VARIATION OF CANONICAL HEIGHT FOR FATOU POINTS ON P!
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ABSTRACT. Let f : P! — P! be a map of degree > 1 defined over a function field k = K (X),
where K is a number field and X is a projective curve over K. For each point a € P!(k)
satisfying a dynamical stability condition, we prove that the Call-Silverman canonical height
for specialization f; at point ay, for t € X(Q) outside a finite set, induces a Weil height on
the curve X; i.e., we prove the existence of a Q-divisor D = Dy, on X so that the function
t— fALft (at) — hp(t) is bounded on X (Q) for any choice of Weil height associated to D.
We also prove a local version, that the local canonical heights ¢ — A f,,0(a¢) differ from a
Weil function for D by a continuous function on X (C, ), at each place v of the number field
K. These results were known for polynomial maps f and all points a € P!(k) without the
stability hypothesis [21, 14], and for maps f that are quotients of endomorphisms of elliptic
curves E over k and all points a € P'(k) [32, 29]. Finally, we characterize our stability
condition in terms of the geometry of the induced map f X x P! -5 X x P! over K;
and we prove the existence of relative Néron models for the pair (f,a), when a is a Fatou
point at a place v of k, where the local canonical height A #~(a) can be computed as an

intersection number.

1. INTRODUCTION

In this article, we study the variation of canonical height in families of maps f : P! — P!,
More precisely, we fix a number field K and a smooth projective curve X defined over K.
Let k = K(X) be the associated function field, and let K denote an algebraic closure of K.
Any map f : P! — P! of degree d defined over k will specialize to a morphism f; : Pt — P!
of degree d, defined over K, for all but finitely many ¢ € X (K). For points a € P*(k), we are
interested in properties of the function ¢ — hy, (a;), where hy, is the Call-Silverman canonical
height for f; as defined in [5], as t varies in X (K).

An important case was studied in the early 1980s. Given any elliptic surface £ — X with
a zero section, defined over a number field K, and given a section P : X — FE also defined
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over K, the fiber-wise canonical height ¢ — h g, (P;) is known to define a Weil height on the
base curve X (K) [32]. That is, there exists a Q-divisor Dg p on X, of degree equal to the
geometric canonical height hp(P) (viewing E as an elliptic curve over the function field k)

so that
(1.1) he,(P) = hp, . (t) = O(1)

for any choice of Weil height associated to Dg p. The notation O(1) represents a bounded
function, defined on the complement of finitely many points in X (K); the bound depends
on the pair (£, P) and the choice of Weil height hp, ,. This can be viewed as a dynamical
example on P! as follows. Projecting each smooth fiber E;, to P! by the natural degree-two
quotient that identifies a point x € FE; with its inverse —x, and taking, for example, the
multiplication-by-2 endomorphism on E;, we obtain a family of maps f, : P! — P!, well-

defined for all but finitely many ¢t € X(K). See, for example, [31, §6.4]. The section P
projects to an element p € P!(k), and we have iLft (p1) = 2 hg, (P,), so that

(1.2) hs(pe) = ho,, (1) = O(1)

on the complement of finitely many points in X (K), for a Q-divisor Dy, =2 Dgp on X.
For any given map f : P! — P! defined over k of degree > 1, and each point a € P*(k),

Call and Silverman proved that the specializations satisfy

(1.3) hs(a)) = ho(t) = o(hp(t))

as hp(t) — oo, for any choice of Weil height hp on X (K) associated to a divisor D of degree
equal to the geometric (i.e., over k) canonical height ﬁf(a) [5, Theorem 4.1]. Recently,
Ingram improved the error term o(hp(t)) in (1.3) to O(h2D/3(t)) [22]. Inspired by (1.2) and
(1.3), Call and Silverman asked if there can exist a divisor D = Dy, on X so that the
stronger result of the form (1.2) will hold for every f and a; see the Remark after Theorem

4.1 in [5]. We give a partial answer to this question.

Definition 1.1. A point a € P'(k) is said to be totally Fatou for f if it is an element of

the non-archimedean Fatou set at every place v € X(K) of k.

We refer the reader to Section 4 for more information. We note here that throughout this
article we identify the places of k with those of ¥ ® K and with the points v € X(K). The

notion of a totally Fatou point has also appeared in [26] in the setting of number fields.
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Theorem 1.2. Let K be a number field and X a smooth projective curve over K. Let
f:PY — P! be a map of degree > 1 defined over k = K(X), and suppose that a € P'(k)
is totally Fatou for f. Then there exists a Q-divisor D = Dy, on X, of degree equal to the
geometric height hg(a), so that t — hy,(a;) defines a Weil height for D on X(K). More

precisely, for any choice of Weil height hp associated to D, we have
hy, (@) = ho(t) = O(1)

as a function of t € X(K)\'Y for a finite set Y, where hy,(a;) is well defined. The bounds
on }Alft(at) — hp(t) depend on f, a, and the choice of Weil height hp.

We shall see that the divisor D is given by

(1.4) Dia= D, Apsla) -y

yeX(K)

where h = ZA/ A f 1s a local decomposition of the geometric canonical height for f over k.
The fact that D is a Q-divisor for totally Fatou points a, so that A, (a) € Q and therefore
also ﬁf(a) € Q, is new; see Proposition 6.1, addressing a question in [10]. As a special case
of Theorem 1.2 we recover (1.1) and (1.2), because all points in P! (k) are totally Fatou for
the maps f coming from elliptic curves.

The statement of Theorem 1.2 was proved by Ingram for polynomial maps f(z) € k[z]
and for all points a € P!(k) without the totally Fatou assumption [21]. Polynomial maps
have a totally invariant super-attracting fixed point at oo, simplifying computations of the
canonical height. In fact, much more is known for polynomials f and for maps f coming
from elliptic curves, and we address some of this below in the context of Theorem 1.7; see
the works of Favre and Gauthier [14, 15] and of Silverman [28, 29, 30]. However, even with
the totally Fatou assumption, new complications arise for rational maps that do not exist
for polynomials or maps coming from elliptic curves, as we discuss after Theorem 1.7 and

illustrate by example in Section 7.

The totally Fatou condition. In contrast with the setting of number fields, it may be
true that every point a € P'(k) is either preperiodic or totally Fatou for maps f defined
over k. (Note that the statement of Theorem 1.2 holds trivially when a is preperiodic for
f, as hy(a;) = 0 at all points ¢ where f, is defined, and we can take D = 0.) We know of

no examples, nor any mechanisms to prove existence, of maps f defined over k& and points



VARIATION OF HEIGHTS FOR FATOU POINTS 4

a € P!(k) with infinite orbit for which a lies in the non-archimedean Julia set of f at a place
~ of k.

Conjecture 1.3. Let K be a number field and X a smooth projective curve over K. Let
[Pt — P! of degree > 1 be defined over k = K(X). Then every point a € PX(k) is either
preperiodic or totally Fatou for f.

Note that the conjecture remains open for polynomial maps f, though the conclusion of
Theorem 1.2 is known to hold for all points a € P*(k) in that case [21]. In Section 7, we
observe that for all of the previously known cases of Theorem 1.2 in the literature where the
maps f are not polynomials (nor conjugate to polynomials), the points a € P*(k) are totally
Fatou for f.

Here we prove that “most” points in P!(k), from a density point of view, are totally Fatou.

Let k., denote the completion of k at the place v € X (K).

Theorem 1.4. For any f : P* — P! of degree > 1 defined over k = K(X), the set of totally
Fatou points for f in P'(k) is open and dense in the product topology on P'(k), coming from
the embedding of k into HveX(?) k..

Theorem 1.4 exploits the non-local-compactness of k,; it is false for maps f defined over
number fields K, where the Fatou set in a completion K, can fail to be dense at archimedean
or non-archimedean places v.

To understand the totally Fatou condition better, we relate it to the geometry of the
induced rational map

FiX xP' -=» X x P

on the complex surface X x P!, defined by (t,2) — (t, f;(z)). Let I(f) denote the (finite)
indeterminacy set of f in (X x P')(K). For a point a € P'(k), let C, denote the graph in
X x P! of the associated holomorphic map ¢ + a(t) from X to PL.

Theorem 1.5. Let f : P! — P! be of degree > 1, defined over a function field k = K(X),
with the number field K chosen so that all indeterminacy points of f lie in (X x PV)(K).
A point a € PY(k) is totally Fatou for f if and only if there exists a birational morphism
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Y — X x P!, defined over K, so that the induced map

_—

XxP -Ls X xP

satisfies C}/n(a) N [(fy) =0 for alln > 0, where C’Yn(a) 1s the proper transform of the curve
Cin() i Y. Moreover, the modification Y can be chosen so that fy is algebraically stable,
meaning that no curve is mapped by an iterate (fy)” into the indeterminacy set ](fy), and
such that O}/”(a) intersects the singular fibers of the projection Y — X only at smooth points,
for alln > 0.

Remark 1.6. It was proved in [9, Theorem E] that, for every f of degree > 1 over k, there
exists a modification ¥ — X x P! so that the induced map fy : Y --» Y is algebraically
stable. Theorem 1.5 implies we can further modify Y so that the orbit of C|, is disjoint from

the indeterminacy locus of fy, when a is totally Fatou. The choice of Y will depend on a.

We use Theorem 1.5 to prove that the geometric local canonical height XM(a) can be
computed as an intersection number in Y, assuming the point a is Fatou at 7; see Theorem
4.11 and compare with [5, Theorem 6.1]. In analogy with the study of elliptic curves and
abelian varieties, the concept of a “weak Néron model” at a place v of k was introduced in
[5] for dynamical systems; but, it is known that these models often fail to exist for maps
[ : P* — P! defined over k, in the absence of good reduction, for example when there is a
repelling periodic point in &, [20]. In fact, as Ingram noted in the Introduction to [21], if
f : Pt — P! defined over k is neither Lattés nor isotrivial, then it cannot have a weak Néron
model at every place v. The proof of Theorem 1.5 provides the existence of a relative type
of weak Néron model, for a pair (f,a) with a being Fatou at ~y, in which the orbit of the
Fatou point can be arranged to be integral.

Theorem 1.5 follows from the proof of [9, Theorem D] and the classification of y-adic
Fatou components in the Berkovich projective line IP’#“” (over a complete and algebraically
closed field C, containing the completion k) [27] [2] [9, Appendix]; many of the ideas were
already present in [20], and what remained was to show that the full orbit {f"(a)},>0 can

be disjoint from the indeterminacy set after only finitely many blowups of X x P!

Local version of Theorem 1.2. In the setting of elliptic surfaces £ — X, Silverman
strengthened Tate’s result (1.1) by showing that the function By p(t) := hg, (P,) — hpg »(t),
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defined for all but finitely many ¢ € X (Q), can be expressed as a sum over all places v of
the number field K of functions with good behavior [28, 29, 30]. More precisely, he proved
that the local height functions for hg, on E,(Q) and for hp,, on X(Q) can be chosen so
that all v-adic contributions to Bg p extend to define continuous functions on X (C,), even
across the singular fibers, and that all but finitely many of the v-adic contributions are = 0.

We also prove a local continuity result, strengthening the conclusion of Theorem 1.2:

Theorem 1.7. Under the hypotheses of Theorem 1.2, we assume that the number field K is
extended so that supp Dy, C X (K). There are local decompositions

~ 1 1 ~
hft(‘”):[K:Q]]Gal(F/K).t\ 2. 2 Midpuar)

rcGal(K/K)-t vEMK

and

1 1
w0 = R G 2 2 M

zeGal(K/K)tvEMk

fort € X(K) \ supp Dy, so that the function

Vo(t) = Apla) = Apu(t)

extends to a continuous function on the Berkovich analytification Xg" for each place v of K.

