node and topological features to learn node classifiers

to detect errors in graphs. For example, GEDet [22] utilizes

semi-supervised generative adversarial networks (GAN) to de-

tect heterogeneous errors and to improve the recall of error de-

tection. PGE [12] jointly leverages textual and graph structures

to learn embeddings of knowledge graphs for error detection.

Unlike prior methods, GALE is empowered by a generative

active adversarial framework, which continuously exploits new

knowledge from oracles to improve error detection.

Graph Representation Learning. Graph representation learn-

ing aims to properly map nodes to low-dimensional vectors

in the embedding space [11], [53]. Graph neural networks

(GNNs) [21] have been verified to be effective for graph

representation learning. GNNs take the topological structure

and nodal attributes as input and learn encoder functions that

aggregate the node’s local neighborhood, with variants such

as GCN [30] (which applies a first-order approximation of

spectral graph convolutions), Graph autoencoders (GAE) [31],

[52] (that learns embeddings to minimize reconstruction error).

Adversarial Learning. Adversarial classification [15] aims to

optimize classifiers given the optimal strategy of an adversary.

It treats the classifier and an adversary as “Two-players”,

where the classifier (discriminator D) tries to accurately pre-

dict the classes of instances, and the adversary (generator G)

attempts to “fool” the classifier by manipulating instances. The

competition leads to better classifiers [3], [41]. Generative

adversarial networks (GANs) are used to generate synthetic

data that approximates real data distribution by jointly learning

a generator G and a discriminator D. GALE nontrivially

interacts with GAE to learn node representation for error

detection and with GAN to mitigate the impact of biased labels.

Active Learning. Active learning has demonstrated its success

in error detection for relational data [25]. It tries to overcome

the labeling bottleneck by asking an oracle, e.g., a data analyst,

to label informative unlabeled data (“queries”) chosen by a

query selection strategy, to construct or enrich the training

data. As such, it maximizes the performance gain of a model

with as few annotated samples as possible. The main goal is

thus to sample a bounded number of queries that can best

(iteratively) improve model quality. Several query selection

approaches include Random sampling [48] (selecting instances

uniformly in random), Entropy-based sampling (favors in-

stances with large information entropy), and Margin-based

sampling [19] (samples instances that have lowest margin

between the two highest softmax outputs of embeddings). It

has been observed that traditional strategies may not work

well for graph data [38], due to that the choice tends to be

biased to “informative” yet suboptimal queries, which are not

necessarily reflecting true distribution. In contrast, GALE (1)

exploits adversarial learning to learn the real distribution of

errors, and (2) uses diversified typicality to choose queries that

are consistent with the distribution to avoid biased selection.

The recent Clustering-based sampling has gained attention

in the low-budget active learning regime, and has been ex-

perimentally verified to outperform random- and uncertainty-

based methods (e.g., margin-based and entropy-based sam-

pling) [46]. It picks unlabeled examples that are nearest to

the clustering centroids. We propose a new query selection

strategy that maximizes typicality and diversity in terms of

both node similarity and topological features, and provide a

greedy algorithm that optimizes the query selection with 2-

approximation. These are not addressed by prior work.

Recent effort investigates active learning for graph analysis.

GraphUCB [16] issues a limited number of queries in the

unsupervised setting to detect node anomalies. RIM [55]

derives a selection criterion for active graph representation

learning based on graph convolutional networks or Label

Propagation. It mainly resolves noisy labels from oracles, by

maximizing a reliable influence from consistent labels given

by the models and oracles. These methods are not designed

to cope with multiple error scenarios in the graphs, and thus

cannot be directly applied for error detection in graphs.

Adversarial active learning. Adversarial active learning is pro-

posed to further integrate the adversarial learning with an ac-

tive learning query engine. For example, SEAL [35] proposes

a semi-supervised adversarial learning structure and shows that

the graph embedding network and the discriminator can work

together to improve the classifiers.

To the best of our knowledge, GALE is the first framework

that integrates and interacts adversarial learning, graph rep-

resentation learning and active learning with limited query

budget in an iterative error detection process, for effective

multi-type error detection in graphs. Moreover, GALE (1)

provides new query selection strategy to sample typical and

representative nodes for multiple types of errors; and (2)

exploits query annotation that can help human oracles label

the nodes and facilitate dynamic query selection during the

active learning process. These are not addressed in prior work.

II. ERROR DETECTION IN GRAPHS

We start with several notations used by GALE.

Attributed Graphs. A graph G = (V,E) consists of a set of

nodes V and a set of edges E ⊆ V × V . Each node v ∈ V is

a tuple (v.A1, . . . v.An) defined on n attributes, where v.Ai =

ai (i ∈ [1, n]) denotes that the attribute Ai of v has value ai.

GALE processes attributed graphs in their feature represen-

tation. A feature representation of G is a pair G = (XG, AG).
(1) XG is a matrix of node features, where each row Xv is a

vector encoding of a node tuple v ∈ V . The encoding can be

obtained by e.g., word embedding or one-hot encoding [20].

(2) AG is the adjacency matrix of G.

Erroneous Nodes. We assume the existence of a “ground

truth” node v∗ for each node v ∈ V that carries correct values

of all the attributes of v. A node v is erroneous if there exists

an attribute A, such that v.A �= v∗.A (v.A can be ‘null’ that

denotes a missing value). Otherwise, v is correct.

1707

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore.  Restrictions apply. 



Symbol Notation
G = (V,E) Heterogeneous graph with nodes V and edges E

VT = V e ∪ V c VT :Labeled training nodes;
V e: erroneous nodes; V c: correct nodes

(XG, AG)
feature representation of G:

(XG: feature matrix; AG: adjacency matrix)
hn(xv) the embedding of node v (at layer n)
Hn graph embedding matrix at layer n
G, D generator and discriminator of SGAN

L(G), L(D) loss function of G and D
Ls, Lu supervised and unsupervised loss of L(D)

S query selector
A query annotator

TABLE I: Table of Notations
An example denotes a labeled node in G, which is a pair

(v, l), where l is either ‘correct’ for a correct node v, or ‘error’

if v is an erroneous node. v is unlabeled If l is unknown.

Error Detection. We formulate error detection in a graph

G=(V,E) as a node classification problem. The training nodes
VT = V e ∪ V c (VT ⊆ V ) is a set of examples, where V e

(resp. V c) refers to a set of examples of erroneous (resp.

correct) nodes. Given G and VT , the error detection is to train

a classifier M that accesses G to infer the labels of a set of

unlabeled nodes from V \ VT .

Queries and Oracles. Given a node classifier M, GALE aims

to exploit active learning with an oracle O to improve the

performance of M. (1) A query q is an unlabeled node (v, ∅)
that requests for the real label of a node v. Once assigned a

label, q is converted to an example (v, ‘correct’) or (v, ‘error’).
(2) An oracle O can be queried and returns the true label O(q)
of a query q. In practice, an oracle can be a human expert, or

be simulated by invoking and ensembling (with e.g., majority

voting) a set of user-defined classifiers called base detectors.

