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ABSTRACT. Let f.(2) = 2% + ¢ for ¢ € C. We show there exists a uniform upper
bound on the number of points in P*(C) that can be preperiodic for both f., and
fey, for any pair ¢; # c2 in C. The proof combines arithmetic ingredients with
complex-analytic: we estimate an adelic energy pairing when the parameters lie in
Q, building on the quantitative arithmetic equidistribution theorem of Favre and
Rivera-Letelier, and we use distortion theorems in complex analysis to control the
size of the intersection of distinct Julia sets. The proofs are effective, and we provide
explicit constants for each of the results.

1. INTRODUCTION

Consider the family of quadratic polynomials
fo2) =2 +c

for ¢ € C, each viewed as a dynamical system f, : C — C on the Riemann sphere.
Recall that a point z € C is said to be preperiodic if its forward orbit under f, is
finite. It is well known that the set of all preperiodic points for f. will determine c.
Indeed, we have

Preper(fq) = Preper(fcg) — ‘](fq) = J(fcz) > G =C (11)

in this family, where J(f.) is the Julia set and Preper(f.) the set of preperiodic points
[BEJ; see §2.3 for more information.

For any ¢; # ¢y in C, the intersection of Preper(f.,) and Preper(f.,) is finite [BD,
Corollary 1.3] [YZ, Theorem 1.3], even though their respective accumulation sets, the
Julia sets of f., and f.,, can have complicated, infinite intersection. We investigate
the question of how many preperiodic points are required to uniquely determine the
polynomial, without the information of the period or length of an orbit. We prove:

Theorem 1.1. There exists a uniform constant B so that
|Preper(f.,) N Preper(f.,)| < B

for every ¢y # co in C.
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Remark 1.2. Our proof leads to an explicit value for B. Without making an effort to
optimize our constants, we show that we can take B = 10!%3. This bound is probably
far from optimal. The largest intersection we know was found by Trevor Hyde: the
set Preper(f_21/16) N Preper(f_s9/16) consists of at least 27 points in C. These two
polynomials also appear in [Po].

Remark 1.3. There is no uniform bound on the periods or orbit lengths of the
elements of Preper(f.,) N Preper(f.,) as ¢; and ¢y vary. For example, taking ¢; and
¢ to be distinct centers of hyperbolic components within the Mandelbrot set, we will
have 0 € Preper(f.,) N Preper(f.,) with periods as large as desired.

1.1. Motivation and background. For any pair of rational functions f, g : C=>C
of degree at least 2, it is known that a dichotomy holds: either the intersection
Preper(f) N Preper(g) is finite or Preper(f) = Preper(g) [BD, YZ]. We suspect a
much stronger result may hold, and we propose the following conjecture:

Conjecture 1.4. For each degree d > 2, there exists a constant B = B(d) so that
either
|Preper(f) N Preper(g)| < B

or
Preper(f) = Preper(g)
for any pair of rational functions f and g in C(z) of degree d.

Conjecture 1.4 would imply that a configuration of B + 1 points on the Riemann
sphere, if preperiodic for some map of degree d > 2, will almost uniquely determine
the map among all maps of the same degree. It is known that, except for maps
conjugate to z¥¢, the equality Preper(f) = Preper(g) is equivalent to the statement
that the measures of maximal entropy for f and ¢ coincide; one implication is proved
in [LP] (assuming f and g are non-exceptional) and the other in [YZ, Theorem 1.5].
A complete classification of all rational maps having the same measure of maximal
entropy is still open, however, unless the maps are polynomial [BE, Bea|; see also
[LP, Ye, Pa] for results about rational maps with the same maximal measure.

As discussed in [DKY], Conjecture 1.4 is analogous to a question posed by Mazur
[Ma], proposing the existence of uniform bound — depending only on the genus g —
on the number of torsion points on a compact Riemann surface of genus g > 1 inside
its Jacobian. In fact, the special case of Conjecture 1.4 for the 1-parameter family of
Lattes maps , ,

fi(z) = 4 & =9
z2(z—=1)(z —1t)
in degree 4, for t € C\ {0,1}, was proved in [DKY]; it implied a positive answer to
Mazur’s question for a certain 2-parameter family of genus 2 Riemann surfaces. (The

(1.2)

uniform bound for all curves of a fixed genus was recently obtained by Kiihne [K].)
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Remark 1.5. The bound B in Conjecture 1.4, if it exists, must depend on the degree
d. Tt is easy to find examples with growing degrees with growing numbers of common
preperiodic points. For example, the sequences of polynomials

fulz)=2*(z—=1)---(z—n) and g, (2)=z2(z—1)---(z—n)(z — (n+1))

have degree n + 2 with at least n+ 1 common preperiodic points, for all n > 1. Their
sets of preperiodic points cannot be equal because their Julia sets are not the same:
we have 0 € J(g,) for all n > 1, because the fixed point at 0 is repelling for g,, but
0 ¢ J(f,) for all n, because the fixed point at 0 is attracting for f,.

1.2. Further results and proof strategy. The proof of Theorem 1.1 employs a
combination of arithmetic and analytic techniques, and we first prove a version of
Theorem 1.1 when the parameters c¢; and ¢y are algebraic numbers. The basic al-
gebraic observation is that the set of preperiodic points of f. is invariant under the
action of the Galois group Gal(K/K), for any number field K containing c. Finite-
ness of the intersection Preper(f,,) N Preper(f.,), when ¢; and ¢, are algebraic, is an
immediate consequence of arithmetic equidistribution: large Galois orbits in the set
Preper( f,) are uniformly distributed with respect to the measure of maximal entropy
i [BR1, FRL, CL1], while u., = p., if and only if ¢; = ¢ [BE]. We provide a few
simple examples in Section 2 to illustrate these ideas.

The uniform bound in Theorem 1.1 comes from controlling the rate of equidistri-
bution, not just over C but at all places of the number field K simultaneously. To
do so, we make use of an adelic energy pairing between the polynomials f., and f.,.
This is a sum of integrals, one for each of the primes associated to a number field K
containing both ¢; and ¢, which we describe now. For any ¢ in K and any place v of
K, we let

1
Aeo(2) = Tim - logma{|f7(2)]1 1}

denote the v-adic escape-rate function of f, with z in the field of v-adic numbers
C,. This is the usual escape-rate function on C for v|oco, coinciding with the Green’s
function for the complement of the filled Julia set, with logarithmic pole at co. At
every place v, the function \., extends continuously and subharmonically to the
Berkovich affine line A", and its Laplacian is the canonical v-adic measure p.,, for
fe [BR2, FRL|. For archimedean places v, we recover the Brolin-Lyubich measure
[Br, Ly]. The energy pairing is defined to be

o (K Q)
ot = 3 g [ o et (13)

The pairing is symmetric, and each term in the sum is non-negative, vanishing if and
only if pie; v = ey [PST]. The integral thus provides a notion of distance between
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the two measures. In particular, we have
(fers fe) = 0 with equality if and only if ¢; = cs.
We prove:

Theorem 1.6. There is a constant d > 0, such that

<fC17f62> Z 5
for all ¢ # ¢, € Q.

In other words, two Julia sets cannot be too similar at all places of a given number
field. See §1.4 for comments on the magnitude of § and the constants in the following
theorem.

Theorem 1.7. There are constants aq, ao, Cq,Cy > 0 so that
aq h(cla CQ) - Cl < <.fc1a fcz> < ay h(ch 02) + 027
for all ¢, # cy in Q, where h is the logarithmic Weil height on A%(Q).

The upper bound on (f,,, f.,) in Theorem 1.7 is straightforward to prove, and it is
also fairly easy to obtain a weaker lower bound in terms of h(c; — ¢g), the Weil height
of the difference, in place of the height h(cy, c2); see Theorem 7.1. The lower bound
of Theorem 1.7 is more delicate: see Section 8.

Finally, we relate the energy pairing to the number of common preperiodic points
via a quantified version of the arithmetic equistribution theorems, building upon ideas
of Favre, Rivera-Letelier, and Fili [FRL] [Fi]:

Theorem 1.8. For all 0 < e < 1, there exists a constant C(g) > 0 so that

U fed < (24 o =7 ) (o) +1

for all ¢ # ¢y in Q with
N(eq,e3) := |Preper(f.,) N Preper(f.,)| > 1.

Note that N(cy,ce) > 1 for every ¢; and ¢y, because oo is a fixed point for every f..
Using standard distortion estimates in complex analysis to control the archimedean
contributions to the pairing, our proof shows that we can take

C(e) < log(1/e)

in Theorem 1.8.

Theorems 1.6, 1.7, and 1.8 combine to give a uniform upper bound on the number
N(cy, cp) for all ¢; # ¢, in Q, thus proving Theorem 1.1 for ¢; and ¢, and Q. Once a
uniform bound is obtained over Q, it is a standard specialization argument to show
the same bound holds over C, as we explain in §10.2, which completes the proof of
Theorem 1.1.
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1.3. Comparison with [DKY]. This general strategy of proof was introduced in
our earlier work [DKY], and the reader will recognize the similarities between the
statements of Theorems 1.6, 1.7, and 1.8 here and Theorems 1.6, 1.7, and 1.8 of
[DKY]. However, there are significant technical differences between the proofs, and,
perhaps more importantly, the proof strategy in this article is effective; we explain
how to obtain a value for B in Theorem 1.1. Regarding the technical aspects of the
proofs, in the setting of [DKY], the energy integrals at non-archimedean places could
be computed explicitly; here, we can only obtain estimates. For the computations at
the archimedean places, the local heights (escape rates of the polynomials) are not
smooth for the polynomials considered here, and the shrinking Holder exponents (as
¢ — 00) leads to the loss of uniformity in rates of convergence in the equidistribution
theorems. We make use of classical complex dynamical methods in this article such
as the Koebe 1/4-theorem; by contrast, in [DKY], we obtained the archimedean
estimates through the use of degeneration theory and comparison to a limiting non-
archimedean dynamical system associated to a function field, as carried out in [Fa]
and [DF1, DF2]. The degeneration theory might be used here as well, but at the
expense of losing the effective bounds.

As in the setting of [DKY], our proofs are as much about the associated canonical
height functions h. on P!(Q), for f. with ¢ € Q, as about preperiodic points; the bound
of Theorem 1.1 comes from the fact that iLc(x) = 0 if and only if x is preperiodic for f,
[CS, Corollary 1.1.1]. Though we do not provide all the details, it is possible to prove
a stronger statement about points of small height: there exist uniform constants B
and b > 0 so that ‘{x e PHQ) : h, (@) + hey(2) < b}’ < Bforall ¢ # ¢, in Q. A
version of this statement is proved for the Lattes family (1.2) in [DKY, Theorems 1.8
and 8.1].

1.4. Effectiveness. We illustrate the effectiveness of our method by providing ex-
plicit constants for each of the theorems stated above. The proof of Theorem 1.7
shows that we can take oy = 1/192, Cy = 3/17, as = 1/2 and Cy = 7/3. The proof
of Theorem 1.8 provides C'(e) = 401og(25/¢). The first proof of Theorem 1.6 that we
present in §7.1 is not sufficient to provide an explicit value for the ¢ of Theorem 1.6,
but further control on the classical (archimedean) energy pairing leads to § = 107
in §11.1. This exceptionally small § gives rise to the enormous bound B = 10'% in
Theorem 1.1 that was stated in Remark 1.2. Few examples of (f.,, f.,) have been
computed explicitly; it was recently shown that (fo, f-1) ~ 0.168 [AP, §8], and it
would be interesting to see other values.

1.5. Height pairings. The energy pairing (f.,, f,) that we work with is a special
case of a more general construction, the Arakelov-Zhang pairing, an arithmetic inter-
section number between adelically metrized line bundles; see [Zh], [PST], and [CL2].
In this case, each f. with ¢ in a number field K gives rise to a family of metrics on
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Op1(1), one for each place v of K, with non-negative curvature distribution equal to
the canonical measure fi., on the Berkovich projective line P.*". Each such adelic
metric then gives rise to a height function k. on PY(Q), recovering the dynamical
canonical height for f, of Call and Silverman [CS].

There are other natural height pairings that one could consider for ¢;, ¢, € Q. For
example, Kawaguchi and Silverman study

~ ~

1f,9lks == sup |he(x) — hy(x)

z€P1(Q)

for any pair of maps f,g : P! — P! defined over Q [KS]. As a consequence of
arithmetic equidistribution, we see that

Indeed, along any infinite (non-repeating) sequence x,, € P'(Q) for which h(z,) — 0,
we have by equidistribution that h,(z,) — (f,g) [PST, Theorem 1]. Such sequences
always exist (the preperiodic points of f will have height 0), so we obtain (1.4). We
do not know if a similar inequality always holds in the reverse direction for any pair
of maps. However, as a corollary of Theorem 1.7, we have

Theorem 1.9. There exist constants o, C' > 0 so that

a[fcl7f02]KS_C < <f017f02> < [.fcpfcz]KS
for all ¢1, ¢y € Q.

