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Abstract. Let ⇡ : E ! B be an elliptic surface defined over a number field K, where B

is a smooth projective curve, and let P : B ! E be a section defined over K with canonical

height ĥE(P ) 6= 0. In this article, we show that the function t 7! ĥEt(Pt) on B(K) is the

height induced from an adelically metrized line bundle with continuous semipositive metrics

on B. The proof builds on work of Silverman and results from complex dynamical systems.

Applying arithmetic equidistribution theorems (of Chambert-Loir, Thuillier, and Yuan), we

obtain the equidistribution of points t 2 B(K) where Pt is torsion, and we give an explicit

description of the limiting distribution on B(C). Finally, combined with results of Masser

and Zannier, we show that – for any non-special section P of a family of abelian varieties

A ! B that split as a product of elliptic curves – there is a positive lower bound on the

height ĥAt(Pt), after excluding finitely many points t 2 B, thus addressing a conjecture of

Zhang from 1998.

1. Introduction

Suppose E ! B is an elliptic surface defined over a number field K, so B is a smooth

projective curve and all but finitely many fibers Et, t 2 B(K), are smooth elliptic curves.

We let ĥE denote the Néron-Tate canonical height of E viewed as an elliptic curve over the

function field k = K(B); we let ĥEt denote the canonical height on a smooth fiber Et(K).

Suppose that P : B ! E is a section defined overK for which ĥE(P ) 6= 0, so, in particular,

the points Pt on the fiber are not torsion in Et for all t. Tate showed that the function

t 7! ĥEt(Pt)
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defines a Weil height on B(K), up to a bounded error [Ta]. More precisely, there exists a

divisor DP 2 Pic(B)⌦Q of degree equal to ĥE(P ) so that

(1.1) ĥEt(Pt) = hDP (t) +O(1),

where hDP is a Weil height on B(K) associated to DP . In a series of three articles [Si1,

Si3, Si4], Silverman refined statement (1.1) by analyzing the Néron decomposition of the

canonical height on the fibers

ĥEt(Pt) =
1

[K : Q]

X

v2MK

nv �̂Et,v(Pt)

where MK denotes the set of places of the number field K, and nv = [Kv : Qv] are the

integers appearing in the product formula
Q

v2MK
|x|nv

v
= 1 for all x 2 K

⇤.

In this article, we explain how Silverman’s conclusions about the local functions �̂Et,v(Pt)

are precisely the input needed to show that t 7! ĥEt(Pt) is a “good” height function on the

base curve B, from the point of view of equidistribution. Combining his work with methods

from complex dynamics, as in [DWY], and the inequalities of Zhang on successive minima

[Zh2, Zh1], we prove:

Theorem 1.1. Let K be a number field and k = K(B) for a smooth projective curve B

defined over K. Fix an elliptic surface E ! B defined over K and a point P 2 E(k)

satisfying ĥE(P ) 6= 0. Then

t 7! ĥEt(Pt),

defined for t with smooth fibers, extends to a height function on all of B(K) induced from an

adelically metrized ample line bundle LP , with continuous semipositive metrics, satisfying

hLP
(B) := c1(LP )

2
/(2c1(LP )) = 0.

Theorem 1.1 implies that our height function on B satisfies the hypotheses of the equidis-

tribution theorems of Chambert-Loir, Thuillier, and Yuan for points of small height on curves

[CL1, Th, Y], and we deduce the following:

Corollary 1.2. Let K be a number field and k = K(B) for a smooth projective curve B

defined over K. Fix an elliptic surface E ! B defined over K and a point P 2 E(k)

satisfying ĥE(P ) 6= 0. There is a collection of probability measures µP = {µP,v : v 2 MK}
on the Berkovich analytifications B

an

v
such that for any infinite, non-repeating sequence tn 2
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B(K) with

ĥEtn
(Ptn) ! 0 as n ! 1,

the discrete measures
1

|Gal(K/K) · tn|

X

t2Gal(K/K)·tn

�t

converge weakly on B
an

v
to the measure µP,v at each place v of K.

