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Abstract—Low Earth Orbit (LEO) constellations, each com-
prising a large number of satellites, have become a new source
of big data “from the sky”’. Downloading such data to a ground
station (GS) for big data analytics demands very high bandwidth
and involves large propagation delays. Federated Learning (FL)
offers a promising solution because it allows data to stay in-
situ (never leaving satellites) and it only needs to transmit
machine learning model parameters (trained on the satellites’
data). However, the conventional, synchronous FL process can
take several days to train a single FL model in the context of
satellite communication (Satcom), due to a bottleneck caused by
straggler satellites. In this paper, we propose an asynchronous FL
framework for LEO constellations called AsyncFLEO to improve
FL efficiency in Satcom. Not only does AsynFLEQO address the
bottleneck (idle waiting) in synchronous FL, but it also solves the
issue of model staleness caused by straggler satellites. AsyncFLEO
utilizes high altitude platforms (HAPs) positioned “in the sky” as
parameter servers, and consists of three technical components: (1)
a ring-of-stars communication topology, (2) a model propagation
algorithm, and (3) a model aggregation algorithm with satellite
grouping and staleness discounting. Our extensive evaluation with
both IID and non-IID data shows that AsyncFLEO outperforms
the state of the art by a large margin, cutting down convergence
delay by 22 times and increasing accuracy by 40%.

Index Terms—Low-Earth orbit (LEQO), satellite communica-
tions, federated learning, high-altitude platform (HAP)

I. INTRODUCTION

Recent years have seen a surge in the deployment of Low
Earth Orbit (LEO) satellites, which float at an altitude of 500—
2000 km and form multiple (mega) constellations. Many of
these satellites continuously collect Earth observational data
in high volume, speed, and heterogeneity, constituting a new
source of big data “from the sky”. To extract tremendous
value from such data and thereby support a wide range of
applications such as urban planning, weather forecasting, and
disaster management [1, 2], machine learning (ML) plays a
crucial role in big data analytics. However, downloading a
massive amount of data (e.g., millions of satellite images) to
a ground station (GS) to train ML models is not practical:
1) satellite communication (Satcom) can barely afford such a
high demand on network bandwidth; 2) the propagation delay
between LEO satellites and GS is large; 3) transmission of
raw data involves significant privacy and security risks (e.g.,
for military applications).

Federated learning (FL) [3] offers a promising solution by
allowing each satellite to train an ML model locally on its own
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data and only need to upload the resulting model parameters
to a parameter server (PS). The PS then aggregates all the
satellites’ local models into a global model. This eliminates the
need for transmitting raw data, thus coping with the bandwidth
and privacy issues mentioned above quite well.

However, applying FL to Satcom or more specifically
LEO constellations is not straightforward and faces significant
challenges. First, FL is an iterative process and typically
requires hundreds of communication rounds between clients
(i.e., satellites) and the PS. While this does not present as a
big issue in large-capacity networks, it causes a severe slow-
convergence problem in the context of Satcom due to the
long propagation and transmission delay, and more saliently
because of the highly sporadic and irregular visit pattern of
LEO satellites to the PS. This visit pattern results from the
distinction between satellites’ and the PS’ travel trajectories
and the distinction between satellite orbiting speeds and the
Earth rotation speed. Ultimately, the iterative FL process will
incur vast delay in Satcom, taking several days or even longer
to converge [4, 5].

To address this severely slow convergence problem of FL
when applying to Satcom, we propose AsyncFLEQ, a novel
asynchronous FL framework tailored for LEO satellites, in
this paper. AsyncFLEO exploits the availability of satellite
local models opportunistically without waiting for all the
models to be available (as in synchronous FL), and tackle
straggler satellites and model staleness as follows. In the
first epoch, it groups satellites from various orbits based on
their data distributions (which we infer using their model
weights since data is not accessible to PS in FL). Then in
subsequent epochs, the PS selects a subset of satellite models
from each group based on their freshness, to be included in
model aggregation. Apart from these, AsyncFLEO has two
other technical components for efficiency improvement: a ring-
of-stars communication topology and an intra-orbit model
propagation algorithm. Overall, AsyncFLEO can accelerate the
FL convergence speed by several orders of magnitude, while
increasing model quality (in terms of classification accuracy)
at the same time.

AsyncFLEO leverages high altitude platforms (HAPs) po-
sitioned “in the sky” as PSs in lieu of a GS [6]. A HAP is a
semi-static aircraft or airship situated in the stratosphere (17—
22 km above the Earth’s surface) and thus offers slightly better
visibility of satellites than locating the PS on the ground [6—
8]. However, AsyncFLEO does not rely on HAPs and it works
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with GS exactly the same way as in its single-HAP case.

