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Abstract—Power systems are prone to a variety of events (e.g.
line trips and generation loss) and real-time identification of such
events is crucial in terms of situational awareness, reliability, and
security. Using measurements from multiple synchrophasors, i.e.,
phasor measurement units (PMUs), we propose to identify events
by extracting features based on modal dynamics. We combine such
traditional physics-based feature extraction methods with machine
learning to distinguish different event types. Including all measure-
ment channels at each PMU allows exploiting diverse features but
also requires learning classification models over a high-dimensional
space. To address this issue, various feature selection methods
are implemented to choose the best subset of features. Using the
obtained subset of features, we investigate the performance of two
well-known classification models, namely, logistic regression (LR)
and support vector machines (SVM) to identify generation loss
and line trip events in two datasets. The first dataset is obtained
from simulated generation loss and line trip events in the Texas
2000-bus synthetic grid. The second is a proprietary dataset with
labeled events obtained from a large utility in the USA involving
measurements from nearly 500 PMUs. Our results indicate that the
proposed framework is promising for identifying the two types of
events.

Index Terms—Data-driven filter methods, event identification,
machine learning, mode decomposition, phasor measurement
units.

I. INTRODUCTION

G
IVEN the increased penetration of intermittent renewable

energy sources (e.g., solar and wind) as well as unconven-

tional loads (e.g. electric vehicles) in the grid, real-time moni-

toring of system operating conditions has become more vital to

ensure system reliability, stability, security, and resilience. Real-

time detection and identification of events enhances situational

awareness and assists system operators in quickly identifying

events and taking suitable remedial control actions to avert

disturbances in a timely manner [1].
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The problem of event detection—i.e., deciding whether an

event has occurred—has been well studied in the literature [2],

[3], [4]. The problem of event identification—deciding which

type of event has occured—is more challenging, due to the

fact that power systems are inherently nonlinear with complex

spatial-temporal dependencies. Thus, it is difficult to develop

accurate and sufficiently low order dynamical models that can

be used to identify each distinct event [5]. Hence, in this paper

we merely focus on the event identification problem.

Prior research in the context of real-time identification of

events in power grids can be categorized into two main ap-

proaches, namely model-based and data-driven. Model-based

methods (see e.g., [6], [7], [8], [9]) involve modeling of power

system components and estimation of the system states. The

performance of such methods highly depends on the accuracy

of dynamic models and estimated states of the system which in

turn limits their implementation for real world problems.

Data-driven methods have received increased attention,

mainly due to the growing penetration of phasor measurement

units (PMUs) in the electric grid which can help address situa-

tional awareness challenges. PMUs provide time-synchronized

current and voltage phasor measurements across the grid at high

sampling rates thereby allowing operators to capture system

dynamics with good precision and fidelity [10].

Data-driven approaches for event identification in the liter-

ature can be broadly categorized into unsupervised and su-

pervised approaches. The main difference between the two

approaches is that the latter uses labeled data while the former

does not. The main disadvantage of unsupervised methods (see,

for example, [3], [11], [12], [13], [14]) is that, although they

can distinguish between clusters of events, they do not possess

the ground truth to associate each cluster with its real-world

meaning. Furthermore, when there is access to even a small

amount of labeled data, supervised learning has been shown to

perform better than unsupervised learning methods [3], [15].

For these reasons, in this paper, we focus on the supervised

setting to exploit the available labels in our dataset for the event

classification task.

Available literature in the supervised setting for event iden-

tification can be further divided into two subgroups depending

on whether they rely on the physics of the system to process

the PMU data or not. 1) Physics-based signal processing meth-

ods [10], [16], [17] such as modal analysis for feature extraction

can be directly applied to PMU measurements to identify events.

The key idea in such approaches, often referred to as mode

0885-8950 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ASU Library. Downloaded on September 04,2023 at 21:07:57 UTC from IEEE Xplore.  Restrictions apply. 



4166 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 38, NO. 5, SEPTEMBER 2023

Fig. 1. Overview of the proposed event identification framework.

decomposition, is to identify system events by thresholding

the coefficients of some basis functions. However, due to the

diversity of power system events, choosing proper thresholds

for different scenarios is not an easy task. Another example

of physics-based feature extraction method is [18] where the

low-dimensional subspace spanned by the dominant singular

vectors of a PMU data matrix is used to characterize an event.

The intuition is that similar events would produce data in similar

subspaces; the average subspace angle is used to quantify this

similarity. Although the proposed approach seems to be promis-

ing in identifying different types of events, it requires a large

number of labeled events to construct the dictionary of events

corresponding to varying operation conditions and different

types of events. 2) Event identification methods such as [11],

[19] extract model-free features from PMU data and classify

various types of events based on the similarity of the extracted

features. For instance, [11], [19] use the PMU time series data to

construct a minimum volume enclosing ellipsoid (MVEE) and

then properties of this ellipsoid such as volume, rate of change

of the volume, etc., are used to identify different types of events.

However, the high computational time of the such methods limits

their efficiency for real-time application [20]. Within the same

category, machine learning (ML) based methods [21], [22], [23],

[24], [25], [26], [27], [28], [29] either use time series PMU data

or their pruned version (see, for example, [27]) and feed them

into a machine learning classification model to identify various

types of events.1 The main limitations to these approaches

can be summarized as follows: a) such models require a large

number of labeled events to construct an effective classification

model [22], [26], [27], [28], b) the learned classifiers may not

have clear physical interpretations [22], [26], [27], [29], and c)

the effectiveness of some of these methods in identifying events

from real-world PMU data has not been investigated (e.g., [27]).

