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ABSTRACT. We introduce a general strategy for proving quantitative and uniform
bounds on the number of common points of height zero for a pair of inequivalent
height functions on P'(Q). We apply this strategy to prove a conjecture of Bo-
gomolov, Fu, and Tschinkel asserting uniform bounds on the number of common
torsion points of elliptic curves in the case of two Legendre curves over C. As a
consequence, we obtain two uniform bounds for a two-dimensional family of genus
2 curves: a uniform Manin-Mumford bound for the family over C, and a uniform

Bogomolov bound for the family over Q.

1. INTRODUCTION

In this article, we use the Arakelov-Zhang intersection of adelically-metrized line
bundles on P!(Q) to prove a uniform Manin-Mumford bound for a two-dimensional
family of genus 2 curves over C. The Manin-Mumford Conjecture, proved by Raynaud
[Ra], asserts the following: Let X be any smooth complex projective curve of genus
g > 2, P € X(C) any point, jp : X < J(X) the Abel-Jacobi embedding of X into
its Jacobian J(X) based at P, and J(X)"" the set of torsion points of the Jacobian.
Then

(1.1) [ip(X) N J(X)"*"| < 0.

In the case of genus g = 2, the curve is hyperelliptic, and the fixed points of the
hyperelliptic involution provide geometrically natural choices of base point for the
Abel-Jacobi map. We show there is a uniform bound on the number of torsion
images under such a map, provided the curve is also bielliptic, meaning that it admits
a degree-two branched covering to an elliptic curve.

Theorem 1.1. There exists a uniform constant B such that
jp(X) N J(X)“"| < B

for all smooth, bielliptic curves X over C of genus 2 and all Weierstrass points P on

X.

The curves satisfying the hypothesis of Theorem 1.1 form a complex surface £y in
the moduli space My of genus 2 curves. These X are also characterized by the
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property that their Jacobians admit real multiplication by the real quadratic order
of discriminant 4. Further details on £, are given in Section 9.

Remark 1.2. We do not give an explicit value for the B of Theorem 1.1, but this
bound can be made effective by estimating the continuity constants of Section 4.
Poonen showed that there are infinitely many curves X € Ly for which |jp(X) N
J(X)™rs| is at least 22, taking P to be a Weierstrass point on X [Po, Theorem 1].
More recently, Stoll found an example with [jp(X) N J(X)™ ™| = 34 for Weierstrass
point P on X € Ly [St]; the curve X is defined over Q. We know of no curve
X € M5(C) and point P € X satisfying |jp(X) N J(X)""| > 34.

Remark 1.3. Although Theoren 1.1 provides a uniform bound on the number of
torsion points on X in its Jacobian, there cannot be a uniform bound on the order of
these torsion points. See Proposition 9.2.

The question of uniformity in (1.1) was raised by Mazur in [Ma] who asked if a
bound could be given that depends only on the genus g of the curve X. Quantitative
bounds on torsion points on curves have been obtained when the curve is defined
over a number field, notably by Coleman [Co], Buium [Bu], Hrushovski [Hr], and
more recently by Katz, Rabinoff, and Zureick-Brown [KRZB]. By quantifying the
p-adic approach to (1.1), these authors achieve bounds for general families of curves;
however, these bounds all involve dependence on field of definition or the choice of a
prime for the family of curves, so are not uniform for families over Q or C.

Our new technique which yields Theorem 1.1 is a quantification of the approach
of Szpiro, Ullmo, and Zhang [SUZ, Ul, Zh1] to proving (1.1), utilizing adelic equidis-
tribution theory. We first reduce to the setting where the curve is defined over Q.
Over Q, we build on the proof of the quantitative equidistribution theorem for height
functions on P!(Q) of Favre and Rivera-Letelier [FRL1].

In fact, we deduce Theorem 1.1 from a case of the following conjecture, discussed by
Bogomolov and Tschinkel [BT] and stated formally as [BET, Conjectures 2 and 12,
which asserts uniform bounds on common torsion points for pairs of elliptic curves.
By a standard projection m : E — P! of an elliptic curve E over C, we mean any
degree-two quotient that identifies a point P and its inverse —P. Note that every
standard projection 7w will have a simple critical point at each of the four elements of
the 2-torsion subgroup E|2].

Conjecture 1.4. [BET] There exists a uniform constant B such that
|m (B{) Ny ()| < B

for any pair of elliptic curves E; over C and any pair of standard projections m; for
which m(E1[2]) # m(Es[2]).



UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2 CURVES 3

Note that if m1(F1[2]) = ma(F>[2]), then E; is isomorphic to B and m(E°™) =
mo(EL™). The finiteness of the set m (E[™) N mo(E4™), under the assumption that
m(E1[2]) # ma(Esy[2]), follows from the main theorem of Raynaud in [Ra]; indeed,
the diagonal in P! x P! lifts to a (singular) curve C' C E; x Ey via m; X mp with
normalization of genus g > 2 [BT].

We prove Conjecture 1.4 in the case of maximal overlap of the 2-torsion points;
i.e., when

|1 (En[2]) N (E2[2])] = 3.

This setting corresponds to the case where the (normalization of the) curve C' in
E; x B, has genus 2. By fixing coordinates on P!, it suffices to work with the
Legendre family of elliptic curves

(1.2) E oy =a(r—1)(z—1)

with ¢ € C\ {0,1} and the standard projection 7(x,y) = = on E;. (See Corollary
8.2.)

Theorem 1.5. There exists a uniform constant B such that
|m (B N (B < B,

for all ty # ty in C\ {0, 1}, for the curves E; defined by (1.2) and projection w(x,y) =
x.

To prove Theorem 1.5, we introduce a general strategy for bounding the number of
common height-zero points for any pair of distinct height functions hy, hy : P1(Q) — R
that arise from continuous, semipositive, adelic metrics on the line bundle Op:(1).
There is a natural Arakelov-Zhang pairing between any two such heights, given by
the intersection number of the associated metrized line bundles. Our heights are
normalized so this intersection number, which we denote by h; - ho, will satisfy

hy - hy > 0 with equality if and only if hy = hs.

Details on these heights and the pairing are given in Section 2. The value of hy - ho
provides a notion of distance between the two heights (as was observed by Fili in
[Fi]). It follows from equidistribution [CL1, FRLI1, BR] that

n—oo

for any infinite sequence of distinct points z, € P'(Q) such that hy(z,) — 0 as
n — 00, suggesting that large numbers of common zeroes between hy and hg will imply
that h; and hy are close. However, this measure of closeness between two heights is
not generally uniform in families of heights, because the rate of equidistribution is
not uniform. Nevertheless, by bounding the height pairing h; - ho from below, we can
obtain an upper bound on the number of common zeroes for certain families.
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In the context of Theorem 1.5, we consider the family of height functions h, on
P'(Q) induced from the Néron-Tate canonical height on the elliptic curve F;, for
t € Q\ {0,1}; its zeroes are precisely the elements of 7(E}°"*). We implement this
general strategy by proving three bounds on the intersection pairing fltl . fztg. We
prove a uniform lower bound on the pairing:

Theorem 1.6. There exists o > 0 such that
he, - hyy >0
for all t; #t5 € Q\ {0,1}.
We also prove an asymptotic lower bound for parameters ¢; and t, with large height:

Theorem 1.7. There exist constants c, 8 > 0 such that
i:l’tl : i:l’tQ Z ah’<t17 t2) - /8
for all t; # ty in Q\ {0,1}. Here h(ty,ts) is the naive logarithmic height on A?(Q).

We find an upper bound that depends on the number of common zeroes of iLtl and
h:, as well as the heights of the parameters ¢; and ts:

Theorem 1.8. For all € > 0, there exists a constant C() > 0 such that

he, - hey < (5 + %) (h(t1,t2) + 1)

for all t; and ty in Q\ {0,1}, where N(ty,ty) = |7T(Eflo’"s) N W(Eg”s”,

The three theorems combine to give a uniform bound on the number N(ti,ts) of
common zeroes of hy, and hy, for all t; # t, in Q \ {0, 1}.

Theorems 1.6 and 1.7 follow from estimates on the local height functions and the
local equilibrium measures on the v-adic Berkovich projective line at each place v of
a number field containing #; and t5, computed using the dynamical Lattes map f; :
P! — P! induced by multlphcatlon by 2 on a Legendre curve E;. The non-archimedean
contributions to htl th turn out to be straightforward to compute for these heights.
Significant technical issues arise when v is archimedean and both parameters ¢; are
tending to the singularity set {0, 1,00} for this family; we resolve these issues by
appealing to the theory of degenerations of complex dynamical systems on P*(C), in
which a family of complex rational maps degenerates to a non-archimedean dynamical
system acting on a Berkovich space, as in the work of DeMarco-Faber [DF1] and Favre
[Fa], using the formalism of hybrid space as discussed by Boucksom-Jonsson in [BJ].

For Theorem 1.8, we expand upon the quantitative equidistribution results of Favre-
Rivera-Letelier [FRL1] and Fili [Fi] to analyze the rates of convergence of measures
supported on finite sets of zeroes of a height h to the associated equilibrium measures
at each place v. To do so requires control on the modulus of continuity of the local
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heights, and again we rely on estimates from the hybrid space to treat the cases where
a parameter t is tending to one of the singularities for the family F;.

Although Theorem 1.6 alone was not enough to prove Theorem 1.5, it implies a
uniform bound of a different sort, when combined with Zhang’s inequality on the
essential minimum of a height function [Zh2]:

Proposition 1.9. Choose any b satisfying 0 < b < §/2 for the § of Theorem 1.6.
Then the set

S(b, tr,ty) == {x € PHQ) : hu, (x) + Iy, () < b}
is finite for each pair t; # t, € Q\ {0,1}.

The complete proof of Theorem 1.5, however, gives a much stronger statement:
we obtain a uniform bound on the size of the set S(b,t1,ts) defined in Proposition
1.9 over all pairs t; # to € Q\ {0,1}; see Theorem 8.1. This in turn provides a
uniform version of the Bogomolov Conjecture for the associated family of genus 2
curves. The Bogomolov Conjecture was proved for each individual curve X over Q
in [Ul, Zh1]. To state our result precisely, we fix ample and symmetric line bundles
on the family of Jacobians J(X) for the genus 2 curves X defined over Q that we
consider in Theorem 1.1. Specifically, we take Ly = ®*Lp for the isogeny ¢ :
J(X) — Ey x Ey of Proposition 9.1, with Lp the line bundle associated to the divisor
D = {0} x Ey + E; x {Os}, where O; is the identity element of E;.

Theorem 1.10. There exist constants B and b > 0 such that
[{z € jp(X)(Q) : hry(z) <b} < B

for all smooth curves X over Q of genus 2 admitting a degree-two map to an elliptic
curve and all Weierstrass points P on X, where hr, is the Néron-Tate canonical
height on the Jacobian J(X).

Finally, we mention that we implement this general strategy towards uniform
boundedness in a follow-up article [DKY] in another setting, providing a uniform
bound on the number of common preperiodic points for distinct polynomials of the
form f.(z) = 2% + ¢ with ¢ € C.

Remark 1.11. We have chosen to work with the Arakelov-Zhang pairing ﬁtl . izb to
measure proximity of the two height functions, with t; # ¢5 in Q \ {0, 1}, but there
are other choices we could have made. For example, Kawaguchi and Silverman in

[KS] study

~

) (ﬂtl,ﬁt2> = sup |hy(z) - ha, (z)] -

zeP!(Q)
It turns out that the two quantities are comparable for this family of heights. The

upper bound ﬁtl . iLtQ <9 (fztl, f%) can be seen as a corollary of arithmetic equidis-

tribution and (1.3), and therefore holds for any pair of normalized heights coming
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from continuous, semipositive adelic metrics on Op1(1). A lower bound of the form
lAztl . iLtQ >0y 0 (ﬁtl, ﬁt2> — (5 for positive constants C7,Cs, and for all ¢; # 5 in

Q\ {0,1}, is a consequence of Theorem 1.7, when combined with [KS, Theorem 1].
However, such a lower bound does not hold for all pairs of heights coming from met-
rics on Opi1(1). A comparison of these two pairings is addressed further in [DKY], for
the canonical heights associated to morphisms of P!.

