
List-Decodable Sparse Mean Estimation

Shiwei Zeng
Department of Computer Science
Stevens Institute of Technology

szeng4@stevens.edu

Jie Shen
Department of Computer Science
Stevens Institute of Technology

jie.shen@stevens.edu

Abstract

Robust mean estimation is one of the most important problems in statistics: given a
set of samples in Rd where an ↵ fraction are drawn from some distribution D and
the rest are adversarially corrupted, we aim to estimate the mean of D. A surge of
recent research interest has been focusing on the list-decodable setting where ↵ 2
(0, 1

2], and the goal is to output a finite number of estimates among which at least
one approximates the target mean. In this paper, we consider that the underlying
distribution D is Gaussian with k-sparse mean. Our main contribution is the first
polynomial-time algorithm that enjoys sample complexity O

�
poly(k, log d)

�
, i.e.

poly-logarithmic in the dimension. One of our core algorithmic ingredients is using
low-degree sparse polynomials to filter outliers, which may find more applications.

1 Introduction

Mean estimation is arguably a fundamental inference task in statistics and machine learning. Given
a set of samples {x1, . . . , xn} ⇢ Rd where an ↵ fraction are drawn from some well-behaved (e.g.
Gaussian) distribution D and the rest are adversarially corrupted, the goal is to estimate the mean of
D. In the noiseless case where ↵ = 1, the problem can be easily solved in view of the concentration
of measure phenomenon [LT91]. However, this is rarely the case as modern data sets are often
contaminated by random noise or even by adversarial corruptions. Thus, a great deal of recent efforts
are focused on efficiently and robustly estimating the target mean in the presence of outliers.

Generally speaking, there is a phase transition between ↵ > 1/2 and 0 < ↵  1/2, and solving
either problem in a computationally efficient manner is highly nontrivial. The problem that most of
the samples are uncorrupted, i.e. ↵ > 1/2, has a very long history dating back to the 1960s [Tuk60,
Hub64], yet only until recently have computationally efficient algorithms been established [DKK+16,
LRV16]. The other yet more challenging regime concerns that an overwhelming fraction of the
samples are corrupted, i.e. ↵  1/2, which even renders estimation impossible. This motivates
a line of research on list-decodable mean estimation [CSV17], where in place of outputting one
single estimate, the algorithm is allowed to generate a finite list of candidates and is considered to be
successful if there exists at least one candidate in the list that is sufficiently close to the target mean.

In this work, we investigate the problem of list-decodable mean estimation, for which there have been
a plethora of elegant results established in recent years. From a high level, most of them concern error
guarantees and running time. For example, [CSV17] proposed the first tractable algorithm based
on semidefinite programming, which runs in polynomial time and achieves optimal error rate for
variance-bounded distributions. [DKS18b] developed a multi-filtering scheme and showed that the
error rate can be improved by using high degree polynomials if the underlying distribution is Gaussian.
The more recent works [CMY20, DKK+21a] further addressed the computational efficiency of this
task and achieved almost linear running time in certain regimes.

Although all of these algorithms exhibit near-optimal guarantees on either error rate or computational
complexity, it turns out that less is explored to improve another yet important metric: the sample

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

complexity. In particular, the sample complexity of all these algorithms is O(poly(d)), hence they
quickly break down for data-demanding applications such as healthcare where the number of available
samples is typically orders of magnitude less than the dimension d [Wai19]. Therefore, a pressing
question that needs to be addressed in such a high-dimensional regime is the following:

Does there exist a provably robust algorithm for list-decodable mean estimation that
runs in polynomial time and enjoys a sample complexity bound of O(polylog(d))?

In this paper, we answer the question in the affirmative by showing that when the target mean is
k-sparse, i.e. it has at most k non-zero elements, it is attribute-efficiently list-decodable.
Theorem 1 (Main result). Given parameter ↵ 2 (0, 1

2], failure probability ⌧ 2 (0, 1), a natural
number ` � 1, and a set T of ⌦

�
`4·k8`

↵7 · log6`(`d↵⌧)
�

samples in Rd, of which at least a (2↵)-fraction
are independent draws from the Gaussian distribution N(µ, Id) where kµk0  k, there exists an
algorithm that runs in time poly

�
|T | , d

`
,
1
↵

�
, uses polynomials of degree at most 2`, and returns a

list of O(1/↵) number of k-sparse vectors such that with probability 1� ⌧ , the list contains at least
one µ̂ 2 Rd with kµ̂� µk2 = Õ

�
↵
� 1

2` ·
p
`(`+ log 1

↵)
�
, where Õ(·) hides poly-logarithmic factors.

Remark 2. The key message of the theorem is that when the true mean is k-sparse, it is possible
to efficiently approximate it with O(polylog(d)) samples. This is in stark contrast to existing list-
decodable results [CSV17, DKS18b, CMY20, DKK20a, DKK+21a] where the sample complexity is
O(poly(d)). The only attribute-efficient robust mean estimators are [BDLS17, DKK+19, CDK+21],
but their results hold only for the mild corruption regime where ↵ > 1/2.
Remark 3. Our algorithm and analysis hold for any degree ` � 1. When ` = 1, the sample
complexity reads as Õ(↵�7

k
8 log6 d) and the algorithm achieves error Õ(↵� 1

2). As opposed to an
O(1� ↵) error rate obtained for ↵ > 1/2, the (non-vanishing) error rate Õ(↵� 1

2) is typically what
one can expect for list-decodable mean estimation under bounded second order moment condition, in
light of the lower bounds in [DKS18b]. When leveraging degree-2` polynomials into algorithmic
design, we obtain the improved Õ

�
↵
� 1

2`

p
`(`+ log 1

↵)
�

error guarantee. Specially, when taking
` = ⇥

�
log 1

↵

�
, our algorithm achieves error rate of Õ

�
log

3
2 (1
↵)

�
in quasi-polynomial time. This is

very close to the minimax error rate of ⇥(log
1
2 (1
↵)) established in [DKS18b].

Remark 4. If we further increase the sample size with an `` multiplicative factor with ` = ⇥(log 1
↵),

our algorithm will achieve an Õ
�
log

1
2 (1
↵)

�
error guarantee, which matches the minimax lower bound.

The proof follows the same pipeline and we leave it to interested readers.

1.1 Overview of Our Techniques

Our main algorithm is inspired by the multifiltering framework of [DKS18b], where the primary
idea is to construct a sequence of polynomials to test the concentration of the samples to Gaussian
so that the algorithm either certifies that the sample set behaves like Gaussian, or sanitizes it by
removing a sufficient amount of outliers. Our key technical contribution lies into a new design of
sparse polynomials, and new filtering rules tailored to the sparse polynomials.

Sparse polynomials and sparsity-induced filters. To ensure that our algorithm is attribute-efficient,
we will only control the maximum eigenvalue of the sample covariance matrix on sparse directions.
Since such computation is NP-hard in general, we first consider a sufficient condition which tests
the maximum Frobenuis norm under a cardinality constraint, similar to the idea of [DKK+19]. If
such Frobenuis norm is small, it implies a small restricted eigenvalue and hence the sample mean
is returned. Otherwise, we construct sparse polynomials in the sense that they can be represented
by a set of O(`2k4`) basis polynomials and O(`k2`) coordinates of the samples (see Definition 7),
and measure the concentration of these sparse polynomials to the Gaussian. Now as the underlying
polynomials are sparse, we also design new sparsity-induced filters to certify the sample set, as
otherwise a large amount of clean samples will be removed. See Algorithm 3 and Algorithm 4.

Clustering by L1-norm. Technically, the success of our attribute-efficient multifiltering approach
hinges on a condition that all the samples lie within a small L1-norm ball. It is not hard to see
that all the Gaussian samples satisfy such condition, and we show that there is a simple scheme
which can simultaneously prune and cluster the given samples into O(1/↵) groups, such that the

2

retained samples are close under the L1-norm and at least one group contains most of the Gaussian
samples. We note that the use of the L1-norm as our metric ensures attribute efficiency of this step.
An immediate implication of this clustering step is that the polynomials of Gaussian samples will be
close enough, which facilitates the analysis of the performance of our filters. See Section 2.3.

1.2 Related Works

Breaking the barrier of the typical O(poly(d)) sample complexity bound is one of the central
problems across many fields of science and engineering. Motivated by real-world applications, a
property termed sparsity is often assumed for this end, meaning that only k out of the d number
of attributes contribute to the underlying inference problem. In this way, an improved bound of
O(poly(k, log d)) can be obtained in many inference paradigms such as linear regression [CDS98,
Tib96, CT05, Don06, SL17a, SL17b, SL18, WSL18], learning of threshold functions [Lit87, BHL95,
STT12, PV13, ABHZ16, ZSA20, She20, SZ21], principal component analysis [Ma13, DKK+19],
and mean estimation [BDLS17, DKK+19, CDK+21]. Unfortunately, the success of all these attribute-
efficient algorithms hinges on the presumption that the majority of the data are uncorrupted.

Learning with mild corruption (↵ > 1/2). Learning in the presence of noise has been extensively
studied in a broad context. In supervised learning where a sample consists of an instance (i.e.
feature vector) and a label, lots of research efforts were dedicated to robust algorithms under label
noise [AL87, Slo88, MN06]. Recent years have witnessed significant progress towards optimal
algorithms in the presence of label noise, see for example, [KKMS05, ABL17, DKTZ20, ZSA20,
DKK+20b, ZS22] and the references therein. The regime that both instances and labels are corrupted
turns out to be significantly more challenging. The problem of learning halfspaces under such setting
was put forward in the 1980s [Val85, KL88], yet only until recently have efficient algorithms been
established with near-optimal noise tolerance [ABL17, DKS18a, She21, SZ21]. In addition, [BJK15,
KKM18, LSLC20] studied robust linear regression and [BDLS17] presented a set of interesting
results under various statistical models. More in line with this work is the problem of robust mean
estimation, see the breakthrough works of [DKK+16, LRV16] and many follow-up works [DKK+17,
BDLS17, DKS17, SCV18, KSS18, DKK+19, HLZ20, CDK+21].

Learning with overwhelming corruption (↵  1/2). The agnostic label noise of [Hau92, KSS92]
seems the earliest model that allows the adversary to arbitrarily corrupt any fraction of the data (say
70%), though it can only corrupt labels. Following [CSV17], a considerate number of of recent works
have studied the scenario that both instances and labels are grossly corrupted, and the goal is to output
a finite list of candidate parameters among which at least one is a good approximation to the target.
This includes list-decodable learning of mixture models [DKS18b, DKK+21b], regression [KKK19,
RY20a], and subspace recovery [RY20b, BK21]. Interestingly, there are some works studying the
problem under crowdsourcing models, where the samples are collected from crowd workers and most
of them behave adversarially [SVC16, ABHM17, MV18, ZS21].

It is worth noting that [DKK+22] concurrently and independently developed a polynomial-time
algorithm to solve the same problem, with an interesting difference-of-pairs metric to filter outliers.

1.3 Roadmap

We collect useful notations, definitions, and some preliminary results in Section 2. Our main
algorithms are described in Section 3 along with performance guarantees. We conclude the work in
Section 4, and defer all proof details to the appendix.

2 Preliminaries

Vector, matrix, and tensor. For a d-dimensional vector v = (v1, . . . , vd), denote by kvk2 its
L2-norm, kvk1 its L1-norm, kvk0 its L0-“norm” that counts the number of non-zeros, and kvk1
its infinity norm. The hard thresholding operator trimk : Rd

! Rd keeps the k largest elements
(in magnitude) of a vector and sets the remaining to zero. Let [d] := {1, 2, . . . , d} for some natural
number d > 0. For an index set ⌦ ✓ [d], v⌦ is the vector of v restricted on ⌦. We say a vector
is k-sparse if it has at most k non-zero elements, and likewise for matrices and tensors. For a
matrix M of size d1 ⇥ d2, denote by kMkF its Frobenius norm and by kMk⇤ its nuclear norm. For
U ✓ [d1]⇥ [d2], denote by MU the submatrix of M with entries restricted to U .

3

We also use tensors in our algorithms to ease expressions. Note that vectors and matrices can be
seen as order-1 and order-2 tensors respectively. We say that an order-l tensor A is symmetric if
Ai1,...,il = A⇡(i1,...,il) for all permutations ⇡. Given two tensors A and B, denote by A ⌦ B the
outer product (or tensor product) of A and B. We will slightly abuse kAk2 to denote the L2-norm of
a tensor A by seeing it as a long vector.