Proof. From [KS, Theorem 1], we have [f.,, fe,|ks < ki1(h(c1) + h(ca)) + ke for con-
stants k1, ko depending only on the degrees of the maps, and the definition of the
Weil height shows that h(cy) + h(ca) < 2h(cy,c2). The lower bound of the theorem
then follows immediately from the lower bound in Theorem 1.7. U

A version of Theorem 1.9 also holds for the Lattes family fi(z) = (22 —t)?/(42(z —
1)(z —t)), with t;,t, € Q\ {0, 1}, as a consequence of [DKY, Theorem 1.5].

Question 1.10. Do we have

<f7.g> = [fvg]KS

for all maps f,q : P! — P, defined over Q, with constants depending only on the
degrees of f and g?

1.6. Outline. Section 2 illustrates some basic examples towards understanding the
content of Theorem 1.1. Local estimates on the pairing are carried out in Sections
3 — 6. In Section 7, we prove Theorem 1.6, and in Section 8 we prove Theorem
1.7. Theorem 1.8 is proved via quantitative equidistribution theory in Section 9, and
Section 10 establishes our main result, Theorem 1.1. Finally, in Section 11 we make
all bounds effective.
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2. BASIC EXAMPLES

Let f.(z) = 2* + ¢, for ¢ € C. Note that
|Preper(f.,) N Preper(fe,)| > 1

for every pair, because the sets always contain the point at co. Here we provide a few
simple examples, illustrating some of the ideas that appear in our proof of Theorem

1.1. Recall that the filled Julia set of f. is

K(f) = {2 C : suplf)] < o0,

n>1

and the Julia set satisfies J(f.) = 0K (f.).

2.1. Disjoint filled Julia sets. When two quadratic polynomials f., and f., have
disjoint filled Julia sets, they have no common preperiodic points other than oo.
Sometimes the filled Julia sets have nontrivial intersection in C, but — for algebraic
parameters — it may be that the v-adic filled Julia sets are disjoint at some place v. In
that case, again, there can be no common preperiodic points other than co. Examples
are shown in Figures 2.1 and 2.2. As we shall explain in the following sections, the
filled Julia set of f, at any non-archimedean place v (defined as the set of points with
bounded orbit in the Berkovich affine line Al, over the field C,) with |c[, > 1 is a

v

subset of {z € Al : 2], = |c|11,/2}, while it is the closed unit disk whenever |c|, < 1.

2.2. Galois orbits. Let f(z) = 22 and g(z) = 2% — 1; see Figure 2.3. Here we show
that
Preper(f) N Preper(g) = {0,1,—1,00}.

We know that the preperiodic points of f are the roots of unity, together with 0 and
o0o. The preperiodic points of any f. are roots of the polynomial equations given by
f2(z) = f*(z) for any n > m > 0; so the set of preperiodic points is invariant under
the action of Gal(K/K), whenever c lies in a number field K. In this case, we can
take K = Q. So we need to show that for all n > 3, at least one of the primitive n-th
roots of unity will have infinite forward orbit under the action of g.
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I ¢

FIGURE 2.1. The filled Julia sets of f(z) = 22 — 1 (left) and g(z) = 2> +2
(right) are disjoint; they have no common preperiodic points except for oco.

FIGURE 2.2. The filled Julia sets of f(z) = 22—2 (left) and g(z) = 22—2.1
(right) have significant overlap in C, but there are no common preperiodic
points except for oo, because the filled Julia sets are disjoint at the primes
2 and 5.

The proof is elementary and has two steps:

(1) Show that the subset of unit circle
S ={e¥":te0,1/30] U[1/12,5/12]}

lies in the Fatou set for g; and
(2) for every n > 3, the set S contains at least one primitive n-th root of unity.

Step (1) follows from a series of simple estimates, examining how ¢ acts on arcs of the
unit circle. Step (2) can be checked by hand by observing that for each 12 < n < 30,
there is some k with (k,n) =1 and k/n € [1/12,5/12].

2.3. The Julia sets are distinct. It is well known that, for any polynomial, all but
finitely many of the periodic points of f will be contained in its Julia set, J(f) is the
accumulation set of the (pre)periodic points of f, and all of the preperiodic points
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FIGURE 2.3. Filled Julia sets of f(z) = 22 and g(z) = 22 — 1, superim-
posed. At right, a zoom of the intersection of their boundaries, suggesting a
possibly infinite overlap of Julia sets.

(other than oco) form a subset of the filled Julia set. Therefore

Preper(f,,) = Preper(f.,) = J(fe,) = J(fe,)

for any c;,co € C. But it is also known that the Julia set determines ¢ in this family
f.(z) = 22 + ¢ [BE, Supplement to Theorem 1], providing the equivalence stated in
(1.1); see also [Bea, Theorem 1].

3. ARCHIMEDEAN ESTIMATES

In this section, we will carry out some archimedean estimates needed for the proofs
of our main theorems. We work with ¢ € C and the Euclidean norm |-|. We let A.(z)
denote the escape-rate function of f.(z) = 2% + ¢, defined by

1 .
)\C(Z) = 7}2{.102_”10g+ ‘fc (Z)’a

where log™ = max{log, 0}, and let p,. denote the corresponding equilibrium measure
supported on the Julia set J.. Where possible, we provide explicit constants in our
estimates, even if they are not optimal.

3.1. Distortion. We first recall some basic distortion statements for conformal maps.

Theorem 3.1 (Koebe 1/4 Theorem). Suppose f: D — C is univalent with f(0) =0
and f'(0) = 1. Then f(D) D D(0,1/4).
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Theorem 3.2. [BH, Corollary 3.3] Let Uz = C\ D(0, R) and suppose f : Ug — C is
univalent and satisfies

near oo. Then we have

f(Ug) D Usg.

Applying these theorems to the Bottcher coordinate ¢, near oo for f.(z) = 2% + ¢
and to the uniformizing map ® for the complement of the Mandelbrot set M (see [Mi,
§9] or [CG, Chapter VIII.3-4] for more information), we get some simple inequalities.

Proposition 3.3. For all ¢ with |c| > 2 we have
log |c] —log2 < Ac(c) < log |c| + log 2.

Proof. Let ®(c) = ¢.(c) be the uniformizing map from C\ M to C\ D so that
Ae(c) = log |®(c)|. For the lower bound on A.(c), applying Theorem 3.2 to ®~! and
sets Ur with R > 1 gives
lc| <2 ee(©)
for all ¢ € M, so that
Ae(c) > log |c| — log 2.

For the upper bound on A.(c), apply Theorem 3.2 to ® and sets Uz, R > 2. Then
®(Ug) D Usg implies that
@ < 2],

for |¢] = R > 2. O
We can do similar things in the dynamical plane.

Proposition 3.4. For each ¢ with |c| > 2 and every z with |z| > 2e*©) (s0 in
particular for all |z| > 2%/2|c|'/?), we have

log |z| —log2 < A.(2) <log|z| + log2.
Proof. Let Ry = e*(®). Apply Theorem 3.2 to ¢! and sets Ug for R > Ry. Then for
z € ¢-'(Ug,) and R = e*(®) we find that
2] < 263,

In particular, the estimate holds for all |z| > 2¢*<() because ¢! (Ug,) D Usg,. This
gives the lower bound of the proposition.

For the upper bound, set R = 2¢*(® = 2R, so that ¢, is univalent on Ug.
Applying Theorem 3.2 to ¢. on sets Ur for R > R', we have

(@) < 2|z
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for each |z| = R > R'. Therefore,
Ac(z) < log|z| + log2

for all |z] > 2e*(©),

Finally, recall that A.(0) < 3log|c| + 5log2 for all || > 2, from Proposition 3.3.
Thus,
23/2‘0‘1/2 _ 26%10g|c|+%log2 > 9 (0)
for all |c| > 2. O

3.2. Controlling escape rates from below. We will need both upper and lower
bounds on the escape rate A, near the Julia set J. of f.(z) = 2% + ¢. We begin with
an elementary observation.

Lemma 3.5. Fiz any c with |c| > 25. Let +b be the two zeroes of f.. Then

pe(D(b, 1)) = pe(D(=b,1)) = 1/2
and
A(2) > 7loglel
for all z ¢ D(b,1) U D(—b,1).

Proof. First observe that b = iy/c, so that |b| = |c['/2. Suppose b + t lies on the
boundary of D(b, 1), so that || = 1. Then

fo(b+1t) =2bt +1° =t(2b+ 1)

has absolute value > 2|c|'/2 —1 > |c['/241 for || > 25. In particular, f.sends D(b,1)
with degree 1 over the union D(b,1) U D(—b, 1). Similarly for D(—b,1), proving the
first claim about the measure of each disk. As the Julia set of f. is contained in these
two disks, we know that \. is harmonic on the complement of their union. Under one
further iterate, we have

|f2(b+ )| > 4le| — 4)e["? + 1 — |e| = 3Je| — 4]e["* +1 > 2|c|

because |¢| > 25. From Proposition 3.4, we conclude that

Ae(f2(b+1t 1 1
Ac(b+1t) = Al b+ 1)) > —(log(2]c|) —log2) = = log ||
4 4 4
and similarly for A.(—b+t) with || = 1. As A is harmonic on C\ (D(b,1)UD(-b,1)),
this proves the lemma. O

We now extend the statement of Lemma 3.5 to two further preimages of 0 under

fe-
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Lemma 3.6. For n = 1,2,3, and for each ¢ € C, we let D,(c) be the union of the
2" disks of radius &, = |2¢|~(""V/2 centered at the solutions z to f*(z) = 0. For each
lc| > 25, the 2" disks are disjoint, each has p.-measure 1/2", and

1
/\C(Z) z on+1

log |c]
for all z ¢ D, (c) andn =1,2,3.

Proof. Lemma 3.5 provides the result for n = 1 and for any |c¢| > 25. Note that the
two disks of radius 2e; = 2 around the solutions to f(z) = 0 are disjoint.
For n = 2,3, suppose that z = w is a solution to fI(z) = 0. Note that

1 1 1
Ao(w) A(€) £ SAule) < (logle] +log2) < { logle]

4
by Proposition 3.3. Since |¢| > 25, it follows that the point w must lie in the set
D;(c) by Lemma 3.5. In particular, this implies that |w| > |c|*/? — 1, so that

[fe(w +1) = fo(w)] = [¢(2w +1)]
S 1
= |2c[-Dr2 (

1 1 1
= — — _ _(v2(1- —
|2¢| (=207 <f< \0|1/2) !20|”/2) ’

for all t with [t| = &, = |2¢/~""1/2 and each w satisfying f™(w) = 0 with n = 2 or 3.
As |c| > 25, we have

1 1 44/2 1
211 — — > ——>1
J( MW) R 2~ 550

- 2n+1

2/c[/? — 2 — |2¢|~("7V/2)

for n = 2,3, and we conclude that

1
|fe(w +1) — fe(w)] > o272 — En-1 (3.1)

for |t| = €, and f"(w) = 0. By a similar argument, we also have

Folw+1) = folw)] < 25,4 (3.2)

for [t| = ¢, and f*"(w) =0, n=2,3.

The estimates (3.1) and (3.2) for n = 2 imply that the four disks of radius e, are
disjoint: two solutions to f%(z) = 0 lie in each component of D;(c), and the disks
around each of these are mapped into disjoint disks of radius 2 around +i+/c, covering
the two components of Dj(c). It follows that the u.measure of each component of
Ds(c) is exactly 3. Moreover, Lemma 3.5 implies that A.(f.(w + ¢)) > 1log|c| for
t] = e and f*(w) = 0, so that \.(w +¢) > flog|c|. As A is a harmonic function
outside of the Julia set, we therefore have

1
Ae(2) 2 < logle
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for all z € Dy(c).

It remains only to show that the four disks centered at the solutions to f?(z) = 0
of radius 2e5 = v/2/|c|'/? are disjoint, for this will imply that the 8 disks of radius €3
(centered at the solutions to f3(z) = 0) must also be disjoint, from (3.1) and (3.2)
for n = 3. It also immediately follows that each of the 8 components of Ds(c) has
le-measure equal to %, and moreover that

1
> —1
AMw+1t) > 16 og |¢|
for f3(w) = 0 and |t| = €3, so that
>
A(2) 2 - loglel
for all z & Ds.