GALE admits a library of such detectors Ψ.

III. FRAMEWORK OVERVIEW

A. An Adversarial Active Learning Framework

Error Detection as “Two-players Game”. GALE casts error

detection into a two-players game between a generator G and

a discriminator D, and derives the node classifier M from D.

It exploits adversarial detection, with the following principle.

◦ A generator G aims to “fool” the discriminator D by rep-

resenting G with synthetically generated representations

that as close to their true counterparts as possible.

◦ The discriminator D meanwhile learns to distinguish

nodes with real labels from the synthetic ones from G.

A “competition” between G and D should improve the

performance of both: G learns how to better simulates the

distribution of the real labels with synthetic ones, and D learns

the node embeddings that better discriminates the synthetic

errors, real errors, and correct nodes.

Intuition. Let us consider a labeled set L = {(x, y)}, where x
represents a node and y ∈ {‘error’(y = 1), ‘correct’ (y =
2)}. GALE introduces a third type of label called ‘synthetic

error’ (y = 3) to annotate nodes with synthetic errors from G.

We then enforce a learning objective of D in the form of:

max
D

Ex∼L logPD(y|x, y ≤ 2) + Ex∼p logPD(y ≤ 2|x)
+ Ex∼pG logPD(3|x) (1)

where p and pG refers to the distribution of the real data and

its synthetic counterpart from G, respectively. The first, second,

and third terms are to maximize the log conditional probability

for (1) the labeled nodes with true labels (examples), (2) the

unlabeled nodes (as either ‘error’ or ‘correct’), and (3) the

generated synthetic examples (‘synthetic error’). As such, D
is able to better distinguish synthetic errors, real errors, and

real correct nodes. This yields more accurate classifiers M.

Joint Learning Scheme. In a nutshell, GALE improves G and

D in a joint learning process computes a node embedding ma-

trix (derived from the classification layer of D) that minimizes

a weighted combination of supervised loss (from examples

VT ) and an unsupervised (feature matching) loss. A node

classifier M is yielded by converting the matrix (via a softmax

function) to a matrix of class probabilities for the unlabeled

nodes in G. The label with largest probability is chosen for

each node (as either “error” or “correct” for error detection).

Graph Augmentation. This scheme has been verified to be

effective for error detection in graphs [22], [23]. The specific

scheme is enabled by a graph augmentation process [22],

which (1) leverages a library Ψ of base detectors (rules,

constraints or string transformations) to inject synthetic errors,

and (2) convert the augmented graph to a compact featurized

encoding (Section II) by learning a graph autoencoder GAE of

G, yielding representations of real data XR and synthetic data

XS , respectively. The generator and discriminator then play

a competitive game over the compact encodings to improve

the decision boundary by specifying and optimizing the above

objective. GALE adapts the above scheme to iteratively update

the discriminator D and the classifier M upon receiving new

examples from the oracle O (see Section IV).

Active Adversarial Detection. Despite its effectiveness [22],

[23], the above scheme requires sufficient high-quality exam-

ples. Moreover, the learning of M is a “one-shot” process, and

cannot evolve upon new error types. To adapt M to sparse,

biased and possibly new examples, GALE interacts active

learning and adversarial learning in an iterative framework.

(1) Given an oracle O, graph G, and a current classifier M,

it chooses from unlabeled nodes a set of queries and consults

O to obtain their labels. The selection of the queries follows

a general strategy that favors nodes that properly represents

multiple error types in G. This enriches a pool of examples that

are in turn used by the adversarial detection scheme. GALE
then updates the discriminator D in the “two-players game”,

and derives the classifier M accordingly from D.

(2) The learned classifier M is applied to detect new erroneous

nodes in G. This in turn improves the quality of future query

selection, mitigating the bias of active learning [38].

The above steps runs in multiple iterations. As such, GALE
allows us to query the oracle and gain new knowledge that
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Fig. 2: Overview of GALE Framework

approach the real distribution of unknown erroneous nodes,

thus improving the accuracy of error detection by continuously

refining the decision boundary of M.

B. Modules and Models
We next introduce the major modules in GALE. These mod-

ules and associated models specify the principled adversarial

active framework into an iterative error detection process.

Semi-supervised Adversarial Module. How to maintain and
improve a node classifier M for error detection as “two-
players game”? GALE specifies the adversarial training of M
in an iterative semi-supervised generative adversarial module

(SGAN). This module is responsible for dynamically main-

taining M upon new examples from the oracle O for error

detection. Given a set of new examples, it works in two stages.

Initialization. SGAN initializes the joint learning of G and D
from scratch, and derives the classifier M from D. SGAN
takes as input the node representation from graph G that in-

cludes synthetic erroneous node features XS and real example

features XR via the graph augmentation process (see Section

IV). The classification layer of D predicts the class label for

unlabeled nodes (“real” or “error”).

Update D. Upon receiving changes in XR due to the new

examples obtained from the oracle O, SGAN incrementally

updates D by updating its parameters in response to the

changed examples V i
T . Mi is derived accordingly.

That is, Di is maintained at iterations i as follows:

(G,D0) = SGAN(G, V 0
T , XR, XS);

Di = SGAN(G, V i
T , XR, XS)

The module also forwards Hi
n(XR), the node embeddings

learned on an intermediate n-th layer of the discriminator D to

Query Selection module Q to facilitate the selection of queries

from unlabeled nodes in future iterations.

Query Selection Module. How to select a small set of queries
to improve error detection? GALE aims to improve M by

obtaining additional labels from oracle O. The query selection

module utilizes a Query Selector S to generate promising

queries from the unlabeled training node set, and query O for

additional true labels. The model S initializes k queries with

clustering-based sampling [46] from unlabeled nodes. Here k
is a local budget that specifies the number of queries allowed

per iteration. In the follow-up iteration i, it exploits the node

embeddings Hi−1
n (XR) learned by Di−1, and examples V i−1

T
from the last iteration, and returns query set Qi with bounded

size k, with a goal to represent diversified errors.

Q0 = S(∅, ∅, G, k);

Qi = S(Hi−1
n (XR), V

i−1
T , G, k)

The queries are sent to be enriched with available auxiliary

information (see Query Annotation Module), assigned with

true labels (thus converted to examples ΔVT ), and featurized

to enrich the example features XR to improve M.

Query Annotation Module. How to adapt active adversarial
framework for iterative error detection? To escape from lo-

cally biased choices [38], GALE dynamically chooses promis-

ing queries by extracting and aggregating useful annotated

information of the queries Q, and enrich Q to an annotated
counterpart Q̃. By default, GALE collects and encodes the fol-

lowing information, whenever applicable: 1-hop neighborhood

induced subgraph of Q, most influential labeled nodes to Q,

degree assortativity [38], erroneous attribute values detected by

base detectors from Ψ [22], among others (see Section VI).

The benefit is twofold: it provides useful local and global

structural information of query nodes in G that facilitate the

oracle O for labeling, and allow query selector S to re-estimate

the node importance for dynamic selection in future iterations.

