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Abstract. Let f : P1 ! P1 be a map of degree > 1 defined over a function field k = K(X),

where K is a number field and X is a projective curve over K. For each point a 2 P1(k)

satisfying a dynamical stability condition, we prove that the Call-Silverman canonical height

for specialization ft at point at, for t 2 X(Q) outside a finite set, induces a Weil height on

the curve X; i.e., we prove the existence of a Q-divisor D = Df,a on X so that the function

t 7! ĥft(at) � hD(t) is bounded on X(Q) for any choice of Weil height associated to D.

We also prove a local version, that the local canonical heights t 7! �̂ft,v(at) di↵er from a

Weil function for D by a continuous function on X(Cv), at each place v of the number field

K. These results were known for polynomial maps f and all points a 2 P1(k) without the

stability hypothesis [21, 14], and for maps f that are quotients of endomorphisms of elliptic

curves E over k and all points a 2 P1(k) [32, 29]. Finally, we characterize our stability

condition in terms of the geometry of the induced map f̃ : X ⇥ P1 99K X ⇥ P1 over K;

and we prove the existence of relative Néron models for the pair (f, a), when a is a Fatou

point at a place � of k, where the local canonical height �̂f,�(a) can be computed as an

intersection number.

1. Introduction

In this article, we study the variation of canonical height in families of maps f : P1 ! P1.

More precisely, we fix a number field K and a smooth projective curve X defined over K.

Let k = K(X) be the associated function field, and let K denote an algebraic closure of K.

Any map f : P1 ! P1 of degree d defined over k will specialize to a morphism ft : P1 ! P1

of degree d, defined over K, for all but finitely many t 2 X(K). For points a 2 P1(k), we are

interested in properties of the function t 7! ĥft(at), where ĥft is the Call-Silverman canonical

height for ft as defined in [5], as t varies in X(K).

An important case was studied in the early 1980s. Given any elliptic surface E ! X with

a zero section, defined over a number field K, and given a section P : X ! E also defined
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over K, the fiber-wise canonical height t 7! ĥEt(Pt) is known to define a Weil height on the

base curve X(K) [32]. That is, there exists a Q-divisor DE,P on X, of degree equal to the

geometric canonical height ĥE(P ) (viewing E as an elliptic curve over the function field k)

so that

(1.1) ĥEt(Pt)� hDE,P (t) = O(1)

for any choice of Weil height associated to DE,P . The notation O(1) represents a bounded

function, defined on the complement of finitely many points in X(K); the bound depends

on the pair (E,P ) and the choice of Weil height hDE,P . This can be viewed as a dynamical

example on P1 as follows. Projecting each smooth fiber Et to P1 by the natural degree-two

quotient that identifies a point x 2 Et with its inverse �x, and taking, for example, the

multiplication-by-2 endomorphism on Et, we obtain a family of maps ft : P1 ! P1, well-

defined for all but finitely many t 2 X(K). See, for example, [31, §6.4]. The section P

projects to an element p 2 P1(k), and we have ĥft(pt) = 2 ĥEt(Pt), so that

(1.2) ĥft(pt)� hDf,p
(t) = O(1)

on the complement of finitely many points in X(K), for a Q-divisor Df,p = 2DE,P on X.

For any given map f : P1 ! P1 defined over k of degree > 1, and each point a 2 P1(k),

Call and Silverman proved that the specializations satisfy

(1.3) ĥft(at)� hD(t) = o(hD(t))

as hD(t) ! 1, for any choice of Weil height hD on X(K) associated to a divisor D of degree

equal to the geometric (i.e., over k) canonical height ĥf (a) [5, Theorem 4.1]. Recently,

Ingram improved the error term o(hD(t)) in (1.3) to O(h2/3
D (t)) [22]. Inspired by (1.2) and

(1.3), Call and Silverman asked if there can exist a divisor D = Df,a on X so that the

stronger result of the form (1.2) will hold for every f and a; see the Remark after Theorem

4.1 in [5]. We give a partial answer to this question.

Definition 1.1. A point a 2 P1(k) is said to be totally Fatou for f if it is an element of

the non-archimedean Fatou set at every place � 2 X(K) of k.

We refer the reader to Section 4 for more information. We note here that throughout this

article we identify the places of k with those of k ⌦K and with the points � 2 X(K). The

notion of a totally Fatou point has also appeared in [26] in the setting of number fields.
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Theorem 1.2. Let K be a number field and X a smooth projective curve over K. Let

f : P1 ! P1 be a map of degree > 1 defined over k = K(X), and suppose that a 2 P1(k)

is totally Fatou for f . Then there exists a Q-divisor D = Df,a on X, of degree equal to the

geometric height ĥf (a), so that t 7! ĥft(at) defines a Weil height for D on X(K). More

precisely, for any choice of Weil height hD associated to D, we have

ĥft(at)� hD(t) = O(1)

as a function of t 2 X(K) \ Y for a finite set Y , where ĥft(at) is well defined. The bounds

on ĥft(at)� hD(t) depend on f , a, and the choice of Weil height hD.

We shall see that the divisor D is given by

(1.4) Df,a =
X

�2X(K)

�̂f,�(a) · �

where ĥf =
P

� �̂f,� is a local decomposition of the geometric canonical height for f over k.

The fact that D is a Q-divisor for totally Fatou points a, so that �̂f,�(a) 2 Q and therefore

also ĥf (a) 2 Q, is new; see Proposition 6.1, addressing a question in [10]. As a special case

of Theorem 1.2 we recover (1.1) and (1.2), because all points in P1(k) are totally Fatou for

the maps f coming from elliptic curves.

The statement of Theorem 1.2 was proved by Ingram for polynomial maps f(z) 2 k[z]

and for all points a 2 P1(k) without the totally Fatou assumption [21]. Polynomial maps

have a totally invariant super-attracting fixed point at 1, simplifying computations of the

canonical height. In fact, much more is known for polynomials f and for maps f coming

from elliptic curves, and we address some of this below in the context of Theorem 1.7; see

the works of Favre and Gauthier [14, 15] and of Silverman [28, 29, 30]. However, even with

the totally Fatou assumption, new complications arise for rational maps that do not exist

for polynomials or maps coming from elliptic curves, as we discuss after Theorem 1.7 and

illustrate by example in Section 7.

The totally Fatou condition. In contrast with the setting of number fields, it may be

true that every point a 2 P1(k) is either preperiodic or totally Fatou for maps f defined

over k. (Note that the statement of Theorem 1.2 holds trivially when a is preperiodic for

f , as ĥft(at) = 0 at all points t where ft is defined, and we can take D = 0.) We know of

no examples, nor any mechanisms to prove existence, of maps f defined over k and points
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a 2 P1(k) with infinite orbit for which a lies in the non-archimedean Julia set of f at a place

� of k.

Conjecture 1.3. Let K be a number field and X a smooth projective curve over K. Let

f : P1 ! P1 of degree > 1 be defined over k = K(X). Then every point a 2 P1(k) is either

preperiodic or totally Fatou for f .

Note that the conjecture remains open for polynomial maps f , though the conclusion of

Theorem 1.2 is known to hold for all points a 2 P1(k) in that case [21]. In Section 7, we

observe that for all of the previously known cases of Theorem 1.2 in the literature where the

maps f are not polynomials (nor conjugate to polynomials), the points a 2 P1(k) are totally

Fatou for f .

Here we prove that “most” points in P1(k), from a density point of view, are totally Fatou.

Let k� denote the completion of k at the place � 2 X(K).

Theorem 1.4. For any f : P1 ! P1 of degree > 1 defined over k = K(X), the set of totally

Fatou points for f in P1(k) is open and dense in the product topology on P1(k), coming from

the embedding of k into
Q

�2X(K) k�.

Theorem 1.4 exploits the non-local-compactness of k�; it is false for maps f defined over

number fields K, where the Fatou set in a completion Kv can fail to be dense at archimedean

or non-archimedean places v.

To understand the totally Fatou condition better, we relate it to the geometry of the

induced rational map

f̃ : X ⇥ P1 99K X ⇥ P1

on the complex surface X ⇥ P1, defined by (t, z) 7! (t, ft(z)). Let I(f̃) denote the (finite)

indeterminacy set of f̃ in (X ⇥ P1)(K). For a point a 2 P1(k), let Ca denote the graph in

X ⇥ P1 of the associated holomorphic map t 7! a(t) from X to P1.

Theorem 1.5. Let f : P1 ! P1 be of degree > 1, defined over a function field k = K(X),

with the number field K chosen so that all indeterminacy points of f̃ lie in (X ⇥ P1)(K).

A point a 2 P1(k) is totally Fatou for f if and only if there exists a birational morphism
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Y ! X ⇥ P1, defined over K, so that the induced map

Y

✏✏

f̃Y // Y

✏✏

X ⇥ P1
f̃
// X ⇥ P1

satisfies CY
fn(a) \ I(f̃Y ) = ; for all n � 0, where CY

fn(a) is the proper transform of the curve

Cfn(a) in Y . Moreover, the modification Y can be chosen so that f̃Y is algebraically stable,

meaning that no curve is mapped by an iterate (f̃Y )n into the indeterminacy set I(f̃Y ), and

such that CY
fn(a) intersects the singular fibers of the projection Y ! X only at smooth points,

for all n � 0.

Remark 1.6. It was proved in [9, Theorem E] that, for every f of degree > 1 over k, there

exists a modification Y ! X ⇥ P1 so that the induced map f̃Y : Y 99K Y is algebraically

stable. Theorem 1.5 implies we can further modify Y so that the orbit of Ca is disjoint from

the indeterminacy locus of f̃Y , when a is totally Fatou. The choice of Y will depend on a.

We use Theorem 1.5 to prove that the geometric local canonical height �̂f,�(a) can be

computed as an intersection number in Y , assuming the point a is Fatou at �; see Theorem

4.11 and compare with [5, Theorem 6.1]. In analogy with the study of elliptic curves and

abelian varieties, the concept of a “weak Néron model” at a place � of k was introduced in

[5] for dynamical systems; but, it is known that these models often fail to exist for maps

f : P1 ! P1 defined over k� in the absence of good reduction, for example when there is a

repelling periodic point in k� [20]. In fact, as Ingram noted in the Introduction to [21], if

f : P1 ! P1 defined over k is neither Lattès nor isotrivial, then it cannot have a weak Néron

model at every place �. The proof of Theorem 1.5 provides the existence of a relative type

of weak Néron model, for a pair (f, a) with a being Fatou at �, in which the orbit of the

Fatou point can be arranged to be integral.

Theorem 1.5 follows from the proof of [9, Theorem D] and the classification of �-adic

Fatou components in the Berkovich projective line P1,an
� (over a complete and algebraically

closed field C� containing the completion k�) [27] [2] [9, Appendix]; many of the ideas were

already present in [20], and what remained was to show that the full orbit {fn(a)}n�0 can

be disjoint from the indeterminacy set after only finitely many blowups of X ⇥ P1.

Local version of Theorem 1.2. In the setting of elliptic surfaces E ! X, Silverman

strengthened Tate’s result (1.1) by showing that the function BE,P (t) := ĥEt(Pt)� hDE,P (t),
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defined for all but finitely many t 2 X(Q), can be expressed as a sum over all places v of

the number field K of functions with good behavior [28, 29, 30]. More precisely, he proved

that the local height functions for ĥEt on Et(Q) and for hDE,P on X(Q) can be chosen so

that all v-adic contributions to BE,P extend to define continuous functions on X(Cv), even

across the singular fibers, and that all but finitely many of the v-adic contributions are ⌘ 0.

We also prove a local continuity result, strengthening the conclusion of Theorem 1.2:

Theorem 1.7. Under the hypotheses of Theorem 1.2, we assume that the number field K is

extended so that suppDf,a ⇢ X(K). There are local decompositions

ĥft(at) =
1

[K : Q]

1

|Gal(K/K) · t|

X

x2Gal(K/K)·t

X

v2MK

Nv �̂fx,v(ax)

and

hD(t) =
1

[K : Q]

1

|Gal(K/K) · t|

X

x2Gal(K/K)·t

X

v2MK

Nv �D,v(x)

for t 2 X(K) \ suppDf,a so that the function

Vv(t) := �̂ft,v(at)� �D,v(t)

extends to a continuous function on the Berkovich analytification Xan
Cv

for each place v of K.

Here, MK denotes the set of places of the number field K, and the weights Nv = [Kv : Qv]

are the same as those appearing in the product formula 1 =
Q

v2MK
|↵|Nv

v for ↵ 2 K⇤. The

conclusion of Theorem 1.7 is known for polynomial maps f(z) 2 k[z] and for all a 2 P1(k)

without the totally Fatou hypothesis [19, 14]; their proofs take clever advantage of the

compactness of the orbit-closures of all points in the �-adic Julia sets, as subsets of P1(k�)

(see [14, Theorem 3], [20, Theorem 4.8], [33, Proposition 6.7]), which does not hold for

general rational maps f . See, for example, the f of §7.4. Moreover, even for totally Fatou

points a 2 P1(k), the proof of Theorem 1.7 requires a new approach. The local canonical

height functions �̂ft,v for polynomials f can be normalized so they are always non-negative.