In summary, this paper makes the following contributions:

« We propose for LEO Satcom an asynchronous FL approach
that overcomes the large convergence delay caused by
the highly sporadic connectivity and irregular visit pattern
between satellites and the FL server.

« AsyncFLEO introduces three new technical components: (1)
a model aggregation algorithm based on satellite grouping
and model selection, which tackles straggler satellites and
stale models; (2) a ring-of-stars topology in substitution of
the conventional FL’s star topology; (3) a model propagation
algorithm that alleviates sporadic connectivity using intra-
orbit model relay.

« We demonstrate via simulations that AsyncFLEO signifi-
cantly accelerates FL convergence and outperforms state-
of-the-art FL-Satcom algorithms by large margins (up to 22
times faster in convergence and 40% increase in accuracy).

Paper Organization. Section II discusses related work. Sec-
tion III describes a general system model for FL in LEO
constellations with HAPs. Section IV describes the design of
AsyncFLEO in great detail. The performance evaluation of
AsyncFLEO with other state-of-the-art methods is provided
in Section V. Finally, we conclude in Section VI.

II. RELATED WORK

While the research on big data problems in FL-Satcom is
still in its infancy, some initial progress has been made recently
by a number of interesting studies [4-6, 9, 10].

Synchronous FL. Chen et al. [9] applied the traditional
FL approach (i.e., FedAvg [11]) to LEO constellations and
compared it with centralized training obtained from down-
loading the data to a GS. Razmi et al. [S] proposed an FL
approach called FedISL which uses inter-satellite link (ISL)
for communication among satellites within the same orbit
to reduce FL delay. It assumes that the PS is either a GS
located at the North Pole (NP) or a satellite in medium
Earth orbit (MEO) at an altitude of 20,000 km, in order
to simplify the problem and increase the visibility between
satellites and PS. However, NP is the ideal location which
was only available during the early years of LEO deployment,
and PS at MEO of that altitude travels at very high speed with
non-negligible Doppler shift which is not addressed in their
study. FedHAP [6] is an alternative synchronous FL approach
proposed to address the above limitations. It introduces HAPs
in place of the traditional GS, to act as PSs to oversee the
model aggregation process collaboratively. However, FedHAP
[6] still requires more than a day to converge due to its
synchronicity.

Asynchronous FL. The authors of [10] proposed an asyn-
chronous FL approach called FedSat to speed up FL conver-
gence. Similar to [5], it also assumes the ideal setup where
the GS is located at the NP, so that every satellite visits
the GS at regular intervals, which again over-simplifies the
problem. So et al. [4] proposed an approach called FedSpace
to trade-off between the idle connectivity in synchronous FL
and the staleness issue in asynchronous FL. The limitation

of FedSpace is that it requires each satellite to upload a
fraction of its captured images (or all the images in a lower
resolution) to the GS to schedule model aggregation, which
contradicts the important FL principle on privacy protection
and communication efficiency.

III. SYSTEM MODEL

Consider an LEO satellite constellation with O orbits where
each orbit o contains IV, satellites equally spaced. Any satellite
in orbit o has an orbital period T, = %‘H‘”), where R =
6371km is the radius of the Earth, h, is the orbital altitude,
and v, is the satellite velocity given by v, = %, in
which G is the gravitational constant and M is the mass of the
Earth. There are a few HAPs H = {hy, ho,..., H} that act
as PSs and communicate with a varying number of satellites
at different times depending on the irregular visit pattern. As
mentioned in Section I, AsyncFLEO does not rely on HAPs
and can operate with GS the same way as the single-HAP
case; we include HAPs just to present a better design scheme
(slightly better visibility than GS due to its elevated altitude, as
well as more flexibility since it is deployed at a fixed location
“in the sky”). In fact, our performance evaluation in Section V
covers both HAP and GS scenarios with AsyncFLEO. Fig. 1
gives an illustration.

Fig. 1: An example of Walker-delta constellation [12] consists
of O = 5 orbits, each having N, = 8 satellites, orchestrated
by H = 2 HAPs. Gray cones depict LEO satellites’ coverage.

A. FL in Satellite Communication Networks

In this section, we assume a single PS (either HAP or GS)
for ease of description and more consistency with standard
FL. With this background knowledge, it would lead to a
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Fig. 2: The AsyncFLEO framework illustrated using a sequential diagram. Yellow satellites represent visible satellites.

more natural flow to Section IV, where we present a more
sophisticated scenario with multiple HAPs.

