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Abstract—Power systems are prone to a variety of events (e.g.
line trips and generation loss) and real-time identification of such
events is crucial in terms of situational awareness, reliability, and
security. Using measurements from multiple synchrophasors, i.e.,
phasor measurement units (PMUs), we propose to identify events
by extracting features based on modal dynamics. We combine such
traditional physics-based feature extraction methods with machine
learning to distinguish different event types. Including all measure-
ment channels at each PMU allows exploiting diverse features but
also requires learning classification models over a high-dimensional
space. To address this issue, various feature selection methods
are implemented to choose the best subset of features. Using the
obtained subset of features, we investigate the performance of two
well-known classification models, namely, logistic regression (LR)
and support vector machines (SVM) to identify generation loss
and line trip events in two datasets. The first dataset is obtained
from simulated generation loss and line trip events in the Texas
2000-bus synthetic grid. The second is a proprietary dataset with
labeled events obtained from a large utility in the USA involving
measurements from nearly 500 PMUs. Our results indicate that the
proposed framework is promising for identifying the two types of
events.

Index Terms—Data-driven filter methods, event identification,
machine learning, mode decomposition, phasor measurement
units.

1. INTRODUCTION

IVEN the increased penetration of intermittent renewable
G energy sources (e.g., solar and wind) as well as unconven-
tional loads (e.g. electric vehicles) in the grid, real-time moni-
toring of system operating conditions has become more vital to
ensure system reliability, stability, security, and resilience. Real-
time detection and identification of events enhances situational
awareness and assists system operators in quickly identifying
events and taking suitable remedial control actions to avert
disturbances in a timely manner [1].
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The problem of event detection—i.e., deciding whether an
event has occurred—has been well studied in the literature [2],
[3], [4]. The problem of event identification—deciding which
type of event has occured—is more challenging, due to the
fact that power systems are inherently nonlinear with complex
spatial-temporal dependencies. Thus, it is difficult to develop
accurate and sufficiently low order dynamical models that can
be used to identify each distinct event [5]. Hence, in this paper
we merely focus on the event identification problem.

Prior research in the context of real-time identification of
events in power grids can be categorized into two main ap-
proaches, namely model-based and data-driven. Model-based
methods (see e.g., [6], [7], [8], [9]) involve modeling of power
system components and estimation of the system states. The
performance of such methods highly depends on the accuracy
of dynamic models and estimated states of the system which in
turn limits their implementation for real world problems.

Data-driven methods have received increased attention,
mainly due to the growing penetration of phasor measurement
units (PMUs) in the electric grid which can help address situa-
tional awareness challenges. PMUs provide time-synchronized
current and voltage phasor measurements across the grid at high
sampling rates thereby allowing operators to capture system
dynamics with good precision and fidelity [10].

Data-driven approaches for event identification in the liter-
ature can be broadly categorized into unsupervised and su-
pervised approaches. The main difference between the two
approaches is that the latter uses labeled data while the former
does not. The main disadvantage of unsupervised methods (see,
for example, [3], [11], [12], [13], [14]) is that, although they
can distinguish between clusters of events, they do not possess
the ground truth to associate each cluster with its real-world
meaning. Furthermore, when there is access to even a small
amount of labeled data, supervised learning has been shown to
perform better than unsupervised learning methods [3], [15].
For these reasons, in this paper, we focus on the supervised
setting to exploit the available labels in our dataset for the event
classification task.

Available literature in the supervised setting for event iden-
tification can be further divided into two subgroups depending
on whether they rely on the physics of the system to process
the PMU data or not. 1) Physics-based signal processing meth-
ods [10], [16], [17] such as modal analysis for feature extraction
can be directly applied to PMU measurements to identify events.
The key idea in such approaches, often referred to as mode
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Step 1: Mode Decomposition

Step 2: Feature Engineering
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Step 3: Classification

Constructing the feature vector of event j, ¢; € R4

(i) Remove the redundant modal information present in
the complex conjugate modes (p' = p/2)

(ii) Keep the residues of m’out of m PMUs with the
largest residue magnitudes
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Fig. 1. Overview of the proposed event identification framework.

decomposition, is to identify system events by thresholding
the coefficients of some basis functions. However, due to the
diversity of power system events, choosing proper thresholds
for different scenarios is not an easy task. Another example
of physics-based feature extraction method is [18] where the
low-dimensional subspace spanned by the dominant singular
vectors of a PMU data matrix is used to characterize an event.
The intuition is that similar events would produce data in similar
subspaces; the average subspace angle is used to quantify this
similarity. Although the proposed approach seems to be promis-
ing in identifying different types of events, it requires a large
number of labeled events to construct the dictionary of events
corresponding to varying operation conditions and different
types of events. 2) Event identification methods such as [11],
[19] extract model-free features from PMU data and classify
various types of events based on the similarity of the extracted
features. For instance, [11], [19] use the PMU time series data to
construct a minimum volume enclosing ellipsoid (MVEE) and
then properties of this ellipsoid such as volume, rate of change
of the volume, etc., are used to identify different types of events.
However, the high computational time of the such methods limits
their efficiency for real-time application [20]. Within the same
category, machine learning (ML) based methods [21], [22], [23],
[24], [25], [26], [27], [28], [29] either use time series PMU data
or their pruned version (see, for example, [27]) and feed them
into a machine learning classification model to identify various
types of events.! The main limitations to these approaches
can be summarized as follows: a) such models require a large
number of labeled events to construct an effective classification
model [22], [26], [27], [28], b) the learned classifiers may not
have clear physical interpretations [22], [26], [27], [29], and ¢)
the effectiveness of some of these methods in identifying events
from real-world PMU data has not been investigated (e.g., [27]).