Probability. We reserve the capital letter G for a random draw from N(µ, Id), i.e. G ⇠ N(µ, Id),
where µ 2 Rd is the target mean that we aim to estimate which is assumed to be k-sparse. Suppose
that T is a finite sample set. We use µT to denote the sample mean of T , i.e. µT = 1

|T |
P

x2T x, and
use p(T) to denote the random variable p(x) where x is drawn uniformly from T .

Constants. The capital letter C and its subscript variants such as C1, C2 are used to denote positive
absolute constants. However, their values may change from appearance to appearance.

2.1 Polynomials

Let x = (x1, . . . , xd) be a d-dimensional vector in Rd, and let a = (a1, . . . ,ad) 2 Nd be a d-
dimensional multi-index. A monomial of x is a product of powers of the coordinates of x with natural
exponents, written as xa :=

Qd
j=1 x

aj

j . A polynomial of x, p(x), is a finite sum of its monomials
multiplied by real coefficients; that is, p(x) =

P
a2A cax

a where A ⇢ Nd is a finite set of multi-
indices and the ca’s are real coefficients. Note that the degree of p(x) is given by maxa2A kak1.
We denote by P(Rd

, l) the class of polynomials on Rd with degree at most l. We will often use the
probabilist’s Hermite polynomials that form a complete orthogonal basis with respect to N(0, Id).
Definition 5 (Hermite polynomials). Let x 2 R be a variate. For any natural number l 2 N, the
degree-l Hermite polynomial is defined as Hel(x) = (�1)le

x2

2
dl

dxl e
� x2

2 . For a 2 Nd and x 2 Rd,
the d-variate Hermite polynomial is given by Hea(x) :=

Qd
i=1 Heai(xi), which is of degree kak1.

Harmonic and homogeneous polynomials. A polynomial h(x) 2 P(Rd
, l) is called harmonic if it

can be written as a linear combination of degree-l Hermite polynomials. A polynomial Hom(x) 2
P(Rd

, l) is called homogeneous if all of its monomials have degree exactly l.
Fact 6. If a polynomial is degree-l harmonic or homogeneous, then there is a one-to-one mapping
between it and an order-l symmetric tensor.

To see this, we may define an operation “�” such that Hel(xi) � Hel(xj) = Hel(xi) · Hel(xj) if
i 6= j and equals He2l(xi) otherwise. Then any degree-l Hermite polynomial can be written as
He1(xi1) � He1(xi2) · · · � He1(xil) where all the indices it 2 [d]. We will consider that one such
sequence (i1, . . . , il) exactly corresponds to one degree-l Hermite polynomial on Rd, and there are
d
l number of such sequences that form all degree-l Hermite polynomials. In this sense, any harmonic

polynomial h(x) can be written as h(x) =
P

i1,...,il
Ai1,...,il · He1(xi1) � He1(xi2) · · · � He1(xil),

where Ai1,...,il ’s are the coefficients which form an order-l tensor. If we choose A as symmetric, it is
easy to see that A fully represents h(x). Then, we can convert “�” back to the regular product by
counting the number of times a particular index j appearing in (i1, . . . , il). If we denote this number
as cj(i1, . . . , il), we have

h(x) =
1
p
l!

X

i1,...,il

Ai1,...,il

Y

j

Hecj(i1,...,il)(xj) =: hA(x), with
dX

j=1

cj(i1, . . . , il) = l, (2.1)

where the factor 1/
p
l! is only used to normalize the magnitude of A to ease our analysis.

Likewise, any homogeneous polynomial takes the form

HomA(x) =
X

i1,...,il

Ai1,...,il

Y

j

x
cj(i1,...,il)
j .

Sparse polynomials. In order to define sparse polynomials, we will first specify a set of basis
polynomials {b1, . . . , bdl} ⇢ P(Rd

, l). In this paper, we will either choose such set as all degree-l
monomials or all degree-l Hermite polynomials.

4

Definition 7 ((,)-sparse polynomials). We say that a polynomial p 2 P(Rd
, l) is (,)-sparse if

it can be represented by at most  number of basis polynomials and coordinates of the input vector.
We denote by P(Rd

, l,,) the class of (,)-sparse polynomials.

Note that when  and l are fixed, p(x) will depend on at most  · l coordinates. Thus, the introduction
of the parameter makes sense only when   · l. In our algorithm, we will always have l  2`,
 = 4`2k4`, and = 2`k2` for some natural number ` � 1.

2.2 Representative Set and Good Set

To ease our analysis, we will need a deterministic condition on the set of uncorrupted samples.
Definition 8 (Representative set). Given ↵ 2 (0, 1

2] and ⌧ 2 (0, 1), we say that a sample set SG ⇢ Rd

is representative with respect to P := P(Rd
, 2`, 4`2k4`, 2`k2`) if the following holds:

sup
p2P

|Pr[p(G) � 0]� Pr[p(SG) � 0]|  ✏0, where ✏0 :=
↵
3

100k2` · log2`(`d↵⌧)
.

We show that a sufficiently large set drawn independently from N(µ, Id) is representative. The proof
follows from the classic VC theory, and is deferred to Appendix A.1.
Proposition 9 (Sample complexity). Given ↵ 2 (0, 1

2] and ⌧ 2 (0, 1), let SG be a set consisting
of |SG| = C ·

(l·+) log d
✏2 log (l·+) log d

✏⌧ independent samples from N(µ, Id) where C > 0 is a
sufficiently large absolute constant. Then, with probability 1� ⌧ ,

sup
p2P(Rd,l,,)

|Pr[p(G) � 0]� Pr[p(SG) � 0]|  ✏.

In particular, when l = 2`,  = 4`2k4`, = 2`k2`, and ✏ = ↵3

100k2`·log2`(`d
↵⌧)

for some natural

number ` � 1, it suffices to pick |SG| = C
0
·
`4·k8`

↵6 · log6`(`d↵⌧) for some sufficiently large constant
C

0 so that SG is a representative set.

Our algorithm will progressively remove samples from T , and a key property that ensures the success
of the algorithm is that most corrupted samples are eliminated while almost all uncorrupted samples
are retained. Alternatively, we hope that T contains a representative set that contributes to a nontrivial
fraction. For technical reasons, we also require that all samples in T lie in a small L1-ball.
Definition 10 (↵-good set). A multiset T ⇢ Rd is ↵-good if the following holds:

1. There exists a set SG which is representative and satisfies |SG \ T | � max{(1 �
↵/6) |SG| ,↵ |T |}.

2. maxx,y2T kx� yk1  C ·

p
log(d |SG| /⌧) for some constant C > 0.

It is not hard to verify that the initial sample set T satisfies the first condition, and will also fulfill the
second one with a simple data pre-processing, as stated in the next section.

2.3 Clustering for the Initial List

Since the corrupted samples may behave adversarially, we will perform a preliminary step of clustering
which splits T into an initial list of subsets, among which at least one is ↵-good in the sense of
Definition 10. We first show that all Gaussian samples have bounded L1-norm with high probability,
which simply follows from the Gaussian tail bound.

Lemma 11. Given ⌧ 2 (0, 1), with probability 1�⌧ , we have maxx2SG kx� µk1 

q
2 log d|SG|

⌧ ,
where SG is a set of samples drawn independently from N(µ, Id).

The above observation implies that for any x, y 2 SG, their distance under the L1-norm metric is at
most 2

p
2 log(d |SG| /⌧)  O

�q
` · log `d

↵⌧

�
as far as the size of SG has the same order with the one

in Proposition 9. To guarantee the existence of such SG, it suffices to draw a corrupted sample set T
that is 1/↵ times larger than |SG|. The lemma below further shows that this is sufficient to guarantee
the existence of an ↵-good subset of T .

5

Algorithm 1 CLUSTER(T,↵, ⌧, `)

Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1),
degree of polynomials ` � 1.

1: A set of centers C ;, radius � C0 ·

q
` · log `d

↵⌧ for some constant C0 > 0.
2: For each x 2 T , proceed as follows: if there are at least ↵ · |T | samples y in T that satisfy
kx� yk1  2�, and no sample x

0
2 C satisfies kx� x

0
k1  6� then C C [{x}.

3: For each xi 2 C, let Ti = {y 2 T : kxi � yk1  6�}.
4: return {T1, . . . , T|C|}.

Lemma 12 (CLUSTER). Given ↵ 2 (0, 1
2] and ⌧ 2 (0, 1), let T be the sample set given to the

learner. If |T | = C ·
`4·k8`

↵7 · log6`(`d↵⌧) and a (2↵)-fraction are independent samples from N(µ, Id),
Algorithm 1 returns a list of at most 1/↵ many subsets of T , such that with probability at least 1� ⌧ ,
at least one of them is an ↵-good set.

As will be clear in our analysis, the motivation of bounding the L1-distance is to make sure that the
function value of any p(x) = hA(x � µT) 2 P(Rd

, l,,) is bounded for samples in the ↵-good
subset Ti. This is because when there exist a significant fraction of good samples in Ti, we want to
efficiently distinguish the corrupted and uncorrupted ones. A value-bounded polynomial function
will facilitate our analysis on the function variance.
Lemma 13. Suppose that T is ↵-good and a polynomial p 2 P(Rd

, l, 4`2k4`, 2`k2`) satisfies the
following: there exists a symmetric order-l tensor A such that kAk2  1 and p(x) = hA(x� µT).

Then, it holds that maxx,y2T |p(x)� p(y)|  2k` · �l, where � = C0 ·

q
` · log(`d↵⌧).

3 Main Algorithms and Performance Guarantees

We start with a review of the multifiltering framework that has been broadly used in prior
works [DKS18b, DKK20a, DKK+21b], followed by a highlight of our new techniques.

The multifiltering framework, i.e. Algorithm 2, includes three major steps. The first step is to invoke
CLUSTER (Algorithm 1) to generate an initial list L which guarantees the existence of an ↵-good
subset of T (see Lemma 12). We then imagine that there is a tree with root being the original
contaminated sample set T and each child node of the root represents a member in L. The algorithm
iterates through these child nodes and performs one of the following: (1) creating a leaf node which
is an estimate of the target mean; (2) creating one or two child nodes where are subsets of the parent
node; (3) certifying that the set cannot be ↵-good and delete branch. In the end, if all leaves of the
tree cannot be further split or deleted, the mean of the subsets on leaf nodes will be collected as a
list M . It is worth noting that the goal of algorithmic design is to guarantee that there always exists
a branch that includes only ↵-good subsets. In other words, at any level of the algorithm, at least
one of the subsets of T is ↵-good, which ensures the existence of a good estimation in the returned
list M . The final step is a black-box algorithm that reduces the size of M from O(poly(1/↵))
to O(1/↵), which is due to [DKS18b]. Our technical contributions lie into an attribute-efficient
implementation of the first and second steps. In this section, we elaborate on the second step, i.e. the
ATTRIBUTE-EFFICIENT-MULTIFILTER algorithm.

3.1 Overview of Attribute-Efficient Multifiltering

The ATTRIBUTE-EFFICIENT-MULTIFILTER algorithm is presented in Algorithm 3. The starting
point of the algorithm is a well-known fact that if the adversary were to significantly deteriorate
our estimate on µ, the spectral norm of a certain sample covariance matrix ⌃̃ would become large
[DKK+16, LRV16]. In order to achieve attribute-efficient sample complexity O(poly(k, log d)), it
is however vital to control the spectral norm only on k

`-sparse directions for some pre-specified
polynomial degree ` � 1, which can further be certified by a small Frobenius norm restricted on the
largest k2` entries. If the restricted Frobenius norm is sufficiently small, it implies that the sample
covariance matrix behaves as a Gaussian one, and the algorithm returns the empirical mean truncated
to be k-sparse (see Step 4). Otherwise, the algorithm will invoke either BASICMF (i.e. Algorithm 4)

6

Algorithm 2 Main Algorithm: Attribute-Efficient List-Decodable Mean Estimation
Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1),

degree of polynomials ` � 1.
1: {T1, . . . , Tm} CLUSTER(T,↵, ⌧, `), L {(T1,↵/2), . . . , (Tm,↵/2)}, M ;.
2: while L 6= ; do
3: (T 0

,↵
0) an element in L, L L\{(T 0

,↵
0)}.

4: ANS ATTRIBUTE-EFFICIENT-MULTIFILTER(T 0
,↵

0
, ⌧/ |T | , `).

(i) if ANS is a vector then add it into M .
(ii) if ANS is a list of (Ti,↵i) then append those with ↵i  1 to L.

(iii) if ANS = NO then go to the next iteration.
5: end while
6: return LISTREDUCTION(T,↵, `,M).

Algorithm 3 ATTRIBUTE-EFFICIENT-MULTIFILTER(T,↵, ⌧, `)

Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1),
degree of polynomials ` � 1.