We introduce a framework that combines several of the above

ideas by exploiting the knowledge of the physics of the system

to extract features, and subsequently apply ML techniques to

produce a robust classifier from limited but feature-rich training

data. Our key contributions are

1Due to the space limitation, we are not covering the details of these ap-
proaches.

� Characterizing events based on a set of physically in-

terpretable features (i.e., angular frequencies, damping

factors and the residues) obtained from modal analysis of

various spatio-temporally correlated PMU measurements.
� Using a well-known approach in machine learning, called

bootstrapping, to address the problem of the small number

of labeled samples.
� Learning a set of robust classification models which can

identify generation loss and line trip events in both real

and synthetic datasets.

An overview of the proposed framework is shown in Fig. 1.

In Step 1, using the fact that temporal effects in a power system

event are driven by the interacting dynamics of the system com-

ponents, we use mode decomposition to extract features. Mode

decomposition characterizes each event as a set of features:

angular frequencies, damping factors, and the corresponding

residues. However, extracting features using all channels of

PMU measurements (magnitudes and angles for positive se-

quence voltages and currents, and frequency) across multiple

PMUs will inevitably lead to a high-dimensional feature set,

and thus, a key question is to determine which subset of these

features can guarantee accurate classification performance.

Step 2 uses filter methods to select features so as to avoid

overfitting while ensuring that events can be distinguished by

the same set of features. Since filter methods, in contrast with

wrapper and embedded methods, are independent from classi-

fication models [30], they are computationally inexpensive and

are more efficient for real time applications.

Finally, in Step 3, a classification model distinguishes gener-

ation loss and line trip events based on the extracted features.

We test two classification models: logistic regression (LR) and

support vector machine (SVM) with radial basis function (RBF).

We use two datasets, one synthetic and one real, to evaluate

the performance of our framework.

To highlight the value of using multiple PMU channels and

the combination of physics-based and data-driven methods in

our proposed approach, we make a comparison with a well

established event identification method based on the work of

Li et al. [18]. As detailed in Section V, our results on both real

and simulated datasets indicate that the proposed framework is

promising for identifying the two types of events.
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The remainder of the paper is organized as follows. Sec-

tion II briefly explains modal analysis and MPM. The proposed

framework for feature extraction and feature selection from

time series PMU data are presented in Section III. Section IV

describes the validation methodology which is used to evaluate

the performance of models based on different feature selection

techniques. In Section V, we illustrate the validity of the pro-

posed framework. Finally, Section VI concludes the paper.

II. PROBLEM SETUP

The first step in identifying a system event from PMU data

is to extract the relevant features from the data stream. Due

to the high sampling rate of the PMU data, one could plug

in the raw data into a machine learning model. However, it is

advantageous to use a set of delineating features that are likely

to contain information regarding the event type (henceforth

referred to as event class). Using the fact that temporal effects

in a power system are driven by the interacting dynamics of

system components, we propose to use mode decomposition as

the framework with which to extract features. More specifically,

we assume that each PMU data stream after an event consists of

a superposition of a small number of dominant dynamic modes.

Thus, the features will be the frequency and damping ratio of

these modes, as well as the residual coefficients indicating the

quantity of each mode present in each data stream.

Several modal analysis techniques such as MPM, Prony anal-

ysis and dynamic mode decomposition [31], [32] have been

proposed in literature. Relying on earlier observations that MPM

is more robust to noise relative to the above mentioned methods,

we will use MPM as the mode decomposition technique. In gen-

eral, every PMU has multiple measurement channels, including

positive sequence voltage magnitude (VPM) and corresponding

angle (VPA), positive sequence current magnitude (IPM), and

corresponding angle (IPA), and frequency (F). Furthermore,

multiple PMUs across the grid capture the dynamic response

of the system after an event through different measurement

channels. Therefore, for a chosen measurement channel, we will

use the MSMPM to obtain one optimum set of mode estimates

which can accurately represent the underlying dynamic behavior

of the system [33].

Oftentimes only a small number of modes are triggered after

an event. In a noise-free system, it is fairly easy to extract these

modes. However, in a noisy system, there exist many other low

energy modes that are more likely related to the minor noise

variations and can make the classification of the events harder.

To ensure accurate classifiers we use the low rank approximation

of the Hankel matrix constructed from PMU measurements

which allows (i) reducing the effect of noise on the accuracy of

mode estimation, and (ii) extracting a small number of dominant

modes from noisy PMU measurements.

So in Section II-A, we briefly explain modal analysis as a

method to capture signatures of an event. Then we discuss the

background and theory behind single signal and multi-signal

MPM in subsection II-B. Finally, in Section II-C, we discuss

the low rank approximation of the Hankel matrix obtained

from PMU measurements to estimate the sufficient number of

dominant modes.