Specifically, a query annotator A provides O and S with

annotated Q in each iteration as follows:

Q̃0 = A(Q0,Ψ, G);

Q̃i = A(Qi,Ψ, G)
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The module also naturally augments the examples with the

new ones by querying the oracle O with the queries Q:

V 0
T = O(Q̃0);

V i
T = V i−1

T ∪ O(Q̃i)

C. Workflow of GALE

Putting the modules together, we next describe the workflow

of GALE (illustrated in Fig. 2, with an algorithmic description

of the learning process in Fig. 3). It works with a graph G,

an oracle O, and (optionally) a library of base detectors Ψ.

Initialization. GALE “cold starts” the framework by initial-

izing a set of queries Q with annotated information from Ψ,

which provides an initial set of detected errors in attributes,

whenever applicable (lines 1-2). It then consults an initial

verification of Q with oracle O (line 3) to initialize the

examples. It also invokes a procedure GAugment to preprocess

G and generates the feature representation of real (resp.

synthetic) examples XR (resp. XS) following [22], to enable

the adversarial learning of the generator G and discriminator

D. This yields an initial node classifier M (lines 5-6).

Iterative Improvement. At iteration i, GALE interacts the

modules as follows. (1) With the learned embeddings Hn(XR)
of the real examples from D in the last round, it selects a

representative query set Qi (line 8), and enrich the queries with

their auxiliary annotated information (line 9). (2) It consults

the oracle O with the batch of new queries and augments a

sampled set ṼT from initially labeled examples VT as V ′
T .

The purpose of sampling is to let the representative query set

Qi weigh more when updating the classifier M compared to

using the whole VT (line 10-11). (3) The adversarial learning

is then activated to update D with newly updated examples;

The classifier M along with the learned embeddings are then

updated accordingly (lines 12-13). Here the procedure SGAND
is a variant of SGAN. Instead of retraining both G and D
from scratch, it incrementally updates D in response to the

necessary change of the examples VT (see Section IV).

The above process repeats up to (user-defined) T iterations,

and issues at most T ·k queries. The improved classifier M is

then returned (line 14). In practice, GALE can be “interrupted”

at any iteration to respond to error detection with a current M .

We next introduce the details of iterative semi-supervised

GAN mododule, query selection module and annotation mod-

ule, in Sections IV,V, and VI, respectively.

IV. ITERATIVE ADVERSARIAL DETECTION

SGAN enforce G and D to compete in a two player’s game,

yet assumes fixed examples. We formulate an optimization

problem to minimize a bi-criteria loss in an iterative semi-

supervised setting. We use the following construction.

Loss Function of D. To adapt the discriminator D to recognize

new erroneous nodes and differentiate real and synthetic labels,

we quantify the loss of D as Li(D) = Li
s + λLu, where (1)

Algorithm GALE
Input: G(V,E), library Ψ, integers k, sampling rate η and T ;
Output: (improved) SGAN classifier M.

1. set VT := ∅; set Q := ∅; integer i:=1;
matrix XS := ∅, matrix XR := ∅; matrix Hn := ∅;
/* preprocess G and initialize models */

2. Q := S(∅, ∅, G, k); Q̃ := A(Q,Ψ, G);

3. VT := O(Q̃);
4. (XR, XS) := GAugment (G,Ψ);
5. (G,D) := SGAN (G, VT , XR, XS);
6. derive an initial classifier M and Hn from discriminator D;

/* iteratively improve the classifier */
7. while i < T do
8. set Qi := S(Hn(XR), VT , G, k);

9. set Q̃i := A(Qi,Ψ, G);

10. set ṼT := sample(VT , η)

11. set V ′
T := ṼT ∪ O(Q̃i);

12. Di := SGAND(G, V ′
T , XR, XS);

13. update M and Hn from Di;
14. return updated M;

Fig. 3: GALE: Learning Framework

a supervised loss Li
s quantifies the loss of accuracy on node

label classification (‘error’ or ‘correct’) for a current set of

examples V i
T ; and (2) an unsupervised loss Lu quantifies the

loss of accuracy on distinguishing synthetic or real labels.

Unlike [22] that assume a fixed learning objective, we guide

the learning of D to minimize the supervised and unsupervised

loss given the current examples and latest error distribution.

Supervised Loss. We define the supervised loss as:

Li
s =

∑
v∈V i

T

�(fθ(xv), lv)

where V i
T is the i-th batch of the examples obtained from

the oracle O, with lv the ground truth label of query v. θ is

the learnable parameter and fθ(xv) is the prediction of node v.

�(·, ·) measures the difference between prediction and ground

truth label using e.g., cross entropy.

Unsupervised Loss. The discriminator D also aims to classify

the real or synthetic examples as accurately as possible by

minimizing the unsupervised loss Lu. We define Lu as:

Lu = −Exv∼XR
[log(1−D(xv))]− Exv∼G(XS)[logD(xv)]

where D(xv) is the predicted synthetic probability of v.

Loss Function of G. The generator G aims to minimize the

difference between the synthetic graph embeddings XS and

the real counterpart from XR. We define the loss function

L(G) of G to measure the feature matching loss [47].

L(G) = ∥
∥Exv∈XRh(xv)− Ex′

v∈XS
h(G(x′

v))
∥
∥
2

2

where E(·) computes the expected value of a graph feature

matrix. The generator is trained to match the expected value

of the embeddings on an intermediate layer of D between

the features of real examples h(xv) and synthetic erroneous

counterpart h(G(x′
v)). Intuitively, G has higher chance to fool
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Procedure: SGAN (G, VT , XR, XS)

1. initialize the parameters of G and D;
2. update L(D) with VT XR, and XS ;
3. while G and D do not reaches a Nash equilibrium do
4. update G(·) by descending gradients of losses:
5. ∇θGL(G)
6. update D(·) by descending gradients of losses:
7. ∇θDL(D)
8. reduce learning rate β
9. return D;

Procedure: SGAND (G, VT , XR, XS)

1. update Li(D) with VT XR, and XS ;
2. Update D(·) by descending gradients of losses:
3. ∇θDL(D)
4. return D;

Fig. 4: Procedure SGAN and SGAND

the discriminator D by faking node embeddings closer to the

real counterpart, by minimizing L(G).
The models G and D consist of a sequence of transpose

convolution and batch normalization layers, adding regulariza-

tion layers e.g., dropout layers to prevent overfitting. D takes

real feature matrix XR and its synthetic counterpart XG that is

generated from G as inputs. Letting hn(xv) be the embeddings

on an intermediate layer of D. Hi
n(XR) refers to the learned

real node embeddings for real feature matrix XR at iteration i.
The matrix Hi

n(XR) is then passed to Query Selection module.

Procedures SGAN and SGAND. GALE trains generator G and

discriminator D by iteratively minimizing their corresponding

losses in procedure GANDet, as shown as Fig. 4. The main

training loop (lines 3-8) jointly optimize the generator loss

L(G) and discriminator loss L(D). We optimize the gradients

by applying Adam [29] and update D and G.