1: ⌃̃ E[Pd,`(T �µT) ·Pd,`(T �µT)>], and Pd,`(x) is the column vector of all degree-` Hermite
polynomials of x.

2: {(it, jt)}
1
2 (k

2`+k`)
t�1 index set of the k

` diagonal entries and 1
2 (k

2`
� k

`) entries above the
main diagonal of ⌃̃ with largest magnitude. U {(it, jt)}t�1 [{(jt, it)}t�1, U 0

 I ⇥ I ,
with I = {it}t�1 [{jt}t�1.

3: �⇤sparse
⇥
C1 · (`+ C1 log

1
↵) · log

2(2 + log 1
↵)

⇤2` for large enough constant C1 > 0.

4: if
���(⌃̃)U

���
F
 �

⇤
sparse then return µ̂ trimk(µT).

5: (�⇤, v⇤) the largest eigenvalue and eigenvector of (⌃̃)U 0 .
6: if �⇤ � �⇤sparse then
7: if ` = 1 then ANS BASICMF(T,↵, ⌧, p1) else ANS HARMONICMF(T,↵, ⌧, p1)

where p1(x) := v
⇤
· Pd,`(x� µT).

8: else
9: p2(x)

1
kA0kF

·
�
Pd,`(x� µT)> ·A

0
· Pd,`(x� µT)

�
with A

0 := (⌃̃)U 0 .
10: ANS HARMONICMF(T,↵, ⌧, p2).
11: end if
12: return ANS.

or HARMONICMF (i.e. Algortihm 5) to examine the concentration of a polynomial of the empirical
data to that of Gaussian. Both algorithms will either assert that the current sample set does not contain
a sufficiently large amount of Gaussian samples, or will prune many corrupted samples to increase
the fraction of Gaussian ones. A more detailed description of the two algorithms can be found in
Section 3.2.1 and Section 3.2.2 respectively. What is subtle in Algorithm 3 is that we will check
the maximum eigenvalue �⇤ of the empirical covariance matrix ⌃̃ restricted on a carefully chosen
subset U 0, which corresponds to the maximum eigenvalue on a certain (2k2`)-sparse direction. If �⇤
is too large, this indicates an easy problem since it must be the case that the adversary corrupted the
samples in an aggressively way. Therefore, it suffices to prune outliers using a degree-` polynomial
p1 which is simply the projection of Pd,`(x� µT) onto the span of the maximum eigenvector; see
Step 7 in Algorithm 3. On the other hand, if �⇤ is on a moderate scale, it indicates that the adversary
corrupted the samples in a very delicate way so that it passes the tests of both Frobenius norm and
spectral norm. Now the main idea is to check the concentration of higher degree polynomials induced
by the sample set; we show that it suffices to construct a degree-2` harmonic polynomial; see Step 10.

While sparse mean estimation has been studied in [DKK+19] and the idea of using restricted
Frobenius norm and filtering was also developed, we note that their analysis only holds in the mild
corruption regime where ↵ > 1/2. To establish the main results, we will leverage the tools from
[DKS18b], with a specific treatment on the fact that µ is k-sparse, to ensure an attribute-efficient
sample complexity bound. As we will show later, a key idea to this end is to utilize a sequence of
carefully chosen sparse polynomials in the sense of Definition 7 along with sparsity-induced filters.

7

The performance guarantee of ATTRIBUTE-EFFICIENT-MULTIFILTER is as follows.
Theorem 14 (Algorithm 3). Consider Algorithm 3 and denote by ANS its output. With probability
1� ⌧ , the following holds. ANS cannot be TBD. If ANS is a k-sparse vector and if T is ↵-good,
then kµ� µ̂k2  Õ

�
↵
� 1

2`

p
`(`+ log 1

↵)
�
. If ANS = NO, then T is not ↵-good. If ANS =

{(Ti,↵i)}mi=1 for some m  2, then Ti ⇢ T for all i 2 [m] and
Pm

i=1
1
↵2

i


1
↵2 ; if additionally T is

↵-good, then at least one Ti is ↵i-good. Finally, the algorithm runs in time O
�
poly(|T | , d`)

�
.

3.2 Analysis of ATTRIBUTE-EFFICIENT-MULTIFILTER

We first show that if the restricted Frobenius norm of the sample covariance matrix is small, then the
sample mean is a good estimate of the target mean.
Lemma 15. Consider Algorithm 3. If the algorithm returns a vector µ̂ at Step 4 and if T is ↵-good,
we have that kµ̂� µk2  O

�
↵
� 1

2`

p
` · (`+ log 1

↵) · log
2(2 + log 1

↵)
�
.

Next, we give performance guarantees on the remaining steps of Algorithm 3, where we consider the
case that the algorithm does not return at Step 4. Namely, the algorithm will either reach at Step 7
or Step 10, and will return the ANS obtained thereof. These two steps will invoke BASICMF or
HARMONICMF on different sparse polynomials. Observe that both algorithms may return 1) “NO”,
which certifies that the current input set T is not ↵-good; 2) a list of subsets {(Ti,↵i)}mi=1 for some
m  2, on which Algorithm 3 will be called in a recursive manner; or 3) TBD, which indicates that
the algorithm is uncertain on T being ↵-good. In the following, we prove that the way that we invoke
BASICMF and HARMONICMF ensures that they will never return TBD when being called within
Algorithm 3. We then give performance guarantees on these two filtering algorithms when they return
“NO” or {(Ti,↵i)}mi=1, thus establishing Theorem 14.

Let us consider that the algorithm reaches Step 7, i.e. the largest eigenvalue on one sparse direction is
larger than the threshold �⇤sparse. It is easy to see that when ` = 1, ANS cannot be TBD since the
only way that BASICMF returns TBD is when Var[p(T)] is not too large, but this would violate the
condition that �⇤ > �

⇤
sparse in view of our setting on �⇤sparse. Similarly, we show that under the large

�
⇤ regime, HARMONICMF will not return TBD either. Thus, we have the following lemma.

Lemma 16. Consider Algorithm 3. If it reaches Step 7, then ANS 6= TBD.

Now it remains to consider the case that the algorithm reaches Step 10, which is more subtle since
the evidence from the magnitude of the largest restricted eigenvalue is not so strong to prune outliers.
Note that this could happen even when T contains many outliers, since �⇤ is not the maximum
eigenvalue on all sparse directions but on a submatrix indexed by U

0. Fortunately, if �⇤ is not
large, we show that the algorithm can still make progress by calling HARMONICMF on degree-2`
sparse polynomials. This is because higher-degree polynomials are more sensitive to outliers than
low-degree polynomials, as far as we can certify the concentration of high-degree polynomials on
clean samples. As a result, we will have the following guarantee.
Lemma 17. Consider Algorithm 3. If it reaches Step 10, then ANS 6= TBD.

3.2.1 Basic Multifilter for Sparse Polynomials

The BASICMF algorithm (Algorithm 4) is a key ingredient in the multifiltering framework. It takes as
input a sparse polynomial p and uses it to certify whether T is ↵-good and sufficiently concentrated.
The central idea is to measure how p(T) distributed and compare it to that of the distribution of
p(G). We require the input p has certifiable variance on G, i.e. Var[p(G)]  1, as otherwise, it could
filter away a large number of the good samples. We note that the bounded variance condition is
always satisfied for degree-1 Hermite polynomials under proper normalization, while for high-degree
polynomials, one cannot invoke BASICMF directly (see Section 3.2.2 for a remedy).

The way that BASICMF certifies the input sample set T not being ↵-good is quite simple: if not
all samples lie in a small L1-ball, it returns “NO” at Step 2, in that this contradicts Lemma 13.
Otherwise, the algorithm will attempt to search for a finer interval [a, b] such that it includes most
of the samples. If such interval exists, then either the adversary corrupted the samples such that the
sample variance is as small as that of Gaussian while the sample mean may deviate far from the
target, in which case BASICMF returns TBD at Step 5; or the sample variance is large, in which case

8

Algorithm 4 BASICMF(T,↵, ⌧, p)
Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1),

a polynomial p 2 P(Rd
, l, 4`2k4`, 2`k2`) such that l  2`, Var[p(G)]  1, and p(x) =

hA(x� µT).

1: R (C1 · log
1
↵)

l/2, � C0 ·

q
` · log `d

↵⌧ .
2: if maxx,y2T |p(x)� p(y)| > 2k` · �l then return “NO”.
3: if there is an interval [a, b] of length C1 ·R · log(2+ log 1

↵) that contains at least (1� ↵
2)-fraction

of samples in {p(x) : x 2 T} then
4: if Var[p(T)]  C1 ·

�
`+ C1 log

1
↵

�l
· log2(2 + log 1

↵) then
5: return “TBD”.
6: else
7: Find a threshold t > 2R such that

Pr
x⇠T

⇥
min{|p(x)� a| , |p(x)� b|} � t

⇤
>

32

↵
exp(�(t� 2R)2/l) +

2↵2

k2` logl(`d↵⌧)
.

8: T
0
 {x 2 T : min{|p(x)� a| , |p(x)� b|}  t}, ↵0

 ↵ ·

⇣
(1�↵/8)|T |

|T 0| + ↵
8

⌘
.

9: return {(T 0
,↵

0)}.
10: end if
11: else
12: Find t 2 R, R0

> 0 such that the sets T1 := {x 2 T : p(x) > t � R
0
} and T2 := {x 2 T :

p(x) < t+R
0
} satisfy

|T1|
2 + |T2|

2
 |T |

2 (1� ↵/100)2 and |T |�max(|T1| , |T2|) � ↵ |T | /4.

13: ↵i ↵ · (1� ↵2
/100) · |T | / |Ti|, for i = 1, 2.

14: return {(T1,↵1), (T2,↵2)}.
15: end if

it is possible to construct a sparsity-induced filter to prune outliers (see Steps 7 and 8). We note that
in Step 7, the first term on the right-hand side is derived from Chernoff bound for degree-l Gaussian
polynomials and the second term is due to concentration of empirical samples to Gaussian (see
Definition 8), both of which are scaled by a factor 8/↵ so that the number of the samples removed
from T is 8/↵ times more than that of the good samples in the representative set SG ⇢ T , which
means most of the removed samples are outliers. We show by contradiction the existence of the
threshold t (see Lemma 26). In fact, had such threshold t not existed, the set T must be sufficiently
concentrated such that the algorithm would have returned at Step 5. This essentially relies on our
result of the initial clustering of Algorithm 1, which guarantees that each subset T is bounded in a
small L1-ball and the function value of p on the ↵-good T does not change drastically (Lemma 13).
We then show that equipped with such threshold t, T 0 is a subset of T and it is ↵0-good if T is ↵-good
(Lemma 28).

When there is no such short interval [a, b], the algorithm splits T into two overlapping subsets
{T1, T2} such that T1 \ T2 is large enough to contain most of the samples in SG. This guarantees
that most of the samples in SG (if T is ↵-good) are always contained in one subset and thus there
always exists an ↵-good subset of T . We show that an appropriate threshold t can also be found at
Step 12 (Lemma 30), and at least one Ti is ↵i-good if T is ↵-good.

As a result, we have the following guarantees for Algorithm 4; see Appendix B for the full proof.
Theorem 18 (BASICMF). Consider Algorithm 4. Denote by ANS its return. Suppose that T being
↵-good implies Var[p(G)]  1. Then with probability 1 � ⌧ , the following holds. ANS is either

“NO”, “TBD”, or a list of {(Ti,↵i)}mi=1 with m  2. 1) If ANS = NO, then T is not ↵-good. 2) If
ANS = TBD, then Var[p(T)]  O

�
(`+ log 1

↵)
l
· log2(2+ log 1

↵)
�
; and if additionally T is ↵-good,

then |E[p(G)]� E[p(T)]|  O
�
(`+ log 1

↵)
l
2
· log(2 + log 1

↵)
�
. 3) If ANS = {(Ti,↵i)}mi=1, then

Ti ⇢ T and
P

i
1
↵2

i


1
↵2 for all i 2 [m]; if additionally T is ↵-good, then at least one Ti is ↵i-good.

9

Algorithm 5 HARMONICMF(T,↵, ⌧, p)
Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1), a

polynomial p 2 P(Rd
, l, 2`k2`, 2`k2`) such that p(x) = hA(x� µT) and kAk2 = 1.

1: for l
0 = 0, 1, . . . , l do

2: Let B(l0) be an order-2l0 tensor with

B
(l0)
i1,...,il0 ,j1,...,jl0

=
X

kl0+1,...,kl

Ai1...,il0 ,kl0+1,...,klAj1...,jl0 ,kl0+1,...,kl .

