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Abstract. Let fc(z) = z2 + c for c 2 C. We show there exists a uniform upper
bound on the number of points in P1(C) that can be preperiodic for both fc1 and
fc2 , for any pair c1 6= c2 in C. The proof combines arithmetic ingredients with
complex-analytic: we estimate an adelic energy pairing when the parameters lie in
Q, building on the quantitative arithmetic equidistribution theorem of Favre and
Rivera-Letelier, and we use distortion theorems in complex analysis to control the
size of the intersection of distinct Julia sets. The proofs are e↵ective, and we provide
explicit constants for each of the results.

1. Introduction

Consider the family of quadratic polynomials

fc(z) = z2 + c

for c 2 C, each viewed as a dynamical system fc : Ĉ ! Ĉ on the Riemann sphere.
Recall that a point z 2 Ĉ is said to be preperiodic if its forward orbit under fc is
finite. It is well known that the set of all preperiodic points for fc will determine c.
Indeed, we have

Preper(fc1) = Preper(fc2) () J(fc1) = J(fc2) () c1 = c2 (1.1)

in this family, where J(fc) is the Julia set and Preper(fc) the set of preperiodic points
[BE]; see §2.3 for more information.

For any c1 6= c2 in C, the intersection of Preper(fc1) and Preper(fc2) is finite [BD,
Corollary 1.3] [YZ, Theorem 1.3], even though their respective accumulation sets, the
Julia sets of fc1 and fc2 , can have complicated, infinite intersection. We investigate
the question of how many preperiodic points are required to uniquely determine the
polynomial, without the information of the period or length of an orbit. We prove:

Theorem 1.1. There exists a uniform constant B so that

|Preper(fc1) \ Preper(fc2)|  B

for every c1 6= c2 in C.
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Remark 1.2. Our proof leads to an explicit value for B. Without making an e↵ort to
optimize our constants, we show that we can take B = 10103. This bound is probably
far from optimal. The largest intersection we know was found by Trevor Hyde: the
set Preper(f�21/16) \ Preper(f�29/16) consists of at least 27 points in Ĉ. These two
polynomials also appear in [Po].

Remark 1.3. There is no uniform bound on the periods or orbit lengths of the
elements of Preper(fc1) \ Preper(fc2) as c1 and c2 vary. For example, taking c1 and
c2 to be distinct centers of hyperbolic components within the Mandelbrot set, we will
have 0 2 Preper(fc1) \ Preper(fc2) with periods as large as desired.

1.1. Motivation and background. For any pair of rational functions f, g : Ĉ ! Ĉ
of degree at least 2, it is known that a dichotomy holds: either the intersection
Preper(f) \ Preper(g) is finite or Preper(f) = Preper(g) [BD, YZ]. We suspect a
much stronger result may hold, and we propose the following conjecture:

Conjecture 1.4. For each degree d � 2, there exists a constant B = B(d) so that
either

|Preper(f) \ Preper(g)|  B

or
Preper(f) = Preper(g)

for any pair of rational functions f and g in C(z) of degree d.

Conjecture 1.4 would imply that a configuration of B + 1 points on the Riemann
sphere, if preperiodic for some map of degree d � 2, will almost uniquely determine
the map among all maps of the same degree. It is known that, except for maps
conjugate to z±d, the equality Preper(f) = Preper(g) is equivalent to the statement
that the measures of maximal entropy for f and g coincide; one implication is proved
in [LP] (assuming f and g are non-exceptional) and the other in [YZ, Theorem 1.5].
A complete classification of all rational maps having the same measure of maximal
entropy is still open, however, unless the maps are polynomial [BE, Bea]; see also
[LP, Ye, Pa] for results about rational maps with the same maximal measure.

As discussed in [DKY], Conjecture 1.4 is analogous to a question posed by Mazur
[Ma], proposing the existence of uniform bound – depending only on the genus g –
on the number of torsion points on a compact Riemann surface of genus g > 1 inside
its Jacobian. In fact, the special case of Conjecture 1.4 for the 1-parameter family of
Lattès maps

ft(z) =
(z2 � t)2

4z(z � 1)(z � t)
(1.2)

in degree 4, for t 2 C \ {0, 1}, was proved in [DKY]; it implied a positive answer to
Mazur’s question for a certain 2-parameter family of genus 2 Riemann surfaces. (The
uniform bound for all curves of a fixed genus was recently obtained by Kühne [K].)
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Remark 1.5. The bound B in Conjecture 1.4, if it exists, must depend on the degree
d. It is easy to find examples with growing degrees with growing numbers of common
preperiodic points. For example, the sequences of polynomials

fn(z) = z2(z � 1) · · · (z � n) and gn(z) = z(z � 1) · · · (z � n)(z � (n+ 1))

have degree n+2 with at least n+1 common preperiodic points, for all n � 1. Their
sets of preperiodic points cannot be equal because their Julia sets are not the same:
we have 0 2 J(gn) for all n � 1, because the fixed point at 0 is repelling for gn, but
0 62 J(fn) for all n, because the fixed point at 0 is attracting for fn.

1.2. Further results and proof strategy. The proof of Theorem 1.1 employs a
combination of arithmetic and analytic techniques, and we first prove a version of
Theorem 1.1 when the parameters c1 and c2 are algebraic numbers. The basic al-
gebraic observation is that the set of preperiodic points of fc is invariant under the
action of the Galois group Gal(K/K), for any number field K containing c. Finite-
ness of the intersection Preper(fc1) \ Preper(fc2), when c1 and c2 are algebraic, is an
immediate consequence of arithmetic equidistribution: large Galois orbits in the set
Preper(fc) are uniformly distributed with respect to the measure of maximal entropy
µc [BR1, FRL, CL1], while µc1 = µc2 if and only if c1 = c2 [BE]. We provide a few
simple examples in Section 2 to illustrate these ideas.

The uniform bound in Theorem 1.1 comes from controlling the rate of equidistri-
bution, not just over C but at all places of the number field K simultaneously. To
do so, we make use of an adelic energy pairing between the polynomials fc1 and fc2 .
This is a sum of integrals, one for each of the primes associated to a number field K
containing both c1 and c2, which we describe now. For any c in K and any place v of
K, we let

�c,v(z) = lim
n!1

1

2n
logmax{|fn

c (z)|v, 1}

denote the v-adic escape-rate function of f , with z in the field of v-adic numbers
Cv. This is the usual escape-rate function on C for v|1, coinciding with the Green’s
function for the complement of the filled Julia set, with logarithmic pole at 1. At
every place v, the function �c,v extends continuously and subharmonically to the
Berkovich a�ne line A1,an

v , and its Laplacian is the canonical v-adic measure µc,v for
fc [BR2, FRL]. For archimedean places v, we recover the Brolin-Lyubich measure
[Br, Ly]. The energy pairing is defined to be

hfc1 , fc2i :=
X

v2MK

[Kv : Qv]

[K : Q]

Z

A1,an
v

�c1,v dµc2,v. (1.3)

The pairing is symmetric, and each term in the sum is non-negative, vanishing if and
only if µc1,v = µc2,v [PST]. The integral thus provides a notion of distance between
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the two measures. In particular, we have

hfc1 , fc2i � 0 with equality if and only if c1 = c2.

We prove:

Theorem 1.6. There is a constant � > 0, such that

hfc1 , fc2i � �

for all c1 6= c2 2 Q.

In other words, two Julia sets cannot be too similar at all places of a given number
field. See §1.4 for comments on the magnitude of � and the constants in the following
theorem.

Theorem 1.7. There are constants ↵1,↵2, C1, C2 > 0 so that

↵1 h(c1, c2) � C1  hfc1 , fc2i  ↵2 h(c1, c2) + C2,

for all c1 6= c2 in Q, where h is the logarithmic Weil height on A2(Q).

The upper bound on hfc1 , fc2i in Theorem 1.7 is straightforward to prove, and it is
also fairly easy to obtain a weaker lower bound in terms of h(c1 � c2), the Weil height
of the di↵erence, in place of the height h(c1, c2); see Theorem 7.1. The lower bound
of Theorem 1.7 is more delicate: see Section 8.

Finally, we relate the energy pairing to the number of common preperiodic points
via a quantified version of the arithmetic equistribution theorems, building upon ideas
of Favre, Rivera-Letelier, and Fili [FRL] [Fi]:

Theorem 1.8. For all 0 < " < 1, there exists a constant C(") > 0 so that

hfc1 , fc2i 
✓
"+

C(")

N(c1, c2) � 1

◆
(h(c1, c2) + 1)

for all c1 6= c2 in Q with

N(c1, c2) := |Preper(fc1) \ Preper(fc2)| > 1.

Note that N(c1, c2) � 1 for every c1 and c2, because 1 is a fixed point for every fc.
Using standard distortion estimates in complex analysis to control the archimedean
contributions to the pairing, our proof shows that we can take

C(") ⇣ log(1/")

in Theorem 1.8.
Theorems 1.6, 1.7, and 1.8 combine to give a uniform upper bound on the number

N(c1, c2) for all c1 6= c2 in Q, thus proving Theorem 1.1 for c1 and c2 and Q. Once a
uniform bound is obtained over Q, it is a standard specialization argument to show
the same bound holds over C, as we explain in §10.2, which completes the proof of
Theorem 1.1.



COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS 5

1.3. Comparison with [DKY]. This general strategy of proof was introduced in
our earlier work [DKY], and the reader will recognize the similarities between the
statements of Theorems 1.6, 1.7, and 1.8 here and Theorems 1.6, 1.7, and 1.8 of
[DKY]. However, there are significant technical di↵erences between the proofs, and,
perhaps more importantly, the proof strategy in this article is e↵ective; we explain
how to obtain a value for B in Theorem 1.1. Regarding the technical aspects of the
proofs, in the setting of [DKY], the energy integrals at non-archimedean places could
be computed explicitly; here, we can only obtain estimates. For the computations at
the archimedean places, the local heights (escape rates of the polynomials) are not
smooth for the polynomials considered here, and the shrinking Hölder exponents (as
c ! 1) leads to the loss of uniformity in rates of convergence in the equidistribution
theorems. We make use of classical complex dynamical methods in this article such
as the Koebe 1/4-theorem; by contrast, in [DKY], we obtained the archimedean
estimates through the use of degeneration theory and comparison to a limiting non-
archimedean dynamical system associated to a function field, as carried out in [Fa]
and [DF1, DF2]. The degeneration theory might be used here as well, but at the
expense of losing the e↵ective bounds.

As in the setting of [DKY], our proofs are as much about the associated canonical
height functions ĥc on P1(Q), for fc with c 2 Q, as about preperiodic points; the bound
of Theorem 1.1 comes from the fact that ĥc(x) = 0 if and only if x is preperiodic for fc
[CS, Corollary 1.1.1]. Though we do not provide all the details, it is possible to prove
a stronger statement about points of small height: there exist uniform constants B

and b > 0 so that
���{x 2 P1(Q) : ĥc1(x) + ĥc2(x)  b}

���  B for all c1 6= c2 in Q. A

version of this statement is proved for the Lattès family (1.2) in [DKY, Theorems 1.8
and 8.1].

1.4. E↵ectiveness. We illustrate the e↵ectiveness of our method by providing ex-
plicit constants for each of the theorems stated above. The proof of Theorem 1.7
shows that we can take ↵1 = 1/192, C1 = 3/17, ↵2 = 1/2 and C2 = 7/3. The proof
of Theorem 1.8 provides C(") = 40 log(25/"). The first proof of Theorem 1.6 that we
present in §7.1 is not su�cient to provide an explicit value for the � of Theorem 1.6,
but further control on the classical (archimedean) energy pairing leads to � = 10�96

in §11.1. This exceptionally small � gives rise to the enormous bound B = 10103 in
Theorem 1.1 that was stated in Remark 1.2. Few examples of hfc1 , fc2i have been
computed explicitly; it was recently shown that hf0, f�1i ⇡ 0.168 [AP, §8], and it
would be interesting to see other values.

1.5. Height pairings. The energy pairing hfc1 , fc2i that we work with is a special
case of a more general construction, the Arakelov-Zhang pairing, an arithmetic inter-
section number between adelically metrized line bundles; see [Zh], [PST], and [CL2].
In this case, each fc with c in a number field K gives rise to a family of metrics on



6 LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

OP1(1), one for each place v of K, with non-negative curvature distribution equal to
the canonical measure µc,v on the Berkovich projective line P1,an

v . Each such adelic
metric then gives rise to a height function ĥc on P1(Q), recovering the dynamical
canonical height for fc of Call and Silverman [CS].

There are other natural height pairings that one could consider for c1, c2 2 Q. For
example, Kawaguchi and Silverman study

[f, g]KS := sup
x2P1(Q)

���ĥf (x) � ĥg(x)
���

for any pair of maps f, g : P1 ! P1 defined over Q [KS]. As a consequence of
arithmetic equidistribution, we see that

hf, gi  [f, g]KS. (1.4)

Indeed, along any infinite (non-repeating) sequence xn 2 P1(Q) for which ĥf (xn) ! 0,
we have by equidistribution that ĥg(xn) ! hf, gi [PST, Theorem 1]. Such sequences
always exist (the preperiodic points of f will have height 0), so we obtain (1.4). We
do not know if a similar inequality always holds in the reverse direction for any pair
of maps. However, as a corollary of Theorem 1.7, we have

Theorem 1.9. There exist constants ↵, C > 0 so that

↵[fc1 , fc2 ]KS � C  hfc1 , fc2i  [fc1 , fc2 ]KS

for all c1, c2 2 Q.

Proof. From [KS, Theorem 1], we have [fc1 , fc2 ]KS  1(h(c1) + h(c2)) + 2 for con-
stants 1,2 depending only on the degrees of the maps, and the definition of the
Weil height shows that h(c1) + h(c2)  2h(c1, c2). The lower bound of the theorem
then follows immediately from the lower bound in Theorem 1.7. ⇤

A version of Theorem 1.9 also holds for the Lattès family ft(z) = (z2 � t)2/(4z(z�
1)(z � t)), with t1, t2 2 Q \ {0, 1}, as a consequence of [DKY, Theorem 1.5].

Question 1.10. Do we have

hf, gi ⇣ [f, g]KS

for all maps f, g : P1 ! P1, defined over Q, with constants depending only on the
degrees of f and g?

1.6. Outline. Section 2 illustrates some basic examples towards understanding the
content of Theorem 1.1. Local estimates on the pairing are carried out in Sections
3 – 6. In Section 7, we prove Theorem 1.6, and in Section 8 we prove Theorem
1.7. Theorem 1.8 is proved via quantitative equidistribution theory in Section 9, and
Section 10 establishes our main result, Theorem 1.1. Finally, in Section 11 we make
all bounds e↵ective.
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2. Basic examples

Let fc(z) = z2 + c, for c 2 C. Note that

|Preper(fc1) \ Preper(fc2)| � 1

for every pair, because the sets always contain the point at 1. Here we provide a few
simple examples, illustrating some of the ideas that appear in our proof of Theorem
1.1. Recall that the filled Julia set of fc is

K(fc) =

⇢
z 2 C : sup

n�1
|fn

c (z)| < 1
�
,

and the Julia set satisfies J(fc) = @K(fc).

2.1. Disjoint filled Julia sets. When two quadratic polynomials fc1 and fc2 have
disjoint filled Julia sets, they have no common preperiodic points other than 1.
Sometimes the filled Julia sets have nontrivial intersection in C, but – for algebraic
parameters – it may be that the v-adic filled Julia sets are disjoint at some place v. In
that case, again, there can be no common preperiodic points other than 1. Examples
are shown in Figures 2.1 and 2.2. As we shall explain in the following sections, the
filled Julia set of fc at any non-archimedean place v (defined as the set of points with
bounded orbit in the Berkovich a�ne line A1

v, over the field Cv) with |c|v > 1 is a

subset of {z 2 A1
v : |z|v = |c|1/2v }, while it is the closed unit disk whenever |c|v  1.