Here, Mk denotes the set of places of the number field K, and the weights N, = [K, : Q,]
are the same as those appearing in the product formula 1 = [],,/ || Yo for « € K*. The
conclusion of Theorem 1.7 is known for polynomial maps f(z) € k[z] and for all a € P!(k)
without the totally Fatou hypothesis [19, 14]; their proofs take clever advantage of the
compactness of the orbit-closures of all points in the v-adic Julia sets, as subsets of P!(k,)
(see [14, Theorem 3], [20, Theorem 4.8], [33, Proposition 6.7]), which does not hold for
general rational maps f. See, for example, the f of §7.4. Moreover, even for totally Fatou
points a € P!(k), the proof of Theorem 1.7 requires a new approach. The local canonical
height functions A f,0 for polynomials f can be normalized so they are always non-negative.
The challenge here is the absence of a uniform lower bound on the functions V, of Theorem
1.7, independent of a. (This unboundedness was exploited in [11] to show V,, can fail to
extend continuously for maps f(z) € k(z) when a point a € P*(k’) is defined over a larger
field such as k' = K,(X); see Remark 1.8.)

Finally, we remark that Theorem 1.7 as stated does not imply Theorem 1.2. For polynomial
maps f and each a € P!(k), the functions V, of Theorem 1.7 will satisfy V,, = 0 at all but
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finitely many places v of K [21], as is the case for sections of elliptic surfaces [30]. However,
by contrast, it is not the case that the functions V, will be = 0 for all but finitely many
places v for general rational maps f; there can be nontrivial contributions at infinitely many
places, even for totally Fatou points a € P!(k). See the example of §7.1; such examples were
studied in depth in [25]. Nevertheless, we extract the summability of the magnitudes of V,,

over all places v of K, from the proof of Theorem 1.7.

Julia points. We use the totally Fatou hypothesis on a € P!(k) in a crucial way in our
proofs of Theorems 1.2 and 1.7. The study of Julia points with infinite orbit is more subtle.

As we show in Section 7, there exist examples of the following:

(1) amap f : P! — P! of degree 2 defined over k = Q(t) with bad reduction at ¢ = 0,
for which the non-archimedean Julia set at ¢ = 0 is a Cantor set in the completion
P! (ko) at t = 0, and the local geometric height Aso(a) is in R\ Q for all Julia points
a with infinite orbit. See §7.3; compare the main results of [10].

(2) amap f : P! — P! of degree 2 defined over k = Q(t) with bad reduction at ¢ = 0,
and a point a defined by a formal power series in Q[[¢]] in the non-archimedean Julia
set of f at t = 0 for which, at the place v = oo of QQ, the function V,, of Theorem 1.7
will fail to be defined at t = 0. See §7.4.

For either example, if such a point a can be constructed to be algebraic over k, then, upon
replacing k£ with a finite extension, it would provide a counterexample to Conjecture 1.3,
and the results we prove for totally Fatou points would fail to extend to all a € P!(k). More
precisely, example (1) would show that the divisor D constructed in Theorem 1.2, defined
by (1.4), needs to be an R-divisor instead of a Q-divisor; compare Proposition 6.1. Example
(2) would show that the sequences of functions converging to define the V,, of Theorem 1.7
would not always converge uniformly in the neighborhood of a singularity; compare Theorem
5.1.

Remark 1.8. It is known that, working with maps f defined over the field ¢ = C(t),
there exist points a € P!(¢) that are totally Fatou for f but for which the analog of the
(archimedean) function V., of Theorem 1.7 is unbounded on the base curve P*(C) [11].
The construction in [11] is different from the construction for example (2) and uses Baire
Category. The results of Favre and Gauthier show that such examples over ¢ or examples of

the types (1) and (2) above cannot exist for polynomials f [14].
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2. Mg-TERMINOLOGY

In this section, we fix some basic terminology associated to the number field K and remind
the reader of fundamental facts about elements of k = K (X).

Let My denote the set of places of the number field K, each giving rise to an absolute
value | - [, on K which is normalized to extend one of the standard absolute values on the

field Q of rational numbers. The set My satisfies the product formula,

IT = =1

vEME

for all z € K*. We let K, denote the completion of K at v, so that
N, = [K, : Q).

For each place v of K, we let C, be the completion of an algebraic closure K,. We also fix
an embedding K < C,. We let X" denote the Berkovich analytification of the curve X
over the field C,.

We will use the following terminology, as in [24, Chapter 10]: An Mg-constant is a func-
tion € : Mg — R so that €, = 0 at all but finitely many places v. An Mg-quasiconstant
is a function € : Mx — R such that

Z N, |&,| < oc.

vEMg
A collection of functions f, : Y — R, for v € Mg, defined on a set Y, is Mg-bounded if
there exists an Mg-constant € so that |f,(y)| < &, for all y € Y and v € M.

Fix a point v € X(K) and a choice of w, € K(X) defining local coordinates for X near
7. An Mg-neighborhood of ~ is a collection of open neighborhoods U, of v in X(C,), for
v € Mg, given locally by {|w,|, < 1} for all but finitely many places v. This definition is
independent of the choice of w, uniformizing X near v, as a consequence of the following

proposition.



VARIATION OF HEIGHTS FOR FATOU POINTS 9

Let g denote the genus of X. For each v € X (K), choose {7 € K(X) so that £” has a pole
of order 2g 4+ 1 at v and no other poles in X. The divisor of a function h € K(X) is

(hy=Y_ (ord,h)~

yeX(K)

Proposition 2.1. For any nonconstant h € K(X) with supp(h) C X (K), there exists an

My -constant ¢ so that

[I max{1je (o)} -ersm/eon

y€supp(h)

IN

Bl < e [T max{1 (@)} o/ Gor
~yesupp(h)

for all t € X(K) \ supp(h) and v € My. Moreover, for each v € X(K), the notion of

My -neighborhood of v is well defined.

Remark 2.2. The proposition is a theorem of Weil [34], and its proof is contained in [24,
Chapter 10] or [4, Theorem 2.2.11, Remark 2.2.13], but we include an argument here for

completeness.

Proof. For each v € supp(h), let U, be the complement in X of supp(h) \ {7} and all zeroes
of £7, so that U, is a Zariski-open neighborhood of «. The functions

hY = h2g+1 (éf'y)ordﬂ, h

and 1/h7 and 1/€7 and &' for 4/ # 7 in supp(h) are all regular on U,,. Let Uy, = X \supp(h),
so that h, 1/h and each &7, v € supp(h), are regular on Uj,. Note that U = {U,} U{U, : v €
supp(h)} is an open cover of X.

As in [24, Chapter 10, Lemma 1.1], there exists a projective embedding of X into PV,
defined over K, so the complement of each coordinate hyperplane in PV intersects X in
an open subset of some U € U. Indeed, letting Fy; be the divisor consisting of the sum of
points in the complement of U € U, we can find effective divisors Hy; so that the elements of
{Fy+Hy : U € U} are linearly equivalent, and so that there is no point in the intersection of
the supports of Fi;+Hy. (This is because mH — Fy; will be very ample for any choice of ample
H and every U € U, for all sufficiently large m € N.) The elements {Fy + Hy : U € U}

thus induce a morphism ¢ : X — P* for some k. Choosing any projective embedding
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1 : X — P" defined over K, for some r > 0, our desired embedding comes from postcomposing
¢ xi:X — P x P with the Segre embedding P* x P" — Pk-1(m=1)=1
Let AV (K) denote affine space of dimension NN, and let

H(yb < 7yN)HU = maX{‘yl‘vv R ’yN‘v}

be a v-adic norm on AN (K), for each v € My. A collection of subsets E, C AN(K), for
v € Mg, is affine Mg-bounded if each F, is bounded, and if E, lies in the unit polydisk
{y : |ly|]|s < 1} for all but finitely many wv.

As in [24, Chapter 10, Proposition 1.2], we can now cover X by a finite collection {E;},
of affine Mg-bounded sets, subordinate to the open cover U. Indeed, suppose that (xq : z7 :

-1 zy) are the coordinates of PV. For each j = 0,..., N, let U(j) € U be an element
containing X N {z; # 0}. For each v € M, we let Ej, be the set of all points in PV (K)
with projective coordinates (zo : z1 : - - : xx) so that |z;|, is maximal. Then E;, is the unit
polydisk in the affine chart where z; # 0 with coordinates y; = x;/z;. For each v € Mk,
these affine bounded sets cover all of PV (K) and so also X, and the intersection of E;,, with
X is a subset of U(j). We let E; be the collection {E}, : v € Mg}, for j=0,..., N.

Fix j. For U(j) = U,, since h? and 1/h7 are both regular on U, we have an My-constant

g, such that
(21) T < | = (), < e

on E;,. It is also the case that 1/£7 is regular on U.,, and so is & for each 7' # 7 in supp(h),

so we can enlarge g, if needed so that
_ ’
€], > e and €], < P
on F;,. Moreover, we can also arrange that

0 <e¥v if ord,h >0
1l e if ord,h <0
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on Ej,, because either h or 1/h is regular on U,,. By increasing g, yet again, it follows that

e 0w H max{1, |€7(t)], } ordgh)/(29+1)  _ o=y max{l’|£7(t)|v}(—ordvh)/(2g+1)

Besupp(h)

IA

WOIE

< e max(L, [€7 (1))} ort /G

— O H max{1, |¢7(t)],}(~ords M/ Ro+D)
Besupp(h)

for all t € E;, where U(j) = U,
Similarly for U(j) = Uy, we can find an Mg-constant s so that

e < |hl, <e™

and
&7, < e

on Ej,, for all v € supp(h). This completes the proof of the first statement of the proposition.

To see that the notion of Mg-neighborhood is well defined, we fix 79 € X (K) and choose
any wy € K(X) with a simple zero at . For the covering U of X associated to wy, note that
U,, is the unique element containing 7. So for each v and j, if the set E;, contains 7y, then
it must lie in U,,. The inequality (2.1) implies that |wo|?* = [£7°],;! on such E;,, for all
but finitely many v. On the other hand, we also have that if [£7(¢)|, > 1 at a point t € E;,,
for some j, then E;, is contained in U,, for all but finitely many v (because [£7°], < 1 on
the Ej;,’s in the other elements of ¢). In other words, any My-neighborhood of 7y defined
by wp coincides with {t € X(C,) : |£7(t)], > 1} for all but finitely many places v of K. This
completes the proof of the proposition. O

3. ESCAPE RATES AND WEIL HEIGHTS
Throughout this section, we fix f : P! — P! of degree d > 2, defined over k = K(X), and
any point a € P(k).
3.1. The singular set S(F, A) in X. Working in homogeneous coordinates on P!, we let
= (P,Q): A* — A?
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be a homogeneous lift of f, with homogeneous polynomials P(z,w) € k[z,w| and Q(z,w) €
k[z,w] of degree d having no common zeroes in P'(k), so that f(z) = P( 1)/Q(z,1) in local
coordinates. Choose a lift A = (o, 8) € k*\ {(0,0)} of a = (o : 8) € P'(k). For each
v € X(K), we let

ord, F' = min{ord, ¢ : coefficients ¢ of P and Q}

and

ord, A = min{ord, o, ord, }.

We let Res F' € k* denote the homogeneous resultant of P and Q); see, for example, [31,

§2.4].
Set

(3.1) S(F)={y€ X(K) :ord, F #0 or ord,Res F # 0}

and

(3.2) S(F,A)=8(F)U{y € X(K) :ord, A # 0}

Note that S(F, A) is a finite set.
Convention 3.1. We enlarge the number field K, if needed, so that S(F, A) C X (K).

3.2. Geometric escape rates and a divisor on X. Recall here that throughout we
identify the places of k& with the points v € X (K), with a slight abuse of terminology. For
each v € X(K), we work with the absolute value on &k defined by

2] = e,
and the norm || - ||, on k? given by
1(z,w)ly = max{]z],, [wl,}.
There is a constant C, > 1 so that
(3.3) oIz w)ll§ < IF(zw)lly < Gyl (2wl

for all (z,w) € k?; we can take C,, =1 for all v ¢ S(F) [31, Proposition 5.57].
The escape rate of A for F' at 7 is the quantity

1 n
(34) Gra(A) = lim —log [ (A)]),-
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It exists in R, by (3.3), and it is equal to 0 for all v € S(F, A); see, e.g., [31, Proposition

5.58]. We define an R-divisor by
(3.5) D(F,A)= ) Gpy(A)7.

vEX(K)

The support of D(F, A) is contained in S(F, A) and so in X (K) by Convention 3.1. If we
had chosen different lifts of f and a, say c¢F' and bA for ¢,b € k*, then

(3.6) Gerny(bA) = Gy (A) ord, ¢ — ord, b.

