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Abstract—Low Earth Orbit (LEO) satellite constellations have
seen a surge in deployment over the past few years by virtue
of their ability to provide broadband Internet access as well as
to collect vast amounts of Earth observational data that can be
utilized to develop AI on a global scale. As traditional machine
learning (ML) approaches that train a model by download-
ing satellite data to a ground station (GS) are not practical,
Federated Learning (FL) offers a potential solution. However,
existing FL approaches cannot be readily applied because of their
excessively prolonged training time caused by the challenging
satellite-GS communication environment. This paper proposes
FedHAP, which introduces high-altitude platforms (HAPs) as
distributed parameter servers (PSs) into FL for Satcom (or more
concretely LEO constellations), to achieve fast and efficient model
training. FedHAP consists of three components: 1) a hierarchical
communication architecture, 2) a model dissemination algorithm,
and 3) a model aggregation algorithm. Our extensive simulations
demonstrate that FedHAP significantly accelerates FL model
convergence as compared to state-of-the-art baselines, cutting the
training time from several days down to a few hours, yet achieving
higher accuracy.

Index Terms—Federated learning (FL), low Earth orbit (LEO),
satellite communication (Satcom), high-altitude platform (HAP)

I. INTRODUCTION

Low Earth Orbit (LEO) satellite constellations are a col-
lection of small satellites orbiting in space between 500 and
2000 km above the Earth’s surface. Due to the low altitude
and the resulting lower cost and complexity, they have re-
cently been increasingly deployed in space to enable large-
scale data collection (e.g., of Earth observation imagery) in a
wide range of applications such as urban planning, weather
forecast, climate change, and disaster management [1]. To
derive valuable insights from these data, machine learning
(ML) offers a powerful tool but traditional approaches are no
longer practical, as they download massive satellite data to a
ground station (GS) to train a central ML model. Thus, there
will face serious problems of limited bandwidth, intermittent
and irregular satellite-GS connectivity, and data privacy [2].

Federated learning (FL) [3] emerged recently and appears to
be a promising solution, in which each client (satellite in our
case) trains an ML model locally without uploading its data
anywhere, and only transmits the trained model parameters to
a parameter server (PS, which is typically a GS). The PS then
aggregates the received model parameters into a global model
and sends it back to all the satellites again for re-training. This
procedure repeats iteratively until model convergence.

Challenges. However, applying FL to satellite communica-
tion (Satcom) faces several challenges. First, the connectivity
or “visibility” of each satellite to the GS is highly intermittent
and irregular, due to the distinction between satellite trajectories
and Earth rotation. In fact, the interval between two consecutive
visits of a satellite to the GS can vary from a couple of hours to
more than a day [4, 5]. This will result in a huge convergence
delay, up to several days [6], due to the iterative nature of FL.
The second challenge is that the wireless channels between
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satellites and GS are highly unpredictable and unreliable as
they are constantly impacted by weather conditions (e.g.,
rain, fog, wind turbulence) and radio interference, which are
especially notable near the Earth’s surface. Third, Satcom is
subject to long propagation and transmission delays, due to
the long communication distance and low data rate.

Related work. Recently, FL has drawn intense interest due
to its promising prospects in LEO constellations [4—7]. Chen
et al. [6] demonstrate some benefits when applying the original
FedAvg [8], unchanged, to Satcom, as compared to traditional
centralized ML. Razmi et al. [5] attempted to reduce the
long training time by proposing FedISL, which employs inter-
satellite-link (ISL) to improve performance. However, in order
to address the poor visibility, they assumed a medium Earth
orbit (MEO) satellite orbiting above the Equator to serve as the
PS, which is hardly available. In addition, the Doppler effect
greatly amplified by the large speed difference between MEO
and LEO satellites is also overlooked by the study. Another
work [7] proposes FedSat as an asynchronous FL algorithm to
reduce the training delay, but it assumes an ideal setup where
the GS is located at the North Pole (NP) so that each satellite
will visit the GS at regular intervals periodically. So et al. [4]
developed a semi-asynchronous FL algorithm called FedSpace
to balance the idleness in synchronous FL and staleness in
asynchronous FL when applied to Satcom. FedSpace takes
an approach similar to FedBuff [9], but outperforms FedBuff
by additionally designing an algorithm for scheduling the
aggregation process to take satellite connectivity into account.
However, FedSpace requires each satellite to upload a portion
of its raw data to the GS, which contradicts the desirable FL
principles on communication efficiency and data privacy.