A. Modal Representation of PMU Measurements

Consider an electric grid with m installed PMUs. Recall that

each PMU has multiple channels through which we can obtain

different types of measurements relative to the bus where the

PMU is installed. For the sake of clarity, we focus on one channel

(e.g., VPM). Let yi(n) ∈ R, i = 1, . . . ,m, and n = 0, . . . , N −
1, denote the VPM measurement obtained from ith PMU at

sample n with a sampling period of Ts. Note that we use the

detrended PMU measurements prior to any modal analysis to en-

sure that the identified modes are associated with the oscillations

after a contingency rather than the noise in the PMU measure-

ments. The trend in the time series data refers to the change in

the mean over time [34]. Let Ỹ(i) = [ỹi(0), . . . , ỹi(N − 1)]T ∈
R

N represent a time series PMU data corresponding to the

ith PMU and X = [x(0), . . . , x(N − 1)]T ∈ R
N represents a

vector of sample number. In order to obtain the detrended PMU

measurements, we first find a simple linear least-squares fit to

the time series data by solving the following regression problem:

min
w0,w1

N−1∑

n=0

(ỹi(n)− ŷi(n))
2, i = 1, . . . ,m (1)

where ŷi(n) = w0 + w1x(n) is the predicted value of each PMU

measurement. To obtain the detrended values, denoted as yi(n),
we remove the result of the the linear least-squares fit from the

original PMU measurements, i.e., yi(n) = ỹi(n)− ŷi(n), n =
0, . . . , N − 1.

We assume that yi(n) after an event consists of a superposition

of p common damped sinusoidal modes as

yi(n) =

p
∑

k=1

R
(i)
k × (Zk)

n + εi(n), i = 1, . . . ,m (2)

where εi(n) represents the noise in the ith PMU measurement

and Zk is the kth mode associated with the event. We represent

each mode as Zk = exp(λkTs) where λk = σk ± jωk and σk

and ωk are the damping factor and angular frequency of the

kth mode, respectively. Furthermore, residueR
(i)
k corresponding

to each mode k and ith PMU measurement is defined by its

magnitude |R
(i)
k | and angle θ

(i)
k .

Our goal is to distinguish between various types of events

by finding the common modes that are captured by all the

PMUs and best represent the underlying dynamical behavior

of the system. Thus, we are interested in finding a single set

of modes (i.e., {Zk}
p
k=1) that capture the dynamical behavior

of the all the m PMUs simultaneously rather than a different

set of modes for each PMU measurement stream. Note that the

corresponding residue of each mode will be distinct for each

PMU measurement.

Let Y
(i) = [yi(0), . . . , yi(N − 1)]T ∈ R

N , R
(i) = [R

(i)
1

, . . ., R
(i)
p ]T ∈ R

p, andZ = [Z1, . . . , Zp]
T . We defineVZ(N) ∈
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R
p×N as the Vandermonde matrix of the modes, Z, as

VZ(N) =

⎡

⎢
⎢
⎢
⎢
⎣

1 Z1 · · · ZN−1
1

1 Z2 · · · ZN−1
2

...
...

. . .
...

1 Zp · · · ZN−1
p

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

p×N

(3)

Then (2), in the absence of noise can be written in compact form

as

VZ(N)TR(i) = Y
(i) (4)

Once the modes, Z, are estimated, the corresponding residues

R
(i) for each PMU measurement stream, i = 1, . . . ,m, can be

obtained by solving (4).

B. Multi-Signal Matrix Pencil Method

As mentioned earlier, considering the robustness of MPM

against noise, it will be used as the main tool to estimate the

parameters of (2). The MPM involves constructing the Hankel

matrix over a block of N samples obtained from the ith PMU as

Hi =

⎡

⎢
⎢
⎢
⎢
⎣

yi(0) yi(1) · · · yi(L)

yi(1) yi(2) · · · yi(L+ 1)
...

...
. . .

...

yi(N − L− 1) yi(N − L) · · · yi(N − 1)

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

(N−L)×(L+1)

(5)

where L is the pencil parameter. We choose L = N/2, since it is

known that this will result in the best performance of the MPM

in a noisy environment (i.e., the attainment of a variance close

to the Cramer-Rao bound) [33].

Using (5), let H
(1)
i and H

(2)
i be the matrices consisting of

the first and last L columns of Hi, respectively. In a noise free

setting, as a consequence of (2), we can write H
(1)
i and H

(2)
i as

H
(1)
i = VZ(N − L)TR

(i)
D VZ(L) (6a)

H
(2)
i = VZ(N − L)TR

(i)
D ZDVZ(L) (6b)

where

ZD = diag(Z1, Z2, . . ., Zp), (7)

R
(i)
D = diag(R

(i)
1 , R

(i)
2 , . . ., R(i)

p ). (8)

Then, the matrix pencil is defined as

H
(2)
i − λH

(1)
i = VZ(N − L)TR

(i)
D (ZD − λI)VZ(L) (9)

where I ∈ R
p×p is the identity matrix. Note that both R

(i)
D

and ZD are full rank p× p diagonal matrices. Further, if p <
L < N − p each of VZ(N − L)T and VZ(L) has rank p. Then,

from (9), if λ = Zk for any k = 1, . . . , p, then the kth row of

ZD − λI becomes zero, and hence the rank of H
(2)
i − λH

(1)
i is

reduced by one. Therefore, the parameters {Zk}
p
k=1 are exactly

the values of λ where H
(2)
i − λH

(1)
i has a reduced rank [35].

This is equivalent to the generalized eigenvalues of the pair

(H
(2)
i ,H

(1)
i ).