We distinguish SGAND with SGAN, a variant that follows

the joint learning scheme as in SGAN but only maintains the

discriminator D, by iteratively minimizing the corresponding

supervised loss. It incrementalizes the learning of SGAN, by

performing necessary updates to D in response to the change

of the supervised loss Li(D) (line 1) due to enriched VT .

V. QUERY SELECTION MODULE

We next describe the query selection strategy of GALE. We

first introduce a notion of diversified typicality to measure the

quality of the queries in terms of “typicality” and diversity.

A. Diversified Typicality

Clustering Typicality. The typicality of a query in active

learning strategies [24], [46] measures the quality of a query

in terms of its closeness to the centroid of a proper clustering.

An intuition is that when the clustering is treated as a density

function mapping, the data point that is closer to the centroid

indicates that it falls into a high density region that is easier

to be classified. It has been observed that such queries [24],

[46] achieves good performance especially in the low-budget

regime (where only limited queries are allowed). Example 2

consistently illustrates this intuition. Based on this intuition,

we define the clustering typicality of a node v as follows:

clusT(v) = (‖h(v)− c(v)‖2)
−1

where (1) c(v) is the centroid of the cluster that v belongs

to, where the clustering is performed on the node embedding

space, and (2) h(v) refers to the embedding of v. The

embedding is readily obtained from Hi
n(XR) at the i-th round

of execution of SGAND (line 11 of Fig. 3). Intuitively, it

computes the inverse of the Euclidean distance of the node

embeddings between v and its cluster centroid.

Topological Typicality. The influence of topology plays an

important role in message-passing based graph learning [10],

[38], [50]. Given an unlabeled training node v ∈ V , the label

of v is influenced by the labels of other nodes that can reach

v via aggregation through edges. This can be characterized by

label propagation [50], approximated by performing a random

walk from the labeled nodes to v to derive an aggregated “soft

label”. The node v bears “influence conflict” [10], if other

nodes with different labels are likely to cause a “conflict” to

the soft label. The smaller the likelihood is, the closer v is to

the center of its topologically determined label class.

Given an unlabeled node v, the topological typicality of v,

denoted as topoT(v)), is defined as:

topoT(v) = 1− Ex∼P v,:

⎡
⎣ ∑
l∈[1,2],l �=Ls(v)

1

|Cl|
∑
i∈Cl

P i,x

⎤
⎦

where l ∈ {’error’:1, ’correct’:2}, which is predicted by

discriminator D; Cl denotes the unlabeled training node set

with predicted label l. |Cl| denotes the total number of nodes

in Cl. The normalization item 1/ |Cl| is added to make the

influence from the “error” and “correct” classes comparable

when computing topoT(v). Ls(v) denotes the estimated class

type of node v with soft-label obtained in Label Propagation

algorithm [58], and P v is the Personalized PageRank prob-

ability vector for node v, which indicates a distribution of

influence exerted outward to all the nodes in G from node v.

Updating soft labels. In each iteration, GALE maintains the

soft labels for unlabeled nodes as follows.

◦ L0
s(v) = argmaxj Y

0, where Y 0 is the initial label

distribution from XR;

◦ Li
s(v) = argmaxj PY ′i; where (1) Y ′i is obtained by

incorporating new node labels from oracles (if any) to Y i

in iteration i−1, and P = α(I− (1−α)D̃− 1
2 ÃD̃− 1

2 )−1.

Here I is the identity matrix, α is the random walk restart

probability, Ã = A + I , A is the adjacency matrix, and

D̃ is the diagonal degree matrix of Ã.

Typicality. We define the typicality of a node v as

T (v) = clusT(v) · topoT(v)
Given a set of queries Q, the typicality of Q is defined as

T (Q) =
∑

v∈Q T (v).
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Procedure: QSelect (Hn(XR), VT , G, k)

1. set Q := ∅; set U = V \ VT ;
2. C(U) := ClusterU(U,Hn(XR));
3. while |Q| < k do
4. compute v ∈ U \ Q that maximizes B′

v(Q, C);
5. Q = Q ∪ {v}; U = U \ Q;
6. return Q ;

Fig. 5: Algorithm QSelect

Remark. Clustering-based strategies [24], [46] captures typ-

icality by choosing queries that are close to their cluster

centroids, yet ignores the impact via the topological properties.

PageRank centrality [38] measures the level of topological

influence of a node and favors nodes with large PageRank

centrality. Nevertheless, node attribute values are ignored [38].

We introduce diversity typicality that (1) integrates clustering

typicality, node attribute embeddings (with feedback from

Hi
n(XR)), and topological influences as a whole; (2) dynami-

cally determines node importance in each iteration. This makes

GALE more robust to various error distributions and as new

examples arrive, as verified in Section VIII.

Diversified Typicality Selection. Given a graph G with unla-

beled training node set U , a graph node embedding Hn(XR),
and query budget k, the diversified typicality selection problem

is to compute a set of queries Q ⊆ U such that

Q = argmax
|Q′|=k

(T (Q′) + λ
∑

v,v′∈Q′

d(h(v),h(v′))) (2)

Here d(·) computes the Euclidean distance of the node em-

beddings of v and v′.
While the diversified typicality selection problem is NP-

hard, we next present an efficient query selection algorithm.

B. Query Selection Algorithm

We present an algorithm, denoted as QSelect, to implement

the query selector S (line 8 in Fig. 3). We focus on the query

selection per iteration.

Lemma 1: Given a graph G with unlabeled node set U , a
graph node embedding Hn(XR), a query budget k, there exists
a 2-approximation algorithm that selects a set of query Q for
the diversified typicality selection problem. �

Proof sketch: We show that our diversified typicality selec-

tion problem can be reduced to the max-sum p-diversification

problem [6]. The latter is to choose a size-p subset S from a

set that maximizes the sum of a utility function and pairwise

distances of the elements in S. We show that T (Q) is a mono-

tone (submodular) set function, and there is an approximation

preserving reduction to the max-sum p diversification. �

Algorithm. We next outline the algorithm QSelect (Fig. 5).

It first performs a clustering algorithm ClusterU over the

node features Hn(XR), and induces the clusters C(U) for

the unlabeled nodes U (line 2). It then adopts a greedy

strategy to prioritize the selection of an unlabeled node v

Procedure: QAnnotate (Q, Ψ,G)

1. Q̃ := ∅;
2. for each v ∈ Q do
3. map v.M := ∅;
4. GetAnnotate (v, G, Ψ); /* Type 1*/
5. for each base detector f ∈ Ψ do
6. detect erroneous attribute values; /*Type 2*/
7. infer correct values at v; /*Type 3*/
8. update error distribution Πψ at v; /*Type 4*/

9. update v.M ; Q̃ := Q̃ ∪ {v};

10. return Q̃;

Fig. 6: Algorithm QAnnotate

that has the largest marginal gain B′
v(Q, C) = Fv(Q) +

λ
∑

v,v′∈Q d(h(v),h(v′)), where Fv(Q) = 1
2T (Q ∪ {v}) -

1
2T (Q). By default, GALE implements ClusterU with k′-
means clustering with k′ between k and 3k.