Contributions. In this paper, we introduce high altitude
platforms (HAPs) into FL to act as PSs to orchestrate the
training process for LEO constellations. Based on that, we
propose a synchronous FL framework called FedHAP to
achieve both low training delay and high model accuracy
simultaneously. The main idea is to explore inter-satellite and
inter-HAP collaborations using a novel model dissemination
algorithm and partial model aggregation, under a hierarchical
communication architecture (as opposed to the star architecture
in conventional FL). A HAP is a semi-stationary aerial station
that floats in the stratosphere at 18-24 km above the Earth’s
surface [10, 11] and is equipped with communication and
computing facilities. Compared to GSs or MEO satellites,
HAPs have the following advantages: 1) lower cost—a GS or
an MEO satellite typically costs over a million dollars while
a HAP costs only a small fraction of it [12, 13]; 2) improved
visibility—a HAP will see more satellites at a time or see each
satellite more often (than a GS) thanks to its much-elevated
altitude; 3) better communication environment—the space in
and above the stratosphere is much clearer, stabler, and less
interfered than the troposphere (right above the ground); 4) easy
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Fig. 1: A Walker constellation [14] consisting of L = 5 orbits, each
carrying K; = 8 satellites. The constellation is orchestrated by H = 2
HAPs. Each gray cone depicts the covered area of a satellite.

relocation—HAPs can move in response to changes in the LEO
constellation (e.g., additional satellites and orbits are launched
or existing ones retire), thereby maintaining good visibility of
satellites.

However, introducing HAPs into FL-Satcom is non-trivial
and calls for new architecture and algorithm redesigns. Corre-
spondingly, this paper makes the following contributions:

« We introduce HAPs in lieu of GSs to act as PSs in FL to
train ML models collaboratively with satellites, in a multi-
orbit LEO constellation to achieve fast convergence.

o« We propose a FedHAP framework that consists of three
components: (i) a hierarchical non-star communication ar-
chitecture, (ii) a model dissemination algorithm that over-
comes the challenge of sporadic satellite-HAP visits, and
(iii) partial model aggregation that accelerates global model
convergence.

« We evaluate the performance of FedHAP in a wide range
of settings (IID vs. non-1ID, CNN vs. MLP, GS vs. HAP,
single HAP vs. multi-HAP) with multiple state-of-the-art FL-
Satcom approaches. The results show that FedHAP signif-
icantly outperforms them on both convergence speed and
model accuracy.

II. SYSTEM MODEL

Consider an LEO constellation that consists of L orbits,
where each orbit [ carries K; equally-spaced satellites. Each
satellite has a unique ID, and travels on orbit [ with speed
v = QW(R#EZH”), where Rp is the radius of the Earth, A
is the orbital height, and T} is the orbital period given by

T, = 2= (Rp + h;)3/2, where G is the gravitational constant
and 1s the mass of the Earth. In addition, there are H HAPs

where each HAP h acts as a PS that communicates with a
varying number of satellites from different orbits at any given
time, and perform (partial or full) model aggregation for FL.
An illustration is given in Fig. 1.

A. Federated learning in LEO Constellations

For ease of description, in this section we assume a single
PS as in classical FL. Later in Section III, we propose a more
sophisticated scheme that involves multiple HAPs acting as PSs
and a new communication (non-star) architecture.