The matrix pencil method described above, which focuses

on the measurements obtained from a single PMU, may be

extended to find a single set of modes which best represent

the underlying dynamical behavior of a set of measurements

obtained from multiple PMUs. This is done by vertically con-

catenating Hankel matrices H1, . . . ,Hm corresponding to each

PMU measurements over a block of N samples as

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1

...

Hi

...

Hm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

m(N−L)×(L+1)

(10)

and the same method which is used for a single measurement

stream (see (6) to (9)) is applied to the matrix H to identify a set

of modes {Zk}
p
k=1. Finally, we find the residues corresponding

to each mode k and ith PMU measurements by solving (4).

C. Model Order Approximation

Following the assumption that PMU measurements after an

event can be represented as a superposition of p dynamic modes

and considering the fact that only a small number of modes

are enough to represent the underlying dynamical behavior

of the system (p � L), one can show that rank(H) = p for

noise free PMU measurements [36]. However, in practice PMU

measurements are noisy and rank(H) > p. In this case, for a

given p, we can partly eliminate the noise by using the singular

value decomposition (SVD) to find the rank p approximation of

H, denoted as Hp. The approximation Hp results from keeping

the p largest singular values of H (the remaining singular values

are replaced by zero). UsingHp in MPM also provides minimum

variance in the estimation of modes in noise-contaminated PMU

measurements (we refer readers to [37], [38] for a comprehen-

sive study of MPM performance in the presence of noise in the

PMU measurements).

In practice, however, the parameter p is not known. A reliable

way to approximate p in (2) is to find the best p over all the events

in our dataset. To this end, we define the rank p approximation

error of H as

Ep =
‖H−Hp‖F

‖H‖F
(11)

where ‖H‖F is the Frobenius norm of the matrix H. Further-

more, to verify that the estimated value of parameter p is suffi-

cient for capturing the underlying dynamics of the system, we

evaluate the reconstruction error of each PMU measurements,

denoted as Ei, i = 1, . . . ,m, as

Ei =
‖Ŷ(i) −Y

(i)‖

‖Y(i)‖
(12)

Authorized licensed use limited to: ASU Library. Downloaded on September 04,2023 at 21:07:57 UTC from IEEE Xplore.  Restrictions apply. 



TAGHIPOURBAZARGANI et al.: MACHINE LEARNING FRAMEWORK FOR EVENT IDENTIFICATION VIA MODAL ANALYSIS 4169

where Y
(i) is the original measurement stream and Ŷ

(i) is the

reconstructed one based on the mode decomposition.

Using the equations (11) and (12), the value of the parameter p
is determined such that it ensures bothEp andEi (obtained from

various PMU channels) are less than a predefined threshold for

all the events in the dataset. Throughout the paper, we consider

that this threshold is 1%.

III. FEATURE ENGINEERING OF PMU TIME SERIES DATA

To characterize the dynamic response of the power system

after an event, modal analysis is conducted on each PMU

channel (i.e., VPM, VPA, IPM, IPA, and F) obtained from

multiple locations across the grid. For instance, using VPM

channel measurements frommPMUs, we obtain a set of features

consisting of p angular frequencies, p damping factors and the

corresponding magnitude and angle of the residues for each of

the m PMUs and p modes. Although mode decomposition is

meant to focus on only the physically meaningful features of

the dataset, there are still simply too many of them (m ≈ 500
and p = 6 in our dataset). To avoid overfitting while ensuring

that multiple events can be distinguished by the same set of

features, a necessary pre-processing step is to select relevant and

most informative features. To this end, we propose a two-step

approach to reduce the features into a more manageable number.

In the first step, we select a subset of features by removing

the redundant modal information present in the complex con-

jugate modes and eliminating the smallest residue magnitude

to construct a vector of features that characterizes the dynamic

response of the system after an event. The second step is to select

the most informative and relevant features using a filter method.

The details are provided in the following subsections.

A. Constructing the Feature Vector

As discussed in Section II, parameter p represents the number

of dominant modes in the PMU data streams and can be obtained

by finding the best rank p approximation of H. In general, these

modes can be real or complex conjugate pairs. In our dataset,

typically these modes include only complex conjugate pairs and

no real modes (i.e., p/2 complex conjugate pairs, yielding p
modes in total). In order to remove redundant modal information

present in the complex conjugate modes, we only keep one mode

from each pair. Thus, we keep onlyp′ = p/2modes in the feature

vector for each event. However, for a small portion of the events,

modal analysis may result in a combination of real and complex

conjugate modes.

In that case, there is less redundancy among the p modes,

because each real mode is unique, but the number of extracted

features needs to be exactly the same as it is when all the modes

are complex conjugate pairs. To this end, we still extractp′ modes

even though this requires removing some of the modes. More

precisely, since the residue coefficients indicate the quantity

of each mode present in each PMU data steam, we sort the

modes based on their average residue across all the PMUs and

we choose p′ = p/2 modes with the largest average residues

to be included in the vector of features. (The average residue

corresponding to the kth mode is 1
m

∑m
i=1 |R

(i)
k |.) Based on

our simulation results, we have found that p = 6 and p′ = 3 is

sufficient to ensure the accuracy and robustness of the estimated

modes against noise (see Section V for more details).