The challenge here is the absence of a uniform lower bound on the functions Vv of Theorem

1.7, independent of a. (This unboundedness was exploited in [11] to show Vv can fail to

extend continuously for maps f(z) 2 k(z) when a point a 2 P1(k0) is defined over a larger

field such as k0 = Kv(X); see Remark 1.8.)

Finally, we remark that Theorem 1.7 as stated does not imply Theorem 1.2. For polynomial

maps f and each a 2 P1(k), the functions Vv of Theorem 1.7 will satisfy Vv ⌘ 0 at all but
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finitely many places v of K [21], as is the case for sections of elliptic surfaces [30]. However,

by contrast, it is not the case that the functions Vv will be ⌘ 0 for all but finitely many

places v for general rational maps f ; there can be nontrivial contributions at infinitely many

places, even for totally Fatou points a 2 P1(k). See the example of §7.1; such examples were

studied in depth in [25]. Nevertheless, we extract the summability of the magnitudes of Vv,

over all places v of K, from the proof of Theorem 1.7.

Julia points. We use the totally Fatou hypothesis on a 2 P1(k) in a crucial way in our

proofs of Theorems 1.2 and 1.7. The study of Julia points with infinite orbit is more subtle.

As we show in Section 7, there exist examples of the following:

(1) a map f : P1 ! P1 of degree 2 defined over k = Q(t) with bad reduction at t = 0,

for which the non-archimedean Julia set at t = 0 is a Cantor set in the completion

P1(k0) at t = 0, and the local geometric height �̂f,0(a) is in R \Q for all Julia points

a with infinite orbit. See §7.3; compare the main results of [10].

(2) a map f : P1 ! P1 of degree 2 defined over k = Q(t) with bad reduction at t = 0,

and a point a defined by a formal power series in Q[[t]] in the non-archimedean Julia

set of f at t = 0 for which, at the place v = 1 of Q, the function Vv of Theorem 1.7

will fail to be defined at t = 0. See §7.4.

For either example, if such a point a can be constructed to be algebraic over k, then, upon

replacing k with a finite extension, it would provide a counterexample to Conjecture 1.3,

and the results we prove for totally Fatou points would fail to extend to all a 2 P1(k). More

precisely, example (1) would show that the divisor D constructed in Theorem 1.2, defined

by (1.4), needs to be an R-divisor instead of a Q-divisor; compare Proposition 6.1. Example

(2) would show that the sequences of functions converging to define the Vv of Theorem 1.7

would not always converge uniformly in the neighborhood of a singularity; compare Theorem

5.1.

Remark 1.8. It is known that, working with maps f defined over the field ` = C(t),
there exist points a 2 P1(`) that are totally Fatou for f but for which the analog of the

(archimedean) function V1 of Theorem 1.7 is unbounded on the base curve P1(C) [11].

The construction in [11] is di↵erent from the construction for example (2) and uses Baire

Category. The results of Favre and Gauthier show that such examples over ` or examples of

the types (1) and (2) above cannot exist for polynomials f [14].
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2. MK-terminology

In this section, we fix some basic terminology associated to the number field K and remind

the reader of fundamental facts about elements of k = K(X).

Let MK denote the set of places of the number field K, each giving rise to an absolute

value | · |v on K which is normalized to extend one of the standard absolute values on the

field Q of rational numbers. The set MK satisfies the product formula,
Y

v2MK

|x|Nv
v = 1

for all x 2 K⇤. We let Kv denote the completion of K at v, so that

Nv = [Kv : Qv].

For each place v of K, we let Cv be the completion of an algebraic closure Kv. We also fix

an embedding K ,! Cv. We let Xan
v denote the Berkovich analytification of the curve X

over the field Cv.

We will use the following terminology, as in [24, Chapter 10]: An MK-constant is a func-

tion C : MK ! R so that Cv = 0 at all but finitely many places v. An MK-quasiconstant

is a function C : MK ! R such that
X

v2MK

Nv |Cv| < 1.

A collection of functions fv : Y ! R, for v 2 MK , defined on a set Y , is MK-bounded if

there exists an MK-constant C so that |fv(y)|  Cv for all y 2 Y and v 2 MK .

Fix a point � 2 X(K) and a choice of !� 2 K(X) defining local coordinates for X near

�. An MK-neighborhood of � is a collection of open neighborhoods Uv of � in X(Cv), for

v 2 MK , given locally by {|!�|v < 1} for all but finitely many places v. This definition is

independent of the choice of !� uniformizing X near �, as a consequence of the following

proposition.
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Let g denote the genus of X. For each � 2 X(K), choose ⇠� 2 K(X) so that ⇠� has a pole

of order 2g + 1 at � and no other poles in X. The divisor of a function h 2 K(X) is

(h) =
X

�2X(K)

(ord� h) �.

Proposition 2.1. For any nonconstant h 2 K(X) with supp(h) ⇢ X(K), there exists an

MK-constant c so that

e�cv
Y

�2supp(h)

max{1, |⇠�(t)|v}(� ord� h)/(2g+1)

 |h(t)|v  ecv
Y

�2supp(h)

max{1, |⇠�(t)|v}(� ord� h)/(2g+1)

for all t 2 X(K) \ supp(h) and v 2 MK. Moreover, for each � 2 X(K), the notion of

MK-neighborhood of � is well defined.

Remark 2.2. The proposition is a theorem of Weil [34], and its proof is contained in [24,

Chapter 10] or [4, Theorem 2.2.11, Remark 2.2.13], but we include an argument here for

completeness.

Proof. For each � 2 supp(h), let U� be the complement in X of supp(h) \ {�} and all zeroes

of ⇠�, so that U� is a Zariski-open neighborhood of �. The functions

h� := h2g+1(⇠�)ord� h

and 1/h� and 1/⇠� and ⇠�
0
for �0 6= � in supp(h) are all regular on U�. Let Uh = X \supp(h),

so that h, 1/h and each ⇠�, � 2 supp(h), are regular on Uh. Note that U = {Uh}[ {U� : � 2
supp(h)} is an open cover of X.

As in [24, Chapter 10, Lemma 1.1], there exists a projective embedding of X into PN ,

defined over K, so the complement of each coordinate hyperplane in PN intersects X in

an open subset of some U 2 U . Indeed, letting FU be the divisor consisting of the sum of

points in the complement of U 2 U , we can find e↵ective divisors HU so that the elements of

{FU+HU : U 2 U} are linearly equivalent, and so that there is no point in the intersection of

the supports of FU+HU . (This is becausemH�FU will be very ample for any choice of ample

H and every U 2 U , for all su�ciently large m 2 N.) The elements {FU + HU : U 2 U}
thus induce a morphism � : X ! Pk for some k. Choosing any projective embedding
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i : X ,! Pr defined overK, for some r > 0, our desired embedding comes from postcomposing

�⇥ i : X ! Pk ⇥ Pr with the Segre embedding Pk ⇥ Pr ,! P(k�1)(m�1)�1.

Let AN(K) denote a�ne space of dimension N , and let

k(y1, . . . , yN)kv = max{|y1|v, . . . , |yN |v}

be a v-adic norm on AN(K), for each v 2 MK . A collection of subsets Ev ⇢ AN(K), for

v 2 MK , is a�ne MK-bounded if each Ev is bounded, and if Ev lies in the unit polydisk

{y : kykv  1} for all but finitely many v.

As in [24, Chapter 10, Proposition 1.2], we can now cover X by a finite collection {Ej}Nj=0

of a�ne MK-bounded sets, subordinate to the open cover U . Indeed, suppose that (x0 : x1 :

· · · : xN) are the coordinates of PN . For each j = 0, . . . , N , let U(j) 2 U be an element

containing X \ {xj 6= 0}. For each v 2 MK , we let Ej,v be the set of all points in PN(K)

with projective coordinates (x0 : x1 : · · · : xN) so that |xj|v is maximal. Then Ej,v is the unit

polydisk in the a�ne chart where xj 6= 0 with coordinates yi = xi/xj. For each v 2 MK ,

these a�ne bounded sets cover all of PN(K) and so also X, and the intersection of Ej,v with

X is a subset of U(j). We let Ej be the collection {Ej,v : v 2 MK}, for j = 0, . . . , N .

Fix j. For U(j) = U�, since h� and 1/h� are both regular on U�, we have an MK-constant

g� such that

(2.1) e�g�,v  |h�|v = |h2g+1(⇠�)ord� h|v  eg�,v

on Ej,v. It is also the case that 1/⇠� is regular on U�, and so is ⇠�
0
for each �0 6= � in supp(h),

so we can enlarge g� if needed so that

|⇠�|v � e�g�,v and |⇠�0 |v  eg�,v

on Ej,v. Moreover, we can also arrange that

|h|v

(
 eg�,v if ord� h > 0

� e�g�,v if ord� h < 0
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on Ej,v, because either h or 1/h is regular on U�. By increasing g� yet again, it follows that

e�g�,v
Y

�2supp(h)

max{1, |⇠�(t)|v}(� ord� h)/(2g+1) = e�g�,v max{1, |⇠�(t)|v}(� ord� h)/(2g+1)

 |h(t)|v
 eg�,v max{1, |⇠�(t)|v}(� ord� h)/(2g+1)

= eg�,v
Y

�2supp(h)

max{1, |⇠�(t)|v}(� ord� h)/(2g+1)

for all t 2 Ej,v where U(j) = U�.

Similarly for U(j) = Uh, we can find an MK-constant s so that

e�sv  |h|v  esv

and

|⇠�|v  esv

on Ej,v, for all � 2 supp(h). This completes the proof of the first statement of the proposition.

To see that the notion of MK-neighborhood is well defined, we fix �0 2 X(K) and choose

any !0 2 K(X) with a simple zero at �0. For the covering U of X associated to !0, note that

U�0 is the unique element containing �0. So for each v and j, if the set Ej,v contains �0, then

it must lie in U�0 . The inequality (2.1) implies that |!0|2g+1
v = |⇠�0 |�1

v on such Ej,v, for all

but finitely many v. On the other hand, we also have that if |⇠�0(t)|v > 1 at a point t 2 Ej,v,

for some j, then Ej,v is contained in U�0 for all but finitely many v (because |⇠�0 |v  1 on

the Ej,v’s in the other elements of U). In other words, any MK-neighborhood of �0 defined

by !0 coincides with {t 2 X(Cv) : |⇠�0(t)|v > 1} for all but finitely many places v of K. This

completes the proof of the proposition. ⇤

3. Escape rates and Weil heights

Throughout this section, we fix f : P1 ! P1 of degree d � 2, defined over k = K(X), and

any point a 2 P1(k).

3.1. The singular set S(F,A) in X. Working in homogeneous coordinates on P1, we let

F = (P,Q) : A2 ! A2
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be a homogeneous lift of f , with homogeneous polynomials P (z, w) 2 k[z, w] andQ(z, w) 2
k[z, w] of degree d having no common zeroes in P1(k), so that f(z) = P (z, 1)/Q(z, 1) in local

coordinates. Choose a lift A = (↵, �) 2 k2 \ {(0, 0)} of a = (↵ : �) 2 P1(k). For each

� 2 X(K), we let

ord� F = min{ord� c : coe�cients c of P and Q}

and

ord� A = min{ord� ↵, ord� �}.

We let ResF 2 k⇤ denote the homogeneous resultant of P and Q; see, for example, [31,

§2.4].
Set

(3.1) S(F ) = {� 2 X(K) : ord� F 6= 0 or ord� ResF 6= 0}

and

(3.2) S(F,A) = S(F ) [ {� 2 X(K) : ord� A 6= 0}

Note that S(F,A) is a finite set.

Convention 3.1. We enlarge the number field K, if needed, so that S(F,A) ⇢ X(K).

3.2. Geometric escape rates and a divisor on X. Recall here that throughout we

identify the places of k with the points � 2 X(K), with a slight abuse of terminology. For

each � 2 X(K), we work with the absolute value on k defined by

|z|� := e� ord� z,

and the norm k · k� on k2 given by

k(z, w)k� = max{|z|�, |w|�}.

There is a constant C� � 1 so that

(3.3) C�1
� k(z, w)kd�  kF (z, w)k�  C�k(z, w)kd�

for all (z, w) 2 k2; we can take C� = 1 for all � 62 S(F ) [31, Proposition 5.57].

The escape rate of A for F at � is the quantity

(3.4) GF,�(A) = lim
n!1

1

dn
log kF n(A)k�.
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It exists in R, by (3.3), and it is equal to 0 for all � 62 S(F,A); see, e.g., [31, Proposition
5.58]. We define an R-divisor by

(3.5) D(F,A) =
X

�2X(K)

GF,�(A) �.