Given an LEO constellation /C, the overarching goal of the
PS and all the satellites £ € K is to collaboratively solve the
following optimization problem:

- N
arg min F(w) = > i (w), (1)

kek
where w is the target ML model (i.e., its parameters), ny, is the

data size of satellite k, n = Zf:k ny, is the total size, and Fj,
is the loss function that satellite & aims to minimize, which is

defined by 1
Fi(w) = — l(w; x), 2)
(w) = g[;k (w; )
where [(w;x) is the training loss over a data point x and Dy
is satellite k’s local dataset whose size is ng = |Dg|.

To solve the above problem, the PS first creates an ML
model (e.g., a neural network) with initial parameters w® and
disseminates it to all or a subset of the satellites when they
(successively) come into its visible zone. Each satellite k£ then
applies a local optimization method such as mini-batch gradient
descent for I local epochs, to update the model as

wp ™t = w)t = (VEL(w) X)), i=0,1,2,.., 11, (3)
where wf "* is the local model of satellite k at local iteration
i in a global communication round 3, ( is the learning rate,
and X} C Dy, its the i-th mini-batch. Once the PS receives the
updated parameters from those satellites, it aggregates them as

Wt =3 Tl 50,12, . )
keK "
In other words, the PS starts a new round 5+ 1 by transmitting
the updated w to all the satellites again when they become
visible, and the above procedure repeats until the FL. model is
converged (e.g., a target loss or accuracy is achieved)

There are two general FL approaches. Synchronous FL,
such as proposed in [8], is similar to what is described above, in
which the PS must wait until all the selected satellites to finish
their local training and send their trained models back to the
PS before moving on to the next round. Asynchronous FL, as
suggested in [15], allows the PS to proceed earlier to the next
round with only a (varying) subset of the satellites’ training
results, to avoid bottleneck or straggler satellites with limited
visibility to the PS. Although this sounds appealing, it does
not necessarily lead to better performance, because it requires
a careful trade-off between the reduced waiting time (desired)
and less training progress (undesired) in each round, as well
as handling stale model parameters from straggler satellites.

FedHAP is a synchronous FL approach and we will compare
it with both synchronous and asynchronous state-of-the-art
methods.

B. Communication Links in LEO constellations

We consider the following types of communication links:
1) ISL, 2) satellite-HAP link (SHL), 3) inter-HAP link (IHL),
and 4) satellite/HAP-ground link (S/HGL). The communication
links between satellites and the GS are radio frequency (RF)
links which are full-duplex, while between satellites and HAPs
are free-space optical (FSO) links which are half-duplex.

1) RF Links: In order to compare our proposed approach
that uses HAPs as PSs to the state-of-the-art that uses GS
as a PS, we used RF as a communication link thanks to
their reliability for long-range communication. Without loss
of generality, let us consider a satellite kK and a GS g, where
they will only be feasible to each other (i.e, establish a SGL



between them for communicating) if the following condition is
satisfied: Z(ry(t), (ri(t)—ry(t))) < § —min Where 74(t) and
r4(t) are the trajectories of satellite k and GS g, respectively,
and a,,;, 1S the minimum elevation angle. In addition, since
the wireless channel in free space is AWGN (additive white
Gaussian noise), the signal-to-noise ratio (SNR) between any
two objects a and b (e.g., satellite and GS or HAP) can be

written as: P.G,Gy

SNRpp = ——2"0
B KpTBL,,

(5)
where P, is the power transmitted by the sender, and G, G}, are
the total antenna gain of the sender and receiver, respectively,
K is the Boltzmann constant, 7 is the noise temperature at the
receiver, B is the channel bandwidth, and £, ; is the free-space
pass loss, which can be given by:

Loy — (47rHa, ngf)2’

