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Abstract— This paper studies the problem of locating
the sparse set of sources of forcing inputs driving linear
systems from noisy measurements when the initial state is
unknown. This problem is particularly relevant to detecting
forced oscillations in electric power networks. We express
measurements as an additive model comprising the initial
state and inputs grouped over time, both expanded in terms
of the basis functions (i.e., impulse response coefficients).
Using this model, with probabilistic guarantees, we recover
the locations and simultaneously estimate the initial state
and forcing inputs using a variant of the group LASSO
(linear absolute shrinkage and selection operator) method.
Specifically, we provide upper bounds on: (i) the probability
that the group LASSO estimator incorrectly identifies the
locations and (ii) the ℓ2-norm of the estimation error. Our
bounds depend on the number of measurements, inputs,
and sensors; the sensor noise variance; and the minimum
singular value of the observability and impulse response
matrices. Our theoretical analysis is one of the first to pro-
vide a complete treatment for the group LASSO estimator
for the left invertible linear systems with delay. Finally,
we validate the performance of the estimator on synthetic
models and the IEEE 68-bus, 16-machine power system.

Index Terms— Forced oscillations, unknown input, group
LASSO, invariant zeros, source localization, sparsity.

I. INTRODUCTION

Low-frequency oscillations in the electric transmission grid
are indicative of the type of disturbance afflicting the system.
Natural oscillations, with frequencies in between 0.1–2 Hz,
are triggered by random load fluctuations and sudden network
switching. In contrast, forced oscillations (FOs), with frequen-
cies in between 0.1–14 Hz, result from external inputs injected
by malfunctioned devices, such as power system stabilizers
(PSS), generator controllers and exciters, and cyclic loads, etc.
[1], [2]. FOs remain undamped for longer periods of time,

and if not mitigated, they pose a greater risk to the power
systems operation, potentially causing blackouts.

A popular and inexpensive method adopted to mitigate FOs
in power systems is disconnecting the sources triggering the
oscillations [2]–[4]. This amounts to accurately locating the
sources of FOs. Because installing sensors at each potential
source is an impractical solution, recent research suggests us-
ing phasor measurement unit (PMU) measurements-based lo-
calization algorithms (see [2] for a survey on many algorithms
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ranging from physics-based to fully data-driven approaches).
However, albeit their good performance on test cases, many
algorithms lack theoretical guarantees. This deficiency makes
it harder to quantify the performance and limitations of
measurement-based methods on what is and is not possible.

We address the lack of guarantees of existing approaches
by posing the localization problem as a regularized optimiza-
tion problem—referred to as the group LASSO estimator.
The regularization term imposes sparsity constraints on the
number of source locations, which is often the case in many
practical systems, including power systems [3], [5]. The input
to our optimization problem is the noisy measurements and
dynamical system matrices. It returns the source locations and
estimates of the unknown initial state and inputs (oscillatory
or not) injected by these sources. Formally, we consider[
x̂0

û

]
︸ ︷︷ ︸

β̂

∈ argmin
x0,{uj}m

j=1

∥∥∥∥∥∥y−Ox0−
m∑
j=1

Jjuj

∥∥∥∥∥∥
2

2

+λ
m∑
j=1

∥uj∥2 , (1)

where uj = [uj [0], . . . , uj [N ]]T is a vector of inputs injected
by the jth source, j ∈ {1, . . . ,m}, over a discrete time horizon
{0, . . . , N}; y is the noisy batch measurements collected by p
sensors over {0, . . . , N}; O and Jj are the observability and
forced impulse response matrices, respectively (see Section II
for the actual expressions); and λ ≥ 0 is the tuning parameter.
Let β∗ = (x∗

0,u
∗
1, . . . ,u

∗
m) be the unknown ground truth and

S ≜ {j : u∗
j ̸= 0} ⊂ {1, . . . ,m} be the set of active sources.

By a sparse number of sources, we mean that |S| = m∗ ≪ m.
Let Ŝ ≜ {j : ûj ̸= 0}, where û is in (1). We show that Ŝ = S∗

and ∥β̂ − β∗∥2 ≤ ϵ, for ϵ > 0, hold with high probability.
In the context of regression models, including linear, logis-

tic, and functional models, a vast body of literature exists on
quantifying the theoretical performance of the group LASSO
estimator and its variants; for a sample, see [6]–[8]. However,
these studies assume either Jj and O to be random or satisfy
rather restrictive assumptions, both of these might not hold for
Jj and O obtained from linear dynamical systems. Further, Jj

associated with the non-zero input u∗
j could be rank deficient,

especially if the underlying linear dynamical system is only d-
delay left invertible1 [9]. Consequently, the optimization in (1)
is not strictly convex in the optimization variables, even when
the true sources set S is known. Thus, there may exist multiple
optimal solutions β̂, and it is not clear if Ŝ is common for all

1A dynamical system is d-delay left invertible if uj [k], for j ∈ {1, . . . ,m},
can be uniquely recovered from noise-less measurements {y[k], . . . , y[k+d]}.
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these solutions. In this paper, we address all these issues by
imposing physically meaningful assumptions on O and Ji.

Paper Contributions: The problem we introduce in (1) is
distinct from state-of-the-art regularized-based optimization
methods in seeking to localize inputs and estimate the initial
state using delayed measurements over a block of time. For
the estimator in (1), our main contributions as follows:

1) We derive sufficient conditions under which the follow-
ing hold with high probability: (i) the estimation error
in the ℓ2-sense is bounded, and (ii) the localized sources
match the true sources. A key contribution is that despite
the rank deficiency of model matrices, we guarantee that
the group LASSO can localize the sources correctly. For
rank deficient Ji, we provide estimation guarantees for
the delayed inputs (see Section III). Our result hinges
on introducing and thresholding a mutual incoherence
condition (MIC) on the augmented O and Ji matrices.

2) The time-domain MIC condition we introduce requires
computing correlations among the matrices O and Ji.
This computation can be hard, especially for estimation
horizon N . To tackle this hurdle, we upper bound the
time-domain MIC with a frequency-domain MIC. Inter-
estingly, the latter is a sufficient condition if we were to
consider a LASSO estimator in the frequency domain.
We also establish a fundamental relationship between the
performance of the proposed estimator and the absence
of invariant zeros for the sub-system excited by non-zero
inputs and thresholding the frequency domain MIC.

3) We validate the group LASSO estimator’s performance
on synthetic data and the IEEE 68-bus, 16-machine sys-
tem. We implement our estimator using the Alternating
Direction Method Multipliers (ADMM) method [10].

Going beyond the motivating example of forced oscillations
in electric power systems, the problem setup in (1) is general,
and the formal results in this paper can be used to localize and
reconstruct sparse inputs for a variety of practical engineering
systems modeled as linear dynamical systems.

Related Literature: In power systems, energy methods based
on frequency domain data and statistical signal processing
methods (e.g., AR and ARMA models) are commonly used to
localize unknown forced oscillatory inputs. In [11], a Bayesian
approach was used to localize sources based on the generators’
frequency response functions. In [12], the pseudo-inverse of
system transfer functions were used to localize the sources. In
[13], the authors leveraged magnitude and phase responses of
transfer functions between different buses to localize sources.
Finally, machine learning and PCA methods for localization
were explored in [14] and [3]. All these methods primarily
focus on oscillatory inputs, which might not apply to non-
oscillatory inputs, including malicious attacks. We address this
limitation by casting the source localization problem as an
unknown input recovery in linear dynamical systems.

The problem of source identification in the context input
and sensor and attacks was studied in [15]–[18]. But they fail
to address input estimation and are applicable only for noise-
free systems with more sensors than inputs. Moreover, these
methods rely on banks of input observers, which might not be

practical for large-scale critical infrastructures. In [19], [20],
assuming known inputs, the authors obtained sample com-
plexity results for reconstructing the initial state with sparsity
constraints from randomly sampled measurements. Instead,
the authors in [21] and [22] considered sparse input and
non-sparse state reconstruction using off-line and sequential
measurements. However, these works do not address location
recovery guarantees for the sparse set of unknown sources in
the presence of an unknown non-sparse initial state. In contrast
to these works, we consider a unified framework, based on a
LASSO method, to jointly locate the sources, and estimate the
sparse inputs along with the unknown initial state. As high-
lighted in several other non-sparsity based input identification
methods [15], [23], [24], our results also highlight the role of
invariant zeros for sparse input recovery.

Mathematical Notation: We denote the vectors and matrices
by boldface lower case and upper case letters. Denote the d×d
identity matrix by Id. Denote the pseudoinverse of X by X†.
The range space of X is defined by R(X) = {Xz : z ∈ Rm}.
Given S ⊂ {1, . . . ,m} and x ∈ Rm, we write xS for the
sub-vector of x formed from the entries of x indexed by S.
Similarly, we write MS for the submatrix of M formed from
the columns of M indexed by S. For 1 ≤ p < ∞ and the
vector x = [x1, . . . , xm], denote ∥x∥p = (

∑m
i=1 |xi|p)1/p.

Instead, ∥u∥∞ = maxl |ul|. The ℓa,b-mixed-norm, with a, b ≥
0, of z = [zT1 , . . . , z

T
r ]

T is given by ∥z∥ba,b =
∑r

j=1 ∥zj∥ba. By
convention, ∥z∥a,0 ≜

∑r
j=1 I(∥zj∥a ̸= 0), where I(·) is the

indicator function, counts the number of non-zero vectors.