The 2-approximability can be verified by the approximation

preserving reduction to the max-sum p-dispersion problem.

For the time cost, it takes O(|U |k′m) times for m rounds of

k′-means grouping. The cost of the greedy selection process is

in O(k|U |) time [4], [6]. The total time cost of query selection

is thus in O(k|V |m), with k′ ≤ 3 ∗ k in our setting.

VI. QUERY ANNOTATION

While active learning often assumes oracles to have full

capability to provide correct labels, it is not an easy task

for error detection. Meanwhile, downstream analysis such as

error diagnosis [1], descriptive [9] and statistics-based repair-

ing [13], [32], [54] benefits from useful auxiliary information

that are generated from error detection. Accordingly, the role

of a query annotator A is to collect, profile and share useful

data from O and base detectors Ψ to components of GALE, to

(a) reduce manual effort of labeling (for oracle O), and (b)

reduce the cost of query selection (for query selector S). The

auxiliary data can also be re-used to facilitate follow-up data

repairing, and to reduce unnecessary computation. We next

describe the query annotation module A in GALE.

Auxiliary Information. GALE initializes a map structure v.M
for unlabeled nodes in Q. Given a node v ∈ Q, it collects and

stores in v.M the following information, whenever applicable:

◦ (Type 1: “soft subgraphs”) a subgraph that is induced

by the neighbors influenced by or to v via random walks,

and induced soft labels (Section V);

◦ (Type 2: detected errors) a list of erroneous values

v.A = ’a’ that are captured by base detectors in Ψ, with

confidence scores;

◦ (Type 3: suggested corrections) for each erroneous value

v.A = ’a’, a set of suggested correct counterparts, which

may be obtained from the value bindings enforced by

data constraints [14], [18], [36]; and

◦ (Type 4: error distribution) a statistical error distribu-

tion detected by the base detectors Ψ alone at v.
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GALE shares these global structures with the oracle O and

the query selector S to facilitate label generation and query

selection. We remark that the auxiliary data can be user-

defined to satisfy the need of other typicality measures, query

selection strategies, and oracles.

Annotation Generation. Algorithm QAnnotate (illustrated

in Fig. 6) implements the annotator A. (1) For each query

node in Q, it invokes procedure GetAnnotate to incrementally

update the neighborhood information (Type 1: soft graphs)

via Label Propagation [58]. (2) QAnnotate utilizes Ψ to

generate error probability distribution of each training node

and derive Types 2-4 data as follows. (a) For each base detector

fi ∈ Ψ of a particular class Ci, it runs fi over the nodes V
to evaluate the number of erroneous nodes that are captured

by fi (denoted as |Ψi|), and computes the counterpart |ΨCi
|

that counts all the erroneous nodes captured by the same

class of base detectors. This yields a normalized confidence

score for each base detector fi as
|Ψi|
|ΨCi

| (Type 2: detected

errors). (b) The overall error distribution is then estimated as a

weighted sum of the scores to represent the probability that v is

“polluted” by particular error type (Type 4: error distribution).

(3) When applicable, a list of correct values for a detected error

is attached to v.M by e.g., “enforcing” the data constraints [5],

suggesting majority of domain values [7], or applying string

transformations at v (Type 3: suggested corrections).

VII. IMPLEMENTATION AND OPTIMIZATION

Memorization. GALE optimizes the iterative learning of the

active adversarial framework (lines 7-12 in Fig. 3) with a

memorization strategy. The general idea is to record previ-

ously computed model parameters and reduce unnecessary

calculation, and avoid unnecessary update of the model pa-

rameters if the changes to the node embeddings are small.

We make a case of the optimization for the query selector S
(algorithm QSelect), a major source of redundant computa-

tion. Indeed, it requires (a) pairwise comparison of the large

amount of unlabeled nodes, and (b) repeated computation of

Personalized PageRank matrix P . On the other hand, we

observe that the distance measure satisfies triangle inequality,

and P remains static once computed. GALE thus maintains

the following structures: (a) a matrix to store the node pair

embedding distance d(u, v) for unlabeled node pair (v, v′)
whenever u, v ∈ {U ∪ C}; (b) a vector of flags to indicate

whether the learned embedding of unselected nodes changes

or not in two consecutive iterations, (c) a dictionary that

records the typicality of Q, where the key is the size of the

Q, and (d) pre-computed matrix P . GALE simply retrieves

an “approximate” distance d′(u, v) that is stored before if the

embeddings of node v and v′ are not significantly changed

even Di is updated. If the embedding of u and v are element-

wise equal within a tolerance, then d(u, v) is not updated.

The optimization is quite effective. As shown in Sec-

tion VIII, GALE incurs a feasible additional learning cost to

improve error detection with significant gain on accuracy, and

the optimization reduces the learning cost by 64%.

Dataset |V | |E| # node types # edge types avg. # attr
DBP 2.2M 7.4M 73 584 4
OAG 0.6M 1.7M 5 6 2
Yelp 1.5M 1.6M 42 20 5

TABLE II: Overview of Real-world Graphs

Dataset |VT | |ET | avg.# attrs |VT | |V e|
Species(SP:DBP) 17.7K 20K 4 1062 134

Data Mining(DM:OAG) 11.2K 12.9K 3 670 158
Machine Learning(ML:OAG) 3.4K 3.3K 3 203 54

UserGroup1(UG1:Yelp) 3.4K 2.6K 3 202 57
UserGroup2(UG2:Yelp) 3.3K 2.5K 3 196 45

TABLE III: Examples of Processed Graphs

System Implementation. We have developed a prototype

system GALE, built on our pilot system GEDet [22].

Feature Engineering. GALE adopts word embedding [20]

that maps attribute-level tokens (e.g., words) to vectors of

real numbers. We firstly feed the node attribute embedding

to a graph autoencoder GAE, which exploits graph structure

information to learn node representations. GALE concatenates

the attribute-level representation and node-level representation

as the input of the SGAN. Furthermore, Principal Component

Analysis (PCA) [33] is used to reduce training cost.

Built-in Library. By default, GALE has three classes of built-

in base detectors: (1) “ constraints-based detectors”, which

detects errors as violations of data constraints, e.g., graph

functional dependencies [18], (2) “outlier detectors”, which

encodes the algorithm in e.g., [7] to detect errors. (3) “string

error detectors”, including the detection of string noises such

as spelling errors. GALE keeps track of a set of “invertable”

base detectors f , such that their consequence can be used to

generate Type 3: suggested corrections (See Section VI).

Deployment. GALE builders and servers are deployed in

Google Colab environment with Tensorflow libraries and

NVIDIA TESLA P100 with 16GB GPU memory. The base

detector library, graph augmentation module, and an initial

GUI has been well supported by the established implementa-

tion based on HTML5, Bootstrap and Vis.js in a pilot system

GEDet [23]. Resources of GALE are made available 2.

VIII. EXPERIMENT

We experimentally verify the effectiveness and the training

cost of GALE for error detection in real-world graphs.