The support of D(F,A) is contained in S(F,A) and so in X(K) by Convention 3.1. If we

had chosen di↵erent lifts of f and a, say cF and bA for c, b 2 k⇤, then

(3.6) GcF,�(bA) = GF,�(A)�
1

d� 1
ord� c� ord� b.

It follows that D(cF, bA) and D(F,A) are linearly equivalent R-divisors on X.

3.3. A Weil height associated to D(F,A). Let g denote the genus of X. For each

� 2 X(K), choose a meromorphic function ⇠� 2 K(X) so that ⇠� has a pole of order 2g + 1

at � and no other poles.

Let D = D(F,A) be defined by (3.5), and recall that suppD(F,A) ⇢ X(K) by Convention

3.1. For each place v of K, we define a function on X(Cv) \ suppD by

�D,v(t) =
X

�2S(F,A)

GF,�(A)
log+ |⇠�(t)|v

2g + 1
.

This function extends continuously to the Berkovich analytificiation Xan
v \ suppD.

A Weil height for D can be defined by

(3.7) hD(t) =
1

[K : Q]

1

|Gal(K/K) · t|

X

x2Gal(K/K)·t

X

v2MK

Nv �D,v(x)

for all t 2 X(K) \ suppD, and we may set hD(t) = 0 for t 2 suppD. This hD is indeed a

Weil height associated to the R-divisor D, as it is an R-linear combination of Weil heights

built from the local functions
1

2g + 1
log+ |⇠�(t)|v

at each place v of K, associated to the divisor �.

3.4. Arithmetic escape rates. For each place v of the number field K, we define a norm

k · kv on K
2
by

k(z, w)kv = max{|z|v, |w|v}.

For each t 2 X(K) \ S(F ), we let Ft denote the specializations of F . We continue to use

the collection of functions {⇠� : � 2 S(F )} from §3.3. The following proposition appears in
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various forms in the literature, e.g., in [31, Proposition 5.57] [1, Lemma 10.1] [8, Lemma 3.3],

but we require an adelic version for our theorems. Recall that S(F ) ⇢ X(K) by Convention

3.1.

Proposition 3.2. For each � 2 S(F ), choose �� 2 k so that ord�(��F ) = 0. There is an

MK-constant b and an MK-neighborhood U
� of � in X so that

e�bv |⇠�(t)|�(ord� Res(��F ))/(2g+1)
v  |��

t |vkFt(z, w)kv
k(z, w)kdv

 ebv

for all v 2 MK, t 2 U
�
v \ {�}, and for all (z, w) 2 (Cv)2 \ {(0, 0)}. We can choose the

MK-neighborhoods U
� for � 2 S(F ) to be pairwise disjoint. Moreover, given any MK-

neighborhoods U
�, for � 2 S(F ), there exists an MK-constant c so that

e�cv  kFt(z, w)kv
k(z, w)kdv

 ecv

for all v 2 MK, t 2 X(Cv) \
⇣S

�2S(F ) U
�
v

⌘
, and for all (z, w) 2 (Cv)2 \ {(0, 0)}.

Proof. Recall that F = (P,Q) for homogeneous polynomials P and Q of degree d with

coe�cients in k. By our choice of ��, there is an MK-neighborhood U
� and an MK-constant

b so that

e�bv  max{|ct|v : coe�cients c of ��P and ��Q}  ebv(3.8)

for each t 2 U
�
v and each v 2 MK , by Proposition 2.1. By increasing the constant b, the

upper bound on k��
t Ft(z, w)kv/k(z, w)kdv follows from the triangle inequality.

We can enlarge b at the archimedean places, if needed, so that

k��
t Ft(z, w)kv
k(z, w)kdv

� e�bv |Res(��
t Ft)|v

for each t 2 U
�
v , for all v 2 MK , applying [31, Proposition 5.57] and [8, Lemma 3.3]. Applying

Proposition 2.1 again, this time to Res(��F ), shrinking theMK-neighborhood and increasing

the MK-constant b again if necessary, we have

k��
t Ft(z, w)kv
k(z, w)kdv

� e�bv |⇠�(t)|�(ord� Res(��F ))/(2g+1)
v

for all t 2 U
�
v and each v 2 MK .
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The final statements of the proposition follow from the same combination of Proposition

2.1 with [31, Proposition 5.57], because the coe�cients of F will have no poles and ResF

will have no poles or zeroes outside of S(F ). ⇤

Similar to the geometric escape rates of (3.4), we can define arithmetic escape rates,

working at each place v of the number field K. For each v 2 MK , the escape rate function

for the pair (F,A) is defined on X(K) \ S(F,A) by

(3.9) GFt,v(At) = lim
n!1

1

dn
log kF n

t (At)kv.

It exists in R for all t 2 X(K) \ S(F,A) by Proposition 3.2; see, e.g., [31, Proposition 5.58].

The proof of convergence for (3.9) shows it is locally uniform in t, so that GFt,v(At) extends

to a continuous function t 2 X(Cv)\S(F,A) at each place v 2 MK . In fact, it extends to be

continuous on the Berkovich analytification Xan
v \ S(F,A); see, e.g., [1, pp. 295–296] where

the escape rate is “Berkovich-ized”. If we had chosen di↵erent lifts of f and a, say cF and

bA for c, b 2 k⇤, then

(3.10) GctFt,v(btAt) = GFt,v(At) +
1

d� 1
log |ct|v + log |bt|v

for t 2 X(K) \ (S(F,A) [ S(cF, bA)).
These escape rate functions provide local height expressions for the canonical height ĥft

evaluated at at. In particular, we have

ĥft(at) =
1

[K : Q]

1

|Gal(K/K) · t|

X

x2Gal(K/K)·t

X

v2MK

Nv GFx,v(Ax)

for all t 2 X(K) \ S(F,A). See, for example, [31, Theorem 5.59]. Note that the sum over

all places of K is independent of the choice of lifts F and A, by the product formula.

3.5. Variation of canonical height. Recall that we are trying to understand if

ĥft(at)� hD(t)

is bounded, as claimed in Theorem 1.2, where hD is a choice of Weil height for D = D(F,A)

defined by (3.5). Recalling that any two choices of Weil height for the same divisor are

bounded from one another (and in fact, MK-bounded) it su�ces to work with the Weil

height constructed in (3.7). Assuming that the point a 2 P1(k) is totally Fatou for f , a

hypothesis which will be defined and examined in the next Section, we aim to prove three

things:
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(1) that the local geometric height GF,�(A) is in Q at all points � 2 X(K), so that the

divisor D = D(F,A) of (3.5) will be a Q-divisor;

(2) that for all places v of K, the v-adic functions

Vv(t) := GFt,v(At)�
X

�2S(F,A)

GF,�(A)
log+ |⇠�(t)|v

2g + 1

on X(Cv) \ S(F,A) extend to bounded – and in fact continuous – functions on the

Berkovich analytification Xan
Cv
; and

(3) that the sum

ĥft(at)� hD(t) =
1

|Gal(K/K) · t|

X

x2Gal(K/K)·t

X

v

Nv Vv(x)

is uniformly bounded over all points t 2 X(K) \ S(F,A).

4. The non-archimedean Fatou set

Throughout this section, we fix f : P1 ! P1 of degree d � 2, defined over k = K(X). For

each fixed � 2 X(K), we let k� be the completion of k with respect to the valuation ord�,

and let L� be the completion of an algebraic closure of k�. In this section, we introduce and

study the totally Fatou condition that is assumed for Theorem 1.2, and we prove Theorems

1.4 and 1.5.

4.1. The Fatou set. Fix � 2 X(K). Let d�(x, y) denote the chordal distance between x

and y in P1(L�). Explicity, if x = (x1 : x2) and y = (y1 : y2), then

d�(x, y) =
|x1y2 � x2y1|�

max{|x1|�, |x2|�}max{|y1|�, |y2|�}
.

The non-archimedean Fatou set of f at � is the set ⌦�(f) of all points x 2 P1(L�) for

which we can find an open disk Dx containing x so that the family of functions {fn|Dx}
is equicontinuous in the distance d�. See, for example, [3, Chapter 5]. Its complement

P1(L�) \ ⌦�(f) is the non-archimedean Julia set of f at �.

This Fatou set ⌦�(f) will be all of P1(L�) at � where f has good reduction. In our case,

this implies that ⌦�(f) = P1(L�) for all � 62 S(F ), the singular set defined in (3.1), for any

choice of homogeneous polynomial lift F of f .

A point a 2 P1(k) is totally Fatou for f if a 2 ⌦�(f) at all � 2 X(K).
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4.2. Hole-avoiding pairs. Now fix a point a 2 P1(k). Fix � 2 X(K), and choose homoge-

neous polynomial lift

F = (P,Q) : A2 ! A2

of f over k and lift

A = (↵, �) 2 k2

of a so that

(4.1) ord� F = ord� A = 0,

where ord� F and ord� A are defined in §3.1, so that the specializations F� and A� are well

defined. The holes of f at � are the points x = (x1 : x2) 2 P1(K) for which F�(x1, x2) =

(0, 0). Holes exist if and only if ResF� = 0. We say that the pair (f, a) is hole-avoiding at

� if the specializations satisfy

F n
� (A�) 6= (0, 0)

for all n � 0. In particular, the pair (f, a) is hole-avoiding at � for all points a 2 P1(k) if

ResF� 6= 0. It is easy to check that this definition is independent of the choice of lifts F and

A, as long as they satisfy (4.1).

Example 4.1. Consider

f(z) =
z(z � 1)

z � t
over k = Q(t), at t = 0. The polynomial map F (z, w) = (z(z � w), (z � tw)w) specializes

to F0(z, w) = (z(z � w), zw). The point 0 = (0 : 1) 2 P1(Q) is the unique hole for f . A

point a 2 P1(k) will therefore fail to be hole-avoiding at t = 0 if and only if it specializes

to a0 2 Z�0. Indeed, for a0 = n0 2 Z�0, the iterates of the lift A = (a, 1) will satisfy

F n0+1
0 (A0) = (0, 0).

Example 4.2. Consider

f(z) = z2 + 1/t

over k = Q(t), at t = 0. The polynomial map F (z, w) = (tz2 + w2, tw2) specializes to

F0(z, w) = (w2, 0). The point 1 = (1 : 0) 2 P1(Q) is the unique hole for f . There are no

hole-avoiding points in P1(k), because F 2
0 (z, w) = F0(w2, 0) = (0, 0) for all (z, w) 2 K

2
.

We may view f : P1 ! P1 over k as a rational map

f̃ : X ⇥ P1 99K X ⇥ P1
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of the surface X ⇥ P1 to itself, defined over the number field K by (t, z) 7! (t, ft(z)). We

may view the point a 2 P1(k) as a section of the projection X ⇥ P1 ! X, also defined over

K. The following is immediate from the definitions:

Lemma 4.3. A pair (f, a) is hole-avoiding at � 2 X(K) if and only if the iterates fn(a) (as

sections of the fibered surface X ⇥P1 ! X) are disjoint from the indeterminacy locus of the

induced map f̃ : X ⇥ P1 99K X ⇥ P1 within the fiber {�}⇥ P1, for all n � 0.

Note that all of the indeterminacy points of f̃ in X ⇥ P1 are contained in the fibers over

S(F ) ⇢ X for every choice of homogeneous polynomial lift F . The term “hole” for an

indeterminacy point was first used in [6]; it was meant to capture the idea that the mass of

the measures of maximal entropy in the family ft, for t 2 X(C) \S(F ), was “falling into the

holes” of f and its iterates fn at t = �. The same condition appears in [25].

4.3. The action of f on the Berkovich projective line. Fix � 2 X(K). We now

reinterpret the notion of hole-avoiding in the language of the Berkovich projective line defined

over the field L�, which we denote by P1,an
� , and the extension of f to a dynamical system on

P1,an
� . A good basic reference for the dynamics of f on P1,an

� is [3]. Note that the definition

of hole-avoiding extends naturally to elements a 2 P1(k�), for k� the completion of k at �,

with a lift A chosen in (k�)2 \ {(0, 0)}.
By definition, the hole-directions for f from a Type II point ⇣ 2 P1,an

� are the connected

components of P1,an
� \ {⇣} that intersect the set of preimages f�1(⇣). When ⇣ = ⇣G is the

Gauss point in P1,an
� , the hole-directions correspond to the holes of f at �, via the natural

identification of the connected components of P1,an
� \ {⇣} with P1(K). See, for example, [3,

§7.5]. (In particular, if f(⇣) = ⇣, the hole-directions coincide with the “bad” directions of

[3, Theorem 7.34].) This implies:

Lemma 4.4. Let a be an element of P1(k�). The pair (f, a) is hole-avoiding at � if and only

if neither a nor any iterate fn(a) lies in a hole-direction for f from the Gauss point ⇣G in

P1,an
� .