II. PROBLEM SETUP AND PRELIMINARIES

In this section, we formulate a group LASSO optimization
problem to estimate the initial state and inputs and to locate
unknown sources in linear dynamical sysstems.

A. Linear dynamics under sparse forced inputs
Consider the continuous-time linear system:

ẋc(t) = Acxc(t) +Bcu
∗
c(t), t ∈ R, (2)

where xc(t) ∈ Rn and u∗
c(t) ∈ Rm is the state and input. We

assume the input to be sparse, that is ∥u∗
c(t)∥0 ≤ m∗ << m

for all t ∈ R. In power systems, xc(t) consists states of
generators and their control systems, including rotor angles,
speed deviations, field excitation voltage, etc. Instead, u∗

c(t) =
[u∗

c,1(t), . . . , u
∗
c,m(t)]T is the vector of inputs triggered by the

sources of FOs, among which only m∗ locations are active.
However, our model in (2), except for sparsity constraints, is
general and allows for multi-dimensional un-modeled exoge-
nous disturbances, benign faults, or adversarial attacks.

We consider the discrete-time dynamics of (2) together with
a measurement equation:

x[k + 1] = Ax[k] +Bu∗[k], (3)
y[k] = Cx[k] + v[k], k = 0, 1, . . . , (4)

where A = eAcδt, B = (
∫ δt

0
eAcτdτ)Bc, and δt is the

sampling time period, and u∗[k] = [u1[k], . . . , um[k]]T. Fur-
ther, y[k] = [y1[k], . . . , yp[k]]

T ∈ Rp is the measurement,
v[k]

iid∼ N (0, σ2I) is noise, and C ∈ Rp×n is the sensor
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matrix. In our extended paper [25, Section IV.A.], we consider
dynamics in (3) with process noise and also relax the diagonal
covariance assumption on v[k].

Let S = {j : uj [k] ̸= 0 for at least one k ≥ 0} ⊂
{1, . . . ,m} and Sc = {1, . . . ,m} \ S. We refer S and Sc as
the active and inactive sets. Partition B as B = [BS BSc ] and
u∗[k] = [u∗T

S [k] u
∗T
Sc [k]]T, with u∗

Sc [k] = [u∗
i1
[k], . . . , u∗

ir
[k]]

and BSc = [bi1 , . . . ,bir ], where ir ∈ Sc and r = |Sc| =
m−m∗. Similarly, define u∗

S [k] and BS . Then, we have

Bu∗[k] =
m∑
j=1

bju
∗
j [k] =

∑
j∈S

bju
∗
j [k] +

∑
j∈Sc

bju
∗
j [k]

= BSu
∗
S [k] +BScu∗

Sc [k].

(5)

The above representations will play a key role in formulating
our group LASSO problem in Section II-B.

Using (3)-(4), we express the batch measurements y (see
below) as a linear model with added noise. Define the vectors

y=

 y[0]
...

y[N ]

 ,v=

 v[0]
...

v[N ]

 , and u∗
j =

 u∗
j [0]
...

u∗
j [N ]

 , (6)

where y, v ∈ Rp(N+1) and u∗
j ∈ RN+1, for all j ∈ S ∪ Sc.

Here, N +1, with N > 0 is the length of the estimation hori-
zon. We also define the observability matrix O ∈ Rp(N+1)×n

and the impulse response matrix Jj ∈ Rp(N+1)×N+1 as

O=


C
CA
CA2

...
CAN

 ;Jj=


0 0 0 . . . 0

H
(j)
1 0 0 . . . 0

H
(j)
2 H

(j)
1 0 . . . 0

...
...

. . . . . .
...

H
(j)
N H

(j)
N−1 . . . H

(j)
1 0

 , (7)

where j ∈ S∪Sc, and, for any l ≥ 1, the l-th impulse response
parameter H(j)

l ∈ Rp×1 is defined as H
(j)
l := CAl−1bj .

Let x[0] = x∗
0 be the unknown initial state. From (3)-(4)

and the fact that Bu∗[k] =
∑m

j=1 bju
∗
j [k], we observe that

y = Ox∗
0 +

m∑
j=1

Jju
∗
j + v, (8)

where v ∼ N (0, σ2Ip(N+1)), u∗
j is in (6) and Jj is in (7).

B. Initial State and Unknown Input Estimation under
Sparsity Constraints: A Group LASSO for Approach

Based the measurement model in (8), we introduce the
group LASSO estimator to estimate (x∗

0,u
∗
1, . . . ,u

∗
m) and also

the active set S. Let J = [JT
1 , . . . ,J

T
m] and u = [uT

1 , . . . ,u
T
m],

where uj ∈ RN+1. Recall the definition of ℓp,0-norm from the
notation section, and consider[
x̂0

û

]
= argmin

x0,u

{
1

2T
∥y −Ox0 − Ju∥22+λT ∥u∥p,0

}
, (9)

where the regularization parameter λT ≥0 and T = p(N+1) is
the dimension of y in (8). The above problem is called a subset
(or block-column) selection problem because the optimization
problem amounts to finding Jj that contributes to y in (8).

Unfortunately, (9) is a combinatorial optimization problem,
and its computational complexity is exponential in m. We
circumvent this difficulty by replacing the ∥u∥p,0 with the
∥u∥p,1-norm. This is a common relaxation technique widely
used in the literature of compressed sensing and statistics; see
[26], [27]. Thus, we end up with the group LASSO problem:[
x̂0

û

]
∈argmin

x0,u

{
1

2T
∥y −Ox0 − Ju∥22+λT ∥u∥p,1

}
. (10)

For definiteness, we set p = 2, although our analysis extends
to the case p ̸= 2. In the literature, ∥u∥2,1 =

∑m
j=1 ∥uj∥2

is referred to as the block or group norm. Our problem in
(10) differs from the traditional group LASSO [7] because we
do not penalize x0. This is a subtle yet important distinction
because the initial state is rarely sparse in many applications,
including power systems. In Section VI, we provide details
on how to numerically solve (10). Instead, in Section III, for
a specific range of λT , we show that the group-norm based
regularizer promotes group sparsity in û and that Ŝ = S holds
with high probability, where Ŝ ≜ {j : ûj ̸= 0}.

Due to the presence of additive noise in the measurement
vector y in (8), neither the estimate β̂ = (x̂0, û) in (10) need
to identically match β∗ = (x∗

0,u
∗) nor does Ŝ = S. Thus, we

evaluate the quality of our estimates (i.e., the hatted quantities)
in a probabilistic sense using the error metrics:

• β̂ is said to be ℓ2-consistent if ∥β̂ − β∗∥2 ≤ o(T ) with
probability at least 1−c1 exp (−c2T ), for some c1, c2>0.

• û is said to be location recovery consistent if Ŝ=S with
probability at least 1− c3 exp(−c4T ), for c3, c4 > 0.

Here o(T ) implies that the upper bound on the error tends to
zero as T → ∞. The ℓ2-error bound ensures that the estimate
β̂ ≈ β∗ by increasing T = p(N + 1). Finally, the location
selection consistency ensures that as long as T is sufficiently
large, Ŝ correctly identifies the true sources of FOs.

III. DELAYED ESTIMATION AND INVARIANT ZEROS

In this section, we cull recent results on the initial state and
delayed input recovery using a finite number of measurements
[28] by assuming the knowledge set S. These results provide
a starting point to prove our main results in Section IV.

We begin by expressing y in (8) in a slightly different way.
From (5), we have Bu∗[k] = BSu

∗
S [k] +

∑
j∈Sc bju

∗
j [k].

Substituting this fact in (3) and recursively expanding y[k] in
(4) yields us the following model for y defined in (6):

y =
[
O JS

]︸ ︷︷ ︸
≜ΨS

[
x∗
0

u∗
S

]
︸ ︷︷ ︸
≜β∗

S

+
∑
j∈Sc

Jju
∗
j + v,

(11)

where u∗
S and JS ∈ Rp(N+1)×m∗(N+1) are defined as

u∗
S=


u∗
S [0]

u∗
S [1]

u∗
S [2]
...

u∗
S [N ]

 ;JS=


0 0 0 . . . 0

H
(S)
1 0 0 . . . 0

H
(S)
2 H

(S)
1 0 . . . 0

...
...

. . . . . .
...

H
(S)
N H

(S)
N−1 . . . H

(S)
1 0

 , (12)
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with H
(S)
l = CAl−1BS , for all l ≥ 1. Note that y in (8) and

equals y in (11). Importantly, u∗
S in (12) is a concatenation

of inputs u∗
S [k] associated with S from k = 0 (top) to N

(bottom), but not a concatenation of u∗
j in (6), for all j ∈ S.

To show that the group LASSO is location recovery consis-
tent, or Ŝ = S holds with high probability, ΨS =

[
O JS

]
in

(11) should be of full column rank. To see this, suppose that
σ2 = 0 and that we know S. Then, by substituting u∗

j = 0,
for all j ∈ Sc, and v = 0 in y in (11), it follows that

y = ΨSβ
∗
S . (13)

Thus to perfectly recover β∗
S = (x∗

0,u
∗
S [0], . . . ,u

∗
S [N ]), even

with noise-free measurements and the knowledge of S, the ma-
trix ΨS should be full column rank. However, unfortunately,
unlike the model matrices, such as random design and Fourier
basis matrices, considered in signal processing and statistics
applications, ΨS could be rank deficient. This is so because
system in (3)-(4) may not be initial state and input observable
[9]; that is, either O or JS is rank deficient, or both O and
JS have full ranks, but [O JS ] is rank deficient.