A. Experiment settings

Datasets. We used the following real-world graph data. (1)

DBP3 is a knowledge graph extracted from Wikipedia, in-

cludes entities such as “plant” or “animal” and relationships

among entities such as “studiedBy”; (2) OAG, a fraction

of the open academic graph4, contains nodes such as e.g.,
articles, authors, organizations, and edges such as “cite” or

“affiliatedTo”; (3) Yelp5 is a graph that contains entities such

as users and services (e.g., plumbers, restaurants), and edges

2https://github.com/CWRU-DB-Group/GALE/tree/main/code
3https://wiki.dbpedia.org/develop/datasets
4https://www.aminer.org/open-academic-graph
5https://www.yelp.com/dataset
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such as “friendWith” and “reviews”. We also show the sizes

of graphs that are induced by specific types (e.g., ‘Machine

Learning’ from OAG denotes an induced subgraph with nodes

that belong to the topic of ‘Machine Learning’). Tables II

and III provide the details of the original and several examples

of processed graphs, respectively.

Error Generation. We injected erroneous values into the

real graphs with a configurable error generator. The generator

enhances BART [2], a tool that pollutes attributes to evaluate

error detection. Three error types were introduced with the

help of stand-alone base detectors in a built-in library Ψ.

(1) Constraint violations are violations of a set of data

constraints Σ [18]. We discovered data constraints Σ by

invoking the algorithm in [17]. Matching the condition in

the data constraints, the generator perturbed values to violate

the consequent. We ensure meaningful constraints Σ with

high minimum support (the number of node matches) and

confidence (the nodes that satisfy the consequent of a data

constraint). Setting minimum support as 1000, 10, and 20 and

confidence as 0.9, 0.8, and 0.85 for DBP, OAG, and Yelp, we

discover 89, 21, and 112 data constraints, respectively.

(2) Outliers are injected disturbed values that are significantly

different from the distribution of peer attribute values. Some

can be captured by outlier detectors in Ψ.

(3) String noises are generated from multiple scenarios in-

cluding misspelling, missing values (‘null’), and random string

disturbance. We ensured that injecting these errors alone are

not leading to violations of Σ or as detectable outliers.

We set the node error rate, which denotes the probability

that a node in the graph is erroneous; attribute error rate,

which denotes the probability that an attribute is perturbed

as an erroneous attribute; and detectable rate, which denotes

the chance an error is captured by a base detector. The

node error rate, attribute error rate and detectable rate are

set as 0.01, 0.33, and 0.5 by default, respectively. For each

graph, we randomly partition the nodes to obtain 6 folds for

training examples, 1 fold for the validation set, and 3 folds for

testing nodes (see Table III). The constraint-based detectors

and outlier detectors are integrated into the annotation module

for attribute value suggestion if consulted, to test how well

GALE exploits external knowledge.

Oracle. For controlled tests, we simulated the oracle with the

set of base detectors Ψ. An ‘error’ label is assigned if a base

detector identified erroneous attribute values of the query. For

our case study, we have invited students who are experienced

in verifying knowledge graphs and Wikipedia editing history

to manually verify the errors and correct nodes.

Algorithms. We implemented GALE, along with 3 other

variants that interacts with the adversarial learning with dif-

ferent query selection strategies, one variant that removes the

memoization optimization, and compared their performances

with 5 additional baselines, all categorized as follows.

(1) Four variants of GALE, that replace query selector S with

different strategies, including (a) GALE (-Ran.), a uniformly

sampling of the unlabeled nodes; (b) GALE (-Ent.), entropy-

based uncertainty sampling using the softmax outputs; (c)

GALE (-Kme.), sampling the unlabeled nearest nodes to K-

means clustering centroids [27], and (d) U GALE, a variant

without the memorization strategy for query selection.

(2) Alad [37], a state-of-the-art anomaly node detection frame-

work that measures normality of the nodes by considering both

the topological structures of the graph and attribute distribution

estimation within local context of nodes.

(3) VioDet, a constraint-based error detection that detects

errors as the union of the violations of a set of graph data

constraints Σ mined from the original datasets.

(4) Raha [39] is a state-of-the-art method to detect errors in

relational data. It configures a library of built-in detectors e.g.,
outlier detection, to generate error detection strategies.

(5) Two Graph Neural Network-based error detectors: (a)

GCN [30] applies a graph convolutional architecture to en-

code local graph structure and features of nodes as a semi-

supervised node classifier; (b) GEDet [22], a state-of-the-art

few-shot learning based error detection framework. It uses

graph augmentation to enhance examples with synthetic ones,

and adopts adversarial learning to train a classifier.

Configuration. We use consistent settings for fair comparison.

(1) As Alad ranks nodes and is evaluated by AUC-PR

curve [37], we applied the default setting to learn Alad,

selected the thresholds that enable its best performance in

terms of AUC-PR curve, and derived anomalies as errors.

(2) We used the same set of data constraints Σ for GALE
variants, GEDet, and VioDet. We used the same settings

for shared hyperparameters in variants of GALE. GALE and

its variants are consistently trained with the same number of

iterations T and local budget k, within ranges [7, 17] and

[5, 100], respectively. (3) As Raha is designed for relational

data, we applied it to node tables with one table per node type.

Evaluation metrics. We evaluate the performance in effec-

tiveness and efficiency. For effectiveness, we report precision,

recall, and F1-score. Denote Errd as the set of erroneous nodes

detected from the graph, and Err as the set of nodes that are

erroneous in the graph. The precision, recall and F1-score are

defined as P =
|Errd∩Err|

|Errd|
, R =

|Errd∩Err|
|Err| , and F = 2PR

P+R ,

respectively. For efficiency, we report the training time of

GALE (-Ent.), GALE (-Ran.), GALE (-Kme.), and GALE.

All Experiments were executed on a Unix environment with

Intel 2.6GHz CPUs, and 16GB memory. All the algorithms

were implemented in Python on Tensorflow. Each experiment

was run 5 times and the median results were reported.

B. Experiment results

We first evaluate the effectiveness of GALE and baseline

algorithms, and the impact of several factors. We then evaluate

the training cost of GALE. In addition, we conduct case studies

to evaluate the usability of query annotation.

Exp-1: Accuracy of GALE. We report the accuracy of the

methods over all the datasets in Table IV. GALE variants are

1714

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore.  Restrictions apply. 