Remark 1.3. The measures µP,v of Corollary 1.2 are not di�cult to describe, at least at the

archimedean places. At each archimedean place v, there is a canonical positive (1, 1)-current

Tv on the surface E(C) (with continuous potentials away from the singular fibers) which

restricts to the Haar measure on each smooth fiber Et(C). The measure µP,v on B(C) is just
the pull-back of this current by the section P . Moreover, at every place, the measure µP,v

is the Laplacian of the local height function �̂Et,v(Pt), away from its singularities. We give

more details about (and a dynamical perpective on) the construction of the current Tv in

Section 3.

As a consequence of Theorem 1.1, and combined with the work of Masser and Zannier

[MZ1, MZ2, MZ3], we obtain the so-called Bogomolov extension of their theorems. Fix

integer m � 2, and suppose that Ei ! B is an elliptic surface over a curve B, defined over

Q, for i = 1, . . . ,m. We consider sections P of the fiber product A = E1 ⇥B · · ·⇥B Em ! B

defined over Q. We say that a section P = (P1, P2, . . . , Pm) is special if the following two

conditions are satisfied.

(1) For each i = 1, . . . ,m, either Pi is torsion on Ei or ĥEi(Pi) 6= 0.

(2) For any pair i, j 2 {1, . . . ,m} such that neither Pi nor Pj is torsion, there are an

isogeny � : Ei ! Ej and nonzero group endomorphisms a, b of Ej so that a ��(Pi) =

b(Pj).

Note that the first condition is satisfied for every section P of A if we assume that each Ei

is non-isotrivial, because then Pi 2 Ei(k) is torsion if and only if ĥEi(Pi) = 0.

If a family of abelian varieties A ! B is isogenous to a fiber product of elliptic surfaces

(after performing a base change B
0 ! B if needed), we say that a section of A is special if

it is special on the fiber product.

It is not hard to see that a special section P will specialize to a torsion point Pt in the fiber

At for infinitely many t 2 B(K). For a proof see [Za, Chapter 3] or, for a dynamical proof,

see [De1]. The converse statement is also true, but it is much more di�cult: Masser and
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Zannier proved that if Pt is torsion in At for infinitely many t 2 B(Q), then the section P

must be special [MZ2, MZ3]. We use Theorem 1.1 to extend these results of Masser-Zannier

from points of height 0 to points of small height:

Theorem 1.4. Let B be a quasiprojective smooth algebraic curve defined over Q. Suppose

A ! B is a family of abelian varieties of relative dimension m � 2 defined over Q which

is isogenous to a fibered product of m � 2 elliptic surfaces. Let L be a line bundle on A

which restricts to an ample and symmetric line bundle on each fiber At, and let ĥt be the

induced Néron-Tate canonical height on At, for each t 2 B(Q). For each non-special section

P : B ! A defined over Q, there is a constant c = c(L, P ) > 0 so that

{t 2 B(Q) : ĥt(Pt) < c}

is finite.

If A ! B is isotrivial, then Theorem 1.4 is a special case of the Bogomolov Conjecture,

proved by Ullmo and Zhang [Zh3, U]. A key ingredient in their proofs is the equidistribution

theorem of Szpiro, Ullmo, and Zhang [SUZ]. In his 1998 ICM lecture notes [Zh4], Zhang

presented a conjecture about geometrically simple families of abelian varieties, which stated,

in its most basic form:

Conjecture 1.5 (Zhang). Let B be a quasiprojective smooth algebraic curve defined over

Q. Suppose A ! B is a non-isotrivial family of abelian varieties with fiber dimension > 1,

defined over Q with a simple generic fiber. Let L be a line bundle on A which restricts to

an ample and symmetric line bundle on each fiber At, and let ĥt be the induced Néron-Tate

canonical height on At, for each t 2 B(Q). For each non-torsion section P : B ! A defined

over Q, there is a constant c = c(L, P ) > 0 so that

{t 2 B(Q) : ĥt(Pt) < c}

is finite.