From the foregoing discussion, it is clear that recovering β∗
S

and the full rank of ΨS are intimately connected. Interestingly,
for d-delay invertible linear systems, even when β∗

S is not
recoverable, a portion of it is perfectly recoverable [9], [28]. In
fact, we can recover β∗

S,[0:N−d] = (x∗
0,u

∗
S [0], . . . ,uS,[N−d]),

where N ≥ d, from yT = [yT[0], . . . ,yT[N ]] Here, d ≥ 0 is
called delay and we refer β∗

S,[0:N−d] to as the delayed input.
As a result, we show that a specific sub-matrix of ΨS has full
column rank even when ΨS is rank deficient.

We formalize the notion of d-delay. Let x0=0 to note that
ΨS=JS and β∗

S=u∗
S . Substituting JS (12) in (13), yields

y[0]
y[1]

...
y[N ]


︸ ︷︷ ︸

yN

=


0 0 . . . 0

H
(S)
1 0 . . . 0
...

. . . . . .
...

H
(S)
N H

(S)
N−1 . . . 0


︸ ︷︷ ︸

≜JS,[N:0]


u∗
S [0]

u∗
S [1]
...

u∗
S [N ]


︸ ︷︷ ︸
u∗

S,[0:N]

. (14)

Notice that JS = JS,[N :0] and u∗
S = u∗

S,[0:N ]. Define

JS,[N :0] =
[
JS,N JS,N−1 . . . JS,0

]
, (15)

where JS,l denotes the lth block column of JS,[N :0] labeled
right (l = 0) to left (l = N). By construction JS,[N :0] is
rank deficient because the diagonal blocks in (14) are zeros.
Thus, we cannot recover u∗

S [N ] using yN . Further, in several
practical applications, H

(S)
1 = CBS = 0 (or has non-full

column rank). This is because sensors may not be located at
the inputs. For e.g., in power systems, bus-level PMUs do not
directly measure the power system stabilizer’s output. Thus it
is impossible to recover u∗

S [N − 1] using yN .

Definition 1. (System delay) For a non-negative integer d ≥ 0,
let JS,[d:0] be as in (14). System in (3)-(4), with x∗

0 = 0,
u∗
j = 0, for j ∈ Sc, and σ2 = 0, is d-delay left invertible if

Rank(JS,[d:0])− Rank(JS,[d−1:0]) = m∗, (16)

for JS,[d:0] defined in (14) and m∗ is the dimension of u∗
S [k].

The smallest d that satisfies (16) is denoted as ηS . □

We assume that d = ηS < ∞ and that d ≜ ∞ if (16)
does not hold for any d ≥ 0. Then, from [28], we note that
the block matrix M

(S)
d in (15) is full column rank. Thus,

there exists a matrix Q such that Qyk:d+k = u∗
S [k], where

yk:d+k = [yT[k] . . .yT[d+k]]T. We can then recover the input
vector u∗

S [k+1] using the formula u∗
S [k+1] = Qŷk+1:d+k+1.

Here ŷk+1:d+k+1 ≜ yk+1:d+k+1−M
(S)
d+1u

∗
S [k] is the residual.

In words, we first subtract the response of u∗
S [k] from the

measurements collected over {k+1, . . . , k+ d+1}. We then
use the residual ŷk+1:d+k+1 to recover the input u∗

S [k+1]. Let
k = 0. Then by iterating the above procedure, we can recover
u∗
S,[0:N−d] ≜ [(u∗

S [0])
T, . . . , (u∗

S [N − d])T]T from yN .
Let x∗

0 ̸= 0. We extend the rank condition in (16) to recover
β∗
S,[0:N−d] = (x∗

0,u
∗
S,[0:N−d]) using yN . First, we define the

smallest delay for recovering x∗
0 in the presence of input:

µS≜min{d ≥ 0 : Rank([Od JS,[d:0]])−Rank(JS,[d:0])=n},
(17)

where Od = [CT (CA)T . . . , (CAd)T], and n is the dimen-
sion of A. The rank condition in (17) says that Od has full
column rank (= n) and that the columns in Od are linearly
independent of columns in JS,[d:0]. This condition is stronger
than system in (3)-(4) being observable, as shown below:

Example 1. Let A =
[
1 2; 0 3

]
, BS =

[
2 3

]T
, and C =[

1 0
]
. Then ηS = 1 and RankOl = 2, for any ℓ ≥ 2; that

is, the system is observable. However, µS = ∞. To see this
note that the second column of A is identical to BS; thus, the
matrices Od and JS,[d:0] have some columns in common, and
consequently, (17) does not hold for any d ≥ 0. □

For N ≥ d ≥ 0, define ΨS,[N :d] = [O JS,N . . . JS,d] and
ΨS,[d−1:0] = [JS,d−1 . . . JS,0], where JS,l is in (15). Then,

ΨS ≜
[
O JS

]
= [ΨS,[N :d] ΨS,[d−1:0]] (18)

with an understanding that ΨS = ΨS,[N :d] for d = 0. Let Ψ†
S

be the pseudo inverse of ΨS . The proposition below estab-
lishes conditions under which we can recover (x∗

0,u
∗
S,[0:N−d]).

Proposition 1. Suppose that ηS in Definition 1 and µS in (17)
are finite. Then, for N ≥ max{ηS , µS} with d ≥ ηS , we have

1) ΨS,[N :d] defined in (18) has full column rank.
2) R(ΨS,[N :d]) ∩R(ΨS,[d−1:0]) = {0}.

Moreover, for tS ≜ (N − d+ 1)m∗ and m∗ = |S|, we have[
x∗
0

ũ∗
S,[0:N−d]

]
=
[
In+tS 0(n+tS)×dm∗

]︸ ︷︷ ︸
Π̃S,[0:N−d]

Ψ†
Sy. (19)

The proof of this fact is given in [28, Theorem 7]. Part (1)
of proposition states that the sub-matrix ΨS,[N :d] has full rank
even when ΨS,[N :0] is rank deficient. This fact plays a vital
role in the performance analysis of the group LASSO estimate.

For Proposition 1 to hold, we require ηS , µS < ∞. Using
the notion of zeros and rank of the system matrix (see below),
we state verifiable conditions to check if ηS , µS < ∞. For all
z ∈ C, define the Rosenbrock system matrix:

ZS [z] ≜

[
zIn −A −BS

C 0

]
. (20)
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Let nRankZS ≜ maxz∈C RankZS [z] be its normal rank. A
number z0 ∈ C is called the invariant zero of (A,BS ,C) if
RankZS [z0] < nRankZS . If (A,BS ,C) has invariant zeros,
there exists u∗

S ̸= 0 and x0 ̸= 0 such that (noise-free) y[k] =
0, for all k ≥ 0 [29]. (Thus, we cannot distinguish between
non-zero and zero inputs from yN .). Hence, ηS , µS = ∞.

Lemma 2. Suppose that (A,BS ,C) has no invariant zeros.
Then (i) µS < ∞, and for N ≥ µS , system in (3)-(4) is initial
state observable; and (ii) ηS < ∞ if nRankZS = n+m∗.

Proof for the statement (i) can be found in [28, Proposition
5]. Instead, the statement (ii) follows from [9, Theorem 1, pp.
227]. Thus, if (A,BS ,C) satisfies conditions in Lemma 2,
the assumptions in Proposition 1 hold. Hence, the sub-matrix
ΨS,[N :d] has full rank and we can recover (x∗

0,u
∗
S:[0:N−d]).

IV. LOCATION RECOVERY AND ESTIMATION
CONSISTENCY OF THE GROUP LASSO ESTIMATOR

We theoretically investigate the performance of the group
LASSO estimator in (10) using the previously stated results
for the delayed input estimation. Our results generalize the ex-
isting group LASSO’s guarantees for static (or non-dynamical)
systems [6], [30] to the dynamical systems with delay d ≥ 0.

Recall that the estimate β̂ in (10) is (x̂0, û1, . . . , ûm) with
ûj = [ûj [0], . . . , ûj [N ]]T. For any S ⊂ {1, . . . ,m}, we define
ûS [k] = [ûs1 [k], . . . , ûs|S| [k]], for all k ≥ 0 and sj ∈ S;
that is, we group the estimated inputs associated with the set
S. Define ûT

S = [ûT
S [0], . . . , û

T
S [N ]] and β̂S = (x̂0, ûS). For

S = {j : u∗
j ̸= 0} and Ŝ = {j : ûj ̸= 0}, we derive conditions

under which (i) Ŝ = S and (ii) ∥β∗
S,[0:N−d]−β̂S,[0:N−d]∥2 ≤ ϵ,

for any ϵ > 0, hold with high probability.

Assumption 3. (Identifiability and mutual incoherence con-
ditions [27]) Consider the following conditions:

(A1) Group normalization: There exists a constant C > 0 such
that O and Ji in (7) satisfy the normalization condition:

max {∥O∥2, ∥J1∥2, . . . , ∥Jm∥2} ≤ C
√
T < ∞. (21)

(A2) Model indentifiability: The parameters ηS in (16) and µS

in (17) are finite; and N ≥ max{ηS , µS} with d ≥ ηS .
Further, there exists a constant cmin > 0 such that∥∥∥∥∥∥

(
ΨT

S,[N :d]ΘΨS,[N :d]

T

)†
∥∥∥∥∥∥
2

≤ 1

cmin
< ∞, (22)

where ΨS,[N :d] and ΨS,[d−1:0] are given in Eq (18), and
Θ ≜ [I−ΨS,[d−1:0]Ψ

†
S,[d−1:0]].