This disjointness is clear for |c| sufficiently large. Indeed, the points w satisfying
f2(w) = 0 have the form +3(c) and +3'(c) where

0~ (iver g+ )\ <2 @)

Clp= ( 1§2),
5

0~ (Vi3 57) | <

In particular, the distance between the two closest such roots satisfies

with binomial coefficients

and similarly

B(c) — B'(c)] =1 - % >3 29 V2|2 = dey (3.4)

for |c| > 25. This completes the proof. O

3.3. Controlling escape rates from above. We now provide an upper bound,
applying the Distortion Theorems stated above.

Lemma 3.7. Fiz any ¢ with |c| > 25. For each n > 1 and for all z € C with

1

dlSt(Z, JC) < W

we have
1

A(2) < 55 (log Jef +log 2) <

cl.

2n71
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Proof. The two inverse branches of f, are univalent on D(0, |¢|). Fix any point z in J..
From Lemma 3.5, we know that |zo| < |c[*/2+1, so that f. has two univalent branches
of the inverse defined on the disk D(zq, |¢| —|c[*/?2—1) and |(f™)(z0)] < 27(|e|'/2+1)".
Applying Theorem 3.1 to the inverse branches of each iterate on these disks about
points zg € J., we find

el = [e['/? — 1
1-2(d 21y )

From Proposition 3.4 (and the maximum principle for \.), we know that A\.(z) <
log |¢| +log2 on D(0, c), and therefore

£ Dz le| — |2 1) 5 D (fc"w,

1
Ae(2) < 5 (logle] +log2)

on each of these disks of radius (|c| — |¢['/? — 1)/(4 - 2*(|c[*/? + 1)") about points in
the Julia set. Finally, we observe that

=12 =1 _ (=l =) a9/ 1
4 . 2n(|c|1/2 + 1)71 — 4. 2n|c|n/2(1 + |C|—1/2)n — 4. 2n|c|n/2(6/5)n — 5.3n |C|(n—2)/2
for all |¢| > 25. O

Proposition 3.8. Fix L > 27. For all 0 < r < 1/4 and for all ¢ € C, we have
Ae(2) < rlogmax{|c|, L}

for every z in a neighborhood of radius
1
(max{|c|, L})3 (/)

around the filled Julia set K..

Proof. First assume that |c¢| > L. Note that J. = K, in this case. Lemma 3.7 states

that
1

on—1
whenever dist(z, J,) < (5-3"|c|™2/%)71 for any n > 1. For L > 27 = 33, we have
5.3"=15-3""1 < LIH0=D/3 = [(+2)/3  Therefore,

5. 3n|c‘(n72)/2 < L(n+2)/3‘c|(n72)/2 < |C|5n/6.

Ae(2) < log |c|

For each n > 3, we set r, = 1/2"!  so that n = log(1/r,)/(log2) + 1. Choose any
monotone decreasing function x of r € (0,1/4] so that

K(rp) > 5(n+1)/6 = glogZ log(1/r,) + g ~ 1.2log(1/r,) + g

for all n > 3. Then |c| %) < |c|2(+1)/6 < (5.37|¢|=1/2)=1 50 that any 2 satisfying
dist(z, J.) < |c| 7" will also satisfy A\.(z) < 5 log |c| = ry41log|c], for all n > 3, by
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Lemma 3.7. In particular, we can take x(r) = 3log(1/r). For any r < 1/4, we choose
n > 3 so that r,,1 <7 < ry; then x(r) > k(r,), so dist(z, J,) < || implies that

Ae(2) < rpyqloge] < rlogcl.

This proves the proposition for |¢| > L.
Now assume |c¢| < L. For |c| > 2, Proposition 3.4 implies that if |z| > 23/2|c|'/2,
then
Ae(2) <log|z| + log 2.
Consider the circle of radius L. For all |c| < L, we have 23/2|c|}/2 < 23/2[Y/2 < [, so
that
Ae(2) <log L +log2, (3.5)
for all 2 < |¢| < L and for all |z| = L. But then, fixing z, and using the fact that A.(z)
is subharmonic in ¢, we obtain the inequality (3.5) for all |¢| < L and all |z| = L.
Furthermore, for all |c| > 2 and |z| > 23/2|c|'/2, we have the lower bound that

1
Ae(2) > log|z| — log2 > 3 log(2]c|) > 0

so that the Julia set is contained in a disk of radius 2%2|¢|'/? < 23/2LY2. On the
other hand, for |c| < 2, it is easy to compute that the filled Julia set lies in a closed
disk of radius 2, so we have

K. C D(0,2%%L'/?)
for all |¢| < L. In particular, the distance between K, and the circle of radius L is at
least
L—232L1% > 12,
For a fixed positive integer n and |c| < L, suppose z is any point within distance

12/(2L)" of K.. Let 2y € K. denote the closest point to z. As |fi(z)| = |2z| < 2L for
all |z] < L, we find that

|f1(2) = f2(20)] < (2L)"|z — 2| < 12.

In other words, f?(z) lies within the circle of radius L, so that

A(2) = o AT2(2)) < 5 (o8 L+ 1og2) <

log L

2n—1

from (3.5), for all z within distance 12/(2L)" of the set K, and for all |¢| < L.
Note that 28/12 < 27 < L and 2* < L, and so

12/(2L)" > 1/(2" 5Ly > 1/ L0840+t — /1301
For each n > 3, we set r, = 1/2""! as before, so that n = log(1/r,)/log2 + 1. Then

5 3 3
—-n+1)—1= log(l/rn)+§ ~ 1.810g(1/7’n)+§

4 4log?2
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As above, we set k(r) = 3log(1/r) for r € (0,1/4]. For any r < 1/4, we choose
n > 3 so that ryy1 <7 < rp; then k(1) > k(r,) > 2(n+1) — 1. Consequently, for
all z within distance 1/L3196(/7) of the filled Julia set K., we have that z lies within
distance 12/(2L)"*! of K., and therefore

1
Ae(2) < 2—nlogL <rloglL.

This completes the proof of the proposition. 0

4. BOUNDS ON THE ARCHIMEDEAN PAIRING

In this section, we provide estimates on the archimedean contributions to the pair-
ing (fc,, fes), to obtain a local version of Theorem 1.7. As in the previous section, we
work with ¢ € C, Euclidean absolute value | - | and archimedean escape-rate function
Ae. We let p. = %A)\c denote the equilibrium measure supported on the Julia set
J.. Where possible, we provide explicit constants, even if they are not optimal, for
our estimates of the Euclidean energy

E(c1,c9) = /)\cl dpte, = /)\62 dfte, -
Theorem 4.1. There exist constants C,C" > 0 so that
1 1
6 log™ |1 — ca] = C < Exo(c1,¢0) < 510g+ max{|ci[, |caf} + C'

for all ¢y, ¢y € C. Furthermore, there exists L > 0 so that if r := max{|c1|, |c2|} > L

and
3

2 <|ey — e,

then
1
64
Remark 4.2. The proof shows that we can take L = 1000, C' = %6 log2L < 1/2, and
C" =log8 in Theorem 4.1.

logmax{|ci|, |c2|} < Ex(c1,c2).

4.1. Proof of Theorem 4.1. Throughout this proof, we will assume for notational
convenience that

r=|c1| > e
We proceed by cases, determined by just how close the two parameters are. In each
case, we estimate the value of A\, on the Julia set J.,. We prove the second statement
first, providing a lower bound on E,, when ¢; and ¢, are not too close, assuming
r = |c1]| is sufficiently large. Then we return to the first statement of the theorem.



COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS 17

Case 0. Suppose |ca| < 25. For |co| < 2, it is straightforward to compute that the
filled Julia set satisfies K., C D(0,2). For 2 < |cy] < 25, Proposition 3.4 provides a
lower bound of

1
Aca(2) 2 log|z] —log2 > Slog(2les|) > 0

for |z| > 2%/2|cy|'/2. Therefore, the Julia set of f., is contained in a disk of radius
23/2|¢y |12 < 23/25. Thus, for all |cp| < 25 and |¢;| > (23/2 -5+ 1)? &~ 229.3, Lemma
3.5 implies that A, (z) > 1log|ci| for all z € J,,. This gives

1
/)‘61 d/’LCQ > 4_1 lOg ‘Cl,

for |co| < 25 and |¢;| > 230.

In the following three cases, we assume that r = |c¢;| > |ca| > 25. The cases are
separated according to the distance | /c; — /C2| between the square roots of ¢; and
¢y. Observe that

3
Ve — Val <

1/2
2y lal™) <

— |Cl Czl < —

3
2|eq]

so these three cases will complete the proof of the second statement of the theorem.

2]eq

Case 1. Suppose that for any choice of square roots, we have |,/c; —\/cz| > 2. By
Lemma 3.5 we have A, (z) > {log|ei| for all z € J,,, so

1
/ Aei(2) diae, > g e

for |eq| > |eo| > 25.
Case 2. Suppose that there is a choice of square roots for which 7“1% < |yer —
V2| < 2. With these choices of square roots, the solutions of f2(z) =0 are

s = v+ 3+ 5+ 01y

#0 =3+ 570 ().

along with —3(c) and —3'(c). By Lemma 3.6, if the disk D(B(cs),1/|2¢5|'/?) does
not intersect any disk of radius 1/|2¢;|*/? about a solution of f2(z) = 0, then for all
z € D(B(c2),1/|2¢2|"/?) we have

and

1
/\01 (Z) > g 10g |Cl|7
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and since the same is true for the disk centered at —f(cy) by =+ invariance, the
inequality is satisfied for a set of j.,-measure 1/2. Therefore,

1
/)\cl d,uc2 Z 1—610g|01|.

On the other hand, as |\/c1 — /3| < 2, if D(B(c2), 1/|2c2|"/?) intersects any disk of
radius 1/|2¢1|'/% about a solution of f2(z) = 0, that disk must be centered at either
B(c1) or B'(cy), since |B(cy) + B(er)| > |ei|'/? and similarly for 3(cy) + 3'(c1). We have

flen) = len) = (v~ v + § (== =) +0 (117

so that using the assumed bounds, we have

2 1 4 1 2 1
_ > — = = | ——— 1=
[Bler) = Blez)] 2 a2 8 (Iclcﬂlﬂ) O <|62|> a2 " “ (ICQI) ’

using for the middle term the crude bound |e¢; —ca| < 4|c;|/? implied by |\/c1 —+/éa| <
2. Then, exactly as in (3.3) in the proof of Lemma 3.6, we can take

2 5 1
‘5(01) - ﬁ(cz)’ > W - 5@»

because |c;| > |ea] > 25. Since |cp|'/? > |e1|/2—2, taking |c;| > 230 is enough to guar-
antee this distance will be larger than 2(1/|2c|"/?), and the disks D(B(cy), 1/|2¢1]"/?)
and D(B(cz), 1/]2¢|*/?) will be disjoint. Similarly we deduce that the disks D(3(cy), 1/]2¢;|*/?)
and D(B'(cy), 1/|2¢2|"/?) are disjoint.
But observe also that if

; 2 V2
8(c2) — B'(e1)] < 1265|172 - |co| 172

then B'(cs) must be far from both 3(ci) and B(c1), because
8'(c2) = Bler)| = |B'(c2) = Ble2) + Ble2) — B'(cr) + B'(cr) — Bler)]
> [f(e2) — Blea) + B'(c1) — Bler)| — %
_ov2 5
|ca| /2 4 eyl

We therefore have, for r = |¢;| > 230 and square roots satisfying —&5 < |\/c1 —/c2] <
2, at least one of the four disks of radius 1/|2¢,|'/? around a solution to f2(z) = 0 is
disjoint from the four disks of radius 1/|2¢;|"/? about the four solutions of f2 (z) = 0.
By the 4+ symmetry, two of these disks must be disjoint. As these two disks carry
1/2 of the measure y.,, we have by Lemma 3.6 that

1
/)\01 d:ucz 2 1_610g|01|'
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Case 3. Suppose there is a choice of square roots for which

3 2
§§|\/C_1—\/C_2|<m

We will argue precisely as in Case 2, but with the third preimages of 0 rather than
second. Two solutions of f3(z) = 0 have the form

o0 =i+ 3~z 5+ 0 )

and

31 1 1
= —+0(——= ).
s =it 3+ 5 +0 ()
From the Taylor expansion, and the fact that |¢| > 100, the above big-O’s satisfy the
following estimate, to be proved below:

1 7 1 1
— (2 - - <5 4.1
s(c) (z c+ 5 8\/_+ 80)‘ < |C\% (4.1)

and similarly for s’(c). Notice that under the action of f., we have s(c) — [(c) and
s'(c) — P'(c), and that both s(c) and s'(c) are distance at least 1/2 from all other
solutions of f3(z) (except each other).