Let ⌦an
� (f) be the Berkovich Fatou set of f in P1,an

� ; see, e.g., [3, Chapter 8]. Any open set

U ⇢ P1,an
� that intersects the Berkovich Julia set Jan

� (f) := P1,an
� \ ⌦an

� (f) has the property

that the union U =
S

n�0 f
n(U) is dense in P1,an

� ; in fact, the set U omits at most 2 points,

both in P1(L�) [3, Theorem 8.15]. Recall that ⌦an
� (f)\P1(L�) = ⌦�(f), the non-archimedean

Fatou set as we have defined it in §4.1.



VARIATION OF HEIGHTS FOR FATOU POINTS 19

Lemma 4.5. For any Type II point ⇣ 2 P1,an
� , the points of the non-archimedean Julia set of

f in P1(L�) are contained in the union of the hole-directions from ⇣ for fn, over all n � 1.

Proof. Let U be a connected component of P1,an
� \ {⇣}. If U has non-empty intersection with

the non-archimedean Julia set Jan
� (f)\P1(L�), then the iterates of U must contain all Type

II points, including ⇣ itself [3, Theorem 8.15]. So U must be a hole-direction from ⇣ for some

iterate of f . ⇤

We are now ready to prove the following result, needed to analyze the dynamics of totally

Fatou points for the proof of Theorem 1.2 and Theorem 1.7:

Theorem 4.6. Fix any f : P1 ! P1 of degree d � 2, defined over k = K(X), a point

� 2 X(K), and any point a 2 P1(k�). The point a lies in the non-archimedean Fatou set

⌦�(f) if and only if there exist a change of coordinates B 2 PGL2(k) and iterates fn and

fm so that the pair (BfnB�1, B(fm(a))) is hole-avoiding at �.

We shall see that one implication is straightforward from the definitions, that the existence

of the hole-avoiding pair implies that a 2 ⌦�(f). To prove the converse implication, assuming

a 2 ⌦�(f), we follow the proof of [9, Theorem D], which itself uses the Rivera-Letelier

classification of Berkovich Fatou components in the Berkovich space P1,an
� [27] [9, Appendix]

and the Benedetto wandering domains theorem [2], while also keeping track of the orbit of

the point a.

In the language of [9], given a finite set � of Type II points in P1,an
� , a connected component

U of P1,an
� \ � is called a J-component for � if fn(U) \ � 6= ; for some n > 0. The Julia

set Jan
� (f) is contained in the union of the J-components and � [9, Proposition 2.5]. The

other connected components of P1,an
� \� are called F -components. An F -component U for

� is called an F -disk if it is a Berkovich disk; it is wandering if the iterates fn(U) lie in

pairwise disjoint F -components for all n.

A pair (f,�) is analytically stable if, for each ⇣ 2 �, we have either f(⇣) 2 � or f(⇣) is

contained in an F -component for �.

The k-split Type II points ⇣ are those in the PGL2(k)-orbit of the Gauss point ⇣G. These

are the Type II points that have k-rational points in infinitely many connected components

of P1,an \ {⇣}. Our proof strategy for Thoerem 4.6 also gives the following statement, which

will be used in our proof of Theorem 1.5.

Theorem 4.7. Fix any f : P1 ! P1 of degree d � 2 defined over k = K(X), a point

� 2 X(K), and any Fatou point a 2 ⌦�(f) \ P1(k�). For any finite set of Type II points �,
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there exists a finite set �0 � � so that the pair (f,�0) is analytically stable and each point

fn(a) of the orbit of a lies in an F -disk for �0. Moreover, if the elements of � are k-split,

then we can choose �0 so that its elements are also k-split.

Remark 4.8. In [9, Theorem D], the existence of an analytically stable �0 � � for the map

f is proved, but without the additional conclusion about the orbit of the Fatou point a.

Proof of Theorems 4.6 and 4.7. Fix a 2 P1(k�), and assume first that there exist B 2
PGL2(k) and integers n � 1 and m � 0 so that the pair (BfnB�1, B(fm(a))) is hole-

avoiding at �. Let ⇣B = B�1(⇣G) 2 P1,an
� , where ⇣G is the Gauss point. Then by Lemma 4.4,

the point fm(a) and all iterates f jn+m(a), for j � 0, do not lie in the hole-directions of fn

from ⇣B. But the existence of such an orbit implies that either fn(⇣B) = ⇣B or that fn(⇣B)

lies in a direction from ⇣B which is not a hole-direction (for otherwise all points would either

be in a hole-direction or mapped into a hole-direction under one iterate). If fn(⇣B) = ⇣B,

then the hole-directions from ⇣B for an iterate f jn, with j � 1, coincide with directions that

are mapped to the hole-directions for fn by some f `n with ` < j; if fn(⇣B) 6= ⇣B, then the

hole-directions for the iterates f jn must coincide with the holes for fn, for all j � 1. In either

case, it then follows from Lemma 4.5 that fm(a) is not in Jan
� (f) \ P1(L�). In other words,

a must be an element of the Fatou set ⌦�(f). This proves one implication of Theorem 4.6.

To prove the converse implication in Theorem 4.6, we need to find a coordinate change

B with good properties. We do this by constructing a Type II point ⇣B with the desired

properties, and then we will choose any B 2 PGL2(k) sending ⇣B to the Gauss point ⇣G.

Along the way, we will prove Theorem 4.7.

Let � be any finite set of Type II points. From [9, Theorem D], we know that there is a

finite set of Type II points �0 � � (which can be chosen to be k-split if � is k-split) so that

the pair (f,�0) is analytically stable. More precisely, the main theorem of [9, §3.2] states
that, for every ⇣ 2 �0, one of the following three cases must hold:

(1) the orbit of ⇣ lies in �0, and fk(⇣) = f `(⇣) for some ` > k � 0;

(2) some iterate of ⇣ lies in a wandering F -disk for �0, with a periodic boundary point

⇣ 0 2 �0; or

(3) some iterate of ⇣ lies in an F -component for �0 that contains an attracting periodic

point.

Now fix a point a 2 ⌦�(f). Choose a Berkovich disk Da containing a and contained in

⌦an
� (f), with k-split Type II boundary point ⇣a. ChooseDa small enough so that the elements
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of �0 are disjoint from the forward iterates f j(Da) for all j � 0; this is possible because

Da ⇢ ⌦an
� (f). Following the proof in [9, §3.2], we use the classification of Fatou components

(see [9, Theorem A.1]) to analyze the orbit of the disk Da, to choose a distinguished k-split

Type II point to be ⇣B, and to increase the set �0 further so it contains ⇣a and ⇣B and remains

analytically stable.

First assume that a (and so also Da) lies in a wandering Fatou component U . From [2,

Theorem 5.1], there exists m � 0 so that V = fm(U) is a wandering Berkovich disk with

periodic and k-split boundary point; see also [9, Proposition 3.8]. Enlarging m if necessary,

we can assume that V does not contain ⇣a and that the union
S

j�0 f
j(V ) is disjoint from

�0. Let ⇣B be the boundary point of V and n � 1 the period of ⇣B. We then increase �0

to include the iterates ⇣a, f(⇣a), . . . , fm�1(⇣a) and the periodic orbit of ⇣B. Then the point

f j(a) lies in an F -disk for �0 for all j � 0, the point fm(a) lies in a wandering F -disk for �0

with boundary point ⇣B, and (f,�0) is analytically stable.

Now suppose that a lies in the basin of attraction of an attracting periodic point p of

period n. Then there exists an integer s � 0, so that f s(Da) is contained in the periodic

Fatou component containing p. Note that p must be in the completion P1(k�), because the

iterates f jn+s(a) 2 P1(k�) converge to p as j ! 1. Thus, there exists a small disk Dp

around p with k-split boundary point ⇣p that does not contain f s(⇣a) nor any element of �0

and so that fn(Dp) ( Dp. Now choose m > s so that fm(a) 2 Dp while fm�1(⇣a) 62 Dp.

We include the orbit ⇣a, f(⇣a), . . . , fm�1(⇣a) in �0, and we also include ⇣p, f(⇣p), . . . , fn�1(⇣p).

Then we set ⇣B = ⇣p. Again it follows that the point f j(a) lies in an F -disk for �0 for all

j � 0, the point fm(a) in an F -disk for �0 containing the attracting periodic point, and

(f,�0) is analytically stable.

The final case is where an iterate fm(Da) lies in a periodic Rivera domain V . If ⇣a is

preperiodic, we include its forward orbit in �0. Let P be the subset of the closure V which

is periodic; as explained in [9, Lemma 3.10], the set P is a closed and connected subset of V

that includes the finite set of boundary points @V . If there exists m so that fm(a) lies in P ,

then we let ⇣B = fm(⇣a) and let n be its period. Note that fm(a) lies in a periodic F -disk

for the new �0. If ⇣a has infinite forward orbit, let ⇣B 2 P be the Type II point which is the

retraction of the iterate fm(a) to P ; by increasing m if necessary, we can arrange so that

no elements of �0 lie in this component of V \ P containing fm(a) nor in any component

containing the forward orbit of fm(a). We then include ⇣a, f(⇣a), . . . , fm�1(⇣a) and the orbit
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of ⇣B in �0. Note that fm(a) now lies in wandering F -disk for �0. The point ⇣B is k-split

because the orbit of a intersects infinitely many directions from ⇣B.

In all cases, the pair (f,�0) is analytically stable for the newly augmented �0, and each

element of the orbit f j(a), for j � 0, must lie in an F -disk. This proves Theorem 4.7.

Moreover, in all three cases, if we set �B = {⇣B}, then the pair (fn,�B) is also analytically

stable, and the point fm(a) and its future iterates fm+jn(a), j � 1, are in F -components

for �B. In particular, they do not lie in hole-directions from ⇣B. We make any choice of

B 2 PGL2(k) that takes ⇣B to the Gauss point ⇣G. In view of Lemma 4.4 this completes the

proof of Theorem 4.6. ⇤

4.4. Proof of Theorem 1.5. This is a consequence of Theorem 4.7, similar to the proof

of [9, Theorem E] as an application of [9, Theorem D]. Fix � 2 X(K), and assume that

a 2 P1(k) is in the non-archimedean Fatou set of f at �. Choose a Zariski open set U� ⇢ X

so that all indeterminacy points of

f̃ : U� ⇥ P1 99K U� ⇥ P1

lie over �. Apply Theorem 4.7 to � = {⇣G}, the Gauss point, in P1,an
� . The analytically stable

pair (f,�0) guaranteed by Theorem 4.7 gives rise to a birational morphism Y� ! U� ⇥ P1

defined over K, which is an isomorphism outside of {�} ⇥ P1, and an algebraically stable

map f̃� : Y� 99K Y� lifting f̃ . (See [9, §4] for details on the relationship between vertex sets �

and modifications of the surface X⇥P1.) Recall that Ca denotes the curve in X⇥P1 defined

the graph of t 7! at, and that CY�

fn(a) denotes the proper transform of the curve Cfn(a) in Y�,

for each n � 0.

Let ⇡ : Y� ! U� denote the projection. The indeterminacy points for the iterates (f̃�)n

in ⇡�1(�) are identified with J-components of �0, and the F -disks for �0 are identified with

smooth points in the fiber ⇡�1(�) that are not indeterminate for any iterate of f̃�. Therefore,

the conclusion of Theorem 4.7 about the Fatou point a guarantees that the curves CY�

fn(a) are

disjoint from I(f̃�) and intersect the fiber over � in smooth points, for all n � 0. Assuming

that the point a is totally Fatou, we can repeat this argument over each � 2 X(K) where

f̃ : X ⇥ P1 99K X ⇥ P1 has indeterminacy; we glue the surfaces Y� and maps f� to obtain

our desired rational map

f̃Y : Y 99K Y.

For the converse implication, let Y ! X⇥P1 be any choice of birational morphism defined

over K, and let ⇡ : Y ! X be the projection to the first factor. Assume that a 2 P1(k)
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lies in the non-archimedean Julia set at � 2 X(K). Then we know that the curve CY
a will

intersect an indeterminacy point of some iterate (f̃Y )j in the fiber of Y over �, by Lemma

4.5. Indeed, any small Berkovich disk around a will map, under large iterates of f , over each

of the Type II points corresponding to the components of Y over �. There are now two cases

to consider. If CY
a or some iterate CY

fn(a) intersects a component of the fiber over � which is

mapped by f̃Y into an indeterminacy point, then we are done. If not, then since the point

p = CY
a \ ⇡�1(�) is indeterminate for (f̃Y )j, it must be that the point p is sent by (f̃Y )m, for

some m < j, to an element of I(f̃Y ). Consequently, CY
fm(a) intersects the indeterminacy set

of f̃Y , and the proof is complete. ⇤

4.5. Proof of Theorem 1.4. Assume that f is defined over k = K(X), for number field K.

Enlarging K if necessary, we can assume that all places � of bad reduction for f lie in X(K).

At each place � 2 X(K) of k, we know that the non-archimedean Fatou set ⌦�(f)\P1(k) is

open in P1(k), in the �-adic topology. We also know that ⌦�(f) \ P1(k) = P1(k) for all but

finitely many �. We will show that ⌦�(f) \ P1(k) is dense in P1(k) for the remaining �.