We introduce a framework that combines several of the above
ideas by exploiting the knowledge of the physics of the system
to extract features, and subsequently apply ML techniques to
produce a robust classifier from limited but feature-rich training
data. Our key contributions are

'Due to the space limitation, we are not covering the details of these ap-
proaches.

- e e e e e o e e e e = o = =

e Characterizing events based on a set of physically in-
terpretable features (i.e., angular frequencies, damping
factors and the residues) obtained from modal analysis of
various spatio-temporally correlated PMU measurements.

e Using a well-known approach in machine learning, called
bootstrapping, to address the problem of the small number
of labeled samples.

® Learning a set of robust classification models which can
identify generation loss and line trip events in both real
and synthetic datasets.

An overview of the proposed framework is shown in Fig. 1.
In Step 1, using the fact that temporal effects in a power system
event are driven by the interacting dynamics of the system com-
ponents, we use mode decomposition to extract features. Mode
decomposition characterizes each event as a set of features:
angular frequencies, damping factors, and the corresponding
residues. However, extracting features using all channels of
PMU measurements (magnitudes and angles for positive se-
quence voltages and currents, and frequency) across multiple
PMUs will inevitably lead to a high-dimensional feature set,
and thus, a key question is to determine which subset of these
features can guarantee accurate classification performance.

Step 2 uses filter methods to select features so as to avoid
overfitting while ensuring that events can be distinguished by
the same set of features. Since filter methods, in contrast with
wrapper and embedded methods, are independent from classi-
fication models [30], they are computationally inexpensive and
are more efficient for real time applications.

Finally, in Step 3, a classification model distinguishes gener-
ation loss and line trip events based on the extracted features.
We test two classification models: logistic regression (LR) and
support vector machine (SVM) with radial basis function (RBF).

We use two datasets, one synthetic and one real, to evaluate
the performance of our framework.

To highlight the value of using multiple PMU channels and
the combination of physics-based and data-driven methods in
our proposed approach, we make a comparison with a well
established event identification method based on the work of
Li et al. [18]. As detailed in Section V, our results on both real
and simulated datasets indicate that the proposed framework is
promising for identifying the two types of events.
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The remainder of the paper is organized as follows. Sec-
tion II briefly explains modal analysis and MPM. The proposed
framework for feature extraction and feature selection from
time series PMU data are presented in Section III. Section IV
describes the validation methodology which is used to evaluate
the performance of models based on different feature selection
techniques. In Section V, we illustrate the validity of the pro-
posed framework. Finally, Section VI concludes the paper.

II. PROBLEM SETUP

The first step in identifying a system event from PMU data
is to extract the relevant features from the data stream. Due
to the high sampling rate of the PMU data, one could plug
in the raw data into a machine learning model. However, it is
advantageous to use a set of delineating features that are likely
to contain information regarding the event type (henceforth
referred to as event class). Using the fact that temporal effects
in a power system are driven by the interacting dynamics of
system components, we propose to use mode decomposition as
the framework with which to extract features. More specifically,
we assume that each PMU data stream after an event consists of
a superposition of a small number of dominant dynamic modes.
Thus, the features will be the frequency and damping ratio of
these modes, as well as the residual coefficients indicating the
quantity of each mode present in each data stream.

Several modal analysis techniques such as MPM, Prony anal-
ysis and dynamic mode decomposition [31], [32] have been
proposed in literature. Relying on earlier observations that MPM
1s more robust to noise relative to the above mentioned methods,
we will use MPM as the mode decomposition technique. In gen-
eral, every PMU has multiple measurement channels, including
positive sequence voltage magnitude (VPM) and corresponding
angle (VPA), positive sequence current magnitude (IPM), and
corresponding angle (IPA), and frequency (F). Furthermore,
multiple PMUs across the grid capture the dynamic response
of the system after an event through different measurement
channels. Therefore, for a chosen measurement channel, we will
use the MSMPM to obtain one optimum set of mode estimates
which can accurately represent the underlying dynamic behavior
of the system [33].

Oftentimes only a small number of modes are triggered after
an event. In a noise-free system, it is fairly easy to extract these
modes. However, in a noisy system, there exist many other low
energy modes that are more likely related to the minor noise
variations and can make the classification of the events harder.
To ensure accurate classifiers we use the low rank approximation
of the Hankel matrix constructed from PMU measurements
which allows (i) reducing the effect of noise on the accuracy of
mode estimation, and (ii) extracting a small number of dominant
modes from noisy PMU measurements.

So in Section II-A, we briefly explain modal analysis as a
method to capture signatures of an event. Then we discuss the
background and theory behind single signal and multi-signal
MPM in subsection II-B. Finally, in Section II-C, we discuss
the low rank approximation of the Hankel matrix obtained
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from PMU measurements to estimate the sufficient number of
dominant modes.