S d-1
It follows that D(cF,bA) and D(F, A) are linearly equivalent R-divisors on X.

3.3. A Weil height associated to D(F,A). Let g denote the genus of X. For each
v € X(K), choose a meromorphic function £” € K(X) so that £” has a pole of order 2g + 1
at v and no other poles.

Let D = D(F, A) be defined by (3.5), and recall that supp D(F, A) C X (K) by Convention
3.1. For each place v of K, we define a function on X (C,) \ supp D by
log™ 1€7(t)]

)\D,v(t) = Z GF,y(A) 29 + 1

This function extends continuously to the Berkovich analytificiation X \ supp D.
A Weil height for D can be defined by

1 1
&0 S ST ISR DR DR

for all t € X(K) \ supp D, and we may set hp(t) = 0 for ¢ € supp D. This hp is indeed a
Weil height associated to the R-divisor D, as it is an R-linear combination of Weil heights

built from the local functions

1
—]+’th
29 1 1%% §7(1)]

at each place v of K, associated to the divisor 7.

3.4. Arithmetic escape rates. For each place v of the number field K, we define a norm
-1l on K by

10z, w)llo = max{|zly, [w],}.
For each t € X(K) \ S(F), we let F, denote the specializations of F. We continue to use
the collection of functions {£7 : v € S(F)} from §3.3. The following proposition appears in
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various forms in the literature, e.g., in [31, Proposition 5.57] [1, Lemma 10.1] [8, Lemma 3.3],
but we require an adelic version for our theorems. Recall that S(F') C X (K) by Convention
3.1.

Proposition 3.2. For each v € S(F), choose 37 € k so that ord,(5"F) = 0. There is an
My -constant b and an My -neighborhood 47 of v in X so that

y
e—bv|é”)’(t)‘;(0rd~,Res(B'YF))/(2g+1) < |Bt |v||Ft(Z’15)||U < ebv
1z, w)llg

for allv € Mg, t € U2\ {7}, and for all (z,w) € (C,)*\ {(0,0)}. We can choose the
My -neighborhoods $47 for v € S(F) to be pairwise disjoint. Moreover, given any Mk -
neighborhoods 37, for v € S(F'), there exists an My-constant ¢ so that

1£3(z, w)lo

IR CRD] .

for allv e Mg, t € X(C,)\ (UWGS(F) 5.13), and for all (z,w) € (C,)*\ {(0,0)}.

—Cy Cy

Proof. Recall that F' = (P, Q) for homogeneous polynomials P and @ of degree d with
coefficients in k. By our choice of 57, there is an M-neighborhood 47 and an M -constant
b so that

(3.8) e < max{|c), : coefficients ¢ of 37P and B7Q} < e

for each ¢ € 47 and each v € Mg, by Proposition 2.1. By increasing the constant b, the
upper bound on || 3] Fy(z,w)||,/||(z,w)||¢ follows from the triangle inequality.

We can enlarge b at the archimedean places, if needed, so that

15 Ei(z,w)lle o
v = € | Res(B/ )|,
(2, )l v

for each t € U7, for all v € M, applying [31, Proposition 5.57] and [8, Lemma 3.3]. Applying
Proposition 2.1 again, this time to Res(87F'), shrinking the Mg-neighborhood and increasing

the M-constant b again if necessary, we have

Y
||6tE(Z7w3“v > b [€r(4)| r Res(BTR)/ 29 )
(2, w)ll

for all t € 47 and each v € M.
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The final statements of the proposition follow from the same combination of Proposition
2.1 with [31, Proposition 5.57], because the coefficients of F' will have no poles and Res F’

will have no poles or zeroes outside of S(F). O

Similar to the geometric escape rates of (3.4), we can define arithmetic escape rates,

working at each place v of the number field K. For each v € Mk, the escape rate function

for the pair (F, A) is defined on X(K) \ S(F, A) by

.1 n
(3.9) Gro(Ar) = lim = log [ (A,

It exists in R for all ¢t € X (K) \ S(F, A) by Proposition 3.2; see, e.g., [31, Proposition 5.58].
The proof of convergence for (3.9) shows it is locally uniform in ¢, so that G, ,(A;) extends
to a continuous function ¢t € X(C,)\ S(F, A) at each place v € M. In fact, it extends to be
continuous on the Berkovich analytification X"\ S(F, A); see, e.g., [1, pp. 295-296] where

the escape rate is “Berkovich-ized”. If we had chosen different lifts of f and a, say c¢F' and

bA for ¢,b € k*, then

(3.10) Gerw(biAr) = Groo(Ar) + log |¢i|» + log by

d—1
for t € X(K)\ (S(F, A)US(cF,bA)).

These escape rate functions provide local height expressions for the canonical height fot
evaluated at a;. In particular, we have

. 1 1
o) = 7 el
bi t [K . Q] | Gal(K/K) : t| ajeGal(ZK/K)'t UEZMK :

for all t € X(K)\ S(F,A). See, for example, [31, Theorem 5.59]. Note that the sum over
all places of K is independent of the choice of lifts F' and A, by the product formula.

3.5. Variation of canonical height. Recall that we are trying to understand if

g, (ar) = hp(t)

is bounded, as claimed in Theorem 1.2, where hp is a choice of Weil height for D = D(F, A)
defined by (3.5). Recalling that any two choices of Weil height for the same divisor are
bounded from one another (and in fact, My-bounded) it suffices to work with the Weil
height constructed in (3.7). Assuming that the point a € P'(k) is totally Fatou for f, a
hypothesis which will be defined and examined in the next Section, we aim to prove three

things:
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(1) that the local geometric height G, (A) is in Q at all points v € X(K), so that the
divisor D = D(F, A) of (3.5) will be a Q-divisor;
(2) that for all places v of K, the v-adic functions

10g+ |§’y(t)|v
V., A E — = 77
(8) = Grio(Ar) Gry 29 + 1
~ES(F,A)

on X(C,) \ S(F,A) extend to bounded — and in fact continuous — functions on the
Berkovich analytification X¢&"; and
(3) that the sum

N 1
hft(at) _hD(t) = |Gal(f/K) ) | Z ZN V

z€Gal(K/K)t v

is uniformly bounded over all points ¢t € X (K)\ S(F, A).

4. THE NON-ARCHIMEDEAN FATOU SET

Throughout this section, we fix f : P* — P! of degree d > 2, defined over k = K(X). For
each fixed v € X(K), we let k. be the completion of k& with respect to the valuation ord,,
and let L, be the completion of an algebraic closure of k.. In this section, we introduce and

study the totally Fatou condition that is assumed for Theorem 1.2, and we prove Theorems
1.4 and 1.5.

4.1. The Fatou set. Fix v € X(K). Let d,(x,y) denote the chordal distance between z
and y in P*(L,). Explicity, if 2 = (21 : 22) and y = (y1 : y2), then
|z1y2 — 1323/1"7
max{|z1]y, [2|,} max{|y1];, [y2]5}
The non-archimedean Fatou set of [ at v is the set 2, (f) of all points z € P*(L,) for

which we can find an open disk D, containing x so that the family of functions {f"|D,}

dy(z,y) =

is equicontinuous in the distance d,. See, for example, [3, Chapter 5|. Its complement
PY(L,) \ ©,(f) is the non-archimedean Julia set of f at ~.

This Fatou set Q. (f) will be all of P*(L,) at v where f has good reduction. In our case,
this implies that Q. (f) = P'(LL,) for all v € S(F), the singular set defined in (3.1), for any
choice of homogeneous polynomial lift F' of f.

A point a € P!(k) is totally Fatou for f if a € Q,(f) at all vy € X(K).
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4.2. Hole-avoiding pairs. Now fix a point a € P!(k). Fix v € X(K), and choose homoge-
neous polynomial lift
F=(PQ):A*— A®
of f over k and lift
A=(a,0) €k’
of a so that

(4.1) ord, F' =ord, A =0,

where ord,, F' and ord, A are defined in §3.1, so that the specializations F’, and A, are well
defined. The holes of f at 7 are the points x = (71 : 3) € PL(K) for which F,(z,,7,) =
(0,0). Holes exist if and only if Res F>, = 0. We say that the pair (f,a) is hole-avoiding at
~ if the specializations satisfy
F(Ay) # (0,0)

for all n > 0. In particular, the pair (f,a) is hole-avoiding at v for all points a € P!(k) if
Res F, # 0. It is easy to check that this definition is independent of the choice of lifts F' and
A, as long as they satisfy (4.1).

Example 4.1. Consider : )

2(z —

f(z) = ——t

over k = Q(t), at t = 0. The polynomial map F(z,w) = (2(z — w), (z — tw)w) specializes
to Fo(z,w) = (2(2 — w), zw). The point 0 = (0 : 1) € P(Q) is the unique hole for f. A
point a € P(k) will therefore fail to be hole-avoiding at ¢t = 0 if and only if it specializes
to ag € Z>o. Indeed, for ay = nyg € Zso, the iterates of the lift A = (a,1) will satisfy
v (4g) = (0,0).

Example 4.2. Consider
f(z)=2+1/t
over k = Q(t), at t = 0. The polynomial map F(z,w) = (tz* + w? tw?) specializes to

Fo(z,w) = (w?,0). The point co = (1 : 0) € P}(Q) is the unique hole for f. There are no
hole-avoiding points in P(k), because F2(z,w) = Fy(w?,0) = (0,0) for all (z,w) € K.

We may view f : P! — P! over k as a rational map

F:iX xP' --» X x P!
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of the surface X x P! to itself, defined over the number field K by (¢,2) — (¢, fi(z)). We
may view the point a € P!(k) as a section of the projection X x P! — X also defined over

K. The following is immediate from the definitions:

Lemma 4.3. A pair (f,a) is hole-avoiding at v € X (K) if and only if the iterates f™(a) (as
sections of the fibered surface X x P! — X ) are disjoint from the indeterminacy locus of the
induced map f: X x P! —=» X x P within the fiber {y} x P, for alln > 0.

Note that all of the indeterminacy points of f in X x P! are contained in the fibers over
S(F) C X for every choice of homogeneous polynomial lift F'. The term “hole” for an
indeterminacy point was first used in [6]; it was meant to capture the idea that the mass of
the measures of maximal entropy in the family f;, for t € X(C)\ S(F), was “falling into the

holes” of f and its iterates f™ at t = v. The same condition appears in [25].

4.3. The action of f on the Berkovich projective line. Fix v € X(K). We now
reinterpret the notion of hole-avoiding in the language of the Berkovich projective line defined
over the field L, which we denote by IP’#“”, and the extension of f to a dynamical system on
PLe". A good basic reference for the dynamics of f on P1*" is [3]. Note that the definition
of hole-avoiding extends naturally to elements a € P!(k,), for k, the completion of k at ~,
with a lift A chosen in (k,)*\ {(0,0)}.

By definition, the hole-directions for f from a Type II point ¢ € IP’%’“" are the connected
components of ]P’#"m \ {¢} that intersect the set of preimages f~1(¢). When ¢ = (g is the
Gauss point in ]P’,ly’“”, the hole-directions correspond to the holes of f at 7, via the natural
identification of the connected components of PL"\ {¢} with P'(K). See, for example, (3,
§7.5]. (In particular, if f({) = ¢, the hole-directions coincide with the “bad” directions of
[3, Theorem 7.34].) This implies:

Lemma 4.4. Let a be an element of P1(k,). The pair (f,a) is hole-avoiding at ~ if and only
if neither a nor any iterate f"(a) lies in a hole-direction for f from the Gauss point (g in

1,an
PLen.