Fix � 2 X(K) and a point b 2 P1(k), and let ⇣ be any k-split Type II point in P1,an
�

bounding a disk around b. Consider all the connected components of P1,an
� \ {⇣}. If one of

these disks intersects P1(k), we call it a k-disk at ⇣. In the natural identification of the

set of components of P1,an
� \ {⇣} with P1(K), the k-disks correspond to the rational points

P1(K). If a k-disk at ⇣ intersects the Berkovich Julia set, we call it a Julia k-disk at ⇣.

If there are only finitely many Julia k-disks at ⇣, then we can always find infinitely many

k-disks at ⇣ that are fully contained in the Fatou set. This shows the existence of Fatou

elements of P1(k) in the closed Berkovich disk around b bounded by ⇣.

If there are infinitely many Julia k-disks at ⇣, then ⇣ is in the Julia set (because the Julia

set is closed in P1,an
� ), and ⇣ is therefore preperiodic [9, Proposition 3.9]. We are still able

to find infinitely many k-disks at ⇣ that are fully contained in the Fatou set. Suppose that

fm+n(⇣) = fm(⇣) for some m � 0 and n � 1. Let e be the local degree of fn at fm(⇣), as

defined in [3, §7.4], so that e � 1. For e > 1, the iterate fn induces a map g : P1 ! P1 of

degree e, defined over K, by the natural identification of P1(K) with the set of directions

from fm(⇣). The Julia set of f (which coincides with the Julia set for fn) in P1,an
� is contained

in the union of the hole-directions from fm(⇣) for fn and its iterates f jn, j � 1, by Lemma

4.5. In other words, the Julia directions are identified with a subset of the union
S

j�0 g
�j(E)

for a finite set E ⇢ P1(K), corresponding to the hole-directions for fn. But this implies that

there are only finitely many Julia k-disks from fm(⇣), because they correspond to a set in
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P1(K) with bounded Weil height, since deg g > 1. It follows that there were only finitely

many Julia k-disks from ⇣, a contradiction. So we conclude that e = 1.

The action of fn at fm(⇣) therefore induces an automorphism A 2 PGL2(K) acting on

P1(K), the set of directions from fm(⇣). The Julia k-directions from fm(⇣) are contained

in the union of the finitely many hole-directions of fn at fm(⇣) and the hole-directions for

all iterates fnj, j � 1. As before, these directions are identified with the union of a finite

set E in P1(K) and the orbit of E under A�1. Now let h : P1 ! P1 be the map induced by

fm from ⇣ to fm(⇣), defined over K, under any choice of identification of the k-directions

from ⇣ and fm(⇣) with P1(K). Then we can find infinitely many k-disks at ⇣ that are fully

contained in the Fatou set, as a consequence of the following:

Lemma 4.9. For any number field K, any finite set E in P1(K), any A : P1 ! P1 of degree

1 defined over K, and any nonconstant h : P1 ! P1 defined over K, there exists an infinite

set Y ⇢ P1(K) for which  
[

j�0

Aj(h(Y ))

!
\ E = ;.

Proof. Choosing coordinates on P1 over K, we can assume that A�1(x) = ↵x for some

↵ 2 K⇤ or that A�1(x) = x + 1. If A has finite order, then there is nothing to show, as

then
S

j�0 A
�j(E) is finite while h(P1(K)) is infinite. So if A�1(x) = ↵x, we can assume

there exists a place v of K for which |↵|v > 1. Then the set
S

j�0 A
�j(E) =

S
j�0 (↵

jE)

has no v-adic accumulation points except 1. Choose any y0 2 P1(K) so that h(y0) 6= 1,

and let {yn} be any infinite sequence in P1(K) for which yn ! y0 v-adically. Then h(yn) !
h(y0) v-adically. Therefore, letting Y be this sequence {yn}, after excluding at most finitely

many elements from the sequence, we may conclude that
⇣S

j�0 A
�j(E)

⌘
\ h(Y ) = ;. For

A�1(x) = x + 1, we work with any archimedean place of K. Let y0 2 P1(K) be a point for

which h(y0) 6= 1, and select any sequence yn 2 K for which yn ! y at this place. Then,

as before, letting Y be the complement of finitely many points in {yn}, we conclude that⇣S
j�0 A

�j(E)
⌘
\ h(Y ) = ;. ⇤

Repeating the above argument for all k-split points ⇣, we see that U� := ⌦�(f) \ P1(k�)

is open and dense in P1(k�) in the �-adic topology.

Let �1, . . . , �s 2 X(K) denote the places for which U� 6= P1(k�). Via the canonical

embedding of k into
Q

�2X(K) k�, we can approximate any tuple (x1, . . . , xs) 2
Q

i U�i by
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elements in k. This shows that totally Fatou points are open and dense in P1(k) in the

topology induced from the product topology. ⇤

4.6. Intersection theory for a Fatou point. The existence of the resolution Y ! X⇥P1

constructed in Theorems 1.5 and 4.7 shows more. We now prove that the local geometric

canonical height �̂f,�(a), at each place � of the function field k = K(X), can be computed

as an intersection number in Y when a 2 P1(k) is totally Fatou. In this way, for each place

� of k, we can view our surface Y as providing a relative type of Néron model, associated to

the pair (f, a).

Fix a choice of local canonical height functions {�̂f,� : � 2 X(K)} on P1(k) as in [31,

§3.5], so that ĥf (a) =
P

�2X(K) �̂f,�(a) for every a 2 P1(k). The local canonical height can

be computed as

�̂f,�(a) = �min{0, ord�(a)}

at all but finitely many places �; we enlarge the number field K so that this finite set of

places is contained in X(K).

Recall that, as in the statement of Theorem 1.5, the curve Ca is the section of X⇥P1 ! X

defined by t 7! at, for any a 2 P1(k). The curve CY
a is its proper transform in Y .

Proposition 4.10. Let f : P1 ! P1 be of degree d > 1, defined over a function field

k = K(X). Fix � 2 X(K). Let ⇡ : Y ! X ⇥ P1 be a birational morphism defined

over the number field K, which is an isomorphism outside of the line L� = {�} ⇥ P1. Let

{Y�,i}m�

i=1 denote the irreducible components of E� = ⇡�1(L�). Let f̃Y be the induced map on

Y satisfying

Y

⇡
✏✏

f̃Y // Y

⇡
✏✏

X ⇥ P1
f̃
// X ⇥ P1

and assume that f̃Y maps no component Y�,i into an indeterminacy point of f̃Y in E�. Then,

there exist rational numbers c�,i 2 Q, for i = 1, . . . ,m�, so the following holds. For each

point a 2 P1(k) such that the curve CY
fn(a) is disjoint from the indeterminacy locus I(f̃Y )\E�

and the singular locus of E� for every n � 0, the local geometric canonical height of a at �

is computed by

�̂f,�(a) = (Ca · C1)� +

m�X

i=1

c�,i C
Y
a · Y�,i
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where (Ca ·C1)� is the intersection multiplicity of the curves Ca and C1 in X⇥P1 at (�,1).

Combined with Theorems 1.5 and 4.7, we obtain:

Theorem 4.11. Let f : P1 ! P1 be of degree d > 1, defined over a function field k = K(X),

and let a 2 P1(k) be a totally Fatou point. Extending the number field K if necessary, let Y be

the surface of Theorem 1.5, and let {c�,i} be the rational numbers guaranteed by Proposition

4.10 over each � 2 X(K). Then the geometric canonical height of a satisfies

ĥf (a) =
X

�2X(K)

�̂f,�(a) = Ca · C1 +
X

�2X(K)

m�X

i=1

c�,i C
Y
a · Y�,i.

Proof. The theorem is almost immediate from Proposition 4.10 and the statement of The-

orem 1.5, summing over all � 2 X(K). We only need the additional input of Theorem 4.7

that the orbit of a will always lie in an F -disk for the vertex set �0. This guarantees that

the curves CY
fn(a) intersect the singular fibers only in their smooth points. ⇤

Proof of Proposition 4.10. As for Theorem 4.7, we continue to follow the arguments of [9],

and we also build on the machinery developed in [10].

We identify the components Y�,i with a finite set of Type II points in the Berkovich space

P1,an
� over the field L�. (We caution that some components Yi may be non-reduced, so we

need to keep track of their multiplicities as well.) See the discussion in, e.g., [9, §4]. Let

� ⇢ P1,an
� be the union of this finite set of Type II points; note that � must include the

Gauss point of P1,an
� because ⇡ : Y ! X ⇥ P1 is regular.

Suppose that a 2 P1(k) is a point for which the curves CY
fn(a) are disjoint from the points of

indeterminacy for f̃Y for all n � 0. This means, as in §4.3, that fn(a) lies in an F -component

for � for every n � 0. Fixing a homogeneous lift F of f so that ord� F = 0, we define the

order function �(F, ·) on P1,an
� as in [10, §3.1]. Specifically, for each n � 0, we let An denote

a homogeneous lift of fn(a) 2 P1(k) so that ord� An = 0, and then

�n := �(F, fn(a)) = ord� F (An).

From [10, Lemma 3.1], the local canonical height at � (associated to this choice of F ) can

be computed as

�̂f,�(a) = �min{0, ord�(a)}�
1X

n=0

�n

dn+1
.

The key observation is contained in [10, Proposition 4.1, Theorem 4.2]: for a point a that lies

in an F -disk component of P1,an
� \�, the order function depends only on the boundary point
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of that F -disk. When each iterate of a lies in an F -disk, the sequence �n depends only on

the sequence of boundary points of these F -disks containing fn(a), over all n � 0. However,

by the stability of the pair (f,�), these sequences, in turn, depend only on the boundary

point of the disk containing a itself. Indeed, every F -disk with boundary point ⇣ will map

into an F -disk with the same boundary point. Moreover, the order function can only take

finitely many possible values on the F -disks of � (by [10, Theorem 4.2]) and the stability

of (f,�) implies that the sequence {�n} will be eventually periodic. In other words, the

sequence {�n} depends only on the component Y�,i that intersects CY
a in E�. The coe�cient

c�,i is rational because the sequence {�n} is eventually periodic. ⇤

5. Near a singularity: uniform convergence to the escape rate

In this section, we fix � 2 X(K). We assume that we are given f : P1 ! P1 of degree

d � 2, defined over k = K(X), and a point a 2 P1(k). We choose lifts F and A, as defined

in §3.1,with ord� F = ord� A = 0 and we assume that

Res(F�) = 0.

We also assume that the pair (f, a) is hole-avoiding at �, as defined in §4.2, so that

F n
� (A�) 6= (0, 0)

for all n � 0. We set

An := F n(A) 2 k2

and we study the convergence of the sequence of functions

(5.1) gn,v(t) :=
1

dn
log k(An)tkv

in a neighborhood of t = � in X(Cv), for each v 2 MK . We prove:

Theorem 5.1. Fix � 2 X(K) and a hole-avoiding pair (f, a) at � with lifts F and A

satisfying ord� F = ord� A = 0 and Res(F�) = 0. There exists an MK-neighborhood U of �

in X so that, for each v 2 MK, the functions gn,v converge uniformly on Uv to a continuous

function gv.

Note that the limit function gv coincides with the escape-rate function GFt,v(At) defined

by (3.9) in §3.4, for t 6= �. So we know that the convergence of gn,v to gv is uniform on
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neighborhoods where t remains bounded away from � and the other singularities of f . The

steps in the proof of Theorem 5.1 are inspired by the arguments in [12], [13], and [25].

5.1. Convergence of the constant terms gn,v(�).

Proposition 5.2. Fix � 2 X(K). Under the hypotheses of Theorem 5.1, the limit

↵v := lim
n!1

1

dn
log k(An)�kv

exists in R, for all v 2 MK. Moreover, we have
X

v2MK

Nv|↵v| < 1.

In other words, {↵v : v 2 MK} defines an MK-quasiconstant.

Remark 5.3. For each fixed n, we have k(An)�kv = 1 for all but finitely many v. But as

n grows, the number of places for which k(An)�kv 6= 1 can also grow, so that ↵v can be

nonzero for infinitely many v 2 MK . A simple example is given by the function f(z) =

z(z + 1)/(z + t) defined over k = Q(t), which is similar to Example 4.1, at t = 0. Take

a = 1. Fix homogeneous polynomial lift F (z, w) = (z(z+w), (z+ tw)w), so that F0(z, w) =

(z(z + w), zw), and set A = A0 = (1, 1). Then for every prime p, we have k(An)0kp = 1 for

all n < p, and k(An)0kp < 1 for all n � p. We show below in (5.18) that this will imply

that the limit ↵p of Proposition 5.2 will be negative for all primes p. Many more examples

are given in [25]. Bear in mind that this does not happen for Lattès examples (the maps

arising as quotients of endomorphisms of elliptic curves) or for polynomials; in other words,

for those types of maps, the ↵v of Proposition 5.2 always define an MK-constant.