A. Modal Representation of PMU Measurements

Consider an electric grid with m installed PMUs. Recall that
each PMU has multiple channels through which we can obtain
different types of measurements relative to the bus where the
PMU is installed. For the sake of clarity, we focus on one channel
(e.g., VPM).Lety;(n) e R,i=1,...,m,andn =0,...,N —
1, denote the VPM measurement obtained from " PMU at
sample n with a sampling period of 7. Note that we use the
detrended PMU measurements prior to any modal analysis to en-
sure that the identified modes are associated with the oscillations
after a contingency rather than the noise in the PMU measure-
ments. The trend in the time series data refers to the change in
the mean over time [34]. Let Y ) = [§;(0), ..., 5:(N — 1)]T
RN represent a time series PMU data corresponding to the
i™ PMU and X = [2(0),...,2(N — 1)]T € R represents a
vector of sample number. In order to obtain the detrended PMU
measurements, we first find a simple linear least-squares fit to
the time series data by solving the following regression problem:

N-1
Join 3 (Gi(n) = 5i(n)*, i=1..m (D)

n=0

where §;(n) = wo + wyz(n) is the predicted value of each PMU
measurement. To obtain the detrended values, denoted as y;(n),
we remove the result of the the linear least-squares fit from the
original PMU measurements, i.e., y;(n) = g;(n) — g;(n), n =
0,...,N—1.

We assume that y; (n) after an event consists of a superposition
of p common damped sinusoidal modes as

p .
yi(n) = > R x (Z)" +e(n), i=1,....m ()
k=1

where ¢;(n) represents the noise in the i PMU measurement
and Z, is the k" mode associated with the event. We represent
each mode as Zj, = exp(A;Ts) where A, = 0y, £ jwy, and oy,
and wy, are the damping factor and angular frequency of the
k™ mode, respectively. Furthermore, residue R,(;) corresponding
to each mode k and i PMU measurement is defined by its
magnitude |R§;)| and angle 0,(;).

Our goal is to distinguish between various types of events
by finding the common modes that are captured by all the
PMUs and best represent the underlying dynamical behavior
of the system. Thus, we are interested in finding a single set
of modes (i.e., {Z;}}_,) that capture the dynamical behavior
of the all the m PMUs simultaneously rather than a different
set of modes for each PMU measurement stream. Note that the
corresponding residue of each mode will be distinct for each
PMU measurement. )

Let YO = [1;(0),...,5(N —1)T e RY, RO = [R
RO € RP,and Z = [Zy, ..., Z,)T. We define Vz(N) €
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RP*N a5 the Vandermonde matrix of the modes, Z, as

1 7 zZN-1

1 Zy - zZN
Va(N)=|. . . : 3)

1 Z, ZN-1

px N

Then (2), in the absence of noise can be written in compact form
as

Vz(N)"R® =y )

Once the modes, Z, are estimated, the corresponding residues
R for each PMU measurement stream, i = 1, ..., m, can be
obtained by solving (4).

B. Multi-Signal Matrix Pencil Method

As mentioned earlier, considering the robustness of MPM
against noise, it will be used as the main tool to estimate the
parameters of (2). The MPM involves constructing the Hankel
matrix over a block of N samples obtained from the i PMU as

v:(0) yi(1) yi(L)
2o = in) yz‘@) yi(L.'i' 1) )
yi(N—-L—-1) vy (N—-1L) yi(N —1)

(N—L)x(L+1)

where L is the pencil parameter. We choose L = N/2, since it is
known that this will result in the best performance of the MPM
in a noisy environment (i.e., the attainment of a variance close
to the Cramer-Rao bound) [33].

Using (5), let 7—[51) and 7—[1(-2) be the matrices consisting of
the first and last L columns of H;, respectively. In a noise free
setting, as a consequence of (2), we can write ’HEU and 7—[52) as

HY = V(N - L)TRE V(L) (62)
HP = V(N - L)"RYZp V(L) (6b)
where
Zp = diag(Z1, Zs, ..., Z,), %)
Ry = diag(R\", RY,...,RY). ®)

Then, the matrix pencil is defined as
HP 1Y = V(N — L)TRY (Zp — AV (L) (9)

where I € RP*P is the identity matrix. Note that both R%)
and Zp are full rank p x p diagonal matrices. Further, if p <
L < N —peachof Vz(N — L)T and Vz(L) has rank p. Then,
from (9), if A = Z, for any k = 1,...,p, then the k™ row of
Z p — AI becomes zero, and hence the rank of 7—[2(-2) — )»’Hgl) is
reduced by one. Therefore, the parameters { Zj }}_, are exactly

the values of A where 7—[52) - )(Hgl) has a reduced rank [35].
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This is equivalent to the generalized eigenvalues of the pair
(HE, 1),

The matrix pencil method described above, which focuses
on the measurements obtained from a single PMU, may be
extended to find a single set of modes which best represent
the underlying dynamical behavior of a set of measurements
obtained from multiple PMUs. This is done by vertically con-
catenating Hankel matrices H, . . ., H,, corresponding to each
PMU measurements over a block of N samples as

Ha

H-= H, (10)

[ Hm

——
m(N—L)x(L+1)

and the same method which is used for a single measurement
stream (see (6) to (9)) is applied to the matrix H to identify a set
of modes {Z, };,_, . Finally, we find the residues corresponding
to each mode % and i PMU measurements by solving (4).