3: Consider B(l0) as a dl
0
⌦d

l0 symmetric matrix by grouping each of the i1, . . . , il0 and j1, . . . , jl0

coordinates together. Apply eigenvalue decomposition on B
(l0) to obtain B

(l0) =
P

i �iVi⌦Vi.
4: ANSi MULTILINEARMF(T, Vi, l

0
,↵, ⌧/(ldl)) for every Vi. If ANSi = NO or a list of

{(Tj ,↵j)} for some i, then return ANSi. If ANSi = TBD, continue.
5: end for
6: ANS BASICMF(T,↵, ⌧, 1

�hA(x � µT)) with � :=
�
C1 · (1 + log 1

↵) · log
2(2 + log 1

↵)
� l

2 .
If ANS = NO or a list of (Tj ,↵j), return ANS. If ANS = TBD, still return “NO”.

3.2.2 Harmonic Multifilter with Hermite Polynomials

Recall that applying BASICMF (Algorithm 4) on a polynomial p requires Var[p(G)]  1. It is
nontrivial to verify this condition for a high-degree polynomial p, as the variance of high-degree
Gaussian polynomials depends on the distribution mean, i.e. µ�µT in this case, which is unfortunately
unknown. As a remedy, notice that for any harmonic polynomial hA(x), Ex⇠N(µ0,I)[hA(x)2] equals
the summation of homogeneous polynomials of µ0, which can also be seen as the expectation of
multilinear polynomials over independent variables X(i) ⇠ N(µ0

, Id). Thus, we only need to verify
the expectation of these corresponding multilinear polynomials, whose variance on G does not hinge
on µ

0. The harmonic multifilter is presented in Algorithm 5, where the subroutine MULTILINEARMF
can be found in Appendix D. We first present the guarantee when Algorithm 5 returns all TBD at
Step 4 and reaches Step 6, where we can certify a bounded variance for hA(x� µT) on G.
Lemma 19 (Variance of p). Consider Algorithm 5. If it reaches Step 6 and T is ↵-good, then we
have E[hA(G� µT)2]  �2.

Based on Lemma 19, we have that Var[hA(G� µT)/�]  1, for which we can invoke BASICMF on
hA(x � µT)/� and Theorem 18 can be applied immediately. We are ready to elaborate the proof
ideas for Lemma 16 and 17. First, observe that BASICMF returns “TBD” at Step 6 if and only if
Var[hA(T � µT)/�]  C1 ·

�
`+ C1 log

1
↵

�l
· log2(2 + log 1

↵). Now return to Algorithm 3. When
hA(x� µT) = p1(x), this could not happen because Var[p1(T)] = Var[v⇤ · Pd,`(T � µT)] � �⇤ �

�
⇤
sparse =

⇥
C1 · (`+ C1 log

1
↵) · log

2(2 + log 1
↵)

⇤2`
� �

2
· C1 ·

�
`+ C1 log

1
↵

�`
· log2(2 + log 1

↵).
A contradiction that implies Lemma 16. When hA(x� µT) = p2(x), the case is more delicate. Here,
we instead show that T must not be ↵-good and HARMONICMF will return “NO” correctly. This is
because if T is ↵-good, Proposition 18 implies that E[p2(G)] is close to E[p2(T)], and together with
Lemma 19 we can show that E[p2(T)] is small. However, by construction

��(⌃̃)U
�� = E[p2(T)] �

�
⇤
sparse, a contradiction that gives Lemma 17. The detailed proof can be found in Appendix B.3.

4 Conclusion and Future Work

In this paper, we developed an attribute-efficient mean estimation algorithm which achieves sample
complexity poly-logarithmic in the dimension with low-degree sparse polynomials under the list-
decodable setting. A natural question is whether the current techniques could be utilized to attribute-
efficiently solve the other list-decodable problems, such as learning of halfspaces and linear regression.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers and meta-reviewer for valuable discussions. This work is
supported by NSF-IIS-1948133 and the startup funding from Stevens Institute of Technology.

10

References
[ABHM17] Pranjal Awasthi, Avrim Blum, Nika Haghtalab, and Yishay Mansour. Efficient PAC

learning from the crowd. In Proceedings of the 30th Annual Conference on Learning
Theory, pages 127–150, 2017.

[ABHZ16] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learn-
ing and 1-bit compressed sensing under asymmetric noise. In Proceedings of the 29th
Annual Conference on Learning Theory, pages 152–192, 2016.

[ABL17] Pranjal Awasthi, Maria-Florina Balcan, and Philip M. Long. The power of localization
for efficiently learning linear separators with noise. Journal of the ACM, 63(6):50:1–
50:27, 2017.

[AL87] Dana Angluin and Philip D. Laird. Learning from noisy examples. Machine Learning,
2(4):343–370, 1987.

[BDLS17] Sivaraman Balakrishnan, Simon S. Du, Jerry Li, and Aarti Singh. Computationally
efficient robust sparse estimation in high dimensions. In Proceedings of the 30th Annual
Conference on Learning Theory, pages 169–212, 2017.

[BHL95] Avrim Blum, Lisa Hellerstein, and Nick Littlestone. Learning in the presence of finitely
or infinitely many irrelevant attributes. Journal of Computer and System Sciences,
50(1):32–40, 1995.

[BJK15] Kush Bhatia, Prateek Jain, and Purushottam Kar. Robust regression via hard threshold-
ing. In NIPS, pages 721–729, 2015.

[BK21] Ainesh Bakshi and Pravesh K. Kothari. List-decodable subspace recovery: Dimen-
sion independent error in polynomial time. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, pages 1279–1297, 2021.

[CDK+21] Yu Cheng, Ilias Diakonikolas, Daniel M. Kane, Rong Ge, Shivam Gupta, and Mahdi
Soltanolkotabi. Outlier-robust sparse estimation via non-convex optimization. CoRR,
abs/2109.11515, 2021.

[CDS98] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposi-
tion by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

[CMY20] Yeshwanth Cherapanamjeri, Sidhanth Mohanty, and Morris Yau. List decodable mean
estimation in nearly linear time. In 61st IEEE Annual Symposium on Foundations of
Computer Science, pages 141–148. IEEE, 2020.

[CSV17] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 47–60, 2017.

[CT05] Emmanuel J. Candès and Terence Tao. Decoding by linear programming. IEEE
Transactions on Information Theory, 51(12):4203–4215, 2005.

[DKK+16] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Robust estimators in high dimensions without the computational
intractability. In Proceedings of the 57th Annual IEEE Symposium on Foundations of
Computer Science, pages 655–664, 2016.

[DKK+17] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. Being robust (in high dimensions) can be practical. In Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 999–1008. PMLR, 2017.

[DKK+19] Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Eric Price, and Alistair Stewart.
Outlier-robust high-dimensional sparse estimation via iterative filtering. In NeurIPS,
pages 10688–10699, 2019.

11

[DKK20a] Ilias Diakonikolas, Daniel Kane, and Daniel Kongsgaard. List-decodable mean esti-
mation via iterative multi-filtering. In Proceedings of the 34th Annual Conference on
Neural Information Processing Systems, 2020.

[DKK+20b] Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, and Nikos
Zarifis. A polynomial time algorithm for learning halfspaces with Tsybakov noise.
CoRR, abs/2010.01705, 2020.

[DKK+21a] Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, and Kevin Tian. List-
decodable mean estimation in nearly-pca time. In Proceedings of the 35th Annual
Conference on Neural Information Processing Systems, pages 10195–10208, 2021.

[DKK+21b] Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, and Kevin Tian.
Clustering mixture models in almost-linear time via list-decodable mean estimation.
CoRR, abs/2106.08537, 2021.

[DKK+22] Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, and Thanasis
Pittas. List-decodable sparse mean estimation via difference-of-pairs filtering. CoRR,
abs/2206.05245, 2022.

[DKS17] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Statistical query lower
bounds for robust estimation of high-dimensional gaussians and gaussian mixtures. In
Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science,
pages 73–84, 2017.

[DKS18a] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Learning geometric concepts
with nasty noise. In Proceedings of the 50th Annual ACM Symposium on Theory of
Computing, pages 1061–1073, 2018.

[DKS18b] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. List-decodable robust mean
estimation and learning mixtures of spherical gaussians. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, pages 1047–1060. ACM,
2018.

[DKTZ20] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning
halfspaces with Massart noise under structured distributions. In Proceedings of the
33rd Annual Conference on Learning Theory, pages 1486–1513, 2020.

[Don06] David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[Hau92] David Haussler. Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Information and Computation, 100(1):78–150, 1992.

[HLZ20] Samuel B. Hopkins, Jerry Li, and Fred Zhang. Robust and heavy-tailed mean estimation
made simple, via regret minimization. CoRR, abs/2007.15839, 2020.

[Hub64] Peter J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical
Statistics, 35(1):73 – 101, 1964.

[KKK19] Sushrut Karmalkar, Adam R. Klivans, and Pravesh Kothari. List-decodable linear
regression. In Proceedings of the 33rd Annual Conference on Neural Information
Processing Systems, pages 7423–7432, 2019.

[KKM18] Adam R. Klivans, Pravesh K. Kothari, and Raghu Meka. Efficient algorithms for
outlier-robust regression. In Proceedings of the 31st Annual Conference on Learning
Theory, volume 75 of Proceedings of Machine Learning Research, pages 1420–1430.
PMLR, 2018.

[KKMS05] Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
Agnostically learning halfspaces. In Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science, pages 11–20, 2005.

12

[KL88] Michael J. Kearns and Ming Li. Learning in the presence of malicious errors. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages
267–280, 1988.

[KSS92] Michael J. Kearns, Robert E. Schapire, and Linda Sellie. Toward efficient agnostic
learning. In Proceedings of the Fifth Annual ACM Conference on Computational
Learning Theory, pages 341–352, 1992.

[KSS18] Pravesh K. Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation
and improved clustering via sum of squares. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1035–1046, 2018.

[Lit87] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. In Proceedings of the 28th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 68–77, 1987.

[LRV16] Kevin A. Lai, Anup B. Rao, and Santosh S. Vempala. Agnostic estimation of mean and
covariance. In Proceedings of the 57th Annual IEEE Symposium on Foundations of
Computer Science, pages 665–674, 2016.

[LSLC20] Liu Liu, Yanyao Shen, Tianyang Li, and Constantine Caramanis. High dimensional
robust sparse regression. In The 23rd International Conference on Artificial Intelligence
and Statistics,, volume 108 of Proceedings of Machine Learning Research, pages
411–421. PMLR, 2020.

[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: Isoperimetry
and Processes. Springer-Verlag Berlin Heidelberg, 1991.

[Ma13] Zongming Ma. Sparse principal component analysis and iterative thresholding. The
Annals of Statistics, 41(2):772–801, 2013.

[MN06] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of
Statistics, pages 2326–2366, 2006.

[MV18] Michela Meister and Gregory Valiant. A data prism: Semi-verified learning in the
small-alpha regime. In Proceedings of the 31st Conference On Learning Theory, pages
1530–1546, 2018.

[PV13] Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. IEEE Transactions on Information
Theory, 59(1):482–494, 2013.

[RY20a] Prasad Raghavendra and Morris Yau. List decodable learning via sum of squares.
In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, pages
161–180, 2020.

[RY20b] Prasad Raghavendra and Morris Yau. List decodable subspace recovery. In Proceedings
of the 33rd Annual Conference on Learning Theory, pages 3206–3226, 2020.

[SCV18] Jacob Steinhardt, Moses Charikar, and Gregory Valiant. Resilience: A criterion for
learning in the presence of arbitrary outliers. In Proceedings of the 9th Innovations in
Theoretical Computer Science Conference, pages 45:1–45:21, 2018.

[She20] Jie Shen. One-bit compressed sensing via one-shot hard thresholding. In Proceedings
of the 36th Conference on Uncertainty in Artificial Intelligence, pages 510–519, 2020.

[She21] Jie Shen. Sample-optimal PAC learning of halfspaces with malicious noise. In Pro-
ceedings of the 38th International Conference on Machine Learning, pages 9515–9524,
2021.

[SL17a] Jie Shen and Ping Li. On the iteration complexity of support recovery via hard
thresholding pursuit. In Proceedings of the 34th International Conference on Machine
Learning, pages 3115–3124, 2017.

13

[SL17b] Jie Shen and Ping Li. Partial hard thresholding: Towards a principled analysis of
support recovery. In Proceedings of the 31st Annual Conference on Neural Information
Processing Systems, pages 3127–3137, 2017.

[SL18] Jie Shen and Ping Li. A tight bound of hard thresholding. Journal of Machine Learning
Research, 18(208):1–42, 2018.

[Slo88] Robert H. Sloan. Types of noise in data for concept learning. In Proceedings of the
First Annual Workshop on Computational Learning Theory, pages 91–96, 1988.