Proof of Proposition 5.2. Since Res(F�) = 0, specializing F at �, we can write

F� = H F̂

where H(z, w) 2 K[z, w] is a nonconstant homogeneous polynomial of degree k  d, and

F̂ (z, w) 2 (K[z, w])2 is a homogeneous polynomial map of degree ` = d � k < d inducing a

morphism of degree ` on P1. The zeroes of H in P1 are called the holes of f at �, as defined

in §4.2.
Because the pair (f, a) is hole-avoiding, the lift A satisfies F n

� (A�) 6= (0, 0) for all n. So it

must be that either ` > 0 or, if ` = 0, the value of F̂ is not a root of H. Consequently, as in

[6, Lemma 2.2], the specialization of each iterate F n can be expressed in terms of H and F̂
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by

(5.2) F n
� (z, w) =

 
n�1Y

i=0

H(F̂ i(z, w))d
n�1�i

!
F̂ n(z, w)

for all n � 1. In particular, this shows that

(5.3) (An)� =

 
n�1Y

i=0

H(F̂ i(A�))
dn�1�i

!
F̂ n(A�)

for every n.

For ` = 0, the map F̂ is constant, so F̂ n(A�) = (z0, w0) 2 K2 \ {(0, 0)} for some point

(z0, w0) and for all n � 1. The formula (5.3) gives

1

dn
log k(An)�kv =

1

d
log |H(A�)|v +

n�1X

i=1

1

di+1
log |H(z0, w0)|v +

1

dn
log k(z0, w0)kv

�! 1

d
log |H(A�)|v +

1

d(d� 1)
log |H(z0, w0)|v

as n ! 1, for all places v of K. The statements of the proposition follow immediately in

this case.

Now assume that ` � 1. There exists an MK-constant L so that

e�Lvk(z, w)k`v  kF̂ (z, w)k  eLvk(z, w)k`v

for all (z, w) 2 K
2
and for all v 2 MK [31, Proposition 5.57]. This implies that

(5.4) e�Lv(1+`+···+`n�1)kA�k`
n

v  kF̂ n(A�)kv  eLv(1+`+···+`n�1)kA�k`
n

v

so that

(5.5) lim
n!1

1

dn
log kF̂ n(A�)kv = 0

for all v 2 MK , because ` < d.

Recalling that degH = k = d� `, there is also an MK-constant H so that

|H(z, w)|v  eHvk(z, w)kkv

for all (z, w) 2 K2. So

(5.6) |H(F̂ i(A�))|v  eHvkF̂ i(A�)kkv  eHvekLv(1+`+···+`i�1)kA�kk`
i

v
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at all places v and for all i � 1. Note that the bound on the right side of (5.6) can be > 1

at only finitely many places v of K, independent of i. Let S+ denote this finite set of places.

Therefore, since H(F̂ i(A�)) 2 K⇤ for all i, we can apply the product formula to observe that

there is a constant c > 0 so that

(5.7)
Y

v 62S+

|H(F̂ i(A�))|Nv
v � cmax{i,`i}

for all i � 1. Using the formula (5.3), we combine (5.5) with (5.6) and (5.7) to deduce the

existence of

(5.8) ↵v = lim
n!1

1

dn
log k(An)�kv =

1X

i=0

1

di�1
log |H(F̂ i(A�))|v

at every place v, because ` < d.

From (5.6) and the summation expression for ↵v in (5.8), we see that ↵v  0 for all v 62 S+.

To show that the sum over all places of the ↵v is finite, we use (5.7) to estimate

1

di�1

X

v 62S+

Nv log |H(F̂ i(A�))|v �
max{i, `i}

di�1
log c

for each i � 1. Summing over all i, we can then use Fubini’s theorem to deduce that
X

v 62S+

Nv ↵v > �1,

so that X

v2MK

Nv|↵v| < 1.

This completes the proof of the proposition. ⇤

5.2. Proof of Theorem 5.1. Throughout this proof, we work in an MK-neighborhood U of

� 2 X(K), so that the conclusion of Proposition 3.2 holds. For simplicity, we let u 2 K(X)

denote a choice of local coordinate on X near � so that u = 0 represents �.

We now fix v 2 MK , and we drop the dependence on v to ease notation. Let � denote

the v-adic radius of the largest disk {|u|v < �} contained in the MK-neighborhood Uv. Let

C = ebv � 1 be the constant appearing in Proposition 3.2 at this place. For each n, we write
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An(u) for the specialization of An = F n(A) at u. For every n � m, we define

gn(u) =
1

dn
log kAn(u)k

=
1

dm
log kAm(u)k+

1

dm

n�mX

j=1

1

dj
log

kAm+j(u)k
kAm+j�1(u)kd

for |u| < �. Let q = ord� Res(F ). From Proposition 3.2, we have

(5.9) gm(u) +
1

dm
(q log |u|� logC)  gn(u)  gm(u) +

1

dm
logC

for all n � m � 0 and for all |u| < �. Let

↵ = lim
n!1

1

dn
log kAn(0)k;

its existence is guaranteed by Proposition 5.2.

Step 1: a choice of N and �N for a uniform upper bound. Fix " > 0. Choose N so

that we have

(5.10) ed
n(↵�")  kAn(0)k  ed

n(↵+")

for all n � N , and so that

(5.11)
1

dN
logC < " and

����
1

dN
log(1� ")

���� < ".

Now choose �N > 0 so that, by continuity of AN(u), we have

(5.12) (1� ")ed
N (↵�")  kAN(u)k  ed

N (↵+2")

for all |u|  �N . Applying the upper bound of (5.9) and using (5.11), this implies that

(5.13) gn(u)  gN(u) +
1

dN
logC  ↵ + 3"

for all n � N and for all |u|  �N .

Note that the lower bound of (5.9) is not enough to get uniform control on gn from below

for n � N , because of the log |u| term.

Step 2: the Maximum Principle and lower bounds within �n. By the triangle

inequality, we have

kAN(u)� AN(0)k  2ed
N (↵+2")
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for all |u|  �N , from (5.10) and (5.12). Note that the coordinates of AN(u)�AN(0) vanish

at t = 0, and so the Maximum Principle (applied to 1
u(AN(u)� AN(0))) gives

kAN(u)� AN(0)k  |u|
�N

2ed
N (↵+2")

for all |u|  �N . For a non-archimedean Maximum Principle see e.g. [1, Proposition 8.14].

Using the upper bound of (5.13), the same argument implies that

(5.14) kAn(u)� An(0)k  |u|
�N

2ed
n(↵+3")

for all n � N and for all |u|  �N . This implies that

kAn(u)k � kAn(0)k � kAn(u)� An(0)k

� ed
n(↵�") � |u|

�N
2ed

n(↵+3")

= ed
n(↵�")

✓
1� |u|

�N
2ed

n(4")

◆

for all n � N and for all |u|  �N .

Now define

(5.15) �n :=
�N"

2e4dn"

for all n > N . So we have

(5.16) kAn(u)k � ed
n(↵�") (1� ")

for all |u|  �n and for all n > N . Combined with the lower bound of (5.12) and the

condition on N in (5.11), this shows that

(5.17) gn(u) � ↵� 2"

for all |u|  �n and for all n � N .

Step 3: Choosing larger N0 and completing the proof. From the definition of �n, we

see that
1

dn
log �n =

1

dn
log(�N"/2)� 4"

for all n > N . Now choose n0 > N so that
����
1

dn0
log(�N"/2)

���� < ".
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Recall that the sequence {gn} converges uniformly on neighborhoods in u that are bounded

away from u = 0 (and any other singularities for f in X), so, by our choice of MK-

neighborhood, there exists N0 � n0 so that

|gn � gm| < "

for all n,m � N0, uniformly on {�n0  |u| < �}.
For |u|  �n0 , we know that

gn(u)  ↵ + 3"

for all n � n0 by (5.13). And we know that

gn(u) � ↵� 2"

for all |u|  �n and for all n � n0, by (5.17). On the other hand, for �n < |u|  �n0 we can

choose n > m � n0 so that �m+1  |u|  �m and then (5.9) gives

gn(u) � gm(u) +
q

dm
log �m+1 �

1

dm
logC � ↵� 2"� 5qd"� "

So, in particular, we have

↵� (3 + 5qd)"  gn  ↵ + 3"

for all n � N0 and for all |u|  �n0 . This completes the proof of uniform convergence. ⇤

5.3. A summable lower bound on a disk. We conclude this section with a consequence

of Proposition 5.2 and its proof that will be used to prove Theorem 1.2.

Proposition 5.4. Fix � 2 X(K). Under the hypotheses of Theorem 5.1 and in the notation

of Proposition 5.2, there exists a finite set S� ⇢ MK so that

(d(ord� ResF ) + 1)↵v  gv(t)  0

for every v 62 S� and all t in an MK-neighborhood of �.

Proof. We first let S� be the finite set of places v 2 MK , including all archimedean places,

at which the quantities Lv and Hv in the proof of Proposition 5.2 di↵er from 0 and where

kA�kv 6= 1. It follows from the computations in Proposition 5.2 (specifically, equation (5.6)

and (5.8)) that ↵v  0 for all v 62 S�.

Recall the formula for (An)� given in (5.3). For all v 62 S�, we have

k(An+1)�kv = kF�((An)�)kv  k(An)�kd
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so that

(5.18)
1

dn+1
log k(An+1)�kv 

1

dn
log k(An)�kv

for all n. For all v 2 MK \ S�, we also have kF̂ n(A�)kv = 1 for all n. So k(An)�kv < 1 for

some n > 0 if and only if there exists i < n so that |H(F̂ i(A�))|v < 1. Furthermore, from

(5.18), such an n exists if and only if ↵v < 0, for each v 62 S�.

Now let u denote a local coordinate on X with u = 0 representing �. From Proposition

2.1, the coe�cients of F and the coordinates of A are MK-bounded on an MK-neighborhood

of �. We enlarge S� if needed to assume that these coe�cients are  1 in absolute value

and so that the neighborhood is given by {|u|v < 1} for all v 62 S�. We further enlarge S�

to include all places at which the MK-constant bv from Proposition 3.2 di↵ers from 1, and

also so that |u|2g+1
v = |⇠�|v for v /2 S� on the MK-neighborhood of � (applying Proposition

2.1 to u).

Then, for all v 62 S�, the upper bound on the coe�cients of F and the coordinates of A

gives

(5.19) kAn(u)kv  1

for all n � 1 and for all |u|v < 1. This implies immediately that gv(u)  0 for all |u|v < 1

with v 62 S�, proving the desired upper bound of the proposition.

Moreover, for v 62 S� where ↵v = gv(0) = 0, we conclude from the Maximum Principle

(applied to the subharmonic gv) that gv(u) = 0 for all |u|v < 1, and the estimate of the

proposition holds for these v. For the rest of the proof, we fix v 62 S� with ↵v < 0, and

choose minimal m � 0 so that k(Am+1)�kv < 1. Since k(An)�k1/d
n

v is a non-increasing

sequence from (5.18), we see that k(An)�kv decreases to 0 as n ! 1, and

(5.20)
1

dn
log k(An)�kv � ↵v

for all n. As k(Am)�kv = 1, the inequality (5.19) implies (with the Maximum Principle) that

kAm(u)kv = 1 for all |u|v < 1.

Let q = ord�(ResF ). Proposition 3.2 then gives

(5.21)
1

dn
log kAn(u)kv �

1

dm
log kAm(u)kv +

q

dm
log |u|v =

q

dm
log |u|v
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for all n � m and for all |u|v < 1. Therefore, for all u satisfying kAm+1(0)kv  |u|v < 1, we

have
1

dn
log kAn(u)kv � q

dm
log kAm+1(0)kv � qd↵v

for all n � m, from (5.21) and (5.20). This shows that gv(u) � qd↵v where |u|v �
kAm+1(0)kv.

On the other hand, for |u|v < kAm+1(0)kv, we can choose j � m+ 1 so that

kAj+1(0)kv  |u|v < kAj(0)k.