The overall goal of FL for a constellation N of LEO
satellites is to collaboratively train a global ML model under
the orchestration of a PS, using each satellite’s data locally,
by minimizing the following global objective function:

m
neN

where w is the parameters of the target global model, m,, is
the size of satellite n’s dataset D,,, m = Zne A M is the total

size of all the satellites’ data, and F;, is the local loss function
at satellite n resulting from training w over D,,, which can be

expressed as
1
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where f,(w;x) is the training loss for a data sample x and
model parameters w at satellite n. Each satellite n solves
(2) by applying a local optimizer such as stochastic gradient
descent (SGD), for J local iterations, in the following way:

b
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where j = 0,1,2,...,
global training round 5 =0,1,2,...,
of satellite n at iteration j, 7 is the learning rate, ¢,
i-th training sample in the current mini-batch of size b.

In general, there are two approaches for the PS to aggregate
all the local ML models w?*/ collected from the satellites
N, into a global model. Synchronous FL follows the same
principle as McMahan et al. [11], in which the PS waits to
receive all the satellites’ local models and then aggregates

them as:
B+l _ Mn
w = —w
>
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J — 1 is a local training iteration in a
w?J is the local model
is the

B
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where we write wﬁ in place of wg"] for notation simplicity.
Since this approach requires all the satellites in a constellation
to become successively visible to the PS, it incurs a large
delay in each global communication round and hence a much-
prolonged convergence time after all the rounds.
Asynchronous FL is an approach that aims to address this
limitation in synchronous FL. With this approach [13], the
PS aggregates just a subset of local models as soon as they
have been received, thus mitigating the long idle waiting as
in synchronous FL and speeding up the global model con-
vergence. However, it introduces a model staleness problem,



where some received models could come from earlier rounds
from straggler satellites with limited visibility and hence are
outdated. According to [4], this problem makes asynchronous
FL unable to achieve comparable accuracy to synchronous
FL although the convergence time would be reduced; in
other words, one has to make a trade-off. In contrast, our
proposed asynchronous FL approach AsyncFLEO is able to
accelerate convergence and improve accuracy simultaneously.
AsyncFLEO determines the subset of satellites of each round
based on their data distributions (inferred from their model
weights) using a satellite grouping scheme, and uses a stale-
ness discounting factor to progressively aggregate models as
soon as a model becomes available (details are given in Section
IV-C).

B. Communication Links

Without loss of generality, consider a satellite n and a PS
g, where the communication link between them can only be
established if ¥, 4 (t) = Z(ry(t), (rn(t) —74(t))) < 5 —Dmin,
where r,,(t) and 74(t) are the trajectory of satellite n and GS
g, respectively, and 1,,;, is the minimum elevation angle (a
constant depending on the device).

Below, we model all the communication links (among
satellites or HAPs or between them) as radio frequency (RF)
links rather than free-space optical (FSO) links for the purpose
of a fair comparison with prior work, but we note that, in
practice, AsyncFLEO can actually benefit from FSO links
which enjoy a much higher data rate (as high as Terabytes
per second) than RF links and are also much more resistant
to radio interference.

Assuming that the wireless channels are symmetric with
additive white Gaussian noise, then the signal-to-noise ratio
(SNR) between two objects x and y (e.g., satellite and GS) in
free space is given as

P.G,.G,
KpTBL,,

where P; is the transmission power, G, and G, denote
the total antenna gain of the transmitter and the receiver,
respectively, Kp is the Boltzmann constant, 7 is the noise
temperature at the receiver, B is the channel bandwidth, and
L,y is the free-space pass loss which can be expressed as

SNRrp(z,y) = 5)

2
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otherwise.
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where ||x,yl|2 is the Euclidean distance between x and y, f
is the carrier frequency, c is the speed of the light, and LoS is
the line-of-sight link between x and y. The total delay ¢. of
sending data from z to y or vice versa, can be computed as
follows:

te =1¢ +1p +1p + 1y 7
b|D| |, yll2
ty = R T ®)

where ¢, is the transmission delay, t,, is the propagation delay,
t, and t, are the processing delay at x and y, respectively,

|D| is the number of data samples and b is the size in bits of
each sample, and R is the data rate that can be given by the
Shannon formula as

R~ Blogy(14+ SNR) )

In our simulation (Section V), we set the parameters for the
formulae presented above.

IV. AsYNCFLEO

AsyncFLEO is an asynchronous FL approach tailored for
LEO satellites to speed up FL model convergence without
sacrificing the model performance. It achieves this by (1)
alleviating the negative impact of stale models received from
straggler satellites due to irregular and sporadic connectivity,
(2) overcoming the long waiting time for each satellite to visit
the PS, and (3) reducing the large number of communication
rounds via a smarter selection of satellites in each round.
AsyncFLEO consists of three technical components described
in subsections A-C: (A) a new, ring-of-stars topology for
communication between satellites and HAPs, in lieu of the
star topology used in traditional FL; (B) a model propagation
algorithm that relays local and global ML models among
satellites (intra-orbit) and HAPs; (C) a model aggregation
algorithm based on satellite grouping and a smarter model
selection of the fresh satellite models from each group to be
included in each asynchronous round as well as a discounting
scheme designed for and applied to stale models. Fig. 2 gives
an overview of the AsyncFLEO framework.