If the disk of radius 1/|2¢5| about s(¢y) intersects any disk of radius 1/]2¢;| about a
solution of f2 (z) = 0, then that disk must be centered at either s(c;) or s'(¢1), because

of the form of the power series expansions of the various third preimages of 0. If this
disk D(s(cz),1/]2¢2|) is disjoint from both D(s(c1),1/]2¢1]) and D(s'(¢1),1/|2¢1]),
then from the £+ symmetry and Lemma 3.6, we have

1
//\,31 dfie, > YT ——log|cy| = log|cl|

Now, we have by our assumed bounds that |\/c; — \/C2| < 2|e;|V/2, so that

| |1/2

o1~ eal = (yer — V@) (e + V@) < i = 4

and therefore,

3 2 10 1
|s(c1) — s(ea)| > - ;T T3 T
2l 8leal¥ eylz T el

for |c;| > 1000. So the disks D(s(c1),1/|2¢1]) and D(s(c2),1/|2¢2|) are disjoint. But
if

|5'(c1) = s(e2)]| < el
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then
s(c1) = 8'(c2)| = [s(e1) —8'(c1) +5'(c1) — s(c2) + 5(c2) — 5'(c2)]|
1
> [s(c1) = s'(c1) + s(ca) — 8'(c2) o]
2
—1 1 1 1 1
> | — [ — 4+ — 20 —
- 2(cl+ c2)+ (mrw) e
—1 c1 + 4/¢C 1 1
- () a0 ()]
2 4/ C1C2 |02| / ’CQ|
S —i(\/a—i—\/@)’_ 10 1
o 2 2/ C1C2 |C2|% |CQ|
1 - 1
20727 ey

for |c;] > 1000. We conclude in this case that the disk D(s'(¢2),1/|2¢2|) is disjoint

from the eight disks of radius 1/|2¢;| about
using symmetry and Lemma 3.6) we have

1
/ Aoy Apte, > 1

solutions of f2 (z) = 0, and hence (again

—1 :
—log]c

Proof of estimate (4.1). From the estimate (3 3), we have

B =ive—

+a

\[

with |a| < 5/4|c| whenever |c| > 25. Furthermore, let us assume that

s:m:m<

For convenience, we set

b=1[1+ L + L +
B ie  2c
and then one has

b=(1+e)/?2 =1+

1
8i\/C

2

where C{‘ﬂ are the binomial coefﬁcients In

10\/_

so that e can be estimated as |e| < 1

Z Ci)e”

n>4

<17—7

|C|2 and

1
2

1
1+ —=+

Ve

1/2
a q 1 L
- — and e = — + —
c ive 2

1 1,
e——e +

1+
2c

1
o 3
8i+/c

a

C

> 1/2
1

+ -
8i\/C

1
c

e + Z Cpe” (4.2)

n>4

the following, we assume that |c¢| > 100,
Consequently as |C),| < 1, we have

1 1
+ =
o)

C

1

2c

a

2c

<
— 8|c|27
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and moreover

() ()
e L e
N in/c

Finally, we get an estimate on b using the expansion (4.2) and therefore the estimate
(4.1) on s since s = iy/c - b. This completes the proof of (4.1).

1
BEICE

1 1
S Z__L|C|2 and E

We are now ready to prove the first statement of the theorem. Choose any L >
1000. If |¢; — co| < 2L, then the lower bound on E, holds trivially with the constant
+log2L. In particular, it holds whenever max{|ci],|ca|} < L.

Now suppose that |¢; — co| > max{|c1],|c2|} > L. Then the hypotheses of either
Case 0 or 1 hold, and we have

1 1
glogJr lep — o] < Zlog leq| < //\cl(z) dtc,,

as needed. On the other hand, if max{|c;|, |c2|} > L and 2L < |¢;—ca| < max{|c1], |c2|},
then the hypotheses of either Case 0, 1, or 2 hold, and we have

1 1
1_610g+ le — o] < 1_610g+ max{|ci|, |ca|} < /)\cl dflc,.

Thus, we have proved the lower bound in the first statement of the theorem,

1
1—610g+ lcp — | —C < /)\Cl diic,

for all ¢1,cy € C, with C' = % log 2.

To prove the upper bound, suppose first that |c;| = max{|ci|, |c2|} > 2. For |ca| > 2,
by Proposition 3.4, the Julia set of f,, is contained in the disk D(0,2%2|c,|'/2). For
leo| < 2, we have J., C D(0,2). By Proposition 3.4, we have by the Maximum
Principle that

3 1
A (2) < §log2 + 5 log |c1| + log 2 (4.3)

for all z € D(0,2%2|c;|"/?) (which contains J,,).

On the other hand, for |¢;| = max{|ci|,|c2|} < 2, we use the fact that A, (z) is
subharmonic in both z and ¢4, so that the inequality (4.3) holds on the circle {|z| = 4},
replacing |¢;| with 2, for all |¢;| < 2.

Applying this inequality to z € J., we see that

1
/)\Cl dpte, < §logJr max{|cy|, |c2|} + log 8

for all ¢q, ¢y € C. This completes the proof of Theorem 4.1.
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5. NONARCHIMEDEAN BOUNDS FOR PRIME p # 2

Let ¢; # co be two elements of Q. Fix a number field K containing ¢; and ¢y, and
fix a non-archimedean place v of K which does not lie over the prime p = 2. Let K,
denote the completion of K with respect to |- |,, and let C, denote the completion of
an algebraic closure of K. In this section, we provide estimates on the local energy

Ev = /)\cl,v d,u2,v = /)\CQ,U d,ul,v-

Because the place v is fixed throughout this section, we will drop the dependence on
v in the absolute value | - |,, denote the local Julia set of f. (in the Berkovich affine
line Al defined over C,) by J,, its escape rate by A, and the equilibrium measure

by fie.

Theorem 5.1. Fix a number field K and place v of K that does not divide the prime
p=2. Forall ¢1,co € K, we have

1 1
71087 o1 — ea] < By < S log” max{lenl, |es]}.

4
Furthermore, if r := |c1| = |c2| > 1 and
1
c1 —cof > a2
then )
E, > T log r.

We also prove an estimate on A\, from above, at points near the v-adic Julia set of
fe, that will be needed for the proof of Theorem 1.8.

5.1. Structure of the Julia set. We work with the dynamics of f. on the Berkovich
affine line Al“" associated to the complete and algebraically closed field C,, and we
denote by (,, the Type II point corresponding to the disk of radius r € Q- about
x. We refer to [Ben, Chapter 8] for more information about the Julia set on the
Berkovich affine line, and to the article [BBP] for more information about the Julia
sets of quadratic polynomials.

For |¢| <1, the map f. has good reduction, so that J. = (o is the Gauss point and
Ae(z) = log™ |z|. For |c| > 1, the Julia set of f, is a Cantor set of Type I points, lying
in the union of the two open disks D(%b, |c['/?) with f.(£b) = 0. In particular, all

points z € J.,, will satisfy |z| = |c|'/2. For any point z with absolute value |z| > |¢|'/2,
we have |f"(2)| = |2]|*" for all n > 1, so that
Ae(2) =log|z| for |z| > |¢['/? (5.1)

and )
Ae(2) < §log|c| for |z| < |c|V2 (5.2)
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Taking one further preimage of 0, we may choose 5 and ' so that

fe(B)=0b, [f(B)=—b [B=bl=|6"—b=|B3-p=1, (5-3)

and the Julia set will lie in the union of the four disks D(£+3,1) and D(£p’,1). See
Figure 5.1.

FIGURE 5.1. The tree structure of the non-archimedean Julia set, with
lely > 1 and v | 2.

We will repeatedly exploit the symmetry of the Julia set J. during the proof of
Theorem 5.1. For example, identifying the branches from the Type II point (1
with the elements of P!(F,) (where we always identify the branch containing co as
oo € PL(F,)), and denoting the class of z € C, by Z, we have

B=b+a andfB =b-a (5.4)

for some o € Fp, because the transformation from ¢, to its image f.((p1) = Co,[c[1/2
is affine in these local coordinates. In other words, the disks containing the Julia set
are centered around the preimages of 0. The same symmetry holds for the iterated
preimages of ;1 and (_p1; the branches containing the Julia set will be symmetric
about the preimages of 0, independent of the choice of coordinates, because the
iterated map to (g 1/2 is affine.

For the proof of Theorem 5.1, it is also important to keep in mind how distances
scale under iteration. For all x € J. and all z = z + y with |y| < |c[*/2, we have

|fe(2) = fe(@)lo = 122y + 2|, = lylle]/>. (5.5)
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5.2. Proof of Theorem 5.1. If |¢;| or |cs| is < 1, then because of good reduction,
we have

1 1
E, = imaX{IOng le1], log™ |eal} = Elog+ lep — ea.

If |¢1] and |co| are both > 1, then we can split into further cases. For |c;| > |cal,
we have

Aey(21) = %log |c1]
from (5.1) for all points z; in the Julia set J.,. Similarly for |¢;| < |2, and therefore,
E, = %max{logfr le1], log™ |eal} = %log+ ler — 1.
For the remainder of the proof we assume that
ri=la| = e > 1
From (5.2), we will have
Aey(21) < %log |cal

at all points z; of the Julia set .J;,. Therefore,
1 1
B, < 5 logles| = 3 loar,

proving the upper bound in the theorem.
For the lower bound on E,, we now break the proof into cases, depending on how
close the two parameters are to one another.

Case 1. Assume that
L<r2<si=|c, — o <7 =ler| = |eal.

Let 2; be any point in the Julia set J,,. Then its image z? + ¢; must lie in one of
the disks D(%by,7'/2), where f. (£b;) = 0, and have absolute value 7'/2, so that
fer(21) = 27 + co = (2] + 1) + (ca — 1) satisfies

[fea(21)] = 5 > 72,

It follows that |f2 (z1)| = s> for all n. This gives
1 1
Aey(21) = 5 log s = §log lep — e
for all z; in the Julia set of f.,. Therefore,

1 1
E, = Elog\cl — | > Zlogr.
Case 2. Now suppose |c; — ¢o| = 7'/2, and recall that b? = —c;, for i = 1,2. Note
that
(bl -+ bg)(bl - bg) = b% — bg =Cy — C (56)
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and at least one of the factors on the left hand side has absolute value /2 so the
other must have absolute value 1. Let’s assume that

by — by| = 1.

If the two branches from ¢, 1 = (3,1 containing J., are disjoint from those containing
Je,, then for any element z, € J., we have

| for (22)] = V% and [£7 (2)| = (#/2)*"" for all n > 2

so that

1 1
A (22) = Zlogr = §log ler — cof

for all z, € J.,, and

1 1
E, = Zlog’r = §log]cl — Cal.

However, it can happen that one of the branches from ¢, ; intersecting J., does
coincide with a branch intersecting J.,. Note that from (5.3), we have

(Br = Ba)(Bi+B2) =Bt — B3 =bi —c1 — (by —c2) = (b1 —ba) + (ca — 1), (5.7)

and the right-hand-side has absolute value |¢; — ¢| = r'/2, so that

81— B2 = 1.
But we could have D(f,1) = D(5},1). Indeed,

(Br = Bo) (B + B3) = (b1 + b2) + (c2 — 1)

and the terms on the right-hand-side might cancel to give absolute value smaller than

r1/2. But by the symmetry of the disks around the points b;, as explained in (5.4),

if D(B1,1) = D(5, 1), then the other disks D(f],1) and D(fs,1) must be disjoint.
~ 1 ~ ~ ~/

Indeed, if by + oy = 1 = B2 = by — ay and by — ay = B, = By = by + ap in F,, then

200 = =205 = a3 = —y because p # 2,

so we must have b; = by, which contradicts the fact that by — by| = 1.
It follows that for all zo € D(85,1), one has

1
Aei(22) = 7 logr

By the symmetry of the Julia sets, this will also hold for points in the disk D(—p5, 1),
and together they make up half (with respect to the measure p.,) of J.,. Therefore,

1 1
E, > glogr = Z—Llog|cl — ¢

Case 3. Assume that

1<s:=|c; —cof <72
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Then from (5.6), we can choose by and by so that

1 S

m<‘b1—b2‘:m<1.

Also, from (5.7), we see that

1 S
m<\ﬁ1—52’:m<1

and similarly for 3] and 3. Consequently, the four disks D(£0;, s/r'/?) and D(£p}, s/r'/?)
are disjoint from the corresponding disks around £+, and £4. Thus, for any z; € J,,,

we have
inf |z, — 2| = s/r'/? and inf |fe,(22) — 21| = s,
Z1EJCI zZ1€ c1
and therefore
| f2 (22)] = srt/?  and | (z)] = (sr'/2)2" 7 for all n > 2.