Let Q2"(f) be the Berkovich Fatou set of f in ]P’,ly’“"; see, e.g., [3, Chapter 8]. Any open set
U C PL*" that intersects the Berkovich Julia set Jo"(f) := PL*" \ Q2*(f) has the property
that the union U = UnZO f™(U) is dense in ]P’%’“"; in fact, the set & omits at most 2 points,
both in P*(LL,) [3, Theorem 8.15]. Recall that Q2"(f)NP'(L,) = Q,(f), the non-archimedean

Fatou set as we have defined it in §4.1.
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Lemma 4.5. For any Type II point ¢ € IP’#“", the points of the non-archimedean Julia set of

[ in PY(LL,) are contained in the union of the hole-directions from ¢ for f", over alln > 1.

Proof. Let U be a connected component of P1*"\ {¢}. If U has non-empty intersection with
the non-archimedean Julia set J"(f) NP'(LL,), then the iterates of U must contain all Type
IT points, including ¢ itself [3, Theorem 8.15]. So U must be a hole-direction from ¢ for some
iterate of f. O

We are now ready to prove the following result, needed to analyze the dynamics of totally
Fatou points for the proof of Theorem 1.2 and Theorem 1.7:

Theorem 4.6. Fiz any f : P! — P! of degree d > 2, defined over k = K(X), a point
v € X(K), and any point a € P*(k,). The point a lies in the non-archimedean Fatou set
Q. (f) if and only if there exist a change of coordinates B € PGLy(k) and iterates f™ and
™ so that the pair (Bf"B~', B(f™(a))) is hole-avoiding at 7.

We shall see that one implication is straightforward from the definitions, that the existence
of the hole-avoiding pair implies that a € €, (f). To prove the converse implication, assuming
a € Q,(f), we follow the proof of [9, Theorem D], which itself uses the Rivera-Letelier
classification of Berkovich Fatou components in the Berkovich space IP’}Y"“"” [27] [9, Appendix]
and the Benedetto wandering domains theorem [2], while also keeping track of the orbit of
the point a.

In the language of [9], given a finite set I" of Type II points in ]P’#a”, a connected component
U of PL**\ T is called a J-component for I if f*(U) N T # () for some n > 0. The Julia
set J9"(f) is contained in the union of the J-components and I' [9, Proposition 2.5]. The
other connected components of ]P’#‘m \T" are called F-components. An F-component U for
[ is called an F-disk if it is a Berkovich disk; it is wandering if the iterates f™(U) lie in
pairwise disjoint F-components for all n.

A pair (f,T') is analytically stable if, for each ¢ € ", we have either f({) € T or f(() is
contained in an F-component for I'.

The k-split Type II points ¢ are those in the PGLy(k)-orbit of the Gauss point (5. These
are the Type II points that have k-rational points in infinitely many connected components
of P\ {¢}. Our proof strategy for Thoerem 4.6 also gives the following statement, which
will be used in our proof of Theorem 1.5.

Theorem 4.7. Fiz any f : P! — P! of degree d > 2 defined over k = K(X), a point
v € X(K), and any Fatou point a € Q. (f) "NPY(k,). For any finite set of Type II points T,
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there ezists a finite set T" D T' so that the pair (f,T") is analytically stable and each point
f™(a) of the orbit of a lies in an F-disk for T'. Moreover, if the elements of T are k-split,

then we can choose I'" so that its elements are also k-split.

Remark 4.8. In [9, Theorem D], the existence of an analytically stable IV O T for the map

f is proved, but without the additional conclusion about the orbit of the Fatou point a.

Proof of Theorems 4.6 and 4.7. Fix a € P'(k,), and assume first that there exist B €
PGLy(k) and integers n > 1 and m > 0 so that the pair (Bf"B~!, B(f™(a))) is hole-
avoiding at . Let (g = B~((g) € P}*", where (g is the Gauss point. Then by Lemma 4.4,
the point f™(a) and all iterates f7"*™(a), for j > 0, do not lie in the hole-directions of f"
from (p. But the existence of such an orbit implies that either f"((z) = (g or that f"((g)
lies in a direction from (p which is not a hole-direction (for otherwise all points would either
be in a hole-direction or mapped into a hole-direction under one iterate). If f"((g) = (g,
then the hole-directions from (g for an iterate f'", with j > 1, coincide with directions that
are mapped to the hole-directions for f™ by some f with ¢ < j; if f*(Cg) # (5, then the
hole-directions for the iterates f/™ must coincide with the holes for f*, for all j > 1. In either
case, it then follows from Lemma 4.5 that f™(a) is not in J¢"(f) NP'(L,). In other words,
a must be an element of the Fatou set €2, (f). This proves one implication of Theorem 4.6.

To prove the converse implication in Theorem 4.6, we need to find a coordinate change
B with good properties. We do this by constructing a Type II point (5 with the desired
properties, and then we will choose any B € PGLy(k) sending (p to the Gauss point (.
Along the way, we will prove Theorem 4.7.

Let T be any finite set of Type II points. From [9, Theorem D], we know that there is a
finite set of Type II points IV D I' (which can be chosen to be k-split if I' is k-split) so that
the pair (f,T”) is analytically stable. More precisely, the main theorem of [9, §3.2] states

that, for every ¢ € I, one of the following three cases must hold:
(1) the orbit of ¢ lies in I”, and f*(¢) = f4(¢) for some £ > k > 0;
(2) some iterate of ¢ lies in a wandering F-disk for I, with a periodic boundary point
¢"eTl’;or
(3) some iterate of ¢ lies in an F-component for I'' that contains an attracting periodic
point.
Now fix a point a € §2,(f). Choose a Berkovich disk D, containing a and contained in

Q3"(f), with k-split Type II boundary point (,. Choose D, small enough so that the elements
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of I are disjoint from the forward iterates f’(D,) for all j > 0; this is possible because
D, C Q2"(f). Following the proof in [9, §3.2], we use the classification of Fatou components
(see [9, Theorem A.1]) to analyze the orbit of the disk D,, to choose a distinguished k-split
Type II point to be (g, and to increase the set IV further so it contains (, and (p and remains
analytically stable.

First assume that a (and so also D,) lies in a wandering Fatou component U. From |2,
Theorem 5.1], there exists m > 0 so that V = f™(U) is a wandering Berkovich disk with
periodic and k-split boundary point; see also [9, Proposition 3.8]. Enlarging m if necessary,
we can assume that V' does not contain ¢, and that the union (J,5, f/(V) is disjoint from
[". Let (g be the boundary point of V' and n > 1 the period of (5. We then increase I
to include the iterates (g, f(Ca), ..., f™ 1({,) and the periodic orbit of (5. Then the point
f7(a) lies in an F-disk for I” for all j > 0, the point f™(a) lies in a wandering F-disk for I
with boundary point (g, and (f,I") is analytically stable.

Now suppose that a lies in the basin of attraction of an attracting periodic point p of
period n. Then there exists an integer s > 0, so that f*(D,) is contained in the periodic
Fatou component containing p. Note that p must be in the completion P'(k,), because the
iterates fi"**(a) € P*(k,) converge to p as j — oo. Thus, there exists a small disk D,
around p with k-split boundary point ¢, that does not contain f*(¢,) nor any element of I”
and so that f*(D,) € D,. Now choose m > s so that f™(a) € D, while [ 1(¢,) &€ D,.
We include the orbit (,, f(Ca), .-, f™ () in IV, and we also include ¢,, f(p), - - -, f"H(E,).
Then we set (g = (,. Again it follows that the point f7(a) lies in an F-disk for " for all
j > 0, the point f™(a) in an F-disk for [ containing the attracting periodic point, and
(f,I") is analytically stable.

The final case is where an iterate f™(D,) lies in a periodic Rivera domain V. If (, is
preperiodic, we include its forward orbit in I'. Let P be the subset of the closure V' which
is periodic; as explained in [9, Lemma 3.10], the set P is a closed and connected subset of V
that includes the finite set of boundary points OV If there exists m so that f™(a) lies in P,
then we let (g = f"((,) and let n be its period. Note that f™(a) lies in a periodic F-disk
for the new I, If {, has infinite forward orbit, let (g € P be the Type II point which is the
retraction of the iterate f™(a) to P; by increasing m if necessary, we can arrange so that
no elements of I' lie in this component of V' \ P containing f™(a) nor in any component
containing the forward orbit of f™(a). We then include (4, f((a), - -, f™ () and the orbit
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of (g in I"". Note that f™(a) now lies in wandering F-disk for I". The point (p is k-split
because the orbit of a intersects infinitely many directions from (p.

In all cases, the pair (f,I) is analytically stable for the newly augmented I"”, and each
element of the orbit f7(a), for j > 0, must lie in an F-disk. This proves Theorem 4.7.
Moreover, in all three cases, if we set I's = {(g}, then the pair (f",I'g) is also analytically
stable, and the point f™(a) and its future iterates f™%"(a), j > 1, are in F-components
for I'g. In particular, they do not lie in hole-directions from (g. We make any choice of
B € PGLy(k) that takes (p to the Gauss point (g. In view of Lemma 4.4 this completes the
proof of Theorem 4.6. O

4.4. Proof of Theorem 1.5. This is a consequence of Theorem 4.7, similar to the proof
of [9, Theorem E] as an application of [9, Theorem D]. Fix v € X(K), and assume that
a € P!(k) is in the non-archimedean Fatou set of f at 7. Choose a Zariski open set U, C X
so that all indeterminacy points of

f:vaIP’I—ﬂUWXIP’l

lie over . Apply Theorem 4.7 to I" = {(¢}, the Gauss point, in IP’#“". The analytically stable
pair (f,I") guaranteed by Theorem 4.7 gives rise to a birational morphism Y, — U, x P!
defined over K, which is an isomorphism outside of {7y} x P!, and an algebraically stable
map f, : Y, --» Y, lifting f. (See [9, §4] for details on the relationship between vertex sets T
and modifications of the surface X x P!.) Recall that C, denotes the curve in X x P! defined
the graph of t — a;, and that C’ﬁ(a) denotes the proper transform of the curve Cyn(,) in Y.,
for each n > 0.

Let 7 : Y, — U, denote the projection. The indeterminacy points for the iterates ( fv)"
in 771(7) are identified with J-components of I, and the F-disks for I are identified with
smooth points in the fiber 77!(v) that are not indeterminate for any iterate of fv' Therefore,
the conclusion of Theorem 4.7 about the Fatou point a guarantees that the curves C}/f{(a) are
disjoint from I(f,) and intersect the fiber over v in smooth points, for all n > 0. Assuming
that the point a is totally Fatou, we can repeat this argument over each v € X (K) where
f: X xP!--> X x P! has indeterminacy; we glue the surfaces Y, and maps f, to obtain
our desired rational map

fy Y --» Y.

For the converse implication, let Y — X x P! be any choice of birational morphism defined

over K, and let 7 : Y — X be the projection to the first factor. Assume that a € P*(k)
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lies in the non-archimedean Julia set at v € X (K). Then we know that the curve C) will
intersect an indeterminacy point of some iterate (fy )7 in the fiber of Y over ~, by Lemma
4.5. Indeed, any small Berkovich disk around a will map, under large iterates of f, over each
of the Type II points corresponding to the components of Y over . There are now two cases
to consider. If CY or some iterate C}/n () Intersects a component of the fiber over  which is
mapped by fy into an indeterminacy point, then we are done. If not, then since the point
p = CY Nr'(y) is indeterminate for (fy)’, it must be that the point p is sent by (fy )™, for
some m < j, to an element of I(fy). Consequently, C'}/m(a) intersects the indeterminacy set

of fy, and the proof is complete. O

4.5. Proof of Theorem 1.4. Assume that f is defined over k = K(X), for number field K.
Enlarging K if necessary, we can assume that all places vy of bad reduction for f lie in X (K).
At each place v € X(K) of k, we know that the non-archimedean Fatou set Q. (f) NP(k) is
open in P*(k), in the y-adic topology. We also know that Q. (f) NP (k) = P*(k) for all but
finitely many . We will show that Q. (f) NP'(k) is dense in P*(k) for the remaining .