Outline of the paper. We fix our notation and provide background in Section 2.
Sections 3, 4, and 5 provide the estimates on local height functions and local measures
needed to prove all of our theorems. Theorem 1.7 is proved in Section 6, and from
it we deduce Theorem 1.6 and Proposition 1.9. A generalization of Theorem 1.8 is
proved in Section 7 which treats points of small height, not only of height 0. We
prove Theorem 1.5 in Section 8 and finally Theorems 1.1 and 1.10 in Section 9.
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2. HEIGHTS, MEASURES, AND ENERGIES

This section develops the background and notation needed for the proofs that
follow. Throughout, K is a number field and M its set of places.

2.1. The canonical height. Fixt € Q\{0,1}. Let E; be the Legendre elliptic curve
and 7 : E; — P! the projection defined by 7(x,y) = z. The multiplication-by-two
endomorphism on E, descends via 7 to a morphism of degree 4 on P! given by

B (:L,Q _ t)2

Cdx(z - D(z—t)

The canonical height on the elliptic curve

(2.1) fi(z)

~ J—

hEt . Et(@) — R

can be defined via the projection 7w and the iteration of f; as hg, (P) := %ﬁt(ﬁ(P))
where

he: PL@Q) = R
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is the dynamical canonical height defined by

~

(2.2) ho(x) = lim —h(f(x)).

n—oo 4m

Here, h is the (logarithmic) Weil height on P'(Q). Note that h,(z) > 0 for all
r € PY(Q), and

~

hi(z) =0 <= z € 7(El"™)
[Si], [CS].

The height h; has a local decomposition as follows: for any number field K con-
taining ¢, and for each place v € My, there exists a local height function \;, such

that
he(z) = Z | Gal(f;K) g Z Ato(Y)

vEMEK y€Gal(K/K)-x

for all € K, where

[Kv @'U]

[K:Q]
The local heights );, can be chosen to extend continuously to P'(C,) \ {co}, where
C, is the completion (w.r.t. v) of an algebraic closure of the completion K,, and to
satisfy

Ty 1=

No() = log|al, + O(1)

as |z|, — oo.

2.2. Local heights and escape rates. To compute the local heights, we will often
express the maps f; : P! — P! of (2.1) in homogeneous coordinates, as

Fy(z,w) = ((2° — tw?)? 4zw(z — w)(z — tw))
for z and w in C,. As observed in [BR, Chapter 10|, its escape-rate function
1
(2.3) Gro(z,w) == lim — log || F)* (2, w)||s,
n—oo 4M

where ||(z,w)l|, = max{|x|,, |y|,}, satisfies

ho(w) =) T ATE Y Gru®)

vEMK §€Gal(K/K)-&

for € P(K) and 7 any choice of lift of x to K \ {(0,0)}. In particular, we may
take

(2.4) Aio(x) = Gpo(x, 1)

as a local height for hy.
The elliptic curves £; and E,_, and E); are isomorphic, with the following trans-
formation formulas for the local heights:
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Proposition 2.1. Fiz any number field K and v € My. Then, for allt € K\ {0, 1},
we have

Gr 0v(1—2,1) =GR (z,1) = Gpl/tyv(z,t) = Gpl/tm(z/t, 1) + log |t|,.
Proof. Let A be the automorphism A(z,w) = (w — z,w). Then
AoF'=—F",0A
for all iterates, proving the first equality. Similarly, let B(z,w) = (z,tw). Then
BoF!'=F},0B

for all iterates, proving the second equality. The final equality follows from the
logarithmic homogeneity of G. U

2.3. The Berkovich projective line. Let K be a number field. For each v € Mk,
let AL* denote the Berkovich affine line over C,,. For non-archimedean v, the points of
AL come in four types. The Type I points in A" are, by definition, the elements
of the field C,. The Type II points are in one-to-one correspondence with disks
D(a,r) = {z € C, : |x — a|], < r} with > 0 rational, and these are the branch
points for the underlying tree structure on Al®*. The Type III points correspond
to disks D(a,r) with r irrational. (We will not need the Type IV points in this
article.) A Type II or III point corresponding to D(a,r) will be denoted by (,,. The
Gauss point (p; is the Type II point identified with the unit disk. The Berkovich
projective line PL@ = AL J {oo} is the one-point compactification of A" which
is a canonically-defined path-connected compact Hausdorff space containing P'(C,)
as a dense subspace. If v is archimedean, then C, ~ C and P.*" = P*(C).

For each v € M there is a distribution-valued Laplacian operator A on P, The
function log™ |z|, on P!(C,) extends naturally to a continuous real valued function
Pl — R U {oo}, and the Laplacian is normalized such that

A10g+ |Z|v = Wy — 600

on PLe" where w, = mg1 is the Lebesgue probability measure on the unit circle when
v is archimedean, and w, = dg is a point mass at the Gauss point of P1*" when v
is non-archimedean. A probability measure j, on PL%" is said to have continuous
potentials if p1, — w, = Ag with g : P1*" — R continuous. The function g for p, is
unique up to the addition of a constant. See [BR, Chapter 5] for more details. Note
that the Laplacian used here is the negative of the one appearing in [PST] and [BR],
but agrees with the usual Laplacian (up to a factor of 27) at the archimedean places.
For v non-archimedean, we set

H := Al \ C,.
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The hyperbolic distance dyy, on H gives it the structure of a metrized R-tree and
satisfies

dhyp(Caml) Ca7r2) = log(rl /r2)

for any a € C, and any r; > r, > 0. We will say that a probability measure pu, on H
is an interval measure if it is the uniform distribution on an interval [(, (3] C H with
respect to the linear structure induced from the hyperbolic metric dyyy,.

2.4. Canonical measures and good reduction. For each Legendre elliptic curve
E; with ¢ in a number field K and each v € M, the local height \;,, of (2.4) extends
to define a continuous and subharmonic function on AL with logarithmic singularity
at oo. We have

A)\t,v = Htov — 500

on PL*" where y, is the canonical probability measure for the dynamical system f;
at v [FRL1], [BR, Theorem 10.2].

For archimedean v € My, the measure p, is the unique f;-invariant measure
on P}(C) achieving the maximal entropy log4. It is the push-forward of the Haar
measure on [;(C) via the projection 7 introduced in §2.1. See, for example, [Mi] for
a dynamical discussion of the maps f; on the Riemann sphere.

For non-archimedean v € Mk, if the curve EF; and the map f; have good reduction,
the measure p, is the point mass dc supported on the Gauss point (p;. The map
f+ has potential good reduction, meaning that it has good reduction under a suitable
change of coordinates on P!, if and only if the measure i, is supported at a single
Type II point in H. In general, the support of i, , is equal to the Julia set of f; in
Plan,

Recall that the j-invariant of the elliptic curve E; over C is given by

(25) i) =2

For t € K and non-archimedean v € M, the map f; has potential good reduction at
v if and only if the curve E; has potential good reduction at v. This equivalence can
be proved via equidistribution of torsion points on E; at all places [BPe, Theorem 1]
(thus implying that the measure p,,, will also be supported at a single point of PL")
or via a direct calculation showing that the Julia set of f; is a singleton if and only if

i(0)] < 1.

2.5. The height as an adelic metric. Suppose t € K \ {0,1}. The height &, on
P!(Q), introduced in §2.1, is induced from an adelic metric on Opi(1), in the sense
of Zhang [Zh2]. Fixing coordinates on P! and a section s of Op:(1) with (s) = (00),
then a metric || - ||t can be defined at each place v of K by setting

—log [s(2)llt0 = Aro(2) = Grp(z, 1),




10 LAURA DEMARCO, HOLLY KRIEGER, AND HEXI YE

for the function G, , of (2.3). The height h, satisfies
Ty

Mo =3 e Closllswll

vEM y€Gal(K/K)-x

for all  # oo in PY(Q). Writing A\;,(2) = log|z|, + ¢, + o(1) as |z|, — oo with a
constant ¢, at each place v of K, we may compute that

(26) 0= ;Lt<OO) = Z Ty Co,

veEMK

because oo is the projection of the origin of Ej.

2.6. The intersection pairing. For these heights hy coming from the Legendre
family of elliptic curves, with t € Q \ {0, 1}, we have

(27) iLtl - ;LtQ <~ tl - tg.

Indeed, any height coming from an adelic metric on Op: (1) is uniquely determined, up
to an additive constant, by the associated curvature distributions; see, for example,
the construction of a height function from the measures in [FRL1]. For heights of the
form hy, at each archimedean place v of a number field containing ¢, the curvature
distribution g, on P*(C) is the push-forward of the Haar measure on E;(C) by 7; it
therefore has a greater density at the four branch points {0, 1,¢,00} of 7, and thus
determines .

There is a well-defined intersection number between any pair of such heights, as in
[Zh2] (see also [CL2]); more precisely, it is the arithmetic intersection number of the
two associated adelically metrized line bundles. By the non-degeneracy of this height
pairing and (2.7),

(2.8) iLtl . ith > 0 with equality if and only if t; = t5,

as computed in [PST].

To define the pairing hy, - hy,, we fix sections s and u of Opi(1) such that their
divisors do not intersect. Given ¢; and ¢, in a number field K, and a place v of K,
we set

<]A1t17ilt2>f;’u = /log ”8“;:}11 A(log Hu”t_z}v) = <iLt27 iLt1>Z7S'

The integral is over the Berkovich analytification P of P!, over the field C,. The
metrics satisfy

A(log HSH;}) = Mty — 5(8)7
and fi;, is the associated curvature distribution.
The height pairing is then defined as

(2.9) hoy - ey 1= T, (1)) + Ty ((5)) + Z vy (g hey) 3"

vEM g
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which is independent of the choices of s and w. This pairing is easily seen to be
symmetric, and since h;(oco) = 0 for all ¢, it can be expressed as

b by = (o) + 3, / GogllslliL) diye = 3 70 / Mvw ditey

veEMg vEME

210) = o)+ 3 [Ooglsleh i = Y r [Awdi
vEMK vEM K
when (s) = (00).

~

As hy-hy =0 for all t € @\ {0,1} from (2.8), note that

(2.11) > rv/At,v iy =0= Y rycy,

vEMK vEMK

by combining (2.10) and (2.6). The pairing can be rewritten as:

~ ~ 1/~ ~
htl 'htz = 5 (th(OO) + ht1<oo> + Z T (/ >‘t1,v d,utz,v + /)‘tz,v de))
vEMK
1
(2'12) = 5 Z Ty </ (AtlﬂJ - /\tz,v) dﬂtmv + / ()‘twu - /\t1,v> dlubthv) :
veEMK

The advantage of working with (2.12) is the following local version of the non-
degeneracy property (2.8):

Proposition 2.2. [FRL1, Propositions 2.6 and 4.5] Let K be a number field and
v € Mg. For any ty,ts € K\ {0, 1}, the local energy

1
E’U(tlatQ) = 5 </ ()\tl,’l) - Atg,’u) dll/tg,v + / ()\tg,’u - >\t1,v> dﬂthv)

is non-negative; it is equal to 0 if and only if py, » = fby.0-
Proposition 2.3. Let v € M, and fix t1,t € K\ {0,1}. We have
E,(tao,t1) = Ey(t1,t2) = E,(1 —t1,1 —to) = E,(1/t1,1/ts).
Proof. Given measures ju, , and [, ,, the local energy E,(t1,%2) can be expressed as

1
—3 /g d(pty 0 — fizv)

for any continuous potential g of the signed measure 1, , — f4t, , because g = Ay, ,, —
At,» + ¢ for some constant c. We have

fice=ao fioa™

for a(z) =1 — 2z = a !(2), such that p;_;, = Qupiyr and g = Ay — Apo) o™ is a
potential for the measure fi1_4, » — ft1-1,0. Therefore, E,(1 —t1,1 — to) = E,(t1,12).
Similarly, we have fi,(z) = ao f; o a™!(z) for a(z) = z/t, so E,(1/t1,1/ts)

E,(t1,ts). O
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2.7. Measures and mutual energy. Suppose that v; and v, are signed measures
on P!(C) with trace measures |v;| for which the function log|z — w| € L' (11| ® |va])
on C?\ Diag. The mutual energy of vy and v, is defined in [FRL1] by

(2.13) (v1, 1) := —/ log |z — w| dvy ® dvs.
C2\Diag

This definition extends to the non-archimedean setting by replacing |z — w| with the
Hsia kernel 6, (z,w) based at the point at co. In this way, for v € MY, a pairing is
defined similarly as

(2.14) (1, 9), == —/ log d,(z,w) dvy ® dvs.
A" x A9\ Diag

See [FRL1, §4.4] and [BR, Chapter 4].
For measures v; of total mass 0 with continuous potentials on PL% we have

(V17V2)u = —/91 dvy

for any choice of continuous potential g; for v;. Further, (v1,15), > 0 with equality
if and only if vy = v, [FRLI1, Propositions 2.6 and 4.5]. Note that Proposition 2.2 is
a special case of this fact. Indeed, in this notation, the local energy F,(t,t,) defined
in Proposition 2.2 is given by

1
(2.15) Ey(ty, 1) = 3 (Btr 0 — Moo,os Htrw — Ptaw)v

at each place v of a number field containing ¢; and t5, for the canonical measures
introduced in §2.4.