This gives
1
A, (22) = 1 log(sr'/?)

for all 29 € J.,, and consequently,

1 1 1
B, =7 log(srt/?) = glogr +3 log |e1 — ¢yl

In particular, we have
1
E, > Zlog|cl — 09|
in this case, completing the proof of the first statement of the theorem.

Case 4. Now suppose |¢; — ¢a| = 1. The proof here is similar to Case 2, but
we work with the disks around 8 and /. From (5.6) and (5.7) we can choose our
preimages of 0 so that

/ / 1
(b1 = be| = 181 = Bal = 161 = Bof = 775

Let 7; and 4}, for i = 1,2, denote further preimages of 0, so that f2 (v;) = f2(+}) =0,
chosen so that

i = Bil = b — Bil = 1/r'/? (5.8)
for ¢ = 1,2. Because of the symmetry of the Julia set J,, around f;, for < = 1,2, as
explained in (5.4), if for example the disks D(v;,1/r/2) and D(7;,1/r'/?) coincide,
then the disks D(v},1/r'/2) and D(~},1/r'/?) must be disjoint, because |3; — (2| =
1/r'/2. Similarly for the disks D(vq,1/r'/2) and D(q4,1/r?), and also for the disks
intersecting the Julia sets near —f; and +0..

It follows that

inj fo(2) — 2| =1, [f2(2)] =72, and |f2(2)] = (r'/?)?"” for all n > 2,
z1€ c]
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for at least half of the points z in J,,. Therefore

1
A, (2) = 3 log r

for at least half of J.,, and consequently,

1
E, > 6 log r
in all cases with |c; — o] = 1.
Case 5. The final case to treat is with

1/T1/2<SZ: |Cl—62| < 1.

We can choose preimages b; and by of 0 so that

1 TR 1
;<]b1—b2|=|51—52|:|51_52|:TT/2<M

from (5.6) and (5.7). Passing to 3rd preimages of 0, as defined by (5.8), we have
(m =) +72) =7 =% = (fa (1) = fea(72)) + (c2 — 1),
and similarly for «/. Thus, they can be chosen so that
=2l = I = el = /72 > 1

Consequently, all points 2z, € J., will satisfy

zlig£1 20 — 21| = s/1/?
and so
1) =122 = s and [f2(22)] = (5)*" " for all n > 3,
Therefore

1
Ae(22) = 3 log(rs)
for all points 2y € J.,, and

1 1
E, = glog(rs) > Elog T.

This completes the proof of the theorem.
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5.3. An upper bound on the local height near the Julia set. We will use the
following proposition in the proof of Theorem 1.8. This is a non-archimedean analog
to the distortion estimate provided in Proposition 3.8.

Proposition 5.2. Suppose v is a non-archimedean place of K, not dividing 2. For
each ¢ with |c| > 1 and all 0 < r < 1, we have

Ae(2) < rlogcly

for all z within distance
1

|c|10g(1/T)
of the Julia set J, in PL. For|c| <1, we have A\.(z) =0 for all |z|, < 1.
Proof. Recall that all points = of the Julia set J. satisfy |z| = |c]11,/2. For all z € J,.
and all z = x +y with |y| < |¢|'/?
[fe(2) = fe(@)]o = |2xy + 2|, = lylle[/*.

Recall that \.(z) = log |z| for all |z| > |¢|'/2.
Foranynzland%§r<2n%l,wehave

, we have

1 n
1 -] >mn-1)log2> - -1
0g (T,) (n—1)log2 > o
So, for any point z within distance 1/|c['°6(/") of the Julia set .J,, it is also within
distance |c|/|c["/? of the .J,, so that we will have
Ac(2) = 27" A f"(2)) < 27" log|e| < rloglel.

The proof of the last statement of the proposition is immediate, because f. has
good reduction with J. = (o1 and \.,(z) = log™ |z|,. O

6. NONARCHIMEDEAN BOUNDS FOR PRIME p = 2

Let ¢; # co be two elements of Q. Fix a number field K containing ¢; and ¢y, and
fix a non-archimedean place v of K which lies over the prime p = 2. We assume that
| - |, is normalized so that |2, = 3. In this section, we provide estimates on the local

energy
E, = /)\01,1} d,U/cz,v - /)\Czﬂ) dluclv”'

Because the place v is fixed throughout this section, we will drop the dependence on
v in the absolute value | - |,, denote the local Julia set of f. by J,, its escape rate by
Ae, and the equilibrium measure by fi..
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Theorem 6.1. Suppose c; and co lie in a number field K, and v is a non-archimedean
place of K with v | 2. For all ¢1,co € K, we have
1—1610gJr lep — o] — ilogQ < E, < %logfr max{|c1|, |e2|}-
Furthermore, if r := |c1| = |c2| > 16 and
2
lcr — co| > a2
then

1 3
B, > —logr — > log2.
e T U T

We also prove an estimate on A, from above, at points near the v-adic Julia set of
fe, that will be needed for the proof of Theorem 1.8.

6.1. Structure of the Julia set. As in the previous section, we work with the
dynamics of f. on the Berkovich affine line Al"" associated to the complete and
algebraically closed field C,, and we denote by (., the Type II point corresponding
to the disk of radius r € Q- about .

And as before, for |¢| < 1, the map f. has good reduction, and J. = (p; is the
Gauss point. For |c| > 1 and for any point z with absolute value |z| > |c|*/2, we have
|f™(2)] = |2|*" for all n > 1, so that

Ae(2) = log |z]. (6.1)
It is also the case that )
Ae(2) < Elog || (6.2)

for all |z| < |¢|'/2.

But unlike the setting of the previous section, the geometry of the Julia set and the
dynamics on the associated tree is not constant for all |¢| > 1. First, for 1 < |c| < 4,
the map f. has potential good reduction, so its Julia set is a single Type II point.
For all |¢| > 4, the Julia set will be a Cantor set of Type I points. As in the
previous section, the Julia set and all iterated preimages of z = 0 are contained in
{2 €C, : |z| = |¢|'/?}, for all |c| > 4. We refer to [BBP] for basic information about
the Julia set.

It is important to observe that, for any point z with |z| = |¢|

|z = (=2)| = 2] = |2]/2 = |]'/%/2,

12 we have

a fact we will use repeatedly in our computations. Distances between points scale as
follows:

Lemma 6.2. Suppose |c| > 4 and z is in the Julia set of f.. For any |y| > |c['/?/2,
we have

\fe(z+y) = fo(2)| = y]*.
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For |y| < |e|*?/2, we have
[felz +y) = fe(2)] = [ylle]'2 /2.
Proof. Computing the image of z + y, we have
flz+y)=(z+y)+c= (22 +c) + (¥ + 2u2).
Because z lies in the Julia set, we know that |z| = |c¢['/2, and the result follows. [

Note that |c[*/2/2 > 2 if and only if |c| > 16. We choose b so that f.(£b) = 0. In
the case when |c| > 16, we let 5 and ' be further preimages of 0, so that
fe(B)=b,  [fo(8) = —b, with [f— | =1and |3 —b] =2. (6.3)
Indeed, this is possible because
(B—=B)B+B)=p"—p"=2b
has absolute value |c['/2/2, and so does |3’ — (—3")|, so we can assume that |3 -+
B = |c|'?/2 and |B — B'| = 1. Moreover, as * = 3 — b is a root of the equation

2?2+ 2bx — b = 0, a Newton polygon argument shows that |3 — b| can be chosen to be
2, for |c| > 16. Similarly, we choose further preimages v and +’ of 0 so that

f(v) =8, f(y)=78, with |y —+'| =2/[c|'/? and |y — 8] = 4/|c['*.  (6.4)

The structure of the Julia set is shown in Figure 6.1 for |¢| > 16, and it will be useful
to refer to the figure while reading the proof of Theorem 6.1.

6.2. Proof of Theorem 6.1. If |¢;| <1 for at least one 4, then

E, = %maux{logJr le1], log™ |ea|} = %logJr ler — e,
proving the theorem in this case. If 1 < |¢1| < |eof, then all points z € J., satisfy
2| = [e2]'/? > |c1]Y/2, so that A, (2) = log|z| = 1og|ey| from (6.1), giving

E, = %max{logJr le1], log™ |eal} = élog+ lca — 1.

Similarly for 1 < |cs| < |c1], and this completes the proof of the theorem for |c;| # |cal.
Note that whenever 1 < |ca| = |e;|, we have A, () < £ log|ei] for all z € J,,, from
(6.2). Tt follows that

1
E, < B max{log™ |c1],log™ [ca|},

proving the upper bound on F, in all cases.
For 1 < |¢1] = |eo| < 16, we have |¢; — ¢3] < 16, so that %10g|01 — ] < %10g2.
This completes the proof of the first statement of the theorem in this case as well.
For the remainder of the proof, we assume that

ri=lci| = |ez| > 16.
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[

|C|1/2

lc|/2/2

2

1

4/)e|"?
2/[c['/?

8/lcl
4/lcl

FIGURE 6.1. The tree structure of the non-archimedean Julia set and
some iterated preimages of 0, for |¢|, > 16 and v | 2, vertically ordered by
| - |, as noted on the right. The solid edges lie in the convex hull of the Julia
set and oo.

Exactly as in the proofs of Theorems 4.1 and 5.1, we break the proof into cases,
according to how close the two parameters are. As in §6.1, we let +b; denote the
preimages of 0 by f,.

Case 1. Assume that the preimages b; and by are chosen so that
s:=|by — by| < |by + b
and suppose that they satisfy
212 < s < /2
Since |by — (—by)| = |ba|/2 = r'/2/2, s0 |by + by| = |b1 — by + 2by| = s. Then as
(by — by)(by +by) = b2 — b3 = ¢y — ¢4, (6.5)
it follows that
ey — o] = 2.

For all z € J.,, we have

inf |z — 2| = s> rY%/2,
ZleJcl

so that

n

|[fer(2)] = 5°



32 LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

for all n > 1, from Lemma 6.2. This gives
A, (2) =log s

for all z € J.,. Therefore,

1 1 1
E, =logs = §log\cl — | > §logr—log2 > Zlogr

for every r > 16.
Case 2. Assume that the preimages b; and b, are chosen so that
s:=|by — bg| < |by + b
and satisfy
1<s<r/?)2
Then |b, + by| = r/2/2, so that
ey — o] = srY/?/2
from (6.5). Choosing §; and /., i = 1,2, as in (6.3), we have
(Br = Bo)(Br+ Ba) = 7 — B3 = b1 —c1 — (b2 — c2) = (b1 — b2) + (c2 — 1), (6.6)

and

(B = By)(B1 + B2) = (B1)* = (B3)” = (b2 — ba) + (2 — 1). (6.7)
Noting that the expressions in (6.6) and (6.7) have absolute value sr'/2/2, we find
that

81 — Bal = 1By — B3] = s.
It follows that

inf |z—z|=s
Z1€Jc1

for all z € J.,. Therefore
inf |f., (2) — 21| = sr'/?/2

z1€Jc,
for all z € J,,, so that
fa (@) = (sr'/2/2)""
for all n > 2 and 2z € J.,. This implies that
Ao (2) = 5 log(sr/2)
for all z € J.,, and

1 1 1 1 1
E, = §log(sr1/2/2) = Elog\cl — | > Zlogr— §log2 > glogr

for all r > 16.
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Case 3. Assume that the preimages b; and by are chosen so that
1= |b1 — bgl < |b1 —|—b2| = T1/2/2.
Then
lc1 — | = rY/%/2
from (6.5). It follows that
151 — Ba| = |51 - 5§| =1,
from (6.6) and (6.7). We also have
(Br = Ba)(Br+ By) = Bf — (B3)" = b1y — 1 = (=by — c2) = (b1 + b2) + (c2 — ¢1). (6.8)

The right-hand-side is the sum of two terms with the same absolute value and may
lead to cancellation, so it could happen that D(8;,1) = D(/3},1). On the other hand,
we also have

(81 = B2) (B + B2) = (1) — B3 = —=bi —c1 — (ba — ¢3) = —(b1 +b2) + (2 — 1), (6.9)

and |(by + by) — (—(by +b))| = |2||by + ba| = 7'/2/4. In other words, the cancellation
on the right-hand-sides of (6.8) and (6.9) cannot bring us smaller than r'/2/4 in both

equations. Consequently, we have
1
80— B o 18] — ol 2 (/) 72/2) = o

Consequently, at least half of the Julia set J., (with respect to the measure ., ) must
be at distance at least 1/2 from the Julia set J.,. Note that r > 16 implies that
1/2 > 2/r'/2. So, for half of the points z € J.,, we have

1/r/2\* r
Zlig;l | 31(2) -zl > 5 (7) =3
and thus
Ae(2) 2 {108(r/8) = J(logr — log)
for these z values. We conclude that

1 1 1
E, > glog(r/8) = Zlog|cl—02|—§log2

1 3

= glogr— glogQ
1 1

Z Elogr—§10g2

for all r > 16.
Case 4. Assume that the preimages b; and by are chosen so that

S = ’bl —62‘ < ’bl +b2’ = 7"1/2/2
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and satisfy
2/r'/? < 5 < 1.
Then (6.5) implies that
1< ey — e = sr¥?/2 < 71/2)2.
We have
81— Ba| = |81 — B3] = s
from (6.6) and (6.7). We now choose ~; and 7/, i = 1,2, as in (6.4), and these satisfy
(=) m+1) =% =7 = (B — B) + (2 — c1). (6.10)
Similarly for /. Consequently,
M =72l = =l =s
It follows that all points z € J., are distance s from J,,, so that
Z1i££1 ]ffl(z) — | = (?)2)%s = rs/4
and
2 (2)] = (rs/4)*" " for all n >3
for all z € J.,. Therefore,
Ao (2) = 7 log(rs/4)

for all z € J.,, so that
1 1 1 1
E, = Zlog(rs/él) = §log|cl —Co| — Zlogs > §log ler — ¢
and

1
E, > ~log(r'/?/2) > 1—610gr

I,

for all » > 16.
Case 5. Assume that the preimages b; and by satisfy
2/r1/% = |by — by| < |by + bo| = 1/?)2.