Fix v € X(K) and a point b € P}(k), and let ¢ be any k-split Type II point in IP’#“"
bounding a disk around b. Consider all the connected components of P}Y’“” \ {C}. If one of
these disks intersects P'(k), we call it a k-disk at (. In the natural identification of the
set of components of ]P’#‘m \ {¢} with P}(K), the k-disks correspond to the rational points
P!(K). If a k-disk at ¢ intersects the Berkovich Julia set, we call it a Julia k-disk at (.

If there are only finitely many Julia k-disks at (, then we can always find infinitely many
k-disks at ¢ that are fully contained in the Fatou set. This shows the existence of Fatou
elements of P!(k) in the closed Berkovich disk around b bounded by (.

If there are infinitely many Julia k-disks at ¢, then ( is in the Julia set (because the Julia
set is closed in IP’#“”), and ( is therefore preperiodic [9, Proposition 3.9]. We are still able
to find infinitely many k-disks at { that are fully contained in the Fatou set. Suppose that
fmt () = f™(C) for some m > 0 and n > 1. Let e be the local degree of f™ at f™((), as
defined in [3, §7.4], so that e > 1. For e > 1, the iterate f" induces a map g : P* — P! of
degree e, defined over K, by the natural identification of P!(K) with the set of directions
from f™(¢). The Julia set of f (which coincides with the Julia set for f*) in P1*" is contained
in the union of the hole-directions from f™(¢) for f™ and its iterates f7, j > 1, by Lemma
4.5. In other words, the Julia directions are identified with a subset of the union szo g7 (E)
for a finite set £ C P'(K), corresponding to the hole-directions for f". But this implies that

there are only finitely many Julia k-disks from f™((), because they correspond to a set in
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P'(K) with bounded Weil height, since degg > 1. It follows that there were only finitely

many Julia k-disks from (, a contradiction. So we conclude that e = 1.

The action of f™ at f™(() therefore induces an automorphism A € PGLy(K) acting on
P! (K), the set of directions from f™(¢). The Julia k-directions from f™(¢) are contained
in the union of the finitely many hole-directions of f™ at f™(({) and the hole-directions for
all iterates f™, j > 1. As before, these directions are identified with the union of a finite
set £ in P1(K) and the orbit of F under A~*. Now let h : P! — P! be the map induced by
f™ from ¢ to f™(C), defined over K, under any choice of identification of the k-directions
from ¢ and f™(¢) with P!(K). Then we can find infinitely many k-disks at ¢ that are fully

contained in the Fatou set, as a consequence of the following:

Lemma 4.9. For any number field K, any finite set E in P1(K), any A : P* — P! of degree
1 defined over K, and any nonconstant h : P! — P! defined over K, there exists an infinite
set Y C PY(K) for which

(U Aj(h(Y))> NE =.

>0

Proof. Choosing coordinates on P! over K, we can assume that A~!(z) = ax for some
a € K* or that A7'(x) = z + 1. If A has finite order, then there is nothing to show, as
then (J;5, A7/(E) is finite while h(P'(K)) is infinite. So if A~'(z) = ax, we can assume
there exists a place v of K for which |a|, > 1. Then the set J,5g A™7(E) = U, (¢/E)
has no v-adic accumulation points except co. Choose any y, € P!(K) so that h(yy) # oo,
and let {y,} be any infinite sequence in P*(K) for which y,, — yo v-adically. Then h(y,) —
h(yo) v-adically. Therefore, letting Y be this sequence {y,}, after excluding at most finitely
many elements from the sequence, we may conclude that (szo A‘j(E)) Nh(Y) = 0. For
A7l (z) = z + 1, we work with any archimedean place of K. Let y, € P!(K) be a point for
which h(yg) # oo, and select any sequence y,, € K for which y, — y at this place. Then,

as before, letting Y be the complement of finitely many points in {y,}, we conclude that

(UpoA7(B)) nh(Y) = 0. 0

Repeating the above argument for all k-split points ¢, we see that U, := Q. (f) N P'(k,)
is open and dense in P'(k,) in the v-adic topology.

Let 71,...,7s € X(K) denote the places for which U, # P!(k,). Via the canonical
embedding of k into HyeX(?) k., we can approximate any tuple (z1,...,z,) € [[, U, by
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elements in k. This shows that totally Fatou points are open and dense in P*(k) in the

topology induced from the product topology. 0

4.6. Intersection theory for a Fatou point. The existence of the resolution Y — X x P!
constructed in Theorems 1.5 and 4.7 shows more. We now prove that the local geometric
canonical height \ 7~(a), at each place v of the function field & = K(X), can be computed
as an intersection number in Y when a € P*(k) is totally Fatou. In this way, for each place
v of k, we can view our surface Y as providing a relative type of Néron model, associated to
the pair (f,a).

Fix a choice of local canonical height functions {\;, : v € X(K)} on P'(k) as in [31,
§3.5], so that fzf(a) =D ex(®) As~(a) for every a € P'(k). The local canonical height can
be computed as

S\fﬁ(a) = —min{0, ord,(a)}
at all but finitely many places 7; we enlarge the number field K so that this finite set of
places is contained in X (K).

Recall that, as in the statement of Theorem 1.5, the curve C,, is the section of X x P! — X

defined by t +— a4, for any a € P'(k). The curve CY is its proper transform in Y.

Proposition 4.10. Let f : P! — P! be of degree d > 1, defined over a function field
k= K(X). Firy e X(K). Lt : Y — X x P be a birational morphism defined
over the number field K, which is an isomorphism outside of the line L, = {y} x P'. Let
{Y, Y2y denote the irreducible components of E, = w*(L.). Let fy be the induced map on
Y satisfying

X xPl--s X x P!

and assume that fy maps no component Y, ; into an indeterminacy point of fy in E.. Then,
there exist rational numbers c,; € Q, fori =1,...,m,, so the following holds. For each
point a € P1(k) such that the curve C}/"(a) is disjoint from the indeterminacy locus I(fy) NE,
and the singular locus of E. for every n > 0, the local geometric canonical height of a at

18 computed by

Apn(@) = (Ca- Co)y + > 6s CF Y,
=1
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where (Cy-Cx )~ is the intersection multiplicity of the curves C, and Cy in X X P! at (7, 00).
Combined with Theorems 1.5 and 4.7, we obtain:

Theorem 4.11. Let f : P! — P! be of degree d > 1, defined over a function field k = K(X),
and let a € PY(k) be a totally Fatou point. Extending the number field K if necessary, let Y be
the surface of Theorem 1.5, and let {c,;} be the rational numbers guaranteed by Proposition

4.10 over each v € X(K). Then the geometric canonical height of a satisfies

Z /A\fﬁ( C O + Z ZCWZOY i

~eX(K) yeEX(K) i=1
Proof. The theorem is almost immediate from Proposition 4.10 and the statement of The-
orem 1.5, summing over all ¥ € X(K). We only need the additional input of Theorem 4.7
that the orbit of a will always lie in an F-disk for the vertex set I''. This guarantees that

the curves C}/n (a) Intersect the singular fibers only in their smooth points. O

Proof of Proposition 4.10. As for Theorem 4.7, we continue to follow the arguments of [9],
and we also build on the machinery developed in [10].

We identify the components Y, ; with a finite set of Type II points in the Berkovich space
P,lyﬂ” over the field L,. (We caution that some components Y; may be non-reduced, so we
need to keep track of their multiplicities as well.) See the discussion in, e.g., [9, §4]. Let
I' C IP#“” be the union of this finite set of Type II points; note that I' must include the
Gauss point of IP’}/“" because 7 : Y — X x P! is regular.

Suppose that a € P1(k) is a point for which the curves C¥, (a) A€ disjoint from the points of
indeterminacy for fy for all n > 0. This means, as in §4.3, that f"(a) lies in an F-component
for I' for every n > 0. Fixing a homogeneous lift F* of f so that ord, F' = 0, we define the
order function o(F,-) on IF’#“” as in [10, §3.1]. Specifically, for each n > 0, we let A,, denote
a homogeneous lift of f™(a) € P'(k) so that ord, A, = 0, and then

op = 0(F, f*(a)) = ord, F(A,).

From [10, Lemma 3.1], the local canonical height at v (associated to this choice of F) can

be computed as

Aj(a) = —min{0, ord,(a)} — Z ey

The key observation is contained in [10, Proposition 4.1, T heorem 4.2]: for a point a that lies

in an F-disk component of IF’}/’“" \ T, the order function depends only on the boundary point
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of that F-disk. When each iterate of a lies in an F-disk, the sequence o, depends only on
the sequence of boundary points of these F-disks containing f™(a), over all n > 0. However,
by the stability of the pair (f,T"), these sequences, in turn, depend only on the boundary
point of the disk containing a itself. Indeed, every F-disk with boundary point ¢ will map
into an F-disk with the same boundary point. Moreover, the order function can only take
finitely many possible values on the F-disks of I' (by [10, Theorem 4.2]) and the stability
of (f,T') implies that the sequence {o,} will be eventually periodic. In other words, the
sequence {0, } depends only on the component Y, ; that intersects C) in E,. The coefficient

¢y, is rational because the sequence {0, } is eventually periodic. U

5. NEAR A SINGULARITY: UNIFORM CONVERGENCE TO THE ESCAPE RATE

In this section, we fix v € X(K). We assume that we are given f : P! — P! of degree
d > 2, defined over k = K(X), and a point a € P! (k). We choose lifts F' and A, as defined
in §3.1,with ord, F' = ord, A = 0 and we assume that

Res(F,) = 0.
We also assume that the pair (f,a) is hole-avoiding at v, as defined in §4.2, so that

FI(A,) # (0.0)
for all n > 0. We set
A, = F"(A) € k?

and we study the convergence of the sequence of functions

65.) guo(t) = 7 log (Aol

in a neighborhood of t = v in X(C,), for each v € M. We prove:

Theorem 5.1. Fiz v € X(K) and a hole-avoiding pair (f,a) at v with lifts ' and A
satisfying ord, F' = ord, A = 0 and Res(F,) = 0. There exists an Mg-neighborhood L of ~y
in X so that, for each v € Mg, the functions g, converge uniformly on i, to a continuous

function g,.

Note that the limit function g, coincides with the escape-rate function G, ,(A;) defined

by (3.9) in §3.4, for ¢ # . So we know that the convergence of g,, to g, is uniform on
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neighborhoods where ¢ remains bounded away from ~ and the other singularities of f. The

steps in the proof of Theorem 5.1 are inspired by the arguments in [12], [13], and [25].

5.1. Convergence of the constant terms g, ,(7).
Proposition 5.2. Fiz v € X(K). Under the hypotheses of Theorem 5.1, the limit

1
a, = lim == log |[(An), |l

exists in R, for all v € M. Moreover, we have

Z Ny|ay| < 0.

veEMg

In other words, {a, : v € Mg} defines an M -quasiconstant.

Remark 5.3. For each fixed n, we have ||(4,),], = 1 for all but finitely many v. But as
n grows, the number of places for which ||(A4,),||, # 1 can also grow, so that «, can be
nonzero for infinitely many v € Mg. A simple example is given by the function f(z) =
z2(z +1)/(z + t) defined over k = Q(t), which is similar to Example 4.1, at ¢ = 0. Take
a = 1. Fix homogeneous polynomial lift F'(z,w) = (2(z + w), (z + tw)w), so that Fy(z,w) =
(2(z + w), zw), and set A = Ay = (1,1). Then for every prime p, we have ||(A4,)ol|, = 1 for
all n < p, and |[(An)oll, < 1 for all n > p. We show below in (5.18) that this will imply
that the limit oy, of Proposition 5.2 will be negative for all primes p. Many more examples
are given in [25]. Bear in mind that this does not happen for Lattes examples (the maps
arising as quotients of endomorphisms of elliptic curves) or for polynomials; in other words,

for those types of maps, the «, of Proposition 5.2 always define an M y-constant.