[STT12] Rocco A. Servedio, Li-Yang Tan, and Justin Thaler. Attribute-efficient learning and
weight-degree tradeoffs for polynomial threshold functions. In Proceedings of the 25th
Annual Conference on Learning Theory, pages 1–19, 2012.

[SVC16] Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and
delinquents: Adversarial crowdsourcing and peer prediction. In Proceedings of the
30th Annual Conference on Neural Information Processing Systems, pages 4439–4447,
2016.

[SZ21] Jie Shen and Chicheng Zhang. Attribute-efficient learning of halfspaces with malicious
noise: Near-optimal label complexity and noise tolerance. In Proceedings of the 32nd
International Conference on Algorithmic Learning Theory, pages 1072–1113, 2021.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[Tuk60] John W. Tukey. A survey of sampling from contaminated distributions. Contributions
to probability and statistics, pages 448–485, 1960.

[Val85] Leslie G. Valiant. Learning disjunction of conjunctions. In Proceedings of the 9th
International Joint Conference on Artificial Intelligence, pages 560–566, 1985.

[Wai19] Martin J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint. Cam-
bridge University Press, 2019.

[WSL18] Jing Wang, Jie Shen, and Ping Li. Provable variable selection for streaming features.
In Proceedings of the 35th International Conference on Machine Learning, pages
5158–5166, 2018.

[ZS21] Shiwei Zeng and Jie Shen. Semi-verified learning from the crowd with pairwise
comparisons. CoRR, abs/2106.07080, 2021.

[ZS22] Shiwei Zeng and Jie Shen. Efficient PAC learning from the crowd with pairwise com-
parisons. In Proceedings of the 39th International Conference on Machine Learning,
pages 25973–25993, 2022.

[ZSA20] Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Efficient active learning of sparse
halfspaces with arbitrary bounded noise. In Proceedings of the 34th Annual Conference
on Neural Information Processing Systems, pages 7184–7197, 2020.

14

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See the appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Omitted Proofs from Section 2

A.1 Proof of Proposition 9

Proof. Fix a subset ⌦ ⇢ [d] with size , and then fix a set of  monomials on ⌦ with degree at
most l, denoted by M(⌦, l). Let P(Rd

,M(⌦, l),⌦) be the induced class of polynomials. Note that
P(Rd

, l,,) = [⌦ [M(⌦,l) P(Rd
,M(⌦, l),⌦).

It is easy to see that for any p 2 P(Rd
,M(⌦, l),⌦), it can be represented by a linear combinations

of the  monomials. Thus, the VC dimension of this class equals + 1. Then, we note that there areP
j=0

�d
j

�
choices of ⌦, and for any given ⌦, there are

P
j=0

�2dl

j

�
choices of M(⌦, l). Therefore,

the total number of the subclass P(Rd
,M(⌦, l),⌦) is at most

 X

j=0

✓
d

j

◆
·

X

j=0

✓
2dl

j

◆


✓
ed

◆
·

✓
2edl



◆
. (A.1)

The concept class union argument states that for H = [mi=1Hi, the VC dimension of H is upper
bounded by O(max{V, logm+ V log logm

V }), where V is an upper bound on the VC dimension of

all Hi. In our case, we have V = + 1 and m 

⇣
ed

⌘
·

⇣
2edl



⌘
. By calculation, we can show

that the VC dimension of P(Rd
, l,,) is upper bounded by

 log
ed

+  log

2edl


+ + 1  (l+) log d =: d0. (A.2)

Recall that the VC theory states that for any ✏, ⌧ 2 (0, 1), as long as |SG| � C

⇣
d0

✏2 log
d0

✏ + 1
✏2 log

1
⌧

⌘

for some absolute constant C > 0, the following holds with probability 1� ⌧ :

sup
p2P(Rd,l,,)

����Pr[p(G) � 0]� Pr
x⇠SG

[p(x) � 0]

����  ✏. (A.3)

With the expression of d
0 in (A.2), it is not hard to see that we can set |SG| = C ·

(l·+) log d
✏2 log (l·+) log d

✏⌧ for some absolute constant C > 0 to ensure that the above holds.

When l = 2`,  = 4`2k4`, = 2`k2`, and ✏ = ↵3

100k2`·log2`(`d
↵⌧)

for some natural number ` � 1, by

algebraic calculation, it suffices to pick |SG| = C
0
·
`4·k8`

↵6 · log6`(`d↵⌧) for some sufficiently large
constant C 0. This completes the proof.

A.2 Proof of Lemma 11

Proof. By the standard tail bound of Gaussian distribution, for any x drawn from N(µ, Id), it holds
that for any given index i 2 [d], Pr[|xi � µi| � t]  2 exp(�t2/2). By taking union bound over both
index i and sample x 2 SG, we have Pr[maxx2SG maxi2[d] |xi � µi| � t]  2d |SG| exp(�t2/2).
Choosing t =

p
2 log(d |SG| /⌧) completes the proof.

A.3 Proof of Lemma 12

Proof. Let SG be the subset of T containing the samples drawn i.i.d. from N(µ, Id). Since |SG| =
2↵ · |T |, we know that SG is a representative set with probability at least 1� ⌧ in light of Prop. 9.

Consider Algorithm 1. If for all x, y 2 T , we have

kx� yk1  6�, (A.4)

then the algorithm returns only one cluster and the lemma follows immediately.

If that is not the case, we first note that, with probability at least 1� ⌧ all of the samples in SG satisfy
Eq. (A.4) due to Lemma 11. Let us condition on this event occurs from now on.

16

Algorithm 1 constructs a set of disjoint L1-balls of radius 2�, of which each is centered at one
sample in T and contains at least an ↵-fraction of samples in T . Therefore, the number of such
balls is at most m = b1/↵c. Denote the set by {B1, . . . ,Bm}. Let B0

i be the ball that has the same
center as Bi but with `1-radius of 6�. In the following, we show that there exists i 2 [m], such that
Ti = T \ B0

i is ↵-good.

Consider a sample x 2 SG, for which we know that kx� µk1  �. Then, for the L1-ball
Bx := {y 2 Rd : ky � xk1  2�}, all of the samples in SG will be contained in Bx. In addition,
there must exist one Bi that intersects Bx, as otherwise Bx will be in the set {B1, . . . ,Bm}. That is,
9z 2 T, z 2 Bx \ Bi. By construction, Bx must be containted in B0

i. Therefore, all samples of SG

must be included in Ti and Ti is ↵-good.

A.4 Proof of Lemma 13

Proof. Recall that after running Algorithm 1, every subset Ti is contained in an L1-ball of radius 6�.
By Jensen’s inequality and the convexity of the L1-norm, we have for all x 2 T , kx� µT k1  6�.

Recall that we assumed p(x) = hA(x � µT). Thus Ex⇠N(µT ,I)[p(x)] = 0 due to the definition of
harmonic polynomials. Thus, Varx⇠N(µT ,I)[p(x)] = kAk

2
2. Denote z = x� µT . Then,

|p(x)| =

������

X

j2[k2`]

ca(j)

Hea(j)(z)q��a(j)
��
1
!

������


vuuut

0

@
X

j2[k2`]

c2
a(j)

1

A

0

@
X

j2[k2`]

Hea(j)(z)2��a(j)
��
1
!

1

A. (A.5)

where a(j) is a d-dimensional multi-index for the j-th monomial, and ca(j) denotes its coefficient.
Observe that in the first step, p(x) is written as a linear combination of k2` Hermite polynomials,
since we are considering p 2 P(Rd

, l, k
2`
, 2`k2`). Note also that

P
j2[k2`] c

2
a(j) = kAk

2
2  1.

To bound the second factor on the right-hand side of (A.5), we use Mehler’s formula, which shows
that for any u with |u| < 1 and any natural number a,

1X

a=0

He2a(zi)u
a

a!
=

1
p
1� u2

e
u

1+u z2
i ,

Since each Hea(j)(z) has degree at most l, it can be decomposed as a product of at most l univariate
Hermite polynomials. Thus, we take such product and sum over j 2 [k2`] to obtain

X

j2[k2`]

Q
a(j)

i 6=0

⇣
He

a(j)
i
(zi)2 · ua(j)

i

⌘

��a(j)
��
1
!

 k
2`

· (1� u
2)�

l
2 · e

u
1+uktriml(z)k2

2 .

To simplify the above expression, observe that
Q

a(j)
i 6=0

u
a(j)

i = u
ka

(j)
k
1 � u

l. In addition,

ktriml(z)k
2
2  l · kzk

2
1  36l�2. Lastly, by algebra, (1 � u

2)�
l
2  e

u2l
2 . Putting all pieces

together gives

X

j2[k2`]

Hea(j)(z)2��a(j)
��
1
!
 u

�l
· k

2`
· e

u2l
2 · e

36l�2u
1+u = k

2`
· u

�l
· e

u2l
2 + 36l�2u

1+u .

We set u = 1
� ; this is possible as � > 1. Then the exponent u2l

2 + 36l�2u
1+u = l

2�2 + 36l
1+1/�2  37l.

Without loss of generality, we may assume that � > e
37; in fact, we can always ensure this by setting

� = (C0 + e
37) ·

q
` · log `d

↵⌧ where C0 is the constant given in Algorithm 1. Thus, it follows that

X

j2[k2`]

Hea(j)(z)2��a(j)
��
1
!
 k

2`
· �

l
· e

37l
 k

2`
· �

2l
.

Plugging it into (A.5) completes the proof.

17

B Analysis of ATTRIBUTE-EFFICIENT-MULTIFILTER

We collect a few useful facts about Hermite polynomials.

Recall that for an order-l tensor A 2 Rdl

, kAk2 denotes its L2 norm by seeing it as a long vector,
and for a polynomial p : Rd

! R, kpk2 := Ex⇠N(0,Id)[p
2(x)])1/2.

The following can be easily seen from the definition of harmonic polynomials.
Fact 20. For all order-l symmetric tensors A and its corresponding harmonic polynomial hA, we
have that khAk2 = kAk2. Moreover, if l > 0, then Ex⇠N(0,Id)[hA(x)] = 0.

Claim 21. Let v 2 Rd be a unit vector. For x 2 Rd, the polynomial p(x) = Hel(v · x) is harmonic
with respect to x with degree l. That is, there exists a tensor A = tensor(p) which is symmetric and
with order l.

B.1 Proof of Lemma 15

Proof. Recall that we denoted �⇤sparse = C1 ·
⇥
(`+ C1 log

1
↵) · log

2(2 + log 1
↵)

⇤2` in Algorithm 3.

Observe that if
���⌃̃U

���
F
 �

⇤
sparse, then for any index set ⌦ ⇢ [d`] with |⌦|  k

`, we have

�max(⌃̃⌦⇥⌦) 
���⌃̃⌦⇥⌦

���
F


���⌃̃U

���
F
 �

⇤
sparse,

where �max(·) denotes the maximum eigenvalue and the second step follows from our choice of U
which maximizes the restricted Frobenius norm.

Thus, for any u 2 Rd`

with kuk0  k
`,

u
>⌃̃u  �max(⌃̃⌦⇥⌦)  �

⇤
sparse. (B.1)

Let v be a k-sparse unit vector in Rd. That is, v 2 Rd
, kvk0  k, kvk2 = 1. Consider some

symmetric order-` tensor B such that He`(v · (x � µT)) = hB(x � µT) (Claim 21). Due to the
sparsity of v, we know that B is an outer product of ` number of k-sparse vectors; hence kBk0  k

`.
As hB(x� µT) is a degree-` harmonic polynomial and the vector Pd,`(x� µT) includes all Hermite
polynomials with degree exactly `, we know that we can write hB(x� µT) = uB · Pd,`(x� µT) for
some uB 2 Rd`

, kuBk0  k
`. Thus, we have that

E[hB(T � µT)
2] = E[(uB · Pd,`(T � µT))

2] = u
>
B⌃̃uB  �

⇤
sparse kuBk

2
2 = �

⇤
sparse kBk

2
2 .

By Fact 20, observe that kBk22 = Ex⇠N(µT ,Id)[hB(x�µT)2] = `!, and thus we have E[He`(v · (T �
µT))2] = E[hB(T � µT)2]  �⇤sparse`!.

As a result, we have for any k-sparse unit vector v 2 Rd that

E[He`(v · (SG \ T � µT))
2] =

1

|SG \ T |

X

x2SG\T

He`(v · (x� µT))
2


1

↵ · |T |

X

x2T

He`(v · (x� µT))
2

=
1

↵
· E[He`(v · (T � µT))

2] 
�
⇤
sparse · `!

