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Parameter Estimation in Ill-conditioned Low-inertia Power Systems
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Abstract—This paper examines model parameter estimation
in dynamic power systems whose governing electro-mechanical
equations are ill-conditioned or singular. This ill-conditioning is
because of converter-interfaced power systems generators’ zero
or small inertia contribution. Consequently, the overall system
inertia decreases, resulting in low-inertia power systems. We show
that the standard state-space model based on least squares or
subspace estimators fails to exist for these models. We overcome
this challenge by considering a least-squares estimator directly
on the coupled swing-equation model but not on its transformed
first-order state-space form. We specifically focus on estimating
inertia (mechanical and virtual) and damping constants, although
our method is general enough for estimating other parameters.
Our theoretical analysis highlights the role of network topology
on the parameter estimates of an individual generator. For
generators with greater connectivity, estimation of the associated
parameters is more susceptible to variations in other generator
states. Furthermore, we numerically show that estimating the
parameters by ignoring their ill-conditioning aspects yields highly
unreliable results.

[. INTRODUCTION

Accurate knowledge of power system model parameters,
including inertia and damping, is essential to assess operating
states, perform dynamic simulations, and study stability mar-
gins. Recently, with increasing penetration of inverter-based
(IB) distributed energy resources (DERs) in the bulk power
system, the effective system inertia is decreased, making it
challenging to stabilize demand-supply mismatch. Further, this
increase in IB-DERs significantly increases the number of
unknown system parameters to estimate.

Estimating dynamic parameters of synchronous machines
and other network devices and loads, is a classical problem [1],
[2]. Numerous algorithms have been proposed for parameter
estimation, both in the presence and absence of closed-loop
controllers using local or wide-area ambient measurements,
including [3], [4], [5], [6]. [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. Within this body of work, some approaches
use white box models, wherein the model structure is com-
pletely known and deterministic (e.g., model structures given
by Newton’s laws, mass and energy conservation principles).
In power systems, Heffron-Phillips models (fourth order and
beyond) have been a mainstay of estimation algorithms. The
opposite extreme are black box models, or purely data-driven
stochastic models in which no prior knowledge is assumed,
and an input/output relation is derived from measurements.
Examples include modal analysis, dynamic equivalents, and
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Koopman methods. Although black box methods are extremely
useful for wide-area monitoring, they have limited utility for
planning, contingency, and stability analysis.

Another line of research focuses on grey box models [17],
[18]. These models combine the advantages of the white
and black box approaches to exploit prior knowledge of
physical relationships or model structure, where possible, and
learning unknown parameters from data. This methodology
is particularly relevant in the context of IB-DERs, which
inevitably introduce many unknown parameters [19], [20],
[21], [22]. However, there are many shortcomings in the
existing literature; most papers: (i) focus on net inertia' rather
than the inertia of each device or each area as they connect to
each other; (ii) focus on estimation in the presence of transient
disturbance with little work on ambient disturbances; and (iii)
do not consider the effect of frequency and voltage dependent
loads, leading to large (inertia) estimation errors (up to 40%
[23]); see [24], [25], for a recent account on various parameter
estimation in low-inertia systems.

We put forth a simple strategy for overcoming the above
limitations using a simple constrained least squares estimator
to estimate parameters using ambient measurements. Least
squares type estimators are already used for estimating in-
ertia in power systems; however, these estimators assume
that the inertia is strictly greater than zero. This assumption
implies that the electro-mechanical dynamics are well defined.
However, this assumption does not hold for converter-based
generators. For e.g., droop-control based generators provide
zero inertia [22]. Consequently, the electro-mechanical dy-
namics are not well-defined or ill-conditioned, thereby giving
rise to a descriptor system (see Section III for details). We
develop a framework for parameter estimation for these sys-
tems, with special attention to inertia and damping. Beyond
the motivating example of parameter estimation in power
systems, our results apply more broadly to other engineering
systems modeled using second-order differential equations,
such as structural mechanical and acoustic systems and fluid
mechanics. We summarize our contributions below:

(i) For low-inertia power systems consisting of synchronous
and converter-interfaced generators, we study a con-
strained least-squares estimation problem that allow us
to tackle systems with exactly zero-inertia.