The mutual energy (-, ), of (2.13) and (2.14) can also be defined for discrete mea-
sures. If F' = {xy,...,x,} is any finite set in a number field K, and v € M, then
denote by [F], the probability measure supported equally on the elements of F' C C,.
Then

(2.16) > 0 (Fln () = 3 7o D loglos =, =0

v i#j
by the product formula.

2.8. A metric on the space of adelic heights. The height pairing gives rise to a
metric on the space of continuous, semipositive, adelic metrics on Op: (1) [Fi, Theorem
1]. Given a number field K and any collection of probability measures {1, fven, on
PLa" with continuous potentials for which u, = w, at all but finitely many places
(where w, is a point mass supported on the Gauss point), then there is a unique
metric on Op:1(1) with curvature distributions given by {1, }yenrr,, normalized such
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that its associated height function h : P*(Q) — R satisfies h - h = 0 [FRL1]. The
height pairing between any two such heights is computed as

1
hl . h2 - 5 Z Ty (,ul,v — M2v, Hi10 — /fl2,v>v-

veEMK

Fili observed that a distance between h; and hs can be defined by
dist(hy, he) := (hy - ha)'/?.

Indeed, we have already seen that hy-hy = 0 if and only if h; = hs because of the non-
degeneracy of the mutual energy (-,-), at each place. Furthermore, dist(-,-) satisfies
a triangle inequality: at each place, the mutual energy induces a non-degenerate,
symmetric, bilinear form on the vector space of measures of mass 0 with continuous
potentials on P1*" and so the triangle inequality for dist(-,-) follows from an ¢
triangle inequality.

3. NON-ARCHIMEDEAN ENERGY

Throughout this section, we fix a number field K and a non-archimedean place
v € Mg, and provide a lower bound on the non-archimedean local energy defined in
Proposition 2.2:

Theorem 3.1. Forty,ty € K\ {0,1}, we have

log2 |t1/t2’v
6 log max{|ta|s, [t1|,}

for min{|ta|y, |t1],} > 1

4 log? [t /1]
E,(t1,t2) — < log|2], > g [t1/l2]v ol o
3 —610gmin{‘1§2‘v7 m,v} for max{| 2|v" 1‘1]}
Llog i1/l otherwise
\ 6 :

Equality holds for v {2 with min{|t; — 1],, [t — 1|,} > 1.
3.1. Measure and escape rate for v 1 2.

Proposition 3.2. Suppose t € K \ {0,1} and vt 2. Then f; has good reduction at
v if and only if [t(t — 1)|, = 1. If |t(t — 1)|, # 1, then f; fails to have potential good
reduction at v, and the canonical measure i, on PL*™ of f, is the interval measure
supported on

I { [Co.1, Coyee)  Sor [tle > 1 or |t|, <1,
[C0,1;C1,|1—t\u] for |1 —t], < 1.
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Proof. By Proposition 2.1, it suffices to treat the cases with |t|, > 1. By [FRL2, §5.1],
f1(I) = I and the action of f; on I is by a tent map of degree 2. That is,

Coyzr— for 1/2<r<1,

ft(COJtH;) = { <07|t|11,72r for 0 <r < 1/2
The proposition follows. O

We may now compute the local height N\ ,(2) = G, »(2z,1) on A" which is locally
constant away from the interval [0, 00) C Al-2",

Proposition 3.3. Suppose v t 2 is non-archimedean and |t(t —1)|, > 1. The escape-
rate function G, , satisfies

p

log |2, Jor |zly = [t]y
1 (log?|zl,
(3.1) Gra(z,1)=1¢ 35 ( og [1], +loglt|, | forl < |z|, <|t|,
1
_log |t‘v fOT |Z|v <1
\ 2

for all z € C,.

Proof. Let X\ be the continuous extension of the expression on the right hand side of the
formula (3.1) to A", By Proposition 3.2, p, is the interval measure corresponding
to [Co,15Co,¢,], and a direct computation shows that

AN = Hio — (500

Thus it suffices to show that G, ,(-, 1) and A agree at a single point. For any z, € C,
with |zo|, > |t|, define (z,,w,) := F*(z0, 1), so that

(3.2) (Zns1, Wny1) = Fy(zn, wn) = ((22 — tw?)?, 4zpwn (20 — ) (20 — twy,)).

Inductively,

n

|Zn|v = |ZU v = |t|v|wn|v > |wn|v

Consequently,

1 .
Grw(20,1) = 7}1_{204—71 log || F{" (20, 1)l = log |20]u = A(20)-

A similar application of Proposition 3.2 yields
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Proposition 3.4. Suppose v t 2 is non-archimedean and |t|, < 1. The escape-rate
function Gp,, satisfies

( log | 2], for|z], > 1
log? KR
(3.3) Gro(1) =4 "2loglt], +loglzly for |t|y < |zl, <1
1
—log|t|, for |z], < |t|,
\ 2

for all z € C,.

3.2. Proof of Theorem 3.1 for v { 2. We compute the local energy E,(t1,t2) by
cases.

Case (1): |t1], > 1 and [ts], < 1. Recall the local energy can be expressed as

QEU(tlatQ) = /1 ()\tl,v - )\tg,v) d,utg,v + /1 ()\tg,v - )\t1,v) d,utl,v-
]P,v,an ]P,v,an

Therefore by Proposition 3.2, 3.3 and 3.4,

2Ev(t17 t2) = /]P:I,ML (>\t1,v - )\tg,v) d,utg,v + /]P:l,an ()\tg,v - )\tl,v) d,utl,v-

0 log |t1], x? dx
— — - + x - @
log [t2]w 2 2 IOg |t2|v - log |t2|U
log|ta]v 1 x? dz
+ T — — + log |t
] ( > (1og|t1|v d ')) og [,

_ IOg |t1/t2|v

Case (2): |ti|, > 1 and |t2|, > 1. Without loss of generality, we assume that
|t1], = max{|t1|y, |t2],}. By Proposition 3.2 and 3.3,

2Ev(t17 t2) = / ()\tl,v - )\tg,v) d,th,U + / <)\t2,v - )\tl,v) d,ut]_,v'
]P)l an ]P)zl),an

1°g|t2|” 1 1 72 dx
— log |t - — log |ta], _
(2 (1 gl el ) 2 <1og|tzrv T log|fa >) Lo fa],
logltalo /1 72 1 2 dx
+ — + log |ta|, | — = + log |t1],
/0 (2 (1 el 8! 2‘) 2 (1og|t1|v ] )> og 1],
10g‘t1|u 1 ’ | dx
B
log [t2]w lo g|t1|v log‘t1|v

_ log® [t1 /ta],
3log max{|ti|e, [t2]o}
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Case (3): |ta(ts — 1)|, = 1 and |t; — 1|, > 1. In this case, f;, has good reduction, so
[t,.0 1S @ point mass supported on the Gauss point (p;. Hence

_ logltsful _ [log |t /ta]o]
3 3 .

2F,(t1,t2)

Case (4): The remaining cases reduce to the above three by the symmetry relations
of Proposition 2.3. This completes the proof of Theorem 3.1 under the assumption
that v 1 2.

3.3. Measure and escape rate for v | 2.

Proposition 3.5. Suppose v | 2 is non-archimedean. The canonical measure jiz, on
PLa of f; is the interval measure corresponding to the interval I with

[€o,j¢/410 > C0,J4]. ] for |t], <[16],,
I= [C0,|1/4|ﬂ, C0,|4t|v] for |t], > 1/[16],,
[C1,|17t|v/|4|m C1,|4|U] for [1 —t|, < [16],.

For |16], < |t|, < 1/|16], with |1 —t|, > |16],, fi(z) has potential good reduction, and

ey @8 supported on a single point in H.

Proof. We proceed as in the computations of [FRL2, §5.1], though the authors had
assumed for simplicity that the residue characteristic of their field is not 2. If |¢|, >
|1/16],, the interval [Co j1/4),, Co,ja¢|,] is totally invariant by f;, and

ft(Co,|4t\,,|16t\;T) = <0,|4t|v\16t\;2r and ft(§0,|4t\v|16t\r1) = CO,|4t\U|16t\;2T

for r € [0,1/2]. Thus p, is the interval measure on [(o1/4f,,Co,u,]. The cases
|t], < |16], or |1 — t|, < |16/, can then be deduced from Proposition 2.1.

For all |16/, < |t|, < 1/]|16], with |1 — ¢, > [16],, we have |j(t)], < 1, so f; has
potential good reduction. 0

Following the proofs of Propositions 3.3 and 3.4, from Proposition 3.5 we obtain

Proposition 3.6. Suppose v | 2 is non-archimedean. We have

(

log |z, for ||, > |4t],
1 (log? |4z,
(3.4) Gro(z1) =4 3 Tog [167], +logltly ) for 1/|4|, < |z|, < |4t],

1
5 log [t], for |zl < 1//4],

\
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for t with |t|, > 1/|16],, and

(

log [, for |zly > |4],

1 (log2 |42/t

55 a0 = 3 (Tt +logk) orldl, <lel, <1t/

1
5 log [t], for |zl < [t/4],

\

for t with |t|, < |16],.
3.4. Proof of Theorem 3.1 for v | 2. We compute as in the case where v { 2.

Case (1): {t1,to} with min{|t,|,, |t2],} > 1/[16], and max{|ti|,, |t2],} > 1/|16],.
Proposition 3.6 yields

log? |t1/tsl, log? |t1 /ts),
2 By (th, t) = 0g” |t1/ts] > og” [t1/ts] .
3log max{|16ty],, |16ta],} — 3log max{|ti|,, |t2].}
Case (2): |t1], > 1/]16|, and |t2|, < |16],. Again by Proposition 3.6,

log |16t4], — log |t2/16], B
3

log ’tl/t2’11

2F,(t1,t2) = 3

log16], >

Case (3): [ti], > 1/[16]u, |16], < |ta]o < 1/|16], and |1 — ta], > |16],. Let ¢, € H
be the support of pi,,. For any z € C, with |z|, > 1/]4],,

-t
|42(z — 1)(z — t2)]s

| fe ()]

> |2]p.

Hence (o141, € [Gy,00). Let 29 € C,, with |2], > 1/|4],, and let (2, wy) := F{¥ (20, 1).
From the recursive formula (3.2), inductively we have |z,| = |20l)" > |wnl|o/|4]o-

Consequently

log || E}* ||
)\t27v(z) = Gth,v(Za 1) = lim og || nt2||

n—00 4

= 10g|z|v

for z with |z|, > 1/|4],, and then Ay, (o) = logr for r > 1/]4|,. Moreover, as
ANy p = (5<t2 — 00, the function ), , is increasing at a constant rate along the ray
[Ct,, 00), with respect to the hyperbolic metric. Therefore Ay, ,(Cty) < Aiyw(Co1/j4,) =
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—log|4|,. Hence by Propositions 3.5 and 3.6,

2 Ev(tb t2) = /1 (/\tl,v - )\tz,v) d,utg,v + / ()\tg,v - )\tl,v) d,utl,v-
Pv,an

Py
= (/\tl,v(glb) - /\t2,v(gt2>>

log |4t1 | 1 (.T + 10g |4| )2 du
B T
log |1/4], 2 log [16t1, ] log [16t1,

log |16t4],

>
- 3

Here we have used Ay, (G,) < —logl|d], and Ay, () = 3log|ti], for the last in-
equality.
Of course, for |16], < |t;], < 1/|16], and |1 — t;], > |16|, for i = 1,2, we have
|log |t1/talu| , 8

2E,(ht2) > 0 > 0 S log 2],

Case (4): The remaining cases reduce to the above three by the symmetry relations

of Proposition 2.3. This completes the proof of Theorem 3.1.