↵
, (B.2)

where the first inequality follows from the condition that T is ↵-good, which, by Definition 10,
implies |SG \ T | / |T | � ↵.

The remaining analysis borrows the proof strategy from [DKS18b]. In particular, we will need the
following lemma.

Lemma 22 (Lemma 3.34 of [DKS18b]). For any v 2 Rd, the polynomial Hel(v · (G� µT)) has
mean (v · (µ� µT))l and variance at most 2max(l, v · (µ� µT))2(l�1).

18

Now to ease the notation, write ✓ := v · (µ� µT). By Cantelli’s inequality we have

Pr
h
He`(v · (G� µT)) � ✓

`
�

p

2max(`, ✓)(`�1)
i

� 1�
Var[He`(v · (G� µT))]

Var[He`(v · (G� µT))] + Var[He`(v · (G� µT))]
� 1�

1

2
=

1

2
.

Since SG is representative, by Definition 8

Pr
h
He`(v · (SG � µT)) � ✓

`
�

p

2max(`, ✓)(`�1)
i
�

1

2
�

↵
3

100
�

49

100
.

Since T is ↵-good, due to Definition 10, |SG \ T | / |SG| � 1� ↵
6 �

80
100 , we have that

Pr
h
He`(v · (SG \ T � µT)) � ✓

`
�

p

2max(`, ✓)(`�1)
i
�

49

100
�

20

100
�

1

4
.

On the other hand, due to Eq. (B.2), applying Markov’s inequality gives that for any k-sparse unit
vector v,

Pr

"
He`(v · (SG \ T � µT)) �

r
4�⇤sparse · `!

↵

#


E[He`(v · (SG \ T � µT))2]✓q
4�⇤

sparse·`!
↵

◆2


�
⇤
sparse · `!/↵

4�⇤sparse · `!/↵
=

1

4
. (B.3)

Recall that ✓ = v · (µ� µT). From Eq. (B.1) and (B.3), we have that for any k-sparse unit vector
v 2 Rd,

(v · (µ� µT))
`
�

p

2max(`, v · (µ� µT))
(`�1)



r
4�⇤sparse · `!

↵
.

Note that ✓` 
p
2max(`, ✓)(`�1) only when ✓  2`, and so we have that for any k-sparse unit

vector v 2 Rd,

v · (µ� µT)  2`+
⇣4�⇤sparse · `!

↵

⌘ 1
2`

= O

⇣
2`+

⇣4(C1 ·
⇥
(`+ C1 log

1
↵) · log

2(2 + log 1
↵)

⇤2`
) · `!

↵

⌘ 1
2`
⌘

= O

⇣
↵
� 1

2` ·

p

`

⇣
`+ log

1

↵

⌘
· log2

⇣
2 + log

1

↵

⌘⌘
.

By choosing v = trimk(µ � µT) and combining the above with Lemma 39, we complete the
proof.

B.2 Analysis of BASICMF

Recall the notations in BASICMF (Algorithm 4): R = (C1 · log(
1
↵))

l/2, � = C0 ·

q
` · log(`d↵⌧), and

the length of the interval [a, b], i.e. b� a, equals C1 · R · log(2 + log 1
↵). We will need a series of

results to prove Theorem 18. First, we note that if BASICMF returns at Step 2, then T must not be
↵-good in view of Lemma 11. Thus we only need to consider the remaining steps. In particular, we
divide the output of BASICMF into three cases:

• CASE 1: it returns TBD at Step 5.
• CASE 2: it returns one subset {(T 0

,↵
0)} at Step 9.

• CASE 3: it returns two subsets {(T1,↵1), (T2,↵2)} at Step 14.

We analyze the performance for each case in the following.

19

B.2.1 Analysis of CASE 1

Proposition 23. Consider Algorithm 4. If it returns TBD and if T is an ↵-good set, then
|E[p(G)]� E[p(T)]|  O

�
(`+ log 1

↵)
l
2
· log(2 + log 1

↵)
�
.

Proof. We first argue that most of the good samples in T have p(x) value close to E[p(G)].

Claim 24. If T is ↵-good, then the samples x 2 T \SG that satisfy |p(x)� E[p(G)]| < R constitute
at least an

⇣
↵�

↵3

100

⌘
-fraction of T and an (1� ↵

6 �
↵3

100)-fraction of SG.

Next, we claim that if there exists an appropriate interval [a, b] in Step 3, then the mean of p(G) is in
the interval [a�R, b+R].

Claim 25. If T is ↵-good, and the interval [a, b] contains at least (1� ↵
2)-fraction of values of p(x)

for x 2 T , then E[p(G)] 2 [a�R, b+R].

Now by construction, if Algorithm 4 returns TBD, then

Var[p(T)]  C1 ·

✓
`+ C1 log

1

↵

◆l

· log2
✓
2 + log

1

↵

◆
. (B.4)

On the other hand, the interval [a, b] contains at least (1� ↵
2) fraction of values of p(x) for x 2 T .

Therefore, the contribution of the samples in [a, b] to the variance gives

Var[p(T)] �
⇣
1�

↵

2

⌘
·max

n
0,

����E[p(T)]�
a+ b

2

�����
b� a

2

o2
. (B.5)

To see this, note that a+b
2 is the midpoint and b�a

2 is the length of interval [a, b]. When E[p(T)] is
inside the interval,

��E[p(T)]� a+b
2

��� b�a
2 < 0 and the variance is lowered bounded by 0. Otherwise,

when E[p(T)] is outside the interval, the distance from any sample in [a, b] to E[p(T)] is at least��E[p(T)]� a+b
2

��� b�a
2 � 0.

Moreover, since b� a  O((log(1/↵))l/2 · log(2 + log(1/↵))),

|E[p(T)]� (a+ b)/2| 
b� a

2
+
p
Var[p(T)] = O((`+ C log(1/↵))l/2 log(2 + log(1/↵))).

(B.6)

From the Claim 25, we also have

|E[p(G)� (a+ b)/2]| 
b� a

2
+R = O((`+ C log(1/↵))l/2 log(2 + log(1/↵))). (B.7)

By the triangle inequality, we have that |E[p(G)]� E[p(T)]| = O((`+ C log(1/↵))l/2 log(2 +
log(1/↵))).

Proof of Claim 24. Since T is ↵-good, and Var[p(G)]  1. By degree-l Chernoff bound (Lemma 40)
and definition of representative set (Definition 8), for R = (C1 · log(1/↵))l/2

Pr[|p(SG)� E[p(G)]| � R]  e
�⌦(R2/l) +

↵
3

100k2` · logl(`d↵⌧)

 e
�C·log(1/↵) +

↵
3

100k2` · logl(`d↵⌧)

= ↵
C +

↵
3

100k2` · logl(`d↵⌧)


↵
3

100
,

for large enough constant C > 0.

20

Proof of Claim 25. From Claim 24, at least an (↵ � ↵3
/100)-fraction of T is R-close to E[p(G)].

Also we know that at most an ↵
2 -fraction of T are not in [a, b] by the definition of the interval [a, b].

Then, there must be at least
✓
↵�

↵
3

100

◆
�
↵

2
=
↵

2
�

↵
3

100
=
↵

2

✓
1�

↵
2

50

◆
> 0

fraction of samples in T that are in [a, b] and R close to E[p(G)]. Therefore, E[p(G)] must be in
[a�R, b+R].

B.2.2 Analysis of CASE 2

Lemma 26. Consider Algorithm 4. If it reaches Step 7, there must exist a threshold t > 2R satisfying
the inequality thereof.

Proof. We will prove this lemma by contradiction. Assume that Algorithm 4 reaches Step 7, but for
all t > 2R, we have

Pr[min{|p(T)� a| , |p(T)� b|} � t] 
32

↵
exp(�(t� 2R)2/l) +

2↵2

k2` logl(`d↵⌧)
.

By change of variables, we have that for any t > 2R+ b�a
2 ,

Pr

����p(T)�
a+ b

2

���� � t

�


32

↵
e
�(t�2R� b�a

2)2/l +
2↵2

k2` logl(`d↵⌧)
.

Note that this inequality only holds non-trivially when t � t0 where t0 = 2R+ b�a
2 + (log 32

↵)l/2;
namely, if t < t0, the right-hand side is at least 1.

By Lemma 13, we have maxx,y2T |p(x)� p(y)|  2k` ·�l, where � = C0 ·

q
` · log(`d↵⌧). Also note

that the size of the interval [a, b] equals C1 ·R · log(2 + log 1
↵) which is less than k

`
· �

l. Therefore,

max
x2T

����p(x)�
a+ b

2

����  3k` · �l. (B.8)

Then, we have that

Var[p(T)]  E
"✓

p(T)�
a+ b

2

◆2
#

=

Z 1

0
Pr

h�
p(T)�

a+ b

2

�2
� t

2
i
dt

2

⇣1= 2

Z 3k`·�l

0
Pr

����p(T)�
a+ b

2

���� � t

�
tdt

= 2

Z t0

0
Pr

����p(T)�
a+ b

2

���� � t

�
tdt+ 2

Z 3k`·�l

t0

Pr

����p(T)�
a+ b

2

���� � t

�
tdt

 t
2
0 + 2

Z 3k`·�l

t0

⇣32
↵
e
�(t�2R� b�a

2)2/l +
2↵2

k2` · logl(`d↵⌧)

⌘
tdt

= t
2
0 +

2↵2

k2` · logl(`d↵⌧)
· 9k2` · �2l +

32

↵

Z 1

(log 32
↵)l/2

e
�t2/l

· (2t+ 4R+ b� a)dt

= t
2
0 + 18C2

0 · ↵
2
· `

l +
32

↵

Z 1

log 32
↵

e
�u

· (2ul/2 + 4R+ b� a) ·
l

2
· u

l
2�1

du

⇣2
 O

⇣
(log (1/↵))l · log2(2 + log(1/↵))

⌘
+O

�
2↵2

· `
l
�

+O((l + log 1/↵)l · log(2 + log 1/↵))

 O

⇣
(`+ log (1/↵))l · log2(2 + log(1/↵))

⌘
,

21

where ⇣1 holds in view of (B.8), and where ⇣2 follows since

32

↵

Z 1

log(32
↵)

e
�u

· (2u
l
2 + 4R+ b� a) ·

l

2
· u

l
2�1

du

=
32

↵

Z 1

log(32
↵)

e
�u

· 2ul�1
·
l

2
du+

32

↵

Z 1

log(32
↵)

e
�u(4R+ b� a) ·

l

2
· u

l
2�1

du

=
32

↵
· 2 ·

l

2

Z 1

log(32
↵)

e
�u

· u
l�1

du+
32

↵
· (4R+ b� a) ·

l

2

Z 1

log(32
↵)

e
�u

· u
l
2�1

du

⇣3


32

↵
· 2 ·

l

2
· e

� log 32
↵ ·

⇣
log

32

↵
+ l

⌘l�1
+

32

↵
· (4R+ b� a) ·

l

2
· e

� log 32
↵ ·

⇣
log

32

↵
+

l

2

⌘ l
2�1



⇣
log

32

↵
+ l

⌘l
+ (4R+ b� a) ·

⇣
log

32

↵
+

l

2

⌘ l
2



⇣
log

32

↵
+ l

⌘l
+

⇣
4
�
C1 · log

1

↵

�l/2
+ C1 ·R · log

�
2 + log

1

↵

�⌘
·

⇣
log

32

↵
+

l

2

⌘ l
2

= O

⇣⇣
l + log

1

↵

⌘l
· log

⇣
2 + log

1

↵

⌘⌘
,

where ⇣3 is due to the incomplete gamma function (see Claim 3.11 of [DKS18b]), i.e.
R1
x e

�t
·

t
s�1

dt  e
�x(x+ s)s�1, for s � 1, x � 0.

In other words, had we not found an appropriate threshold t > 2R at Step 7, Algorithm 4 would have
returned at Step 5, which is a contradiction. This completes the proof.

Once we have verified the existence of such threshold t, it is easy to see that the resultant T 0 is a
subset of T , and ↵0

� ↵ by algebraic calculation. This has been already shown in [DKS18b].
Lemma 27 (Lemma 3.13 of [DKS18b]). Consider Algorithm 4. If it reaches Step 9, then the output
{(T 0

,↵
0)} is such that T 0

⇢ T and ↵0
> ↵.

Next, we show that BASICMF sanitizes the sample set, i.e. it removes more corrupted samples than
the uncorrupted ones.
Lemma 28. Consider Algorithm 4. If it reaches Step 9, and if T is ↵-good and Var[p(G)]  1, then
the output {(T 0

,↵
0)} is such that T 0 is ↵0-good.