2.2. Galois orbits. Let f(z) = z2 and g(z) = z2 � 1; see Figure 2.3. Here we show
that

Preper(f) \ Preper(g) = {0, 1,�1,1}.
We know that the preperiodic points of f are the roots of unity, together with 0 and
1. The preperiodic points of any fc are roots of the polynomial equations given by
fn
c (z) = fm

c (z) for any n > m � 0; so the set of preperiodic points is invariant under
the action of Gal(K/K), whenever c lies in a number field K. In this case, we can
take K = Q. So we need to show that for all n � 3, at least one of the primitive n-th
roots of unity will have infinite forward orbit under the action of g.
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Figure 2.1. The filled Julia sets of f(z) = z2 � 1 (left) and g(z) = z2 +2
(right) are disjoint; they have no common preperiodic points except for 1.

Figure 2.2. The filled Julia sets of f(z) = z2�2 (left) and g(z) = z2�2.1
(right) have significant overlap in C, but there are no common preperiodic
points except for 1, because the filled Julia sets are disjoint at the primes
2 and 5.

The proof is elementary and has two steps:

(1) Show that the subset of unit circle

S = {e2⇡it : t 2 [0, 1/30] [ [1/12, 5/12]}

lies in the Fatou set for g; and
(2) for every n � 3, the set S contains at least one primitive n-th root of unity.

Step (1) follows from a series of simple estimates, examining how g acts on arcs of the
unit circle. Step (2) can be checked by hand by observing that for each 12 < n < 30,
there is some k with (k, n) = 1 and k/n 2 [1/12, 5/12].

2.3. The Julia sets are distinct. It is well known that, for any polynomial, all but
finitely many of the periodic points of f will be contained in its Julia set, J(f) is the
accumulation set of the (pre)periodic points of f , and all of the preperiodic points
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Figure 2.3. Filled Julia sets of f(z) = z2 and g(z) = z2 � 1, superim-
posed. At right, a zoom of the intersection of their boundaries, suggesting a
possibly infinite overlap of Julia sets.

(other than 1) form a subset of the filled Julia set. Therefore

Preper(fc1) = Preper(fc2) =) J(fc1) = J(fc2)

for any c1, c2 2 C. But it is also known that the Julia set determines c in this family
fc(z) = z2 + c [BE, Supplement to Theorem 1], providing the equivalence stated in
(1.1); see also [Bea, Theorem 1].

3. archimedean estimates

In this section, we will carry out some archimedean estimates needed for the proofs
of our main theorems. We work with c 2 C and the Euclidean norm | · |. We let �c(z)
denote the escape-rate function of fc(z) = z2 + c, defined by

�c(z) = lim
n!1

1

2n
log+ |fn

c (z)|,

where log+ = max{log, 0}, and let µc denote the corresponding equilibrium measure
supported on the Julia set Jc. Where possible, we provide explicit constants in our
estimates, even if they are not optimal.

3.1. Distortion. We first recall some basic distortion statements for conformal maps.

Theorem 3.1 (Koebe 1/4 Theorem). Suppose f : D ! C is univalent with f(0) = 0
and f 0(0) = 1. Then f(D) � D(0, 1/4).
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Theorem 3.2. [BH, Corollary 3.3] Let UR = Ĉ \D(0, R) and suppose f : UR ! Ĉ is
univalent and satisfies

f(z) = z +
X

n�1

an
zn

near 1. Then we have

f(UR) � U2R.

Applying these theorems to the Böttcher coordinate �c near 1 for fc(z) = z2 + c
and to the uniformizing map � for the complement of the Mandelbrot set M (see [Mi,
§9] or [CG, Chapter VIII.3-4] for more information), we get some simple inequalities.

Proposition 3.3. For all c with |c| > 2 we have

log |c| � log 2  �c(c)  log |c| + log 2.

Proof. Let �(c) = �c(c) be the uniformizing map from Ĉ \ M to Ĉ \ D so that
�c(c) = log |�(c)|. For the lower bound on �c(c), applying Theorem 3.2 to ��1 and
sets UR with R � 1 gives

|c|  2 e�c(c)

for all c 62 M, so that

�c(c) � log |c| � log 2.

For the upper bound on �c(c), apply Theorem 3.2 to � and sets UR, R > 2. Then
�(UR) � U2R implies that

e�c(c)  2|c|,
for |c| = R > 2. ⇤

We can do similar things in the dynamical plane.

Proposition 3.4. For each c with |c| > 2 and every z with |z| > 2e�c(0) (so in
particular for all |z| > 23/2|c|1/2), we have

log |z| � log 2  �c(z)  log |z| + log 2.

Proof. Let R0 = e�c(0). Apply Theorem 3.2 to ��1
c and sets UR for R � R0. Then for

z 2 ��1
c (UR0) and R = e�c(z), we find that

|z|  2 e�c(z).

In particular, the estimate holds for all |z| > 2e�c(0) because ��1
c (UR0) � U2R0 . This

gives the lower bound of the proposition.
For the upper bound, set R0 = 2e�c(0) = 2R0, so that �c is univalent on UR0 .

Applying Theorem 3.2 to �c on sets UR for R � R0, we have

e�c(z)  2|z|
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for each |z| = R > R0. Therefore,

�c(z)  log |z| + log 2

for all |z| > 2e�c(0).
Finally, recall that �c(0)  1

2 log |c| + 1
2 log 2 for all |c| > 2, from Proposition 3.3.

Thus,

23/2|c|1/2 = 2e
1
2 log |c|+ 1

2 log 2 � 2e�c(0)

for all |c| > 2. ⇤

3.2. Controlling escape rates from below. We will need both upper and lower
bounds on the escape rate �c near the Julia set Jc of fc(z) = z2 + c. We begin with
an elementary observation.

Lemma 3.5. Fix any c with |c| � 25. Let ±b be the two zeroes of fc. Then

µc(D(b, 1)) = µc(D(�b, 1)) = 1/2

and

�c(z) � 1

4
log |c|

for all z 62 D(b, 1) [ D(�b, 1).

Proof. First observe that b = i
p
c, so that |b| = |c|1/2. Suppose b + t lies on the

boundary of D(b, 1), so that |t| = 1. Then

fc(b+ t) = 2bt+ t2 = t(2b+ t)

has absolute value � 2|c|1/2�1 > |c|1/2+1 for |c| � 25. In particular, fc sends D(b, 1)
with degree 1 over the union D(b, 1) [ D(�b, 1). Similarly for D(�b, 1), proving the
first claim about the measure of each disk. As the Julia set of fc is contained in these
two disks, we know that �c is harmonic on the complement of their union. Under one
further iterate, we have

|f 2
c (b+ t)| � 4|c| � 4|c|1/2 + 1 � |c| = 3|c| � 4|c|1/2 + 1 � 2|c|

because |c| � 25. From Proposition 3.4, we conclude that

�c(b+ t) =
�c(f 2

c (b+ t))

4
� 1

4
(log(2|c|) � log 2) =

1

4
log |c|

and similarly for �c(�b+t) with |t| = 1. As �c is harmonic on C\(D(b, 1)[D(�b, 1)),
this proves the lemma. ⇤

We now extend the statement of Lemma 3.5 to two further preimages of 0 under
fc.
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Lemma 3.6. For n = 1, 2, 3, and for each c 2 C, we let Dn(c) be the union of the
2n disks of radius "n = |2c|�(n�1)/2 centered at the solutions z to fn

c (z) = 0. For each
|c| � 25, the 2n disks are disjoint, each has µc-measure 1/2n, and

�c(z) � 1

2n+1
log |c|

for all z 62 Dn(c) and n = 1, 2, 3.

Proof. Lemma 3.5 provides the result for n = 1 and for any |c| � 25. Note that the
two disks of radius 2"1 = 2 around the solutions to f(z) = 0 are disjoint.

For n = 2, 3, suppose that z = w is a solution to fn
c (z) = 0. Note that

�c(w) =
1

2n+1
�c(c)  1

8
�c(c)  1

8
(log |c| + log 2) <

1

4
log |c|

by Proposition 3.3. Since |c| � 25, it follows that the point w must lie in the set
D1(c) by Lemma 3.5. In particular, this implies that |w| > |c|1/2 � 1, so that

|fc(w + t) � fc(w)| = |t(2w + t)|

� 1

|2c|(n�1)/2

�
2|c|1/2 � 2 � |2c|�(n�1)/2

�

=
1

|2c|(n�2)/2

✓p
2

✓
1 � 1

|c|1/2

◆
� 1

|2c|n/2

◆
,

for all t with |t| = "n = |2c|�(n�1)/2 and each w satisfying fn(w) = 0 with n = 2 or 3.
As |c| � 25, we have

p
2

✓
1 � 1

|c|1/2

◆
� 1

|2c|n/2 � 4
p
2

5
� 1

50
> 1

for n = 2, 3, and we conclude that

|fc(w + t) � fc(w)| >
1

|2c|(n�2)/2
= "n�1 (3.1)

for |t| = "n and fn(w) = 0. By a similar argument, we also have

|fc(w + t) � fc(w)|  2"n�1 (3.2)

for |t| = "n and fn(w) = 0, n = 2, 3.
The estimates (3.1) and (3.2) for n = 2 imply that the four disks of radius "2 are

disjoint: two solutions to f 2(z) = 0 lie in each component of D1(c), and the disks
around each of these are mapped into disjoint disks of radius 2 around ±i

p
c, covering

the two components of D1(c). It follows that the µc-measure of each component of
D2(c) is exactly 1

4 . Moreover, Lemma 3.5 implies that �c(fc(w + t)) � 1
4 log |c| for

|t| = "2 and f 2(w) = 0, so that �c(w + t) � 1
8 log |c|. As �c is a harmonic function

outside of the Julia set, we therefore have

�c(z) � 1

8
log |c|
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for all z 62 D2(c).
It remains only to show that the four disks centered at the solutions to f 2(z) = 0

of radius 2"2 =
p
2/|c|1/2 are disjoint, for this will imply that the 8 disks of radius "3

(centered at the solutions to f 3(z) = 0) must also be disjoint, from (3.1) and (3.2)
for n = 3. It also immediately follows that each of the 8 components of D3(c) has
µc-measure equal to 1

8 , and moreover that

�(w + t) � 1

16
log |c|

for f 3(w) = 0 and |t| = "3, so that

�c(z) � 1

16
log |c|

for all z 62 D3.
This disjointness is clear for |c| su�ciently large. Indeed, the points w satisfying

f 2
c (w) = 0 have the form ±�(c) and ±�0(c) where

�����(c) �
✓
i
p
c+

1

2
+

i

8
p
c

◆���� =

�����

1X

j=3

Cj
1
2

· 1

(i
p
c)j�1

����� 
5

4|c| , (3.3)

with binomial coe�cients

Cj
1/2 =

✓
1/2
j

◆
,

and similarly �����
0(c) �

✓
i
p
c � 1

2
+

i

8
p
c

◆���� 
5

4|c| .

In particular, the distance between the two closest such roots satisfies

|�(c) � �0(c)| � 1 � 5

2|c| � 3

4
> 2 ·

p
2/|c|1/2 = 4"2 (3.4)

for |c| � 25. This completes the proof. ⇤

3.3. Controlling escape rates from above. We now provide an upper bound,
applying the Distortion Theorems stated above.

Lemma 3.7. Fix any c with |c| � 25. For each n � 1 and for all z 2 C with

dist(z, Jc) <
1

5 · 3n|c|(n�2)/2

we have

�c(z)  1

2n
(log |c| + log 2) <

1

2n�1
log |c|.
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Proof. The two inverse branches of fc are univalent onD(0, |c|). Fix any point z0 in Jc.
From Lemma 3.5, we know that |z0|  |c|1/2+1, so that fc has two univalent branches
of the inverse defined on the disk D(z0, |c|� |c|1/2�1) and |(fn

c )
0(z0)|  2n(|c|1/2+1)n.

Applying Theorem 3.1 to the inverse branches of each iterate on these disks about
points z0 2 Jc, we find

f�n
c D(z0, |c| � |c|1/2 � 1) � D

✓
f�n
c (z0),

|c| � |c|1/2 � 1

4 · 2n(|c|1/2 + 1)n

◆
.

From Proposition 3.4 (and the maximum principle for �c), we know that �c(z) 
log |c| + log 2 on D(0, c), and therefore

�c(z)  1

2n
(log |c| + log 2)

on each of these disks of radius (|c| � |c|1/2 � 1)/(4 · 2n(|c|1/2 + 1)n) about points in
the Julia set. Finally, we observe that

|c| � |c|1/2 � 1

4 · 2n(|c|1/2 + 1)n
� |c|(1 � |c|�1/2 � |c|�1)

4 · 2n|c|n/2(1 + |c|�1/2)n
� |c|(19/25)

4 · 2n|c|n/2(6/5)n � 1

5 · 3n |c|(n�2)/2

for all |c| � 25. ⇤

Proposition 3.8. Fix L � 27. For all 0 < r < 1/4 and for all c 2 C, we have

�c(z)  r logmax{|c|, L}

for every z in a neighborhood of radius

1

(max{|c|, L})3 log(1/r)

around the filled Julia set Kc.

Proof. First assume that |c| > L. Note that Jc = Kc in this case. Lemma 3.7 states
that

�c(z)  1

2n�1
log |c|

whenever dist(z, Jc) < (5 · 3n|c|(n�2)/2)�1, for any n � 1. For L � 27 = 33, we have
5 · 3n = 15 · 3n�1 < L1+(n�1)/3 = L(n+2)/3. Therefore,

5 · 3n|c|(n�2)/2  L(n+2)/3|c|(n�2)/2 < |c|5n/6.

For each n � 3, we set rn = 1/2n�1, so that n = log(1/rn)/(log 2) + 1. Choose any
monotone decreasing function  of r 2 (0, 1/4] so that

(rn) � 5(n+ 1)/6 =
5

6

1

log 2
log(1/rn) +

5

3
⇡ 1.2 log(1/rn) +

5

3

for all n � 3. Then |c|�(rn)  |c|�5(n+1)/6 < (5·3n|c|(n�1)/2)�1, so that any z satisfying
dist(z, Jc) < |c|�(rn) will also satisfy �c(z)  1

2n log |c| = rn+1 log |c|, for all n � 3, by
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Lemma 3.7. In particular, we can take (r) = 3 log(1/r). For any r < 1/4, we choose
n � 3 so that rn+1  r < rn; then (r) > (rn), so dist(z, Jc)  |c|�(r) implies that

�c(z)  rn+1 log |c|  r log |c|.

This proves the proposition for |c| > L.
Now assume |c|  L. For |c| > 2, Proposition 3.4 implies that if |z| > 23/2|c|1/2,

then

�c(z)  log |z| + log 2.

Consider the circle of radius L. For all |c|  L, we have 23/2|c|1/2  23/2L1/2 < L, so
that

�c(z)  logL+ log 2, (3.5)

for all 2 < |c|  L and for all |z| = L. But then, fixing z, and using the fact that �c(z)
is subharmonic in c, we obtain the inequality (3.5) for all |c|  L and all |z| = L.

Furthermore, for all |c| > 2 and |z| � 23/2|c|1/2, we have the lower bound that

�c(z) � log |z| � log 2 � 1

2
log(2|c|) > 0

so that the Julia set is contained in a disk of radius 23/2|c|1/2  23/2L1/2. On the
other hand, for |c|  2, it is easy to compute that the filled Julia set lies in a closed
disk of radius 2, so we have

Kc ⇢ D(0, 23/2L1/2)

for all |c|  L. In particular, the distance between Kc and the circle of radius L is at
least

L � 23/2L1/2 > 12.

For a fixed positive integer n and |c|  L, suppose z is any point within distance
12/(2L)n of Kc. Let z0 2 Kc denote the closest point to z. As |f 0

c(z)| = |2z|  2L for
all |z|  L, we find that

|fn
c (z) � fn

c (z0)|  (2L)n|z � z0| < 12.

In other words, fn
c (z) lies within the circle of radius L, so that

�c(z) =
1

2n
�c(f

n
c (z))  1

2n
(logL+ log 2)  1

2n�1
logL

from (3.5), for all z within distance 12/(2L)n of the set Kc, and for all |c|  L.
Note that 28/12 < 27  L and 24 < L, and so

12/(2L)n � 1/(2n�8Ln+1) � 1/L(n�8)/4+n+1 = 1/L
5
4n�1

For each n � 3, we set rn = 1/2n�1 as before, so that n = log(1/rn)/ log 2 + 1. Then

5

4
(n+ 1) � 1 =

5

4 log 2
log(1/rn) +

3

2
⇡ 1.8 log(1/rn) +

3

2
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As above, we set (r) = 3 log(1/r) for r 2 (0, 1/4]. For any r < 1/4, we choose
n � 3 so that rn+1  r < rn; then (r) > (rn) >

5
4(n + 1) � 1. Consequently, for

all z within distance 1/L3 log(1/r) of the filled Julia set Kc, we have that z lies within
distance 12/(2L)n+1 of Kc, and therefore

�c(z)  1

2n
logL < r logL.