4. ARCHIMEDEAN PLACES AND THE HYBRID SPACE

In this section, we provide some of the estimates we need to control the archime-
dean contributions to the height pairings. Throughout this section, we assume our
parameter ¢t € C\ {0,1} is complex. We let p; denote the probability measure on
P!(C) which is the push forward of the Haar measure on the Legendre elliptic curve
Ei(C) via m(z,y) = x. This measure is also the unique measure of maximal entropy
for the dynamical system defined by the Lattes map

(2~ v
4z(z—1)(z —t)’

fi(z) =

as noted in [Mi, §7]. We study degenerations of the probability measures u; and
their potentials as t — 0. (The cases of ¢t — 1 and ¢t — oo are similar.) To this
end, we consider the action of f; sending (¢, z) to (¢, f;(z)) on the complex surface
X = D* x PY(C), where D* is the punctured unit disk. We make use of the hybrid
space X™® in which the Berkovich projective line over the field of formal Laurent
series C((t)) creates a central fiber of X over ¢t = 0 in the unit disk D. We appeal to
the topological description of the hybrid space from [BJ] and the associated dynamical
degenerations described in [Fa].
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4.1. The family of Lattes maps and their escape rates. In homogeneous coor-
dinates on C2, recall that the maps f; may be presented as

Fy(z,w) = ((2° — tw?)? 4zw(z — w)(z — tw)) ,
for t € C\ {0,1}. They have escape-rate functions

(4.1) Gri(z,w) = Jim - 1o0g | F (2, )],
as in (2.3).

View the families f; and F; as maps f = fr and F = Fr defined over the field
k = C(T), and consider the non-archimedean absolute value | - | on k satisfying

|g(T)|o = e~ 9. Let ky = C((T)) denote the completion of C(T) with respect to
this absolute value. Let L denote a (minimal) complete and algebraically closed field
containing ko. The non-archimedean escape rate G on L2 is defined as in (2.3). Since
|T|o < 1, it is given for = € L by the following formula, exactly as in Proposition 3.4:

( log |x|o for |x|o > 1
. : log ||y — (oglelo)® ¢ T < |zlo < 1
(4.2)  gs(z) :=Gp(z,1) = o 21og |To

1

\ 510g|T|0 for |ZE‘0 < ‘T’O

([ —a for |z]p = |T'|§ with a <0

_ —atg a? for |z)o = |T)s with 0 < a <1
1

. for |z]p = |T'|§ with a > 1

\

The function gy extends naturally to the Berkovich space IP’IlL’a"; away from the point
at oo, it is a continuous potential for the equilibrium measure fiy of f.

The potential §; and the measure /i; are invariant under the action of Gal(IL/ky) on
IP’H{’M. They descend to define a function and probability measure — that we will also
denote by g and /iy — on the quotient Berkovich line IP’IIC;I" (see [Be, §4.2] for details
on this quotient map). As computed in Proposition 3.2, the measure /is is supported
on the interval [(o 7, Co,1], and it is uniform with respect the linear structure from
the hyperbolic metric.

4.2. Convergence of measures. The family f; acts on the product space D* x P!
sending (¢, 2) to (¢, f(z)). It extends meromorphically to X, := D x P!, or indeed to
any model complex surface X — D which is isomorphic to D* x P! over D* and has
a simple normal crossings divisor as its central fiber.

Fixing a surface X — D and letting ¢ — 0, the degeneration of the measures p;
of maximal entropy for f; — or indeed for any meromorphic family of rational maps
on P! — to the central fiber of X is now well understood. In [DF1, DF2], the limit
of the measures p,; is computed for any choice of model X, and a relation is shown
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between these limits and the non-archimedean measure fi¢. In particular, if we define
the annulus

Ai(a,b,0) :={z€ C: CHt|" < |2| < Ot|"}
for t € D*, C' > 1, and real numbers a > b, then
(4.3) p(Ae(a, b, C)) = fig([Co,ria, o rpp]) = lengthg ([0, 1] N [b, a])

as t — 0. This follows from [DF1, Theorem B] (allowing for changes of coordinates
on P! and base changes, passing to covers of the punctured disk D*) or from the
computations described in [DF2, Theorem D] (taking T to be a vertex set in the
interval [Co.1, Co,r),]). Another proof is described below in §4.3. In particular, this
convergence implies:

Lemma 4.1. Given any € > 0 and integer n > 1, there exists 6 > 0 such that
1 , , 1
L e < (Y < el < 1Y) < e
n n

for all0 < |t| <6 andi=0,...,n— 1.

Taking € = 1/n? in Lemma 4.1, we observe that for any given n, there is a § > 0
such that we also have

(4.4 " ({|z| > 13Ul < |t|}) <

for all 0 < [t] < §.

SRS

4.3. Convergence in the hybrid space. In [Fa], Favre gives an alternate proof of
(4.3) by showing that

(4.5) 'y

weakly in the hybrid space X [Fa, Theorem B]. The hybrid space consists of replac-
ing the central fiber in the models X above with the Berkovich line ]P’,lcgm, carrying an
appropriate topology. The convergence of measures follows from the convergence of
their potentials to the potential of the measure ji; in the Berkovich line. We describe
this convergence here, as we will use it for proving our main result.

Let m; denote the Lebesgue measure on the unit circle in C, normalized to have
total length 1. Let ®;(z) denote a continuous potential on P'(C) for the measure
iy — my. Explicitly, in local coordinates z € C C P!, we can take

(4.6) y(2) = Gp,(2,1) —log™ |2
with G, as in (4.1). In [Fa], Favre proves that the function

_ Pu(2)
log [¢[~*

(4.7) o(t, z)
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extends to define a continuous function on X"°, taking the values of a potential of

the limiting measure fiy — wy on the central fiber. Here wy is the delta mass on the

Gauss point ¢y of the Berkovich line ]P’,lcf". More precisely, we consider the function

(0 ) for |z|o > 1
(4.8) pr(x) = 1log|w|o - % for |Tlo < |zfo <1
| §log IT|o for |x)o < |To
(0 for |x|o = |T'|§ with a <0
_ —a+%a2 for |z]p = |T']§ with 0 <a <1
\ —% for |z]p = |T'|§ with a > 1

for x € L, similar to the formula for g, in (4.2). This function ¢ extends continuously
to all of PP it is Galois invariant over ko; and it descends to the quotient P,ﬁ’oa".
Favre’s theorem implies that the function ¢ of (4.7) extends continuously to X"¥°,
coinciding with ¢ over ¢t = 0:

Proposition 4.2. Given any € > 0, there exists 6 > 0, such that

}@(ta z) = @p(Coyria)| <€
for all 0 < |t| <6, for all a € R, and all z for which

log || =

log|t]

Proof. Recall that the absolute value | - |o on L induces a continuous function on the
Berkovich space that we will also denote by | - |o : P,lﬁ;“” — Rsp U {oo}. We use
the standard absolute value | - | on C, extended to a continuous function P!(C) —

RZO U {OO}
The topology on P,ﬁ;}‘m is such that annuli of the form

A(ry,ra) = {z € P™ 11y < |zfo <12}
are open for any choice of 0 < r; < ry < 00, as are the Berkovich disks of the form
Dy(r) :=={z € ]P’i;m zlo < r}and Doo(r) :=={z € IP’,lgf" Dlo >}
for any 0 < r < co. The topology on X" is such that an annular set of the form
{(t,2) € D* x PY(C) : [t]*™ < |2 < [t|*° and 0 < |t| < 6} U A(|T)a+, |T|8~°)

is an open neighborhood of (o rja on the central fiber for any a and any 4 > 0.
Similarly, the disk-like sets

{(t,2) e D* x P(C) : |2| < [t|* and 0 < || < 6} U Do(|T|§)
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and

{(t,2) e D* x PY(C) : 2| > [t|* and 0 < [t| < 6} U Doo(|T']3)
are open for any a € R, and allowing a and § to vary provides open neighborhoods at
0 and oo respectively in the central fiber. See [BJ, §2.2 and Definition 4.9] for details
on the hybrid topology. Note in particular that the hybrid topology restricted to the
central fiber induces the usual (weak) Berkovich topology.

By the continuity statement of [Fa, Theorem 2.10] and exhibiting ¢ as a uniform
limit of model functions ([Fa, Section 4.3] provides the details in the dynamical case)
the function ¢ extends to define a continuous function on X"*, taking the values
of ¢y on the central fiber. Let L denote the closed segment in IP’,lggm between 0
and co. We may by compactness cover L by finitely many neighborhoods on which
lo(x) —p(y)| < e. As the values of ¢ depend only on the values of ¢ on L, each open
neighborhood of a point in the interior of L contains an open interval in L, and ¢ is
constant near 0 and oo, we may assume these neighborhoods are annular or disk-like
as defined above. Thus we obtain a uniform § as claimed. U

As @4(2) = Gp,(2,1) —log™ ||, we also have a uniform continuity statement for G
when |z| is bounded from above:
Proposition 4.3. Given any e > 0 and M > 1, there exists 6 > 0 such that
Gr(z,1)
log [t|~*
for all0 < |t| <6, for all a € R, and all |z| < M for which
log|z|
log [t|

— g7 (Comig)| < ¢

a‘<5.

4.4. Discrete measures and regularizations. Let F' be any finite set in C. Denote
by [F] the probability measure supported equally on the elements of F', and for r > 0,
denote by [F], the probability measure supported equally and uniformly on circles of
radius r about each element of F'.

Proposition 4.4. For every ¢ > 0, there exists ¢ = c(e) > 0 such that
(e, [F]) = (e, [F;)] < & max{log|t| ™, log|t — 1|7", log|t], 1}
for allt € C\ {0,1} and any finite set F' in C and any
r<c min{|t|27 |t - 1|27 |t|_2}

Proof. For any x € C and any r > 0, let m,, be the probability measure supported
on the circle of radius r around z. Recall that

o) =- [ / Bl dole) dow)
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For each fixed ¢, the function Gf,(+,1) is a potential for y; in C, and therefore, there
exists a constant C} such that

/ log |z — w| du(2) = Gg(w, 1) + Cy.
C

Now let F' be any finite set in C. Then, assuming r < 1, we have

(s [F)) — G, [F]) = l—;,z(cw,l)— / GFt<<,1>dmx,r<<>)

_ % {FZ} (q%(g;) = / ,(¢) dmx,xo)
n %{ Z|<}(Gpt(:z:,l)—/Gpt(C,l)dmx,r(C))

because the function log™ |z| is harmonic away from the unit circle on C.
By Proposition 4.3, there exists § > 0 such that

GF (Z 1) "

4. — a 2
(4.9) Tog 1] gr(Coyrig)| </
for all |z| < 2 satisfying

1

oglel I _5s

log |1
and all |t| < ¢ and any a € R. Shrinking ¢ if needed, we have
(4.10) lp(t, 2)| < e/2

for |z| > 1 and all |t| < 9, by Proposition 4.2.