(A3) Mutual incoherence: There exists some α ∈ [0, 1), re-
ferred to as ”mutual incoherence” parameter, such that

MIC ≜ max
j∈Sc

∥∥∥JT
j ΨS(Ψ

T
SΨS)

†
∥∥∥
2
≤ α/m∗. (23)

Assumptions (A1) and the bound in (22) hold for stable and
asymptotically unstable systems2 if N < ∞. However, these
assumptions hold only for stable systems if N → ∞. Further,
as discussed in Section III, we need the requirement on N , µS ,

2At least one of the eigenvalues of A lie outside the complex unit circle.

and ηS in Assumption (A2) to ensure that the initial state and
the input associated with the source set S are identifiable. In
light of Lemma 2, this requirement is satisfied if (A,BS ,C)
has no invariant zeros and that nRankZS = n+m∗. Finally,
the constants C and cmin do not depend on the horizon N . They
capture the inherent complexity in estimating the unknown
parameters and play a vital role in true support recovery.

Assumption (A3) is satisfied if ΨS and Jj are orthogonal
(JT

j ΨS = 0, for all j ∈ Sc). Orthogonality does not hold
if inputs are more than outputs. Or columns of BS in (3)
are linear combinations of bj , for j ∈ Sc. Nonetheless, (A3)
imposes a type of “approximate” orthogonality between Jj

and ΨS , mediated by the parameter α. The ℓ2-norm bound
in (23) could be conservative as the bound depends on m∗.
This dependence can be avoided by working with the ℓ1-norm
bound; that is, maxj∈Sc

∥∥∥JT
j ΨS(Ψ

T
SΨS)

†
∥∥∥
1
≤ α. However,

we stick with (23) as it is useful to derive an upper bound on
MIC in (23) using the system transfer function. In simulations,
we study the conservatism incurred due to ℓ2-norm based MIC.

Theorem 4. (Location recovery consistency) Suppose that the
linear model in (11) satisfies assumptions (A1)-(A3) with S =
{1, . . . ,m∗}. For some δ > 0 and c1 = log(5), let

λT =

√
32Cσ

1− α

{√
(N + 1)c1 + log(m−m∗)

T
+

δ

2

}
, (24)

Then, for the group LASSO estimate β̂ = (x̂0, û) defined in
(10), with probability at least 1− 4 exp(−Tδ2/2) we have

1) (Non-unique): There are infinite solutions for (10).
2) (No false inclusion): The support set of any estimate β̂

lies in the true support set; that is, Ŝ ⊂ S.
3) (ℓ∞ bounds): The delayed inputs satisfy the bound:

maxj∈S ∥ûj,[0:N−d]−u∗
j,[0:N−d]∥∞ ≤ gmin(λT ,Ψ), with

gmin(λT ,Ψ)=
σ

√
cmin

{√
2 log((N − d+ 1)m∗)

T
+ δ

}

+ λT

∥∥∥∥∥∥ΠS,[0:N−d]

(
ΨT

SΨS

T

)†
∥∥∥∥∥∥
∞

, (25)

and ΠS,[0:N−d] = [0tS×n ItS 0tS×dm∗ ], where tS =
(N − d+ 1)m∗, satisfies ΠS,[0:N−d]β

∗
S = u∗

S,[0:N−d].
4) (Minimum input magnitude and no false exclusion): If

minj∈S ∥u∗
j,[0:N−d]∥∞ ≥ gmin(λT ,Ψ), we have Ŝ = S.

Corollary 5. Let β̂S,[0:N−d]=(x̂0, ûS,[0:N−d]) and similarly
define β∗

S,[0:N−d]. Suppose that ∥(ΨT
SΨS/T )

†∥2 ≤ 1/cmin.
Under the assumptions stated in Theorem 4, with probability
at least 1−exp(−δ2T/2), we have∥∥∥β∗

S,[0:N−d] − β̂S,[0:N−d]

∥∥∥
2
≤

2σ
√
cmin

{√
2c1(n+ tS)

T
+ δ

}
+

λT

√
m∗

cmin
. (26)

Proof: See Appendix.
We use the primal-dual witness technique [27], [30], [31]

to prove Theorem 4. The details of this technique are in Ap-
pendix. The location recovery consistency results in Theorem

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3258627

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on September 04,2023 at 21:04:00 UTC from IEEE Xplore.  Restrictions apply. 



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

4 in the literature are referred to as support recovery, here the
support means the indices of non-zero uj , which is S. Below,
we comment on the scaling laws of Theorem 4.

Part (a) in Theorem 4 states that the group LASSO estimate
β̂ is non-unique unless the sub-system realized by (A,BS ,C)
has zero delay. This is because, for N > d > 0, the sub-matrix
ΨS,[N :d] in (18) has full rank, but not ΨS . However, Part (b)
in Theorem 4 states that Ŝ ⊆ S, for any optimal estimate β̂ in
(10). Thus, the estimated inputs restricted to the complement
set are zero: ûjc = 0, for all j ∈ Sc. Thus, the non-uniqueness
of the optimal solution does not affect the location consistency
of the group LASSO estimator.

Part (d) in Theorem 4 (d)—a consequence of the ℓ∞ norm
bound in part (b)—says that for Ŝ = S to hold (i.e., to detect
true inputs correctly), the true non-zero input signal strength
should not be too small, precisely, smaller than βmin in (25).
The probabilistic result in Theorem 4 also helps determine
the number of measurements (N ) or sensors (p) required to
achieve certain amount of performance. Let us simplify λT in
(24) to comment on its scaling. By substituting T = p(N +1)
and assuming that log(m−m∗)/(N + 1)≫c1, we have

λT = O

(√
log(m−m∗)

p(N + 1)
+

δ

2

)
. (27)

For N = 1, λT ≈ O(
√
log(m−m∗)/p), which is the optimal

λT for the standard LASSO problem [27]. Thus, c1(N + 1)
in (24) quantifies the number of unknowns in u∗

j , and N + 1
in T accounts for the number of measurements per sensor.

The choice of λT plays an important role in determining if
Theorem 4 (c) (that is, Ŝ = S) holds. In fact, the smaller
the λT , the smaller the minimum threshold gmin(λT ,Ψ).
Interestingly, for λT = 0, which happens, say, when σ = 0, the
optimization problem in (10) reduces to the standard ordinary
least squares (OLS) problem. Thus, there is no shrinkage of
input estimates toward zero. Further, λT does not depend on
cmin in (22) but depends on the group normalization constant
C in (21) and the mutual incoherence parameter α in (23).

To study the role of the minimum singular value of ΨS ,
denoted by ρmin(ΨS), on gmin(λT ,Ψ), we assume that ΨS

has full rank. Then from the standard norm bounds, we have

κ1 +
λTT

√
κ2

ρ2min(ΨS)
≥ gmin(λT ,Ψ) ≥ κ1 +

λTT√
κ2ρ2min(ΨS)

,

where κ1 is the first term on the right side of the equality in
(25) and κ2 = (N + 1)m∗ is the dimension of u∗

S . For fixed
C (defined in (21)) and κ2, from the preceding inequality,
it is clear that larger σ2

min(ΨS) requires smaller gmin(λT ,Ψ)
because the effective signal strength of ΨSu

∗
S is large. Instead,

smaller σ2
min(ΨS) requires higher gmin(λT ,Ψ), requiring u∗

S

to be large. If not, the strength of ΨSu
∗
S decreases. Finally,

from (24), we observe that λT is an increasing function of
α ∈ [0, 1); thus, higher the α larger is the gmin(λT ,Ψ). Recall
that α is large if Jj , for j ∈ Sc, is highly correlated with ΨS .

We now comment on the ℓ2-error bound between β∗
S,[0:N−d]

and β̂S,[0:N−d] given in Corollary 5. First, the bound depends
on the number of unknown parameters n+ tS = n+(N−d+
1)m∗, i.e., the dimension of the initial state and delayed input.

Letting T = p(N + 1) ≫ n, we observe that the first term
of the bound in (26) scales as O((2σ/

√
cmin)(

√
m∗/p+ δ)).

Thus, more sensors result in fewer errors. However, the bound
is loose for large values of λT . To remedy this shortcoming,
we consider the following OLS estimate:

β̂
(OLS)

Ŝ,[0:N−d] ≜ Π̃Ŝ,[0:N−d](Ψ
†
Ŝ
y), (28)

where Π̃Ŝ,0:N−d is defined similar to Π̃S,0:N−d in (19). We
present the second main result of this section: an oracle bound
on the error ∥β∗

S,[0:N−d] − β̂
(OLS)

Ŝ,[0:N−d]
∥2.

Theorem 6. (ℓ2-consistency: oracle bounds) Suppose that the
hypotheses in Theorem 4 hold. Then, for any δ, δ1 > 0, with
probability at least 1− 4 exp(−Tδ2/2)− δ1,∥∥∥∥β∗

S,[0:N−d] − β̂
(OLS)

Ŝ,[0:N−d]

∥∥∥∥
2

≤ 4σ
√
cmin

{√
(n+ tS)

T

}

+
2σ

√
cmin

{√
1

T
log

(
1

δ1

)}
, (29)

The proof is in Appendix. Similar to the bound in Corollary
5, the first term in (29) is O((2σ/

√
cmin)

√
m∗/p); however,

the second term in (29) does not depend on λT and it
approaches zero as T → ∞. Thus, the overall error is dictated
by m∗/p. We call the bound in (29) as the oracle because the

bound holds for β̂
(OLS)

S,[0:N−d], albeit with probability 1− δ1.