This completes the proof of the proposition. ⇤

4. Bounds on the archimedean pairing

In this section, we provide estimates on the archimedean contributions to the pair-
ing hfc1 , fc2i, to obtain a local version of Theorem 1.7. As in the previous section, we
work with c 2 C, Euclidean absolute value | · | and archimedean escape-rate function
�c. We let µc = 1

2⇡��c denote the equilibrium measure supported on the Julia set
Jc. Where possible, we provide explicit constants, even if they are not optimal, for
our estimates of the Euclidean energy

E1(c1, c2) :=

Z
�c1 dµc2 =

Z
�c2 dµc1 .

Theorem 4.1. There exist constants C,C 0 > 0 so that

1

16
log+ |c1 � c2| � C  E1(c1, c2)  1

2
log+ max{|c1|, |c2|} + C 0

for all c1, c2 2 C. Furthermore, there exists L > 0 so that if r := max{|c1|, |c2|} � L
and

3

r1/2
 |c1 � c2|,

then
1

64
logmax{|c1|, |c2|}  E1(c1, c2).

Remark 4.2. The proof shows that we can take L = 1000, C = 1
16 log 2L < 1/2, and

C 0 = log 8 in Theorem 4.1.

4.1. Proof of Theorem 4.1. Throughout this proof, we will assume for notational
convenience that

r = |c1| � |c2|.
We proceed by cases, determined by just how close the two parameters are. In each
case, we estimate the value of �c1 on the Julia set Jc2 . We prove the second statement
first, providing a lower bound on E1 when c1 and c2 are not too close, assuming
r = |c1| is su�ciently large. Then we return to the first statement of the theorem.
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Case 0. Suppose |c2|  25. For |c2|  2, it is straightforward to compute that the
filled Julia set satisfies Kc2 ⇢ D(0, 2). For 2 < |c2|  25, Proposition 3.4 provides a
lower bound of

�c2(z) � log |z| � log 2 � 1

2
log(2|c2|) > 0

for |z| � 23/2|c2|1/2. Therefore, the Julia set of fc2 is contained in a disk of radius
23/2|c2|1/2  23/25. Thus, for all |c2|  25 and |c1| > (23/2 · 5 + 1)2 ⇡ 229.3, Lemma
3.5 implies that �c1(z) � 1

4 log |c1| for all z 2 Jc2 . This gives
Z

�c1 dµc2 � 1

4
log |c1|

for |c2|  25 and |c1| � 230.

In the following three cases, we assume that r = |c1| � |c2| � 25. The cases are
separated according to the distance |pc1 � p

c2| between the square roots of c1 and
c2. Observe that

|
p
c1 �

p
c2| <

3

2|c1|
=) |c1 � c2| <

3

2|c1|
(2|c1|1/2)  3

|c1|1/2
,

so these three cases will complete the proof of the second statement of the theorem.

Case 1. Suppose that for any choice of square roots, we have |pc1 � p
c2| � 2. By

Lemma 3.5 we have �c1(z) � 1
4 log |c1| for all z 2 Jc2 , so
Z

�c1(z) dµc2 � 1

4
log |c1|

for |c1| � |c2| � 25.
Case 2. Suppose that there is a choice of square roots for which 2

r1/2
 |pc1 �p

c2| < 2. With these choices of square roots, the solutions of f 2
c (z) = 0 are

�(c) = i
p
c+

1

2
+

i

8
p
c
+O

✓
1

|c|

◆

and

�0(c) = i
p
c � 1

2
+

i

8
p
c
+O

✓
1

|c|

◆
,

along with ��(c) and ��0(c). By Lemma 3.6, if the disk D(�(c2), 1/|2c2|1/2) does
not intersect any disk of radius 1/|2c1|1/2 about a solution of f 2

c1(z) = 0, then for all
z 2 D(�(c2), 1/|2c2|1/2) we have

�c1(z) � 1

8
log |c1|,
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and since the same is true for the disk centered at ��(c2) by ± invariance, the
inequality is satisfied for a set of µc2-measure 1/2. Therefore,

Z
�c1 dµc2 � 1

16
log |c1|.

On the other hand, as |pc1 � p
c2| < 2, if D(�(c2), 1/|2c2|1/2) intersects any disk of

radius 1/|2c1|1/2 about a solution of f 2
c1(z) = 0, that disk must be centered at either

�(c1) or �0(c1), since |�(c2)+�(c1)| � |c1|1/2 and similarly for �(c2)+�0(c1). We have

�(c1) � �(c2) = i(
p
c1 �

p
c2) +

i

8

✓
1

p
c1

� 1
p
c2

◆
+O

✓
1

|c2|

◆
,

so that using the assumed bounds, we have

|�(c1) � �(c2)| � 2

|c1|1/2
� 1

8

✓
4

|c1c2|1/2

◆
+O

✓
1

|c2|

◆
=

2

|c1|1/2
+O

✓
1

|c2|

◆
,

using for the middle term the crude bound |c1�c2|  4|c1|1/2 implied by |pc1�
p
c2| <

2. Then, exactly as in (3.3) in the proof of Lemma 3.6, we can take

|�(c1) � �(c2)| � 2

|c1|1/2
� 5

2

1

|c2|
,

because |c1| � |c2| � 25. Since |c2|1/2 > |c1|1/2�2, taking |c1| � 230 is enough to guar-
antee this distance will be larger than 2(1/|2c2|1/2), and the disks D(�(c1), 1/|2c1|1/2)
andD(�(c2), 1/|2c2|1/2) will be disjoint. Similarly we deduce that the disksD(�0(c1), 1/|2c1|1/2)
and D(�0(c2), 1/|2c2|1/2) are disjoint.

But observe also that if

|�(c2) � �0(c1)| <
2

|2c2|1/2
=

p
2

|c2|1/2
,

then �0(c2) must be far from both �0(c1) and �(c1), because

|�0(c2) � �(c1)| = |�0(c2) � �(c2) + �(c2) � �0(c1) + �0(c1) � �(c1)|

� |�0(c2) � �(c2) + �0(c1) � �(c1)| �
p
2

|c2|1/2

= 2 �
p
2

|c2|1/2
� 4 · 5

4

1

|c2|
.

We therefore have, for r = |c1| � 230 and square roots satisfying 2
r1/2

 |pc1�
p
c2| <

2, at least one of the four disks of radius 1/|2c2|1/2 around a solution to f 2
c2(z) = 0 is

disjoint from the four disks of radius 1/|2c1|1/2 about the four solutions of f 2
c1(z) = 0.

By the ± symmetry, two of these disks must be disjoint. As these two disks carry
1/2 of the measure µc2 , we have by Lemma 3.6 that

Z
�c1 dµc2 � 1

16
log |c1|.
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Case 3. Suppose there is a choice of square roots for which

3

2r
 |

p
c1 �

p
c2| <

2

r1/2
.

We will argue precisely as in Case 2, but with the third preimages of 0 rather than
second. Two solutions of f 3

c (z) = 0 have the form

s(c) := i
p
c+

1

2
� i

8
p
c
+

1

8c
+O

✓
1

|c|3/2

◆

and

s0(c) := i
p
c+

1

2
+

3i

8
p
c

� 1

8c
+O

✓
1

|c|3/2

◆
.

From the Taylor expansion, and the fact that |c| > 100, the above big-O’s satisfy the
following estimate, to be proved below:

����s(c) �
✓
i
p
c+

1

2
� i

8
p
c
+

1

8c

◆����  5
1

|c| 32
(4.1)

and similarly for s0(c). Notice that under the action of fc, we have s(c) 7! �(c) and
s0(c) 7! �0(c), and that both s(c) and s0(c) are distance at least 1/2 from all other
solutions of f 3

c (z) (except each other).
If the disk of radius 1/|2c2| about s(c2) intersects any disk of radius 1/|2c1| about a

solution of f 3
c1(z) = 0, then that disk must be centered at either s(c1) or s0(c1), because

of the form of the power series expansions of the various third preimages of 0. If this
disk D(s(c2), 1/|2c2|) is disjoint from both D(s(c1), 1/|2c1|) and D(s0(c1), 1/|2c1|),
then from the ± symmetry and Lemma 3.6, we have

Z
�c1 dµc2 � 1

4 · 16 log |c1| =
1

64
log |c1|.

Now, we have by our assumed bounds that |pc1 � p
c2| < 2|c1|�1/2, so that

|c1 � c2| = |(
p
c1 �

p
c2)(

p
c1 +

p
c2)| <

4|c1|1/2

|c1|1/2
= 4,

and therefore,

|s(c1) � s(c2)| � 3

2|c1|
� 2

8|c2|3/2
� 10

|c2|
3
2

>
1

|c2|

for |c1| � 1000. So the disks D(s(c1), 1/|2c1|) and D(s(c2), 1/|2c2|) are disjoint. But
if

|s0(c1) � s(c2)| <
1

|c2|
,
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then

|s(c1) � s0(c2)| = |s(c1) � s0(c1) + s0(c1) � s(c2) + s(c2) � s0(c2)|

� |s(c1) � s0(c1) + s(c2) � s0(c2)| � 1

|c2|

�
����
�i

2

✓
1

p
c1

+
1

p
c2

◆
+ 2O

✓
1

|c2|3/2

◆�����
1

|c2|

=

����
�i

2

✓p
c1 +

p
c2p

c1c2

◆
+ 2O

✓
1

|c2|3/2

◆�����
1

|c2|

�
����
�i

2

✓p
c1 +

p
c2p

c1c2

◆�����
10

|c2|
3
2

� 1

|c2|

� 1

2|c1|1/2
>

1

|c2|
for |c1| � 1000. We conclude in this case that the disk D(s0(c2), 1/|2c2|) is disjoint
from the eight disks of radius 1/|2c1| about solutions of f 3

c1(z) = 0, and hence (again
using symmetry and Lemma 3.6) we have

Z
�c1 dµc2 � 1

64
log |c1|.

Proof of estimate (4.1). From the estimate (3.3), we have

� = i
p
c � 1

2
+

i

8
p
c
+ a

with |a|  5/4|c| whenever |c| � 25. Furthermore, let us assume that

s =
p

�c+ � = i
p
c

 
1 +

1

i
p
c
+

1

2c
+

1

8i
p
c
3 � a

c

!1/2

.

For convenience, we set

b =

 
1 +

1

i
p
c
+

1

2c
+

1

8i
p
c
3 � a

c

!1/2

and e =
1

i
p
c
+

1

2c
+

1

8i
p
c
3 � a

c

and then one has

b = (1 + e)1/2 = 1 +
1

2
e � 1

8
e2 +

1

16
e3 +

X

n�4

Cn
1/2e

n (4.2)

where Cn
1/2 are the binomial coe�cients. In the following, we assume that |c| � 100,

so that e can be estimated as |e|  11
10

1p
|c|
. Consequently as |Cn

1/2| < 1, we have

�����
X

n�4

Cn
1/2e

n

�����  1.7
1

|c|2 and
1

2

�����e �
 

1

i
p
c
+

1

2c
+

1

8i
p
c
3

!����� =
���
a

2c

��� 
5

8|c|2 ,
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and moreover

1

8

�����e
2 �

 
�1

c
+

1

i
p
c
3

!����� 
1

4
|c|2 and

1

16

�����e
3 �

 
� 1

i
p
c
3

!����� 
1

4|c|2 .

Finally, we get an estimate on b using the expansion (4.2) and therefore the estimate
(4.1) on s since s = i

p
c · b. This completes the proof of (4.1).

We are now ready to prove the first statement of the theorem. Choose any L �
1000. If |c1 � c2|  2L, then the lower bound on E1 holds trivially with the constant
1
16 log 2L. In particular, it holds whenever max{|c1|, |c2|}  L.
Now suppose that |c1 � c2| � max{|c1|, |c2|} > L. Then the hypotheses of either

Case 0 or 1 hold, and we have

1

8
log+ |c1 � c2|  1

4
log |c1| 

Z
�c1(z) dµc2 ,

as needed. On the other hand, if max{|c1|, |c2|} > L and 2L < |c1�c2| < max{|c1|, |c2|},
then the hypotheses of either Case 0, 1, or 2 hold, and we have

1

16
log+ |c1 � c2|  1

16
log+ max{|c1|, |c2|} 

Z
�c1 dµc2 .

Thus, we have proved the lower bound in the first statement of the theorem,

1

16
log+ |c1 � c2| � C 

Z
�c1 dµc2

for all c1, c2 2 C, with C = 1
16 log 2L.

To prove the upper bound, suppose first that |c1| = max{|c1|, |c2|} > 2. For |c2| � 2,
by Proposition 3.4, the Julia set of fc2 is contained in the disk D(0, 23/2|c2|1/2). For
|c2|  2, we have Jc2 ⇢ D(0, 2). By Proposition 3.4, we have by the Maximum
Principle that

�c1(z)  3

2
log 2 +

1

2
log |c1| + log 2 (4.3)

for all z 2 D(0, 23/2|c1|1/2) (which contains Jc2).
On the other hand, for |c1| = max{|c1|, |c2|}  2, we use the fact that �c1(z) is

subharmonic in both z and c1, so that the inequality (4.3) holds on the circle {|z| = 4},
replacing |c1| with 2, for all |c1|  2.

Applying this inequality to z 2 Jc2 we see that
Z

�c1 dµc2  1

2
log+ max{|c1|, |c2|} + log 8

for all c1, c2 2 C. This completes the proof of Theorem 4.1.
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5. Nonarchimedean bounds for prime p 6= 2

Let c1 6= c2 be two elements of Q. Fix a number field K containing c1 and c2, and
fix a non-archimedean place v of K which does not lie over the prime p = 2. Let Kv

denote the completion of K with respect to | · |v, and let Cv denote the completion of
an algebraic closure of K. In this section, we provide estimates on the local energy

Ev :=

Z
�c1,v dµ2,v =

Z
�c2,v dµ1,v.

Because the place v is fixed throughout this section, we will drop the dependence on
v in the absolute value | · |v, denote the local Julia set of fc (in the Berkovich a�ne
line A1,an

v defined over Cv) by Jc, its escape rate by �c, and the equilibrium measure
by µc.

Theorem 5.1. Fix a number field K and place v of K that does not divide the prime
p = 2. For all c1, c2 2 K, we have

1

4
log+ |c1 � c2|  Ev  1

2
log+ max{|c1|, |c2|}.

Furthermore, if r := |c1| = |c2| > 1 and

|c1 � c2| >
1

r1/2
,

then

Ev � 1

16
log r.

We also prove an estimate on �c from above, at points near the v-adic Julia set of
fc, that will be needed for the proof of Theorem 1.8.

5.1. Structure of the Julia set. We work with the dynamics of fc on the Berkovich
a�ne line A1,an

v , associated to the complete and algebraically closed field Cv, and we
denote by ⇣x,r the Type II point corresponding to the disk of radius r 2 Q>0 about
x. We refer to [Ben, Chapter 8] for more information about the Julia set on the
Berkovich a�ne line, and to the article [BBP] for more information about the Julia
sets of quadratic polynomials.

For |c|  1, the map fc has good reduction, so that Jc = ⇣0,1 is the Gauss point and
�c(z) = log+ |z|. For |c| > 1, the Julia set of fc is a Cantor set of Type I points, lying
in the union of the two open disks D(±b, |c|1/2) with fc(±b) = 0. In particular, all
points z 2 Jc,v will satisfy |z| = |c|1/2. For any point z with absolute value |z| > |c|1/2,
we have |fn(z)| = |z|2n for all n � 1, so that

�c(z) = log |z| for |z| > |c|1/2 (5.1)

and

�c(z)  1

2
log |c| for |z|  |c|1/2. (5.2)
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Taking one further preimage of 0, we may choose � and �0 so that

fc(�) = b, fc(�
0) = �b, |� � b| = |�0 � b| = |� � �0| = 1, (5.3)

and the Julia set will lie in the union of the four disks D(±�, 1) and D(±�0, 1). See
Figure 5.1.