C. Model Order Approximation

Following the assumption that PMU measurements after an
event can be represented as a superposition of p dynamic modes
and considering the fact that only a small number of modes
are enough to represent the underlying dynamical behavior
of the system (p < L), one can show that rank(H) = p for
noise free PMU measurements [36]. However, in practice PMU
measurements are noisy and rank(H) > p. In this case, for a
given p, we can partly eliminate the noise by using the singular
value decomposition (SVD) to find the rank p approximation of
H, denoted as H,,. The approximation H,, results from keeping
the p largest singular values of H (the remaining singular values
arereplaced by zero). Using H,, in MPM also provides minimum
variance in the estimation of modes in noise-contaminated PMU
measurements (we refer readers to [37], [38] for a comprehen-
sive study of MPM performance in the presence of noise in the
PMU measurements).

In practice, however, the parameter p is not known. A reliable
way to approximate p in (2) is to find the best p over all the events
in our dataset. To this end, we define the rank p approximation
error of H as

o IH—H,

11
P T HE[s (b

where ||H|| ¢ is the Frobenius norm of the matrix H. Further-
more, to verify that the estimated value of parameter p is suffi-
cient for capturing the underlying dynamics of the system, we
evaluate the reconstruction error of each PMU measurements,
denoted as F;, 7 =1,...,m, as

_ YO -y @y

; : (12)
Y@
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where Y () is the original measurement stream and Y@ is the
reconstructed one based on the mode decomposition.

Using the equations (11) and (12), the value of the parameter p
is determined such that it ensures both £, and E; (obtained from
various PMU channels) are less than a predefined threshold for
all the events in the dataset. Throughout the paper, we consider
that this threshold is 1%.

III. FEATURE ENGINEERING OF PMU TIME SERIES DATA

To characterize the dynamic response of the power system
after an event, modal analysis is conducted on each PMU
channel (i.e., VPM, VPA, IPM, IPA, and F) obtained from
multiple locations across the grid. For instance, using VPM
channel measurements from m PMUs, we obtain a set of features
consisting of p angular frequencies, p damping factors and the
corresponding magnitude and angle of the residues for each of
the m PMUs and p modes. Although mode decomposition is
meant to focus on only the physically meaningful features of
the dataset, there are still simply too many of them (m ~ 500
and p = 6 in our dataset). To avoid overfitting while ensuring
that multiple events can be distinguished by the same set of
features, a necessary pre-processing step is to select relevant and
most informative features. To this end, we propose a two-step
approach to reduce the features into a more manageable number.
In the first step, we select a subset of features by removing
the redundant modal information present in the complex con-
jugate modes and eliminating the smallest residue magnitude
to construct a vector of features that characterizes the dynamic
response of the system after an event. The second step is to select
the most informative and relevant features using a filter method.
The details are provided in the following subsections.

A. Constructing the Feature Vector

As discussed in Section II, parameter p represents the number
of dominant modes in the PMU data streams and can be obtained
by finding the best rank p approximation of H. In general, these
modes can be real or complex conjugate pairs. In our dataset,
typically these modes include only complex conjugate pairs and
no real modes (i.e., p/2 complex conjugate pairs, yielding p
modes in total). In order to remove redundant modal information
present in the complex conjugate modes, we only keep one mode
from each pair. Thus, we keep only p’ = p/2 modes in the feature
vector for each event. However, for a small portion of the events,
modal analysis may result in a combination of real and complex
conjugate modes.

In that case, there is less redundancy among the p modes,
because each real mode is unique, but the number of extracted
features needs to be exactly the same as it is when all the modes
are complex conjugate pairs. To this end, we still extract p’ modes
even though this requires removing some of the modes. More
precisely, since the residue coefficients indicate the quantity
of each mode present in each PMU data steam, we sort the
modes based on their average residue across all the PMUs and
we choose p’ = p/2 modes with the largest average residues
to be included in the vector of features. (The average residue
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corresponding to the k™ mode is - >, |R,(j) |.) Based on
our simulation results, we have found that p = 6 and p’ = 3 is
sufficient to ensure the accuracy and robustness of the estimated
modes against noise (see Section V for more details).

Moreover, since only a small portion of the PMUs (m' < m)
capture the dynamic response of the system after an event, we
only keep the residues of m’ PMUs with the largest magnitudes
in the vector of features. Note that the m’ PMUs are not neces-
sarily the same PMUs for different events.