: when||a, bll2 < lyp,  (6)

where ||a, b||2 is the Euclidean distance between a and b, f is
the carrier frequency, and £, 3 is the minimum distance between
a and b that enables them to communicate with each other (i.e,
a line-of-sight link (LoS) exists between them). In other words,
the visibility between the objects a and b will be obstructed
by the Earth if ||a, b||2 > ¢4 5. The overall time delay ¢4 of the
communication link between objects a and b can be formulated

as:
z|D a,b
ta = —‘R [ la:bll ; b2 ity m, (7)
A e
t tp

where t; and t, are the transmission and propagation delay
between the sender and receiver, respectively, t, and t; are the
processing delay at @ and b when one of the objects acts as a
sender, and the other as a receiver, |D| is the number of data
samples, z is the bits number of each sample, and R is the data
rate, which can be approximately calculated using the Shannon

formula: R~ Blogy(1 + SNR) ®)

2) FSO Links: FSO is more suitable for short-range com-
munications due to its higher data rates and resistance to
interference. HAPs operate as PSs and communicate with
each other or with satellites via FSO (but we remove this
difference in our simulation for a fair comparison). Consider
again two objects a and b (e.g., satellites or HAPSs), one as
a receiver equipped with photodetectors and the other as a
sender equipped with light-emitting diodes (LEDs). When an
LoS optical link is established between a and b, the channel
gain can be expressed as [16]:

1
ot 5 Ao cos” (ae)Trg(0) cos(), 9)

G=—_"°
2 ([[a, bl]2)

where o is the radiation coefficient (Lambertian emission),
Ay is the active area of the photodetector, «. is the viewing
angle, Ty is the filter transmission coefficient, g(¢) is the
concentration gain, and 6 is the incident angle at the receiver
axis. Therefore, the SNR at the receiver can be calculated as

follows:

ollows (p GP,)2B
NR ~
where p is the responsibility of the photodetector, and N

represents the noise variance. When the light is spread due
to changes in the atmosphere, the receiver collects less power,

SNRpso = (10)

resulting in poor communication. This detects as a geometrical
loss at the receiver, and can be calculated as follows:

47rr?

ly=——
* w(Ella,b]2)?

where r is the receiver aperture radius and ¢ is the divergence
angle. Turbulence loss is another loss where its intensity is
based on the refractive index parameter M?2(z), which can be
estimated using the Hufnagel-Valley (H-V) model as follows:

(1)

M2 (2) = 0-00594(%)2(10_52) Ve (500 (12)
+2.7 x 107 exp (%) +Kexp (%)

where V is the wind speed, z is the object altitude, and K
is constant (1.7 x 10~m=2/3). Once the value M?(z) is
estimated, the turbulence loss {; can be determined as follows:

, 7/6
= \/23.17(2”f109) M2(2)(|[a, b]l2)"°

Cc

13)

In our simulation (Section IV), the parameters for the for-
mulas presented above will be set.

III. FEDHAP FRAMEWORK

FedHAP is a synchronous FL framework tailored to Sat-
com to accelerate the convergence of FL and improve its
accuracy. FedHAP addresses two main challenges: (i) sporadic
connectivity between satellites and PS, which causes a long
convergence time in traditional FL. approaches (e.g., FedAvg
[8]); (ii) the large number of communication rounds typically
required for FL convergence. By introducing HAP as PS, the
number of visible satellites at a time by a PS is increased
(a GS can only “see” an angular range of 180° — «, while
a HAP can “see” even beyond 180°). In addition, FedHAP
proposes three new components as mentioned in Section I that
leverage inter-satellite and inter-HAP collaborations, resulting
in an accelerated convergence of the global FL. model.

A. FedHAP Communication Architecture

We consider a hierarchical communication architecture con-
sisting of two tiers. The first tier is the worker tier, which is
comprised of all the satellites of the LEO constellation X that
train and transmit local models using ISL or SHL. The second
tier is the server tier, which is comprised of all the HAPs that
aggregate and transmit global models using IHL or SHL. It is
worth noting that each satellite has four antennas, two on the
roll axis for intra-plane ISL. communications, and two on the
pitch axis for inter-plane ISL communications. As the latter is
strongly affected by the Doppler shift, we only use the former
(intra-plane ISL) and refer to it as ISL for short in the rest of
the paper unless otherwise specified.