When the dimension of the fibers At is equal to 2, the finiteness of {t 2 B(Q) : ĥt(Pt) = 0}
for sections as in Conjecture 1.5 was established recently by Masser and Zannier in [MZ4].

It is well known that the conclusion of Conjecture 1.5 can fail to hold if A is not simple and

certainly fails if it is a family of elliptic curves, as mentioned above. However, the results

of Masser and Zannier in their earlier work [MZ2, MZ3] suggested a formulation of Zhang’s

conjecture for the non-simple case when A splits as a product of elliptic curves where the
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“non-torsion” hypothesis on P should be replaced by “non-special”; this is what we proved

in our Theorem 1.4.

Remark 1.6. Theorem 1.1, Corollary 1.2, and Theorem 1.4 were obtained in the special

case of the Legendre family Et = {y2 = x(x � 1)(x � t)} over B = P1 and the abelian

variety At = Et ⇥ Et, for sections P with x-coordinates in Q(t) in [DWY], using methods

from complex dynamical systems, without appealing to Silverman and Tate’s results on the

height function. Moreover, restricting further to sections P with constant x-coordinate (in

P1(Q)), Theorem 1.4 was obtained without relying on the theorems of Masser and Zannier

and gave an alternate proof of their result. This includes the special case treated by Masser

and Zannier in their article [MZ1]. For sections with constant x-coordinate, the hypothesis

on P (that ĥE(P ) 6= 0) is equivalent to asking that x(P ) 6= 0, 1,1 [DWY, Proposition 1.4].

Comments and acknowledgements. This project was motivated, in part, by experi-

ments to visualize Silverman’s results on the variation of canonical height [Si1, Si3, Si4] in

terms of the measures µP,v at archimedean places, and to examine their dependence on P .

In particular, the measure detects the failure of the local height function �̂Et,v(Pt) to be har-

monic; compare with the comments on non-analyticity preceding Theorem I.0.3 of [Si1]. The

images appearing in Section 6 were first presented at the conference in honor of Silverman’s

birthday, August 2015.

We thank Charles Favre, Dragos Ghioca, Robert Rumely, Joseph Silverman, and Amaury

Thuillier for helpful suggestions. Our research was supported by the National Science Foun-

dation and the Simons Foundation.

2. Silverman’s work

2.1. Preliminaries. Let F be a product formula field of characteristic 0, so there exists a

family MF of non-trivial absolute values on F and a collection of positive integers nv for

v 2 MF so that Y

v2MF

|x|nv
v

= 1

for all x 2 F⇤. Let E/F be an elliptic curve with origin O, expressed in Weierstrass form as

E = {y2 + a1xy + a3y = x
3 + a2x

2 + a4x+ a6}
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with discriminant �. Denote by

ĥE : E(F) ! [0,1)

the Néron-Tate canonical height function; it can be defined by

ĥE(P ) =
1

2
lim
n!1

h(x([n]P ))

n2

where h is the naive Weil height on P1 and x : E ! P1 is the degree 2 projection to the

x-coordinate.

For each v 2 MF , we let Fv denote the completion of F with respect to | · |v and Cv denote

the completion of the algebraic closure of Fv with respect to | · |v. For each v, we fix an

embedding of F into Cv. The canonical height has a decomposition into local heights, as

ĥE(P ) =
1

|Gal(F/F) · P |

X

Q2Gal(F/F)·P

X

v2MF

nv �̂E,v(Q)

for P 2 E(F) \ {O}, with the local heights �̂E,v characterized by three properties [Si2,

Chapter 6, Theorem 1.1, page 455]:

(1) �̂E,v is continuous on E(Cv) \ {O} and bounded on the complement of any v-adic

neighborhood of O;

(2) the limit of �̂E,v(P )� 1
2 log |x(P )|v exists as P ! O in E(Cv); and

(3) for all P = (x, y) 2 E(Cv) with [2]P 6= O,

�̂E,v([2]P ) = 4�̂E,v(P )� log |2y + a1x+ a3|v +
1

4
log |�|v.