(i) We highlight the role of network connectivity on the
estimation performance. Specifically, using the closed-
form formulas of the estimators, we show that for
generators with greater connectivity, estimation of the
associated parameters is more susceptible to variations
in other generator states.

IEstimated as a weighted average of single area inertia estimates.
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(iii) Our simulation results on the IEEE 39 bus system show
that estimating the parameters by ignoring their ill-
conditioning aspects yields highly unreliable results.

II. DYNAMICS OF LOW-INERTIA POWER SYSTEMS

We introduce the frequency dynamics for a low-inertia
power system, comprised of multiple synchronous generators
(SGs) and converter-interfaced distributed energy resources
(DERs). We later use these models for parameter estimation
subject to suitable physical constraints.

We model a power network of NV buses with an undirected
graph G := (V, &), where nodes V = {1,..., N} and edges
€ CV x V denote buses and transmission lines, respectively.
For a i-th node in V we associate a generator (synchronous
or converter-faced) whose frequency response around a steady
state is governed by the swing equation [22], [26], [27]:

2H,

Aw;(t)=[AP,, ;(t)—AP. ;(t)] — FC;(t) + &(t), (1)

where wy = 1207 is the rated angular frequency, Aw;(t) =
w;i(t) — wo, and 2H;/wg is the inertia constant. AP, ,;(t)
is the deviation from the steady mechanical power injection.
AP, ;(t) is the deviation from the electrical power output, and
€;(t), a zero-mean Gaussian process with a known variance,
models the ambient fluctuation in loads as well as process
noise. Further, AP, ;(t) equals the sum of deviations of the
power flows on the lines connected to node ¢ [26], [27]:

AP.i(t) = 3 APy (1) = B (A8 (1) — A3 (), @)
ijEE
where f3;; =|V;||V;|b;; with b;; >0 denoting the susceptance
and |V;|, |V;| are the rated voltage magnitudes. The angular
deviation AJ;(t) is obtained by integrating Aw;(t).

The frequency controller output F'C;(t) enforces the system
frequency stability due to a large imbalance between the
mechanical and electrical power. In SGs, primary frequency
controllers (PFCs) provide the frequency support. On the
other hand, in grid-forming converters, the behavior of PFC
is emulated by fast frequency regulators. We assume that
this goal is achieved by a proportional feedback control that
adjusts the power generation set-point based on the frequency
deviation: F'C;(t) = K;Aw;(t)/wp [22] (see Remark 1).

We assume that some of the loads depend on the system fre-
quency. Similar to frequency controllers, these loads provide
a damping stabilizing effect on the frequency. We model these
loads as APi,Load(t) = Di,loadAwi(t)/wo, where Di,load is the
damping coefficient. By slight abuse of notation, we denote the
total frequency support by F'C;(t) = (K;+D; joad) Aw; (t) /wo
and let D; = K; + Di,load-

We drop A notation in the state variables. From (1) and
(2), and our discussions on the frequency controller, we can
express the dynamics for all generators compactly as

b 21LE)-Ls, el la). o

Ap 24

where 8 = [6,...,0n]T € RY and w,d,w,e and O are
defined similarly. The i-th component of the process noise
€(t) is given by €;(t) = &(t) + Py, ;(t). The matrices I and
0 are N x N identity and all-zeros matrices. The Laplacian
matrix Hg is defined as [Hgl;; = —f;; for (i,5) € £ and
[Hgli; = 0 otherwise; and [Hgl;i = > ; ;g Bij- Finally,
M = diag(M1,...,M;;) and D = diag(D11,...,Dyy) are
diagonal inertia and damping matrices, where D;; = D;/wq
and M” = 2HZ/’LU0

From (3) note that the Laplacian H, is determined by the
line susceptances, and hence, it is independent of the type
of the generator (synchronous or converter-based). Thus, each
generator is characterized by M; and D;. However, we show
that the estimates Mi and bi are influenced by H,. The
effect of H is ignored in prior works, which focus on either
estimating each machine’s inertia or the aggregated inertia.