Then

leg — el =1
from (6.5). Equations (6.6) and (6.7) imply that

81— Bal = |B) = B] = 2/r'/2, (6.11)

and (6.8) and (6.9) imply that

|81 = Bal = |By — Baf = 1.
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To determine how the Julia sets might overlap, we examine third preimages of 0.
From (6.10), we know that

71— 72| = ”Y{ - ’Vé‘ = 2/7"1/2-

But
(=) +12) =7 — (13)* = (B = B3) + (c2 — 1) (6.12)
and both terms on the right-hand-size have absolute value 1. So it can happen that
D(v1,2/rY?) = D(v4,2/r'/?). Similarly for +/ with 7. But both pairs cannot be too
close, because
(Br—B3) = (B) = B2) = (B1 = B1) + (Ba = B5) = (BL = B1) + (B1 — By) + ¢
for some |e| < 2/r/2, from (6.11). Tt follows that
1
(B = Ba) = (B = B2)| = [2(61 = B)l = 5

so that .
=5l or I =l = (1/2)/(r'12/2) = 5.

The same estimates will hold for the third preimages of 0 near (3!, as well as those
near —f; and —f;. Consequently, at least half of the Julia set J,., (with respect to
fte,) must be at distance at least 1/r'/2 from the Julia set J.,. Note that r > 16
implies that 1/r'/2 > 4/r. So, for these points z € .J,,, we have

12\% 1
, 5 r T
1R a2 () e
and thus
1 1 1
A, (2) > glog(T/S) = —logr — = log8

8 8
for these z values. We conclude that

1 1 3
B, > —1 = —logr — —log?2.
> 1 og(r/8) T T

Case 6. Assume that the preimages b; and by are chosen so that
s 1= |by — ba| < |by + by

and satisfy
4fr < s < 2/rt/?
Then
2/r'/% < ey — | = sr1/%/2 < 1

from (6.5). We also compute

71— = |61 — B =5
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from (6.6) and (6.10). But, for disks centered at the 3rd preimages of 0 to contain
the Julia set, we need to take radius 8/r, which may be larger than s. So we pass to
4th preimages 9; of 0, so that f,(d;) = 7;; observe that we can choose these so that

‘(51 - 52’ =S,
because (61 — 02)(01+d2) = 67 — 62 = (11 —Y2) + (c2 — ¢1). This is enough to conclude
that

inf |z—2z]=s
216-]61

for all z € J.,. Therefore,

inf |f§’1(z) —z| = 3(7"1/2/2)3 > r1/2/2

Z1€Jcl
for all z € J,,, so that
1
A (2) = S log(s79)

for all z € J.,, and

1 1 1 1
E, = ¢ log(sr*//8) > < log(r'/?/2) = [ logr — < log2.

Finally, note that if |b; — by| < 4/r, then |e; — co| < 2/71/2, so Case 6 completes
the proof of the theorem.

6.3. An upper bound on the local height near the Julia set. We will use the
following proposition in the proof of Theorem 1.8. This is an analog of the estimates
provided in Propositions 3.8 and 5.2.

Proposition 6.3. Suppose v is a non-archimedean place of K dividing 2. For any
0<r<1/4, we have

Ae(2) < rlogmax{|c|, 16}

for all z within distance
1

max{|c|, 16 }oe(1/7)
of the filled Julia set within C,.

Proof. First assume that |c| > 4. Recall that all points z of the Julia set J. (which
agrees with the filled Julia set in this setting) satisfy |z| = |¢/'/2. From Lemma 6.2,
we know that for all z € J, and all z = x + y with |y| < |¢|'/?/2, we have

[fe(2) = fe(@)lo = 122y + 2|, = lylle]/2/2.

Recall also that A.(z) = log|z| for all |z| > |c¢['/? and A.(z) < Llog|c| for all |z| <
|C’1/2.
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In particular, for |c| > 4 and for any n > 2, a point z within distance

|| 2 \" S 1
4 ]c|1/2 = |C’(n/2)—l

Ae(2) = 27" Af(2)) < o logel.

Fix r € (0,1/4) and choose n > 3 so that 5= <7 < 5:=. Note that

will satisfy

log(1/r) > (n —1)log2 > g -1
for all n > 3. So if z is within distance 1/|c['*6(*/") of the Julia set, then
1
Ae(2) < 2—nlog\c| < rlog|c| < rlog max{|c|,16}.

Now assume |c|, < 4. Then f, has potential good reduction with J. = (, 1, where
x is any element of the filled Julia set. Consequently, all points z within distance 1
of the filled Julia set are in the filled Julia set and thus satisfy A.(z) = 0. O

7. BOUNDS ON THE ENERGY PAIRING

In this section, we use the estimates of the previous sections to prove a weak
version of Theorem 1.7, and we use it to deduce Theorem 1.6. We let h(z) denote
the logarithmic Weil height of x € Q and h(xy,z3) the Weil height on A%(Q).

Theorem 7.1. We have
1 2

1
Eh(cl—@)—g < (fers fea) < §h(01,c2)+

for all ¢, # ¢y in Q.
7.1. Proof of Theorem 7.1. Fix ¢; # ¢ in Q, and let K be any number field

containing them. Summing over all places of K, we have by Theorem 4.1, Theorem
5.1, and Theorem 6.1 that

Wl

]— [Kv : QU] —+ ]‘ 1
= g 108" e —cal - 51082000 - Tlog2 < (fey, o)

veEMK

1 (K, : Q]
<5 e log” vs |C2lv} 4 log 8,
< ; K Q) og” max{|c1l, |ca|o} + log
veEMg
where the added constants come from the archimedean places (Remark 4.2) and the

prime 2. This completes the proof of the theorem.
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7.2. Proof of Theorem 1.6. We will assume towards contradiction that there is a
sequence of triples ¢y, # ca € Q and &, > 0 such that

<fcl,n7 fcz,n> < é&n,

where €, — 0 as n tends to infinity. Let K, be a number field containing c; , and
Co.n- We will show that this forces the pairing at a (proportionally) large number of
archimedean places of K, to be close to 0; as a consequence we will deduce that the
height h(cy, — c2,) must get large. This in turn would contradict Theorem 7.1.

Let M;° denote the set of all archimedean places of K,,. For each v € M?°, we let

Ev(cl,na CQ,n) = /Acl,v d,UCQ,v

denote the local contribution to the energy pairing. We let S,, C M be the set of
archimedean places with

Ey(c1n,can) < 2.
Since 3, pree [Knw 0 Qo] = [Kn 0 Q) and (fe, ., fe,,) < En, wesee that 3° ¢y e g [Kno :
Qu] < [K,, = Q]/2. Therefore,

Z [Kn,v . @v] 2 T

vESy
Take L = 1000 as in Remark 4.2, and choose any M > L.

Recall that, for a fixed archimedean place v|oco, we have p., = p., if and only if
¢ = ¢ from (1.1), so that E(c1,ce) > 0 for all ¢ # co € C = C. Moreover, E,
is continuous as a function of (c¢;,ce) because of the continuity of A\.(z) in ¢ and z
and the (weak) continuity of the measures p. = %A/\C. Therefore, for any o > 0,
Ew(c1,c2) obtains a positive minimum on the compact set where |¢; — ¢o| > 0 and
le1], |e2| < M for ¢1,co € C. Tt follows that there is a sequence 6, — 07 as n — oo
such that

Ex(c1,09) > 22,
for all |¢; — co| > 0, and |cq|, |c2| < M for ¢p,¢co € C. Furthermore, if one of the ¢;,
say c;, has absolute value bigger than M and if |c; — co| > 3/|c;|/2, then

1 1
Ex(ci,c) > 6—410g|01| > 6_410gM

from Theorem 4.1.
For all n sufficiently large, we have 2¢, < 6i410g M, and so for any v € S, as
E,(c1n,can) < 2ey,, we must have

3
|Cl,n - 02,n|'u S max 5717 W )

Hence for any n large enough that 2z, < & log M and 8, < 3/M*/2, we conclude that

’CLn — Cg7n|v < 3/M1/2 <1
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for all v € .S,,. Consequently,

Knv v
h(Cl,n - CQ,n) > Z ﬂ log+ |01,n - C2,n|u
L K Q
v Kn\S"
[Knv : Qv]
> 7—1 n - nlv
et EZMZ [Kn : Q] 0og |Cl7 62, ‘
v Kn\S’"-
_ Z [Kn,v . Qv] IOg 1
veSs,, [Kn : Q] |Cl,n - CQ,n|U
Ky : Q] M2 1. MY?
> : log > —log .
(3 e > e
We thus have by Theorem 7.1 that
1 MYz 2
_log 5 S <f01,n7 fCQ,n> < €n,

32 3 37
for any choice of M > L and all sufficiently large n. But this is a clearly a contradic-
tion for M and n large enough. 0J

8. STRONG LOWER BOUND ON THE ENERGY PAIRING

Throughout this section, we assume that ¢; and ¢, are distinct elements of Q. We
prove Theorem 1.7, which gives bounds on the energy pairing (f,, fe,) in terms of
the heights of the parameters.

The upper bound in Theorem 1.7 is easy and was stated as part of Theorem 7.1.
The lower bound is a balancing act between “helpful” primes and the other primes of
a given number field K containing the pair ¢; and ¢o. A place v of K will be helpful
if at least one absolute value |¢;], is large and the two parameters are not too close in
the v-adic distance. In this good setting, we can apply the stronger lower bounds on
the local energy pairing, as in the second statement of Theorem 4.1. By showing that
a significant proportion of primes are helpful, we obtain the lower bound of Theorem

1.7.

8.1. An auxiliary height. Fix some constant L > 1 and consider the following
function hz on A%(Q). For ¢y, ¢y in a number field K, we put

ry = [Ky 0 Qy/[K : Q)

and set
log max{|ci|s, |ca|v, L}  for v archimedean

l, = < log max{|ci|y, |ca]y, 16} for v|2
logmax{|ci|o, |ca]v, 1}  otherwise
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and define
hL(Cl,CQ) = Z ’I“va.

vEME
Note that
h(ci,ce) < hp(cr,c2) < h(cy,c) +log L + log 16,
where h(cy, cy) is the usual logarithmic Weil height on A2(Q).

8.2. Helpful places. With L > 1 fixed, and elements ¢; and ¢y in the number field
K, we say that the quantity £, is large if

log L  for v archimedean
l, > ¢ log16 forwv |2
0 otherwise.

We define My, to be the subset of My for which ¢, is large and

lep — ey > /ﬁve’e”ﬂ,

where
3 for v archimedean
Ky =14 2 forv|2
1 otherwise
and we call these places “helpful”. We define M. to be the subset of Mg for which

¢, is large and

leg — o] < Kpe /2

and call these places “close”. We will say that a place v is in Mpoundeq if ¢, fails to
be large.
The helpful places constitute a significant portion of the contribution to the height:

Lemma 8.1. For any ¢1,¢s € Q and any L > 1, we have
1 2
Z roly > ghL(Cl,CQ> — glogG.
'UGMK\Mclose

and
1
Z Toly > ghL(Cl,Cg) —log(16 - 62/ - L)

’UGMhe]p

for any ¢1,co € Q and any L > 1.