Let Cs be the compact subset of C \ {0,1} consisting of all ¢ with |¢| > ¢ and
[t — 1] > § and [1/t] > 6. Over Cs x P!, the family of potentials {®;} is uniformly
continuous. So there exists ¢; = ¢1(d) such that

|D(2) — Dy(2)] < e

whenever dist(z, z’) < ¢; and for all t € Cs. Here, dist represents the chordal distance
on P!. Furthermore, we may take ¢; such that we also have

|GFt(Za 1) - GFt<Z/7 1)| <é
for all |z — 2'| < ¢; with |z] <2, and all t € Cs. Thus

(e, [Fr) = (e, [F])| < &

for any choice of finite set F', t € Cs, and r < ¢;.
Now assume that [t| < 6. We will consider three cases. First, suppose |[t['*° <
|z] < 2. Choose any ¢ = () such that

(4.11) |log(1 + c261’5)| < d(logd ).
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Then

2z —z

log |2'/2|| = |log

g
z
(147
max < log ( 1 + )
z
t2
log(ljzczH)‘
2|

< max’log(l:l:@él_‘s)’
< O(logé™t) < dlog|t| ™t

2 —z

IN

log (1 —

)l

z

max

IN

for all |t| < 0. This is equivalent to

log|z|  log|'|

(4.12) <6

log[t|  log|t|
for all |z — 2| < e|t|? with [¢|'*° < |z] < 2. Combined with (4.9) and setting
a = (log|z])/(log|t]), this implies that

’GFt(Za 1) - GFt(z/a 1)’ < elog ’t‘_l
for such pairs z and 2’

Second, suppose that |z| < [¢[**°. By shrinking ¢, further if necessary, we have
ey < (1 —0%)/6, and therefore if || < || and |z — 2/| < cot|?, with [t| < 6, we also
have |2/| < |t|. Applying the convergence (4.9) where gy = —1/2, for all |z| < ||}
we have

|GFt(z7 1) - GFt<Z/a 1>| < elog |t|_1
for 2’ satisfying |2 — 2/| < ¢o|t|* and for all || < 4.
Third, for |z| > 2, by the convergence (4.10),
|Dy(2) — ®(2)] < elog [t
for all |z| > 2 and |z — 2| < ¢o|t]* and |t| < 4.
Together these three cases yield
| (e, [F)) = (pae, [F])] < elog J¢]

for any choice of finite set F' and all [t| < §, with r < co|t[*.
If |t — 1| < 6, the arguments above go through by replacing z with 1 — z, as

GFl—t(l —Z, 1) = GFt(Za ]_)
by Proposition 2.1. It follows that

|(pes [F)r) — (g, [F])] < elog |t — 1]*1
for any choice of finite set F, [t — 1| <, and r < ¢ |t — 1|2, with § and ¢, as above.
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For t near oo, more care is needed, as
Gr(2,1) =Gp,(2,t) =GR, (2/t, 1) + log|t]
by Proposition 2.1. Setting s = 1/t,

GFt<Z71) _ GFs<SZ71) —lOg’(‘Sl _ GFs(‘SZul)

— = 1.
log 1] log 5] logls| -~

From (4.9), we have

Gt oy )| <2
for |sz| <2, |s| <, and
logfsz] _ (1-a)|<d
log s ’

for any choice of a € R. Thus,

GFt(Z, 1) N
for all |z| < 2|t| satisfying
1
M —Qa < 5
log [t]
with [t] > §7! and any a € R. As in (4.10), we also have
|o(t, 2)] < /2

for |z| > |t| and [t| > 67!, because gf(gOJT‘(l)fa) +1=aforall @ > 1, from the formula
given in (4.2). The choice of ¢5 in (4.11) is similar. It follows that

(e, [Fr) = (pss [F])] < elog [2]

for any choice of finite set F and all |t] > 1/§, with r < ¢y [¢t|72.
Let ¢ := min{cy, ¢} to complete the proof. O

5. ARCHIMEDEAN ENERGY

As in Section 4, assume ¢t € C\ {0,1} is a complex parameter, with y; on P!(C)
the push-forward of the Haar measure on E;(C), and \(z) = Gp,(z,1) a potential
for p; — 0o on P1(C). In this section we provide estimates on the archimedean local
energy (introduced in Proposition 2.2)

Eu(s,1) == % (/()\s — M) dp + /()\t - )‘s)d,us> ,

for s,t € C\ {0, 1} as one or both of the parameters tends to 0, 1, or co. We treat
three cases separately: where only one parameter escapes into a cusp, where both
parameters escape into a cusp, and where the two parameters head to two different
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cusps. By the symmetry established in Proposition 2.3, we focus on the case where s
tends to 0.
Throughout, we work in hybrid space and make use of the convergence of potentials

to gy and measures to iy as t — 0, as proved in [Fa, Theorem B] and explained in
§4.3.

5.1. A single escaping parameter.

Theorem 5.1. Given € > 0 and any compact set C C C\ {0,1}, there exists 6 > 0

such that
1 1
(6 — 5) log [s| ™' < Eoo(s,t) < (6 —i—a) log |s|*

for all s satisfying 0 < |s| < 9 and all t € C.

Proof. Recall that for any s € C\ {0, 1}, we have defined ®,(z2) = Gp,(z,1) —log™ |2
n (4.6) and (s, z) = ®4(z)/(log|s|™!). For any pair s,t € C\ {0, 1}, the local energy
E.(s,t) satisfies

Eo(s,t) 1
S IR S O &, — d
log |s|~? 2log |s| 7! (/( ’ t)d'uth/( : S)dus)

1 P, D,
- = "t )4 — o, — du, ) .
5 (/ (%0(532) 1og|s|—1) ut+/10gls|_1 s /90(8,2) m)

Fix € > 0 and suppose that C C C\ {0,1} is compact. The ®; functions are
uniformly bounded for all ¢ € C' and all z € P}(C), so there is a § such that

Vlog!é‘! !

for all |s| < § and all t € C. We can also find a small » = r(C') such that

m{lzl <7}) <e
for all t € C. By Proposition 4.2, (shrinking ¢ if needed)

<e€

|o(s, 2)| <€
for all |z| > r and |s| < §, and

p(s,2)] <1
for all z and all |s| < §. Consequently,

D,
so(s,z>——) i < [ et ldmr [ ol 2l
‘/( logs|=t) """ (l=l<r} S P t

d
+/ :

log |s|~!
< 3e.

dpit
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Finally, by the weak convergence of p; — fiy and convergence of ¢(s, z) to ¢r, we
can shrink § again such that

} [ets.2vau— [ o

for all |s| < d. Recalling the formula for ¢, from (4.8), we have

o ! a? 1
/gpfd,uf—/o (—(I-{-?) da——g,

since the measure fi; is the uniform distribution on the interval [0, 1] in the a coordi-
nates, as described in §4.1. Therefore,

<e

1 1
(6 - 46) log |s| ™t < Eoo(s,t) < (6 —1—45) log |s|*

for all |s| < d and all t € C. O

5.2. Both parameters escaping to the same cusp.

Theorem 5.2. Given € > 0, there exists 6 > 0 such that

1 1\?2 1 1\?2
“(1=2) —¢)1 -l< R <[=(1=-= ] 1
(6( b) 6) og|s|7 < Ex(s,t) < (6( b) +€) og |s|

for all st satisfying 0 < |s| < |t| < 0, where b = (log|s|)/(log|t]) > 1.

For each real number b > 1, consider the function

0 for |z]o > 1
(log |z[)* b
op(z) = { loglzlo— Wlog [Ty for |T']g < |zfo <1
b
510g|T|0 for |z]o < |T'|}
0 for |z|p = |T'|§ with a <0
= —a+a?/(2b) for |x|p=|T|¢ with0<a<b
—b/2 for |x|o = |T'|§ with a > b

for all = € L. Note that ¢; = ¢y from (4.8). As with ¢, each ¢, extends naturally
to a function on the Berkovich projective line IP’,lc;‘m and is a potential of the measure
iy — O0c, where [, is interval measure on [C07|T|8’ Co.1) and d¢ is the delta-mass at the
Gauss point (p .
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For each b > 1, the non-archimedean local energy Fy(/i1, fip) is given by
- 1 L e s
Eo(fur, ) = 5 (/(901 — %) di, + /(901) - ¢1) dm)

(1og(|T1o/|715))”
—6log min{|T'|o, |7'[}
(b—1)?

6b
as computed in Theorem 3.1 (in the case v 1 2).

For s and t in C\ {0, 1}, if both s and ¢ are close to one of the three cusps, we
can estimate the archimedean local energy FE..(s,t) in terms of the non-archimedean
pairing using the degeneration description in hybrid space. We first prove a special
case of Theorem 5.2:

Proposition 5.3. Given € > 0 and B > 2, there exists 6 > 0 such that
(Eo(jin, ) — ) log [t]™" < Euo(s,) < (Eo(f, ) +€) log [t] ™
for all s,t satisfying 0 < |t|? < |s| < |t| < &, where b= (log|s|)/(log|t|) < B.
This proposition is an immediate consequence of the weak convergence of measures

e — fip in the hybrid space, and the convergence of potentials as described in §4.3.
We give the details to clarify how the bound b < B is used.

Proof. Fix ¢ > 0 and B > 2.
For s and t in the punctured unit disk D*, and for any 1 < b < B, consider

d 1 bd 1 (0] 1
_ Ft(z7 ) and bQO(S,Z) _ FS(Z7 ) o FS(Z’ )
log [t[~!

1 t : =
(5 ) 80( 7Z) 10g|8|_1 10g|t|_1 )

viewed as functions on the fiber {t} x C in the hybrid space. By Proposition 4.2,
there exists 0; > 0 such that

(5.2) ’90(757 z) — 951(C0,\T|g)
for all [t| < &y, @ > 0, and all [¢t|*"% < |z| < |[t|*7%'. In particular,

|o(t, 2)] < e/(4B)
for all |z| > 1 and all || < dy. It follows that

<¢e/(4B)

bp(s, z) = Gu(rys)

in the hybrid space as s and t tend to 0 with |s| = [¢|* and (log |2|)/(log|t]) — a,
uniformly in b for 1 < b < B. This is because the annulus

Ay(a,8) = {z € C: [t|**° < |2| < [t]%}
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for each fixed t € D*, § > 0 and a € R, can be written in terms of s as
Ay(a,8) ={z€C: |52/0H0/% < |2] < |s|“/b_5/b}
whenever |s| = |t|°. Therefore,

b(I)Fs (Z7 1)

(53) |b()0<87 Z) - ¢b<C0,|T|8>‘ = log |8|_1

- b@l(cole‘g/b> <be/(4B) <e/4

for all z € Ay(a, d1), as a consequence of (5.2). In particular,
bp(s, 2)| <e/4

for all |z| > 1 and all |t] < d;.

Recall that the measures j; on the fiber over ¢ converge weakly in X" to the
measure [i; on the central fiber. For each s with |s| = |t|°, let i denote the measure
associated to f, but viewed in the fiber {t} x P!. The measures y; converge to the
measure [, as t — 0 with |s| = |¢|°, and this convergence can also be made uniform
in b with b < B. That is, by Lemma 4.1, for any n there exists d, > 0 such that

1 1 , . 1 1
5.4 —-— =< D <o < MY < =+ =
(5.4 L < (O < el < ) < F
for all |t| < d9 and each i = 0,...,n. Note that this implies that

pelfle < YU (1] 2 1)) <

Therefore, we also have
1 1 bi , 1 1
- s (i+1)/n bi/n - -
(55) < T < 2] < ) <
and .
m Ll < Ul 2 1)) <

for all |t] < d,. Thus, the measure i, on small sub-annuli of the annulus {|¢t|* < |z| <
1} is controlled uniformly for all 1 < b < B.
Putting all the pieces together,

Ewlst) _ 1 ( / (b (s, 2) — lt, 2)) dus + / (p(t, 2) — bip(s, 2)) dui’)

log [t|=1 2

is within ¢ of
- 1 ~ o e L g b—1)>
Eo(fu, fip) = 2 (/ (6 — 1) diny +/(<p1 — ¥p) d,ub) = ( o )

for all ¢ sufficiently small and all s with |s| = |t|°, for any 1 < b < B. O

Here is an equivalent restatement of Theorem 5.2, expressed in terms of the growth
of [t|:
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Theorem 5.4. Given € > 0, there exists 6 > 0 such that

(b—1)* 1 (b—1)* 1
— < <
( o be | log|t|™ < Ex(s,t) < & +be | log|t|

for all s,t satisfying 0 < |s| < |t| < §, where b = (log|s|)/(log|t|) > 1.

Comparing Theorem 5.4 to the statement of Proposition 5.3, we see that we lose
the ability to bound the energy within a uniform € when b becomes large.

Proof of Theorems 5.4 and 5.2. Fix ¢ > 0.

As in the proof of Proposition 5.3, we make use of the weak convergence of measures
iy — f11 and convergence of the potentials ¢(¢, z) — ¢; in the hybrid space as ¢t — 0.
Recalling the formula for ¢ from (4.8), we have

1 2

a 1
bedily = —a+—\)da=-=
/W“f /o<“+2)a 3’

since the measure fi7 is the uniform distribution on the interval [0, 1] in the a coordi-
nates, as described in §4.1.
Choose r satisfying 0 < r < £/100. There is a d, such that

pe({lz] < [t]}) < /50
and
lo(t, )| < /50 for |z| > |t
and
lo(t, z)| < % + ¢/50 for all 2z
for all [t| < §y. Thus, for s € C* with |s| = |t|* and b > 1/r, we have
lbp(s, z)| < be/50 for |z| > |t
and
(s, 2)| < g + be/50 for all z

for all |t| < d5. By shrinking d, further if necessary, we appeal to the weak convergence
of measures p; — fi; in the hybrid space to deduce that

(5.6) ‘/@(t, z) dpe + %‘ = ‘/s@(t, z) dpy —/951 djiy

for all [t| < 0s.
Now fix B > 1/r, and recall that » < /100, so that

[

< ¢/10

(5.7) m 5

< be/50
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for all b > B. For this B, we can find a g > 0 such that Proposition 5.3 is satisfied
for all 0 < |s| = [t|® < || < dp with 1 < b < B. Choose any § < min{dg, d»}, and we
obtain the theorem for b < B.