The (classical) model in (3) is a starting point for many
downstream tasks, including control design, storage place-
ment, oscillation localization, and stability analysis. In these
applications, the model in (3) is simplified by left multiplying
E~! on both sides of (3). Unfortunately, in low-inertia power
systems, this kind of simplification is not possible because
the inertia constant M; could be small for VSMs and exactly
zero for droop-control based generators. Consequently, £ in
(3) is not invertible. In this case, this as a linear descriptor or
differential-algebraic system. The latter term derives from the
fact that some of the equations represented by (3) are purely
algebraic (and not differential) in that the left-hand side is
zero. These systems appear in the field of robotics, economics,
and circuits; in power systems, they also arise when generator
dynamics and algebraic power-flow algebraic equations explic-
itly are considered together. In our case, a descriptor system
arises due to the ill-conditioning of parameters caused by the
low inertia of IB-DERs. In the following section, we discuss
why parameter estimation is difficult in these systems and then
describe a new strategy to obtain reliable parameter estimates.

Remark 1: In general, the frequency controller might not
be a simple proportional control and can be of higher order;
for example, in SG, turbine dynamics contribute to F'C;(t).
However, for ease of analysis, we neglect these dynamics.
This approximation is valid for converter-interfaced generators
because the controller time constants are small; however, this
approximation might not be accurate for SGs. ]

III. STRUCTURE PRESERVING ESTIMATION PROBLEM

For the continuous-time model in (3), we first obtain a
discrete-time model using Euler’s method. We then formulate a
constrained least squares optimization problem for estimating
the parameters using this discrete-time model.

We assume that we can estimate the generator states & and
w using PMU measurements [28]. Let z(t) = [§(t)T w(t)T]T
and define the discrete-time quantity z[k] £ z(kT), where
k=0,1,... and T is the discretization step or the sampling
period. Thus, z[k] = [6[k]T w[k]T]". The relationship among
T, resolution of the PMU measurements, and the time-scale
of the estimation horizon is explained in great detail in [26].
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Using the Euler-Mayurama discretization method, we get the
discrete-time dynamics [29], [26]:

Ealk + 1] — 2[K]) = T, Az[k] + LH R
where r[k] is the discretized process noise (cf. €(t) in (3)),
and r[k] ~ N(0,%,.), where ¥, = T.diag(o?,...,0%). The
diagonal structure of . is because the ambient fluctuations
are spatially uncorrelated across different buses.

The standard practice in the literature [30], [26], [27], [22],
[19] is to re-write (4) as

zlk+ 1) = (I + T E " A)zk] + E* [rH , )

and estimate Ay = (I + T,E~1A) using z[0],...,z[T — 1].
This naive estimate has many drawbacks: (i) Az might not
be well-defined if F is not invertible, which is the case for
droop-control based generators, as discussed earlier; (i) E~*
adversely affects the noise vector by distorting its spatially
uncorrelated property; and (iii) decomposing the estimate of
Ayg to uniquely estimate M and D is impossible in general.

We overcome the limitations of the naive estimator by con-
sidering the following constrained least-squares optimization
that does not require E to be invertible:

T-1
{M,D} = argmin > || E(z[k + 1] —z[k]) — T, A z[k] |3
DeD =
s.t. 0 < D;; < Dy, for all i, (6)

M; =0, fori € Vpc,

where D is the set of non-negative diagonal matrices; D,
is a known term that imposes practical limits on D; and Vpc
are the nodes corresponding to the droop-control generators.
The equality constraint in (6) ensures that the estimate Mi,
for ¢ € Vpc, is zero. From (5), we note that the expression
inside the norm term in (6) is the process noise [0 r[k]T]T.
Thus, the proposed estimator attempts to find parameters that
best explain the variations of the ambient fluctuations over the
time horizon £k =0,...,7 — 1.

We rewrite (6) in the standard least squares form. Define the
vectors m = [Mu, ey MNN}T, d= [D117 . ,DNN]T. Let
@lk] = wlk + 1] — w(k] and §¢.7_1 = [8[0],...,d8[T —1]]".
Let Diag(w[k]) be the diagonal matrix with the entries of &[k]
on the main diagonal, and define the data matrix:

Diag(&[0]) T,Diagw|0]
Diag(@[1]) T,Diagw][1]
Wor—1 = . : @)
Diag(@[T —1]) TsDiagw[T — 1]
Then the optimization in (6) can be compactly expressed as
2
{l’fl,(gl} = argmin ||Wo.7-1 |:1'C111:| + Ts(I® Hg)(s();'r,1
m,d ¢ RN 2
$.t. 0 <d < Dpaxl, and T’ |:r(;1:| =0,
®)

where 1 is the all-ones vector; I is an 7 x 7 identity matrix;
and ® is the matrix Kronecker product. The n x 2N selection
matrix I' (with n denoting the size of Vp¢) selects the entries
of m associated with the droop-control generators.