A. SAT-HAP Communication Topology

The conventional FL adopts a star topology, where a PS
communicates with all the clients (satellites in our case)
directly. In AsyncFLEO, we introduce parallelism by using
a ring-of-stars topology as follows. First, we cast the network
into a layered structure where the first layer is an SAT layer
that consists of all the LEO satellites NV, and the second layer
is a HAP layer that consists of all the HAPs H (or a GS,
which is just a special case). In the HAP layer, HAPs form
a ring topology in which they can communicate with their
adjacent (two) neighbors; at the same time, each HAP can
also communicate with all of its currently visible satellites
from different orbits, thereby forming a (small) star topology.
Thus overall, all the HAPs and their currently visible satellites
form a ring-of-stars topology, as shown in Fig. 3. In the SAT
layer, we allow satellites in the same orbit to communicate
with their adjacent neighbors (thus forming a ring too), but
not those from different orbits. The reason is that satellites
from different orbits have very high relative velocity and hence
the impact of Doppler shift will become prominent and make
communication unstable.

B. Propagation of Local and Global Models

We propose a model propagation algorithm that relays local
and global models within the SAT layer and the HAP layer to
speed up the FL training process under the severe constraint
of highly intermittent satellite connectivity.



Fig. 3: Illustration of the ring-of-stars topology (indicated by
the black dotted lines). The 4 HAPs form the “backbone” ring
and each HAP orchestrates a star topology consisting of its
currently visible satellites (as in the cone). Satellite IDs are in
the format of (I Dorpit#, Sateltites). The large colored ovals
represent orbits.

1) Relaying global model in the HAP layer: When there
are multiple HAPs, we pre-designate one HAP to be a source
and another one to be a sink (typically the farthest from the
source); they will also swap roles at appropriate times (see
Section IV-B3). The source HAP generates a global model w”
(where 5 = 0 means the initial global model) and transmits
this model to its two adjacent HAPs via inter-HAP link (IHL).
Each of these two HAPs will then pass w” to its next-hop
neighbor (singular, since there is no need to send it back to
the source). This relay continues on the “ring” until the model
w” reaches the sink HAP, as illustrated in Fig. 4a. Along the
way, each HAP will also broadcast the model w” to all of its
visible satellites via the “star” topology'.

2) Relaying global and local models in the SAT Layer:
Once a visible satellite n receives w® from a HAP, it performs
two tasks simultaneously. One is to train w? using n’s local
dataset D,, to obtain an updated local model wﬁ, and the other
is to send the global model w” to its neighboring satellites
using ISL (without waiting for the model training task to
complete). The second task is important because not all the
satellites are visible to a HAP, and hence this model relay
will kick start all the model training processes (each on a
satellite) with minimal delay, using the latest version of the
global model w”. If a satellite receives the same global model
from its two adjacent neighbors, the model relaying will cease
at that satellite, as shown in Fig.4b.

"When there is only a single HAP, no model relay happens (just like the
conventional GS case) and only the model broadcast will take place.

Algorithm 1: Propagation Algorithm of local and
global models

Initialize: epoch 8 = 0, global model w?, visible N = ¢
1 while Stopping criterion not met do

2 foreach h € H do > propagate models via HAPs
3 if i is source HAP then

4 L Transmit w? to its adjacent HAPs

5 else if 7 is sink HAP then

6 L Stop relaying w?

7 else

8 L Transmit w® to its next-hop HAP

9 Transmit w” to all its visible satellites N

10 | Update N5 < Ns U N,

11 foreach n € N do > Propagate models via SATs
12 if n € N, then

> Model propagation via visible SATs

13 Transmit w? to its two neighboring satellites
14 Train w® to obtain w?

15 if n still visible to h then

16 ‘ Transmit w” and its metadata to h

17 else

18 Transmit w” and metadata to next-hop

satellite
19 else
D> invisible SAT

20 Wait until n receives w® from a neighbor
21 Train w® to obtain w?

22 Transmit w”, w?, and metadata to next-hop

satellite

B | B B+1

Upon completion of the local training process, each satellite
n will send its trained local model w? to its currently visi-
ble HAP (random selection if multiple), together with some
metadata (described in Section IV-C1). If it does not have a
visible HAP at the moment, it will send w/ and metadata to
its two adjacent satellites, who will either transmit the model
to a HAP if they are visible to one; otherwise, it continues to
relay w? to their respective neighbors too (but each to a single
neighbor only because they would know the direction). This
will substantially reduce the waiting time for each satellite to
directly enter the visible zone of a HAP.