A. Mutual Incoherence: Frequency Domain
Thus far, we studied the location recovery- and estimation-

consistency of the group LASSO estimator in (10) assuming
that assumptions in (A1)-(A3) hold of which the first two are
satisfied by stable dynamical systems with (A,BS ,C) having
no invariant zeros3. However, (A3) might not hold for arbitrary
systems, and moreover, verifying (23) can be computationally
demanding when either N (the measurement horizon) or n (the
dimension of system matrix A) is large. In what follows, we
bound maxj∈Sc ∥JT

j ΨS(Ψ
T
SΨS)

†∥2 in (23) using a quantity
that depends on the transfer function matrices associated with
(A,BS ,C) and (A,bj ,C), for j ∈ Sc. The advantage is that
this upper bound can be computed efficiently, as it depends
only on the lower dimensional system matrices but not on N .

To simplify the exposition, we let x0 = 0; thus, ΨS = JS .
Let GS [z] ≜ C(zIn−A)−1BS ; GSc [z] ≜ C(zIn−A)−1BSc ;
and Gj [z] = C(zIn −A)−1bj , where j ∈ Sc and BSc is the
matrix composed of columns bj with j ∈ Sc.

Theorem 7. Assumption (A3) holds if nRankZS=n+m∗ and

max
j∈Sc

max
{z∈C:|z|=1}

∥∥G+
S [z]Gj [z]

∥∥
2
≤ α/m∗ < 1. (30)

Proof: See Appendix.
We refer to the expression in (30) as the frequency domain

mutual incoherence condition. To verify Assumption (A3), we
need to check if the worst case gain of the matrix G+

S [z]Gj [z]
is bounded above by α/m∗; see Fig. 1. If computing (30) is
prohibitive for each j ∈ Sc, we can use the weaker condition:

3Systems having invariant zeros lie in a zero measure set [29].
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Fig. 1. Illustration of Theorem 7 for systems generated using MATLAB.
The number of sources m = 10. In both panels, the y-axis, FDMIC −
TDMIC, is the error between frequency- and time-domain MIC. (Left
panel) We fix n = 20 and plot FDMIC − TDMIC for several values
of m∗. (Right panel) For a large matrix A, we fix m∗ and p, and plot
FDMIC − TDMIC for several values of n. In both panels, the error is
positive and is monotone in N implying that FDMIC ≥ TDMIC, as
predicted by Theorem 7.

max{z∈C:|z|=1}
∥∥G+

S [z]GSc [z]
∥∥
2
≤ α/m∗ < 1. To appreciate

the condition in (30), take the Z-transform of system in (3)-(4)

y[z] = GS [z]uS [z] +
∑
j∈Sc

Gj [z]uj [z], ∀z /∈ spec(A).

By pre-multiplying the above identity with G+
S [z], we have

G+
S [z]y[z] = z−duS [z] +

∑
j∈Sc G+

S [z]Gj [z]uj [z], where we
used the fact that the GS [z] is d delay invertible, and hence,
G+
S [z]GS [z] = z−dI. Thus to recover uS [z] accurately, the gain

∥G+
S [z]Gj [z]∥2 or ∥G+

S [z]GSc [z]∥2 needs to be small.
We highlight three cases where (30) holds: (i) R(GSc [z]) ⊆

R⊥(G†
S [z]) = R⊥(GT

S [z]); that is, the columns of GSc [z] lie
in the left nullspace of GS [z]; (ii) G[z] = [GS [z] GSc [z]] is all-
pass4; and (iii) each column of GSc [z] is a scaled column of
GS [z] for some scaling factor α ∈ [0, 1). The first two cases
are rather strong and do not allow columns of GSc [z] to be in
the range space of GS [z]. Instead, (iii) models another extreme
where the range spaces of GS [z] and GSc [z] are aligned with
each. The latter case in the compressed sensing literature is
referred to as overcomplete dictionaries [32].

Our results extend to System in (3)-(4) driven by process
noise (for e.g., in the power system, the noise is load fluctua-
tions); see our extended paper [25, Section IV.A.] for details.

V. SIMULATIONS

We illustrate the performance of the group LASSO estimator
on a large-scale power network and a random system. The
following proposition states that the unknown input and initial
state can be estimated in two stages. Consequently, we use off-
the-shelf ADMM [10] to estimate the input first and then use
this estimate to compute the initial state.

Proposition 8. Suppose that system in (3)-(4) is observable.
The optimization problem (10) is equivalent to

û = argmin
u∈RmT

1

2T
∥R(y − Ju)∥22 + λT

m∑
j=1

∥uj∥2 , (31)

x̂0 = O†(y − Jû), (32)

4A real rational transfer function matrix G[z] is all-pass if G[z]G[1/z] = I.

where O† = (OTO)−1OT and R = I−OO†.

The proof follows from the KKT conditions in (33)-(34).
The inputs to the ADMM [10] are (A,B,C), the measurement
y, and λT ≥ 0. The two-stage estimation method is one way
to implement the group LASSO numerically. One may use
other numerical algorithms to estimate (x∗

0,u
∗) in one shot.

We evaluate the group LASSO estimator’s localization per-
formance using the false-positive rate (FPR):= |Sc ∩ Ŝ|/|Sc|,
the false-negative rate (FNR):= |S ∩ Ŝc|/|S|, and the exact
recovery rate (ERR):= (|S∩ Ŝ|+ |Sc∩ Ŝc|)/m. Thus, the FPR
and FNR measure the proportion of falsely identified and left
out inputs. Instead, we quantify the estimation performance
using the metrics: ∥x∗

0 − x̂0∥2/∥x∗
0∥2 and ∥u∗ − û∥2/∥u∥2.

For the test cases below, the results are averaged over 50 runs.

(Power system) We apply our estimator in (31) to localize
the sources of forced oscillatory inputs in the IEEE 68 bus
system 16 machine system (see Fig. 2). Each machine (or gen-
erator) consists of ten states, including rotor angle, speed, and
the states of the AVR (automatic voltage regulator) and PSS.
We model FOs as inputs injected by the AVRs and use bus
voltage magnitudes as measurements. For the sampling time
δt = 0.1, we obtained the system matrices A ∈ R160×160,
B ∈ R160×16, and C ∈ Rp×160, where p ≤ 68, using
the Power System Toolbox [33]. Among m = 16 possible
inputs, we assume m∗ = 3 with the following inputs: u∗

1[k] =
0.5 sin[(2πfδt) k] + w[k], u∗

6[k] = 0.6 sin[(2πfδt) k] + w[k],
and u∗

13[k] = 0.7 sin[(2πfδt) k]+w[k], where f = 1.5U(0, 1)
and w[k] ∼ N (0, 0.052). We set p = 4 and choose sensor
locations arbitrarily with the only exception that these are non-
collocated with inputs (shown in Fig. 2). Let x0 = 0 (the
non-zero case is considered in the subsequent case). Finally,
we let N = 100 and the noise variance σ2 = 0.01.

In Fig. 3, we plot the FPR, FNR, and ERR with respect
to λT . As expected, the FNR increases with λT , whereas the
FPR decreases with λT , although not monotonically. From the
bottom left panel, we can infer that values of λT ∈ (0.3, 0.4)
yield maximum ERR. In the bottom right panel, note that for
λT = 0.288, the group LASSO estimator accurately localized
inputs among 40 out of 50 runs. In Fig. 4, for a measurement
realization where the group LASSO estimator identified true
locations, we plot the inputs estimated by the group LASSO
and the reduced model-based OLS estimators.

(Large-scale random system) Following [22], we generate
matrices as follows: Aij

iid∼ N (0, 1/n); Cij
iid∼ N (0, 1); and

BT =
[
ITm 0T

]
. We let x0 ∼ N (0, In) and the measurement

noise variance parameter σ = 0.01. We set n = 50, m = 30,
and m∗ = 5. The active set S = {1, 2, 3, 4, 5} and uj [k] is
sampled uniformly on [−2, 2], for all j ∈ S and k ∈ [N ]. The
sensors measures the first p(≤ n) states. In Fig. 5, for p = 15,
we plot the average estimation error metrics as a function of
the measurement horizon (N ). In both the panels, estimation
errors remain uniform across N because the number of (to be
estimated) inputs also increase with N . Given the relation in
(32), the estimation error of x∗

0 is slightly higher than that of
the unknown input. Finally, for greater estimation accuracy,
one can always use the reduced model-based OLS estimator.

In Fig. 6 we show the average mutual incoherence in (23)

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3258627

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASU Library. Downloaded on September 04,2023 at 21:04:00 UTC from IEEE Xplore.  Restrictions apply. 