Then, writing Aj(u) = Aj(0) + uRj(u) for u near 0, we know that kRj(u)kv  1 for all

|u|v < 1, by (5.19) and the Maximum Principle, and therefore

kAj(u)kv = kAj(0) + uRj(u)kv = kAj(0)kv

where |u|v < kAj(0)kv. Therefore,
1

dn
log kAn(u)kv � 1

dj
log kAj(u)kv +

q

dj
log |u|v

� 1

dj
log kAj(0)kv +

q

dj
log kAj+1(0)kv

� (1 + dq)↵v

for all kAj+1(0)kv  |u|v < kAj(0)k and for all n � j. This implies that gv(u) � (1 + dq)↵v

for u values in this region. Since kAn(0)kv ! 0 as n ! 1, the proof of the lower bound on

gv is complete, thus completing the proof of the proposition. ⇤

6. Proofs of Theorems 1.2 and 1.7

In this section, we complete the proofs of Theorems 1.2 and 1.7. We fix f : P1 ! P1

defined over the field k = K(X), of degree d > 1, and we assume that a 2 P1(k) is totally

Fatou for f . Fix homogeneous lifts F of f and A of a as in §3.1. Recall the definitions of

the finite sets S(F ) ⇢ S(F,A) in X(K) from §3.1, and that K was enlarged (if necessary) so

that S(F,A) ⇢ X(K), as stated in Convention 3.1. Recall also the definitions of the escape

rates GF,�(A) and GFt,v(At) given in (3.4) and (3.9), respectively. The divisor

D =
X

�2X(K)

GF,�(A) �

on X was defined in (3.5); its support lies in S(F,A).
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For the choice of Weil height hD defined by (3.7), we now consider the di↵erence

ĥft(at)� hD(t) =

1

[K : Q]

1

|Gal(K/K) · t|

X

x2Gal(K/K)·t

X

v2MK

Nv

0

@GFx,v(Ax)�
1

2g + 1

X

�2X(K)

GF,�(A) log
+ |⇠�(x)|v

1

A

for t 2 X(K) \ S(F,A). For each place v of K, we examine the function

(6.1) Vv(t) = GFt,v(At)�
1

2g + 1

X

�2X(K)

GF,�(A) log
+ |⇠�(t)|v

on X(K) and its extension to X(Cv) and the Berkovich analytification Xan
v . Recall that the

steps needed to complete the proofs were outlined in §3.5.

6.1. Changing coordinates and lifts. If we change the lifts F and A, multiplying each

by an element of k⇤, it follows from (3.6) and (3.10) that

GcFt,v(↵At)�
1

2g + 1
GcF,�(↵A) log

+ |⇠�(t)|v = GFt,v(At)�
1

2g + 1
GF,�(A) log

+ |⇠�(t)|v

+
1

d� 1
log |ct↵d�1

t |v +(6.2)

1

(2g + 1)(d� 1)
ord�(c↵

d�1) log+ |⇠�(t)|v

for any choice of � 2 X(K). Moreover, the sum of the last two terms is MK-bounded on an

MK-neighborhood of �, as a consequence of Proposition 2.1.

If we conjugate F by an element B 2 GL2(k), we have

(6.3) GBFB�1,�(B(A)) = GF,�(A) and G(BFB�1)t,v(B(A)t) = GFt,v(At)

from the definitions of the escape rates, for each � 2 X(K), and each place v of K and all

t 2 X(K) \
�
S(F,A) [ S(BFB�1, B(A)) [ S(B)

�
. Replacing F or A by an iterate gives

(6.4) GFn,�(F
m(A)) = dm GF,�(A) and GFn

t ,v(F
m(A)t) = dm GFt,v(At)

for all n � 1 and m � 0, again immediate from the definitions.

6.2. The divisor D = D(F,A) is a Q-divisor. We need to show that GF,�(A) 2 Q for

each � 2 S(F,A). This is immediate from the following proposition. (It also follows from the
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statement of Proposition 4.10.) We present an alternative short argument in the following

proposition. Recall that k� denotes the completion of k at �.

Proposition 6.1. Let f : P1 ! P1 be of degree d � 2, defined over k = K(X), � a point in

X(K), and a 2 P1(k�). If the point a is an element of the non-archimedean Fatou set ⌦�(f)

at �, then the geometric escape rate GF,�(A) is a rational number, for any choice of lifts F

and A.

Remark 6.2. In [10] it was shown, for maps f defined over k, that there can exist points

a 2 P1(k�) with irrational local canonical height. Proposition 6.1 implies that these points

must always lie in the non-archimedean Julia set of f at �. We provide examples in Section

7. It is not known if the Julia points can be algebraic over k.

Proof. If the pair (f, a) is hole-avoiding at �, as defined in §4.2, and if �F and ↵A are lifts

of f and a, respectively, so that ord� �F = ord� ↵A = 0 for ↵, � 2 k⇤, then

GF,�(A) = G�F,�(↵A) +
1

d� 1
ord� � + ord� ↵

from (3.6), so that

GF,�(A) = 0 +
1

d� 1
ord� � + ord� ↵ 2 Q

because ord�(�F )n(↵A) = 0 for all n � 0.

If the pair (f, a) is not hole-avoiding at �, then Theorem 4.6 implies the existence of

a change of coordinates B 2 GL2(k) and iterates so that the pair (BfnB�1, B(fm(a))) is

hole-avoiding at �. The conclusion then follows from (6.3) and (6.4). ⇤

6.3. Variation of canonical height: proofs of the main theorems. Assume that a 2
P1(k) is totally Fatou for f , and let D = D(F,A). Proposition 6.1 implies that D is a

Q-divisor, so it remains to study properties of the functions Vv, defined in (6.1), associated

to this divsor D on the curve X at each place v of the number field K.

We begin by proving Theorem 1.7, which states that the functions Vv are continuous on

the Berkovich analytification Xan
v at all places v. This implies, in particular, the existence

of a uniform bound Cv so that |Vv|  Cv at all points of X(K). (Recall that we have fixed

an embedding of K ,! Cv for each place v.) Towards proving Theorem 1.2, we then find

a finite set of places S ⇢ MK outside of which we have strong bounds on Vv, so that we

can show the sum
P

v2MK\S Nv Vv(t) is uniformly bounded on X(K). Combined with the
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bound Cv for each place v, we obtain a uniform bound on the sum
P

v2MK
Nv Vv(t), for all

t 2 X(K). Averaging over Galois orbits will complete the proof of Theorem 1.2.

Proof of Theorem 1.7. Fix � 2 S(F,A). First assume that the pair (f, a) is hole-avoiding at

�, as defined in §4.2. Choose functions ↵, � 2 k so that ord� �F = ord� ↵A = 0. This places

us in the setting required for the results of Section 5. For the function gv defined there, note

that

(6.5) gv(t)� Vv(t) =
1

d� 1
log |�t↵

d�1
t |v +

1

(2g + 1)(d� 1)
ord�(�↵

d�1) log+ |⇠�(t)|v

on an MK-neighborhood of �, as a consequence of (6.2), and this di↵erence is continuous at

all places v 2 MK and an MK-bounded function.

If the pair (f, a) fails to be hole-avoiding at �, then from Theorem 4.6, we can find a

change of coordinates B 2 GL2(k) and pass to iterates so that the pair (BfnB�1, B(fm(a)))

is hole-avoiding at �. From properties (6.3) and (6.4) of the escape rates, we can replace the

lifts (F,A) with (BF nB�1, BFm(A)), and these changes do not a↵ect the computation of

Vv on an MK-neighborhood of � (outside of � itself, where the specialization B� may fail to

be invertible), except to multiply it by dm at every place v. So we can assume that (f, a) is

hole-avoiding at �.

We can apply Theorem 5.1 to conclude that Vv is a continuous function on an MK-

neighborhood of �, for every v 2 MK , and that it extends to a continuous function on

the closure of this neighborhood in the Berkovich analytification of X, for each v. This

completes the proof of Theorem 1.7, because the continuity of Vv – when bounded away

from the elements of S(F,A) in Xan
v – is immediate from the definitions of the escape rates

GFt,v(At) and the local height functions for hD. ⇤

Proof of Theorem 1.2. Fix � 2 S(F,A). As in the proof of Theorem 1.7, it su�ces to assume

that (f, a) is hole-avoiding at �. Choose functions ↵, � 2 k so that ord� �F = ord� ↵A = 0.

Let S� be a finite set of places of the number field K so that the function in (6.5) vanishes

on an MK-neighborhood of � for all v 2 MK \ S�. The function Vv for the given pair

(F,A) then coincides with the function Vv for the pair (�F,↵A) for all v 2 MK \ S� on an

MK-neighborhood of � and is equal to gv at these places.

We can enlarge the finite set S� so that Propositions 5.4 and 5.2 imply the existence of an

MK-quasiconstant a(�) for which

(6.6) |Vv(t)| = |gv(t)|  av(�)
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for all v 62 S� and t in an MK-neighborhood of �.

Let U be the union of these MK-neighborhoods over all � 2 S(F,A). From Proposition

3.2, we know that there exists an MK-constant c so that

(6.7) e�cv  kFt(z, w)kv
k(z, w)kdv

 ecv

for all t 2 X(Cv) outside of Uv and all v 2 MK . From Proposition 2.1, we can increase the

MK-constant c so that

(6.8) e�cv  kAtkv  ecv

for all t 2 X(Cv) \ Uv.

Let S ⇢ MK be a finite set containing S� for each � 2 S(F,A) and containing all places

for which cv 6= 0 and for which Uv is not equal to the union
S

�2S(F,A){|⇠�|v > 1}. Now fix

t 2 X(K). If t 62 Uv at v 62 S, we have

Vv(t) = GFt,v(At) = 0(6.9)

because kF n
t (At)kv = 1 for all n, from (6.7) and (6.8). On the other hand, if t 2 Uv for

v 62 S, then we still have the bound

|Vv(t)|  av(�)(6.10)

from (6.6). Recalling the summability of the bounds in (6.6) near each � 2 S(F,A), inequal-
ities (6.9) and (6.10) yield

X

v 62S

Nv |Vv(t)|  C :=
X

�2S(F,A)

X

v 62S

Nv av(�) < 1,

for each t 2 X(K).

By the continuity of Vv on Xan
v for every v 2 MK , from Theorem 1.7, there is a constant

Cv for each v 2 S so that |Vv(t)|  Cv for all t 2 X(K). This gives
X

v2MK

Nv |Vv(t)|  C +
X

v2S

Nv Cv < 1

for all t 2 X(K). It follows that, taking averages over the Galois orbit of t, we have

1

|Gal(K/K) · t|

X

x2Gal(K/K)·t

X

v2MK

Nv |Vv(t)|  C +
X

v2S

Nv Cv
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for all t 2 X(K). This completes the proof of Theorem 1.2. ⇤

7. Examples

In this final section, we present examples to illustrate some of the subtle phenomena that

can arise for non-polynomial maps f : P1 ! P1, even in the simplest setting of degree d = 2,

with K = Q and k = Q(t).

7.1. The di↵erence of heights in Theorem 1.2 is bounded but not MK-bounded.

We first present an example, already seen in Remark 5.3, where the conditions of Theorem

1.2 hold but the functions Vv of Theorem 1.7 are nontrivial at infinitely many places v of

K = Q. A mechanism to construct many other such examples appears in [25]. Consider

f(z) =
z(z + 1)

z + t

defined over k = Q(t). Put

F (z, w) = (z(z + w), (z + tw)w),

so that S(F ) consists only of the three points t = 0, 1,1 in X = P1. Let a = 1, and take

A = (1, 1) so that S(F,A) = S(F ) = {0, 1,1}. The point a is totally Fatou as a consequence

of Theorem 4.6, because the pair (f, a) is hole-avoiding at all points of S(F ). Indeed, at

t = 0, we have F0(z, w) = (z(z + w), zw) with hole at z/w = 0 and orbit fn
0 (a) = n + 1 for

all n � 0. At t = 1, we have F1(z, w) = (z(z + w), (z + w)w) with hole at z/w = �1, and

orbit fn
1 (a) = 1 for all n � 0. Finally, at t = 1, we can choose a new lift F 0 = 1

tF so that

(F 0)1(z, w) = (0, w2) with hole at z/w = 1 and orbit fn
1(a) = 0 for all n � 1.

It follows from these computations that D = D(F,A) = (1) is the divisor of degree 1 on

X = P1 supported at the point t = 1. This implies, in particular, that ĥf (a) = 1.

Fix a prime p of Q. To see that the function Vp is nontrivial on X, it su�ces to show

that Vp(0) 6= 0. Let An = F n(A). As explained in Remark 5.3, we have k(An)0kp = 1 for all

n < p, and k(An)0kp < 1 for all n � p. As computed in (5.18), we know that k(An)0k1/2
n

p is

a decreasing sequence for all primes p, so that the ↵p of Proposition 5.2 (defined as gp(0) for

the function gp(t) = limn!1 2�n log k(An)tkp in a p-adic neighborhood of t = 0) is non-zero

for all primes p. Moreover, as explained in the proof of Theorem 1.7, we also have that

Vp(0) = gp(0) and so Vp(0) = ↵p < 0 for all primes p.
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7.2. All known non-polynomial examples are totally Fatou. Here we survey the re-

sults in the literature where the conclusions of Theorems 1.2 and 1.7 were known for examples

f : P1 ! P1 that are not polynomial maps (nor conjugate to a polynomial). In every case,

the points a 2 P1(k) that were treated satisfy our totally Fatou hypothesis.