Optimization problems similar to (8) are recently studied in
the literature of inertia and damping estimation [21], [23], [22].
These studies, however, ignore the zero-inertia constraints and
H g term; hence, they require damping constraints to make the
estimation problem mathematically well-posed. In contrast, the
problem in (8) is well-posed even when we ignore the damping
constraints, thereby making it useful for the cases where D,y ax
is unknown. Using the special case below, we study the role
of topology, encoded in the susceptance matrix Hj, on the
parametric estimates of the i-th generator.

Special case (unconstrained optimization): Suppose that
Wo.7—1 has full column rank.? Let us ignore the constraints
in (8). Then, the problem in (8) reduces to the unconstrained
least squares problem, which admits the following solution:

m
{ d ] = ~TWeir_ (I ® Hg)do.:7-1, ©)

d
where T/VO+:7-71 is the pseudo-inverse of Wy.7_1, and is given
by Woir_y = W r_1Wo.r—1) " 'W{+_,. By exploiting the
diagonal structure of the blocks in Wy.7—1 in (7), we can
express estimates at the i-th generator node as

N T-1 . .
= — S [Hol:, (Z [%i[m - ?*wm} 5, [k])

j=1 =0 Ci,3 Ci,3
N T1r,. .
di ==Y [Hgli (Z { “C k] — f*lwi[k]} 5j[k]> :
- — Ci3 Ci,3
Jj=1 k=0
(10)
where the constants ¢; 3 = ¢; 0Ci2 — €215 Cio = sz_Ol @2 [k];

i = ) @iwlk]: and ¢;0 = 372 W2[k]. In the above
expressions, we set Ty = 1 for simplicity. The constants
€i,0,¢i,1, and c; o depend on the i-th generator’s frequencies.
They determine the contribution of the frequency and its rate
of change w;[k] = w[k + 1] — w[k| on the i-th estimate.

The i-th inertia (or damping) estimate in (10) is a weighted
average of the suceptance values of the lines connected to
the ¢-th node. These weights depend both on the ¢-th node’s
frequencies and the angles of all generators. Thus, for gen-
erators with greater connectivity, estimation of the associated
parameters is more susceptible to variations in other generator
states. Consequently, these parameters cannot be estimated
using local measurements. But it makes sense to estimate the
inertia of a largely isolated microgrid as it has a few or no
connections with other parts of the network. Finally, we can
only estimate the parameters of a generator in a large system
when both the local frequency and the power measurements
are available. Recall from (2) that the power deviations encode
the topological information.

2For an appropriate choice of N, in general, the full column rank assump-
tion holds because of the presence of additive noise in the measurements.
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We comment on the statistical properties of the estimate
in (9). Because w(t) and &(t) in (3) are correlated random
processes, Wo.7—1 and &g.7—1 are random and correlated.
Thus, characterizing the distribution of the estimate in (9) is
hard. A workaround is to interpret the optimization in (8) as
a means for obtaining the parameters of the linear model:

—Ts(I ® Hg)do.:7-1 = Wo.T—1 [rg] +¢, (11)

where ¢ and the filtered process noise accumulated over time
have same distributions; however, Wy.7_1 and &g.7_1 are
responses due to the initial state. Hence, they are deterministic
terms. With these assumptions, it follows that

e (] ). a2

where (m*, d*) is the unknown truth, and ¢ is the covariance
matrix of ¢. The characterization in (12) holds even for the
non-Gaussian process noise, thanks to the asymptotic (in 7)
normality of the least squares estimator (see [17]). If ¢ is
diagonal, W - S¢(Wyf-_,)T is a 2 x 2 block matrix with
diagonal blocks. The off-diagonal blocks capture correlations
between the inertia and damping estimate at a given node.
Thus, the variance of the estimates are not influenced by the
variations in other generator states. Unfortunately, ¢ cannot
be diagonal because the process noise gets filtered through
the dynamics in (4); and hence, ¢ is dense, and so is
the covariance matrix in (12). Hence, the variance of each
estimate depends both on the network and the variations in
other generator states.