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Fig. 2. IEEE 16 machine 68 bus system [34]. Circles, arrows, and curly
windings, respectively, denote generator buses, load buses, and trans-
formers. The FO input enters through set points of AVRs associated with
the generators at buses {1, 6, 13} (red circles). Sensors are located at
buses {8, 34, 50, 56}.
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Fig. 3. Group LASSO’s performance on IEEE 16 machine 68 bus
system: False negative rate (FNR), false positive rate (FPR), exact
recovery rate (ERR), and the number of runs out of the 50 independent
runs in which the group LASSO exactly recovered the support.

as a function of p for x0 = 0 and x0 ̸= 0. We computed both
ℓ1- and ℓ2-norm based MICs. As pointed out in Section IV,
and confirmed by our plots in the left panel of Fig. 6, ℓ2-norm
based MIC assumption is stronger than the ℓ1-norm. Further,
when x0 = 0, the MIC is satisfied (that is, less than one) for
as few as p = 6 sensors. Instead, when x0 ̸= 0, we need at
least p = 18 sensors to ensure that MIC is less than one.

VI. CONCLUSION

We have studied a group LASSO estimator for localizing
the sparse set of sources of forced inputs and estimating these
inputs along with the initial state in d-delay left invertible
linear dynamical systems. Under certain natural conditions, we
showed that our estimator is well defined, and the underlying
estimate is non-unique for d ≥ 0. However, with high prob-
ability, we showed that the support of any optimal estimate
recovers the true sparse set if (i) the subsystem associated
with the sparse set of inputs has no invariant zeros, and (ii)
the observability and impulse response matrices of the overall
system satisfy a mutual-incoherence type condition. In doing
so, we have extended the existing theory of the group LASSO
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Fig. 4. FO inputs recovered by the group LASSO and OLS estimators.
We used (28) to compute the OLS estimate using the locations recov-
ered by the group LASSO. (Left panel) As predicted by Theorem 6, the
OLS provides a better estimate than the LASSO estimator. (Right panel)
Zoomed plot of the group LASSO estimate.
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Fig. 5. Estimation error. Left panel: unknown inputs. Right panel: initial
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Fig. 6. Mutual incoherence as a function of number of sensors.

estimator for static regression models to the models generated
by dynamical systems. Another key contribution of our work is
that we derived a connection between the time- and frequency-
domain mutual incoherence conditions. The former imposes
certain restrictions on the column space of the impulse re-
sponse matrix; instead, the latter does so on the column space
of the transfer function matrix. Further, the frequency-domain
condition is numerically easier to verify than its time-domain
counterpart. Importantly, it provides insight into the structural
aspects of transfer matrices associated with the zero and non-
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zero inputs. Finally, we have validated the performance of
the group LASSO estimator on the IEEE 68-bus, 16-machine
power system, and a large-scale synthetic model.

VII. APPENDIX

A. KKT conditions and PDW Construction
Proposition 9. (Karush-Kuhn-Tucker (KKT) conditions) A
necessary and sufficient condition for (x̂0, û), with ûT =
[ûT

1 , . . . , û
T
m], to be a solution of (10) is

− 1

T
OT[y −Ox̂0 −

m∑
j=1

Jjûj ] = 0 (33)

− 1

T
JT
i [y −Ox̂0 −

m∑
j=1

Jjûj ] + λT ẑj = 0 (34)

for all j ∈ {1, . . . ,m}. Here, ẑj is the subgradient of ∥ûj∥2;
that is, ẑj = ûj/∥ûj∥2 if ûj ̸= 0, else ẑj ∈ {q : ∥q∥2 ≤ 1}.

The proof follows by taking the derivative of the objective
function in (10) with respect to (x̂0, û) and using the sub-
gradient characterization of the ∥·∥2-norm (see [35, Appendix
B]). Without loss of generality let S = {1, . . . ,m∗} and Sc =
{m∗ + 1, . . . ,m}. Let ûT

S [k] = [û1[k] . . . , ûm∗ [k]], for all
k ∈ {0, . . . , N}, where ûj [k] is the k-th entry of ûj . Define
ûT
S = [ûT

S [0], . . . , û
T
S [N ]]. Thus,

[ûT
1 , . . . , û

T
m∗ ]T = PûS , (35)

for some permutation matrix P. Further, we can verify that
[J1 . . . ,Jm∗ ]P = JS (as in (12)). Let β̂S ≜ [x̂T

0 ûT
S ]

T. Then,

Ox̂0 +
∑
j∈S

Jjûj = ΨSβ̂S . (36)

Let J̃Sc =[Jm∗+1, . . . ,Jm]. Then, (33)-(34) can be written as

− 1

T

[
ΨT

S

J̃T
Sc

]
[y −Ox̂0 −

m∑
j=1

Jjûj ]+λT

 0
PTẑS
ẑSc

=
00
0

 , (37)

where ẑTS = [ẑT1 , . . . , ẑ
T
m∗ ], and ẑTSc = [ẑTm∗+1, . . . , ẑ

T
m].

Primal-dual witness (PDW) construction: We prove Theo-
rems 6 and 4 using the PDW method 5 in [31]. Upon successful
completion, this method returns a pair (β̂, ẑ) that is primal-
dual optimal, and it act as a witness (or certificate) for the fact
that the group LASSO estimate has the true support.

1) Set ûj = 0, for all j ∈ Sc.
2) Let (x̂0, û1 . . . , ûm∗) be the solution of the following

sub-problem:

min
x0;

u1,...,um∗

1

2T

∥∥∥∥∥∥y−Ox0−
m∗∑
j=1

Jjuj

∥∥∥∥∥∥
2

2

+λT

m∗∑
j=1

∥uj∥2. (38)

Choose the sub-gradient ẑS = [ẑT1 , . . . , ẑ
T
m∗ ]T such that

− 1

T
ΨT

S

[
y −Ox̂0 −

∑m∗

j=1 Jjûj

]
+ λT

[
0

PTẑS

]
= 0.

(39)

5The PDW construction is not an algorithm for solving (10): This is because
to solve the problem in step (b) of PDW, we need to know S. However, PDW
construction helps to prove theoretical results for the LASSO type problems.

3) Solve ẑSc = [ẑTm∗+1, . . . , ẑ
T
m]T using (37), and check if

∥ẑj∥2 ≤ 1, for all j ∈ Sc = {m∗ + 1, . . . ,m}.
By construction, (x̂0, û1 . . . , ûm∗), ẑS , and ẑSc that we

determined in steps (a), and (b) satisfy conditions in (37). The
PDW construction is said to be successful if ẑSc satisfies the
strict dual feasibility condition: ∥ẑj∥2 ≤ 1, for all j ∈ Sc.

For the estimate in (38), define

β̂PDW = (x̂0, û1, . . . , ûm∗ ,0(N+1), . . . ,0(N+1)︸ ︷︷ ︸
m−m∗

). (40)

Lemma 10. Suppose that the PDW construction succeeds.
Then, β̂ = β̂PDW is an optimal solution of (10).

Proof: We adapt the proof technique provided in [31,
Lemma 7.23]. Let d ≥ 0. Because the PDW construction suc-
ceeds, β̂PDW in (40) is an optimal solution of (10) satisfying
the conditions in Proposition 9.

Let uT = [xT
0 ,u

T
1 , . . . ,u

T
m] and F (u) ≜ 1

2T ∥y − Ox0 +∑m
j=1 Jjuj∥22. Let ∇F (u) be the gradient of F (u) at u. Then,

for any optimal solution ũ of (10), we have F (û)+λT ẑ
Tû =

F (ũ) + λT

∑m
j=1 ∥ũj∥2, where ẑT = [ẑT0 , ẑ

T
1 , . . . , ẑ

T
m] is

the subgradient and we used the fact that
∑m

j=1 ẑ
T
j ûj =∑m

j=1 ∥ûj∥2. The latter holds which holds because ûj = 0
for j ∈ Sc and ẑj = ûj/∥ûj∥2 for j ∈ S. Thus, F (û) −
λT ẑ

T(ũ − û) = F (ũ) + λT

∑m
j=1 ∥ũj∥2 − λT ẑ

Tũ. Instead,
from (33)-(34), we have λT ẑ = −∇F (û). Thus,

F (û) +∇F (û)T(ũ− û)− F (ũ) = λT (
m∑
j=1

∥ũj∥2 − ẑTũ).

By convexity of F , F (û)+∇F (û)T(ũ−û)−F (ũ) < 0. Thus,∑m
j=1 ∥ũj∥2 ≤ ẑTũ =

∑m
j=1 ẑ

T
j ũj , where ẑ0 = 0. Since∑m

j=1 ẑ
T
j ũj ≤

∑m
j=1 ∥ẑj∥2∥ũj∥2 ≤

∑m
j=1 ∥ũj∥2, we have∑m

j=1 ∥ũj∥2 =
∑m

j=1 ẑ
T
j ũj . Further, because ∥ẑj∥2 < 1, this

equality holds only if ũj = 0, for all j ∈ Sc. To see this note
that

∑m
j=1 ẑ

T
j ũj =

∑
j∈S ẑTj ũj +

∑
j∈Sc ∥ẑj∥2∥ũj∥2 cos(θj),

where θj is the angle between ẑj and ũj , and ∥ẑj∥2 cos(θj) ∈
(−1, 1). Thus, all optimal β̂’s satisfy β̂j = 0 for j ∈ Sc. □

B. Proofs of Theorems and Corollaries in Section IV
Proof of Theorem 4: Suppose the PDW construction succeeds.
The proof of part (a) is given in Lemma 10. Further, in view of
Lemma 10, β̂ = β̂PDW is an optimal solution of (10). Thus,
all the optimal input vectors are supported on the set S, i.e.,
Ŝ ⊂ S, where Ŝ = {j : ûj ̸= 0}; thus, part (b) holds.