In the traditional FL. communication architecture, i.e., star,
each satellite individually communicates with the PS and,
thus, the PS has to wait for each satellite to come into its
visible zone, causing a significant delay even for one round
of collecting model updates. Instead, we lay a point-to-point
(PTP) communication structure on each orbit in the worker tier,
in which only one visible satellite with a long visibility window
will connect to the server tier (detailed in the next subsection).
In the server tier, the HAPs are organized in a ring architecture
to facilitate communication among them (explained in the
following subsection), but each HAP also communicates with



a set of satellites from different orbits, forming multiple PTP
connections. The result is a ring of multiple PTP architectures.

This hierarchical communication structure significantly en-
hances the continuity of the satellite-PS connectivity via par-
allel communications among rings and among multiple PTPs.
Even when there is only a single HAP, concurrent rings can
still reap substantial efficiency gains since satellites do not have
to wait hours to send or receive models in their next visit to the
PS. Instead, they can leverage the current or soon-to-be visible
satellite to exchange models. Additionally, all links except GS
(IHL, SHL, and ISL) benefit from FSO links which have higher
data rates than RF links (though we do not exploit this benefit
in our experiments to ensure a fair comparison with baselines).

B. Dissemination of Local and Global Models

We propose a model dissemination algorithm that dissemi-
nates local and global models within and between the worker
and server tiers. The main objective of this algorithm is to
minimize the idleness existing in traditional synchronous FL
approaches, where a PS has to idly wait for all the invisible
satellites to become visible (successively) to exchange model
updates. To this end, we allow each visible satellite to send
both its local model and the global model (received from the
server tier) to its next-hop invisible satellite which will perform
partial aggregation (cf. (14), explained later), until reaching the
next visible satellite, thereby reducing idle waits significantly.
Our dissemination algorithm consists of three phases, which
are discussed below.

1) Inter-HAP Dissemination of Global Models: 1t is carried
out at the server tier only when there are multiple HAPs. One
HAP is pre-designated as the source and another (e.g., the
one farthest from the source) as the sink. The source HAP
generates an initial global model, w®, and then transmits it
to its adjacent HAPs via IHL. It also transmits w® to all of
its currently visible satellites via SHL. Upon receiving w?,
each HAP sends w° to its next-hop neighbor on the server-ring
architecture and also transmits w® to all of its currently visible
satellites via the multi-PTP architecture, similarly to the source
HAP. This continues until the sink HAP receives the model
and transmits it to its currently visible satellites. In Fig. 2a, the
yellow curved arrows illustrate this dissemination process. In
the subsequent rounds (8 = 1,2,...) w” is substituted by w”
while the procedure remains the same.

2) Inter-Satellite Dissemination of Local and Partial-Global
Models: In the worker tier, each visible satellite £ in the LEO
constellation will perform two tasks upon receiving the global
model w? in the 5-th round. The first is to retrain w? on its own
data to generate an updated local model wg. The second task
is to send both w” and wf to its next-hop satellite &’ via ISL
(the dissemination direction is pre-designated, either clockwise
or counter-clockwise). If the neighbor &’ is invisible to the PS,
it will do the same as k but, additionally, also perform a partial
aggregation of its generated local model w,f, and the received

wf as follows:

B

wy, = (1 - w)wf + %/wf/ (14)

where v, = my//m is a scaling factor, my is the data
size of the invisible satellite &' and m is the total data size
of the satellites on the same orbit. Thus, wg is a partially
aggregated model which we call a partial-global model and
will be sent to the next invisible satellite together with the
global model w”. The above process continues until reaching
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(a) Inter-HAP model dissemination. (b) Inter-satellite model dissemination.