3) Relaying local models in the HAP layer: Following
the above process, each HAP will receive a set of local models
{w?} with associated metadata from its visible satellites. Once
this set reaches a certain point (determined in Section IV-C),
the HAP will propagate these models to the sink HAP for
model aggregation. This follows the same route shown in Fig.
4a, from source to sink, but instead of relaying a global model,
now each HAP is relaying a set of local models {w?} and
metadata. Note that the set {w?} includes not only visible
satellites’ models but also some invisible ones’, because of the
local model relay in the SAT layer. Finally, when the sink HAP
receives all the local models from other HAPs, it aggregates
the local models into an updated global model w®*?.

Next, the sink HAP will switch its role to a source, and



Source ISL
hy =y sL
- D
== \ A
\1 my, 1 \ 1L
sL o WDy 1D,
— <=
27N Neo - h
/ \ LI - ‘%
h &  1HL I < P N ST
N ng - R
~ <= ."A
D,
-
- & 105‘
== G Do % su
h V.. o
n3 1SL .
Sink 1SL

(a) Model relay in the HAP layer.(b) Model relay in the SAT layer.

Fig. 4: Tllustration of the proposed model propagation. The
curved arrows represent model propagation directions. In (b),
the four visible satellites /D1 _4_7_1¢ initiate the model relay,
and the four satellites 1 D3_g_g_11 cease the model relay.

propagates the updated global model w”*! to its neighbors
until reaching the source HAP which has switched its role
to a sink, following the reverse path of propagating w” as
described in Section IV-B1. Along the way, each HAP also
transmits w”*1! to its visible satellites.

Algorithm 1 summarizes the entire propagation process.
Note that model training and relaying take place concurrently.

C. Convergence Operations

Without loss of generality, we assume satellite data are non-
IID since they are collected from different orbits. As described
in Section IV-B, the sink HAP will eventually collect all
the local models and satellites’ metadata from other HAPs,
obtaining U = UheH up, where wuy contains all the local
models and satellites’ metadata collected by HAP h. However,
simply aggregating these local models into a global model will
result in poor performance because it fails to address three
issues: (1) model staleness resulting from satellite models that
were trained using an outdated global model, (2) the non-IID
nature of data collected from different orbits, and (3) the data
size variation among visible satellites from different orbits.
These will render the global model biased towards orbits that
have frequently visible satellites and have larger data sizes.

Furthermore, unlike traditional asynchronous FL ap-
proaches, AsyncFLEO has another responsibility for each
HAP to decide when to stop collecting the set of models uy,
and how to “clean” it, i.e., decide which orbits to include in
the current global epoch (and what discount factor to apply),
and which orbits to discard.

Therefore, AsyncFLEO performs two new functions: (1)
grouping the satellites based on the diversity of their local
models, and (2) aggregating the received local models in such
a way that stale models do not adversely affect the FL. model
convergence.

1) Satellite Grouping: Once the sink HAP has collected
all the local models, it organizes them as follows:

U={S,,S0s,---,S0}, (10)

where S, is the set of all local models collected from orbit o
via HAPs hy, ..., hy, which can be expressed as:

S, = {{wfbl,wfm, ..,w]’i,}hl, - {wgl,w?m, ~-,’LU1€/}H}0 (11

Uhq uH

In addition, U/ also contains the metadata of each satellite n
in the collected set: a tuple (I D, size,loc, ts, epoch),, where
ID is satellite n’s ID, size is satellite n’s training data size,
loc is the satellite’s current location (in an angular coordinate
system) which is used to calculate its next visit time to PS,
ts is the time stamp when satellite n transmits its local model
to the PS, and epoch is the last global epoch when satellite
n was included in updating the global model w” (i.e., if the
latest 8 = epoch, then this local model is considered fresh).

Note that, each S, and ultimately ¢/ could contain duplicate
satellites’ models and metadata, due to the possibility of some
satellites being visible to more than one HAP at the same
time. Thus, AsyncFLEO will filter out these duplicate models
and obtain a cleaned set &/ which is composed of unique local
models and their metadata (i.e., {un;}o N {un;}o = ¢). Given
the metadata, the sink HAP is able to determine the total data
size of all the satellites in orbit o as

H
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where D,, is the metadata size of satellite n.

To deal with the straggler satellite problem and model
staleness, AsyncFLEO groups satellites based on the similarity
among their data distributions, which helps it to determine
which satellites” models must be included in generating the
global model and which could be discarded.

Definition. For a grouping G = {G1,Gs,...,G,} over the
set of all the satellites N/, a satellite n € N is said to be
grouped if n € G; for some group G; € G, and ungrouped if
n ¢ G; for all groups G, € G.

1
Wn,

i
W5~‘71

Wn,

(a) Models before grouping.

(b) Models after grouping.