We show that the PDW construction succeeds with proba-
bility at least 1− 2 exp(−Tδ2/2) by showing that ∥ẑj∥2 ≤ 1,
for all j ∈ Sc. Here, ẑj is determined in the step (c) of PDW
construction. Let β̂S be as in (36). By substituting y (given
in (11)) and ûSc = 0 in (37), we obtain

1

T

[
ΨT

SΨS ΨT
SJ̃Sc

J̃T
ScΨS J̃T

ScJSc

] [
β∗
S − β̂S

0

]
+

1

T

[
ΨT

S

J̃T
Sc

]
v=λT

 0
PTẑS
ẑSc

 .

(41)

Using the second block equation of (41), solve for ẑSc as

ẑSc = J̃T
ScΨS

[
Ψ†

SΨS

λTT
(β∗

S − β̂S)

]
+ J̃T

Sc

(
v

λTT

)
, (42)
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where we used the fact ΨS = ΨSΨ
†
SΨS . On the other hand,

from the top block equation in (41), we have

1

T
ΨT

SΨS(β
∗
S − β̂S) +

1

T
ΨT

Sv = λT

[
0

PTẑS

]
. (43)

Pre-multiply both sides of the equality in (43) with (ΨT
SΨS)

†

and use the identity Ψ†
S = (ΨT

SΨS)
†ΨT

S (see [36]) to get:

Ψ†
SΨS(β

∗
S − β̂S) = −Ψ†

Sv + TλT (Ψ
T
SΨS)

†
[

0
PTẑS

]
. (44)

Let ΓS = [I− (ΨSΨ
†
S)]. By substituting (44) in the first term

of the second equality in (42), we can simplify ẑSc as

ẑSc = J̃T
Sc(Ψ

†
S)

T

[
0

PTẑS

]
+ J̃T

ScΓS

(
v

λTT

)
, (45)

where we used the fact (Ψ†
S)

T = ΨS(Ψ
T
SΨS)

†. Thus,

ẑj = JT
j (Ψ

†
S)

T

[
0

PTẑS

]
+ JT

j ΓS

(
v

λTT

)
, ∀j ∈ Sc.

(46)

By the sub-multiplicative property of norms, for any j ∈ Sc,∥∥∥∥JT
j (Ψ

†
S)

T

[
0

PTẑS

]∥∥∥∥
2

≤ max
j∈Sc

∥JT
j (Ψ

†
S)

T∥2
∥∥∥∥[ 0

PTẑS

]∥∥∥∥
2

≤ α

m∗ ∥P
TẑS∥2 ≤ α

m∗

∑
j∈S

∥ẑj∥2 ≤ α.

where α ≤ 1 is given in (23) and we used the fact that ∥ẑj∥2 ≤
1 (see Proposition 9), for j ∈ S, and ∥PT∥2 ≤ 1. As a result,
from (46) and the preceding inequality, we have

max
j∈Sc

∥ẑj∥2 ≤ α+max
j∈Sc

∥∥∥∥JT
j ΓS

(
v

λTT

)∥∥∥∥
2

. (47)

On the other hand, in light of Lemma 11, with the probability
of at least 1−2 exp(−δ2T/2), we have ∥JT

j ΓS (v/λTT ) ∥2 ≤
0.5(1− α), for δ > 0 and j ∈ Sc. Thus, maxj∈Sc ∥ẑj∥2 < 1,
establishing the strict dual feasibility condition.

Part (c): From Assumption (A2) and Proposition 1, we have

Ψ†
SΨS = Blkdiag(In, ItS ,Ψ

†
S,[d−1:0]ΨS,[d−1:0]), (48)

where tS = (N − d+ 1)m∗. Thus, we have

u∗
S,[0:N−d]−ûS,[0:N−d] = ΠS,[0:N−d]Ψ

†
SΨS(β

∗
S − β̂S), (49)

where ΠS,[0:N−d] = [0tS×n ItS 0tS×dm∗ ] and

β∗
S−β̂S=

 x∗
0 − x̂0

u∗
S,[0:N−d] − ûS,[0:N−d]

u∗
S,[N−d+1:0] − ûS,[N−d+1:0]

 . (50)

From (49) and (44), it now follows that

∥u∗
S,[0:N−d]−ûS,[0:N−d]∥∞ ≤ ∥ΠS,[0:N−d]Ψ

†
Sv∥∞

+ λT

∥∥∥ΠS,[0:N−d](Ψ
T
SΨS/T )

†
∥∥∥
∞

, (51)

where we used the fact ∥ẑS∥∞ ≤ 1. The second term is deter-
ministic. Instead, the first term is random, and, from Lemma
12, it is upper bounded by σ/

√
cmin(

√
2 log(tS)/T + δ) with

probability at least 1− 2 exp(−Tδ2/2). Finally, the left-hand

side of (51) equals maxj∈S ∥u∗
j,[0:N−d]−ûj,[0:N−d]∥∞. Putting

the pieces together, we have the inequality in (25).

Part (d): By the triangle inequality, for all j ∈ S, we have

∥u∗
j:[0:N−d]∥∞ = ∥u∗

j:[0:N−d] − ûj:[0:N−d] + ûj:[0:N−d]∥∞
≤ ∥u∗

j:[0:N−d] − ûj:[0:N−d]∥∞ + ∥ûj:[0:N−d]∥∞
(i)

≤ gmin(λT ,Ψ) + ∥ûj:[0:N−d]∥∞,

where (i) follows from part (c). Thus, ∥ûj:[0:N−d]∥∞ > 0 if
∥u∗

j:[0:N−d]∥∞ > gmin(λT ,Ψ). This observation together with
Ŝ ⊆ S in part (a) implies that Ŝ = S.

Finally, the probability stated in the theorem is obtained by
taking the union bound of the event where the dual feasibility
holds and the event where ℓ∞ bounds hold. □

Proof of Corollary 5: First, let us recall that Π̃S,[0:N−d] =
[In+tS 0(n+tS)×dm∗ ]. By proceeding similar to the steps out-
line in the proof of Theorem 4 (d), we get[

x∗
0−x̂0

u∗
S,[0:N−d]−ûS,[0:N−d]

]
︸ ︷︷ ︸

β∗
S,[0:N−d]

−β̂S,[0:N−d]

= Π̃S,[0:N−d]Ψ
†
SΨS(β

∗
S − β̂S).

Substituting this identity in (44) and followed by an applica-
tion of triangle inequality yields us

∥β∗
S,[0:N−d] − β̂S,[0:N−d]∥2 ≤ ∥Π̃S,[0:N−d]Ψ

†
Sv∥2

+ λT

∥∥∥∥Π̃S,[0:N−d](Ψ
T
SΨS/T )

†
[

0
PTẑS

]∥∥∥∥
2

. (52)

Using the facts that ∥ẑS∥2=
√
∥ẑ1∥22 + . . .+ ∥ẑm∗∥22≤

√
m∗,

and P and Π̃S,[0:N−d] are permutation and selection matrices,
respectively, the second term in (52) can be bounded above as
λT ∥(ΨT

SΨS/T )
†∥2

√
m∗. By the hypothesis in the statement

of the corollary, λT ∥(ΨT
SΨS/T )

†∥2
√
m∗ ≤ λT

√
m∗/(cmin).

We bound the first term in the upper bound in (52). Since
v = N (0, σ2I), we conclude that Σ = σ2Π̃S(Ψ

T
SΨS)

†Π̃
T

S

is the covariance of Π̃S,[0:N−d]Ψ
†
Sv. On the other hand, from

Assumption (A2), ∥Σ∥2 ≤ σ2/(Tcmin). Thus, by setting t =
2(σ/

√
cmin)(

√
2c1(n+ tS)/T + δ) in the first concentration

result in Lemma 13, we have ∥Π̃S,[0:N−d]Ψ
†
Sv∥2 ≤ t with

probability at least 1− exp(−δ2T/2). The result in Corollary
5 follows by adding the upper bounds derived above.

Proof of Theorem 6: From Theorem 4, S = Ŝ holds with
probability at least 1−4 exp(−Tδ2/2). Thus, from (28), with
the same probability, we have

β̂
(OLS)

Ŝ,[0:N−d] = β̂
(OLS)

S,[0:N−d] = Π̃S,[0:N−d]Ψ
†
Sy, (53)

where Π̃S ≜ Π̃S,[0:N−d] = [In+tS 0(n+tS)×dm∗ ]. Since y ∼
N (ΨSβ

∗
S , σ

2I), from (53) and (19), we have

E[β̂
(OLS)

Ŝ,[0:N−d]] = Π̃S,[0:N−d](Ψ
†
SΨS)β

∗
S = β∗

S,[0:N−d]. (54)

Let Σ ≜ σ2Π̃S(Ψ
T
SΨS)

†Π̃
T

S ∈ Rn+tS×n+tS . Then,

β̂
(OLS)

S,[0:N−d] − β∗
S,[0:N−d] ∼ N (0,Σ). (55)
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We now upper bound ∥Σ∥2. Recall from (18) and Proposi-
tion 1 (ii) that ΨS = [ΨS,[N :d] ΨS,[d−1:0]] and R(ΨS,[N :d])∩
R(ΨS,[d−1:0]) = {0}. Then, from [28, Lemma D], we have

Π̃S(Ψ
T
SΨS)

†Π̃
T

S = [(ΘΨS,[N :d])
T(ΘΨS,[N :d])]