Fig. 2: Illustration of the proposed model dissemination algorithm.
In (a), a source HAP (h1) sends a global model to a sink HAP (hb),
indicated by yellow arrows; later on, the sink HAP will send a partial-
global model to the source HAP, as indicated by orange arrows. In (b),
blue satellites represent visible satellites while black ones represent
invisible satellites, to HAPs hl and h2; yellow and orange arrows
represent the dissemination of models (each satellite’s local model and
an updated partial global model) from SATS and SATY, respectively.

the next visible satellite, which will then transmit the updated
wf to its visible HAP, and stop sending further (while the
dissemination originating from itself to the same direction has
started earlier). Fig. 2b gives an illustration. If the neighbor %’
is visible, this is simply a special case of the above.

In summary, our inter-satellite model dissemination, together
with partial aggregation, “activates” all the satellites even
though some are invisible, and is thus able to speed up the
training process.

3) Inter-HAP Dissemination of Partial-Global Models:
Once all the HAPs receive the partial-global models from their
respective visible satellites, they will disseminate these partial
models in the reverse direction by starting from the sink HAP
until reaching the source HAP. Then, the source HAP will
aggregate all the received partial models into an updated global
model w?*!, following Section III-C (Eq. 16), and propagate
wP*? to all the HAPs, following Section III-B1.

Algorithm 1 summarizes the entire process, and Lines 2-13
correspond to the above three stages.

C. PFartial and Full Model Aggregation

Once the source HAP has collected all the partial-global
models from its collaborative HAPs on the server tier, it
organizes these models as follows:

U= {{Un, . Uati,, {Un1, .U}y, ... {Un1, .Ut} (15)
Sy

1 Slz St

where U/ is a set cover that contains all partial models received
from all orbits within the LEO constellation, and {l4,}; and
S; are subsets of all partial models collected by HAP % and
all HAPs H, respectively, for an orbit /. If a satellite may be
visible to more than one HAP, FedHAP will filter out redundant
partial models for each .S; using satellite IDs received by HAPs
as metadata. Then, FedHAP results in U’ = {S} ,S] ,...,SL}
where Sl’ contains distinct partial models for each orbit /. Next,
for all orbits L it will check if there is any satellite ID being
left out of ¢’'. In such cases, FedHAP will not generate an
updated version of the global model. Instead, it will wait until

I'This scenario could happen when there are no visible satellites or when the
generation process of a partial model takes longer than the visibility period of
the currently visible satellite of an orbit [ during the current global epoch.



U’ receives the models of those satellites. When U’ receives
all the models from all orbits, FedHAP aggregates them as

follows:
M/H

a
Y e
my

s]€S8, U =1

Wi —

(16)

where my, is the data size of the partial global model
collected by HAP h, and m; is the entire data size collected
by satellites within an orbit [. Lines 14-18 of Algorithm 1
summarize the above processes. Then, the entire process will
start over from Section III-B1, until convergence.

Algorithm 1: FedHAP Model Dissemination & Aggregation

Initialize: Global epoch 8=0, global model w”, Up|F_; = ¢
1 while Stopping criteria is not met do

2 foreach h from source to sink HAP do > 1Inter-HAP
dissemination of the global model
3 Transmit w” to all visible satellites of h
4 foreach k € K that is visible to h do > Tnter-sat
dissemination of local and partial-global
models
5 Retrain w” on k’s own data to obtain wf
6 foreach invisible k' between k and k + 1 do
> Aggregate partial models
7 Retrain w”® on k’’s local data to obtain wf,
8 Aggregate wf and wf/ using (14)
9 Propagate both w” and w,f to next k’
10 k 4 1 transmits wf to its visible HAP
11 Update Us, < Uy U {w?} and record all the
disseminating Sat IDs
12 foreach h from sink to source HAP do > Inter-HAP
Dissemination of partial models
13 | Transmit U}, to the next neighboring HAP
14 if Source HAP receives all partial models then
15 Filter out redundant models from &/ (15) based on sat
1D
16 Aggregate w’ T using (16)
17 else
18 | Reschedule model aggregation to the next epoch
v | B+ pB+1