Fig. 5: Satellite (model) grouping of O = 8 orbits into 3
groups G. Dotted lines indicate the Euclidean distance between
an orbit-wise aggregated model and the initial global model

w?.



In general, data collected by satellites in the same orbit
tend to be similar to each other, while data collected from
different orbits are more likely non-IID. This is due to the fact
that satellites in the same orbit travel with the same orbital
velocity v, (about 25,000 km/h) which is much faster than
the rotation speed of the Earth (about 1,600 km/h); whereas,
different orbits have different altitudes and inclination angles,
thus resulting in different travel speeds and geographic areas
covered by different orbits.

Since PS has no access to satellites’ data as dictated by FL,
AsyncFLEO groups satellites based on satellites’ local models
wf and the initial global model w°. Specifically, during the
first global epoch, local models generated by satellites from
different orbits (wl, n = 1,2,...,N) are based solely on
their local training dataset and are not affected (biased) by any
other satellites’ local models. Therefore, the weight divergence
between each satellite’s local model and the initial global
model w® tends to be the greatest in the first epoch, thereby
allowing for a most effective differentiation among satellites’
models. This is also the reason why we choose w® instead of
the latest global model w”.

Based on this concept, the sink HAP first generates a partial
global model S! for each orbit o by performing a weighted
average (according to data size) of the received models col-
lected from orbit o (see Fig. 5a: each partial global model is at
the center of a dashed-line circle, while those on the circle are
the “member” models participated in the weighted average).
Next, it calculates the Euclidean distance between each S, and
the initial global model w?, dwé , —dyol|2. Those orbits with

similar Euclidean distances to w® will be grouped together
into a group G; (see Fig. 5b). The sink HAP then stores this
grouping scheme G = {G1,Go,...,G,} for use in subsequent
epochs.

In the next global epoch, when the sink HAP receives an
updated version of satellites’ models for any orbit, it checks
whether that orbit is already in one of the stored groups. If so,
this orbit of models will be directly assigned to the associated
group. Otherwise, a partial global model will be computed
on these models like the above, and its Euclidean distance to
w® will again be computed, based on which this orbit will be
assigned to the group that has the minimum difference from
this orbit in terms of the average distance of its existing group
members. The grouping procedure continues this way during
each global epoch until all orbits have been grouped (hence
typically taking only a few epochs). An illustration is given
in Fig. 5.

2) Model Aggregation: During each global epoch,
AsyncFLEO selects which satellites’ models should be in-
cluded in generating the global model (i.e., model aggregation)
and which should be excluded. The selection approach takes
into account three main factors: (1) the staleness of each model
(determined by its epoch as indicated by metadata epoch,
relative to its group, (2) the number of satellites of each group,
and (3) the total size of all the satellites’ data in each group.
Based on these factors, and in principle, AsyncFLEO selects

Algorithm 2: Model aggregation operation of AsyncFLEO

Initialize: epoch 3 = 0, global model w”, G = ¢
1 while Termination criterion is not met do

2 Wait for receiving S, V o € O
3| Build S, Upt {wp, ... wi}
4 Update U/ using (10)
5 Filter U by removing redundant models
6 foreach n € N do > grouping satellites
7 if n is not grouped then
8 Compute dn = [[dyyo — dyol2
9 foreach n’ € Gi and all i do > compare
similarity with grouped satellites
10 Assign n to group G; according to the
similarity between d,, and d,,-
11 | Update the grouping scheme G
12 foreach G; € G do > model aggregation
13 if none of the models in G; is fresh then
14 L Compute ~ for all w € G; using (13)
15 else
> some or all are fresh
16 Select fresh models {w? }
17 B Generate w”T? using selected models via (14)
18 | B+ pB+1

satellite models that are fresh and were trained with consid-
erable data sizes to be included in model aggregation (i.e.,
generating the global model), while discarding stale models
for this epoch only. The rationale is that the group possesses
enough fresh models to compensate for the discarded stale
models to participate in the global model aggregation. If,
however, a group contains only stale models (no fresh models),
AsyncFLEO will utilize these stale models but with a staleness
discounting factor -y for the group G;, defined as follows:

=2z 5)G)

where n indexes the model using the pertaining satellite 1D,
D,,/D is the ratio between the data size of this satellite n and
the total data size of all the satellites, and k,, /3 is the ratio
between the last global epoch where satellite n was included
in generating the global model and the current global epoch
B.

Once the model selection has been completed, AsyncFLEO
updates the global model as follows:

13)

’
G, Ny

wltl = (177)w6+ Z Z’ng

g=G; n=1

(14)

where N; is the total number of selected satellites from a
group g = G;. The rationale is that, when the current local
models have grown stale, give the previous-round global model
w” higher weight while local models lower weight, and vice
versa. This way, the FL training and aggregation process
repeats in each global epoch until reaching a termination
criterion (e.g., a target accuracy or a maximum number of



epochs) after multiple communication rounds (global epochs).
As an optional step, the final FL. model could be sent to a GS
(e.g., by a HAP) if needed.