0
b

<latexit sha1_base64="xeCBaIPiSfuz3+mS/IjgUhjg5JA=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdWGgjBm0sEzAXSJYwOzmbjJmdXWZmhbDkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCRLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DRWnkmKdxjyWrYAo5ExgXTPNsZVIJFHAsRkMryZ58w6lYrG40aME/Yj0BQsZJdpYtaBbKLoldyrnL3hzKF682+fJ26dd7RY+Or2YphEKTTlRqu25ifYzIjWjHMd2J1WYEDokfWwbFCRC5WfTQcfOkXF6ThhL84R2pu7PjoxESo2iwFRGRA/UYjYx/8vaqQ7P/IyJJNUo6OyjMOWOjp3J1k6PSaSajwwQKpmZ1aEDIgnV5ja2OYK3uPJfaJRL3kmpXHOLlUuYKQ8HcAjH4MEpVOAaqlAHCgj38AhP1q31YD1bL7PSnDXv2Ydfsl6/ASXFkCc=</latexit>

�b
<latexit sha1_base64="FWAiH8c0/OxAdOgAzQ0ttu3Z2zQ=">AAAB6XicbVC7TgMxENwLryS8ApQ0FhESDdFdKKCMoKEMiDxEcop8ji+xYvtOtg8RnfIHNBQgoOUD+Bc6vgacRwEJI600mtnV7k4Qc6aN6345maXlldW1bC6/vrG5tV3Y2a3rKFGE1kjEI9UMsKacSVozzHDajBXFIuC0EQwuxn7jjirNInljhjH1Be5JFjKCjZWuj4NOoeiW3AnQIvFmpFjJxa+3H/ff1U7hs92NSCKoNIRjrVueGxs/xcowwuko3040jTEZ4B5tWSqxoNpPJ5eO0KFVuiiMlC1p0ET9PZFiofVQBLZTYNPX895Y/M9rJSY881Mm48RQSaaLwoQjE6Hx26jLFCWGDy3BRDF7KyJ9rDAxNpy8DcGbf3mR1Msl76RUvrJpnMMUWdiHAzgCD06hApdQhRoQCOEBnuDZGTiPzovzNm3NOLOZPfgD5/0HTraQ7w==</latexit>

��
<latexit sha1_base64="/kiy3RgXyRpRLeMVqfaeRu+zLko=">AAAB7XicbVC7SgNBFJ2NrxgfiVpY2AwGwcawGwstRAI2lhHMA5IlzE5mkzGzM8vMXSEs+QcbC0Vs/QD/xM4PsM03OEksNPHAhcM593LvPUEsuAHX/XQyS8srq2vZ9dzG5tZ2vrCzWzcq0ZTVqBJKNwNimOCS1YCDYM1YMxIFgjWCwdXEb9wzbbiStzCMmR+RnuQhpwSsVD9pBwxIp1B0S+4UeJF4P6RY2R+P8xfvX9VO4aPdVTSJmAQqiDEtz43BT4kGTgUb5dqJYTGhA9JjLUsliZjx0+m1I3xklS4OlbYlAU/V3xMpiYwZRoHtjAj0zbw3Ef/zWgmE537KZZwAk3S2KEwEBoUnr+Mu14yCGFpCqOb2Vkz7RBMKNqCcDcGbf3mR1Msl77RUvrFpXKIZsugAHaJj5KEzVEHXqIpqiKI79ICe0LOjnEfnxXmdtWacn5k99AfO2zeqWZLt</latexit>

�
<latexit sha1_base64="L9/8b0J1YSWfo4HNPkfiO7NBOq8=">AAAB7HicbVC7SgNBFL3rM8ZHohYWNotBsAq7sdBCJGBjGcFNAskSZiezyZDZ2WXmrhCWfIONhSK2/oB/YucH2OYbnDwKTTxw4XDOvdx7T5AIrtFxvqyV1bX1jc3cVn57Z3evUNw/qOs4VZR5NBaxagZEM8El85CjYM1EMRIFgjWCwc3EbzwwpXks73GYMD8iPclDTgkayWsHDEmnWHLKzhT2MnHnpFQ9Go8LVx/ftU7xs92NaRoxiVQQrVuuk6CfEYWcCjbKt1PNEkIHpMdahkoSMe1n02NH9qlRunYYK1MS7an6eyIjkdbDKDCdEcG+XvQm4n9eK8Xw0s+4TFJkks4WhamwMbYnn9tdrhhFMTSEUMXNrTbtE0UomnzyJgR38eVlUq+U3fNy5c6kcQ0z5OAYTuAMXLiAKtxCDTygwOERnuHFktaT9Wq9zVpXrPnMIfyB9f4DQFiStg==</latexit>

��
<latexit sha1_base64="bjuiCgLS8n4hcI6tnR00BMAtxbs=">AAAB7XicbVC7SgNBFJ2NrxgfiVpY2AwG0SrsxkILkYCNZQTzgGQJs5PZZMzszDJzVwhL/sHGQhFbP8A/sfMDbPMNThILTTxw4XDOvdx7TxALbsB1P53M0vLK6lp2PbexubWdL+zs1o1KNGU1qoTSzYAYJrhkNeAgWDPWjESBYI1gcDXxG/dMG67kLQxj5kekJ3nIKQEr1dsBA3LcKRTdkjsFXiTeDylW9sfj/MX7V7VT+Gh3FU0iJoEKYkzLc2PwU6KBU8FGuXZiWEzogPRYy1JJImb8dHrtCB9ZpYtDpW1JwFP190RKImOGUWA7IwJ9M+9NxP+8VgLhuZ9yGSfAJJ0tChOBQeHJ67jLNaMghpYQqrm9FdM+0YSCDShnQ/DmX14k9XLJOy2Vb2wal2iGLDpAh+gEeegMVdA1qqIaougOPaAn9Owo59F5cV5nrRnnZ2YP/YHz9g2iWJLn</latexit>

���
<latexit sha1_base64="8a0ycCq14z+Mhs2wiZ0NL34P/Mo=">AAAB7nicbVC7SgNBFJ2NrxgfiVpY2CwG0cawGwstRAI2lhHMA5IlzE7uJkNmZ5eZu0JY8hE2ForY2vsndn6Abb7ByaPQ6IELh3Pu5d57/FhwjY7zaWWWlldW17LruY3Nre18YWe3rqNEMaixSESq6VMNgkuoIUcBzVgBDX0BDX9wPfEb96A0j+QdDmPwQtqTPOCMopEap20fkB53CkWn5Exh/yXunBQr++Nx/vL9q9opfLS7EUtCkMgE1brlOjF6KVXImYBRrp1oiCkb0B60DJU0BO2l03NH9pFRunYQKVMS7an6cyKlodbD0DedIcW+XvQm4n9eK8Hgwku5jBMEyWaLgkTYGNmT3+0uV8BQDA2hTHFzq836VFGGJqGcCcFdfPkvqZdL7lmpfGvSuCIzZMkBOSQnxCXnpEJuSJXUCCMD8kCeyLMVW4/Wi/U6a81Y85k98gvW2zcMl5Me</latexit>

|c|
<latexit sha1_base64="jPRQPRO/7VXf1ECIi4OLjfespyU=">AAAB6nicbVBNSwMxEJ2tX7V+VT0KEiyCp7JbD3qSghePFe0HtEvJptk2NMkuSVYo2/4ELx6U6tVf5M1/Y7btQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NBRogitk4hHqhVgTTmTtG6Y4bQVK4pFwGkzGN5mfvOJKs0i+WhGMfUF7ksWMoKNlR7GZNwtltyyOwNaJd6ClKqn0wzvtW7xq9OLSCKoNIRjrdueGxs/xcowwumk0Ek0jTEZ4j5tWyqxoNpPZ6dO0LlVeiiMlC1p0Ez9PZFiofVIBLZTYDPQy14m/ue1ExNe+ymTcWKoJPNFYcKRiVD2N+oxRYnhI0swUczeisgAK0yMTadgQ/CWX14ljUrZuyxX7m0aNzBHHk7gDC7Agyuowh3UoA4E+vAMr/DmcOfFmTof89acs5g5hj9wPn8A2XGR5A==</latexit>

|c|1/2
<latexit sha1_base64="ysi/Cl4biWCq6f9bbl9nP0IySLE=">AAAB8HicbVDLSgNBEOyNrxhfUY+CDAbBU9yNBz1JwIvHCOYhyRpmJ7PJkJnZZWZWCJt8hRcVRbz6Od78GyePgyYWNBRV3XR3BTFn2rjut5NZWl5ZXcuu5zY2t7Z38rt7NR0litAqiXikGgHWlDNJq4YZThuxolgEnNaD/tXYrz9QpVkkb80gpr7AXclCRrCx0t2QDO9T77Q0aucLbtGdAC0Sb0YK5cPnMV4q7fxXqxORRFBpCMdaNz03Nn6KlWGE01GulWgaY9LHXdq0VGJBtZ9ODh6hY6t0UBgpW9Kgifp7IsVC64EIbKfApqfnvbH4n9dMTHjhp0zGiaGSTBeFCUcmQuPvUYcpSgwfWIKJYvZWRHpYYWJsRjkbgjf/8iKplYreWbF0Y9O4hCmycABHcAIenEMZrqECVSAg4BFe4c1RzpPz7nxMWzPObGYf/sD5/AGn4pQI</latexit>

|c|�1/2
<latexit sha1_base64="WWNnWNL2FCnGWTsQ6NAkp8Qbok8=">AAAB8XicbVBNS8NAEJ3Ur1o/WvUoyGIRvFiTetCTFLx4rGA/sI1ls920SzebsLsRStp/4aWCIl79N978N27aHrT1wcDjvRlm5nkRZ0rb9reVWVldW9/Ibua2tnd284W9/boKY0lojYQ8lE0PK8qZoDXNNKfNSFIceJw2vMFN6jeeqFQsFPd6GFE3wD3BfEawNtLDiIwekzPnvDzuFIp2yZ4CLRNnToqVo0mKl2qn8NXuhiQOqNCEY6Vajh1pN8FSM8LpONeOFY0wGeAebRkqcECVm0wvHqMTo3SRH0pTQqOp+nsiwYFSw8AznQHWfbXopeJ/XivW/pWbMBHFmgoyW+THHOkQpe+jLpOUaD40BBPJzK2I9LHERJuQciYEZ/HlZVIvl5yLUvnOpHENM2ThEI7hFBy4hArcQhVqQEDAM7zCm6WsifVufcxaM9Z85gD+wPr8ARQBlD8=</latexit>

1
<latexit sha1_base64="Aulpfhy149ryRHZUNrxGT/XeNZE=">AAAB6HicbZC7SgNBFIbPeo3xFrW0GQyCVdhNCq00YGOZgLlAsoTZydlkzOzsMjMrhJAnsLFQxNZX8Q3sfBsnmxSa+MPAx/+fw5xzgkRwbVz321lb39jc2s7t5Hf39g8OC0fHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd56xGV5rG8N+ME/YgOJA85o8Zada9XKLolNxNZBW8BxZvPSqZar/DV7ccsjVAaJqjWHc9NjD+hynAmcJrvphoTykZ0gB2Lkkao/Uk26JScW6dPwljZJw3J3N8dExppPY4CWxlRM9TL2cz8L+ukJrzyJ1wmqUHJ5h+FqSAmJrOtSZ8rZEaMLVCmuJ2VsCFVlBl7m7w9gre88io0yyWvUirX3WL1GubKwSmcwQV4cAlVuIMaNIABwhO8wKvz4Dw7b877vHTNWfScwB85Hz9yMI7l</latexit>

|c|�1
<latexit sha1_base64="AJ9vmXqIyFOQkpms06YF0Orn/cA=">AAAB73icbVBNS8NAEJ3Ur1q/qh4FWSyCF0tSD3qSghePFUxbaGPZbDft0s0m7m6EkvZPeBE/EK/+HW/+GzdtD9r6YODx3gwz8/yYM6Vt+9vKLS2vrK7l1wsbm1vbO8XdvbqKEkmoSyIeyaaPFeVMUFczzWkzlhSHPqcNf3CV+Y0HKhWLxK0extQLcU+wgBGsjdQckdFdeuqMO8WSXbYnQIvEmZFS9fA5w0utU/xqdyOShFRowrFSLceOtZdiqRnhdFxoJ4rGmAxwj7YMFTikyksn947RsVG6KIikKaHRRP09keJQqWHom84Q676a9zLxP6+V6ODCS5mIE00FmS4KEo50hLLnUZdJSjQfGoKJZOZWRPpYYqJNRAUTgjP/8iKpV8rOWblyY9K4hCnycABHcAIOnEMVrqEGLhDg8Aiv8GbdW0/Wu/Uxbc1Zs5l9+APr8wcxVJPK</latexit>

Figure 5.1. The tree structure of the non-archimedean Julia set, with
|c|v > 1 and v 6 | 2.

We will repeatedly exploit the symmetry of the Julia set Jc during the proof of
Theorem 5.1. For example, identifying the branches from the Type II point ⇣b,1
with the elements of P1(Fp) (where we always identify the branch containing 1 as
1 2 P1(Fp)), and denoting the class of z 2 Cv by z̃, we have

�̃ = b̃+ ↵ and �̃0 = b̃ � ↵ (5.4)

for some ↵ 2 Fp, because the transformation from ⇣b,1 to its image fc(⇣b,1) = ⇣0,|c|1/2
is a�ne in these local coordinates. In other words, the disks containing the Julia set
are centered around the preimages of 0. The same symmetry holds for the iterated
preimages of ⇣b,1 and ⇣�b,1; the branches containing the Julia set will be symmetric
about the preimages of 0, independent of the choice of coordinates, because the
iterated map to ⇣0,|c|1/2 is a�ne.

For the proof of Theorem 5.1, it is also important to keep in mind how distances
scale under iteration. For all x 2 Jc and all z = x+ y with |y| < |c|1/2, we have

|fc(z) � fc(x)|v = |2xy + y2|v = |y||c|1/2. (5.5)
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5.2. Proof of Theorem 5.1. If |c1| or |c2| is  1, then because of good reduction,
we have

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c1 � c2|.

If |c1| and |c2| are both > 1, then we can split into further cases. For |c1| > |c2|,
we have

�c2(z1) =
1

2
log |c1|

from (5.1) for all points z1 in the Julia set Jc1 . Similarly for |c1| < |c2|, and therefore,

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c1 � c1|.

For the remainder of the proof we assume that

r := |c1| = |c2| > 1.

From (5.2), we will have

�c2(z1)  1

2
log |c2|

at all points z1 of the Julia set Jc1 . Therefore,

Ev  1

2
log |c2| =

1

2
log r,

proving the upper bound in the theorem.
For the lower bound on Ev, we now break the proof into cases, depending on how

close the two parameters are to one another.

Case 1. Assume that

1 < r1/2 < s := |c1 � c2|  r = |c1| = |c2|.

Let z1 be any point in the Julia set Jc1 . Then its image z21 + c1 must lie in one of
the disks D(±b1, r1/2), where fc1(±b1) = 0, and have absolute value r1/2, so that
fc2(z1) = z21 + c2 = (z21 + c1) + (c2 � c1) satisfies

|fc2(z1)| = s > r1/2.

It follows that |fn
c2(z1)| = s2

n�1
for all n. This gives

�c2(z1) =
1

2
log s =

1

2
log |c1 � c2|

for all z1 in the Julia set of fc1 . Therefore,

Ev =
1

2
log |c1 � c2| >

1

4
log r.

Case 2. Now suppose |c1 � c2| = r1/2, and recall that b2i = �ci, for i = 1, 2. Note
that

(b1 + b2)(b1 � b2) = b21 � b22 = c2 � c1 (5.6)
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and at least one of the factors on the left hand side has absolute value r1/2 so the
other must have absolute value 1. Let’s assume that

|b1 � b2| = 1.

If the two branches from ⇣b1,1 = ⇣b2,1 containing Jc1 are disjoint from those containing
Jc2 , then for any element z2 2 Jc2 we have

|fc1(z2)| = r1/2 and |fn
c1(z2)| = (r1/2)2

n�1
for all n � 2

so that

�c1(z2) =
1

4
log r =

1

2
log |c1 � c2|

for all z2 2 Jc2 , and

Ev =
1

4
log r =

1

2
log |c1 � c2|.