The discrete-time variance 027 of r[k] (see (4)) due to the
process noise and loads is hidden in the covariance matrix
Cov(¢). By assuming o? = o2, for all i € N, we can
write Cov({) = 0;TsQ, where the matrix @) solely depends
on the system dynamic matrices and the topology. Thus, the
covariance term in (12) is effectively scaled by T202. This
result highlights the trade-off between the sampling time and
the variance of load fluctuations, allowing us to down- or
up-sample measurements to improve the estimates’ quality.
For instance, for highly fluctuating loads (higher values of
o2), we can down-sample the measurements for computational
speedup with minimal loss in the estimation performance.

We close this section by pointing out the importance of
the structure preserving estimation problem in (6) in the case
where we have access to a few generator states but not all of
them. Here, we cannot rewrite (6) as the constrained form in
(8). Nonetheless, we can use expectation-maximization (EM)
type algorithms, which at high level solves the optimization
in (8), but the data matrix Wy 7—; should be replaced with
Kalman estimates. We leave this study for the future.

IV. SIMULATION RESULTS

We illustrate the performance of the structure-persevering
inertia and damping constants estimator in (8) on the IEEE 39-
bus, 10-generator benchmark system. See Ref. [26] for a single
line diagram of the topology and the location of the generator

buses. The inertia constants of the generators are summarized
in Table I and all damping constants are set to d; = 0.0531
p-u. We use Kron-reduction technique [26] to obtain the matrix
Hg in (3). We obtain the initial values of ((),w(t)) and the
line susceptance values from [31]. We set the discretization
time-step Ts = 1/60 sec. We use these parameter values to
generate the frequency measurements using the discrete-time
model in (4).

TABLE I: IEEE 39-bus synchronous generator inertia (p.u.)

mj ms ms m) ms
0.2228 | 0.1607 | 0.1873 | 0.1517 | 0.1379

mg mz msg myg mig
0.1846 | 0.1401 | 0.18289 | 0.1830 | 2.6526

A. Case study 1: estimation performance and validation

First, we explore the case where there are no converter-
based generators, and the inertia constants of all synchronous
generators are not close to zero; see Table 1. We also ignore
the damping constraints for simplicity. Thus, we consider the
unconstrained optimization problem.

Our first simulations focus on the inertia and damping
estimation error behavior as a function of the estimation time
T. We define the following error metrics:

1 10 1 10
AU A R\2 ) 7. %2
Ein = 15 ;(m ;)% s Din = 15 ;(dz dn?. (13)

These metrics capture estimation error (squared) of a random
generator node. We set the process noise standard deviation
o = 0.01 p.u. [26]. Fig. 1 illustrates Montecarlo estimate of
the mean and the standard deviation (no. of. trails = 100) of the
error metrics. We note that more measurements are required
to estimate damping accurately than inertia. This is because
the inertia estimate in (10) depends more on the difference
of the frequencies at k and k£ + 1. Thus, the process noise
is less in w[k + 1] — w[k] than compared to w[k]. On other
hand, the damping estimator rely more on w[k]; and hence, its
performance is strongly influenced by the process noise. As
a result, it requires more measurements to accurately estimate
the true damping.

Our second simulations focus on the probability distribution
of the estimation error for a random generator. We chose ¢ =
3. Fig. 2 and Fig. 3 illustrate empirical histograms for the
estimation time horizons 7 = 50 and 7 = 200.

B. Case study 2: comparison with the naive esimator in [26]

Next, we examine the estimator’s performance in the pres-
ence of both synchronous and converter-faced generators. For
the latter, we chose VSMs, whose behavior is emulated by
setting the inertia constants to be close (but not exactly) to
zero. In particular, we set m3 = 0.0019, m} = 0.0015, and
mg = 0.0014. We also compared the performance of our
estimator with the naive estimator that first estimates Ay in
(5) and then extract the inertia constants. We estimate Ay
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Fig. 1: Estimation error as a function of estimation time horizon.
The shaded region denotes the standard deviation (averaged over 100
trails). From both the top and bottom panels, we see that the average
error in (13) decreases by increasing 7. However, compared to the
inertia, we need a large 7 to estimate damping accurately.

using the maximum-likelihood technique suggested in [26].
We report our findings in Table II. Therein, the values in
the parenthesis indicate relative estimation errors. For all
the generators, including the VSMs, our structure preserving
estimator quite accurately estimated the inertia constants.