Proof. We use the product formula on ¢; — ¢o, so that

1:H|61—CQ

Tv
vt
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At the close places, we know that |c; — ¢,| is bounded from above by k,e~%/2. At all
other places, we have |c; — ], < e® if non-archimedean, and |c; — ¢y, < 2 < Kk,e®
if archimedean. Therefore, we have

I < H (Kpe /) H (Kpet)™ H (b))

VEMlose 'UGMOO\Mclose 'UGMK\(MOOLJMClOSE)
< 6 H (67&,/2>rv H (efv)rv.
UEMclose UGMK\MCIOSC

Taking logarithms gives

1 STonb < S nly+logb. (8.1)

2
UEMclose 'UeMK\Mclosc

Adding % Y e M\ Maone r¢, to both sides yields

[\CRGV]

1
éhL(ClacQ) S Z Tvgv +10g67

UGMK\Mclose

proving the first statement of the lemma.
Expanding the right-hand-side of (8.1), we see that

% Z Ty, < Z roly + Z roly, + log 6

UGMclosc UEthlp 'UGMboundcd
so that
1
Z Tfugv > 5 Z vav - Z rvév — log 6.
Uthelp UEMclose UEMbounded
Adding % Y e Mty rol, to both sides, we obtain
3 1 3
5 Z roly > §hL(cl, ca) — 5 Z rol, — log 6
U€Mhelp V€ Mpounded
3
> §hL(cl,cz) - 5(10gL+10g 16) — log 6
3
= §hL(cl, ca) — 2 log(16 - 62/° . L),
which proves the lemma. 0

8.3. Proof of Theorem 1.7. Fix ¢, c; and choose any number field K containing
both. Fix any L > 1000 so that Theorem 4.1 is satisfied. Decompose Mg into
Mheip U Meiose U Mpounded as in §8.2. Note that 1—1610gr — f’—ﬁlog2 > 6i410gr for any
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r > 16. Then Theorems 5.1, 6.1, and 4.1 applied in the helpful places combine to say

<fc17f02> - Z roFy, > Z Ty

’UEMK UGthlp

1
Z ry log max{|ci |y, |c2]y }

= 6
'UGMhC]p

1
= o > b (8.2)

UGthlp

Combined with Lemma 8.1, this proves that for all ¢; and ¢, in Q, we have

L) > —

364
> L h(en ) — - log(16- 623 - L).
- 192 ’ 64

This proves the lower bound of the theorem with a; = 1/192 and Cy = ; log(16 -
623 . L) < 0.17 < 2 for L = 1000. The upper bound of the theorem was proved

17
already as Theorem 7.1 with ap = 1/2 and Cy = 7/3.

1
hi(ci,e2) — o log(16 - 62/3 . L)

9. QUANTITATIVE EQUIDISTRIBUTION

Our goal in this section is to prove Theorem 1.8, providing an upper bound on the
energy pairing (fe,, fe,), in terms of the number of common preperiodic points, for
c1 # ¢y in Q, assuming f., and f., share at least one preperiodic point other than
oo. We build upon the ideas developed in the proof of [FRL, Theorem 3| and [Fi,
Theorem 4].

9.1. Adelic measures and heights on P'(Q). Following Favre and Rivera-Letelier
[FRL], we define the mutual energy of measures p and p’ on P*(C) by

<@ﬂw=—/Acm_bmz—wmmamﬂw,
X iag

where Diag is the diagonal, assuming log |z —w| is in L'(p® p/). If the measures have
total mass 0 with continuous potentials on P!, we have (p, p) > 0 with equality if and
only if p = 0. Similarly, one defines

mﬂ»:—/ﬁhﬁmw&@wmma@ww (9.1)

on the Berkovich line over C,, with respect to a non-archimedean valuation, where
dy(z,w) is the logarithm of the Hsia kernel in place of log |z — w|,. See [BR2, Propo-
sition 4.1] and further information throughout Chapters 4 and 5 of [BR2].

Now let K be a number field. An adelic measure is a collection p = {1y }penr, Of
probability measures on the Berkovich P} with continuous potentials at all places
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v and for which all but finitely many are trivial (meaning that they are supported at
the Gauss point). For any adelic measure g, a height function is defined on P*(Q) by

hF) =5 3 e (P P = o)

vEME

where F is any finite, Gal(K /K )-invariant subset of K, and [F] is the probability
measure supported equally on the elements of F'. We put

hu(OO) = 1 Z %(Nva Mv)v'

The equidistribution theorems of [FRL, BR1, CL1] state that if F}, is a seqence
of Gal(K/K)-invariant finite sets with h,(F,) — 0 and |F,| — oo as n — oo, the
discrete probability measures

v

1

n= T 5:(:
o= 157 2

CCEFn
converge weakly to the measure p, on P1%" at each place v of K.

There is a pairing between any two such heights, h, and h,, associated to adelic
measures 4 and v, as

1 (K, : Q)

hah'u =35 A7 Mo T Vs ey = Vy )y 9.2

) =3 3 g ) 92)
veEMK

It satisfies (h,, h,) =0 <= h, = h, < p=v. The energy pairing (1.3) between

two quadratic polynomials is a special case, taking the dynamical canonical heights

he, and h, associated to their adelic equilibrium measures.

Remark 9.1. The height A, is defined for an arbitrary adelic measure, but small
sequences (meaning the sequences {F),} of Galois-invariant sets with h,(F,) — 0 and
|F,,| = 00) do not always exist.

9.2. Height pairing as a distance. Following [Fi], we consider a distance between
two adelic measures j = {y,} and v = {v,} on P! over a number field K, defined by

d(p,v) := (b b)),

where (h,,, h,) was defined in (9.2); see [Fi, Theorem 1].

Suppose that ¢; and ¢y are elements of a number field K. Let py := {fte; 0 boemy
and 1o = {fley.0 fverr,e be the equilibrium measures of f,., and f.,, respectively. Let
F be any finite, nonempty, Gal(K /K )-invariant subset of P!(Q). Let [F] denote
the probability measure supported equally on the elements of F. For each place v
of K, choose a positive real ¢, > 0, with ¢, = 1 for all but finitely many v. The
collection € := {&, }venr, Will be called an adelic radius. As in [FRL], we consider the
adelic measure [F]., defined as a regularization of the probability measure [F]: it is
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supported on the circles of radius €, about each point of F'. At a non-archimedean
place, this means the Type II or III point associated to the disk of radius ,. The
triangle inequality implies that

(fors feu)/? = d(p1, p2) < d(pa, [F)2) + d(pa, [F.) (9.3)

for any choices of F' and ¢.

It is worth noting that, if the radius €, — 0 at some place, then the right-hand-side
of (9.3) will tend to co. This is because the potential of the measure [F]. at v will
blow up near the points of F. On the other hand, for €, too large, the measure [F|. is
not a good approximation of [F]. Thus, for (9.3) to be useful in our proof of Theorem
1.1, we will need to choose € well. This general strategy also appears in the proofs of
[FRL, Theorem 3] and in [Fi, Proposition 13]. In our case, the choice of € = {&, }yenr,
will be governed by Proposition 3.8 and its non-archimedean counterparts, and this
leads to Theorem 1.8.

Lemma 9.2. Let K be a number field and fix ¢c; # co in K. We have

2 . oe(1/e 1/2
(four fe)/* < 3 ( > o (—(ui, Flo, + L) >)>

i=1 \veEMg

for any choice of finite, non-empty, Gal(K /K )-invariant subset F' of Q and any adelic
radius € = {&, }oeny -

Proof. We first observe that

i FLY = 550 e = 1Pl = 1110,

_ (Ko Q) (- 1
= > (K Q] ( (uu[F]s)er2([F]E,[F]e)v>,

v

because (f;, pt;), = 0 at every place. The self-pairing of [F]. can be estimated in
terms of the self-pairing of [F] ([Fi, Lemma 12] and [FRL, Lemma 4.11}), as

log(1/21)

([Fle, [Fle)o < ([F], [FT)o + 7]

But observe that

[/, Q] _
Zm([F]a[F])v =0

by the product formula on K. So the triangle inequality (9.3) completes the proof of
the proposition. [l

v
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9.3. Proof of Theorem 1.8. Fix any L > 27, and recall the definition of the auxil-

iary height hy on A?(Q) from §8.1. An appropriate choice of ¢ = {g,} in Lemma 9.2

gives:

Proposition 9.3. Fiz any L > 27. Fiz ¢, and ¢y in Q, and assume f., and f., have

N > 1 preperiodic points in common in P'(Q). Then for all 0 < § < 1/4, we have
3log(1/6)

(fers fea) <4 (5 LT hi(cr, c2).

Proof. Fix a number field K containing ¢; and ¢y. Let F be the Gal(K /K )-invariant
set of common preperiodic points for f., and f., in Q, so that |F| = N — 1. For each
place v € Mk, recall the definition of ¢, from §8.1. Fix 0 < § < 1/4 and set

g, =60,

Note that €, = 1 for all but finitely many places v € M.
For each archimedean place v, note that

£y = 6—3&, log(1/6) _ max{|cl|v, |02|v7 L}—Slog(l/é)’
so Proposition 3.8 implies that
Aeiw(2) <04,
for any point z within a neighborhood of radius ¢, of the filled Julia set K.,. As all
points of F' lie in K, this implies that

_(:uia [F]E)v S 5£v

for this choice of ¢, and each i.

Similarly for each non-archimedean place v { 2, we apply Proposition 5.2, and for
each non-archimedean v | 2, we apply Proposition 6.3.

Summing over all places, we find that

(K, : Q) log(1/v) (K, : Q) 3log(1/4)
U;}(—[K:Q} <—(ui,[F]e)v+ A ) < ;—[K:Q] (5€v+ T zv)

(5 + 31%%/5)) hy(c1,ca).

Lemma 9.2 then implies

- . o) € 12
(Jourfed'? < D ( > % (—(m, (F].), + 28U/ g;’% ))>

i=1 \weMy

< 2 ((5+31%%/5)) hL(C1,02))1/2.

Squaring both sides yields the proposition. 0
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Now fix any ¢ between 0 and 1, and let § = £/25. Applying Proposition 9.3 with
L = 27, we have

(fer, fer) < 4(6+31L(1/5))

2(N — 1)
< 4 ((5 + 321((;\%—@/1(?) (h(c1,ca) +1og 16 4 log 27)
< (e g h) (e +

with C(e) = 401log(25/¢). This completes the proof of Theorem 1.8.

10. PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1, providing a uniform bound on the number
of common preperiodic points for any pair f., and f., with ¢; # ¢ in C.

10.1. Proof over Q. Assume that ¢; and ¢y are in Q.
We first use Theorem 1.7 and 1.8 to provide a bound on

N := N(¢y,co) = |Preper(f.,) N Preper(fe.,)|

when the height h(cq, c2) is large. The two theorems combined show that, if N > 1,
then it must satisfy

C(e)
N -1

ai h(e, ) —C < (5 + ) (h(c1,co) +1)

for every choice of 0 < ¢ < 1, and thus,

(a1 e ]\f(i) (h(cr, ) +1) < Cy + an.

Taking € = a1/2, we have

o C(e) < Ci+ o
2 N—l_h<Cl,Cg)—|—1‘

If we assume that

4(C
h(CI,CQ) _|_ 1 > M’
aq
then the inequality becomes
4 2
N_1< M) (10.1)
aq

providing a uniform bound on N for all pairs (¢, ¢2) of sufficiently large height.
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Now suppose that h(ci, ) +1 < 4(Cy + aq)/a;. We combine the uniform lower
bound of Theorem 1.6 with the upper bound of Theorem 1.8 to obtain

Cle) C(e) ) 4(Cy + )

N -1

5§(5+ N1

) (h(ct, e0) +1) < (£+

aq
for any choice of 0 < ¢ < 1. This unwinds to give

No1< S8
aq —c
4(C’1+a1)

(10.2)

Choosing any € < a;0/4(C} + a1) gives a uniform bound on N.

10.2. Proof over C. Let B denote a uniform bound on the number of common
preperiodic points over all ¢; # ¢y in Q. Now fix ¢; in C\ Q. For any ¢, € C, if f,,
and f., have at least one preperiodic point in common, then the field Q(cq, ¢2) must
have transcendence degree 1 over Q. Moreover, if xq,xs,...,2zp11 denote distinct
common preperiodic points for f., and f.,, then k = Q(¢y, ¢o, 21, ..., xp41) will also
be of transcendence degree 1, as each x; satisfies relations of the form

o) = fol(x;) for ng >m; >0 and fz(:vl) = éz(xl) for k; > 1; > 0. (10.3)
We may view k as the function field K(T") of an algebraic curve 7" defined over a
number field K. In this way, the maps f., and f., are viewed as families of maps,
parameterized by ¢ € T'(C), and the relations (10.3) hold persistently in .