Moreover, since only a small portion of the PMUs (m′ < m)

capture the dynamic response of the system after an event, we

only keep the residues of m′ PMUs with the largest magnitudes

in the vector of features. Note that the m′ PMUs are not neces-

sarily the same PMUs for different events.

Using the VPM channel measurements obtained from multi-

ple PMUs, we define a row vector of features, FVPM, as follows:

FVPM = [{ωk : k = 1, . . . , p′}, {σk : k = 1, . . . , p′},

{|R
(i)
k | : i = 1, . . . ,m′, k = 1, . . . , p′}

{θ
(i)
k : i = 1, . . . ,m′, k = 1, . . . , p′}] (13)

which consists of p′ angular frequencies, p′ damping factors

and the corresponding magnitude and angle of the residues for

each of the m′ PMUs (with the largest residue magnitudes) and

p′ modes. To make a meaningful comparison of the features,

it is important to sort them consistently. We sort the modes

based on their average residue across all the m′ PMUs. In our

notation in (13), k = 1 represents the mode with the largest

average residue andk = p′ represents the mode with the smallest

average residue. Moreover, for a given mode k, the residues for

different PMUs, i = 1, . . . ,m′, are sorted in a descending order

based on the magnitude of their residues, |R
(i)
k | and we use the

same order to sort the corresponding θ
(i)
k . Note that, for each

mode, we do not expect that the same PMU to always have the

largest residue. Thus, the same PMU could be represented using

a different index.

In a similar manner, we obtain the set of features correspond-

ing to other PMU channels, i.e., VPA, IPM, IPA, and F. Then

each event j can be described as a vector of features as

φj = [FVPM,FVPA,FIPM,FIPA,FF]
T (14)

where each Fs, s ∈ {VPM, VPA, IPM, IPA, F} consists of the

modal analysis results corresponding to the selected PMU chan-

nel. Hence, assuming nch represents the number of channels at

a PMU that are used for modal analysis, each event j can be

described as a set ofd featuresφj = [ϕ1, . . . , ϕd]
T ∈ R

d, where

d = 2nch(p
′ +m′p′). For instance, for m′ = 25, p′ = 3, and

using nch = 5 channels, we obtain a total of d = 780 features.

When the number of labeled events is small (e.g., 70 labeled

events in our proprietary dataset) which is typically the case in

practice, a 780-dimensional feature set can be extremely large.

B. Feature Selection Using Filter Methods

Although there exist many different filter methods in the

literature [39], in this paper, rather than measuring the interde-

pendence among the features, we only focus on measuring the

dependence between features and the target variables to rank

the features and retain the top ranked ones. As the measure of

dependence, various statistical tests, including one-way analysis

of variance F-value test, sure independence screening, mutual
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Fig. 2. Overview of the feature selection step.

information, Pearson correlation, and Kendall correlation have

been used in literature [30]. Given that we are focusing on a clas-

sification setting, we are interested in determining the correlation

between numerical features and a categorical target variable.

To this end, we use F-value test (F) [40], sure independence

screening (S) [41], and mutual information (M) [42] to quantify

the correlation between features and the target variable. We

use the off-the-shelf packages in Python to estimate the mutual

information between discrete and continuous variables based on

the nearest neighbor method (see [42] for more details).

As detailed in III-A, each event j can be described as a set

of d features φj = [ϕ1, . . . , ϕd]
T ∈ R

d and a label ξj which

describes the class of the event (i.e., line trips and generation

loss events are labeled as 0 and 1, respectively). We define

our dataset, D = {φj , ξj}
Ne

j=1 where Ne is the total number of

labeled events. We use the Z-score to normalize our dataset [43].

Then we split the dataset into a training dataset with Ntr samples

and a test dataset with Nte samples, denoted as Dtrain and Dtest,

respectively. In a standard filter method, we compute the corre-

lation of each feature ϕi, i = 1, . . . , d and the target variable,

Ξ = [ξ1, . . . , ξj , . . . , ξNtr
]T ∈ {0, 1}Ntr in the training dataset.

Then we sort the features based on their correlation measure

and then keep the d′ features with the highest correlation.

However, due to the small number of samples, we need a

more robust way of choosing the features. Therefore we will rely

on a well-known approach in machine learning, bootstrapping.

Bootstrapping is a technique of sampling with replacement

to create multiple datasets from the original dataset, thereby

selecting the most informative features with some degree of

statistical confidence. Note that the size of each bootstrapped

dataset is the same as the original dataset.

The proposed bootstrapping approach for feature selec-

tion: The overview of feature selection step is shown in Fig. 2.

The process begins by constructing Bs bootstrapped datasets,

denoted as D
(b)
train, b = 1, . . . , Bs, from the original training

dataset, Dtrain. For each bootstrapped dataset, we randomly

selectNtr events from the training dataset. Each event in the orig-

inal training dataset has an equal probability of being included in

a bootstrapped dataset and can be included more than once or not

at all. In other words, for each bootstrapped dataset, we sample

from the original dataset with replacement. We define,π
(b)
i as the

correlation measure of feature ϕi and target variable Ξ over the

bth bootstrap samples. In order to robustly find a subset features,

we compute the 95th percentile of the correlation measures of

each feature over the Bs bootstrapped datasets and select d′

features with the highest 95th percentiles. Using the selected d′

features, we obtain a reduced order training dataset, denoted as

D′
train.