TABLE II: IEEE 39-bus synchronous generator inertia (p.u.)

True our method naive estimator
m; = 0.2228 | 0.2228 (-0.005e-03) | -0.0384 (-1.1724)
ms = 0.1607 | 0.1607 (-0.251e-03) | -0.0014 (-1.0090)
m3 = 0.0019 | 0.0019 (-0.042e-03) | -0.0008 (-1.4535)
mj; = 0.0015 | 0.0015 (-0.031e-03) | -0.0002 (-0.8677)
mE = 0.0014 | 0.0014 (-0.873e-03) | -0.0002 (-1.1791)
mg = 0.1846 | 0.1845 (-0.054e-03) | -0.0915 (-1.4959)
m5 = 0.1401 | 0.1401 (-0.019e-03) | -0.0864 (-0.3833)
mg = 0.1289 | 0.1289 (-0.015e-03) | -0.0144 (-0.8880)
mg = 0.1830 | 0.1830 (-0.023e-03) | -0.0369 (-1.2015)
miy = 2.6526 | 2.6526 (-0.004e-03) | 1.6507 (-0.3777)

The simulations presented in this section supported many
of our theoretical observations and outperformed the naive
method that does not consider the ill-conditioning aspects of
the parameters. Our results have implications for designing
and implementing real-time algorithms for estimating inertia
and damping in low-inertia systems.

V. CONCLUDING REMARKS

A simple observation that the parameters of multiple areas
or generators could be directly estimated using a descriptor
or ill-conditioned electro-mechanical dynamics allowed us
to estimate the inertia and damping of power systems with

o = 0.01 100

[4)]
o

o

no. of occurances

100

50

no. of occurances

0

0-0.2 0 0.2 0-2 . 0 2 -10 AO 10

ds — i ds — dj dy — dj
Fig. 2: Empirical probability distribution of the error deviation of
inertia and damping of generator labelled 3. For 7 = 50, the top
panel presents the histograms of error deviations of inertia for various
noise levels. The bottom panel presents similar plots for damping. In
both the panels, the spread increases (range of x-axis) with increase in
o. However, this is more pronounced for the case of error deviations
of damping constant.

g

=}

[ao]

=

g

o

hs

s

a

wn

S

=

o

=

3

=]

<

=]

s O 0 0
£ 001 0 001 0 0.1 02 06 1

dy — d dy — d; dy — d;

Fig. 3: Empirical probability distribution of the error deviation of
inertia and damping of generator labelled 3. For 7 = 200, the top
panel presents the histograms of error deviations of inertia for various
noise levels. The bottom panel presents similar plots for damping.
Compared to Fig. 2, the distribution is more concentrated around
zero. This agrees with our intuition that estimation error decreases
with the increase in measurements.

a mix of synchronous and converter-interfaced generators.
The latter includes synchronous virtual machines and droop-
control-based generators for which the inertia constants are
exactly or approximately zero, thereby rendering the utility of
the existing inertia and damping estimation methods, which
almost always assume non-negligible inertia. We overcome
this limitation by studying a constrained least-squares estima-
tor on the descriptor-type dynamics, where the constraints set
the inertia of droop-controlled generators to zero. We argued
that the proposed estimator is well-posed and admits a unique
solution, at least for a special case. Furthermore, we discussed
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some limitations of the naive estimator in the context of inertia
and damping estimation.

Our analysis highlighted the role of network connectivity
on the estimators’ performance, which has not been properly
studied in the literature. In particular, using the closed-form
expressions of the estimators, we showed that for genera-
tors with greater connectivity, estimation of the associated
parameters is more susceptible to variations in other generator
states. Finally, our simulation results showed that estimating
the parameters by ignoring the ill-conditioning aspects yields
highly unreliable results.
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