Using the VPM channel measurements obtained from multi-

ple PMUs, we define a row vector of features, Fypy, as follows:
Fvpm = [{wk:k: 1;"'7p/}a{gk:k: 13"'7p,}7
(RV|:i=1,....m k=1,...,p}

(09 i=1,...,m k=1,....p}] (13)

which consists of p’ angular frequencies, p’ damping factors
and the corresponding magnitude and angle of the residues for
each of the m’ PMUs (with the largest residue magnitudes) and
p' modes. To make a meaningful comparison of the features,
it is important to sort them consistently. We sort the modes
based on their average residue across all the m’ PMUs. In our
notation in (13), £ = 1 represents the mode with the largest
average residue and k = p’ represents the mode with the smallest
average residue. Moreover, for a given mode k, the residues for
different PMUs, ¢ = 1,...,m’, are sorted in a descending order
based on the magnitude of their residues, |R,(;)| and we use the

same order to sort the corresponding 9,(;’). Note that, for each
mode, we do not expect that the same PMU to always have the
largest residue. Thus, the same PMU could be represented using
a different index.

In a similar manner, we obtain the set of features correspond-
ing to other PMU channels, i.e., VPA, IPM, IPA, and F. Then
each event j can be described as a vector of features as

®; = [Fyem, Fyea, Fiem, Fiea, Fel"

where each F, s € {VPM, VPA, IPM, IPA, F} consists of the
modal analysis results corresponding to the selected PMU chan-
nel. Hence, assuming n.;, represents the number of channels at
a PMU that are used for modal analysis, each event j can be
described as a set of d features ¢; = [¢1, ..., ¢a]T € R, where
d = 2n.,(p" +m'p’). For instance, for m' = 25, p’ = 3, and
using n.;, = 5 channels, we obtain a total of d = 780 features.
When the number of labeled events is small (e.g., 70 labeled
events in our proprietary dataset) which is typically the case in
practice, a 780-dimensional feature set can be extremely large.

(14)

B. Feature Selection Using Filter Methods

Although there exist many different filter methods in the
literature [39], in this paper, rather than measuring the interde-
pendence among the features, we only focus on measuring the
dependence between features and the target variables to rank
the features and retain the top ranked ones. As the measure of
dependence, various statistical tests, including one-way analysis
of variance F-value test, sure independence screening, mutual
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Fig. 2. Overview of the feature selection step.

information, Pearson correlation, and Kendall correlation have
been used in literature [30]. Given that we are focusing on a clas-
sification setting, we are interested in determining the correlation
between numerical features and a categorical target variable.
To this end, we use F-value test (F) [40], sure independence
screening (S) [41], and mutual information (M) [42] to quantify
the correlation between features and the target variable. We
use the off-the-shelf packages in Python to estimate the mutual
information between discrete and continuous variables based on
the nearest neighbor method (see [42] for more details).

As detailed in III-A, each event j can be described as a set
of d features ¢; = [p1,...,¢a]" € R? and a label &; which
describes the class of the event (i.e., line trips and generation
loss events are labeled as O and 1, respectively). We define
our dataset, D = {¢;,&; };Vzl where N, is the total number of
labeled events. We use the Z-score to normalize our dataset [43].
Then we split the dataset into a training dataset with N samples
and a test dataset with V. samples, denoted as Dypin and Diegt,
respectively. In a standard filter method, we compute the corre-
lation of each feature y;, ¢ = 1,...,d and the target variable,
E=1[,....&,...,¢n,]T € {0,1}™ in the training dataset.
Then we sort the features based on their correlation measure
and then keep the d’ features with the highest correlation.

However, due to the small number of samples, we need a
more robust way of choosing the features. Therefore we will rely
on a well-known approach in machine learning, bootstrapping.
Bootstrapping is a technique of sampling with replacement
to create multiple datasets from the original dataset, thereby
selecting the most informative features with some degree of
statistical confidence. Note that the size of each bootstrapped
dataset is the same as the original dataset.

The proposed bootstrapping approach for feature selec-
tion: The overview of feature selection step is shown in Fig. 2.
The process begins by constructing B bootstrapped datasets,

denoted as Dt(rl;zn, b=1,...,B,, from the original training
dataset, Dy,in. For each bootstrapped dataset, we randomly
select Vi, events from the training dataset. Each event in the orig-
inal training dataset has an equal probability of being included in
abootstrapped dataset and can be included more than once or not
at all. In other words, for each bootstrapped dataset, we sample

from the original dataset with replacement. We define, 7

,  asthe
correlation measure of feature ; and target variable = over the
b™ bootstrap samples. In order to robustly find a subset features,

we compute the 95th percentile of the correlation measures of
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each feature over the B, bootstrapped datasets and select d’
features with the highest 95th percentiles. Using the selected d’

features, we obtain a reduced order training dataset, denoted as
/
train*

We will also use bootstrapping for the classification (see
Section IV). We have done extensive experiments without boot-
strapping which confirms the advantage of using it for both
feature selection as well as the classification. In the interest of
clarity, we did not include those results in this paper.

IV. EVENT CLASSIFICATION

The final step in our proposed framework for event identifica-
tion is to use the subset of features (as described in Section III)
to learn a classification model by finding decision boundaries
between various event classes in the feature space. With any ML
model, there is a tradeoff inherent in the choice of complexity of
the classification model. A simpler model may be more easily
interpreted and is less likely to encounter overfitting problems
whereas a more complex model may be more capable of uncov-
ering subtle characteristics of the underlying phenomena and
may thereby perform better. Therefore, to investigate the impact
of the model complexity on the accuracy of event classification,
two well-known classifiers, namely, LR and SVM with RBF ker-
nels are used to identify the two classes of events in our dataset
(we refer readers to [43] for details of the two classification
models). The LR is a relatively simple model compared to the
SVM with RBF kernels.