IV. PERFORMANCE EVALUATION
A. Experiment setup

LEO Constellation and Communication Links. We con-
sider a Walker-delta constellation [14] consisting of five orbits,
each containing eight LEO satellites equally spaced. Each orbit
is at 2000 km above the Earth’s surface with an inclination
angle of 80 degrees. We consider both single-HAP and multi-
HAP scenarios. In the former, the HAP floats above Rolla,
Missouri, USA (the same location is also used by the GS
in baselines). In the latter, one HAP floats above Rolla and
the other above Dallas, Texas, USA. All the HAPs float at
20 km above the Earth’s surface with a minimum elevation
angle of 10 degrees (the same degree as a typical GS). The
parameters of communication links discussed in Section II-B,
which determines the connectivity between satellites and PSs,
are listed in Table I, for both FedHAP and the baselines we
compare to. Note that all the FSO parameters are chosen in
such a way that FSO links behave similarly to RF links, to
ensure a fair comparison with baselines (so in reality FedHAP
would perform even better). We run each simulation for three
days to obtain each set of results.

TABLE I: Communication Parameters

Parameter RF Link FSO Link
G (sender & receiver) 6.98 dBi same
P, (satellite & PS) 40 dBm 10 dBm
f 2.4 GHz same
T 354.81 K same
R 16 Mb/sec same
% — 0.021 km/sec

Dataset and ML models. We use the MNIST dataset as is
used by most of the FL-Satcom studies in the literature. This
dataset contains 70,000 images of handwritten digits of ten
classes (0-9), in grayscale with a resolution of 28x28 pixels.
We use two models at each satellite for model training: con-
volutional neural network (CNN) and multi-layer perceptron
(MLP). In addition, we investigate both IID and non-IID data
distributions. In the IID setting, we shuffle the training samples
and randomly distribute them equally among all the satellites,
with each having all 10 classes of images. In the non-IID
setting, satellites in three orbits have 6 classes (digits 0-5),
while satellites in the other two orbits have 4 classes (digits
6-9). Finally, for hyper-parameters, we set the mini-batch size
to 32 and the learning rate to ¢ 0.01.

Baselines. We compare FedHAP to the most recent (dated
2022) peer research as reviewed in Section I, including FedISL
[5] (synchronous approach), FedSat [7] (asynchronous), and
FedSpace [4] (asynchronous).

B. Results

Comparison with State of the Art. For a fair comparison,
we use only a single HAP or GS and make two versions of
FedHAP, FedHAP-GS, and FedHAP-oneHAP, to compare with
baselines (later we have a two-HAP version for more extensive
evaluation). In FedHAP-GS, everything is the same as what is
described in this paper, except that the HAP is replaced by
a GS (so it will benefit from our model dissemination and
aggregation).

TABLE II: Comparing FedHAP to State of The Art (All non-IID)

FL model Accuracy (%) | Convergence | Remark
time (h)
FedISL [5] 63.74 72 GS at arbitrary location
FedISL (ideal) [5] | 82.87 3.5 GS at NP or MEO above
the equator
FedSat (ideal) [7] 88.83 12 GS at NP so all satellites
visit GS periodically
FedSpace [4] 46.10 72 GS needs satellite raw data
FedHAP-GS 83.94 40 GS at arbitrary location
FedHAP-oneHAP | 87.286 30 HAP at arbitrary location
FedHAP-twoHAP 80.45(89.83) | 5 (30) HAPs at arbitrary location