Data Met. VioDet Alad Raha GCN GEDet GALE (-Ent.) GALE (-Ran.) GALE (-Kme.) GALE

SP
P 0.85 0.26 0.40 0.57 0.9085 0.8237 0.8831 0.8530 0.8173
R 0.24 0.80 0.60 0.35 0.6009 0.6801 0.6311 0.6859 0.7219
F1 0.38 0.39 0.48 0.43 0.7233 0.7451 0.7361 0.7604 0.7666

DM
P 0.26 0.23 0.50 0.35 0.9812 0.9814 0.9813 0.9814 0.9814
R 0.30 0.77 0.43 0.74 0.4541 0.4578 0.4566 0.4578 0.4578
F1 0.28 0.35 0.47 0.47 0.6209 0.6244 0.6232 0.6244 0.6244

ML
P 0.24 0.23 0.62 0.63 0.9725 0.9725 0.9561 0.9643 0.9487
R 0.27 0.40 0.45 0.43 0.4569 0.4569 0.4698 0.4655 0.4784
F1 0.25 0.30 0.52 0.51 0.6217 0.6217 0.6301 0.6279 0.6361

UG1
P 0.33 0.27 0.63 0.51 0.7764 0.7640 0.7640 0.7755 0.7586
R 0.55 0.55 0.60 0.52 0.6389 0.6632 0.6632 0.6597 0.6875
F1 0.41 0.36 0.62 0.52 0.7010 0.7100 0.7100 0.7129 0.7213

UG2
P 0.31 0.27 0.59 0.66 0.9576 0.8881 0.8627 0.8836 0.8599
R 0.54 0.73 0.56 0.33 0.4502 0.5060 0.5259 0.5139 0.5378
F1 0.39 0.39 0.57 0.44 0.6125 0.6447 0.6535 0.6499 0.6618

TABLE IV: Performance of Error Detection. Bold: best result; Underlined: second best.

initialized by using 10% of the training nodes VT (summa-

rized in Table III). The total budget size for Species(DBP),

Data Mining (OAG), Machine Learning (OAG), UserGroup1

(Yelp), and UserGroup2 (Yelp) are 800, 490, 25, 50, and 50,

respectively. We report our findings below.

(1) We first inspect the 5 competing methods (all excluding

GALE variants). The low recall of VioDet suggests the errors

are quite diversified. GCN (graph neural network learning)

and Raha (assembles multiple learning methods) are able to

improve F1-scores, but may come with a cost of significant

precision drop (e.g.,GCN on ‘UG2’ dataset). Among the

competing methods, GEDet achieves the best F1-scores since

its few-shot learning module and graph augmentation module

ensure the coverage of heterogeneous errors.

(2) Active learning can effectively improve error detection.

Despite the diversified errors, GALE variants achieve either the

top or the second best results in precision, recall or F1-score

in almost all the cases. This is not recognized in individual

competing methods. On average, GALE has improved the F1-

score of VioDet, Alad, Raha, GCN and GEDet, with a margin

as 0.33, 0.31, 0.14, 0.20, and 0.02, respectively.

(3) In general, GALE variants with active adversarial frame-

work achieve desirable, and robust performance in accuracy

despite of the presence of multiple types of errors and datasets.

For example, in all cases, GALE and the three variants achieve

at least 0.74 in precision, 0.45 in recall and 0.62 in F1. Other

methods demonstrate higher variance given different datasets.

For example, VioDet has a high precision of 0.85 on SP, and

only achieves 0.24 precision on ML; similarly for GCN.

(4) For all the datasets, GALE achieves the best performance

among all the GALE variants. This verifies the effectiveness

of the typicality-based query selection. We found that typical

nodes from diversified clusters should be recommended to be

queried in the low budget regime, instead of choosing those

with the high uncertainty, or random selection (GALE (-Ran.)).

Exp-2: Impact of factors. We next investigate the impact of

the following factors: (1) the data imbalance pe =
|V e|
|VT | , and (2)

the training data ratio pt =
|VT |
|V | , and (3) a cumulative query

size K (the total # queries T · k).
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Fig. 7: Impact of factors to model performance

Impact of Data Imbalance. Fixing pt = 10% and K = 80,

we vary the imbalance pe from 0.1 to 0.9 over Machine

Learning (OAG). Fig. 7(a) tells us that while all methods

achieve better performance over more balanced data, GALE (-

Ent.), GALE (-Ran.), GALE (-Kme.), GALE, GEDet, are more

stable than GCN, due to the graph augmentation can counteract

imbalanced examples. Table IV consistently justifies this as the

fraction of |V e| varies over different datasets (summarized in

Table III): compared with GCN, the methods GALE (-Ent.),

GALE (-Ran.), GALE (-Kme.), and GALE are less sensitive.

Impact of Error Distribution. We also evaluated the accuracy

of GALE under different error distribution: violations-heavy,

where 50% of injected errors are constraint violations, and

the rest two are of equal chances; similarly for outliers-

heavy, and string-noise-heavy. GALE is able to pertain robust
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performance as 82.59± 1.15% in F1-score on ‘UG1’ datasets

with different error distributions since its adversarial active

learning consistently learns the real error distribution.

Varying example size. Fixing K = 80 and pe = 50%, we

vary pt over dataset UserGroup1(Yelp) from 15% to 1% and

report the result in Fig. 7(b) (the result of VioDet and Alad
are insensitive and constantly 0.41 and 0.36, respectively;

not shown). While the accuracy decreases for all models as

less training data is available, GALE (-Ent.), GALE (-Ran.),

GALE (-Kme.), GEDet is the least sensitive (remains a recall

above 0.6; not shown). Indeed, active learning variants in

GALE effectively counteract the impact of lack of labels, with

the graph augmentation model that improves recall, and the

adversarial module that improves the accuracy.

Varying cumulative budget K. Keeping other parameters by

default, we varied cumulative budget K from 400 to 700 (with

a fixed k=100) and report the result in Fig. 7(c). While the F1-

scores increase as more unlabeled nodes are queried and get

labeled by oracles for all active learning sampling strategies

in general, GALE and GALE (-Kme.) achieves the better F1-

scores compared with the other two methods, which affirms

our claim that the typical and diversified nodes should be

preferred to get selected over atypical (uncertain) nodes when

the query budget is low. Hence, K-means clustering based

sampling strategies (including GALE and GALE (-Kme.)) help

active learning select typical graph nodes that are suited for

low budgets. Furthermore, GALE outperforms GALE (-Kme.),

which indicates the diversity that makes selected nodes be far

apart benefits active learning in low-budget regime.

Exp-3: Learning cost. We compare the learning costs of

GALE variants and other baselines. GALE and variants do not

incur much additional cost especially in a desirable low-budget

regime when local budget k is small. We compare the learning

cost of different query selection strategies in both low-budget

regime and high-budget regime among GALE variants.

Model Learning cost. We set the number of epochs as 220 for

all the methods (200 epochs for the GAN in GALE variants

to reach a Nash equilibrium and 20 epochs for the generative

adversarial active learning module to query unlabeled nodes

in the graph) and apply an “early-stop” strategy based on

validation performance and make GEDet and GALE variants

terminate early if no improvement is observed within con-

secutive 20 epochs. As shown in Fig. 7(d), (1) it is quite

feasible to learn GALE. For example, it takes 520 seconds to

learn GALE to achieve a recall at 0.48 over UG2; (2) GALE
although is with the most sophisticated optimization goal, it

still has a comparable running time with other GALE variants

and improves the accuracy of error detection at a cost of small

overhead. For example, it introduces on average 33%, 45%,

15% and 62% additional cost compared with GALE (-Kme.),

GALE (-Ent.) (the running time of GALE (-Ran.) is close to

GALE (-Ent.), not shown), GEDet and GCN, respectively.