Proof of Proposition 5.2. Since Res(F,) = 0, specializing F' at 7, we can write
F,=HF

where H(z,w) € K|z, w] is a nonconstant homogeneous polynomial of degree k < d, and
F(z,w) € (K[z,w])? is a homogeneous polynomial map of degree ¢ = d — k < d inducing a
morphism of degree £ on P*. The zeroes of H in P! are called the holes of f at 7, as defined
in §4.2.

Because the pair (f, a) is hole-avoiding, the lift A satisfies F7'(A,) # (0,0) for all n. So it
must be that either £ > 0 or, if £ = 0, the value of F' is not a root of H. Consequently, as in

[6, Lemma 2.2], the specialization of each iterate F™ can be expressed in terms of H and F
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by
(5.2) F (z,w) = (1:[ H(F"(z,w))dn_l_i> F™(z,w)

for all n > 1. In particular, this shows that

5.3 (A), = (H H(FZ(AM"”) Fr(a,)

for every n.
For £ = 0, the map F' is constant, so F™(A,) = (20, wp) € K2\ {(0,0)} for some point
(20, wp) and for all n > 1. The formula (5.3) gives

n—1
1 1 1 1
onlogll(An)ylle = ~log|H(A,)|, + > i1 108 [ H (20, wo)lo + =2 log [[(z0, wo) [
i=1

1
— Elog|H(A7)|v + log |H (zo, wo) v

1
d(d—1)
as n — oo, for all places v of K. The statements of the proposition follow immediately in
this case.

Now assume that ¢ > 1. There exists an Mg-constant £ so that
ez w)lly < 1F(z,w)|| < e*[l(z,w)],

for all (z,w) € K and for all v € My [31, Proposition 5.57]. This implies that

_ n—1 mn An » n—1 mn
(5.4) R 7 R 2 0 T e R 07
so that
) 1 -
(5.5) Jim o log || (4[| =0

for all v € Mg, because ¢ < d.
Recalling that deg H = k = d — ¢, there is also an Mg-constant § so that

[H(z,w)|y < € ||(z,w)ll;

for all (z,w) € K2. So

(5.6) [H(EF(A)]o < ™ [[FH(A I} < efveb St a i
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at all places v and for all ¢« > 1. Note that the bound on the right side of (5.6) can be > 1
at only finitely many places v of K, independent of 7. Let S, denote this finite set of places.
Therefore, since H (ﬁ ‘(A,)) € K* for all ¢, we can apply the product formula to observe that
there is a constant ¢ > 0 so that
(5.7) [T 1HE @A) = emt)

vgSy
for all ¢« > 1. Using the formula (5.3), we combine (5.5) with (5.6) and (5.7) to deduce the

existence of

1 =1
(5.8) a, = lim —log [[(Au), o = Y = log |[H(E(A,))].
1=0

at every place v, because ¢ < d.
From (5.6) and the summation expression for «, in (5.8), we see that a,, < 0 forallv € S,.

To show that the sum over all places of the «, is finite, we use (5.7) to estimate

1 - max{i, (*
LS Nolog|H(F(4,)], > P o,
vEgS 4

for each ¢ > 1. Summing over all 7, we can then use Fubini’s theorem to deduce that

Z N, ay > —00,

vgSy
so that
Z Ny|ay| < .
veMg
This completes the proof of the proposition. O

5.2. Proof of Theorem 5.1. Throughout this proof, we work in an M g-neighborhood 4 of
v € X(K), so that the conclusion of Proposition 3.2 holds. For simplicity, we let u € K(X)
denote a choice of local coordinate on X near 7 so that u = 0 represents .

We now fix v € Mg, and we drop the dependence on v to ease notation. Let § denote
the v-adic radius of the largest disk {|u|, < 0} contained in the Mg-neighborhood . Let

C = e > 1 be the constant appearing in Proposition 3.2 at this place. For each n, we write
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A, (u) for the specialization of A, = F"(A) at u. For every n > m, we define

1
gulu) = %logHAn(U)H
1 L Al
= grlogllAn@)ll+ 5 > Flog =t aeg
o m+j—1

for |u| < d. Let ¢ = ord, Res(F'). From Proposition 3.2, we have

1 1
(5.9) gm(u) + e (qlog|ul —log C) < gn(u) < gm(u)+ e log C

for all n > m > 0 and for all |u| < 4. Let
1
a = lim —log[|A,(0)|;
n—oo ™
its existence is guaranteed by Proposition 5.2.

Step 1: a choice of N and dy for a uniform upper bound. Fix ¢ > 0. Choose N so
that we have

(5.10) "7 <A (0)]] < e

for all n > N, and so that
1
N

1
(5.11) logC <e and iy log(1—¢)| <e.

Now choose dy > 0 so that, by continuity of Ay (u), we have
(5.12) (1)) < [|Ay(u)|| < e (72
for all |u| < dy. Applying the upper bound of (5.9) and using (5.11), this implies that
1
(5.13) g(u) < gn(u) + 75

for all n > N and for all |u| < dy.

Note that the lower bound of (5.9) is not enough to get uniform control on g, from below

logC < a+ 3¢

for n > N, because of the log |u| term.

Step 2: the Maximum Principle and lower bounds within 4,. By the triangle

inequality, we have
[ AN () = An (0)| < 26 (9
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for all |u| < oy, from (5.10) and (5.12). Note that the coordinates of Ay (u) — Ax(0) vanish
at t = 0, and so the Maximum Principle (applied to < (Ay(u) — An(0))) gives

HAN(U) - AN(O)H < M ZedN(aJng)
on
for all |u| < dy. For a non-archimedean Maximum Principle see e.g. [1, Proposition 8.14].

Using the upper bound of (5.13), the same argument implies that

5. 14 An u) — An 0 < _‘u’ 26dn(a+35)
N

for all n > N and for all |u| < dy. This implies that

[An()l| = [[An(O)]] = [[An(u) = An(0)]]

|ul

> ed”(a—s) ™ 2€d"(a+3s)
> .
—  d"(a—e) (1 _ M 26:1"(45))
on
for all n > N and for all |u| < dy.
Now define
51\]5
for all n > N. So we have
(5.16) [An(u)]] > ™9 (1—¢)

for all |u| < 6, and for all n > N. Combined with the lower bound of (5.12) and the
condition on N in (5.11), this shows that

(5.17) gn(u) > o — 2¢

for all |u| <6, and for all n > N.

Step 3: Choosing larger Ny and completing the proof. From the definition of 9,,, we
see that
1
dn
for all n > N. Now choose ng > N so that

1

e log(dne/2) — 4e

log d,, =

L log(dne/2)| < e.

dro
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Recall that the sequence {g,} converges uniformly on neighborhoods in u that are bounded
away from u = 0 (and any other singularities for f in X), so, by our choice of M-
neighborhood, there exists Ny > ng so that

’gn _gm’ <e

for all n,m > Ny, uniformly on {6,, < |u| < 0}.
For |u| < 4, we know that

gn(u) <a+3e
for all n > ng by (5.13). And we know that

gn(u) > a — 2¢
for all |u| <6, and for all n > ng, by (5.17). On the other hand, for ¢,, < |u| < §,, we can
choose n > m > ng so that 6,41 < |u| < d,, and then (5.9) gives

4

9u() 2 () + -

1
log 0,1 — d—mlogC’ > o —2e —bqde — ¢
So, in particular, we have
a—(3+5qd)e<g, <a+3e

for all n > Ny and for all |u| < §,,. This completes the proof of uniform convergence. [

5.3. A summable lower bound on a disk. We conclude this section with a consequence
of Proposition 5.2 and its proof that will be used to prove Theorem 1.2.

Proposition 5.4. Fiz v € X(K). Under the hypotheses of Theorem 5.1 and in the notation
of Proposition 5.2, there ewists a finite set S, C Mg so that

(d(ordyRes F') + 1) a,, < g(t) <0
for every v & S, and all t in an Mg-neighborhood of .
Proof. We first let S, be the finite set of places v € Mk, including all archimedean places,
at which the quantities £, and §, in the proof of Proposition 5.2 differ from 0 and where
|A,|ls # 1. It follows from the computations in Proposition 5.2 (specifically, equation (5.6)

and (5.8)) that a, <0 for all v & S,.
Recall the formula for (A, ), given in (5.3). For all v & S, we have

1(Ans)3llo = 175 ((A)) o < [1(An)y 1
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so that

1

1
(518) 10 (Al < 2 log (4w, .

for all n. For all v € My \ S, we also have ||[F"(A,)|, = 1 for all n. So ||(An),]ls < 1 for
some n > 0 if and only if there exists i < n so that |H(F¥(A,))|, < 1. Furthermore, from
(5.18), such an n exists if and only if o, < 0, for each v &€ S,.

Now let u denote a local coordinate on X with v = 0 representing . From Proposition
2.1, the coefficients of F' and the coordinates of A are Mg-bounded on an Mg-neighborhood
of v. We enlarge S, if needed to assume that these coefficients are < 1 in absolute value
and so that the neighborhood is given by {|u|, < 1} for all v & S,. We further enlarge S,
to include all places at which the Mg-constant b, from Proposition 3.2 differs from 1, and
also so that |u[2*1 = |£7], for v ¢ S, on the Mg-neighborhood of v (applying Proposition
2.1 to u).

Then, for all v € S, the upper bound on the coefficients of F' and the coordinates of A

gives
(5.19) [An ()]l <1

for all n > 1 and for all |u|, < 1. This implies immediately that g,(u) < 0 for all |u|, < 1
with v € S, proving the desired upper bound of the proposition.

Moreover, for v ¢ S, where o, = g,(0) = 0, we conclude from the Maximum Principle
(applied to the subharmonic g,) that g,(u) = 0 for all |u|, < 1, and the estimate of the
proposition holds for these v. For the rest of the proof, we fix v ¢ S, with a, < 0, and
choose minimal m > 0 so that ||(Am41)4]e < 1. Since ||(An)7||zl,/dn is a non-increasing
sequence from (5.18), we see that [[(A,),||, decreases to 0 as n — oo, and
1
dn
for all n. As ||(A)4]|o = 1, the inequality (5.19) implies (with the Maximum Principle) that
| A (w)]], = 1 for all |uf, < 1.

Let ¢ = ord,(Res F). Proposition 3.2 then gives

(5.20) log || (An)4llo = o

1 1
G21) g Al > oo Al + = log ul, = - log]ul,
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for all n > m and for all |u|, < 1. Therefore, for all u satisfying || A.+1(0)|, < |ul, < 1, we

have
q

1
%bg [ An(u)llo > d_mlog||Am+1(0)||v > qdoy
for all n > m, from (5.21) and (5.20). This shows that g,(u) > ¢do, where |ul, >
[ Am+1(0)[[o-
On the other hand, for |u|, < ||Am+1(0)||,, we can choose j > m + 1 so that
1441 (0) o < ulo < | 4;(0)]]

Then, writing A;(u) = A;(0) + uR;(u) for u near 0, we know that ||R;(u)|, < 1 for all
lul, < 1, by (5.19) and the Maximum Principle, and therefore

145 ()l = [14;(0) + wRj(u)ll = |A;(0)]
where |u|, < [|A4;(0)|,. Therefore,

1 1 q
ﬁlogHAn(U)Hv > ElogHAj(U)ller@long
1 q
> Elogl\Aj(O)HmLglogllflm(o)llv
> (1+dg)a,

for all [|A;41(0)]l, < |uly < ||A4;(0)]] and for all n > j. This implies that g,(u) > (1 + dq)a,
for u values in this region. Since ||A4,,(0)||, — 0 as n — oo, the proof of the lower bound on

gy is complete, thus completing the proof of the proposition. O

6. PROOFS OF THEOREMS 1.2 AND 1.7

In this section, we complete the proofs of Theorems 1.2 and 1.7. We fix f : P! — P!
defined over the field &k = K(X), of degree d > 1, and we assume that a € P'(k) is totally
Fatou for f. Fix homogeneous lifts F' of f and A of a as in §3.1. Recall the definitions of
the finite sets S(F) C S(F, A) in X (K) from §3.1, and that K was enlarged (if necessary) so
that S(F, A) C X(K), as stated in Convention 3.1. Recall also the definitions of the escape

rates Gp(A) and G, ,(A;) given in (3.4) and (3.9), respectively. The divisor
D = Z Gry(A) v

YEX(K)

on X was defined in (3.5); its support lies in S(F, A).
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For the choice of Weil height hp defined by (3.7), we now consider the difference

hy () = ho(t) =

1 1
(K :Q]|Gal(K/K) -t Z Z Ny | Gr,0(Az)

zeGal(K/K)-t veEMk 7eX (K)

A)log™ €7 ()],

for t € X(K)\ S(F, A). For each place v of K, we examine the function

(6.1) Vo(t) = Gro(A) — A)log™ [ (t)]

'yEX(K

on X (K) and its extension to X (C,) and the Berkovich analytification X". Recall that the

steps needed to complete the proofs were outlined in §3.5.