Now assume c; # c;, so that the specializations f. ) and f.,) are distinct for
all but finitely many ¢ € T(C). As the elements {xi,...,zp.1} are distinct in k,
their specializations {z1(t),...,zp.1(t)} are also distinct for all but finitely many ¢
in T(C). In particular, this implies that we can find ¢ € T(Q) so that ¢;(t) # c,(t) in
Q and f., ) and fe,) share at least B + 1 preperiodic points; this is a contradiction.

Thus, the theorem is proved for all pairs ¢; # ¢o in C, with the same bound as for

pairs ¢; # ¢, in Q.

11. EFFECTIVE BOUNDS ON COMMON PREPERIODIC POINTS

In this section, we make effective Theorems 1.6, 1.7, and 1.8, to produce an explicit
value for the bound B of Theorem 1.1:

Theorem 11.1. For all ¢c; # ¢; € C, we have

|Preper( f.,) N Preper(f.,)| < 10*%.
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11.1. An explicit lower bound in Theorem 1.6. In order to provide an effective
lower bound ¢ for Theorem 1.6, we need to improve our estimates on the energy pairing
E,(c1,c9) when |¢; — o, is small at an archimedean place v. Here we compute that
we can take § = 107,

Let H = 32001'%°/% Suppose that ¢; and ¢, lie in a number field K, and suppose
that for at least 99/100 of the archimedean places of K, we have

|Cl _CQ|U S ]_/H

Then h(c, — ¢3) > 5=log H, and the proof of Theorem 7.1 implies that

1 1 log(32001/32000)
> —h(ep — ¢) — — log(32000) >
(fers feu) = 16h(01 c2) 16 0g(32000) T
Now suppose that we have |¢; — ¢o|, > 1/H for at least 1/100 of the archimedean

places of K. Let M = 9H? so that

> 1079,

13
H  ML/2
at all of these places. If max{|ci|,, |c2],} > M, then Theorem 4.1 implies that

|Cl — CQlU >

1
E,(c1,c9) > 6—410gM > 0.14

at this place v. On the other hand, if max{|ci|,,|c2|,} < M, we have the following
bound:

Proposition 11.2. Fiz any M > 1000. Then for all s > M?, we have

|Cl — C2|2 117 M3
Buoler,e2) > 20 S
(e1,02) 2 =53 100 56

provided max{|cy|, |c2|} < M.

Assuming Proposition 11.2, we complete our computations. With M = 9H?, we have
ler — o B 117 - 93HS S 1 ( B 117-2593[-]8)
3254 100s® = 32s1H? 100s? ’
for all archimedean places v with |c; — ¢a|, > 1/H, max{|ci],,|cal,} < 9H?, and
s > 92H*. Choosing s satisfying s? = 117 - 2693 H® /100, we conclude that

1002
Bleve) = srgiimpms

for all such places v. This shows that, summing only over the archimedean places,

E,(c1,60) >

we have

<f017f02> Z Z %Ev(chcﬁ

1 1002 o6
Z m mln{014,m} > 10 5
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whenever |¢; — ¢a|, > 1/H for at least 1/100 of the archimedean places of K. This
completes the computation of §, and it remains only to prove Proposition 11.2.

Proof of Proposition 11.2. The result will follow from a series of elementary estimates
on the values of the escape-rate functions outside the filled Julia set. Let ¢. be the
Bottcher function for f.(2) = 22 + ¢, so that p.(f.(2)) = p2(z) for all z large enough,
and therefore ¢, has expansion

pe(2) 22+2—CZ+~' (11.1)

for z near co. We set
A2) = Ay (2) — Aey(2),

the difference of two escape-rate functions. The energy pairing satisfies

2F(c1,09) = 2/ Ay ddNe, = — / Add)\ = / dA N dN.
C C C

Now fix any large s > 0, and define D¢ := {z € C: |z| > s}. By Green’s formula,

1
2B (c1, c5) > / dAA doX = —/ MA=—— [ A (@dz - @dz) .
D¢ D¢ 271 D¢ 82 @Z

We will estimate the latter integral.
Note that A\ satisfies

A(z) = log |¢e, | — log |@e, |

near oco. For simplicity, write € := ¢; — ¢o. By the expansion (11.1) of ¢,

€ € 1

Similarly, by using the Taylor expansion and letting z = se” on the boundary 0D¢,

O\ oX € € 1 ‘
2 (adz — gdz) = [— (45362“’ + 4536*%9) +0 (g)] isdf.

Consequently
1 oA oA g€ 1
—4— M —dz——dz)=—+0|—=]).
27 Jope <8z °T oz Z) 45 * <s5)

This gives

1 O\ o\ 3 1
2E . (c1,c0) > ——— AM =—dz— —dz | = O — 11.2
(c1,0) 2 2mi Jope (82 T oz Z) 16s* * (35) (11.2)
where € = ¢; — ¢o. To prove the proposition, we need control on the big-O term.
In the rest of this section, we fix an M > 1000.
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Lemma 11.3. Let z,¢; € C with |z| > M?, |¢;| < M fori= 1,2 and € = ¢; — 3.

Then
e 202 |e;i| 101 |if?
(= 4+ =)< - . )
’4“2) (22 * z2>‘ = Z (100|z\4 00 2

i=1,2

Proof. First note that for any x € C with |z| < 1,

m3 ‘ |l‘|2

|log(1+x)—x|:’—x + =4 (11.3)

2
2 3
where the log(1 + z) is taken to be the one with —7/2 < Im(log(1 + z)) < 7/2. For
any |z| > |c| and |z| > 4, inductively it is easy to check that for each n > 1

(Il = le/zD* < 1f2(2)] < (2] + le/2D*, (11.4)
hence
log(|2| — le/2]) < Ac(z) < log(|2] +[¢/z])
and
log(|2* + c| = lel /12" + cl) < Ac(2” + ¢) = 2Xc(2) < log(|2” + ¢f + [l /]2* + c]).

Consequently for any |z| > M? and |c¢| < M, by (11.3) one has

2 1
90 (2) — log |22 + | < [log (14 1| < I lc‘
’ (2) —log|z +C|‘ = Og( 22 +c2)| = |z2—|—c|2+ 22+ c[* 2(1 — lc] )
|Z2+C‘2
101 ||
~ 100 |2]*

Now, by the triangle inequality and (11.3) we have

€ € ¢
1) = (G4 )| < 30 (19802) — 202 el + [tog(=" + ) ~ log " - 5
_ _ _ Ci
+ Z ‘log(z2 + &) —log 2% — =
i=1,2
202 |c;| = edl?/)2|t 202 |¢;] 101 |ef?
< == Gzl ) o V2lal 101 _
a 212 (100 E al |~ ;;2 100]2]* ~ 100 |z

O

Lemma 11.4. For any z,c € C with |z| > M? and |c| < M, we have

N GAIC)

N 102 |2 104 ]
L1757 22

=100 J2[F T 100 ]2
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Proof. For any o € C with |a| < 1, we have

2

o 1] g ||JFI2Jr |al
e —1l=la+—+" - o .
2! - 2! 1 — |
For each i, we always take log (]0;1%))2 to be the one with
(fe'(=)?
—7/2 < Im(log ~“——) < /2
FERR

and set log [\, (e ) Yo, log (2 )*  Then for each i > 2, by (11.3) and

fe(2) fé(z)
(11.4), we have
(fe'(2) ( ¢ ) '
log e )| _ —llog (14—
‘ (fe1(2))?
’(ffl(z))2

1
fii) |~ 'log 1+ c/(Ji1(2))?
2 (1 B ’(fé‘lc( )2

<

_ 101 |
=100 ([2] — [e/2])*

1+

for the last inequality we use the fact that |c|/|fi~"(2)|? < |e|/(|2] —|¢/2])? < 1/1000.
Therefore, since (|z| — |¢/z|)? > M?/2, we conclude

lOgH fz 1

For ¢ =1,

P DI NPT
100 (2| —|c/z))* — 100 (|z| —|¢/z])* — 100 |2]*

i—1( .12 2 2
fi(z) 22 1+ 5 22 |z|* 1 —|e/22] — 100 |z|*
Finally, let
(1)) 2 ‘
=1 “— dpg= -
@=08 o Jiz) and 22 +c 22

and then

| (+1-5)- (1-5)

<ot o= 1 5)

N a ¥
(” H)'ﬁ'ﬂ—w(”rﬁ)‘
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The inequalities for o and S give

") e
S IO R

lc|

103 Je| 2 103 Jel
100 T\ 101 fel® 300 fap el
5(” _m.ﬂ> 100 | P e (T
100~ Jz]4 100 Jz]*
102 |2 104 ||

=100 [z* T 100 [z|*

O
Lemma 11.5. With the same hypotheses as Lemma 11.4, we have that
200.(2) 1 ¢ 102 |c]* 104 ||
Dz z 23| 7 100 |25 100 |z|>
Proof. Consider
+ | fn n . fn(z
(e) — tim 2O g (£2() - £2G)
i (e fi(z) |l f2(2))
n—00 on on
and take partial derivatives of both sides, so that we have
+ | £n n n 1( fi—1
200(2) . 2log” [f2)| 1 0losfr() 1[I AUN(R)

0z n—00 0z n—oo 2N 0z n—oo 2N f?(,z)

which is independent on the choices of log f(z) and log f2(z). Combining this with
Lemma 11.4, we conclude that

20):(2) 1+£ B

T RGN 1 e

L (YR L e
N an—mo (H fCZ(Z) 1+22>‘

102 |ef? +104 |c|
=700 2 T 100 |25

0z z 23

Similarly
20X:(2) 1 ¢

102 |ef2 104
L Iel (11.5)

0z Z 237100 |25 T 100 |z

Now we are ready to control the big-O term in (11.2). Write

€ € e g
A—(@+@>+[A—(@+@>]7

O\ o\ € € oA O\ g g _
gdz = [(E + ﬁ) — ﬁ} dz and gdz = [(% + ﬁ) - ﬁ} dz.
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We set
| 102 |g* 104 e
I, ==t . e ,
2s =12 100 |s]> 100 |s|?
1 202 Jei| , 101 eif? 102 [ei* 104 o
= — . max - S
& 147 005" 100 s ) 233 \T00 s 100 Jspp) Y
and

1 202 |ci| 101 e\ el
I, =~ =2 o el
Ty ;2 (100 sE 7100 57 ) 25
Lemmas 11.3 and 11.5 along with inequalities (11.5) and (11.2) give

33
—2(L + L+ I).
16s% (it L+ 1)
By the assumptions M > 1000, |c;] < M for i« = 1,2 and s > M?, and since
le] = |e1 — e < 2M, we have

2F(c1,c9) >

I < 103 M3 < 1 M3 4 L < 102 M3

—_ an — .
"S1000 s 2T 10000 88 P800 s°
Therefore,

234 M 3
2(0 + I, + I
(it Lt 1s) < 355

This completes the proof of the proposition. O

11.2. Explicit bound. As shown in the proof of Theorem 1.7 (in §8.3), we have
a; = 1/192 and Cy = 3/17 in Theorem 1.7, and we may take and C'(¢) = 401log(25/¢)
in Theorem 1.8 as shown in §9.3. Therefore, C(«;/2) = 40log(50/ay) < 367, and
whenever ¢; # ¢, € Q so that f., and f., have N(cy,c3) > 1 common preperiodic
points and h(cy, c2) > 139, we have

N(cy, c) < 281857 < 10°

from (10.1). For the set of parameters with h(cy,c2) < 139, the bound we obtain is
much larger, as it depends on the small § from Theorem 1.6. We can take § = 10~%,
as explained in §11.1. Taking € = a,d/(8(Cy + 1)) in (10.2), we find that

8(Cy + ay) - 401log(25/¢)

N(Cl,Cg) -1 <

a15
320(C1 -+ Oél) 200(01 -+ Oé)
= log
CK15 0615
< 320 - 35 o 200 - 35
= T %

< 96-320-35-10% log(200 - 35 - 10),

so that
N(cy, cp) = |Preper(f.,) N Preper(f.,)| < 101%,



54

LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

The same bound holds for all ¢; # ¢; in C, as explained in §10.2.

[AP]
[BE]
[BD]
[BR1]
[BR2]
[Beal
[Ben]

[BBP]
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