Now suppose b > B. We will estimate

Eul(s,t) _ 1 ( [ tts.2) = olt.2) du + [ (o(2,2) = bo(s. ) d“f)

log|t|-t 2

for all |[t| < § and any s with |s| = [¢| by estimating the two integrals separately.
As shown above,

lbo(s, z) —@(t,2)| <1/24¢/50+be/50 < be/10
for all |z| > |t| and 0 < |s| = |t|® < || < § with b > B, and
lbp(s,z) —p(t,2)| <1/2+¢/504+0b/2 + be/50

for all z and 0 < |s| = |t|® < |t| < §. Writing the first integral as

/ (bp(s, 2) — (1, 2)) dpsy = / (bp(s, 2)— (. 2)) dpue+ / (bp(s, 2)—(t, 2)) dpu,

|z[=[¢] |2[<[¢]

it follows that
/ (bp(s,2) — olt, 2)) dp

forall b > B and 0 < |s| = [t|® < |t] < 6.
Write the second integral as

[tttz = vols.2)) s = [ oty — [ bp(s.2) d.

As |p(t, 2)| is bounded by 1/2 + £/50, we have

\ [ eteas

for all b > B. On the other hand, we have

[vets 2y =b [ ot du.

<be/10+ (1/2+¢/504b/2 4+ be/50)(¢/50) < be/5

1
< 5 +e/50 <be/25

so that
b
‘/bgp(s,z) duy + g‘ <be/10

for all 0 < |s| = [t|* < |t| < § from (5.6).
We conclude that
Eo(s,t) b
— = be/2
et g <t/
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for all b sufficiently large and all [¢| < §. On the other hand, we also have
b (b—1)?

6 6b
for all b > B by our choice of B, so the theorem is proved. OJ

< be/50

5.3. Parameters escaping to different cusps.

Theorem 5.5. Given € > 0, there exists 6 > 0 such that

1 1 B 1 1 .
Z Z) = < <[z Z
(6 (1 + b) 5) log |s|™" < Ex(s,t) < (6 (1 + b) —|—£) log ||

for all s,t € C satisfying [t| > 1/6 and 0 < |s| < 1/]t|, where b = —(log |s|)/(log|t]).

Proof. The proof is nearly identical to that of Theorem 5.2, working in the hybrid
space over a unit disk that we will parameterize by u € D. For fixed b > 1, ¢t = 1/u

and any s satisfying |s| = |u|®, consider the functions
GFl/u (’27 1) GFt(Za 1)
gu(z) = —1 =
log |ul log t|

and G (2.1)
z

bg,(2) = p=fs\ = 7

9s(2) log 5|

in the fiber {u} x P!
As computed in Proposition 3.3, the limit of g,(z) as v — 0 with |z| = |u|® is

—a for a < —1
Goo(a) =% (a®+1)/2 for —1<a<0
1/2 fora >0

As u — 0, the measures p/, on {u} x P' will to converge the canonical measure fio
for the map f = fi/u on the Berkovich projective line, working over the field C((U));
the measure fi, is uniformly distributed on the interval [ 1, C0»|U|81]’

As s — 0 with [s| = 1/|t|* = |u|’, b > 1, we have

bgs(2) — av(Co,uie)

for |z| = |u|®, exactly as in (5.3). The non-archimedean local energy is computed in

Theorem 3.1 as
. b+1

E(fiso, f15) = .

We conclude as in the proof of Theorem 5.2 that, for all given ¢ > 0, there exists
0 > 0 such that

b+ 1 b+ 1
(% - bs) log |t| < Ex(s,t) < <% + bs) log |t|

for all [t| > 1/6 and |s| = 1/|t|>. This completes the proof of Theorem 5.5. O
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6. PROOF OF THEOREMS 1.6 AND 1.7

In this section, we first prove Theorem 1.7, which states there exist constants
a, 8 > 0 such that

il/tl . Btz Z Oéh(tl,tg) — /6
for all t; # t5 in Q\ {0,1}. We then use this lower bound to prove Theorem 1.6 and
Proposition 1.9.

6.1. Balancing local contributions. Fix any r such that
0<r<1/16.

Fix t;,t, € Q\ {0,1}, and let K be any number field containing ¢; and t,. We split
the places Mg into “good” and “bad” subsets, depending on the pair 1, t5 and the
choice of r. Let Myo0q(t1,t2) be the set of places v € My with

|log [ta/t1],| > - max{|log [ta|,], [ log [t1]u]};

and set Mpaa(t1,t2) = Mg\ Mgood(t1,t2). We further decompose Myoo4(t1,t2) into its

archimedean (Mg, ) and non-archimedean (Mg, 4) places.

Lemma 6.1. There exists a constant Cy > 0 such that
3r
GEU(tl, tg) Z Z| log |t1/t2|v| — CQ

for any choice of t; and ty in Q\ {0,1} and for all v € M. ((t1,ts).

good

Proof. Let
2
‘T
and let ; be the minimum of the ¢’s from Theorems 5.2 and 5.5 for this choice of e.

Let 05 be the 6 of Theorem 5.1 for the compact set
{tE(C:51 S |t| S 1/(51 and |t—1’ 251}

in C\ {0,1}. Let dyp be the minimum of ¢; and d2, and let Cj be any real number
larger than log(1/dy).

Now fix t1,t5 and any number field K containing ¢; and t,, and fix a place v €
Mgsoa(ti ta) C My If 6 < [ti|, < 1/ for i = 1,2, we have

3r
6 Ey(ti,t2) > 0 > ZUOg!h/tzM—Co-

Asv e Mggod, if |t2’v < ‘tllv < 1, then

|t2|v = |t1|z < |t1|v for >r
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and therefore, by Theorem 5.2, if additionally |t1], < d1, then we have

b—1)2
6 By(t,ty) > (( ) 66)\1og|tlyf,y

2
b—1)r 12
> (8570 nos
3rb—1 3r
> 0 rog e = X tog
If |t1|, < &1 and |ta|, = 1/]t1]% for some b > 1, then by Theorem 5.5

(b+1) (b+1)r
4

3 3r
6 Ey(t,t2) > (T — 66) ]log\tlm > |log |t1]s] = Z!log\tl/tg\vk

if 07 < |t1], < 1/01, |t1 — 1], > 61 and [ts], < &9, we have by Theorem 5.1 that
3r
GEU(tl,t2> Z (]. — 6€)| IOg |t2|v| Z Z| log |t1/t2’v| — C().

Combining the above inequalities with the symmetry relations of Proposition 2.3, we
obtain

3r
6 Ey(t1,t2) > Z‘ log [t1/ta|v| — Co.

Lemma 6.2. There is a constant C > 0 such that

3 3r?
S BBt ts) > Zrh(tg/tl) - %h(tl,tQ) —C

UeMgood (tl 7t2)
for any t, # t, € Q\{0,1}.

Proof. Fix t; and t5 and any number field K containing them. For the non-archimedean
places v € M2 _(t1,t5), by Theorem 3.1, we have

good
6Ev(t17t2) > Hog |t2/t1|v‘ - 810g+ |1/2|v7
and thus
(61) Z GTUE’U(t17t2> 2 Z Ty (7n ’ | log |t2/t1‘v’ - 810g+ |1/2|v) .
UEMgQOOd(tl,tQ) UeMgoood(t17t2)

Now choose any integer Ny so that log Ny is larger than the Cy of Lemma 6.1, for

each archimedean v € Mg ,(t1,t2). We have

3r
6Ev(t1,t2> Z Z| IOg‘tg/tﬂv’ — 10gN0

for all v € Mgy, 4(t1,t2). With h the naive logarithmic height on Q, we set

1 1
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Then, we have

Z GT’va(tl,tg) = Z 6TUEv(t1,t2) + Z 6Tva<t1,t2)

vEMgood(t1,t2) UEMgOCO)Od(tl,tQ) vEMgOOd (tl,tg)
3r
> Z Ty Z! log [ta/t1]] — Z ro (8log* |2, + log™ [Nolo)
yeMgood(tl,t2) veMp

3r
= > ro 1 og [a/ta],| — 2C

veMgood (tl 7t2)

3 3
= > nTlloglto/tll = Y rTlloglta/tl] —2C
veEMp VEMpaq (t1,t2)
> 3 I gl = 0 2 max{[log k), llog a1} — 20
= 1 g [l2/11]v 1 axXq| log |i2|v|, | 1O |l1|v
veEMgk VEMpaq (t1,t2)
3r 3r2

> T 2h(tz/t1) — o 4 h(ty,t,) — 2C

For the last inequality, we use the facts that 2 h(z) = > | log |z|,| for nonzero

veEMg
x € K and
> ro max{|log [to]u], [og [ta]o]} < 2 (h(t2) + h(t1)) < 4h(ta, 1),
vEMK

6.2. Proof of Theorem 1.7. We begin with a standard lemma.

Lemma 6.3. There is a constant C' > 0, such that

to 1—1s 1
= > — —
h(tl, 1_t1) > o hity 1) = C

fort; #t, € Q\ {0,1}. Here the h is the naive logarithmic height on A%(Q).

Proof. Consider the birational transformation ¢ : P? --» P? defined in affine coordi-
nates by g(x1,zs) = (ve/x1, (1 — x3) /(1 — x1)), with inverse

1— 1—
g (Y1, y2) = ( 2wl yZ))

=Y Y1~ Y2

of degree d = 2. There exists a constant C' such that
h(g ' z:y:2) <(degg Dh(zr:y:2)+C=2h(x:y:2)+C

outside of the indeterminacy set for g~! in P? [HS, Theorem B.2.5]. The indeterminacy
set for g71 is {(0: 1:0),(1:0:0),(1:1:1)}. Therefore, letting (¢ : t5 : 1) =
g '(x :y:1) for some point (z:y: 1), we obtain

h(ty, ts) < 2h(g(ty,t,)) + C
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for all t; # t5 in Q\ {0,1}. In other words,

ty to—1 1
h|— —h(ti,1 ——C

O

Now fix t; # to in Q \ {0,1}. From Lemma 6.2, we know there is a constant C
(independent of ¢; and t3) such that

3 }Altl . iLtQ = 3 Z Tv tl: t2
vEMK
>3 > rE(ht)
UeMgood(tLtQ)
3r 3r?

(6.2) > Zh(tg/tl)—Th(tQ,tl) C

for any t; # t, € Q\{0,1}. Replacing ¢; in inequality (6.2) with 1 —¢;, for i = 1,2,
we also have

- A 3r 1—1t, 3r2
—ty hiy, 2 — — —h(l —t,. 1 —
iy 2 (120 ) - -1 - C

Combining this with Proposition 2.3, we find that

3 [1—t) 3
(6.3) 3ht1-ht22£h(1 ;)—%h(l—tz,l—tl) C.
— U

Consequently, by adding the inequalities (6.2) and (6.3), we have

t
6. thZ%( (tz/t1)+h(1 ;)) 3; (Wtat1) + h(1 — to, 1 — 1)) — 2C.
— U

Observe that there is a constant C’ > 0 from Lemma 6.3 such that

(tg/t1)~|—h( t2)>h<t2 L= t) L bt ) — "

1-1% ty 1 -t

Since |h(1 — ty,1 — t;) — h(t,t)| is uniformly bounded over all pairs t1,t, € Q, we
may combine the above inequality with the previous to conclude that

A
6 h, - e, > %h(tl,tg) — 302 bt ts) — 6C,

In other words,
he, - hey > (/16 — 12 /2)h(ts, t1) — C",
and the proof of Theorem 1.7 is complete by taking o« = r/16 —r?/2 and 8 = C”. [

Remark 6.4. If we set r = 1/16, the constant a > 0 in Theorem 1.7 can be taken
to be a = 1/512.
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6.3. Proof of Theorem 1.6. We will use Theorem 1.7 to deduce a uniform lower
bound on the height pairing h, - h; for all s # ¢ in Q \ {0, 1}.
Suppose there exist parameters s, # t, € Q such that

hs, - hy, -0 asn — oo.