2.2. Variation of canonical height: the set up. Now let K be a number field and

E ! B an elliptic surface defined over a number field K with zero section O : B ! E. Let

P : B ! E be a non-zero section defined over K, and assume that

ĥE(P ) 6= 0

when viewing P as a point on the elliptic curve E defined over k = K(B). For each t 2 B(K)

such that the fiber Et is non-singular, we have a point Pt 2 Et(K). We will investigate the

function

t 7! ĥEt(Pt)
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which is well defined at all but finitely many t 2 B(K). Furthermore, via the embedding of

K into Cv for each place v 2 MK , we may view E ! B as defined over Cv and consider the

Néron local heights �̂Et,v(Pt) on the non-singular fibers Et as functions of t 2 B(Cv).

Let DE(P ) be the Q-divisor on B defined by

(2.1) DE(P ) =
X

�2B(K)

�̂E,ord� (P ) · (�).

Here, �̂E,ord� (P ) is the local canonical height of the point P on the elliptic curve E over

k = K(B) at the place ord�, for each � 2 B(K). The degree of DE(P ) is equal to ĥE(P ). It

follows from the definitions that suppDE(P ) is a subset of the finite set

{t 2 B(K) : Et is singular} [ {t 2 B(K) : Pt = Ot}.

By enlarging K, we may assume that the support of DE(P ) is contained in B(K).

Remark 2.1. That DE(P ) is a Q-divisor is standard, following from the fact that the

numbers �̂E,ord� (P ) can be viewed as arithmetic intersection numbers on a Néron local model.

See [Si2, Chapter III, Theorem 9.3] for a proof that ĥE(P ) 2 Q; see [CS, Section 6 and p. 203]

and [La1, Chapter 11 Theorem 5.1] for proofs that each local function �̂E,v also takes values

in Q; see [DG, Theorem 1.1] for a dynamical proof.

2.3. Variation of canonical height: quasi triviality. Let hDE(P ) be an analytic Weil

height on B(K) as defined in [Si4, §3 Example 1(a)]. That is, we let g be the genus of B,

and for each point � 2 B(K), we choose an element ⇠� of K(B) which has a pole of order

2g + 1 at � and no other poles. For each non-archimedean place v of K, set

�DE(P ),v(t) =
1

2g + 1

X

�2B(K)

�̂E,ord� (P ) log+ |⇠�(t)|v

for all t 2 B(Cv) \ suppDE(P ). For archimedean places v, the local height is defined by

�DE(P ),v(t) =
1

2(2g + 1)

X

�2B(K)

�̂E,ord� (P ) log
�
1 + |⇠�(t)|2v

�
.

We set

hDE(P )(t) =
1

|Gal(K/K) · t|

X

s2Gal(K/K)·t

X

v2MK

�DE(P ),v(s)

for all t 2 B(K). For fixed choices of ⇠�, we will call the associated height hDE(P ) our

“reference height” for the divisor DE(P ). Silverman proved:
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Theorem 2.2. [Si4, Theorem III.4.1] For any choice of reference height hDE(P ), there is a

finite set S of places so that

�̂Et,v(Pt) = �DE(P ),v(t)

for all t 2 B(K) \ suppDE(P ) and all v 2 MK \ S.

2.4. Variation of canonical height: continuity. Fix a point t0 2 B(K) and a uniformizer

u 2 K(B) for t0, and consider the function

(2.2) VP,t0,v(t) := �̂Et,v(Pt) + �̂E,ordt0
(P ) log |u(t)|v,

which is not a priori defined at t0. Theorem 2.2 implies that

VP,t0,v ⌘ 0

for all but finitely many places v in a v-adic neighborhood of t0. Silverman also proved the

following:

Theorem 2.3. [Si3, Theorem II.0.1] Fix t0 2 B(K) and a uniformizer u at t0. For all

v 2 MK, there exists a neighborhood U ⇢ B(Cv) containing t0 so that the function VP,t0,v of

(2.2) extends to a continuous function on U .