However, it can happen that one of the branches from ⇣b1,1 intersecting Jc1 does
coincide with a branch intersecting Jc2 . Note that from (5.3), we have

(�1 � �2)(�1 + �2) = �2
1 � �2

2 = b1 � c1 � (b2 � c2) = (b1 � b2) + (c2 � c1), (5.7)

and the right-hand-side has absolute value |c1 � c2| = r1/2, so that

|�1 � �2| = 1.

But we could have D(�1, 1) = D(�0
2, 1). Indeed,

(�1 � �0
2)(�1 + �0

2) = (b1 + b2) + (c2 � c1)

and the terms on the right-hand-side might cancel to give absolute value smaller than
r1/2. But by the symmetry of the disks around the points bi, as explained in (5.4),
if D(�1, 1) = D(�0

2, 1), then the other disks D(�0
1, 1) and D(�2, 1) must be disjoint.

Indeed, if b̃1 + ↵1 = �̃1 = �̃2
0
= b̃2 � ↵2 and b̃1 � ↵1 = �̃1

0
= �̃2 = b̃2 + ↵2 in Fp, then

2↵1 = �2↵2 =) ↵1 = �↵2 because p 6= 2,

so we must have b̃1 = b̃2, which contradicts the fact that |b1 � b2| = 1.
It follows that for all z2 2 D(�0

2, 1), one has

�c1(z2) =
1

4
log r.

By the symmetry of the Julia sets, this will also hold for points in the disk D(��0
2, 1),

and together they make up half (with respect to the measure µc2) of Jc2 . Therefore,

Ev � 1

8
log r =

1

4
log |c1 � c2|.

Case 3. Assume that

1 < s := |c1 � c2| < r1/2.
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Then from (5.6), we can choose b1 and b2 so that

1

r1/2
< |b1 � b2| =

s

r1/2
< 1.

Also, from (5.7), we see that

1

r1/2
< |�1 � �2| =

s

r1/2
< 1

and similarly for �0
1 and �0

2. Consequently, the four disksD(±�1, s/r1/2) andD(±�0
1, s/r

1/2)
are disjoint from the corresponding disks around ±�2 and ±�0

2. Thus, for any z2 2 Jc2 ,
we have

inf
z12Jc1

|z2 � z1| = s/r1/2 and inf
z12Jc1

|fc1(z2) � z1| = s,

and therefore

|f 2
c1(z2)| = sr1/2 and |fn

c1(z2)| = (sr1/2)2
n�2

for all n > 2.

This gives

�c1(z2) =
1

4
log(sr1/2)

for all z2 2 Jc2 , and consequently,

Ev =
1

4
log(sr1/2) =

1

8
log r +

1

4
log |c1 � c2|.

In particular, we have

Ev � 1

4
log |c1 � c2|

in this case, completing the proof of the first statement of the theorem.

Case 4. Now suppose |c1 � c2| = 1. The proof here is similar to Case 2, but
we work with the disks around � and �0. From (5.6) and (5.7) we can choose our
preimages of 0 so that

|b1 � b2| = |�1 � �2| = |�0
1 � �0

2| =
1

r1/2
.

Let �i and �0
i, for i = 1, 2, denote further preimages of 0, so that f 3

ci(�i) = f 3
ci(�

0
i) = 0,

chosen so that

|�i � �i| = |�0
i � �i| = 1/r1/2 (5.8)

for i = 1, 2. Because of the symmetry of the Julia set Jci around �i, for i = 1, 2, as
explained in (5.4), if for example the disks D(�1, 1/r1/2) and D(�2, 1/r1/2) coincide,
then the disks D(�0

1, 1/r
1/2) and D(�0

2, 1/r
1/2) must be disjoint, because |�1 � �2| =

1/r1/2. Similarly for the disks D(�1, 1/r1/2) and D(�0
2, 1/r

1/2), and also for the disks
intersecting the Julia sets near ��i and ±�0

i.
It follows that

inf
z12Jc1

|fc1(z) � z1| = 1, |f 2
c1(z)| = r1/2, and |fn

c1(z)| = (r1/2)2
n�2

for all n > 2,
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for at least half of the points z in Jc2 . Therefore

�c1(z) =
1

8
log r

for at least half of Jc2 , and consequently,

Ev � 1

16
log r

in all cases with |c1 � c2| = 1.

Case 5. The final case to treat is with

1/r1/2 < s := |c1 � c2| < 1.

We can choose preimages b1 and b2 of 0 so that

1

r
< |b1 � b2| = |�1 � �2| = |�0

1 � �0
2| =

s

r1/2
<

1

r1/2

from (5.6) and (5.7). Passing to 3rd preimages of 0, as defined by (5.8), we have

(�1 � �2)(�1 + �2) = �2
1 � �2

2 = (fc1(�1) � fc2(�2)) + (c2 � c1),

and similarly for �0
i. Thus, they can be chosen so that

|�1 � �2| = |�0
1 � �0

2| = s/r1/2 > 1/r.

Consequently, all points z2 2 Jc2 will satisfy

inf
z12Jc1

|z2 � z1| = s/r1/2

and so

|f 3
c1(z2)| = r3/2

s

r1/2
= rs and |fn

c1(z2)| = (rs)2
n�3

for all n > 3.

Therefore

�c1(z2) =
1

8
log(rs)

for all points z2 2 Jc2 , and

Ev =
1

8
log(rs) >

1

16
log r.

This completes the proof of the theorem.
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5.3. An upper bound on the local height near the Julia set. We will use the
following proposition in the proof of Theorem 1.8. This is a non-archimedean analog
to the distortion estimate provided in Proposition 3.8.

Proposition 5.2. Suppose v is a non-archimedean place of K, not dividing 2. For
each c with |c| > 1 and all 0 < r < 1, we have

�c(z)  r log |c|v

for all z within distance
1

|c|log(1/r)

of the Julia set Jc in P1
v. For |c|  1, we have �c(z) = 0 for all |z|v  1.

Proof. Recall that all points x of the Julia set Jc satisfy |x| = |c|1/2v . For all x 2 Jc
and all z = x+ y with |y| < |c|1/2, we have

|fc(z) � fc(x)|v = |2xy + y2|v = |y||c|1/2.

Recall that �c(z) = log |z| for all |z| > |c|1/2.
For any n � 1 and 1

2n  r < 1
2n�1 , we have

log

✓
1

r

◆
> (n � 1) log 2 >

n

2
� 1.

So, for any point z within distance 1/|c|log(1/r) of the Julia set Jc, it is also within
distance |c|/|c|n/2 of the Jc, so that we will have

�c(z) = 2�n�c(f
n(z))  2�n log |c|  r log |c|.

The proof of the last statement of the proposition is immediate, because fc has
good reduction with Jc = ⇣0,1 and �c,v(z) = log+ |z|v. ⇤

6. Nonarchimedean bounds for prime p = 2

Let c1 6= c2 be two elements of Q. Fix a number field K containing c1 and c2, and
fix a non-archimedean place v of K which lies over the prime p = 2. We assume that
| · |v is normalized so that |2|v = 1

2 . In this section, we provide estimates on the local
energy

Ev :=

Z
�c1,v dµc2,v =

Z
�c2,v dµc1,v.

Because the place v is fixed throughout this section, we will drop the dependence on
v in the absolute value | · |v, denote the local Julia set of fc by Jc, its escape rate by
�c, and the equilibrium measure by µc.
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Theorem 6.1. Suppose c1 and c2 lie in a number field K, and v is a non-archimedean
place of K with v | 2. For all c1, c2 2 K, we have

1

16
log+ |c1 � c2| � 1

4
log 2  Ev  1

2
log+ max{|c1|, |c2|}.

Furthermore, if r := |c1| = |c2| > 16 and

|c1 � c2| >
2

r1/2
,

then

Ev � 1

16
log r � 3

16
log 2.

We also prove an estimate on �c from above, at points near the v-adic Julia set of
fc, that will be needed for the proof of Theorem 1.8.

6.1. Structure of the Julia set. As in the previous section, we work with the
dynamics of fc on the Berkovich a�ne line A1,an

v , associated to the complete and
algebraically closed field Cv, and we denote by ⇣x,r the Type II point corresponding
to the disk of radius r 2 Q>0 about x.

And as before, for |c|  1, the map fc has good reduction, and Jc = ⇣0,1 is the
Gauss point. For |c| > 1 and for any point z with absolute value |z| > |c|1/2, we have
|fn(z)| = |z|2n for all n � 1, so that

�c(z) = log |z|. (6.1)

It is also the case that

�c(z)  1

2
log |c| (6.2)

for all |z|  |c|1/2.
But unlike the setting of the previous section, the geometry of the Julia set and the

dynamics on the associated tree is not constant for all |c| > 1. First, for 1 < |c|  4,
the map fc has potential good reduction, so its Julia set is a single Type II point.
For all |c| > 4, the Julia set will be a Cantor set of Type I points. As in the
previous section, the Julia set and all iterated preimages of z = 0 are contained in
{z 2 Cv : |z| = |c|1/2}, for all |c| > 4. We refer to [BBP] for basic information about
the Julia set.

It is important to observe that, for any point z with |z| = |c|1/2, we have

|z � (�z)| = |2z| = |z|/2 = |c|1/2/2,

a fact we will use repeatedly in our computations. Distances between points scale as
follows:

Lemma 6.2. Suppose |c| > 4 and z is in the Julia set of fc. For any |y| > |c|1/2/2,
we have

|fc(z + y) � fc(z)| = |y|2.
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For |y| < |c|1/2/2, we have

|fc(z + y) � fc(z)| = |y||c|1/2/2.

Proof. Computing the image of z + y, we have

fc(z + y) = (z + y)2 + c = (z2 + c) + (y2 + 2yz).

Because z lies in the Julia set, we know that |z| = |c|1/2, and the result follows. ⇤
Note that |c|1/2/2 > 2 if and only if |c| > 16. We choose b so that fc(±b) = 0. In

the case when |c| > 16, we let � and �0 be further preimages of 0, so that

fc(�) = b, fc(�
0) = �b, with |� � �0| = 1 and |� � b| = 2. (6.3)

Indeed, this is possible because

(� � �0)(� + �0) = �2 � �02 = 2b

has absolute value |c|1/2/2, and so does |�0 � (��0)|, so we can assume that |� +
�0| = |c|1/2/2 and |� � �0| = 1. Moreover, as x = � � b is a root of the equation
x2 +2bx� b = 0, a Newton polygon argument shows that |� � b| can be chosen to be
2, for |c| > 16. Similarly, we choose further preimages � and �0 of 0 so that

fc(�) = �, fc(�
0) = �0, with |� � �0| = 2/|c|1/2 and |� � �| = 4/|c|1/2. (6.4)

The structure of the Julia set is shown in Figure 6.1 for |c| > 16, and it will be useful
to refer to the figure while reading the proof of Theorem 6.1.

6.2. Proof of Theorem 6.1. If |ci|  1 for at least one i, then

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c1 � c2|,

proving the theorem in this case. If 1 < |c1| < |c2|, then all points z 2 Jc2 satisfy
|z| = |c2|1/2 > |c1|1/2, so that �c1(z) = log |z| = 1

2 log |c2| from (6.1), giving

Ev =
1

2
max{log+ |c1|, log+ |c2|} =

1

2
log+ |c2 � c1|.

Similarly for 1 < |c2| < |c1|, and this completes the proof of the theorem for |c1| 6= |c2|.
Note that whenever 1 < |c2| = |c1|, we have �c1(z)  1

2 log |c1| for all z 2 Jc2 , from
(6.2). It follows that

Ev  1

2
max{log+ |c1|, log+ |c2|},

proving the upper bound on Ev in all cases.
For 1 < |c1| = |c2|  16, we have |c1 � c2|  16, so that 1

16 log |c1 � c2|  1
4 log 2.

This completes the proof of the first statement of the theorem in this case as well.
For the remainder of the proof, we assume that

r := |c1| = |c2| > 16.
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<latexit sha1_base64="0EFbcDcsfNMdCdGK0H5BW3w+N84=">AAAB6HicbZDLSgNBEEVr4ivGV9Slm8YguAozCagrDbhxmYB5QDKEnk5N0qbnQXePEIZ8gRsXirj1V/wDd/6NnUkWmnih4XBvFV1VXiy40rb9beXW1jc2t/LbhZ3dvf2D4uFRS0WJZNhkkYhkx6MKBQ+xqbkW2Ikl0sAT2PbGt7O8/YhS8Si815MY3YAOQ+5zRrWxGpV+sWSX7UxkFZwFlG4+q5nq/eJXbxCxJMBQM0GV6jp2rN2USs2ZwGmhlyiMKRvTIXYNhjRA5abZoFNyZpwB8SNpXqhJ5v7uSGmg1CTwTGVA9UgtZzPzv6ybaP/KTXkYJxpDNv/ITwTREZltTQZcItNiYoAyyc2shI2opEyb2xTMEZzllVehVSk7F+Vqwy7VrmGuPJzAKZyDA5dQgzuoQxMYIDzBC7xaD9az9Wa9z0tz1qLnGP7I+vgBdQKO6g==</latexit>

2

<latexit sha1_base64="sJq3OrFfE16eZMqu185G8visdV0=">AAAB7XicbVC7SgNBFJ2NrxgfiVpY2AwGwSrsKqiFSMDGMoJ5QLKEu5PZZMzM7DIzK4Ql/2BjoYitH+Cf2PkBtvkGJ49CEw9cOJxzL/feE8ScaeO6X05maXlldS27ntvY3NrOF3Z2azpKFKFVEvFINQLQlDNJq4YZThuxoiACTutB/3rs1x+o0iySd2YQU19AV7KQETBWqrW6IAS0C0W35E6AF4k3I8Xy/miUv/z4rrQLn61ORBJBpSEctG56bmz8FJRhhNNhrpVoGgPpQ5c2LZUgqPbTybVDfGSVDg4jZUsaPFF/T6QgtB6IwHYKMD09743F/7xmYsILP2UyTgyVZLooTDg2ER6/jjtMUWL4wBIgitlbMemBAmJsQDkbgjf/8iKpnZS8s9LprU3jCk2RRQfoEB0jD52jMrpBFVRFBN2jR/SMXpzIeXJenbdpa8aZzeyhP3DefwAEu5Mr</latexit>�
<latexit sha1_base64="zYLyaYhSx7C57Vs/jCzVv/R1+ug=">AAAB7nicbVC7SgNBFL0bXzE+ErWwsBkMolXYVVALkYCNZQTzgGQJs5PZZMjM7DIzK4QlH2FjoYitvX9i5wfY5hucPApNPHDhcM693HtPEHOmjet+OZml5ZXVtex6bmNzaztf2Nmt6ShRhFZJxCPVCLCmnElaNcxw2ogVxSLgtB70b8Z+/YEqzSJ5bwYx9QXuShYygo2V6q0uFgIftwtFt+ROgBaJNyPF8v5olL/6+K60C5+tTkQSQaUhHGvd9NzY+ClWhhFOh7lWommMSR93adNSiQXVfjo5d4iOrNJBYaRsSYMm6u+JFAutByKwnQKbnp73xuJ/XjMx4aWfMhknhkoyXRQmHJkIjX9HHaYoMXxgCSaK2VsR6WGFibEJ5WwI3vzLi6R2WvLOS2d3No1rmCILB3AIJ+DBBZThFipQBQJ9eIRneHFi58l5dd6mrRlnNrMHf+C8/wBnJJNc</latexit>

��

<latexit sha1_base64="8FXORLTZ61zTlPfKKZUXg5/NnK0=">AAAB8nicbVBNS8NAEJ3Ur1q/qh4FWSyCpzapop6k4MVjBfsBbSyb7aZdutmE3Y1Q0v4MD/agiFd/jTf/jZu2B219MPB4b4aZeV7EmdK2/W1lVlbX1jeym7mt7Z3dvfz+QV2FsSS0RkIeyqaHFeVM0JpmmtNmJCkOPE4b3uA29RtPVCoWigc9jKgb4J5gPiNYG6l1URqR0WPilMrjTr5gF+0p0DJx5qRQOX5JMal28l/tbkjigApNOFaq5diRdhMsNSOcjnPtWNEIkwHu0ZahAgdUucn05DE6NUoX+aE0JTSaqr8nEhwoNQw80xlg3VeLXir+57Vi7V+7CRNRrKkgs0V+zJEOUfo/6jJJieZDQzCRzNyKSB9LTLRJKWdCcBZfXib1ctG5LJ7fmzRuYIYsHMEJnIEDV1CBO6hCDQiE8Ayv8GZpa2K9Wx+z1ow1nzmEP7A+fwCM5JSD</latexit>