The first example is the one presented in the Introduction, where the variation of canonical

height t 7! ĥft(pt) for a family of Lattès maps ft – those arising as quotients of endomor-

phisms of ellptic curves – is known to di↵er from a Weil height for a Q-divisor on the base

curve X by a bounded amount, for any choice of p 2 P1(k) [32]. The continuity of the local

contributions Vv, as defined in Theorem 1.7, was shown by Silverman in [29]. Also as men-

tioned in the Introduction, it is well known that all points are totally Fatou for these maps;

see, e.g., the computation of the Berkovich Julia set in [16, §5]. Alternatively, note that the

existence of a Néron model forces all points to be hole-avoiding in appropriate coordinates.

In [17], the authors prove Theorem 1.2 for rational maps f defined over k = K(X) for a

curve X and points c 2 P1(k), under the assumptions that

(1) there exists t0 2 X so that the map f has good reduction at all t 6= t0;

(2) f has a super-attracting fixed point at z = 1; and

(3) the point c satisfies ordt0 f
n(c) ! �1.

Condition (3) implies that c is in the basin of attraction of the super-attracting fixed point

at 1, so it is clearly Fatou at t0. (The hypothesis (3) is stated in [17, Theorem 5.4] as

{deg fn(c) : n � 0} is unbounded, but for a notion of degree defined in their Section 5 on

the regular functions on X \ {t0} and extended to k after equation (5.4).)

In [18], the authors studied maps of the form

f(z) =
zd + t

z

over k = Q(t), for d � 3, and they prove Theorem 1.2 for all points a 2 P1(k). (The map

f for d = 2 is isotrivial, making the theorem true but much easier.) In this example, the

point z = 1 is a super-attracting fixed point, and there are two places of bad reduction, at

t = 0 and t = 1. All points a 2 P1(k) are totally Fatou. Indeed, at t = 0, the reduction is

f0(z) = zd�1 with only hole at z = 0. So the only points we need to consider are those which

vanish at t = 0. But for any integer m � 1, if ord0 a = m, then ord0 f(a) = 1 �m  0, so

f(a) which will no longer specialize to 0 at t = 0; this implies that the pair (f, f(a)) is hole-

avoiding at t = 0 for all a 2 P1(k). At t = 1, a computation shows that if ord1 a = r < 0,

then ord1 f(a) = (d� 1)r; iterating implies that fn(a) ! 1 in the 1-adic topology, so the
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point a will be Fatou at t = 1. Moreover, if ord1 a = r � 0, then ord1 f(a) = �r � 1 < 0,

and again a is Fatou at 1.

In [13], the authors consider

f(z) =
�z

z2 + tz + 1
(7.1)

for a fixed � 6= 0 in Q, defined over k = Q(t), having a fixed point of multiplier �. For �

not a root of unity or for � = 1, the result of Theorem 1.2 is obtained there for the critical

points c± = ±1 of f . The critical points will be totally Fatou for any choice of �. It su�ces

to check the dynamics of f at t = 1. For � = 1, we can conjugate f by B(z) = 1/(tz) so the

new map z+1+1/(t2z) specializes to z 7! z+1 with hole at z = 0, and the critical values in

the new coordinate system B(f(c±)) = (±2+ t)/t specialize to z = 1, so the pairs (f, f(c±))

are seen to be hole-avoiding in the new coordinate system. For � not a root of unity, the

map f can be conjugated to a map that specializes to z 7! � z with a hole at z = 1, and so

that the critical values f(c±) in the new coordinates will specialize to z = �. Again the pairs

(f, f(c±)) are hole-avoiding in the new coordinate system. These facts appear in the proof of

[13, Proposition 2.2] and in [7, §5]; these cases are also covered by [23, Lemma 3.4]. Finally,

in [25], the authors obtain the result of Theorem 1.2 for the maps f of the form (7.1) when �

is a root of unity and for a large class of points c 2 Q(t) satisfying a hole-avoiding condition

at the place of bad reduction t = 1. This includes in particular maps of the form (7.1) with

c± = ±1. As explained in Theorem 4.6 above, this means that the points considered are

totally Fatou.

7.3. Julia points: irrational local heights and R-divisors. This next example is a map

of degree 2 defined over the field k = Q(t), with the property that all points with infinite

orbit that lie in a local non-archimedean Julia set at the place t = 0 of k will have an

irrational local canonical height. If such a point can be algebraic over k, it would show that

the conclusion of Theorem 1.2 would fail for Julia points, as stated; the divisor D should be

an R-divisor on the curve X. Set

(7.2) f(z) =
(t2 + t+ 1)z2 + tz + t2 � 1

(2t2 + t)z + t
.

This map has fixed points at z = 1 (with multiplier 1/t) and at z = �1 (with multiplier

1/t2), and at z = 1. At the place t = 0 of k, these fixed points at ±1 are repelling, and the

fixed point at 1 is attracting (but not super-attracting). The Julia set in P1,an
t=0 , defined over



VARIATION OF HEIGHTS FOR FATOU POINTS 43

the field L of formal Puiseux series in t, is a Cantor set of Type I points, and f is conjugate

to the full 2-shift [23, Theorem 3(1)]. All points outside of the Julia set will tend to 1 under

iteration. This map f exhibits a polynomial-like behavior near its Julia set, and it can be

computed that the Julia set is a subset the formal completion k0 := Q[[t]]. But this example

is not strongly polynomial-like, in the sense of [10, Theorem 1.5], because the multipliers at

the two repelling fixed points have distinct absolute values.

We can compute local canonical heights over the field k with the procedure described in

[10]. In homogeneous coordinates, put

F (z, w) = ((t2 + t+ 1)z2 + tzw + (t2 � 1)w2, (2t2 + t)zw + tw2).

At t = 0, we have F0(z, w) = (z2�w2, 0), and the Julia set is contained in the hole-directions

±1 from the Gauss point ⇣G, i.e., in the union of the two disksD± = {z 2 L : |z�(±1)|0 < 1}.
The conjugacy between f on its Julia set and the shift map on 2 symbols is given by

the itinerary of a point as it moves between D+ and D�. For a point a 2 k0 with lift

A 2 (k0)2 \ {(0, 0)}, a sequence of orders is defined by

(7.3) ⌧n := ordt=0 F
n(A) = 2 ⌧n�1 + �n�1

so that

GF,0(A) = � lim
n!1

⌧n
2n

= �⌧0 �
1X

n=1

�n�1

2n
.

From the formula for F , we can compute that �n = 1 if fn(a) 2 D+ and �n = 2 if fn(a) 2 D�,

for all n � 0. Because of the conjugation to the shift map, we see that the sequence {�n} is

eventually periodic if and only if the point a is eventually periodic. Therefore, GF,0(A) (and

so also any presentation of the geometric local canonical height �̂f,0(a) at t = 0) is irrational

for all Julia points with infinite orbit.

Remark 7.1. The function f of (7.2) is conjugate to z 7! t2z2+z
tz+t2 , in a standard normal

form for quadratic rational maps, with fixed points at 0 and 1 of specified multipliers (in

this case, having multiplier 1/t2 at 0 and 1/t at 1). We then moved the two repelling fixed

points to 1 and �1 and the attracting fixed point to 1.

7.4. Julia points with divergent escape rates. Our final example is

(7.4) f(z) =
z2 + (t2 � t� 1)z � t3 � 2t2 + t

z � t2 � 1
,
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defined over the field k = Q(t), at the place � corresponding to t = 0. As for the example

(7.2), all Julia points at t = 0 with infinite orbit for f will have an irrational local canonical

height at t = 0. This can be seen from the proof of [10, Theorem 1.3], because this f is

conjugate to the map z 7! (z+1)(z�t)
z+t studied there, combined with an identification of the

Julia set with the shift on 2 symbols [23, Proposition 4.2].

We construct (formal) points a 2 Q[[t]] in the Julia set of f at t = 0 so that the sequence

of functions (5.1) that define V1 (at the archimedean place) will diverge at t = 0. We do not

know if the points a we construct can be algebraic over k, nor even if the series will converge

on a disk around t = 0. We use these examples to illustrate some of the features of Julia

points that do not arise for the Fatou points.

Remark 7.2. As we shall see, taking any unbounded sequence of positive integers {mk}k�0

in the construction below, this example also shows that the orbits of points in P1(k�) can have

non-locally-compact closures. This is distinct from what happens for polynomials; compare

[14, Theorem 3].

More precisely, we construct examples so that the sequence

↵n :=
1

2n
log k(An)0kv,

as defined and studied in Proposition 5.2, will diverge to �1 at the place v = 1. In

particular, this would show that – if the point a defines a convergent series in Q[[t]] – the

conclusion of Theorem 5.1 would fail. That is, the sequence of functions

gn(t) :=
1

dn
log k(An)tk

would converge, locally uniformly on a punctured disk around t = 0, and we know that the

limit function g(t) must be bounded by o(log |t|) as t ! 0 [8, Proposition 3.1]. But the

convergence to g would not be uniform in a neighborhood of t = 0.

For the construction, note first that f specializes to the identity transformation f0(z) = z

at t = 0 with a hole at z = 1. The Berkovich Julia set is contained in the direction z = 1

from the Gauss point, and all Julia points have the form 1 + mt + O(t2) for some integer

m � 0. We have

f(1 + w t+O(t2)) = 1 + (w � 1) t+O(t2)

for all w 6= 0, and

f(1 + w t2 +O(t3)) = 1 +
1 + w

1� w
t+O(t2)
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for all w 6= 1.

For any sequence of positive integers {mk}k�0, there is a unique point a 2 Q[[t]] so that

a = 1 +m0 t+O(t2)

and

fm0+···+mk�1+k(a) = 1 +mk t+O(t2)

for all k � 1 [10, Theorem 1.3], [23, Proposition 4.2]. Let

F (z, w) =
�
z2 + (t2 � t� 1)zw + (�t3 � 2t2 + t)w2, zw � (t2 + 1)w2

�

be a lift of f . Set

A = (a, 1) = (1 +m0 t+O(t2), 1)

for the a associated to a given sequence {mk}k�0. For each n � 1, we set

An = t��n�1F (An�1),

where �n�1 is chosen so that ordt=0 An = 0, as above in (7.3). In fact, �n = 1 whenever

fn(a) = 1 + wt+O(t2) for w 6= 0, and �n = 2 for fn(a) = 1 +O(t2). For each n � 1, we let

(An)0 denote the specialization at t = 0, and set

↵n =
1

2n
log k(An)0k

in the archimedean norm.

We now show that, by choosing the sequence {mk}k�0 to grow to infinity su�ciently fast,

we can have lim infn!1 ↵n = �1. For a lift (y0 + x1t+O(t2), y0 + y1t+O(t2)) of the point

1 +mt+O(t2), with m > 0, we have (x1 � y1)/y0 = m, and this gives

F
�
y0 + x1t+O(t2), y0 + y1t+O(t2)

�
= t (y0(x1 � y1), y0(x1 � y1)) +O(t2)

= t
�
my20, m y20)

�
+O(t2)

for m 6= 0. Now suppose we take any lift (y0+y1t+x2t2+O(t3), y0+y1t+y2t2+O(t3)) with

y0 6= 0 of a point p = 1+ c t2+O(t3), with c = m�1
m+1 for m � 1 so that f(p) = 1+mt+O(t2).
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Then we must have x2�y2
y0

= m�1
m+1 , and this gives

F
�
y0 + y1t+ x2t

2 +O(t3), y0 + y1t+ y2t
2 +O(t3)

�

= t2 (y0(x2 � y0 � y2), y0(x2 � y0 � y2)) +O(t3)

= t2
✓

�2y20
m+ 1

,
�2y20
m+ 1

◆
+O(t3).

Iterating the point A, we find that

(A1)0 = (m0, m0)

(A2)0 =
�
m2

0(m0 � 1), m2
0(m0 � 1)

�

all the way to

(Am0)0 =
⇣
m2m0�1

0 (m0 � 1)2
m0�2 · · · 1, m2m0�1

0 (m0 � 1)2
m0�2 · · · 1

⌘
=: (Ym0 , Ym0)

so that

↵m0 =
1

2m0
log |Ym0 | =

m0X

j=1

1

2j
log(m0 � j + 1).

The point Am0 is a lift of fm0(a) = 1 + 0 t+ m1�1
m1+1t

2 +O(t3), so that

(Am0+1)0 =

✓
�2

m1 + 1
Y 2
m0

,
�2

m1 + 1
Y 2
m0

◆
.

Thus,

↵m0+1 = ↵m0 +
1

2m0+1
log

✓
2

m1 + 1

◆
.

Note that this ↵m0+1 can be made as negative as desired by choosing m1 � m0. Continuing

to iterate, we have

↵m0+1+s = ↵m0+1 +
sX

j=1

1

2m0+1+j
log(m1 � j + 1)

for all s = 1, . . . ,m1. Then

↵m0+m1+2 = ↵m0+m1+1 +
1

2m0+m1+2
log

✓
2

m2 + 1

◆
.

Again, we can make ↵m0+m1+2 as negative as desired by choosing m2 � m1. We see that the

pattern continues, and so, by choosing the sequence {mk}k�0 to grow to infinity very fast,

we conclude that the sequence {↵n}n�0 is unbounded from below.
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