Algorithm 2 summarizes the entire process of AsyncFLEO
for grouping the satellites and generating the global model.

V. PERFORMANCE EVALUATION
A. Simulation setup

LEO Constellation. We consider an LEO constellation con-
sisting of 40 satellites equally distributed over five orbits. Each
orbit is located at a height h, of 2000 km above the Earth’s
surface, with an inclination angle of 80°. Two scenarios are
considered for the PSs. One is a single GS or HAP located in
Rolla, Missouri, USA (HAP floats above the city). The second
scenario involves two HAPs, one floating above Rolla and the
other above Portland, Oregon, USA. Each HAP hovers at an
altitude of 20 km above the Earth’s surface, with a minimum
elevation angle ¥,,,;, = 10° which is the same as the GS. A
two-line element (TLE) set [14] of each satellite is used by
each PS to predict the satellite location on its trajectory. For
each of the above two scenarios, the trajectories are determined
over the course of three days. We select all communication link
parameters discussed in Section III-B to be consistent with the
baselines that we compare with, as summarized in Table I.

Baselines. AsyncFLEO is compared to the most recent
state-of-the-art methods, as reviewed in Section II: FedISL [5]
and FedHAP [6] which are synchronous approaches, and Fed-
Sat [10] and FedSpace [4] which are asynchronous approaches.

TABLE I: Simulation Parameters

’ Parameters Values
Transmission power Py 40 dBm
Antenna gain of G, Gy 6.98 dBi
Carrier frequency f 2.4 GHz
Noise temperature 7’ 354.81 K
Transmission data rate R 16 Mb/sec
Number of local training epochs I 100
Learning rate n 0.01
Mini-batch size by 32

Dataset and ML models. In line with most peer studies on
FL-Satcom, we use the same two datasets in our evaluation.
The first one is the MNIST dataset [15] which contains 70,000
grayscale images of handwritten digits of size 2828, and
the other one is the CIFAR-10 dataset [16] which consists of
60,000 color images of 10 classes with a resolution of 32x32
pixels. We consider both IID and non-IID data distributions
among satellites. In the IID setting, training data samples
are randomly shuffled and evenly distributed among all the
satellites (each having all 10 classes of images). In the non-
IID setting, satellites from two orbits have four classes of
data, while satellites from the other three orbits have the
remaining six classes. We consider two neural networks to
train satellites: convolutional neural network (CNN) and fully

TABLE II: Comparison with SOTA approaches

FL scheme Accuracy | Convergence | Remark
(%) time
(h:mm)
FedISL [5] 63.51 72 GS at arbitrary location
FedISL  [5] 81.74 3:30 PS is a GS at the NP or an
(ideal setup) MEO satellite above the
Equator
FedSat [10] 88.83 12 GS at NP so that all satel-
(ideal setup) lites visit it at regular in-
tervals
FedSpace [4] 46.10 72 GS needs satellites’ local
data
FedHAP [6] 87.29 30 HAP at arbitrary location
AsyncFLEO- 80.62 6 GS at arbitrary location
GS
AsyncFLEO- 81.36 5 HAP at arbitrary location
HAP
AsyncFLEO- 82.94 3:20 HAP at arbitrary location
twoHAP

connected multi-layer perceptron (MLP). The hyperparameters
used for training are listed at bottom of Table I.
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Fig. 6: Accuracy vs. Convergence time: Comparison with
state-of-the-art baselines using the MNIST dataset.

B. Results

Comparison with State of the Art. Table II and Fig. 6
summarize the comparison results on the MNIST dataset
under the non-IID setting with CNN as a training network.
Note that AsyncFLEO has two versions, AsyncFLEO-GS, and
AsyncFLEO-HAP, since AsyncFLEO has the flexibility of us-
ing GS or HAP as its PS. For a fair comparison, AsyncFLEO-
HAP uses a single HAP only (the multi-HAP case has better
performance and is evaluated in the next subsection as shown
in Fig. 7c and Fig. 8c).

From Table II and Fig. 6, we observe that AsyncFLEO-
twoHAP takes the shortest time 3:20 hours to converge and
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Fig. 8: AsyncFLEO evaluation on CIFAR-10 in various settings:

achieves a high accuracy of 82.94%, and when it uses only
a single HAP (for comparison with baselines), it achieves an
accuracy of 81.36% within only 5 hours. Although FedISL
[5] is faster than AsyncFLEO-HAP for convergent time 3:30
hours, it assumes an ideal setup (as discussed in Sectionll),
and even though given that condition, it only attains a lower
accuracy of 81.7%. When FedISL places the GS elsewhere,
it takes as long as 72 hours and only achieves an accuracy
of 63.5%. While FedSat [10] and FedHAP [6] obtain slightly
higher accuracy than AsyncFLEO-HAP, they take about 2.4
and 6 times longer convergence time, respectively, than ours
to complete the learning process. In addition, FedSat [10]
assumes the similar ideal condition as FedISL [5] which is
very restrictive.