6.1. Changing coordinates and lifts. If we change the lifts F' and A, multiplying each
by an element of £*, it follows from (3.6) and (3.10) that

1
Gth,v(OéAt)—chF,w(aA)long §7#)]e = Grw(A) — % +1GF7( ) log™ |£7(t)],
(6.2) + T log e, +
1

ord, (ca™") log™ [€7(¢)].

(29+1)(d—1)
for any choice of v € X(K). Moreover, the sum of the last two terms is Mg-bounded on an
Mg-neighborhood of 7, as a consequence of Proposition 2.1.

If we conjugate F' by an element B € GLy(k), we have
(63) GBFBflﬁ(B(A)) = GF,'y(A) and G(BFBfl)t,v(B(A%) = GFt,v<At)

from the definitions of the escape rates, for each v € X(K), and each place v of K and all
te X(K)\ (S(F,A)US(BFB™',B(A)) US(B)). Replacing F or A by an iterate gives

(64) GFnW(Fm(A» = dm GF,'\/(A) and GFtn’v(Fm(A)t) = dm GFt,U(At)

for all n > 1 and m > 0, again immediate from the definitions.

6.2. The divisor D = D(F,A) is a Q-divisor. We need to show that Gr,(A) € Q for
each v € S(F, A). This is immediate from the following proposition. (It also follows from the
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statement of Proposition 4.10.) We present an alternative short argument in the following

proposition. Recall that k., denotes the completion of k at .

Proposition 6.1. Let f : P* — P! be of degree d > 2, defined over k = K(X), v a point in
X(K), and a € P'(k,). If the point a is an element of the non-archimedean Fatou set Q. (f)

at 7y, then the geometric escape rate Gp(A) is a rational number, for any choice of lifts F

and A.

Remark 6.2. In [10] it was shown, for maps f defined over k, that there can exist points
a € P'(k,) with irrational local canonical height. Proposition 6.1 implies that these points
must always lie in the non-archimedean Julia set of f at v. We provide examples in Section

7. It is not known if the Julia points can be algebraic over k.

Proof. If the pair (f,a) is hole-avoiding at 7, as defined in §4.2, and if SF and aA are lifts
of f and a, respectively, so that ord, 8F' = ord, aA = 0 for o, 8 € k*, then

1
Gr(A) = Gap,(aA) + 1 ord, 3 + ord, o

from (3.6), so that
1
GF,’y(A> =0+ ﬁ OI‘d,yB + Ord,y o € Q

because ord, (BF)"(aA) = 0 for all n > 0.

If the pair (f,a) is not hole-avoiding at 7, then Theorem 4.6 implies the existence of
a change of coordinates B € GLy(k) and iterates so that the pair (Bf"B~! B(f™(a))) is
hole-avoiding at . The conclusion then follows from (6.3) and (6.4). O

6.3. Variation of canonical height: proofs of the main theorems. Assume that a €
P!(k) is totally Fatou for f, and let D = D(F, A). Proposition 6.1 implies that D is a
Q-divisor, so it remains to study properties of the functions V,,, defined in (6.1), associated
to this divsor D on the curve X at each place v of the number field K.

We begin by proving Theorem 1.7, which states that the functions V,, are continuous on
the Berkovich analytification X¢" at all places v. This implies, in particular, the existence
of a uniform bound C, so that |V,| < C, at all points of X(K). (Recall that we have fixed
an embedding of K — C, for each place v.) Towards proving Theorem 1.2, we then find
a finite set of places S C Mg outside of which we have strong bounds on V,, so that we

can show the sum > /g Ny Vy(t) is uniformly bounded on X (K). Combined with the
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bound C, for each place v, we obtain a uniform bound on the sum »_ ., N, V,(t), for all

t € X(K). Averaging over Galois orbits will complete the proof of Theorem 1.2.

Proof of Theorem 1.7. Fix v € S(F, A). First assume that the pair (f, a) is hole-avoiding at
7, as defined in §4.2. Choose functions «, 3 € k so that ord, SF = ord, A = 0. This places
us in the setting required for the results of Section 5. For the function g, defined there, note
that

1

(65)  gu(t) = Valt) = o= log|Bai '] +

(29 + 1;(d —qy (8 o) log™ &7(t),

on an Mg-neighborhood of v, as a consequence of (6.2), and this difference is continuous at
all places v € Mg and an Mg-bounded function.

If the pair (f,a) fails to be hole-avoiding at 7, then from Theorem 4.6, we can find a
change of coordinates B € GLy(k) and pass to iterates so that the pair (Bf"B~!, B(f™(a)))
is hole-avoiding at . From properties (6.3) and (6.4) of the escape rates, we can replace the
lifts (F, A) with (BF"B~!, BF™(A)), and these changes do not affect the computation of
V, on an My-neighborhood of v (outside of + itself, where the specialization B, may fail to
be invertible), except to multiply it by d™ at every place v. So we can assume that (f,a) is
hole-avoiding at ~.

We can apply Theorem 5.1 to conclude that V, is a continuous function on an M-
neighborhood of ~, for every v € My, and that it extends to a continuous function on
the closure of this neighborhood in the Berkovich analytification of X, for each v. This
completes the proof of Theorem 1.7, because the continuity of V,, — when bounded away
from the elements of S(F, A) in X" — is immediate from the definitions of the escape rates
GF,»(A;) and the local height functions for hp. O

Proof of Theorem 1.2. Fix v € S(F, A). As in the proof of Theorem 1.7, it suffices to assume
that (f,a) is hole-avoiding at . Choose functions «, 5 € k so that ord, SF = ord, aA = 0.
Let S, be a finite set of places of the number field K so that the function in (6.5) vanishes
on an Mg-neighborhood of v for all v € Mg \ S,. The function V, for the given pair
(F, A) then coincides with the function V, for the pair (8F,aA) for all v € Mg \ S, on an
Mg-neighborhood of v and is equal to g, at these places.

We can enlarge the finite set S, so that Propositions 5.4 and 5.2 imply the existence of an

M g-quasiconstant a(y) for which

(6.6) Vo)l = 190 (8)] < au(7)
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for all v € S, and ¢ in an Mg-neighborhood of ~.

Let 4 be the union of these My-neighborhoods over all v € S(F, A). From Proposition
3.2, we know that there exists an My-constant ¢ so that
1Fi(z, w)]lo

(2, w)[¢

for all t € X(C,) outside of 4, and all v € Mg. From Proposition 2.1, we can increase the

Cy

(6.7) e <

M -constant ¢ so that
(6.8) e < [[Al, < e

for all t € X(C,) \ Y,.
Let S C Mk be a finite set containing S, for each v € S(F, A) and containing all places

for which ¢, # 0 and for which 4, is not equal to the union {J ¢y 4){[{7]o > 1}. Now fix
te X(K). Ift ¢ 44, at v € S, we have

(6.9) Vilt) = Gra(Ay) = 0
because ||F}*(A;)]], = 1 for all n, from (6.7) and (6.8). On the other hand, if ¢t € 4, for
v & S, then we still have the bound

(6.10) Vo(t)] < au(7)

from (6.6). Recalling the summability of the bounds in (6.6) near each v € S(F, A), inequal-
ities (6.9) and (6.10) yield

2NVl < Ci= D D Noau(y) <o

vgS YES(F,A) vgS

for each t € X(K).
By the continuity of V,, on X" for every v € My, from Theorem 1.7, there is a constant
C, for each v € S so that |V, (t)| < C, for all t € X(K). This gives

YNV < C+D N, Cy <00
vEME veES
for all t € X (K). It follows that, taking averages over the Galois orbit of ¢, we have

1
AT ' Y NIVl £ ¢+) NG,

zcGal(K/K)-t vEMK veSs
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for all t € X (K). This completes the proof of Theorem 1.2. O

7. EXAMPLES

In this final section, we present examples to illustrate some of the subtle phenomena that

can arise for non-polynomial maps f : P — P!, even in the simplest setting of degree d = 2,
with K = Q and k = Q(¢).

7.1. The difference of heights in Theorem 1.2 is bounded but not Mg-bounded.
We first present an example, already seen in Remark 5.3, where the conditions of Theorem
1.2 hold but the functions V,, of Theorem 1.7 are nontrivial at infinitely many places v of
K = Q. A mechanism to construct many other such examples appears in [25]. Consider
z(z+1)
& ===
defined over k = Q(t). Put

F(z,w) = (z(z + w), (z + tw)w),

so that S(F) consists only of the three points t = 0,1,00 in X = P'. Let a = 1, and take
A= (1,1)sothat S(F, A) = S(F) = {0,1,00}. The point a is totally Fatou as a consequence
of Theorem 4.6, because the pair (f,a) is hole-avoiding at all points of S(F'). Indeed, at
t =0, we have Fy(z,w) = (2(z + w), zw) with hole at z/w = 0 and orbit fi'(a) =n + 1 for
all n > 0. At t = 1, we have Fi(z,w) = (2(z + w), (2 + w)w) with hole at z/w = —1, and
orbit ff'(a) =1 for all n > 0. Finally, at t = oo, we can choose a new lift F/ = $F so that
(F")oo(z,w) = (0,w?) with hole at z/w = oo and orbit f7(a) =0 for all n > 1.

It follows from these computations that D = D(F, A) = (c0) is the divisor of degree 1 on
X = P! supported at the point ¢t = co. This implies, in particular, that ﬁf(a) =1

Fix a prime p of Q. To see that the function V) is nontrivial on X, it suffices to show
that V,(0) # 0. Let A, = F"(A). As explained in Remark 5.3, we have ||(A,)ol|, = 1 for all
n <p, and ||(An)oll, < 1 for all n > p. As computed in (5.18), we know that ||(A,)o|l/*" is
a decreasing sequence for all primes p, so that the «,, of Proposition 5.2 (defined as g,(0) for
the function g,(t) = lim, o 27" log ||(An )¢, in a p-adic neighborhood of ¢t = 0) is non-zero
for all primes p. Moreover, as explained in the proof of Theorem 1.7, we also have that
V,(0) = ¢,(0) and so V,(0) = a,, < 0 for all primes p.
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7.2. All known non-polynomial examples are totally Fatou. Here we survey the re-
sults in the literature where the conclusions of Theorems 1.2 and 1.7 were known for examples
f : P! — P! that are not polynomial maps (nor conjugate to a polynomial). In every case,
the points a € P!(k) that were treated satisfy our totally Fatou hypothesis.