In order to validate the performance of each classification
model, we split the dataset into a training and a test datasets.
All the filter methods are implemented on the training dataset
to find the most relevant and informative subset of features
and obtain reduced order training and test datasets, denoted
as Dy, and D/, respectively. Due to the limited number of
labeled generation loss and line trip events, we again use the
bootstrap technique as a tool for assessing statistical accuracy.
Using bootstrap sampling helps to address the problem of limited
training samples and therefore justifies using the test data for
validation of specific parameters, namely, the number of features
to pick and the choice of the classification model.

Using the reduced order training dataset, Dy,,;,, we gener-

ate B, reduced order bootstrapped datasets, denoted as Dt’r(flfl,
b=1,...,B.tolearna classification model, C' ®) and classify
the events in the Dj,,. To evaluate the performance of a chosen
classifier (for example, LR), we use the area under curve (AUC)
of the receiver operator characteristic (ROC), which character-
izes the accuracy of the classification for various discrimination
thresholds [30]. (The discrimination threshold determines the
probability at which the positive class is chosen over the negative
class.) The ROC plot shows the relation between the true positive
rate and the false positive rate at various threshold settings. The
ROC AUC value is bounded between 0 and 1. The closer AUC
to 1, the classifier has a better ability to classify the events. To
quantify the accuracy of the learned classifier on the test dataset,
we compute the average AUC, and the corresponding 5th and
95th percentiles of the AUC values over all the bootstrapped

datasets. The aforementioned steps are summarized in Fig. 3.
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V. SIMULATION RESULTS

In order to evaluate the performance of the proposed frame-
work for event identification, two different datasets are consid-
ered in this study. The first one is obtained from the dynamic
simulation of line trip and generation loss events in the Texas
2000-bus synthetic grid [44] using the power system simulator
for engineering (PSSE). The second dataset is a proprietary
dataset with labeled generation loss and line trip events obtained
from a large utility in the USA involving measurements from
nearly 500 PMUs.

In the remainder of the section, we present our results for each
dataset including: (i) the sufficient number of distinct modes, p/,
using the measurements obtained from different PMU channels,
(i1) the reconstruction error of the PMU measurements using
modal information obtained from MSMPM,,, (iii) the perfor-
mance of LR and SVM in identifying the events using the subset
of features (as explained in Sections II and III), and (iv) we
compare the performance of our proposed approach with a well
established event identification method based on the work of Li
etal. [18].

A. Case 1: Event Classification With the Synthetic Dataset

In order to generate synthetic PMU data with labeled events,
we use the PSSE dynamic data of the the Texas 2000-bus
synthetic grid [45]. We allow the system to be in the normal
operation condition for 1 s. Then, we apply a line trip or genera-
tion loss at time ¢ = 1 and run the dynamic simulation to ¢ = 20
seconds. The simulation time step for dynamic simulations is
set to 0.0083 secs. In order to collect data at a rate of 30
sample/sec (PMU sampling rate), we record the measurements
at each 0.033/0.0083 = 4 time steps. We assume that 95 of the
500 kV buses (which are chosen randomly) across the grid are
equipped with PMU devices. We generate a total number of 800
events including 400 generation loss and 400 line trip events.
For each event class, 200 events are simulated under the normal
loading and 200 with 80% of normal loading. Since PSSE does
not have any channel to directly measure the branches currents,
only VPM, VPA, and F channels are used for extracting the
features from the PMU measurement. To capture the dynamic
response of the system, we use N = 300 samples after the exact
start of an event.

To evaluate the performance of the classification models, we
split our synthetic data into training and test datasets with 600
and 200 samples, respectively. The training dataset is used for
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Fig. 5. Envelope of the reconstruction error of all the PMU measurement
streams that are obtained from VPM channel after 800 events in our dataset.
Red, gray, and green lines represent the minimum, average and maximum
reconstruction error, respectively.

feature engineering and learning the models and the test dataset
is only used for evaluation and comparison of the models.

Using the VPM measurements obtained from 95 PMUs after
a line trip event, we construct the matrix H based on (5). In
Fig. 4, we illustrate the rank p approximation error of the matrix
H thatis given by (11). The matrix H is constructed over a block
of N = 300 samples after the exact start time of the event with
the pencil parameter of L = 150. Observe that if one chooses
a threshold of 1% for the approximation error, then we only
require p = 6 largest singular values; this is the case for all the
events in our synthetic dataset.

Fig. 5 illustrates the envelope of the reconstruction error of
all the PMU measurement streams (that are obtained from VPM
channel) in the synthetic dataset. The average reconstruction
error of the PMUs over all the events in our dataset is less than
1%. As detailed in the Section II-C, this implies that using p = 6
modes is sufficient for capturing the underlying dynamics of the
system after an event.