Among the two versions of AsyncFLEO, AsyncFLEO-HAP
performs better than AsyncFLEO-GS as it is able to take
advantage of the HAP’s better satellite visibility due to its
slightly elevated altitude. Nevertheless, AsyncFLEO-GS still
performs fairly well, converging in just a few hours (6 hours)
which is faster than most baselines and achieving a satisfactory

accuracy (80.6%).

Convergence Time [h]

(b) Non-IID data.

(c) Two HAPs (Rolla and Portland).
IID/non-1ID data, CNN vs. MLP, HAP vs. GS, one/two HAPs.

Evaluating AsyncFLEO in more extensive settings. Here
we evaluate AsyncFLEO more extensively under various set-
tings: IID vs. non-IID data, CNN vs. MLP, and single- vs.
multi-HAP, as shown in Fig. 7 and Fig. 8, using MNIST
and CIFAR-10 datasets, respectively. Fig. 7a gives the results
obtained with the IID setting of the MNIST dataset. It shows
that by just using a single HAP as the PS, AsyncFLEO
can achieve an accuracy of 85.5% within five hours, while
AsyncFLEO using GS can also achieve an accuracy of 82.1%
after six hours. These are values when satellites employ CNN
as their ML models. When using MLP, the accuracy slightly
decreases by 4% in both the GS and HAP cases, but they still
converge within only a few hours. When the dataset changes
from MNIST to CIFAR-10, AsyncFLEO again achieves good
results. As shown in Fig. 8a, AsyncFLEO attains an accuracy
of 84.47% in 4 hours and then 86.82% after 8 hours using only
a single HAP. This demonstrates AsyncFLEO’s robustness to
the change of datasets.

Fig. 7b and Fig. 8b demonstrate the robustness of
AsyncFLEO to non-IID data settings. As can be observed from
the two figures, AsyncFLEO converges in 12-15 asynchronous



global epochs (four-six hours) with an accuracy of 79.67%-
81.36% attained with a single HAP, and converges in 15-18
global epochs (five-six hours) with an accuracy of 78.43%-
80.15% achieved with a GS. This difference comes again from
the fact the HAP has better visibility of LEO satellites (about
1-5 satellites more at the same location) than the GS. When
the training model changes from CNN to MLP, the accuracy
only decreases negligibly while the convergence time increases
by only 1-2 hours, which is still much more acceptable than
those baseline methods.

Finally, in Fig. 7c, we present the results for two HAPs,
under both IID and non-IID data distributions. In the IID
case, AsyncFLEO achieves an accuracy of 87.79% in only
2:40 hours, while in the non-IID case, AsyncFLEO converges
in 3:20 hours with an accuracy of 82.9%. When CNN is
substituted by MLP, the accuracy drops about 2-6% for the IID
case and the non-IID, respectively but is still above 80% and
the convergence time increased slightly to be around 6 hours,
which is still rather desirable. When CIFAR-10 is used in
place of the MNIST dataset as shown in Fig. 8c, the accuracy
is slightly decreased and the convergence time is marginally
increased to four hours, which is still significantly faster than
the baselines. When we compare the results of one HAP with
those of two HAPs (between (a) and (c) as well as between
(b) and (c) in both Figs. 7 and 8), it can be observed that the
latter further speeds up the convergence process and improves
the performance of FL.

VI. CONCLUSION

To usher FL into Satcom with maximal effectiveness and
efficiency, we propose a novel asynchronous FL framework,
AsyncFLEO, for LEO constellations. We address the chal-
lenges of highly sporadic connectivity and irregular visit
patterns between satellites and PS, as well as model stal-
eness caused by straggler satellites, which altogether lead
to large convergence delays and poor model performance.
AsyncFLEO groups satellites from different orbits based on
the similarity of their data distribution inferred from model
weights. Furthermore, AsyncFLEO introduces a ring-of-star
communication topology and a model propagation algorithm.
Our extensive simulations show that AsyncFLEO accelerates
FL model convergence by up to 22 times and at the same
time improves accuracy by up to 40%, in comparison with
several state-of-the-art approaches. The results also reveal that
AsyncFLEO is robust to non-IID data, attaining an accuracy
of 81.36% in 5 hours which is quite on a par with its 85.57%
accuracy under the IID setting.
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