4/|c|1/2

<latexit sha1_base64="ykFObeQ6KWQb9lNqerjwSVRcFE4=">AAAB7HicbVA9SwNBEJ2LXzF+Re20WQyCVbxT0GAVsLERInhJIDnC3mYvWbK3d+zuCeESrKxtLBSx9Wf4I+z8I9ZuPgpNfDDweG+GmXl+zJnStv1lZRYWl5ZXsqu5tfWNza389k5VRYkk1CURj2Tdx4pyJqirmea0HkuKQ5/Tmt+7HPm1OyoVi8St7sfUC3FHsIARrI3klo4HZNDKF+yiPQaaJ86UFMp7D4Xv++uPSiv/2WxHJAmp0IRjpRqOHWsvxVIzwukw10wUjTHp4Q5tGCpwSJWXjo8dokOjtFEQSVNCo7H6eyLFoVL90DedIdZdNeuNxP+8RqKDkpcyESeaCjJZFCQc6QiNPkdtJinRvG8IJpKZWxHpYomJNvnkTAjO7MvzpHpSdM6KpzcmjQuYIAv7cABH4MA5lOEKKuACAQaP8AwvlrCerFfrbdKasaYzu/AH1vsPJgmR7A==</latexit>

8/|c|
<latexit sha1_base64="kjQ7xCcMuabs8w23XP1Nq18S3X4=">AAAB7HicbVA9SwNBEJ2LXzF+Re20WQyCVbxTUbEK2NgIEbwkkBxhb7OXLNnbO3b3hHAJVtY2ForY+jP8EXb+EWs3H4UmPhh4vDfDzDw/5kxp2/6yMnPzC4tL2eXcyura+kZ+c6uiokQS6pKIR7LmY0U5E9TVTHNaiyXFoc9p1e9eDv3qHZWKReJW92LqhbgtWMAI1kZyTw77pN/MF+yiPQKaJc6EFEo7D4Xv++uPcjP/2WhFJAmp0IRjpeqOHWsvxVIzwukg10gUjTHp4jatGypwSJWXjo4doH2jtFAQSVNCo5H6eyLFoVK90DedIdYdNe0Nxf+8eqKDcy9lIk40FWS8KEg40hEafo5aTFKiec8QTCQztyLSwRITbfLJmRCc6ZdnSeWo6JwWj29MGhcwRhZ2YQ8OwIEzKMEVlMEFAgwe4RleLGE9Wa/W27g1Y01mtuEPrPcfH+mR6A==</latexit>

4/|c|

Figure 6.1. The tree structure of the non-archimedean Julia set and
some iterated preimages of 0, for |c|v > 16 and v | 2, vertically ordered by
| · |v as noted on the right. The solid edges lie in the convex hull of the Julia
set and 1.

Exactly as in the proofs of Theorems 4.1 and 5.1, we break the proof into cases,
according to how close the two parameters are. As in §6.1, we let ±bi denote the
preimages of 0 by fci .

Case 1. Assume that the preimages b1 and b2 are chosen so that

s := |b1 � b2|  |b1 + b2|

and suppose that they satisfy

r1/2/2 < s  r1/2.

Since |b2 � (�b2)| = |b2|/2 = r1/2/2, so |b1 + b2| = |b1 � b2 + 2b2| = s. Then as

(b1 � b2)(b1 + b2) = b21 � b22 = c2 � c1, (6.5)

it follows that

|c1 � c2| = s2.

For all z 2 Jc2 , we have

inf
z12Jc1

|z � z1| = s > r1/2/2,

so that

|fn
c1(z)| = s2

n
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for all n � 1, from Lemma 6.2. This gives

�c1(z) = log s

for all z 2 Jc2 . Therefore,

Ev = log s =
1

2
log |c1 � c2| >

1

2
log r � log 2 � 1

4
log r

for every r > 16.

Case 2. Assume that the preimages b1 and b2 are chosen so that

s := |b1 � b2|  |b1 + b2|

and satisfy

1 < s  r1/2/2.

Then |b1 + b2| = r1/2/2, so that

|c1 � c2| = sr1/2/2

from (6.5). Choosing �i and �0
i, i = 1, 2, as in (6.3), we have

(�1 � �2)(�1 + �2) = �2
1 � �2

2 = b1 � c1 � (b2 � c2) = (b1 � b2) + (c2 � c1), (6.6)

and

(�0
1 � �0

2)(�
0
1 + �0

2) = (�0
1)

2 � (�0
2)

2 = (b2 � b1) + (c2 � c1). (6.7)

Noting that the expressions in (6.6) and (6.7) have absolute value sr1/2/2, we find
that

|�1 � �2| = |�0
1 � �0

2| = s.

It follows that

inf
z12Jc1

|z � z1| = s

for all z 2 Jc2 . Therefore

inf
z12Jc1

|fc1(z) � z1| = sr1/2/2

for all z 2 Jc2 , so that

|fn
c1(z)| = (sr1/2/2)2

n�1

for all n � 2 and z 2 Jc2 . This implies that

�c1(z) =
1

2
log(sr1/2/2)

for all z 2 Jc2 , and

Ev =
1

2
log(sr1/2/2) =

1

2
log |c1 � c2| >

1

4
log r � 1

2
log 2 >

1

8
log r

for all r > 16.
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Case 3. Assume that the preimages b1 and b2 are chosen so that

1 = |b1 � b2| < |b1 + b2| = r1/2/2.

Then

|c1 � c2| = r1/2/2

from (6.5). It follows that

|�1 � �2| = |�0
1 � �0

2| = 1,

from (6.6) and (6.7). We also have

(�1 � �0
2)(�1 + �0

2) = �2
1 � (�0

2)
2 = b1 � c1 � (�b2 � c2) = (b1 + b2) + (c2 � c1). (6.8)

The right-hand-side is the sum of two terms with the same absolute value and may
lead to cancellation, so it could happen that D(�1, 1) = D(�0

2, 1). On the other hand,
we also have

(�0
1 � �2)(�

0
1 + �2) = (�0

1)
2 � �2

2 = �b1 � c1 � (b2 � c2) = �(b1 + b2) + (c2 � c1), (6.9)

and |(b1 + b2)� (�(b1 + b2))| = |2||b1 + b2| = r1/2/4. In other words, the cancellation
on the right-hand-sides of (6.8) and (6.9) cannot bring us smaller than r1/2/4 in both
equations. Consequently, we have

|�1 � �0
2| or |�0

1 � �2| � (r1/2/4)/(r1/2/2) =
1

2
.

Consequently, at least half of the Julia set Jc2 (with respect to the measure µc2) must
be at distance at least 1/2 from the Julia set Jc1 . Note that r > 16 implies that
1/2 > 2/r1/2. So, for half of the points z 2 Jc2 , we have

inf
z12Jc1

|f 2
c1(z) � z1| � 1

2

✓
r1/2

2

◆2

=
r

8
,

and thus

�c1(z) � 1

4
log(r/8) =

1

4
(log r � log 8)

for these z values. We conclude that

Ev � 1

8
log(r/8) =

1

4
log |c1 � c2| � 1

8
log 2

=
1

8
log r � 3

8
log 2

� 1

16
log r � 1

8
log 2

for all r > 16.

Case 4. Assume that the preimages b1 and b2 are chosen so that

s := |b1 � b2| < |b1 + b2| = r1/2/2
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and satisfy

2/r1/2 < s < 1.

Then (6.5) implies that

1 < |c1 � c2| = sr1/2/2 < r1/2/2.

We have

|�1 � �2| = |�0
1 � �0

2| = s

from (6.6) and (6.7). We now choose �i and �0
i, i = 1, 2, as in (6.4), and these satisfy

(�1 � �2)(�1 + �2) = �2
1 � �2

2 = (�1 � �2) + (c2 � c1). (6.10)

Similarly for �0
i. Consequently,

|�1 � �2| = |�0
1 � �0

2| = s.

It follows that all points z 2 Jc2 are distance s from Jc1 , so that

inf
z12Jc1

|f 2
c1(z) � z1| = (r1/2/2)2s = rs/4

and

|fn
c1(z)| = (rs/4)2

n�2
for all n � 3

for all z 2 Jc2 . Therefore,

�c1(z) =
1

4
log(rs/4)

for all z 2 Jc2 , so that

Ev =
1

4
log(rs/4) =

1

2
log |c1 � c2| � 1

4
log s >

1

2
log |c1 � c2|

and

Ev � 1

4
log(r1/2/2) � 1

16
log r

for all r > 16.

Case 5. Assume that the preimages b1 and b2 satisfy

2/r1/2 = |b1 � b2| < |b1 + b2| = r1/2/2.

Then

|c1 � c2| = 1

from (6.5). Equations (6.6) and (6.7) imply that

|�1 � �2| = |�0
1 � �0

2| = 2/r1/2, (6.11)

and (6.8) and (6.9) imply that

|�1 � �0
2| = |�0

1 � �2| = 1.



COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS 35

To determine how the Julia sets might overlap, we examine third preimages of 0.
From (6.10), we know that

|�1 � �2| = |�0
1 � �0

2| = 2/r1/2.

But

(�1 � �0
2)(�1 + �0

2) = �2
1 � (�0

2)
2 = (�1 � �0

2) + (c2 � c1) (6.12)

and both terms on the right-hand-size have absolute value 1. So it can happen that
D(�1, 2/r1/2) = D(�0

2, 2/r
1/2). Similarly for �0

1 with �2. But both pairs cannot be too
close, because

(�1 � �0
2) � (�0

1 � �2) = (�1 � �0
1) + (�2 � �0

2) = (�1 � �0
1) + (�1 � �0

1) + "

for some |"|  2/r1/2, from (6.11). It follows that

|(�1 � �0
2) � (�0

1 � �2)| = |2(�1 � �0
1)| =

1

2

so that

|�1 � �0
2| or |�0

1 � �2| � (1/2)/(r1/2/2) =
1

r1/2
.

The same estimates will hold for the third preimages of 0 near �0
i, as well as those

near ��i and ��0
i. Consequently, at least half of the Julia set Jc2 (with respect to

µc2) must be at distance at least 1/r1/2 from the Julia set Jc1 . Note that r > 16
implies that 1/r1/2 > 4/r. So, for these points z 2 Jc2 , we have

inf
z12Jc1

|f 3
c1(z) � z1| �

✓
r1/2

2

◆3
1

r1/2
=

r

8
,

and thus

�c1(z) � 1

8
log(r/8) =

1

8
log r � 1

8
log 8

for these z values. We conclude that

Ev � 1

16
log(r/8) =

1

16
log r � 3

16
log 2.

Case 6. Assume that the preimages b1 and b2 are chosen so that

s := |b1 � b2|  |b1 + b2|

and satisfy

4/r < s < 2/r1/2.

Then

2/r1/2 < |c1 � c2| = sr1/2/2 < 1

from (6.5). We also compute

|�1 � �2| = |�1 � �2| = s
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from (6.6) and (6.10). But, for disks centered at the 3rd preimages of 0 to contain
the Julia set, we need to take radius 8/r, which may be larger than s. So we pass to
4th preimages �i of 0, so that fci(�i) = �i; observe that we can choose these so that

|�1 � �2| = s,

because (�1 � �2)(�1+ �2) = �21 � �22 = (�1 ��2)+ (c2 � c1). This is enough to conclude
that

inf
z12Jc1

|z � z1| = s

for all z 2 Jc2 . Therefore,

inf
z12Jc1

|f 3
c1(z) � z1| = s(r1/2/2)3 > r1/2/2

for all z 2 Jc2 , so that

�c1(z) =
1

8
log(sr3/2/8)

for all z 2 Jc2 , and

Ev =
1

8
log(sr3/2/8) � 1

8
log(r1/2/2) =

1

16
log r � 1

8
log 2.

Finally, note that if |b1 � b2|  4/r, then |c1 � c2|  2/r1/2, so Case 6 completes
the proof of the theorem.

6.3. An upper bound on the local height near the Julia set. We will use the
following proposition in the proof of Theorem 1.8. This is an analog of the estimates
provided in Propositions 3.8 and 5.2.

Proposition 6.3. Suppose v is a non-archimedean place of K dividing 2. For any
0 < r < 1/4, we have

�c(z)  r logmax{|c|, 16}
for all z within distance

1

max{|c|, 16}log(1/r)

of the filled Julia set within Cv.

Proof. First assume that |c| > 4. Recall that all points x of the Julia set Jc (which
agrees with the filled Julia set in this setting) satisfy |x| = |c|1/2. From Lemma 6.2,
we know that for all x 2 Jc and all z = x+ y with |y| < |c|1/2/2, we have

|fc(z) � fc(x)|v = |2xy + y2|v = |y||c|1/2/2.

Recall also that �c(z) = log |z| for all |z| > |c|1/2 and �c(z)  1
2 log |c| for all |z| 

|c|1/2.
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In particular, for |c| > 4 and for any n � 2, a point z within distance

|c|
4

✓
2

|c|1/2

◆n

� 1

|c|(n/2)�1

will satisfy

�c(z) = 2�n�c(f
n(z))  1

2n
log |c|.

Fix r 2 (0, 1/4) and choose n � 3 so that 1
2n  r < 1

2n�1 . Note that

log(1/r) > (n � 1) log 2 >
n

2
� 1

for all n � 3. So if z is within distance 1/|c|log(1/r) of the Julia set, then

�c(z)  1

2n
log |c|  r log |c|  r logmax{|c|, 16}.

Now assume |c|v  4. Then fc has potential good reduction with Jc = ⇣x,1, where
x is any element of the filled Julia set. Consequently, all points z within distance 1
of the filled Julia set are in the filled Julia set and thus satisfy �c(z) = 0. ⇤

7. Bounds on the energy pairing

In this section, we use the estimates of the previous sections to prove a weak
version of Theorem 1.7, and we use it to deduce Theorem 1.6. We let h(x) denote
the logarithmic Weil height of x 2 Q and h(x1, x2) the Weil height on A2(Q).

Theorem 7.1. We have

1

16
h(c1 � c2) � 2

3
 hfc1 , fc2i  1

2
h(c1, c2) +

7

3

for all c1 6= c2 in Q.

7.1. Proof of Theorem 7.1. Fix c1 6= c2 in Q, and let K be any number field
containing them. Summing over all places of K, we have by Theorem 4.1, Theorem
5.1, and Theorem 6.1 that

1

16

X

v2MK

[Kv : Qv]

[K : Q]
log+ |c1 � c2| � 1

16
log 2000 � 1

4
log 2  hfc1 , fc2i

 1

2

X

v2MK

[Kv : Qv]

[K : Q]
log+ max{|c1|v, |c2|v} + log 8,

where the added constants come from the archimedean places (Remark 4.2) and the
prime 2. This completes the proof of the theorem.
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7.2. Proof of Theorem 1.6. We will assume towards contradiction that there is a
sequence of triples c1,n 6= c2,n 2 Q and "n > 0 such that

hfc1,n , fc2,ni < "n,

where "n ! 0 as n tends to infinity. Let Kn be a number field containing c1,n and
c2,n. We will show that this forces the pairing at a (proportionally) large number of
archimedean places of Kn to be close to 0; as a consequence we will deduce that the
height h(c1,n � c2,n) must get large. This in turn would contradict Theorem 7.1.

Let M1
n denote the set of all archimedean places of Kn. For each v 2 M1

n , we let

Ev(c1,n, c2,n) =

Z
�c1,v dµc2,v

denote the local contribution to the energy pairing. We let Sn ⇢ M1
n be the set of

archimedean places with
Ev(c1,n, c2,n) < 2"n.

Since
P

v2M1
n
[Kn,v : Qv] = [Kn : Q] and hfc1,n , fc2,ni < "n, we see that

P
v2M1

n \Sn
[Kn,v :

Qv] < [Kn : Q]/2. Therefore,
X

v2Sn

[Kn,v : Qv] � [Kn : Q]

2
.