As discussed in Section III, to remove the redundant infor-
mation present in the complex conjugate modes, we use p’ = 3
distinct modes in the vector of features for each event. Further-
more, to determine the parameter m’, we use the normalized
residue for each PMU with respect to the one with the largest
magnitude and pick the smallest number of PMUs for which
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more than 95% of the PMUs are less than a certain threshold.
Based on this approach, we choose m' = 20 PMUs to capture
the most significant residues in our synthetic dataset. Therefore,
considering p’ = 3, m’ = 20, and n., = 3, each event in the
synthetic dataset is characterized using d = 378 features. Then,
we generate B, = 200 bootstrapped datasets from the original
training dataset to retain the features with the highest correlation.

Fig. 6 shows the performance of the classification models,
namely, (a) LR, and (b) SVM in terms of average AUC over B, =
200 bootstrapped datasets with respect to the number of selected
features. The selected features are the ones with the highest 95th
percentiles obtained from various correlation measures (i.e., F,
S, and M as detailed in Section III-B). To further elaborate the
performance of each classifier, using a subset of 6 to 15 features
obtained from various correlation measures, the average AUC
score as well its corresponding 5th and 95th confidence intervals
are shown in Fig. 7.

Based on the simulation results, using the mutual information
as the correlation measure to select a subset of features will
result in a better performance of both classifiers. This is due
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Performance of the classification models (a) LR, and (b) SVM in terms of the average AUC with respect to the number of selected features in the synthetic
dataset. The error bars represent the 5th and 95th percentiles of the AUC scores.

to the fact that F-value and sure independence screening only
consider the linear dependence of the features with the target
variable whereas mutual information can also capture non-linear
dependencies. The selected features include the angular fre-
quency and first few residue magnitudes corresponding to the
first mode of the VPM, VPA, and F measurement channels.
Furthermore, it is clear that SVM with RBF kernel has a slightly
better performance than LR in identifying the two classes of
the events in our synthetic dataset. It is also clear that using a
subset of about 10 features obtained from mutual information
will result in the best performance of both classifiers. The error
bars represent the Sth and 95th percentile of the AUC scores over
B. bootstrapped datasets and are an indication of the robustness
of each learned classifier.

B. Case 2: Event Classification With a Proprietary Datset

To further investigate the performance of our proposed frame-
work, we use a proprietary PMU data obtained from a large
utility in the USA involving measurements from nearly 500
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PMUs. A total of 70 labeled events including 23 generation loss
and 47 line trip events are used in this study. To characterize the
dynamic response of the system after an event, VPM, VPA, IPM,
IPA, and F measurement channels from multiple PMUs over a
block of N = 300 samples (after the exact start time of the event)
are used for extracting the features as discussed in Section II. The
envelope of the reconstruction error of all the PMU measurement
streams (that are obtained from VPM channel) in the synthetic
dataset. Fig. 10 illustrates that using p = 6 modes, the average
reconstruction error of the PMUs over all the events in our real
dataset is less than 1%. Using the same approach that is used in
case 1, the parameters p’ = 3 and m’ = 25 are used to construct
the vector of features for each event, thereby obtaining a total
number of d = 780 features.

A total number of 56 events are included in the training
dataset. The same number of Bs; = 200 bootstrapped datasets
are used for feature selection and the final evaluation of the
models. The performance of each classifier in terms of the
average AUC scores are shown in Fig. 8. Further, the 5th and
95th percentiles of the AUC scores over B; = 200 bootstrapped
datasets are shown in Fig. 9.
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Fig. 10. Envelope of the reconstruction error of all the PMU measurement
streams that are obtained from VPM channel after 70 events in our real datasets.
Red, gray, and green lines represent the minimum, average and maximum
reconstruction error, respectively.

The best performance of the both classifiers are obtained
using a subset of 11 features that are selected based on
the mutual information. An interesting observation is that in
both case studies, the angular frequency and first few residue
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TABLE I
COMPARISON OF THE CONFUSION MATRICES FOR THE REAL DATASET WITH 23 GENERATION LOSS (GL) AND 47 LINE TRIP (LT) EVENTS AND THE SYNTHETIC
DATASET WITH 400 GL AND 400 LT EVENTS

Based on low-dimensional Our Proposed Method
subspace [18] Dataset
Parameters in [18] Tuned Parameters VPm channel All channels
LT [ GL LT [ GL LT [ GL LT [ GL
LT 63.83 % 36.17 % 72.35 % 27.65 % 78.72 % 21.27% 80.85 % 19.15%
(30/47) (17/47) (34/47) (13/47) (37/147) (10/47) (38/47) (9/47) Real
GL 39.13 % 60.87 % 21.73% 78.27% 26.01 % 73.99 % 21.73% 78.27%
(9/23) (14/23) (5/23) (18/23) (6/23) (17/23) (5/23) (18/23)
LT 80.25 % 19.75 % 89.25 % 10.75 % 88.5 % 11.5 % 90.25 % 9.75 %
(321/400)  (79/400) (357/400)  (43/400) (354/400) (46/400) (361/400)  (39/400) Synthetic
GL 20.75 % 79.25 % 15.5 % 84.5 % 16.5 % 83.5 % 12.75 % 87.25 %
(83/400) (317/400) (62/400)  (338/400) (66/400)  (334/400) (51/400)  (349/400)

magnitudes corresponding to the first mode of VPM, VPA and F
measurement channels are included in the subset of the selected
features obtained from mutual information.