We will also use bootstrapping for the classification (see

Section IV). We have done extensive experiments without boot-

strapping which confirms the advantage of using it for both

feature selection as well as the classification. In the interest of

clarity, we did not include those results in this paper.

IV. EVENT CLASSIFICATION

The final step in our proposed framework for event identifica-

tion is to use the subset of features (as described in Section III)

to learn a classification model by finding decision boundaries

between various event classes in the feature space. With any ML

model, there is a tradeoff inherent in the choice of complexity of

the classification model. A simpler model may be more easily

interpreted and is less likely to encounter overfitting problems

whereas a more complex model may be more capable of uncov-

ering subtle characteristics of the underlying phenomena and

may thereby perform better. Therefore, to investigate the impact

of the model complexity on the accuracy of event classification,

two well-known classifiers, namely, LR and SVM with RBF ker-

nels are used to identify the two classes of events in our dataset

(we refer readers to [43] for details of the two classification

models). The LR is a relatively simple model compared to the

SVM with RBF kernels.

In order to validate the performance of each classification

model, we split the dataset into a training and a test datasets.

All the filter methods are implemented on the training dataset

to find the most relevant and informative subset of features

and obtain reduced order training and test datasets, denoted

as D′
train and D′

test, respectively. Due to the limited number of

labeled generation loss and line trip events, we again use the

bootstrap technique as a tool for assessing statistical accuracy.

Using bootstrap sampling helps to address the problem of limited

training samples and therefore justifies using the test data for

validation of specific parameters, namely, the number of features

to pick and the choice of the classification model.

Using the reduced order training dataset, D′
train, we gener-

ate Bc reduced order bootstrapped datasets, denoted as D
′(b)
train,

b = 1, . . . , Bc, to learn a classification model, C(b), and classify

the events in the D′
test. To evaluate the performance of a chosen

classifier (for example, LR), we use the area under curve (AUC)

of the receiver operator characteristic (ROC), which character-

izes the accuracy of the classification for various discrimination

thresholds [30]. (The discrimination threshold determines the

probability at which the positive class is chosen over the negative

class.) The ROC plot shows the relation between the true positive

rate and the false positive rate at various threshold settings. The

ROC AUC value is bounded between 0 and 1. The closer AUC

to 1, the classifier has a better ability to classify the events. To

quantify the accuracy of the learned classifier on the test dataset,

we compute the average AUC, and the corresponding 5th and

95th percentiles of the AUC values over all the bootstrapped

datasets. The aforementioned steps are summarized in Fig. 3.
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Fig. 3. Overview of the model validation (D′
train, and D′

test are reduced order

training and test data, respectively.C(i): learned model from the ith bootstrapped
reduced order training data.).

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed frame-

work for event identification, two different datasets are consid-

ered in this study. The first one is obtained from the dynamic

simulation of line trip and generation loss events in the Texas

2000-bus synthetic grid [44] using the power system simulator

for engineering (PSSE). The second dataset is a proprietary

dataset with labeled generation loss and line trip events obtained

from a large utility in the USA involving measurements from

nearly 500 PMUs.

In the remainder of the section, we present our results for each

dataset including: (i) the sufficient number of distinct modes, p′,
using the measurements obtained from different PMU channels,

(ii) the reconstruction error of the PMU measurements using

modal information obtained from MSMPM„ (iii) the perfor-

mance of LR and SVM in identifying the events using the subset

of features (as explained in Sections II and III), and (iv) we

compare the performance of our proposed approach with a well

established event identification method based on the work of Li

et al. [18].

A. Case 1: Event Classification With the Synthetic Dataset

In order to generate synthetic PMU data with labeled events,

we use the PSSE dynamic data of the the Texas 2000-bus

synthetic grid [45]. We allow the system to be in the normal

operation condition for 1 s. Then, we apply a line trip or genera-

tion loss at time t = 1 and run the dynamic simulation to t = 20
seconds. The simulation time step for dynamic simulations is

set to 0.0083 secs. In order to collect data at a rate of 30

sample/sec (PMU sampling rate), we record the measurements

at each 0.033/0.0083 ≈ 4 time steps. We assume that 95 of the

500 kV buses (which are chosen randomly) across the grid are

equipped with PMU devices. We generate a total number of 800

events including 400 generation loss and 400 line trip events.

For each event class, 200 events are simulated under the normal

loading and 200 with 80% of normal loading. Since PSSE does

not have any channel to directly measure the branches currents,

only VPM, VPA, and F channels are used for extracting the

features from the PMU measurement. To capture the dynamic

response of the system, we use N = 300 samples after the exact

start of an event.

To evaluate the performance of the classification models, we

split our synthetic data into training and test datasets with 600

and 200 samples, respectively. The training dataset is used for

Fig. 4. Rank p approximation error of the matrix H (which is obtained
from VPM measurements from 95 PMUs after a line trip event) for different
values of p.

Fig. 5. Envelope of the reconstruction error of all the PMU measurement
streams that are obtained from VPM channel after 800 events in our dataset.
Red, gray, and green lines represent the minimum, average and maximum
reconstruction error, respectively.

feature engineering and learning the models and the test dataset

is only used for evaluation and comparison of the models.