Active Learning cost. We fix the queried nodes as 10 in each

epoch on the Data Mining (OAG) of all GALE variants. After

the labels of these queried nodes are provided by the oracle,

we keep updating the model parameters of GALE variants.

In the low-budget regime of Fig. 7(e), GALE introduces on

average 53.8%, 42.9%, and 33.3% additional cost compared

with GALE (-Ent.), GALE (-Ran.) and GALE (-Kme.). In

general, the additional overhead of GALE is not significantly

increased due to our memorization strategies to skip unneces-

sary computation in the iterative learning and model updating.

Optimization of GALE. Using the same low-budget regime, we

compare the cost of GALE and U GALE. As Fig. 7(f) shows,

the optimization strategy significantly reduces the learning

cost. For example, it reduces the cost of U GALE by 40%
on the Data Mining (OAG) when k = 10.

Exp-4: Case study: Usability of Query Annotation.

We illustrate a “hard” test case when detecting errors in

Species(DBP). The test node v has attributes v.name =

“cavanillesia” and v.order with a wrong value “Lepidoptera”,

which should be “Marvales”. No graph constraint or outlier

detector in Ψ detects this error. The student who is requested

to label the nodes also has little knowledge of species. (1)

In an iterative process, GALE selected a typical node v′ that

is semantically similar to v, where v and v′ were from the

same cluster after embedding-based clustering. Finer analysis

showed that v and v′ share one common attribute kingdom
=“plantae”, which indicates their semantic similarity. (2) The

annotator A successfully associated node v′ with the following

auxiliary data: (a) a detected error “Melvaceae” that violates

a graph constraint in Ψ, (b) a suggested correct value “Mal-

vaceae” by enforcing the graph constraint, (c) the distribution

of errors at v′, and (d) the distribution of influence that comes

from the labeled nodes in Personalized PageRank matrix P
from A, where the most influential labeled node also came

with an “error” label. The student was able to correctly label

node v′ as “error”. (3) With v′ correctly labeled, the node

classifier is further improved, which successfully detected the

test node v as an erroneous node in the next iteration.

IX. CONCLUSION

We have introduced GALE, a graph error detection frame-

work empowered by an active adversarial learning framework.

GALE exploits active learning to best exploit the new knowl-

edge from oracles by issuing a bounded number of queries.

Moreover, we introduce new quality measures for selecting

queries in graph data in terms of diversified typicality, and in-

troduced approximation algorithms for query selection, query

annotation schemes to facilitate oracle and query selection, and

optimization strategies. Our experimental study verifies that

the active learning and adversarial error detection of GALE
achieve significant gain on accuracy compared with state-of-

the-art baselines. A future topic is to enhance GALE for large-

scale and more types of errors with distributed learning.

ACKNOWLEDGMENT

This work is supported by NSF under CNS-1932574, OIA-

1937143, ECCS-1933279, CNS-2028748, OAC-2104007 and

DoE under DE-EE0009353 and DE-NA0004104 .

1716

Authorized licensed use limited to: Kelvin Smith Library @ CASE. Downloaded on September 04,2023 at 20:39:04 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani,
P. Papotti, M. Stonebraker, and N. Tang. Detecting data errors: Where
are we and what needs to be done? VLDB, 2016.

[2] P. C. Arocena, B. Glavic, G. Mecca, R. J. Miller, P. Papotti, and
D. Santoro. Messing up with bart: error generation for evaluating data-
cleaning algorithms. VLDB, 2015.

[3] B. Biggio, G. Fumera, and F. Roli. Multiple classifier systems for
adversarial classification tasks. In International Workshop on Multiple
Classifier Systems, pages 132–141. Springer, 2009.

[4] B. Birnbaum and K. J. Goldman. An improved analysis for a
greedy remote-clique algorithm using factor-revealing lps. Algorithmica,
55(1):42–59, 2009.

[5] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model
and effective heuristic for repairing constraints by value modification.
In SIGMOD, 2005.

[6] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, monotone
submodular functions and dynamic updates. In Proceedings of the 31st
ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database
Systems, pages 155–166, 2012.

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying
density-based local outliers. In SIGMOD, 2000.

[8] G. Castagna, D. Colazzo, and A. Frisch. Error mining for regular
expression patterns. In Italian conference on Theoretical Computer
Science, pages 160–172. Springer, 2005.

[9] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti. Descriptive and
prescriptive data cleaning. In SIGMOD, 2014.

[10] D. Chen, Y. Lin, G. Zhao, X. Ren, P. Li, J. Zhou, and X. Sun. Topology-
imbalance learning for semi-supervised node classification. Advances in
Neural Information Processing Systems, 34:29885–29897, 2021.

[11] F. Chen, Y.-C. Wang, B. Wang, and C.-C. J. Kuo. Graph representation
learning: a survey. APSIPA Transactions on Signal and Information
Processing, 9, 2020.

[12] K. Cheng, X. Li, Y. E. Xu, X. L. Dong, and Y. Sun. Pge: Robust
product graph embedding learning for error detection. arXiv preprint
arXiv:2202.09747, 2022.

[13] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang. Data cleaning: Overview
and emerging challenges. In SIGMOD, 2016.

[14] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting
violations into context. In ICDE, 2013.

[15] N. Dalvi, P. Domingos, S. Sanghai, and D. Verma. Adversarial
classification. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 99–108,
2004.

[16] K. Ding, J. Li, and H. Liu. Interactive anomaly detection on attributed
networks. In Proceedings of the twelfth ACM international conference
on web search and data mining, 2019.

[17] W. Fan, C. Hu, X. Liu, and P. Lu. Discovering graph functional
dependencies. In SIGMOD, 2018.

[18] W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs. In
SIGMOD, 2016.

[19] Y. Fu, X. Zhu, and B. Li. A survey on instance selection for active
learning. Knowledge and information systems, 35(2):249–283, 2013.

[20] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. Liu,
M. Peters, M. Schmitz, and L. Zettlemoyer. Allennlp: A deep semantic
natural language processing platform. arXiv preprint arXiv:1803.07640,
2018.

[21] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning
in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., 2005.

[22] S. Guan, P. Lin, H. Ma, and Y. Wu. Gedet: Adversarially learned few-
shot detection of erroneous nodes in graphs. In IEEE Big Data, 2020.

[23] S. Guan, H. Ma, S. Choudhury, and Y. Wu. Gedet: detecting erroneous
nodes with a few examples. Proceedings of the VLDB Endowment,
14(12):2875–2878, 2021.

[24] G. Hacohen, A. Dekel, and D. Weinshall. Active learning on a
budget: Opposite strategies suit high and low budgets. arXiv preprint
arXiv:2202.02794, 2022.

[25] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-
shot learning for error detection. In SIGMOD, 2019.

[26] I. F. Ilyas, X. Chu, et al. Trends in cleaning relational data: Consistency
and deduplication. Foundations and Trends® in Databases, 2015.

[27] X. Jin and J. Han. K-means clustering. In Encyclopedia of Machine
Learning, 2010.

[28] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti,
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