Proof. Due to Algorithm 1, the `1-distance among all pairs of the samples are bounded. It remains
to show |SG \ T

0
| / |T

0
| � ↵

0 and |SG \ T
0
| / |SG| � 1� ↵0

/6.

We claim that for any t > 2R, the following holds:

Pr[min{|p(SG)� a| , |p(SG)� b|} � t]  2e�(t�R)2/l +
↵
3

50k2` · logl(`d↵⌧)
. (B.9)

To see the rationale, we note that by Claim 25, we have E[p(G)] 2 [a�R, b+R]. Since E[p(G)]�R 
b, we have

Pr[p(SG)� b � t]  Pr[p(SG)� (E[p(G)]�R) � t]

= Pr[p(SG)� E[p(G)] � t�R]

 Pr[p(G)� E[p(G)] � t�R] +
↵
3

100k2` · logl(`d↵⌧)

 e
�(t�R)2/l +

↵
3

100k2` · logl(`d↵⌧)
,

where in the third step, we used the fact that SG is representative (see Definition 8), and in the last
step we applied Lemma 40.

The inequality (B.9) follows since min{|p(SG)� a| , |p(SG)� b|} � t is a subevent of
|p(SG)� b| > t.

22

Since T is ↵-good, we know that a 1� ↵
6 �

1
2 fraction of the samples in SG is in SG \T . Therefore,

Pr[min{|p(SG \ T)� a| , |p(SG \ T)� b|} � t]  4e�(t�R)2/l +
↵
3

25k2` · logl(`d↵⌧)
. (B.10)

Due to the inequality of Step 7 in Algorithm 4, we know that the above probability is at least 8/↵
times larger for the samples in T . Therefore,

|SG \ T
0
|

|T 0|
=

|SG \ T
0
|

|SG \ T |

|SG \ T |

|T |

|T |

|T 0|

�

✓
1�

↵

8
·

✓
1�

|T
0
|

|T |

◆◆
· ↵ ·

|T |

|T 0|

�

✓⇣
1�

↵

8

⌘
·
|T |

|T 0|
+
↵

8

◆
· ↵

= ↵
0
,

meaning that the remaining fraction of good samples in T
0 is at least ↵0.

On the other hand, since |SG \ T |/|SG| � 1� ↵/6 and
⇣
1� ↵

8 ·

⇣
1�

|T
0
|

|T |

⌘⌘
↵ = ↵

0
|T

0
| / |T |, we

have

|SG \ T
0
|

|SG|
=

|SG \ T
0
|

|SG \ T |

|SG \ T |

|SG|

�

✓
1�

↵

8
·

✓
1�

|T
0
|

|T |

◆◆⇣
1�

↵

6

⌘

=

✓
1�

↵

8
·

✓
1�

|T
0
|

|T |

◆◆
�
↵
0
|T

0
|

6 |T |
,

thus,

|SG \ T
0
|

|SG|
�

✓
1�

↵
0

6

◆
� 1�

↵

8

✓
1�

|T
0
|

T

◆
�
↵
0

6

|T
0
|

|T |
�

✓
1�

↵
0

6

◆

=

✓
↵
0

6
�
↵

8

◆✓
1�

|T
0
|

T

◆
> 0

This proves that T 0 is ↵0-good.

We summarize the performance of BASICMF in CASE 2 in the following proposition, which is an
immediate combination of Lemma 26, Lemma 27, and Lemma 28.
Proposition 29. Consider Algorithm 4. If it reaches Step 7, there must exist t > 2R that satisfies
the inequality of this step, and the algorithm will output {(T 0

,↵
0)} with T

0
⇢ T and ↵0

� ↵. If, in
addition, T is ↵-good and Var[p(G)]  1, then T

0 is ↵0-good.

B.2.3 Analysis of CASE 3

Lemma 30 (Lemma 3.12 of [DKS18b]). Consider Algorithm 4. If it reaches Step 12, there must
exist a threshold t that satisfy the conditions thereof.
Lemma 31 (Lemma 3.14 of [DKS18b]). Consider Algorithm 4. If it reaches Step 12, then the output
{(T1,↵1), (T2,↵2)} is such that T1 ⇢ T , T2 ⇢ T , and 1

↵2
1
+ 1

↵2
2


1
↵2 .

Lemma 32. Consider Algorithm 4. If it reaches Step 12, and if T is ↵-good, then the output
{(T1,↵1), (T2,↵2)} is such that Ti is ↵i-good for some i 2 {1, 2}.

Proof. Recall that Claim 24 lower bounds the fraction of the good samples (i.e. x 2 SG \ T) that
satisfy |p(x)� E[p(G)]| < R. Since T1 and T2 overlap in an interval of length at least 2R, the good
samples must be contained in either one of both two clusters. We will show that the Ti with these
good samples (in interval of length 2R) is ↵i-good.

23

Since T is ↵-good, we have |SG \ T | / |T | � ↵ and |SG \ T | / |SG| � (1�↵/6). We want to show
that (i) |SG \ Ti| / |Ti| � ↵i and (ii) |SG \ Ti| / |SG| � (1� ↵i/6).

To show (i), note that |SG \ Ti| �

⇣
↵�

↵3

100

⌘
|T | due to Claim 24. Thus,

|SG \ Ti|

|Ti|
=

|SG \ Ti|

|T |
·
|T |

|Ti|
�

✓
↵�

↵
3

100

◆
·
|T |

|Ti|
= ↵i,

where the last transition is by definition.

To show (ii), we only have to show that ↵i/6 � ↵/6 + ↵
3
/100, i.e. ↵i � ↵ + 3↵3

/50. Note that
|T |� |Ti| �

↵
4 |T | , 8i. Thus, |T | / |Ti| �

1
1�↵/4 and we can show that

↵i � ↵ ·
1� ↵2

/100

1� ↵/4
� ↵ ·

100� ↵

100� 25↵
� ↵

✓
1 +

24↵

100� 25↵

◆
� ↵

✓
1 +

3↵3

50

◆
.

This completes the proof.

Combining Lemma 30, Lemma 31, and Lemma 32, we immediately have the following.
Proposition 33. Consider Algorithm 4. If it reaches Step 12, then there must exist a threshold t that
satisfies the conditions in this step. Moreover, the output {(T1,↵1), (T2,↵2)} is such that T1 ⇢ T ,
T2 ⇢ T , and 1

↵2
1
+ 1

↵2
2


1
↵2 . If, in addition, T is ↵-good, then Ti is ↵i-good for some i 2 {1, 2}.

B.2.4 Proof of Theorem 18

Proof. Observe that now Theorem 18 is an immediate result by combining Proposition 23, Proposi-
tion 29, and Proposition 33.

B.3 Analysis of HARMONICMF

B.3.1 Certifying the varaince of p on G

Proof of Lemma 19. The proof follows directly from Lemma 3.31 of [DKS18b].

B.3.2 Analysis for p1

Proof of Lemma 16. First, if at any subroutine of HARMONICMF, it returns “NO” or a list of pairs
{(Ti,↵i)}, ANS 6= TBD. If that is not the case, it means HARMONICMF reaches Step 6 and
BASICMF returns “TBD”, then we have

Var[p1(T)/�]  C1 ·

⇣
`+ C1 log

1

↵

⌘`
· log2

⇣
2 + log

1

↵

⌘
,

because p1 is of degree `. However, recall that the condition of Step 6 in Algorithm 3 is satisfied, thus

Var[p1(T)] = Var[v⇤ · Pd,`(T � µT)] � �
⇤
� �

⇤
sparse

=
h
C1 ·

⇣
`+ C1 log

1

↵

⌘
· log2

⇣
2 + log

1

↵

⌘i2`

�

⇣
C1 ·

⇣
1 + log

1

↵

⌘
· log2

⇣
2 + log

1

↵

⌘⌘`
· C1 ·

⇣
`+ C1 log

1

↵

⌘`
· log2

⇣
2 + log

1

↵

⌘

= �
2
· C1 ·

⇣
`+ C1 log

1

↵

⌘`
· log2

⇣
2 + log

1

↵

⌘
,

which induces a contradition. We conclude that BASICMF will not return “TBD” at Step 6, which
completes the proof.

B.3.3 Analysis for p2

Proof of Lemma 17. We see that the lemma holds as long as HARMONICMF returns either “NO” or
a list of (Ti,↵i) for p2 correctly. First, we claim that p2(x) is harmonic such that MULTILINEARMF

24

multifilters correctly at Step 4. To prove the claim, simply note that p2 is of degree 2` and consists of
a set of k2` Hermite polynomials. In addition, p2(x) only applies on a set of 2`k2` coordinates.

Based on the correctness of MULTILINEARMF, it remains to show that if every subroutine of
HARMONICMF returns “TBD”, then T must not be ↵-good. Consider that Algorithm 5 reaches
Step 6, and BASICMF returns “TBD”. Applying Lemma 19, we know that E[p2(G)2]  �

2 =�
C1 · (1 + log(1

↵)) · log
2(2 + log(1

↵))
�2`

. Therefore, Var[1� · p2(G)]  1
�2 · E[p2(G)2]  1 and

thus satisfies the preconditions of BASICMF. Then, if BASICMF also returns “TBD”, we can show
that Var[1� · p2(T)] = O

�
(`+ log(1

↵))
2`

· log2(2 + log(1
↵))

�
according to Theorem 18. Thus,

Var[p2(T)]  �
2
·O(`+ log(1/↵))2` log2(2 + log(1/↵))

 O((`+ log(1/↵)) log2(2 + log(1/↵)))4`.

We then show by contradiction. Assume the above holds and T is ↵-good. Due to Theorem 18, we
can show that

|E[p2(G)]� E[p2(T)]|  � ·O(`+ log(1/↵))` log(2 + log(1/↵))

 O((`+ log(1/↵)) log2(2 + log(1/↵)))2`.

Additionally, since

|E[p2(G)]| 
q
E[p22(G)]  �2 = O((`+ log(1/↵)) log2(2 + log(1/↵)))2`,

Therefore, by Cauchy-Schwarz inequality, we conclude that |E[p2(T)]|  O((`+ log(1
↵)) log

2(2 +
log(1

↵)))
2`. However, by construction, we have

|E[p2(T)]| = E

2

4Tr

0

@ (⌃̃)U���(⌃̃)U
���
F

�
Pd,`(T � µT)Pd,`(T � µT)

>�
1

A

3

5

= Tr
⇣
(⌃̃)U ⌃̃

⌘
=

���(⌃̃)U
���
F

⇣4
� �

⇤
sparse

� C1 · ((`+ C1 log(1/↵)) log
2(2 + log(1/↵)))2`,

where ⇣4 is due to the condition in Step 4 of Algorithm 3. This is a contradiction.

Hence, we conclude that T cannot be ↵-good and we remove it from the list. Moreover, if BASICMF
returns NO or a list {(Ti,↵i)}, the guarantees follow from Theorem 18. The proof is complete.

Lemma 34 (Algorithm 5). Consider Algorithm 5 with input polynomial being p1 or p2 in view
of Algorithm 3, and denote by ANS its output. With probability 1 � ⌧ , the following holds. If
ANS = NO, then T is not ↵-good. If ANS = {(Ti,↵i)}mi=1 for some m  2, then Ti ⇢ T for all
i 2 [m] and

Pm
i=1

1
↵2

i


1
↵2 ; if additionally T is ↵-good, then at least one Ti is ↵i-good.

Proof. Inside any subroutine of BASICMF or MULTILINEARMF called by HARMONICMF, if ANS
is assigned “NO” or a list of pairs {(Ti,↵i)}, the guarantees are ensured by Lemma 19, Theorem 18
and Lemma 36. It remains to show the correctness of the algorithm returning “NO” at Step 6 when
BASICMF returns TBD, which is implied by Lemma 17.

B.4 Proof of Theorem 14

Proof. The theorem follows from Lemma 15, Lemma 16, Lemma 17, Theorem 18 and Lemma 34.

C Proof of Theorem 1

Theorem 1 directly follows from the guarantees of our initial clustering step (Lemma 12), the main
subroutine (Theorem 14), and the black-box list reduction algorithm (Proposition 37).

25

Proof of Theorem 1. Consider Algorithm 2. By Lemma 12, T will be divided into at most 1
2↵ number

of subsets, at least one of which is ↵
2 -good. Algorithm 2 then maintains a list L of pairs {(Ti,↵i)} on

which Algorithm 3 is called repetitively until the list becomes empty. Theorem 14 implies that when
Algorithm 3 is called on some Ti 2 L which is ↵i-good, if a list of pairs {(Tj ,↵j)} is returned, then
at least one of {Tj} is ↵j-good (↵j > ↵i). This ensures that there always exists an ↵

2 -good subset Ti

in list L, except that a leaf node has been created for this branch and the empirical mean of an ↵
2 -good

data set is returnd. We then argue that Algorithm 2 eventually returns an estimated mean at the
branch that includes only ↵

2 -good subsets. Since the subsets are ↵
2 -good, ANS never equals to NO.