Using the VPM measurements obtained from 95 PMUs after

a line trip event, we construct the matrix H based on (5). In

Fig. 4, we illustrate the rank p approximation error of the matrix

H that is given by (11). The matrixH is constructed over a block

of N = 300 samples after the exact start time of the event with

the pencil parameter of L = 150. Observe that if one chooses

a threshold of 1% for the approximation error, then we only

require p = 6 largest singular values; this is the case for all the

events in our synthetic dataset.

Fig. 5 illustrates the envelope of the reconstruction error of

all the PMU measurement streams (that are obtained from VPM

channel) in the synthetic dataset. The average reconstruction

error of the PMUs over all the events in our dataset is less than

1%. As detailed in the Section II-C, this implies that using p = 6
modes is sufficient for capturing the underlying dynamics of the

system after an event.

As discussed in Section III, to remove the redundant infor-

mation present in the complex conjugate modes, we use p′ = 3
distinct modes in the vector of features for each event. Further-

more, to determine the parameter m′, we use the normalized

residue for each PMU with respect to the one with the largest

magnitude and pick the smallest number of PMUs for which
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Fig. 6. Performance of the classification models (a) LR, and (b) SVM in terms of average AUC over Bc = 200 bootstrapped datasets with respect to the number
of selected features in the synthetic dataset.

Fig. 7. Performance of the classification models (a) LR, and (b) SVM in terms of the average AUC with respect to the number of selected features in the synthetic
dataset. The error bars represent the 5th and 95th percentiles of the AUC scores.

more than 95% of the PMUs are less than a certain threshold.

Based on this approach, we choose m′ = 20 PMUs to capture

the most significant residues in our synthetic dataset. Therefore,

considering p′ = 3, m′ = 20, and nch = 3, each event in the

synthetic dataset is characterized using d = 378 features. Then,

we generate Bs = 200 bootstrapped datasets from the original

training dataset to retain the features with the highest correlation.

Fig. 6 shows the performance of the classification models,

namely, (a) LR, and (b) SVM in terms of average AUC overBc =
200 bootstrapped datasets with respect to the number of selected

features. The selected features are the ones with the highest 95th

percentiles obtained from various correlation measures (i.e., F,

S, and M as detailed in Section III-B). To further elaborate the

performance of each classifier, using a subset of 6 to 15 features

obtained from various correlation measures, the average AUC

score as well its corresponding 5th and 95th confidence intervals

are shown in Fig. 7.

Based on the simulation results, using the mutual information

as the correlation measure to select a subset of features will

result in a better performance of both classifiers. This is due

to the fact that F-value and sure independence screening only

consider the linear dependence of the features with the target

variable whereas mutual information can also capture non-linear

dependencies. The selected features include the angular fre-

quency and first few residue magnitudes corresponding to the

first mode of the VPM, VPA, and F measurement channels.

Furthermore, it is clear that SVM with RBF kernel has a slightly

better performance than LR in identifying the two classes of

the events in our synthetic dataset. It is also clear that using a

subset of about 10 features obtained from mutual information

will result in the best performance of both classifiers. The error

bars represent the 5th and 95th percentile of the AUC scores over

Bc bootstrapped datasets and are an indication of the robustness

of each learned classifier.

B. Case 2: Event Classification With a Proprietary Datset

To further investigate the performance of our proposed frame-

work, we use a proprietary PMU data obtained from a large

utility in the USA involving measurements from nearly 500
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Fig. 8. Performance of the classification models (a) LR, and (b) SVM in terms of average AUC over Bs = 200 bootstrapped datasets with respect to the number
of selected features in the real dataset.

Fig. 9. Performance of the classification models (a) LR, and (b) SVM in terms of the average AUC with respect to the number of selected features in the real
dataset. The error bars represent the 5th and 95th percentiles of the AUC scores.

PMUs. A total of 70 labeled events including 23 generation loss

and 47 line trip events are used in this study. To characterize the

dynamic response of the system after an event, VPM, VPA, IPM,

IPA, and F measurement channels from multiple PMUs over a

block ofN = 300 samples (after the exact start time of the event)

are used for extracting the features as discussed in Section II. The

envelope of the reconstruction error of all the PMU measurement

streams (that are obtained from VPM channel) in the synthetic

dataset. Fig. 10 illustrates that using p = 6 modes, the average

reconstruction error of the PMUs over all the events in our real

dataset is less than 1%. Using the same approach that is used in

case 1, the parameters p′ = 3 and m′ = 25 are used to construct

the vector of features for each event, thereby obtaining a total

number of d = 780 features.

A total number of 56 events are included in the training

dataset. The same number of Bs = 200 bootstrapped datasets

are used for feature selection and the final evaluation of the

models. The performance of each classifier in terms of the

average AUC scores are shown in Fig. 8. Further, the 5th and

95th percentiles of the AUC scores over Bs = 200 bootstrapped

datasets are shown in Fig. 9.

Fig. 10. Envelope of the reconstruction error of all the PMU measurement
streams that are obtained from VPM channel after 70 events in our real datasets.
Red, gray, and green lines represent the minimum, average and maximum
reconstruction error, respectively.

The best performance of the both classifiers are obtained

using a subset of 11 features that are selected based on

the mutual information. An interesting observation is that in

both case studies, the angular frequency and first few residue
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TABLE I
COMPARISON OF THE CONFUSION MATRICES FOR THE REAL DATASET WITH 23 GENERATION LOSS (GL) AND 47 LINE TRIP (LT) EVENTS AND THE SYNTHETIC

DATASET WITH 400 GL AND 400 LT EVENTS

magnitudes corresponding to the first mode of VPM, VPA and F

measurement channels are included in the subset of the selected

features obtained from mutual information.