Compared to the synthetic dataset, the performance of the
classification models in the real dataset have lower accuracies
with wider confidence intervals. Possible reasons for this include
(i) the limited number of events (70 labeled events), and (ii)
variable system operating conditions as the data was collected
over 3 years. Furthermore, in contrast to our simulation results
for the synthetic dataset, the learned LR model demonstrates
a slightly better performance compared to the learned SVM
with RBF kernels model. This is most likely because SVM
significantly increases the model complexity and given the small
number of samples, is overfitting the training dataset and thus,
will not perform as well on the test data [43].

In terms of the time needed to identify an event using our
proposed approach, once an event is detected, we only need
to extract the features corresponding to various PMU channels
using the multi-signal MPM and feed the selected subset of
features into our learned model. Based on our simulations, this
procedure takes about 1.1 s. The simulations are conducted on
a computer with 8 GB RAM and Intel Core i5 processor with
1.6 GHz CPU.

C. Comparison With Prior Work Based on Low-Dimensional
Subspace of PMU data [18]

To highlight the value of using multiple PMU channels and
the combination of physics-based and data-driven methods in
our proposed approach, we make a comparison with a well-
established event identification method. This method was intro-
duced in [18] and is based on low-dimensional subspace char-
acterization. In the following, we briefly explain the proposed
approach in [18].

Let Y € R™*N be the data matrix which contains the PMU
measurements from m PMUs over a block of NV samples. The
main idea in [18] is that events can be identified by the low-
dimensional row subspace spanned by the dominant singular
vectors of Y, denoted as V., which consists of the right singular
vectors associated with the r largest singular values. For the task
of event identification, a dictionary is constructed consisting of
these V. matrices from labeled event data. The type of an event
in the test dataset can be identified through comparing V,. with
the constructed dictionary. More specifically, the subspace angle
between the span of their dominant right singular vectors is used
to quantify this similarity.

Note that the choice of the parameters r (number of dominant
singular values) and N (number of samples) in [18] is driven
based on their dataset. In our implementation, in addition to us-
ing the original parameters in [ 18], we also tuned the parameters
to improve the performance in our datasets. Based on our simula-
tions, we choose r = 5and N = 300. Furthermore, the proposed
approach in [18] uses a single PMU channel. Hence, we only
use the VPm measurements to construct the PMU data matrix.

For the sake of comparison, we consider two scenarios in
our proposed approach: in the first scenario we only use VPm
channel measurements and in the second one, we use all the
PMU channels to construct the vector of features.

To make a fair comparison, we consider a simple K-fold cross
validation technique to compare the performance of each method
in both real and synthetic datasets. We split each dataset into 5
folds and use 4 folds as the training dataset and the remaining
fold as the test dataset. Hence, we obtain 5 different combi-
nation of training and test datasets and for each combination,
we calculate a confusion matrix by combining all the test data
(see Table I) to evaluate the performance of the methods. Note
that as discussed above, we use the LR and SVM classifiers to
identify the events in the real and synthetic dataset, respectively.
Our simulations indicate that using a single PMU channel and
tuning the parameters in [ 18], the two methods have comparable
performances. However, due to the fact that different PMU
channels are able to capture the dynamic response of the system
after an event, using all the PMU channels in our proposed
approach results in a slightly better performance in identifying
the events in both real and synthetic datasets.

VI. CONCLUDING REMARKS

We have proposed a novel machine learning framework for
event identification based on extracted features obtained from
mode decomposition of PMU measurements. Considering the
high-dimensionality of the extracted features, we have consid-
ered different data-driven filter methods to choose a subset of
features. We have investigated the performance of the two clas-
sification models (LR and SVM) in identifying the generation
loss and line trip events for both synthetic and a proprietary real
datasets. It is worth noting that the reason for choosing only
two types of events was the limited number of labeled events in
our proprietary dataset. However, if the data for more than two
types of event is available, the proposed approach can be easily
extended to a multi-class classification problem by splitting it
into a multiple binary classification problem.
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Our simulation results indicate that using mutual information
for feature selection results in better performance of the classi-
fiers compared to the other filter methods that we tested, in both
real and synthetic datasets. This is due to the fact that mutual
information can capture the nonlinear dependencies between the
features and the target variable. Our analysis also illustrates that
bootstrapping can overcome the limitation of the small number
of labeled events. However, when labeled data are limited, a
less complex model such as LR can assure better accuracy
than more complex models such as SVM. We have also shown
that a relatively small number (10-15) of features is typically
enough to achieve a good classification performance. While filter
methods provide a streamlined way to identify the key features,
in the future, we will explore alternative feature selection tech-
niques such as least absolute shrinkage and selection operator
(LASSO). The proprietary dataset used in this study suggests
that, in practice, a very small number of events are labeled when
compared to the total number of events. A possible solution to
overcome this limitation is to incorporate the real labeled events
in combination with the synthetic labeled events obtained by
running PSSE simulations on the same system model. Building
on this, an interesting potential application of the proposed
methodology is to the semi-supervised setting wherein labeled
events are combined with unlabeled data streams in which an
event has been detected, but for which the class of event is
unknown, to improve classifier.
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