In addition, the branch will not create child nodes forever: note that the true multifiltering step is in
BASICMF, and both Step 8 and 12 reduce the subset size |Ti| by at least 1; since ↵i is non-decreasing,
the algorithm cannot remove only inliers; by Definition 10, |SG \ Ti| � (1� ↵i/6) |SG| �

1
2 |SG|.

Therefore, the algorithm must return an estimated mean when there is no outliers to filter.

We then bound the list size of the returned list of estimated means. Since during the process of
multifiltering,

P
i ↵

�2
i is non-increasing, we have that

P|L|
i=1 ↵

�2
i 

1
2↵ · ↵

�2 at any point of
Algorithm 2. In addition, ↵i  1, 8i, meaning that the list size will never be larger than O(↵�3). So
does the size of M . Then, by applying LISTREDUCTION on M with |M |  O(↵�3), the list size
can be reduced to O(↵�1) in view of Proposition 37.

Finally, note that CLUSTER runs in time O
�
poly(|T | , d)

�
, ATTRIBUTE-EFFICIENT-MULTIFILTER

runs in time O
�
poly(|T | , d`)

�
in view of Theorem 14, and LISTREDUCTION runs in time

O
�
poly(|T | , d)

�
. Moreover, there are at most O(|T |/↵3) number of calls to ATTRIBUTE-EFFICIENT-

MULTIFILTER, and only one call to CLUSTER and one call to LISTREDUCTION, we conclude that
the time complexity of Algorithm 2 is O

�
poly

�
|T | , d

`
,
1
↵

��
.

D Omitted Algorithms

In the following, we present the omitted algorithms. In particular, MULTILINEARMF (Algorithms 6)
is an important component of HARMONICMF, for which we tailor the algorithms in [DKS18b]
to our sparse setting. MULTILINEARMF will further invoke DEGREE2HOMOGENEOUS (Algo-
rithm 7). Algorithm 8, due to [DKS18b], is the black-box list reduction approach that was invoked in
Algorithm 2.

D.1 MULTILINEARMF

We introduce useful facts about multilinear polynomial here. For d, l 2 N, a polynomial
p(x1, . . . , xl) : Rdl

! R, where xi 2 Rd, is called multilinear if it is linear in each of its l ar-
guments, i.e. if holds that p(a · x1 + b · x

0
1, x2, . . . , xl) = a · p(x1, x2, . . . , xl) + b · p(x1, . . . , xl),

for all a, b 2 R and xi, x
0
i 2 Rd, and similarly for all the other arguments. Moreover, a polynomial

p is called symmetric if p(x1, . . . , xl) = p(x⇡(1), . . . , x⇡(l)) for any permutation ⇡ : [l]! [l]. Any
degree-l multilinear polynomial p : Rdl

! R can be expressed as A(x1, . . . , xl) for an order-l tensor
A over Rd. Moreover, A is symmetric if p is symmetric.

Algorithm 6 MULTILINEARMF
Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1), a

degree-l multilinear polynomial V (x1, . . . , xl) over Rdl with kV k2  1, where V is the outer
product of l number of -sparse vectors.

1: If l = 1, run BASICMF on V (x� µT), and return its output.
2: Compute the quadratic polynomial q(x) = kV (x� µT)k

2
2, where x 2 Rd and V x is an order-

(l � 1) tensor with (V x)i2,...,il =
P

i1
xi1Vi1,...,il .

3: Run DEGREE2HOMOGENEOUS on q(x). If it returns NO or a list {Ti,↵i}, then return the
same result.

4: Sample a set � of m = 200 · ↵�1 log(4/⌧) instances uniformly at random from T .
5: 8x 2 �, let Vx = 1p

q(x)
· V (x� µT). ANS MULTILINEARMF on (T, V x, l� 1,↵, ⌧/2). If

it returns NO or a list {(Ti,↵i)}, then return the same result.
6: Otherwise, return TBD.

26

Algorithm 7 DEGREE2HOMOGENEOUS(T,↵, ⌧, A)

Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], failure probability ⌧ 2 (0, 1),
homogeneous polynomial x>

Ax, where A is a d⇥ d matrix with kAk⇤  1.
1: Compute the k

2 largest eigenvalues �i and eigenvectors vi of A.
2: for i = 1, . . . , k2 do
3: ANSi BASICMF(T,↵, ⌧, p) with p(x) = vi · x.
4: if ANSi is a list of {Ti,↵i} or ANS = NO then return ANSi.
5: end for
6: if all ANSi = TBD then return TBD.

The MULTILINEARMF works in the following way: Given degree-l multilinear polynomial V (x1 �

µT , . . . , xl � µT), where V is an order-l symmetric tensor and xi’s are l number of independent
variables. The goal is to show that the polynomial has small absolute expectation over l number of
i.i.d. draws from G ⇠ N(µ, Id) if the algorithm does not filter any samples and returns “TBD”; and
otherwise, the algorithm multifilters correctly. Since all subroutine of MULTILINEARMF multifilter
the data set by calling BASICMF on linear polynomials, we know that if it returns “NO” or a list
of pairs {(Ti,↵i)}, the correctness is guaranteed by Theorem 18. It remains to bound the expected
value of the multilinear polynomial when all subroutines return “TBD” and T is ↵-good.

The idea is to sub-sample a large enough sample � from T . If T is ↵-good, then with suffi-
ciently high probability, 9x 2 � that is from G. By recursively doing this, with sufficiently high
probability, we construct a multilinear polynomial V (G1 � µT , G2 � µT , . . . , Gl � µT), the ex-
pectation of which is what we concerned about. The upper bound is then shown by induction.
When the polynomial is linear, |E[Vxl�1(G� µT)]|  O(

p
1 + log(1/↵) · log(2 + log(1/↵)).

Here, we use Vxi to denote taking i times of inner product between tensor V and a vector x.
Note that x can be different in each time of the inner product. Then, without loss of general-
ity, assume that for order-(l � 1) tensor Vx, |E[Vx(G1 � µT , . . . , Gl�1 � µT)]|  f(l � 1,↵),
we can show that |E[V (G1 � µT , . . . , Gl � µT)]|  f(l,↵), provided that SG is sufficiently ep-
resentative with respect to G on any linear polynomial Vxl�1(x � µT) and any quadratic poly-
nomial q(x) = kVxi(x� µT)k

2
2 , 8i 2 [l]. In this analysis, the only difference between our

setting and that of [DKS18b] is the definition of representative set SG (Definition 8). Fortu-
nately, since all polynomials in our algorithm apply to at most = 2`k2` coordinates, the
linear polynomials must be in P(Rd

, 1, 2`k2`, 2`k2`), and the quadratic polynomials must be in
P(Rd

, 2, 4`2k4`, 2`k2`). Therefore, our definition of representative set sufficies. The proof follows
the same pipeline as that of Lemma 3.27 in [DKS18b]. As a result, it can be shown that f(l,↵) =
f(l�1,↵)·O(

p
1 + log(1/↵)·log(2+log(1/↵)), which renders |E[V (G1 � µT , . . . , Gl � µT)]| 

O
�
(1 + log(1/↵))l/2 · logl(2 + log(1/↵)

�
.

Definition 35 (Multifilter condition). We say that a list of pairs {(Ti,↵i)}, where Ti ⇢ T and
↵i 2 (0, 1), satisfies the multifilter condition for (T,↵) if the following hold:

1.
P

i
1
↵2

i


1
↵2 , and

2. If T is ↵-good, then at least one Ti is ↵i-good.

Lemma 36 (MULTILINEARMF, Lemma 3.27 of [DKS18b]). Given ↵ 2 (0, 1
2] and ⌧ 2 (0, 1), let T

be the input sample set, and a degree-l multilinear polynomial V (x1, . . . , xl) over Rdl with kV k2 = 1.
Algorithm 6 returns one of the following with guarantees: (1) TBD, and we have that, if T is ↵-good,
then with probability 1�⌧ , |E[V (G1 � µT , . . . , Gl � µT)]| = O

�
(1+log(1

↵) log
2(2+log(1

↵)))
�l/2,

where Gi are independent copies of G. (2) NO, then T is not ↵-good. (3) A list of pairs {(Ti,↵i)},
Ti ⇢ T , satisfying the multifilter condition for (T,↵).

D.2 LISTREDUCTION

Proposition 37 (LISTREDUCTION, Proposition B.1 of [DKS18b]). Fix ↵,�, �, t > 0 and let µ⇤
2 Rd

be finite, and let S ✓ T be so that (i) |S| / |T | � ↵, and (ii) for all unit vectors v 2 Rd, we have
Pr[v · (S � µ

⇤) > t] < �. Then, given M = {µ1, . . . , µn} ⇢ Rd so that �n = o(1) and there

27

Algorithm 8 LISTREDUCTION(T,↵, `,M)

Require: A multiset of samples T ⇢ Rd, parameter ↵ 2 (0, 1/2], degree ` � 1, a list M ⇢ Rd.

1: � C4 · ↵
� 1

2`

p
`(`+ log 1

↵), �
1

C5 log 1
↵

, t
q
log(C5 log

1
↵), n |M |.

2: For all µi, µj 2M , let vij denote the unit vector in the µi � µj direction.
3: Let Ti = \j 6=i{x 2 T : |vij · (x� µi)| < � + t}.
4: M

0
 ;.

5: 8i 2 [n], if |Ti| � ↵(1 � �n) |T |, and @µj 2 M
0 such that kµi � µjk2 < 2(� + t), then

M
0
 M

0
[µi.

6: return M
0.

is some i so that kµi � µ
⇤
k2  � for some µi 2 M , Algorithm 8 outputs M

0
✓ M so that

|M
0
| 

1
↵ (1 +O(�n)) and kµ0

� µ
⇤
k2  3(� + t) for some µ

0
2M

0.

Remark 38. Under the setting of Algorithm 8, we have that n = O(↵�3). This combined with the
parameter settings in LISTREDUCTION shows that the size of M 0 is O(1/↵) and there is at least one
µi 2M

0 that has comparable error guarantee to those in M .

E Useful Lemmas

Lemma 39 (Lemma 3.2 of [CDK+21]). Fix two vectors x, y with kxk0  k and ktrimk(x� y)k2 
�. We have that kx� trimk(y)k2 

p
5�.

Lemma 40 (degree-l Chernoff bound, Fact 2.8 of [DKS18b]). Let G ⇠ N(µ, Id), µ 2 Rd. Let
p : Rd

! R be a degree-l polynomial. For any t > 0, we have that Pr
⇥
|p(G)� E[p(G)]| �

t ·
p
Var[p(G)]

⇤
 exp

�
� ⌦(t2/l)

�
.

Lemma 41 (Harmonic and multilinear polynomials, Lemma 3.24 of [DKS18b]). Let
X,X(1), . . . , X(`) be i.i.d random variables distributed as N(µ, I) for some µ 2 Rd. Then, for
any symmetric matrix A, we have

p

`! · E[hA(X)] = HomA(µ) = E[A(X(1), . . . , X(`))],

and

E[hA(X)2] =
X̀

`0=0

✓✓
`

`� `0

◆
/`

0!

◆
·HomB(`0)(µ)

where B
(`0) is the order-2`0 tensor with

B
(`0)
i1,...,i`0 ,j1,...,j`0

=
X

k`0+1,...,k`

Ai1...,i`0 ,k`0+1,...,k`Aj1...,j`0 ,k`0+1,...,k` .

28

	Introduction
	Overview of Our Techniques
	Related Works
	Roadmap

	Preliminaries
	Polynomials
	Representative Set and Good Set
	Clustering for the Initial List

	Main Algorithms and Performance Guarantees
	Overview of Attribute-Efficient Multifiltering
	Analysis of Attribute-efficient-Multifilter
	Basic Multifilter for Sparse Polynomials
	Harmonic Multifilter with Hermite Polynomials

	Conclusion and Future Work
	Omitted Proofs from Section 2
	Proof of Proposition 9
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13

	Analysis of Attribute-efficient-Multifilter
	Proof of Lemma 15
	Analysis of BasicMF
	Analysis of Case 1
	Analysis of Case 2
	Analysis of Case 3
	Proof of Theorem 18

	Analysis of HarmonicMF
	Certifying the varaince of p on G
	Analysis for p1
	Analysis for p2

	Proof of Theorem 14

	Proof of Theorem 1
	Omitted Algorithms
	MultilinearMF
	ListReduction

	Useful Lemmas