3. A dynamical perspective

Recall that the Néron-Tate height ĥE and its local counterparts �̂E,v can be defined dynam-

ically. Letting E be an elliptic curve defined over a number field K, the multiplication-by-2

endomorphism � on E descends to a rational function of degree 4 on P1, via the standard

quotient ⇡ identifying a point P with its additive inverse:

(3.1) E

⇡

✏✏

�
// E

⇡

✏✏

P1
f�
// P1

An elementary, but key, observation is that a point is torsion on E if and only if its quotient

in P1 is preperiodic for f�. The height ĥE on E(K) satisfies

ĥE(P ) =
1

2
lim
n!1

1

4n
h(fn

�
(⇡P ))
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where h is the standard logarithmic Weil height on P1(K). Now let E ! B be an elliptic

surface defined over a number field K, and let P : B ! E be a section, also defined over K.

In this section, we use this dynamical perspective to give a proof of the subharmonicity of

the local height functions t 7! �̂Et,v(Pt) and the extensions VP,t0,v of (2.2). We will present

this fact as an immediate consequence of now-standard complex-dynamical convergence ar-

guments, at least when the fiber Et is smooth and the local height �̂Et,v(Pt) is finite. Near

singular fibers, we utilize the maximum principle and standard results on removable singu-

larities for subharmonic functions. The same reasoning applies in both archimedean and

non-archimedean settings.

In §3.3 we provide the background to justify the explicit description of the distributions

µP,v from Corollary 1.2 at the archimedean places v of K, as mentioned in Remark 1.3.

3.1. Canonical height and escape rates. As in §2.1, we let E be an elliptic curve in

Weierstrass form, defined over a product-formula field F of characteristic 0. We define a

rational function f = �/ on P1 by the formula

f(x(P )) = x([2]P )

for all P 2 E(F). Here x(P ) is the x�coordinate for a point P ; this function x plays

the role of ⇡ in (3.1). In coordinates, we have �(x) = x
4 � b4x

2 � 2b6x � b8 and  (x) =

4x3 + b2x
2 + 2b4x+ b6 = (2y + a1x+ a3)2 for P = (x, y).

By a lift of f , we mean any homogeneous polynomial map F on A2, defined over F , so

that ⌧ � F = f � ⌧ , where ⌧ : A2 \ {(0, 0)} ! P1 is the tautological projection. A lift of a

point x 2 P1 is a choice of X 2 A2 \ {(0, 0)} so that ⌧(X) = x.

The standard lift of f will be the map F : A2 ! A2 defined by

(3.2) F(z, w) =
�
w

4
�(z/w), w4

 (z/w)
�
.

For each v 2 MF , the v-adic escape rate is defined by

GF,v(z, w) = lim
n!1

log ||Fn(z, w)||v
4n

where

k(z, w)kv = max{|z|v, |w|v}.

Any other lift of f is of the form cF for some c 2 F⇤; observe that

GcF,v = GF,v +
1

3
log |c|v.
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Note that

GF,v(↵x,↵y) = GF,v(x, y) + log |↵|v
for any choice of lift F . Furthermore, GF,v is continuous on C2

v
\ {(0, 0)}, as proved in

the archimedean case by [HP, FS]. For non-archimedean absolute values v, GF,v extends

continuously to the product of Berkovich a�ne lines A1,an
v

⇥ A1,an
v

\ {(0, 0)} [BR, Chapter

10].

Proposition 3.1. For the standard lift F of f , and for each place v of F , the local canonical

height function satisfies

�̂E,v(P ) =
1

2
GF,v(x, y)�

1

2
log |y|v �

1

12
log |�|v

where x(P ) = (x : y).