Take L = 1000 as in Remark 4.2, and choose any M > L.
Recall that, for a fixed archimedean place v|1, we have µc1 = µc2 if and only if

c1 = c2 from (1.1), so that E1(c1, c2) > 0 for all c1 6= c2 2 C = C. Moreover, E1
is continuous as a function of (c1, c2) because of the continuity of �c(z) in c and z
and the (weak) continuity of the measures µc = 1

2⇡��c. Therefore, for any � > 0,
E1(c1, c2) obtains a positive minimum on the compact set where |c1 � c2| � � and
|c1|, |c2|  M for c1, c2 2 C. It follows that there is a sequence �n ! 0+ as n ! 1
such that

E1(c1, c2) � 2"n

for all |c1 � c2| � �n and |c1|, |c2|  M for c1, c2 2 C. Furthermore, if one of the ci,
say c1, has absolute value bigger than M and if |c1 � c2| > 3/|c1|1/2, then

E1(c1, c2) � 1

64
log |c1| � 1

64
logM

from Theorem 4.1.
For all n su�ciently large, we have 2"n < 1

64 logM , and so for any v 2 Sn, as
Ev(c1,n, c2,n) < 2"n, we must have

|c1,n � c2,n|v  max

⇢
�n,

3

M1/2

�
.

Hence for any n large enough that 2"n < 1
64 logM and �n < 3/M1/2, we conclude that

|c1,n � c2,n|v  3/M1/2 < 1
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for all v 2 Sn. Consequently,

h(c1,n � c2,n) �
X

v2MKn\Sn

[Kn,v : Qv]

[Kn : Q]
log+ |c1,n � c2,n|v

�
X

v2MKn\Sn

[Kn,v : Qv]

[Kn : Q]
log |c1,n � c2,n|v

=
X

v2Sn

[Kn,v : Qv]

[Kn : Q]
log

1

|c1,n � c2,n|v

�
 
X

v2Sn

[Kn,v : Qv]

[Kn : Q]

!
log

M1/2

3
� 1

2
log

M1/2

3
.

We thus have by Theorem 7.1 that

1

32
log

M1/2

3
� 2

3
 hfc1,n , fc2,ni < ✏n,

for any choice of M > L and all su�ciently large n. But this is a clearly a contradic-
tion for M and n large enough. ⇤

8. Strong lower bound on the energy pairing

Throughout this section, we assume that c1 and c2 are distinct elements of Q. We
prove Theorem 1.7, which gives bounds on the energy pairing hfc1 , fc2i in terms of
the heights of the parameters.

The upper bound in Theorem 1.7 is easy and was stated as part of Theorem 7.1.
The lower bound is a balancing act between “helpful” primes and the other primes of
a given number field K containing the pair c1 and c2. A place v of K will be helpful
if at least one absolute value |ci|v is large and the two parameters are not too close in
the v-adic distance. In this good setting, we can apply the stronger lower bounds on
the local energy pairing, as in the second statement of Theorem 4.1. By showing that
a significant proportion of primes are helpful, we obtain the lower bound of Theorem
1.7.

8.1. An auxiliary height. Fix some constant L > 1 and consider the following
function hL on A2(Q). For c1, c2 in a number field K, we put

rv = [Kv : Qv]/[K : Q],

and set

`v =

8
<

:

logmax{|c1|v, |c2|v, L} for v archimedean
logmax{|c1|v, |c2|v, 16} for v|2
logmax{|c1|v, |c2|v, 1} otherwise



40 LAURA DE MARCO, HOLLY KRIEGER, AND HEXI YE

and define

hL(c1, c2) :=
X

v2MK

rv`v.

Note that

h(c1, c2)  hL(c1, c2)  h(c1, c2) + logL+ log 16,

where h(c1, c2) is the usual logarithmic Weil height on A2(Q).

8.2. Helpful places. With L > 1 fixed, and elements c1 and c2 in the number field
K, we say that the quantity `v is large if

`v >

8
<

:

logL for v archimedean
log 16 for v | 2
0 otherwise.

We define Mhelp to be the subset of MK for which `v is large and

|c1 � c2|v > ve
�`v/2,

where

v =

8
<

:

3 for v archimedean
2 for v | 2
1 otherwise

and we call these places “helpful”. We define Mclose to be the subset of MK for which
`v is large and

|c1 � c2|  ve
�`v/2

and call these places “close”. We will say that a place v is in Mbounded if `v fails to
be large.

The helpful places constitute a significant portion of the contribution to the height:

Lemma 8.1. For any c1, c2 2 Q and any L � 1, we have
X

v2MK\Mclose

rv`v � 1

3
hL(c1, c2) � 2

3
log 6.

and X

v2Mhelp

rv`v � 1

3
hL(c1, c2) � log(16 · 62/3 · L)

for any c1, c2 2 Q and any L � 1.

Proof. We use the product formula on c1 � c2, so that

1 =
Y

v

|c1 � c2|rvv .
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At the close places, we know that |c1 � c2| is bounded from above by ve�`v/2. At all
other places, we have |c1�c2|v  e`v if non-archimedean, and |c1�c2|v  2e`v  ve`v

if archimedean. Therefore, we have

1 
Y

v2Mclose

(ve
�`v/2)rv

Y

v2M1\Mclose

(ve
`v)rv

Y

v2MK\(M1[Mclose)

(e`v)rv

 6
Y

v2Mclose

(e�`v/2)rv
Y

v2MK\Mclose

(e`v)rv .

Taking logarithms gives

1

2

X

v2Mclose

rv`v 
X

v2MK\Mclose

rv`v + log 6. (8.1)

Adding 1
2

P
v2MK\Mclose

rv`v to both sides yields

1

2
hL(c1, c2)  3

2

X

v2MK\Mclose

rv`v + log 6,

proving the first statement of the lemma.
Expanding the right-hand-side of (8.1), we see that

1

2

X

v2Mclose

rv`v 
X

v2Mhelp

rv`v +
X

v2Mbounded

rv`v + log 6

so that
X

v2Mhelp

rv`v � 1

2

X

v2Mclose

rv`v �
X

v2Mbounded

rv`v � log 6.

Adding 1
2

P
v2Mhelp

rv`v to both sides, we obtain

3

2

X

v2Mhelp

rv`v � 1

2
hL(c1, c2) � 3

2

X

v2Mbounded

rv`v � log 6

� 1

2
hL(c1, c2) � 3

2
(logL+ log 16) � log 6

=
1

2
hL(c1, c2) � 3

2
log(16 · 62/3 · L),

which proves the lemma. ⇤

8.3. Proof of Theorem 1.7. Fix c1, c2 and choose any number field K containing
both. Fix any L � 1000 so that Theorem 4.1 is satisfied. Decompose MK into
Mhelp [ Mclose [ Mbounded as in §8.2. Note that 1

16 log r � 3
16 log 2 � 1

64 log r for any
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r � 16. Then Theorems 5.1, 6.1, and 4.1 applied in the helpful places combine to say

hfc1 , fc2i =
X

v2MK

rvEv �
X

v2Mhelp

rvEv

� 1

64

X

v2Mhelp

rv logmax{|c1|v, |c2|v}

=
1

64

X

v2Mhelp

rv`v. (8.2)

Combined with Lemma 8.1, this proves that for all c1 and c2 in Q, we have

hfc1 , fc2i � 1

3 · 64hL(c1, c2) � 1

64
log(16 · 62/3 · L)

� 1

192
h(c1, c2) � 1

64
log(16 · 62/3 · L).

This proves the lower bound of the theorem with ↵1 = 1/192 and C1 = 1
64 log(16 ·

62/3 · L) < 0.17 < 3
17 for L = 1000. The upper bound of the theorem was proved

already as Theorem 7.1 with ↵2 = 1/2 and C2 = 7/3.

9. Quantitative equidistribution

Our goal in this section is to prove Theorem 1.8, providing an upper bound on the
energy pairing hfc1 , fc2i, in terms of the number of common preperiodic points, for
c1 6= c2 in Q, assuming fc1 and fc2 share at least one preperiodic point other than
1. We build upon the ideas developed in the proof of [FRL, Theorem 3] and [Fi,
Theorem 4].

9.1. Adelic measures and heights on P1(Q). Following Favre and Rivera-Letelier
[FRL], we define the mutual energy of measures ⇢ and ⇢0 on P1(C) by

(⇢, ⇢0) := �
ZZ

C⇥C\Diag

log |z � w| d⇢(z) d⇢0(w),

where Diag is the diagonal, assuming log |z�w| is in L1(⇢⌦⇢0). If the measures have
total mass 0 with continuous potentials on P1, we have (⇢, ⇢) � 0 with equality if and
only if ⇢ = 0. Similarly, one defines

(⇢, ⇢0)v := �
ZZ

A1
v⇥A1

v\Diag

�v(z, w) d⇢(z) d⇢
0(w) (9.1)

on the Berkovich line over Cv, with respect to a non-archimedean valuation, where
�v(z, w) is the logarithm of the Hsia kernel in place of log |z �w|v. See [BR2, Propo-
sition 4.1] and further information throughout Chapters 4 and 5 of [BR2].

Now let K be a number field. An adelic measure is a collection µ = {µv}v2MK of
probability measures on the Berkovich P1,an

v , with continuous potentials at all places



COMMON PREPERIODIC POINTS FOR QUADRATIC POLYNOMIALS 43

v and for which all but finitely many are trivial (meaning that they are supported at
the Gauss point). For any adelic measure µ, a height function is defined on P1(Q) by

hµ(F ) :=
1

2

X

v2MK

[Kv : Qv]

[K : Q]
([F ] � µv, [F ] � µv)v,

where F is any finite, Gal(K/K)-invariant subset of K, and [F ] is the probability
measure supported equally on the elements of F . We put

hµ(1) :=
1

2

X

v

[Kv : Qv]

[K : Q]
(µv, µv)v.

The equidistribution theorems of [FRL, BR1, CL1] state that if Fn is a seqence
of Gal(K/K)-invariant finite sets with hµ(Fn) ! 0 and |Fn| ! 1 as n ! 1, the
discrete probability measures

µn :=
1

|Fn|
X

x2Fn

�x

converge weakly to the measure µv on P1,an
v at each place v of K.

There is a pairing between any two such heights, hµ and h⌫ , associated to adelic
measures µ and ⌫, as

hhµ, h⌫i =
1

2

X

v2MK

[Kv : Qv]

[K : Q]
(µv � ⌫v, µv � ⌫v)v. (9.2)

It satisfies hhµ, h⌫i = 0 () hµ = h⌫ () µ = ⌫. The energy pairing (1.3) between
two quadratic polynomials is a special case, taking the dynamical canonical heights
ĥc1 and ĥc2 associated to their adelic equilibrium measures.

Remark 9.1. The height hµ is defined for an arbitrary adelic measure, but small
sequences (meaning the sequences {Fn} of Galois-invariant sets with hµ(Fn) ! 0 and
|Fn| ! 1) do not always exist.

9.2. Height pairing as a distance. Following [Fi], we consider a distance between
two adelic measures µ = {µv} and ⌫ = {⌫v} on P1 over a number field K, defined by

d(µ, ⌫) := hhµ, h⌫i1/2,

where hhµ, h⌫i was defined in (9.2); see [Fi, Theorem 1].
Suppose that c1 and c2 are elements of a number field K. Let µ1 := {µc1,v}v2MK

and µ2 := {µc2,v}v2MK be the equilibrium measures of fc1 and fc2 , respectively. Let
F be any finite, nonempty, Gal(K/K)-invariant subset of P1(Q). Let [F ] denote
the probability measure supported equally on the elements of F . For each place v
of K, choose a positive real "v > 0, with "v = 1 for all but finitely many v. The
collection " := {"v}v2MK will be called an adelic radius. As in [FRL], we consider the
adelic measure [F ]", defined as a regularization of the probability measure [F ]: it is
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supported on the circles of radius "v about each point of F . At a non-archimedean
place, this means the Type II or III point associated to the disk of radius "v. The
triangle inequality implies that

hfc1 , fc2i1/2 = d(µ1, µ2)  d(µ1, [F ]") + d(µ2, [F ]") (9.3)

for any choices of F and ".
It is worth noting that, if the radius "v ! 0 at some place, then the right-hand-side

of (9.3) will tend to 1. This is because the potential of the measure [F ]" at v will
blow up near the points of F . On the other hand, for "v too large, the measure [F ]" is
not a good approximation of [F ]. Thus, for (9.3) to be useful in our proof of Theorem
1.1, we will need to choose " well. This general strategy also appears in the proofs of
[FRL, Theorem 3] and in [Fi, Proposition 13]. In our case, the choice of " = {"v}v2MK

will be governed by Proposition 3.8 and its non-archimedean counterparts, and this
leads to Theorem 1.8.

Lemma 9.2. Let K be a number field and fix c1 6= c2 in K. We have

hfc1 , fc2i1/2 
2X

i=1

 
X

v2MK

[Kv : Qv]

[K : Q]

✓
�(µi, [F ]")v +

log(1/"v)

2|F |

◆!1/2

for any choice of finite, non-empty, Gal(K/K)-invariant subset F of Q and any adelic
radius " = {"v}v2MK .

Proof. We first observe that

d(µi, [F ]")
2 =

1

2

X

v

[Kv : Qv]

[K : Q]
(µi � [F ]", µi � [F ]")v

=
X

v

[Kv : Qv]

[K : Q]

✓
�(µi, [F ]")v +

1

2
([F ]", [F ]")v

◆
,

because (µi, µi)v = 0 at every place. The self-pairing of [F ]" can be estimated in
terms of the self-pairing of [F ] ([Fi, Lemma 12] and [FRL, Lemma 4.11]), as

([F ]", [F ]")v  ([F ], [F ])v +
log(1/"v)

|F | .

But observe that
X

v

[Kv : Qv]

[K : Q]
([F ], [F ])v = 0

by the product formula on K. So the triangle inequality (9.3) completes the proof of
the proposition. ⇤
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9.3. Proof of Theorem 1.8. Fix any L � 27, and recall the definition of the auxil-
iary height hL on A2(Q) from §8.1. An appropriate choice of " = {"v} in Lemma 9.2
gives:

Proposition 9.3. Fix any L � 27. Fix c1 and c2 in Q, and assume fc1 and fc2 have
N > 1 preperiodic points in common in P1(Q). Then for all 0 < � < 1/4, we have

hfc1 , fc2i  4

✓
� +

3 log(1/�)

2(N � 1)

◆
hL(c1, c2).

Proof. Fix a number field K containing c1 and c2. Let F be the Gal(K/K)-invariant
set of common preperiodic points for fc1 and fc2 in Q, so that |F | = N � 1. For each
place v 2 MK , recall the definition of `v from §8.1. Fix 0 < � < 1/4 and set

"v = �3 `v .

Note that "v = 1 for all but finitely many places v 2 MK .
For each archimedean place v, note that

"v = e�3 `v log(1/�) = max{|c1|v, |c2|v, L}�3 log(1/�),

so Proposition 3.8 implies that

�ci,v(z)  � `v

for any point z within a neighborhood of radius "v of the filled Julia set Kci . As all
points of F lie in Kci , this implies that

�(µi, [F ]")v  � `v

for this choice of "v and each i.
Similarly for each non-archimedean place v - 2, we apply Proposition 5.2, and for

each non-archimedean v | 2, we apply Proposition 6.3.
Summing over all places, we find that

X

v2MK

[Kv : Qv]

[K : Q]

✓
�(µi, [F ]")v +

log(1/"v)

2|F |

◆


X

v

[Kv : Qv]

[K : Q]

✓
� `v +

3 log(1/�)

2|F | `v

◆

=

✓
� +

3 log(1/�)

2|F |

◆
hL(c1, c2).

Lemma 9.2 then implies

hfc1 , fc2i1/2 
2X

i=1

 
X

v2MK

[Kv : Qv]

[K : Q]

✓
�(µi, [F ]")v +

log(1/"v)

2|F |

◆!1/2

 2

✓✓
� +

3 log(1/�)

2|F |

◆
hL(c1, c2)

◆1/2

.

Squaring both sides yields the proposition. ⇤
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Now fix any " between 0 and 1, and let � = "/25. Applying Proposition 9.3 with
L = 27, we have

hfc1 , fc2i  4

✓
� +

3 log(1/�)

2(N � 1)

◆
hL(c1, c2)

 4

✓
� +

3 log(1/�)

2(N � 1)

◆
(h(c1, c2) + log 16 + log 27)


✓
"+

C(")

N � 1

◆
(h(c1, c2) + 1)

with C(") = 40 log(25/"). This completes the proof of Theorem 1.8.