The first example is the one presented in the Introduction, where the variation of canonical
height ¢ — izft (p¢) for a family of Lattes maps f; — those arising as quotients of endomor-
phisms of ellptic curves — is known to differ from a Weil height for a (Q-divisor on the base
curve X by a bounded amount, for any choice of p € P*(k) [32]. The continuity of the local
contributions V,, as defined in Theorem 1.7, was shown by Silverman in [29]. Also as men-
tioned in the Introduction, it is well known that all points are totally Fatou for these maps;
see, e.g., the computation of the Berkovich Julia set in [16, §5]. Alternatively, note that the
existence of a Néron model forces all points to be hole-avoiding in appropriate coordinates.

In [17], the authors prove Theorem 1.2 for rational maps f defined over k = K(X) for a

curve X and points ¢ € P!(k), under the assumptions that

(1) there exists ¢y € X so that the map f has good reduction at all t # to;
(2) f has a super-attracting fixed point at z = oo; and
(3) the point ¢ satisfies ordy, f™(c) = —oc.

Condition (3) implies that ¢ is in the basin of attraction of the super-attracting fixed point
at 0o, so it is clearly Fatou at ty3. (The hypothesis (3) is stated in [17, Theorem 5.4] as
{deg f™(c) : n > 0} is unbounded, but for a notion of degree defined in their Section 5 on
the regular functions on X \ {¢¢} and extended to k after equation (5.4).)

In [18], the authors studied maps of the form

d
fla) =2

over k = Q(t), for d > 3, and they prove Theorem 1.2 for all points a € P'(k). (The map

f for d = 2 is isotrivial, making the theorem true but much easier.) In this example, the

point z = oo is a super-attracting fixed point, and there are two places of bad reduction, at
t =0 and t = co. All points a € P}(k) are totally Fatou. Indeed, at ¢ = 0, the reduction is
fo(2) = 2471 with only hole at z = 0. So the only points we need to consider are those which
vanish at ¢ = 0. But for any integer m > 1, if ordga = m, then ordy f(a) =1 —m <0, so
f(a) which will no longer specialize to 0 at ¢t = 0; this implies that the pair (f, f(a)) is hole-
avoiding at ¢ = 0 for all @ € P!(k). At t = oo, a computation shows that if orde,a =r < 0,
then ord., f(a) = (d — 1)r; iterating implies that f"(a) — oo in the oo-adic topology, so the
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point a will be Fatou at t = co. Moreover, if ord,, a = r > 0, then ord,, f(a) = —r—1 <0,
and again a is Fatou at co.

In [13], the authors consider
Az

(7.1) &)=

for a fixed A # 0 in Q, defined over k = Q(t), having a fixed point of multiplier A. For X
not a root of unity or for A = 1, the result of Theorem 1.2 is obtained there for the critical
points ¢ = £1 of f. The critical points will be totally Fatou for any choice of A. It suffices
to check the dynamics of f at ¢t = co. For A = 1, we can conjugate f by B(z) = 1/(tz) so the
new map z + 1+ 1/(¢%z) specializes to z — z+1 with hole at z = 0, and the critical values in
the new coordinate system B(f(cy)) = (£241¢)/t specialize to z = 1, so the pairs (f, f(c+))
are seen to be hole-avoiding in the new coordinate system. For A not a root of unity, the
map f can be conjugated to a map that specializes to z — A z with a hole at z = 1, and so
that the critical values f(c4) in the new coordinates will specialize to z = A. Again the pairs
(f, f(cx)) are hole-avoiding in the new coordinate system. These facts appear in the proof of
[13, Proposition 2.2] and in [7, §5]; these cases are also covered by [23, Lemma 3.4]. Finally,
in [25], the authors obtain the result of Theorem 1.2 for the maps f of the form (7.1) when A
is a root of unity and for a large class of points ¢ € Q(t) satisfying a hole-avoiding condition
at the place of bad reduction ¢ = co. This includes in particular maps of the form (7.1) with
cy+ = *1. As explained in Theorem 4.6 above, this means that the points considered are

totally Fatou.

7.3. Julia points: irrational local heights and R-divisors. This next example is a map
of degree 2 defined over the field k¥ = Q(¢), with the property that all points with infinite
orbit that lie in a local non-archimedean Julia set at the place t = 0 of k& will have an
irrational local canonical height. If such a point can be algebraic over k, it would show that
the conclusion of Theorem 1.2 would fail for Julia points, as stated; the divisor D should be
an R-divisor on the curve X. Set
2 2 2
72 oy = e =

This map has fixed points at z = 1 (with multiplier 1/¢) and at z = —1 (with multiplier
1/t?), and at z = oo. At the place t = 0 of k, these fixed points at +1 are repelling, and the

fixed point at oo is attracting (but not super-attracting). The Julia set in Pifg , defined over
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the field L of formal Puiseux series in ¢, is a Cantor set of Type I points, and f is conjugate
to the full 2-shift [23, Theorem 3(1)]. All points outside of the Julia set will tend to co under
iteration. This map f exhibits a polynomial-like behavior near its Julia set, and it can be
computed that the Julia set is a subset the formal completion kg := Q[[t]]. But this example
is not strongly polynomial-like, in the sense of [10, Theorem 1.5, because the multipliers at
the two repelling fixed points have distinct absolute values.

We can compute local canonical heights over the field k& with the procedure described in

[10]. In homogeneous coordinates, put
F(z,w) = (2 +t 4+ 1)2% + tzw + (12 — Dw?, (282 + t)zw + tw?).

At t =0, we have Fy(z,w) = (22 —w?, 0), and the Julia set is contained in the hole-directions
+1 from the Gauss point (g, i.e., in the union of the two disks Dy = {z € L : |z—(%1)|o < 1}.
The conjugacy between f on its Julia set and the shift map on 2 symbols is given by
the itinerary of a point as it moves between D, and D_. For a point a € ky with lift
A € (ko)*\ {(0,0)}, a sequence of orders is defined by

(73) Th - — Ordt:() Fn(A) = 27—n71 + 0n_1
so that .
. Tn Op—1
Grold) == lim 50 =m0 =3 5

From the formula for ', we can compute that o, = 1if f*(a) € D, and o, = 21if f*(a) € D_,
for all n > 0. Because of the conjugation to the shift map, we see that the sequence {c,} is
eventually periodic if and only if the point a is eventually periodic. Therefore, Gp(A) (and
so also any presentation of the geometric local canonical height A ro(a) at t = 0) is irrational

for all Julia points with infinite orbit.

Remark 7.1. The function f of (7.2) is conjugate to z +— t:j_:’f, in a standard normal

form for quadratic rational maps, with fixed points at 0 and oo of specified multipliers (in

this case, having multiplier 1/t* at 0 and 1/t at o). We then moved the two repelling fixed
points to 1 and —1 and the attracting fixed point to oo.

7.4. Julia points with divergent escape rates. Our final example is

24—t —1)z—t3 2>+t

(74) 1) = — ,
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defined over the field k = Q(¢), at the place v corresponding to ¢ = 0. As for the example
(7.2), all Julia points at ¢ = 0 with infinite orbit for f will have an irrational local canonical

height at ¢ = 0. This can be seen from the proof of [10, Theorem 1.3], because this f is

(z+1)(2—1)
z+t

Julia set with the shift on 2 symbols [23, Proposition 4.2].
We construct (formal) points a € Q[[t]] in the Julia set of f at ¢ = 0 so that the sequence
of functions (5.1) that define V., (at the archimedean place) will diverge at t = 0. We do not

know if the points a we construct can be algebraic over k, nor even if the series will converge

conjugate to the map z studied there, combined with an identification of the

on a disk around ¢t = 0. We use these examples to illustrate some of the features of Julia

points that do not arise for the Fatou points.

Remark 7.2. As we shall see, taking any unbounded sequence of positive integers {my }r>o
in the construction below, this example also shows that the orbits of points in P! (k. ) can have
non-locally-compact closures. This is distinct from what happens for polynomials; compare
[14, Theorem 3].
More precisely, we construct examples so that the sequence
1

0 = 5108 (Aol
as defined and studied in Proposition 5.2, will diverge to —oo at the place v = oo. In
particular, this would show that — if the point a defines a convergent series in Q[[t]] — the
conclusion of Theorem 5.1 would fail. That is, the sequence of functions

1

9u(t) = - log | (A,
would converge, locally uniformly on a punctured disk around ¢ = 0, and we know that the
limit function ¢(t) must be bounded by o(log|t|) as t — 0 [8, Proposition 3.1]. But the
convergence to g would not be uniform in a neighborhood of ¢t = 0.

For the construction, note first that f specializes to the identity transformation fo(z) = 2z
at t = 0 with a hole at z = 1. The Berkovich Julia set is contained in the direction z = 1
from the Gauss point, and all Julia points have the form 1+ mt + O(¢?) for some integer
m > 0. We have

fA+wt+0@*) =1+ (w—1)t+0(t?)

for all w # 0, and

fA+wt+0(t%) =1+ i—ZH o(t%)
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for all w # 1.
For any sequence of positive integers {my }r>o, there is a unique point a € Q[[t]] so that

a=1+mot+ O(t?)
and
frotrtmearth gy = 14+ my t + O(t?)
for all £ > 1 [10, Theorem 1.3], [23, Proposition 4.2]. Let
Fz,w) = (2 + (£ =t = Dzw + (—* — 26> + )w?, zw — (¥ + 1)w?)
be a lift of f. Set
A=(a,1)=(1+mot+O(t), 1)

for the a associated to a given sequence {my}r>o. For each n > 1, we set
An = t_anle(An_l),

where o, is chosen so that ord;—g A, = 0, as above in (7.3). In fact, o, = 1 whenever
f(a) =1+ wt+ O(t?) for w # 0, and o, = 2 for f*(a) = 1+ O(t?). For each n > 1, we let

(An)o denote the specialization at t = 0, and set

in the archimedean norm.

We now show that, by choosing the sequence {my}r>¢ to grow to infinity sufficiently fast,
we can have liminf,,_, o, = —o0. For a lift (yo + 21t + O(t?), yo + y1t + O(¢?)) of the point
1+ mt+ O(t?), with m > 0, we have (z; — 41)/yo = m, and this gives

F (yo + z1t + O(*), yo + ynt + O(t%)) =t (yo(x1 — 11), yo(21 — 1)) + O(t?)
=t (mys, myg)) +O(t?)

for m # 0. Now suppose we take any lift (yo+y1t +z2t* + O(t?), yo + y1t + yot* + O(t*)) with
Yo # 0 of a point p = 1+ct?>+O(t?), with ¢ = m—ﬁ for m > 1 so that f(p) = 1+mt+ O(t?).
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Then we must have £2=%2 — m—1 and this gives
Yo m—+1

F (yo + yit + 22t + O(t?), yo + yit + yat® + O(t%))
=t (yo(za — Yo — ¥2), Yo(x2 — yo — v2)) + O(¥?)

-2y =22
= ¢? ) + 0.
(m+1’m—|—1 +0()

Iterating the point A, we find that
(A1)o = (mo, mo)

(A2)o = (mf(mo — 1), mj(mo — 1))

all the way to

(Amg)o = (& (mo = )7+ 1, md" ™ (mo = 17+ 1) = (Ving, Yino)

so that
Qmyg 9mo 0g |§m0| jE - 2j Og(”LO J )

The point A, is a lift of f™(a) =140t + T’Zi—;tQ + O(t%), so that

—2 -2
(Amo+1)o = ( Yoo Yn210> :

m1+1 m1+1

Thus,

L 2
Qmo+1 = Omo + 5o 108 | oy )

Note that this a,,,+1 can be made as negative as desired by choosing m; > my. Continuing

to iterate, we have

S
1 .
Qmg+1+s = Qmg+1 + Z Smot14d log(my —j +1)
j=1

forall s=1,...,mq. Then

1 2
Cmo+m+2 = Cmotma+1 5o 1og (mz n 1> '

Again, we can make v, +m,+2 as negative as desired by choosing mg > m;. We see that the
pattern continues, and so, by choosing the sequence {my}r>o to grow to infinity very fast,

we conclude that the sequence {a, },>0 is unbounded from below.
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