The comparative results are given in Table II and Fig. 3a.
We can see that FedHAP-oneHAP converges to an accuracy
of 87.3% in 30 hours (or 80 global epochs) without restriction
on HAP locations. This is unlike FedISL [5] which requires
an ideal setup where GS must be located at the NP, yet its
accuracy (82.9%) is still lower than FedHAP. After removing
this ideal condition, as shown in the first row, FedISL takes
72 hours (200 global epochs) to converge and the accuracy is
only 63.7%. FedSat [7] assumes the same ideal setup in order to
have regular visiting intervals. FedSpace [4] does not assume
the ideal setup but converges much slower (72 hours) with
low accuracy (46.1%). Between FedHAP-GS and FedHAP-
oneHAP, the latter outperforms the former in terms of both
accuracy and convergence time, showing the advantages of
using HAPs (recall Section I). Nonetheless, even FedHAP-GS
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Fig. 3: Evaluation in multiple settings: IID vs. non-IID,

performs quite well too, outperforming FedSpace and FedISL
without the ideal setup by large margins.

In this set of results, CNN is used as the training model and
data are non-IID. More scenarios are evaluated next.

Evaluating FedHAP in more extensive scenarios. We
investigate FedHAP more thoroughly with more settings, in-
cluding CNN vs. MLP, IID vs. non-IID data, and single PS vs.
multiple PSs. See Fig. 3b for the results on IID data. When
CNN is used, FedHAP achieves an accuracy of 90.13% within
20 hours using a single HAP, while FedHAP-GS achieves
an accuracy of 89.3% after 35 hours. When MLP is used
instead of CNN, the convergence time does not exhibit a
notable change, and the accuracy of both oneHAP and GS
versions drops by 1-3% only. Fig. 3c presents the results on
non-I1ID data. It shows that FedHAP is robust to non-IID by
performing rather closely to its IID counterpart: it converges
in 60 global epochs (30 hours) and achieves an accuracy of
87.3% with a single HAP, and 80 global epochs (40 hours)
and accuracy of 84% with a GS. This difference in accuracy
between HAP and GS is due to the fact that HAP is able
to observe more LEO satellites than GS (by about 1-5 based
on what we observe in simulations). Switching from CNN to
MLP results in marginally reduced accuracy and a 10 hours
increase in convergence time. However, this performance is
still considerably better than other baseline methods.

In Fig. 3d, we present the results for two HAPs, under
both IID and non-IID data settings. In the IID case, FedHAP
reaches a high accuracy of 92.135% in only 5 hours and
converges to an even higher 96.6% after 20 hours. In the non-
IID case, it achieves an accuracy of 80.452% within 5 hours
and 89.833% after 30 hours. When CNN is switched to MLP,
the performance difference is negligible in the case of non-
IID, while the accuracy drops about 5% (but still above 90%)
in the case of IID, with approximately the same convergence
time. Therefore, we can conclude that our proposed inter-
satellite/HAP collaboration including model dissemination and
aggregation is effective in accelerating FL convergence and
improving model accuracy for LEO constellations.

V. CONCLUSION

This paper introduces HAPs into FL-Satcom to orchestrate
the iterative learning process and proposes a novel synchronous
FL framework, FedHAP, that leverages inter-satellite/HAP col-
laborations to accelerate FL convergence and improve model
accuracy. FedHAP tackles the challenge of highly sporadic
and irregular satellite-GS connectivity in LEO constellations
using a hierarchical communication architecture, a model dis-
semination scheme, and a model aggregation algorithm. Our
simulation results demonstrate promising results of FedHAP

10 20 30 40
Convergence time [h] Convergence time [h]

(c) Non-IID data. (d) Two HAPs (Rolla and Dallas)
CNN vs. MLP, GS vs. HAP, one vs. multiple HAPs.

10 20 30 40 50

as compared to the state of the art (5 times faster with an
accuracy as high as 97%), as well as its robustness to non-IID
data as is typical in FL-Satcom settings.
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