10. Proof of Theorem 1.1

In this section, we prove Theorem 1.1, providing a uniform bound on the number
of common preperiodic points for any pair fc1 and fc2 with c1 6= c2 in C.

10.1. Proof over Q. Assume that c1 and c2 are in Q.
We first use Theorem 1.7 and 1.8 to provide a bound on

N := N(c1, c2) = |Preper(fc1) \ Preper(fc2)|

when the height h(c1, c2) is large. The two theorems combined show that, if N > 1,
then it must satisfy

↵1 h(c1, c2) � C1 
✓
"+

C(")

N � 1

◆
(h(c1, c2) + 1)

for every choice of 0 < " < 1, and thus,
✓
↵1 � " � C(")

N � 1

◆
(h(c1, c2) + 1)  C1 + ↵1.

Taking " = ↵1/2, we have

↵1

2
� C(")

N � 1
 C1 + ↵1

h(c1, c2) + 1
.

If we assume that

h(c1, c2) + 1 >
4(C1 + ↵1)

↵1
,

then the inequality becomes

N � 1 <
4C(↵1/2)

↵1
, (10.1)

providing a uniform bound on N for all pairs (c1, c2) of su�ciently large height.
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Now suppose that h(c1, c2) + 1  4(C1 + ↵1)/↵1. We combine the uniform lower
bound of Theorem 1.6 with the upper bound of Theorem 1.8 to obtain

� 
✓
"+

C(")

N � 1

◆
(h(c1, c2) + 1) 

✓
"+

C(")

N � 1

◆
4(C1 + ↵1)

↵1

for any choice of 0 < " < 1. This unwinds to give

N � 1  C(")
↵1�

4(C1+↵1)
� "

. (10.2)

Choosing any " < ↵1�/4(C1 + ↵1) gives a uniform bound on N .

10.2. Proof over C. Let B denote a uniform bound on the number of common
preperiodic points over all c1 6= c2 in Q. Now fix c1 in C \ Q. For any c2 2 C, if fc1
and fc2 have at least one preperiodic point in common, then the field Q(c1, c2) must
have transcendence degree 1 over Q. Moreover, if x1, x2, . . . , xB+1 denote distinct
common preperiodic points for fc1 and fc2 , then k = Q(c1, c2, x1, . . . , xB+1) will also
be of transcendence degree 1, as each xi satisfies relations of the form

fni
c1 (xi) = fmi

c1 (xi) for ni > mi � 0 and fki
c2 (xi) = f li

c2(xi) for ki > li � 0. (10.3)

We may view k as the function field K(T ) of an algebraic curve T defined over a
number field K. In this way, the maps fc1 and fc2 are viewed as families of maps,
parameterized by t 2 T (C), and the relations (10.3) hold persistently in t.

Now assume c2 6= c1, so that the specializations fc1(t) and fc2(t) are distinct for
all but finitely many t 2 T (C). As the elements {x1, . . . , xB+1} are distinct in k,
their specializations {x1(t), . . . , xB+1(t)} are also distinct for all but finitely many t
in T (C). In particular, this implies that we can find t 2 T (Q) so that c1(t) 6= c2(t) in
Q and fc1(t) and fc2(t) share at least B + 1 preperiodic points; this is a contradiction.

Thus, the theorem is proved for all pairs c1 6= c2 in C, with the same bound as for
pairs c1 6= c2 in Q.

11. Effective bounds on common preperiodic points

In this section, we make e↵ective Theorems 1.6, 1.7, and 1.8, to produce an explicit
value for the bound B of Theorem 1.1:

Theorem 11.1. For all c1 6= c2 2 C, we have

|Preper(fc1) \ Preper(fc2)|  10103.
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11.1. An explicit lower bound in Theorem 1.6. In order to provide an e↵ective
lower bound � for Theorem 1.6, we need to improve our estimates on the energy pairing
Ev(c1, c2) when |c1 � c2|v is small at an archimedean place v. Here we compute that
we can take � = 10�96.

Let H = 32001100/99. Suppose that c1 and c2 lie in a number field K, and suppose
that for at least 99/100 of the archimedean places of K, we have

|c1 � c2|v  1/H.

Then h(c1 � c2) � 99
100 logH, and the proof of Theorem 7.1 implies that

hfc1 , fc2i � 1

16
h(c1 � c2) � 1

16
log(32000) � log(32001/32000)

16
> 10�6.

Now suppose that we have |c1 � c2|v > 1/H for at least 1/100 of the archimedean
places of K. Let M = 9H2 so that

|c1 � c2|v >
1

H
=

3

M1/2

at all of these places. If max{|c1|v, |c2|v} > M , then Theorem 4.1 implies that

Ev(c1, c2) � 1

64
logM > 0.14

at this place v. On the other hand, if max{|c1|v, |c2|v}  M , we have the following
bound:

Proposition 11.2. Fix any M � 1000. Then for all s � M2, we have

E1(c1, c2) � |c1 � c2|2

32s4
� 117

100

M3

s6
,

provided max{|c1|, |c2|}  M .

Assuming Proposition 11.2, we complete our computations. With M = 9H2, we have

Ev(c1, c2) � |c1 � c2|2v
32s4

� 117 · 93H6

100s6
� 1

32s4H2

✓
1 � 117 · 2593H8

100s2

◆
,

for all archimedean places v with |c1 � c2|v > 1/H, max{|c1|v, |c2|v}  9H2, and
s > 92H4. Choosing s satisfying s2 = 117 · 2693H8/100, we conclude that

Ev(c1, c2) � 1002

218961172H18

for all such places v. This shows that, summing only over the archimedean places,
we have

hfc1 , fc2i �
X

v2M1
K

[Kv : Qv]

[K : Q]
Ev(c1, c2)

� 1

100
min

⇢
0.14,

1002

218961172H18

�
> 10�96,
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whenever |c1 � c2|v > 1/H for at least 1/100 of the archimedean places of K. This
completes the computation of �, and it remains only to prove Proposition 11.2.

Proof of Proposition 11.2. The result will follow from a series of elementary estimates
on the values of the escape-rate functions outside the filled Julia set. Let 'c be the
Böttcher function for fc(z) = z2 + c, so that 'c(fc(z)) = '2

c(z) for all z large enough,
and therefore 'c has expansion

'c(z) = z +
c

2z
+ · · · (11.1)

for z near 1. We set

�(z) := �c1(z) � �c2(z),

the di↵erence of two escape-rate functions. The energy pairing satisfies

2E1(c1, c2) = 2

Z

C
�c1dd

c�c2 = �
Z

C
�ddc� =

Z

C
d� ^ dc�.

Now fix any large s > 0, and define Dc
s := {z 2 C : |z| > s}. By Green’s formula,

2E1(c1, c2) �
Z

Dc
s

d� ^ dc� = �
Z

@Dc
s

�dc� = � 1

2⇡i

Z

@Dc
s

�

✓
@�

@z
dz � @�

@z̄
dz̄

◆
.

We will estimate the latter integral.
Note that � satisfies

�(z) = log |'c1 | � log |'c2 |

near 1. For simplicity, write " := c1 � c2. By the expansion (11.1) of 'c

2�(z) =
"

2z2
+

"̄

2z̄2
+O

✓
1

|z|3

◆
.

Similarly, by using the Taylor expansion and letting z = sei✓ on the boundary @Dc
s,

2

✓
@�

@z
dz � @�

@z̄
dz̄

◆
=


�
⇣ "

4s3e2i✓
+

"̄

4s3e�2i✓

⌘
+O

✓
1

s4

◆�
isd✓.

Consequently

�4
1

2⇡i

Z

@Dc
s

�

✓
@�

@z
dz � @�

@z̄
dz̄

◆
=

""̄

4s4
+O

✓
1

s5

◆
.

This gives

2E1(c1, c2) � � 1

2⇡i

Z

@Dc
s

�

✓
@�

@z
dz � @�

@z̄
dz̄

◆
=

""̄

16s4
+O

✓
1

s5

◆
(11.2)

where " = c1 � c2. To prove the proposition, we need control on the big-O term.
In the rest of this section, we fix an M � 1000.
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Lemma 11.3. Let z, ci 2 C with |z| � M2, |ci|  M for i = 1, 2 and ✏ = c1 � c2.
Then

���4�(z) �
⇣ ✏

z2
+

✏̄

z̄2

⌘��� 
X

i=1,2

✓
202

100

|ci|
|z|4 +

101

100
· |ci|2

|z|4

◆
.

Proof. First note that for any x 2 C with |x| < 1,

| log(1 + x) � x| =
�����

x2

2
+

x3

3
+ · · ·

���� 
|x|2

2(1 � |x|) , (11.3)

where the log(1 + x) is taken to be the one with �⇡/2 < Im(log(1 + x)) < ⇡/2. For
any |z| � |c| and |z| > 4, inductively it is easy to check that for each n � 1

(|z| � |c/z|)2n  |fn
c (z)|  (|z| + |c/z|)2n , (11.4)

hence

log(|z| � |c/z|)  �c(z)  log(|z| + |c/z|)

and

log(|z2 + c| � |c|/|z2 + c|)  �c(z
2 + c) = 2�c(z)  log(|z2 + c| + |c|/|z2 + c|).

Consequently for any |z| � M2 and |c|  M , by (11.3) one has

��2�c(z) � log |z2 + c|
�� 

����log
✓
1 ± |c|

|z2 + c|2

◆���� 
|c|

|z2 + c|2 +
|c|2

|z2 + c|4
1

2(1 � |c|
|z2+c|2 )

 101

100

|c|
|z|4 .

Now, by the triangle inequality and (11.3) we have
���4�(z) �

⇣ ✏

z2
+

✏̄

z̄2

⌘��� 
X

i=1,2

⇣��4�ci(z) � 2 log |z2 + ci|
��+
���log(z2 + ci) � log z2 � ci

z2

���
⌘

+
X

i=1,2

���log(z̄2 + c̄i) � log z̄2 � c̄i
z̄2

���


X

i=1,2

 
202

100

|ci|
|z|4 +

|ci|2/|z|4

1 �
�� ci
z2

��

!

X

i=1,2

✓
202

100

|ci|
|z|4 +

101

100
· |ci|2

|z|4

◆
.

⇤

Lemma 11.4. For any z, c 2 C with |z| � M2 and |c|  M , we have
�����

nY

i=1

(f i�1
c (z))2

f i
c(z)

� 1 +
c

z2

����� 
102

100
· |c|2

|z|4 +
104

100
· |c|
|z|4 .
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Proof. For any ↵ 2 C with |↵| < 1, we have

|e↵ � 1| =
����↵ +

↵2

2!
+ · · ·

����  |↵| + |↵|2

2!
+ · · ·  |↵|

1 � |↵| .

For each i, we always take log (f i�1
c (z))2

f i
c(z)

to be the one with

�⇡/2 < Im(log
(f i�1

c (z))2

f i
c(z)

) < ⇡/2

and set log
Qn

i=2
(f i�1

c (z))2

f i
c(z)

:=
Pn

i=2 log
(f i�1

c (z))2

f i
c(z)

. Then for each i � 2, by (11.3) and

(11.4), we have
����log

(f i�1
c (z))2

f i
c(z)

���� =
����log

1

1 + c/(f i�1
c (z))2
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����log
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1 +

c
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c (z))2

◆����
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����

c

(f i�1
c (z))2

����

0

@1 +

��� c
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���

2
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1 �

��� c
(f i�1

c (z))2

���
⌘

1

A

 101

100

|c|
(|z| � |c/z|)2i

,

for the last inequality we use the fact that |c|/|f i�1
c (z)|2  |c|/(|z|� |c/z|)2i  1/1000.

Therefore, since (|z| � |c/z|)2 � M2/2, we conclude
�����log

nY
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(f i�1
c (z))2

f i
c(z)
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For i = 1,
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� 1 +
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1
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z2

� 1 +
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z2
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|z|4 .

Finally, let

↵ = log
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i=2
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f i
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and � =
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c

z2

and then
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The inequalities for ↵ and � give
�����

nY

i=1

(f i�1
c (z))2

f i
c(z)

� 1 +
c

z2

����� 
 
1 +

103
100 · |c|

|z|4

1 � 103
100 · |c|

|z|4

!
· 101
100

· |c|2

|z|4 +
103
100 · |c|

|z|4

1 � 103
100 · |c|

|z|4

✓
1 +

|c|
|z|2

◆

 102

100
· |c|2

|z|4 +
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⇤

Lemma 11.5. With the same hypotheses as Lemma 11.4, we have that
����
2@�c(z)

@z
� 1

z
+

c

z3

���� 
102

100
· |c|2

|z|5 +
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Proof. Consider

2�c(z) = lim
n!1

2 log+ |fn
c (z)|

2n
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log (fn
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,

and take partial derivatives of both sides, so that we have
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which is independent on the choices of log fn
c (z) and log fn

c̄ (z̄). Combining this with
Lemma 11.4, we conclude that
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⇤
Similarly ����
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Now we are ready to control the big-O term in (11.2). Write
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We set

I1 =
|"|
2s

max
i=1,2


102

100
· |ci|2

|s|5 +
104

100
· |ci|
|s|5

�
,

I2 =
1

4

X
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✓
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100
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|s|4

◆
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· s,

and

I3 =
1

4

X

i=1,2

✓
202

100

|ci|
|s|4 +

101

100
· |ci|2

|s|4

◆
|"|
2s2

.

Lemmas 11.3 and 11.5 along with inequalities (11.5) and (11.2) give

2E1(c1, c2) � ""̄

16s4
� 2(I1 + I2 + I3).

By the assumptions M � 1000, |ci|  M for i = 1, 2 and s � M2, and since
|"| = |c1 � c2|  2M , we have

I1  103

100
· M

3

s6
, I2  1

1000
· M

3

s6
, and I3  102

800
· M

3

s6
.

Therefore,

2(I1 + I2 + I3)  234

100

M3

s6
.

This completes the proof of the proposition. ⇤

11.2. Explicit bound. As shown in the proof of Theorem 1.7 (in §8.3), we have
↵1 = 1/192 and C1 = 3/17 in Theorem 1.7, and we may take and C(") = 40 log(25/")
in Theorem 1.8 as shown in §9.3. Therefore, C(↵1/2) = 40 log(50/↵1) < 367, and
whenever c1 6= c2 2 Q so that fc1 and fc2 have N(c1, c2) > 1 common preperiodic
points and h(c1, c2) > 139, we have

N(c1, c2) < 281857 < 106

from (10.1). For the set of parameters with h(c1, c2)  139, the bound we obtain is
much larger, as it depends on the small � from Theorem 1.6. We can take � = 10�96,
as explained in §11.1. Taking " = ↵1�/(8(C1 + ↵1)) in (10.2), we find that

N(c1, c2) � 1  8(C1 + ↵1) · 40 log(25/")
↵1�

=
320(C1 + ↵1)

↵1�
log

200(C1 + ↵)

↵1�

 320 · 35
�

log
200 · 35

�
 96 · 320 · 35 · 1096 log(200 · 35 · 10),

so that

N(c1, c2) = |Preper(fc1) \ Preper(fc2)| < 10103.
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The same bound holds for all c1 6= c2 in C, as explained in §10.2.
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[BE] I. N. Baker and A. Erëmenko. A problem on Julia sets. Ann. Acad. Sci. Fenn. Ser. A I Math.

12(1987), 229–236.
[BD] M. Baker and L. DeMarco. Preperiodic points and unlikely intersections. Duke Math. J.

159(2011), 1–29.
[BR1] M. Baker and R. Rumely. Equidistribution of small points, rational dynamics, and potential

theory. Ann. Inst. Fourier (Grenoble) 56(2006), 625–688.
[BR2] M. Baker and R. Rumely. Potential theory and dynamics on the Berkovich projective line,

volume 159 of Mathematical Surveys and Monographs. American Mathematical Society, Prov-
idence, RI, 2010.

[Bea] A. F. Beardon. Symmetries of Julia sets. Bull. London Math. Soc. 22(1990), 576–582.
[Ben] R. L. Benedetto. Dynamics in one non-archimedean variable, volume 198 of Graduate Studies

in Mathematics. American Mathematical Society, 2019.
[BBP] R. Benedetto, J.-Y. Briend, and H. Perdry. Dynamique des polynômes quadratiques sur les
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