Compared to the synthetic dataset, the performance of the

classification models in the real dataset have lower accuracies

with wider confidence intervals. Possible reasons for this include

(i) the limited number of events (70 labeled events), and (ii)

variable system operating conditions as the data was collected

over 3 years. Furthermore, in contrast to our simulation results

for the synthetic dataset, the learned LR model demonstrates

a slightly better performance compared to the learned SVM

with RBF kernels model. This is most likely because SVM

significantly increases the model complexity and given the small

number of samples, is overfitting the training dataset and thus,

will not perform as well on the test data [43].

In terms of the time needed to identify an event using our

proposed approach, once an event is detected, we only need

to extract the features corresponding to various PMU channels

using the multi-signal MPM and feed the selected subset of

features into our learned model. Based on our simulations, this

procedure takes about 1.1 s. The simulations are conducted on

a computer with 8 GB RAM and Intel Core i5 processor with

1.6 GHz CPU.

C. Comparison With Prior Work Based on Low-Dimensional

Subspace of PMU data [18]

To highlight the value of using multiple PMU channels and

the combination of physics-based and data-driven methods in

our proposed approach, we make a comparison with a well-

established event identification method. This method was intro-

duced in [18] and is based on low-dimensional subspace char-

acterization. In the following, we briefly explain the proposed

approach in [18].

Let Ŷ ∈ R
m×N be the data matrix which contains the PMU

measurements from m PMUs over a block of N samples. The

main idea in [18] is that events can be identified by the low-

dimensional row subspace spanned by the dominant singular

vectors of Ŷ, denoted as Vr, which consists of the right singular

vectors associated with the r largest singular values. For the task

of event identification, a dictionary is constructed consisting of

these Vr matrices from labeled event data. The type of an event

in the test dataset can be identified through comparing Vr with

the constructed dictionary. More specifically, the subspace angle

between the span of their dominant right singular vectors is used

to quantify this similarity.

Note that the choice of the parameters r (number of dominant

singular values) and N (number of samples) in [18] is driven

based on their dataset. In our implementation, in addition to us-

ing the original parameters in [18], we also tuned the parameters

to improve the performance in our datasets. Based on our simula-

tions, we choose r = 5 andN = 300. Furthermore, the proposed

approach in [18] uses a single PMU channel. Hence, we only

use the VPm measurements to construct the PMU data matrix.

For the sake of comparison, we consider two scenarios in

our proposed approach: in the first scenario we only use VPm

channel measurements and in the second one, we use all the

PMU channels to construct the vector of features.

To make a fair comparison, we consider a simple K-fold cross

validation technique to compare the performance of each method

in both real and synthetic datasets. We split each dataset into 5

folds and use 4 folds as the training dataset and the remaining

fold as the test dataset. Hence, we obtain 5 different combi-

nation of training and test datasets and for each combination,

we calculate a confusion matrix by combining all the test data

(see Table I) to evaluate the performance of the methods. Note

that as discussed above, we use the LR and SVM classifiers to

identify the events in the real and synthetic dataset, respectively.

Our simulations indicate that using a single PMU channel and

tuning the parameters in [18], the two methods have comparable

performances. However, due to the fact that different PMU

channels are able to capture the dynamic response of the system

after an event, using all the PMU channels in our proposed

approach results in a slightly better performance in identifying

the events in both real and synthetic datasets.

VI. CONCLUDING REMARKS

We have proposed a novel machine learning framework for

event identification based on extracted features obtained from

mode decomposition of PMU measurements. Considering the

high-dimensionality of the extracted features, we have consid-

ered different data-driven filter methods to choose a subset of

features. We have investigated the performance of the two clas-

sification models (LR and SVM) in identifying the generation

loss and line trip events for both synthetic and a proprietary real

datasets. It is worth noting that the reason for choosing only

two types of events was the limited number of labeled events in

our proprietary dataset. However, if the data for more than two

types of event is available, the proposed approach can be easily

extended to a multi-class classification problem by splitting it

into a multiple binary classification problem.
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Our simulation results indicate that using mutual information

for feature selection results in better performance of the classi-

fiers compared to the other filter methods that we tested, in both

real and synthetic datasets. This is due to the fact that mutual

information can capture the nonlinear dependencies between the

features and the target variable. Our analysis also illustrates that

bootstrapping can overcome the limitation of the small number

of labeled events. However, when labeled data are limited, a

less complex model such as LR can assure better accuracy

than more complex models such as SVM. We have also shown

that a relatively small number (10–15) of features is typically

enough to achieve a good classification performance. While filter

methods provide a streamlined way to identify the key features,

in the future, we will explore alternative feature selection tech-

niques such as least absolute shrinkage and selection operator

(LASSO). The proprietary dataset used in this study suggests

that, in practice, a very small number of events are labeled when

compared to the total number of events. A possible solution to

overcome this limitation is to incorporate the real labeled events

in combination with the synthetic labeled events obtained by

running PSSE simulations on the same system model. Building

on this, an interesting potential application of the proposed

methodology is to the semi-supervised setting wherein labeled

events are combined with unlabeled data streams in which an

event has been detected, but for which the class of event is

unknown, to improve classifier.
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