Fix e > 0. For each n, choose a number field K,, containing s,, and ¢,,. By assumption
and non-negativity of the local energies E, (Proposition 2.2), there is N € N such
that for all n > N, the archimedean contribution to the pairing is less than e; that
is, for n > N,

Z Ty Ey(Sn, tn) < €,

veM}}on

recalling that r, = [[[(I;‘:gf] now depends on n.
Let M, be the set of archimedean places v in Mg such that Ey(Sn,tn) < 2€, noting

that for n > N, we have

Recall that the local energy E,(s,t) is continuous in s and ¢, and it vanishes if and
only if s =t. So there exists a ¢, depending only on €, so that, for each n > N and
for each place v € M, one of the following must hold:

(1) |ty — Snlo <9
(2) min{|s,|v, [ta]o} <9
(3) min{|s,, — 1|y, [t — 1|} < 0
(4) max{|sy|v, [ta]o} > 1/
Note that we can take 6 — 0 as ¢ — 0. We may then, for each n > N, choose a

subset M/ of M, for which s, and t, satisfy the same one of the four conditions at
all places v € M/, and such that

We conclude by the product formula that
1 1
max{h(s, — tn), h(sn, tn), (s, — 1,t, — 1)} > 3 log 5

It then follows from the triangle inequality, combined with shrinking our choice of ¢,
that we have h(sy,, t,) — oo. The inequality of Theorem 1.7 implies that hy, -hy, — 00
as well, a contradiction. This completes the proof of Theorem 1.6.
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6.4. Proof of Proposition 1.9. Fix a number field K, and fix t; # to in K\ {0, 1}.
Let || - ||; denote the adelic metric on the line bundle Op:(1) associated to the height
hy,. Let L denote the line bundle Opi (1) equipped with the metric (|| - [|1] - [|2)*/?2; its
associated height function is

h () = % (s (@) + oy ()

Zhang’s inequality on the essential minimum of a height function implies that

liminf hy(r,) > (g - hp)/(2des L) = 3 (- )

n—oo
along any infinite sequence of distinct points z,, € P'(Q) [Zh2, Theorem 1.10]. In
particular, the set
{z € PHQ) : hyy(2) + hyy(z) < b}

is finite for any choice of b < hy - hy.
By the linearity of the intersection pairing, we see that

1 1
4 4

Therefore, we may choose any b < §/2 for the § of Theorem 1.6, and the proposition
is proved.

. 1. . . 1. .
hZhZ: htl'ht1+§ht1'ht2+ htg'htgzihtl'hh’

7. PROOF OF THEOREM 1.8

Fix any b > 0 such that b < §/2 for the ¢ of Theorem 1.6. Recall from Proposition
1.9 that the set

(7.1) S(b,ty,ty) := {x € PHQ) : hy, () 4 he, () < b}

is finite for every pair ¢; # t, € Q\ {0,1}. Note that {0,1,00} C S(0,,,1,) so that
|S(b,t1,t5)] > 3 for all t; # ¢, in Q\ {0,1} and all b > 0. In this section, we prove
the following generalization of Theorem 1.8.

Theorem 7.1. Let b > 0 be chosen so that b < §/2 for the § of Theorem 1.6. For all
e > 0, there exists a constant C(c) so that

C(e)

B B <db ECONS
n i = +<”|s<b,t1,t2>|

) (bt t2) + 1),

for all t; # ty in Q\ {0,1}, for the set S(b,t1,t) defined by (7.1).

Note that Theorem 1.8 follows from Theorem 7.1 by setting b = 0.
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7.1. Adelic measures and heights associated to a finite set. Fix a number
field K, and suppose that F is a finite set in K which is Gal(K /K )-invariant. Let 7
be a collection of positive real numbers

77 = {n’U}UEM}(
with n, = 1 for all but finitely many v € Mg. For archimedean v € My and = € F,
we let m, ,, denote the Lebesgue probability measure on the circle of radius 7, centered
at the point x € F'. We then set
M Z

xEF
Similarly, for each non-archimedean v € Mg, we let mp, , denote the probability
measure distributed uniformly on the points (., in AL* over all + € F. Then
Mmpy = {Mrywtvemy, 15 an adelic measure in the sense of [FRL1]. It gives rise to a
unique height hp, on P! (@) associated to a continuous and semipositive adelic metric
on Opi (1) with curvature distributions given by mpg,,, and satisfying

(7.2) higy - hpy, = 0.
Its local heights are given by

)\F,n,v(z) = Qy ‘Fl Zlogmaxﬂz $|va77v}

zeF
for z € C, and suitable constants «,; taking

Z / log max{|z — x|y, M} dmpy.

zeF

Ay = —

2 !Fl
gives (7.2).

Remark 7.2. The height hp, will generally not admit sequences of “small” points,
meaning sequences z, € P*(Q) with hg,(x,) — 0. In fact, for any choices of F and
n such that ) 7, a, # 0, the essential minimum of hg, is positive.

7.2. An upper bound on the height pairing. Now suppose that ¢; and ¢5 lie in
K\{0,1}. Recall that y; and h; respectively denote the measure and height associated
to the curve F;. By the triangle inequality for the distance function of §2.8, we have

o N1/2 . 1/2 . 1/2
(7.3) (htl-%) < (htl-hpm) +<ht2-hF,,,)

for any choice of F' and 7. By symmetry and bilinearity of the mutual energy,

~

1

h'ti . h'F,n = 3 Ty (,uti,v —MFEnw, Kt;o — mF,n,v)v
2

vEMK

1
- 5 Z T <(’utiﬂ)’utivv)v —2 (mFﬂ%U’/“’LtnU)U + (mF,n,v7mF,77,v)v)
vEME
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for 1 = 1,2. For fixed 7, writing the local height for ﬁti as Ay, , = log|z|, + ¢, + 0(1)
for |z], — oo yields

er<,uti,va,utvv— er//\t v —C d,utv_o

v

from (2.11) Therefore,

th Z rv Ht Uy mFr] U)’U + (mF,n,va mF,n,v)v) .
UEMK
Recall from §2.7 that [F], is the probability measure on P!" distributed equally
on the elements of F' for each v € M. By [FRL1, Lemma 4.11] and [Fi, Lemma 12],

we have
- lOg Ty
\Fl

(mFm,vvamvv)v < ([F]w [F]v)v +

It follows that

) 1 —logn,
hi, - hpy, < 2 T~ (_2 (o0 M B0 )+ ([Flos [Flo)o + ‘Fﬁn )
vEMpg
(7.4) 1 2( b+
. = - Ty | — svy T v/v
9 Htiso, TTVEm, |F|
vEMg

with the final equality following from (2.16).

Proposition 7.3. Suppose t # 0,1 lies in a number field K. Assume that F' is a
finite, Gal(K / K)-invariant set of points. Then

i : —logm,
ht : h'F,n S ht<F) + e% Ty (_(,u/t,va mF,n,v)v + (:ut,vy [F]v>v + 9 |F| ) .
veMK

for any choice of n = {ny,}» with n, =1 for all but finitely many v € M.
Proof. The height of F'is computed as

t |F| Z ht = ht Z Ty (lut,vy [F]v>v = — Z Ty (,U/t,v; [F]v)v;
zeF veEMK veEMg

and therefore we may add hy(F)+3", 7y (111, [Fv)s to the right hand side of (7.4). [

7.3. Proof of Theorem 7.1. Fix 0 < b < §/2 so that Proposition 1.9 is satisfied for
all t; # to in Q\ {0, 1}. Now fix t; # ¢, in Q\ {0, 1} and a number field K containing
tl and t2. Set

F={z e P (Q): hy(2) + huy(x) < b} \ {00} = S(b, t1, 1) \ {o0},
so F is a finite, Gal(K /K)-invariant set with
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for i = 1,2. At each non-archimedean place v of K, we set
Ny := min{1, [t;(t1 — D)y, [t2(t2 — 1), }-
Now fix ¢’ > 0. For each archimedean v, we set

T == C(€/> @i% mln{‘tlﬁn ’tl - 1’1217 ’tl‘;2}

where the constant c(¢’) is from Proposition 4.4. Let n = {n,},; observe that n, =1
for all but finitely many v, and

(75) Y —rlogn, <2 (A(ty) + (1 — tr) + h(tz) + h(1 — 13)) — %log c(e).

For non-archimedean v, the explicit form of the measure f, ,, (described in Section
3) implies that

(,uti,va mF,n,v)v - (,uti,fuv [F]v)v

for this choice of 1, because the potentials for p, , are constant on disks of radius 7,.
We thus obtain from Proposition 7.3 that

. —logn,
b by < b4 Y, TA08Y

2| F|
veMY,
B log T
+ Z Ty (_<,uti,v7 mF,n,v)v + (,uti,va [F]v)v + Q‘F‘ )
veEMZ

for i = 1,2, where MY denotes the non-archimedean places and M® the archimedean
places.
We have for v € M that

_(ﬂti,va mF,n,v)v + (th [F]v)v S 5/ log max{|ti|va |tz|;17 |tz - 1|;1}

for ¢« = 1,2 by Proposition 4.4.
Since the logarithmic Weil height satisfies 2 h(xz) = ), | log|z|,|, we thus obtain

~

hi, - hpy < b+2¢" (h(t;) + h(t; — 1))
N 2 (h(t1) + h(1 = t1) + h(ts) + h(1 — t2)) — 5 log c(e’)
|F|
for i = 1,2. Since h(1—t;) < h(t;)+log2 < h(ty,ty)+log?2 for i = 1,2, this inequality
becomes

. 1 1
hi, - hp, < b+ 2 (2h(t1,t2) + log2) + m(8h(t1, ty) + 4log2 — 5 log c(e"))

fori=1,2.
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By the triangle inequality (7.3), we have
L N1/2 . 1/2 . 1/2
<ht1 . ht2> < (ht1 : hF,n) + <ht2 ’ hFﬂ?)

1 1 1/2
< 2 (b + 2¢’ (2h(t1,t2) +log 2) + |—F’(8h(t17 t2) +4log2 — 5 log 0(5,))) ;

SO

. 1 1
he, ~hyy < 4 (b + 2¢" (2h(t1, t2) + 1log 2) + m(é%h(tl, ty) +4log2 — 5 log c(a/)))

2 161og 2 — 2log (<’
(7.6) = 4b+(%+165’) Bt t) + 0108 7 08 clE) | §10g2.

Fix any € > 0, and choose ¢’ < £/16. Since |F| = |S(b,t1,t2)| — 1 > 2, we can find
a large constant C'(¢) satisfying

32 C(e)
— 416 <e 4 ———~t —
|F| |S<b>t17t2)|
and
161log2 — 2log (&) , C(e)
+&'log2 < e+ ——————.
[F] i [S(b, 11, 12)]

The inequality (7.6) then yields

o o) )
By ey < 4b+ (4 —2 ) (h(ty, 1) + 1),
e ( St ) Mt T

concluding the proof of Theorem 7.1.

8. PROOF OF THEOREM 1.5

In this section, we deduce Theorem 1.5 from Theorems 1.6, 1.7, 1.8 for algebraic
values of t; and t9; we then extend the result to hold for parameters t; in C, via a

specialization argument. In fact, we prove the following stronger result over Q:
Theorem 8.1. There exist constants B and b > 0 so that

{z € PY(Q) : b, (x) + hyy(z) <b}| < B
for all t; # ty in Q\ {0,1}.

Finally, in §8.4, we observe that there is no uniform bound on the order of the torsion
points on E;, and E,, that can share an z-coordinate, even if Theorem 1.5 provides
a uniform bound on the total number of such points.
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8.1. Proof of Theorem 8.1. Let § > 0 be as in Theorem 1.6 so that

hay + huy > 6
for all t; # t, in Q \ {0,1}. Fix

0<b<d/8
so that, from Proposition 1.9, the set

S(b,t1,12) = {z € PHQ) < hyy () + Iy () < 0}
is finite for all ; # t, in Q \ {0,1}. Let h(t1,t2) be the naive logarithmic height on
A%(Q). Fix H > % for the «, 5 of Theorem 1.7 and such that
H—8b/a
H+1

Suppose that t; # t, € Q satisfy h(t,t5) > H. Then for ¢ = <, there exists by
Theorem 7.1 a constant C' such that

(8.1) > 3/4.

. a C
he, - hy, < 4b — 4+ ———— | (h(t,t 1).
t1 to = + <4 + |S(b,t1,t2)|) ( ( 1, 2)+ )

On the other hand, by Theorem 1.7 and the choice of H, we have
o ~ ~
5 h(tl,tQ) S Oéh(tl,tg) — 5 S htl : th.

Therefore
« « C
— h(ty,t3) < 4b — 4+ —— | (h(t,t 1
9 (17 2)— +(4+‘S(b,t1,t2)|)( (17 2)+ )7

and so

C C
St ta) < O = <

(ah/2—4b> _a a (h—Sb/a) _a
ht+1 4 2 \ Thr 4
for h := h(t1,t2) > H, from (8.1).