†, (56)

where Θ = Θ2 = [I − ΨS,[d−1:0]Ψ
†
S,[d−1:0]]. On the other

hand, from Assumption (A2), we have ∥Σ∥2 ≤ σ2/(Tcmin).
Thu,s from the second concentration result in Lemma 13,∥∥∥∥β∗

S,[0:N−d] − β̂
(OLS)

S,[0:N−d]

∥∥∥∥
2

≤ 4σ
√
cmin

{√
(n+ tS)

T

}

+
2σ

√
cmin

{√
1

T
log

(
1

δ1

)}
, (57)

with probability at least 1− δ1 for δ1(0, 1). The statement of
the theorem follows by taking an union bound over the events
where (57) and (53) hold. □

Proof of Theorem 7: Consider the auxiliary system x[k +
1] = Ax[k] + bju

∗
j [k], where j ∈ Sc and u∗

j [k] = 0, k ≥ N .
Let x[0] = 0. Thus, y = Jju

∗
j , where Jj is given by (7) and

y and u∗
j as in (6). Let ΨS be as in (11), and consider ỹ[0]

...
ỹ[N ]

 ≜ Ψ†
S

 y[0]
...

y[N ]

 = Ψ†
SJju

∗
j = Ψ†

SJj

 u∗
j [0]
...

u∗
j [N ]

 , (58)

By assumption we have nRankZS = n + m∗. Thus, for
all z ̸∈ spec(A), GS [z] has full column rank and G+

S [z] =
[GS [z]

TGS [z]]
−1GS [z]

T and G+
S [z]GS [z] = z−dI; see [9, The-

orem 1]. Let ỹ[z] be the Z-transform of {ỹ[k]}∞k=0. Then by
using the construction given in [37, pp. 49-50] and the unique-
ness of pseudo inverse [28], we have ỹ[z] = z−dH[z]u∗

j [z],
where Hj [z] = G+

S [z]Gj [z], for all z ̸∈ spec(A).
On the one hand from Parsevel’s theorem, we have√√√√ ∞∑
k=0

∥ỹ[k]∥22 =

√
1

2π

∫ π

−π

∥ỹ[ejω]∥22dω

=

√
1

2π

∫ π

−π

∥e−djωHj [ejω]u∗
j [e

jω]∥22dω

≤ sup
{ω∈[−π,π]}

∥Hj [e
jω]∥2

√
1

2π

∫ π

−π

|u∗
j [e

jω]|22dω

= sup
{z∈C:|z|=1}

∥Hj [z]∥2∥u∗
j∥2. (59)

For the last inequality, we used Parsevel’s theorem and u∗[k] =
0, for k > N . On the other hand, from (58) and (59), we have

∥Ψ†
SJj∥2 = sup

∥u∗
j ∥2=1

∥Ψ†
SJju

∗
j∥2 = sup

∥u∗
j ∥2=1

√√√√ N∑
k=0

∥ỹ[k]∥22

≤ sup
∥u∗

j ∥2=1

√√√√ ∞∑
k=0

∥ỹ[k]∥22 ≤ sup
{z∈C:|z|=1}

∥Hj [z]∥2.

Thus max{j∈Sc} sup{z∈C:|z|=1} ∥H[z]∥2 ≤ α/m∗ implies that
∥Ψ†

SJj∥2 ≤ α/m∗. The proof is now complete. □

C. Auxiliary lemmata
Lemma 11. With the notation and assumptions in Theorem
4, we have P[maxj∈Sc

∥∥JT
j ΓS (v/λTT )

∥∥
2
≥ 0.5(1 − α)] ≤

2 exp(−Tδ2/2), where ΓS=[I−ΨSΨ
†
S ] and δ > 0.

Proof: Let α̃ = 0.5(1− α), with α ∈ [0, 1). Consider

P
[
max
j∈Sc

∥∥∥∥JT
j ΓS

(
v

λTT

)∥∥∥∥
2

≥ α̃

]
≤
∑
j∈Sc

P
[∥∥∥∥JT

j ΓS

(
v

λTT

)∥∥∥∥
2

≥ α̃

]
. (60)

Because v ∼ N (0, σ2I), it follows that JT
j ΓS (v/λTT ) ∼

N (0,Σj) with Σj = JT
j ΓSΓ

T
SJj/(λ

2
TT

2). Furthermore,

∥Σj∥2 =
1

λ2
TT

2
∥JT

j ΓS∥22 ≤ 1

λ2
TT

2
∥JT

j ∥22 ≤ C2T

λ2
TT

2
. (61)

The first inequality follows because ΓS is a projection matrix
and for the last inequality from the normalization assumption
(A1). Invoking Lemma 13, we bound the inequality in (60) as∑
j∈Sc

P
[∥∥∥∥JT

j ΓS

(
v

λTT

)∥∥∥∥
2

≥ α̃

]
≤
∑
j∈Sc

cN exp

(
− α̃2λ2

TT

8σ2C2

)
,

where cN = 5N+1. The right side term can be simplified as

exp

(
(N + 1) log(5) + log(m−m∗)− α̃2λ2

TT

8σ2C2

)
(62)

Substituting λT (see (24)) and α̃ = 0.5(1 − α) in (62), and
simplifying it gives us the required bound. □

Lemma 12. With the notation and assumptions stated in
Theorem 4, for δ ∈ [0, 1), we have P[∥ΠS,[0:N−d]Ψ

†
Sv∥∞ ≥

σ/
√
cmin(

√
2 log(tS)/T + δ)] ≤ 2 exp(−Tδ2/2).

Proof: Let el is the lth standard basis vector in RtS , and
tS = (N − d + 1)m∗. Define al = eTl ΠS,[0:N−d]Ψ

†
Sv to be

the lth entry of ΠS,[0:N−d]Ψ
†
Sv. Then, because ΠS,[0:N−d] =

[0tS×n ItS 0tS×dm∗ ], it follows that ∥ΠS,[0:N−d]Ψ
†
Sv∥∞ =

maxl∈1...tS |al|. Thus, for any κ ≥ 0, we have the bound:

P[ max
{l∈1...tS}

|al| ≥ κ] ≤
tS∑
l=1

P[|al| ≥ κ]. (63)

We bound terms on the right-hand side by invoking standard
concentration results. For compactness, let ΠS, = ΠS,[0:N−d].
Because v ∼ N (0, σ2I), we have al ∼ N (0, σ2

l ), where

σ2
l = σ2eTl ΠSΨ

†
S(ΠSΨ

†
S)

Tel ≤ σ2λmax(ΠSΨ
†
S(ΠSΨ

†
S)

T)

= σ2∥ΠS(Ψ
T
SΨS)

†ΠT
S∥2

≤ σ2∥Π̃S(Ψ
T
SΨS)

†Π̃
T

S∥2
≤ σ2/(Tcmin). (64)

where Π̃S = [In+tS 0(n+tS)×dm∗ ]. The second inequality
follows from interlacing property of singular values. The final
inequality is showed in the proof of Theorem 6.

Since al is Gaussian, from [31, page 22] and (64), we have
P[|zl| ≥ κ] ≤ exp(−κ2/(2σ2

l )) ≤ exp(−κ2Tcmin/(2σ
2)).

Substituting this inequality in (65), we find that

P[ max
l∈1...tS

|zl| ≥ κ] ≤ exp

(
log(tS)−

κ2Tcmin

2σ2

)
. (65)
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The result follows by letting κ = σ/
√
cmin(

√
2 log(tS)/T+δ)

and simplifying terms in the exponential term. □

Lemma 13. Let p ∼ N (0,Σ), where Σ ∈ Rl×l is a positive
definite matrix. Then, P[∥p∥2 ≥ t] ≤ 5l exp(−t2/(8∥Σ∥2)).
Furthermore, ∥p∥2 ≤ 4

√
∥Σ∥2l + 2

√
∥Σ∥2 log(1/δ) with

probability at least 1− δ for δ ∈ (0, 1).

Proof: See [38, Lemma 8.2 and Theorem 8.3]. □

REFERENCES

[1] M. Ghorbaniparvar. Survey on forced oscillations in power system.
Journal of Modern Power Systems & Clean Energy, 5(5):671–682, 2017.

[2] B. Wang and K. Sun. Location methods of oscillation sources in power
systems: a survey. Journal of Modern Power Systems & Clean Energy,
5(2):151–159, 2017.

[3] T. Huang. et al. A synchrophasor data-driven method for forced
oscillation localization under resonance conditions. IEEE Transactions
on Power Systems, 35(5):3927–3939, 2020.

[4] S. C. Chevalier, V. Petr, and K. Turitsyn. Using effective generator
impedance for forced oscillation source location. IEEE Transactions on
Power Systems, 33(6):6264–6277, 2018.

[5] S. Maslennikov, B. Wang, Q. Zhang, F. Ma, X. Luo, K. Sun, and
E. Litvinov. A test cases library for methods locating the sources of
sustained oscillations. In 2016 IEEE Power and Energy Society General
Meeting, pages 1–5. 2016.

[6] K. Lounici, M. Pontil, S. Van De Geer, and A. B. Tsybakov. Oracle
inequalities and optimal inference under group sparsity. The Annals of
Statistics, 39(4):2164 – 2204, 2011.

[7] N. Simon and R. Tibshirani. Standardization and the group LASSO
penalty. Statistica Sinica, 22(3):983–1001, 2012.

[8] Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group
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