Suppose now that t; # t, € Q satisfy h(t;,t2) < H. Set & = --— and find a
constant C” as in Theorem 7.1 so that

!

e, - hy, < 4b " ————— ) (h(ty,t 1
t1 ty = +(€+|S(b,t1,t2>’)( (1: 2)+ )7

and thus, since b < 0/8, we have

!

6/2<d—4b < |4+ —r=-—
/ < ( S0.60,80)

) (h(t1,t2) + 1).

We conclude that o
4H+1
50,11, 12)] < T
providing a uniform bound also for ¢; and ¢, satisfying h(t1,t3) < H. This completes
the proof of Theorem 8.1.
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8.2. Specialization: proof of Theorem 1.5. We implement a standard special-
ization argument to deduce Theorem 1.5 from Theorem 8.1. Note that the division
polynomials for the Legendre curve E; have coefficients in Q[t]; see, for example, [Si,
Exercise 3.7]. Let B be the uniform bound obtained in Theorem 8.1, so that

(8.2) m(Ef) N (B = [{z € PHQ) : hyy () = hyy(2) = 0} < B
for all t; # t, € Q\ {0,1}. Assume that there exist ¢; # t, € C\ {0,1} with
N(tl, t2> = ’W(Ettfrs) N W(EE;JTS)’ > B

and ¢; transcendental. If z € m(E["*) NP (Q), then z € m(E") for all t € C\ {0, 1}
as it is a root of a division polynomial. It follows that there is at least one non-
algebraic point x € 7w(E{"*) Nw(E£{™), as only x = 0, 1, 0o are torsion images for all
t € C\ {0,1} [DWY, Proposition 1.4].
Now let
S = {a1, 29, - ,an} = w(ES”) Nr(EL™),

where N = N(t1,t5), and assume that x; is transcendental. Because it is a torsion
image for both parameters, Q(z1,11,ts) and therefore also the field

L :=Q(ty,t2, 1, ,TN)

are of transcendence degree one. Consequently L is isomorphic to a function field
k = K(X) for a number field K and an algebraic curve X defined over Q. Via the

identification of L with k, there exists an algebraic point v € X(K) with distinct
specializations z;(y) € PY(Q) for i = 1,..., N and
ti(7) # t2(7) € Q\ {0, 1}.

The division relations in L imply that the specializations Ey ) and FEj,(,) have at
least N common torsion images, contradicting (8.2). Therefore, we must have

m(E™) N w(Ey™)| < B
for all t; # t, € C\ {0,1}, and the proof of Theorem 1.5 is complete.
8.3. Common torsion images. We obtain the following immediate corollary of
Theorem 1.5, which is a special case of Conjecture 1.4. Recall that a standard pro-

jection from elliptic curve E to P! is any degree-two branched cover that identifies
each point P € FE with its inverse —P.

Corollary 8.2. There exists a uniform bound B such that
T () A my(B2)] < B

for any pair of elliptic curves E; over C and any pair of standard projections m; for
which

|[m1 (1 [2]) N (ER[2])] = 3.
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Proof. By fixing coordinates on P!, we may assume that m(E;[2]) N mo(Es[2]) =
{0,1,00}. For each e € E;[2] the composition 7f(P) = m;(P + e) is again a stan-
dard projection and satisfies 7¢(E™) = m;(E!*"®). Therefore, we may assume that
7;(O;) = oo for the origin O; of E;, i = 1,2. Putting each E; into Legendre form now
shows that the corollary follows from Theorem 1.5. O

8.4. No uniform bound on the torsion order. We conclude this section by ob-
serving that there cannot be a uniform bound on the order of the torsion points that
lie in the intersections in Theorem 1.5.

Proposition 8.3. Let E; be the Legendre elliptic curve with equation (1.2) and
m(x,y) = x. For every N > 0 and for every o € Q \ {0,1}, there ewist t; # to
in Q\ {0,1} so that the points

P = (900, /o (o — 1) (0 — ti))

are torsion points on Ey, of order > N, fori=1,2.

Proof. Fix o € Q\ {0,1} and N > 0. Let
Pt = (ZEo, i\/xo(l’g — 1)(1‘0 — t))

be the points on E; with xz-coordinate equal to xy. The set
Tor(wg) :={t € Q\ {0,1} : P, is torsion on E,}

is an infinite but proper subset of Q \ {0,1}. See, for example, [DWY, Theorem 1.2]
for a proof, taking a = b = xg in the statement of the theorem. The fact that P, is

not torsion for every ¢ is a consequence of Proposition 1.4 of [DWY] and the remark
that follows it; it follows that Tor(xg) is a set of bounded height, and so not equal
to all of Q\ {0,1}. Consequently, there are only finitely many elements of Tor ()
corresponding to points P, of order < N, so we can find t; # t where the point P,
has order at least N. This proves the proposition. 0

9. PROOF OF THEOREMS 1.1 AND 1.10

Throughout this section, we let £, denote the hypersurface in the moduli space
M consisting of all genus 2 curves X over C that admit a degree-two map to an
elliptic curve; see, e.g., [SV] for details on L5. The surface L5 consists of all X whose
Jacobians admit real multiplication by the real quadratic order of discriminant 4, as
explained in the proof of [Mc, Theorem 4.10].

For any smooth, compact, genus 2 curve over C, and for any Weierstrass point P
on X,

jp(X) N J(X)] = 6
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as the difference of two Weierstrass points is torsion. On the other hand, any curve
X of genus g > 2 has [jp(X) N J(X)*| < 2 for all but finitely many P, by Baker
and Poonen [BP], so an Abel-Jacobi map based at a Weierstrass point has in this
sense a large number of torsion images.

In this section we deduce Theorem 1.1 from Corollary 8.2, providing a uniform
upper bound on [jp(X) N J(X)™™| for all X in L£,. We also deduce Theorem 1.10
from Theorem 8.1.

9.1. Genus 2 curve from a pair of elliptic curves. Suppose that 7 : F; — P!
and my : By — P! are standard projections on elliptic curves Ej; such that

|m1(E1[2]) N (Ea[2])] = 3,

as in Corollary 8.2. Recall that standard projections are degree-two branched covers
7 : E — P! such that 7(P) = 7(—P) for all points P € E, and so they have simple
critical points at the four points of F[2]. Consider the diagonal D C P! x P!, and
liftt D to a curve C' C Fy x Fy via [I = m; X my. Let v : X — C normalize C', noting
that the degree four map ITo v : X — D has branch locus 71 (FE;[2]) U mo(E2[2]),
with each branch point the image of two points in X, each of multiplicity two. By
Riemann-Hurwitz, the genus of X is 2, and by construction, the curve X is in £, in
M. Note that X maps to both of the elliptic curves E; and E, with degree 2.

9.2. A pair of elliptic curves from a genus 2 curve. Here we observe that every
X € L, arises from the construction described in §9.1. In particular, admitting
a degree-two branched cover X — FE) to an elliptic curve F; implies that X also
admits a second degree-two branched cover X — F;. The proof of the following
proposition shows how the curve E5 arises:

Proposition 9.1. Fvery X € Ly is the lift of the diagonal under a product of standard
projections m; on elliptic curves E; for which

|m1 (E1[2]) N ma(ER[2])] = 3.

Moreover, there is a Weierstrass point Q € X(C) and a degree-four isogeny ® :
J(X) — E; x Ey such that

d O]Q(X) = <7Tl X 7T2)71D m El X E2

where D is the diagonal in P* x P', J(X) is the Jacobian of X, and jq is the Abel-
Jacobi embedding associated to Q).

Proof. As noted by [SV] and attributed to Jacobi [Ja], each curve X € L, has an
affine model

C:y2:x6—51x4+$2x2—1,
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where the polynomial on the right has non-zero discriminant. C' admits degree two
maps (x,y) — (2%,y) and (z,y) — (1/22,iy/2>) to elliptic curves with affine presen-
tation

3

Ei:yt =2 —s12% + 500 — 1

and
Eg:y2:x3—32x2+51x—1,

respectively, defining a map v : X — E; x E,5. For each of these curves, the z-
coordinate projection m, is standard, so m := 7w, and my := 1/7, are standard pro-
jections for F; and E, respectively. The projection m; ramifies over {oo, 7,729,735}
and 7 ramifies over {0, 1, 79,73}, where {ry, 79,73} are the distinct, nonzero roots of
23 — 5922 + sy — 1. Thus

|1 (E1[2]) N (E2[2])] = 3.
Define I := m; X my, noting that for (z,y) € C, we have
Mo w(z,y) = (a2, 1/2%) = (12 22).

Thus Mo v(X) = D, where D C P! x P! is the diagonal.

Fix r € m(E[2]) N ma(E:[2]), and equip each E; with a group structure such
that the identity lies above . Observe that the [—1]-involution on E; x E, induces
the hyperelliptic involution on X. In particular, the Weierstrass points on X are
the six preimages of m(E1[2]) N m2(E5[2]) under IT o v. Choose @@ € X such that
II(v(Q)) = (r,r), so that @ is Weierstrass and v factors as ® o jg for some isogeny
¢ : J(X) — E; X Ey. The nontrivial elements of the kernel of ® are precisely the
three 2-torsion points in J(X) which are differences of Weierstrass points mapping
to the same point in the diagonal D C P! x P!. Thus @ is degree four as claimed,
completing the proof. O

9.3. Proof of Theorem 1.1. Fix X € L,. From Proposition 9.1, we have elliptic
curves 7 and F5 and a Weierstrass point () € X such that

ljo(X) N J(X)P| < 16 |m (E°™) N my(EL™)),

for a pair of standard projections 7; : E; — P! satisfying |7 (E1[2]) N m2(Es[2])| = 3.
Given any other Weierstrass point P € X, we have [P—Q)] € J(X)™"™, so we conclude
that

ip(X) 0T (X)) = [jp(X) N J(X)""| < 16B,

where B is the constant of Corollary 8.2.
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9.4. Proof of Theorem 1.10. Fix X € £, C M, defined over Q. From Proposition
9.1 there is a pair t; # to in Q\ {0, 1} and an isogeny ® : J(X) — E;, x E}, of degree
4 so that TT o ® o jo(X) is the diagonal in P* x P!, where Il = 7 x 7 and Q is a
Weierstrass point on X. Recall from §2.1 that the Néron-Tate canonical height on
iLEt on FE, satisfies

hie,(P) = 5 hu(m(P))

N | —

for all P € F;(Q) and each t € Q\ {0, 1}.
Let

D= {Ol} X Et2 + Et1 X {02}

be a divisor on E;, x E}, where O; denotes the identity element of £;,, and let Lp be
the associated line bundle. Let Lx = ®*Lp on J(X), and let ELX be the associated
Néron-Tate canonical height on J(X)(Q). By the functoriality of canonical heights
[HS, Theorem B.5.6], we have

iLLX(ZL’) = }AlLD((D(x))
= g, (P(2)1) + hi,, (P(2)2)
1

= 5 (ﬁh(w(@(x)l)) - Bm(w(@(xb))) :

®(z);) in E;, x E;,. Restricting to the points x € jp(X)(Q),

where ®(z) = (®(x)q,
) = 7(®(x)7) in P!, the theorem now follows from Theorem 8.1.

so that 7(®(x),

9.5. No uniform bound on the torsion order. We conclude the article with
the observation that there cannot be a uniform bound on the order of the torsion
points that lie in the intersections in Theorem 1.1. It is an immediate consequence
of Propositions 8.3 and 9.1.

Proposition 9.2. Given any N > 0, there exists a curve X € Ly defined over Q and
a Weierstrass point P € X so that the intersection

jp(X) N J(X)"r
contains a point of order > N in the Jacobian J(X).

Proof. Fix N > 0. From Proposition 8.3, we can find ¢; # t, in Q \ {0,1} and
torsion points P, € E,, ¢ = 1,2, having the same z-coordinate and torsion orders
> N. Let x4 denote the z-coordinate of F;,. Let X be the normalization of the curve
C C Ey, x Ey, which is the lift of the diagonal in P! x P! under the projection 7 x 7.
From Proposition 9.1, we know that X is of genus 2 and lies in L5, and there is a
Weierstrass point Q € X so that jo(X) maps to the curve C' under a degree-four
isogeny @ : J(X) — Ej, x Ey,. Let w be a preimage in J(X) of the point (zg, zo) in
P! x P! under the map (7 X 7) o ®. Then w has order at least N. O
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