Proof. The proof is immediate from the properties of GF,v by checking the three characterizing

conditions for �̂E,v. ⇤

3.2. Variation of canonical height: subharmonicity. Now let K be a number field and

E ! B an elliptic surface defined over K with zero section O : B ! E. Let k = K(B);

viewing E as an elliptic curve defined over k, we also fix a point P 2 E(k). Recall the

function VP,t0,v(t) defined in (2.2).

Theorem 3.2. For every t0 2 B(K) and uniformizer u in k at t0, the function

VP,t0,v(t) := �̂Et,v(Pt) + �̂E,ordt0
(P ) log |u(t)|v,

extends to a continuous and subharmonic function on a neighborhood of t0 in the Berkovich

analytification B
an

v
.

The continuity was already established in Theorem 2.3, though it was not explicitly stated

for the Berkovich space. The argument below takes care of that. We begin with a lemma.

Lemma 3.3. Fix ↵ 2 k
⇤
and t0 2 B(K). Let u 2 k be a uniformizer at t0. For each place

v of K, the function

t 7! log |↵t|v � (ordt0 ↵) log |u(t)|v
is harmonic in a neighborhood of t0 in the Berkovich analytification B

an

v
.

Proof. This is Silverman’s [Si3, Lemma II.1.1(c)] plus a removable singularities lemma for

harmonic functions. See also [BR, Proposition 7.19] for the extension of a harmonic function

to a disk in the Berkovich space B
an

v
. ⇤
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Fix P 2 E(k). Let F and X be lifts of f and x(P ) to k
2, respectively. Iterating F , we set

(An, Bn) := F
n(X) 2 k

2

and observe that

(3.3) GF,ordt0
(X) = � lim

n!1

min{ordt0 An, ordt0 Bn}
4n

from the definition of the escape rate. We let Ft and Xt denote the specializations of F and

X at a point t 2 B(K); they are well defined for all but finitely many t. Observe that if F

is the standard lift for E then so is Ft for all t.

Proposition 3.4. Fix P 2 E(k), t0 2 B(K), and v 2 MK. For any choice of lifts F of f

and X of x(P ), the function

GP (t; v) := GFt,v(Xt) + GF,t0(X) log |u(t)|v

extends to a continuous and subharmonic function in a neighborhood of t0 in B
an

v
.

Proof. First observe that the conclusion does not depend on the choices of F and X. Indeed,

GctFt,v(↵tXt) + GcF,t0(↵X) log |u(t)|v = GFt,v(Xt) + GF,t0(X) log |u(t)|v

+
1

3
(log |ct|v � (ordt0 c) log |u(t)|v)

+ log |↵t|v � (ordt0 ↵) log |u(t)|v

for any c,↵ 2 k
⇤. So by Lemma 3.3 the function GP (t; v) is continuous and subharmonic for

one choice if and only if it is continuous and subharmonic for all choices.

Let F be the standard lift of f . Suppose that P = O. Since F(1, 0) = (1, 0), we compute

that

GO(t; v) = GFt,v(1, 0) + GF,t0(1, 0) log |u(t)|v ⌘ 0.

Now suppose that P 6= O. Fix t0 2 B(K) and local uniformizer u at t0. Choose a lift F of

f so that the coe�cients of F have no poles at t0, with Ft0 6= (0, 0). Choose lift X of x(P )

so that Xt is well defined for all t near t0 and Xt0 6= (0, 0). As above, we write

F
n(X) = (An, Bn)

and put

an = min{ordt0 An, ordt0 Bn}
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so that an � 0 for all n and a0 = 0. Set

Fn(t) = F
n

t
(Xt)/u(t)

an .

For each place v of K, we set

hn,v(t) =
log kFn(t)kv

4n
.

By construction, the limit of hn,v (for t near t0 with t 6= t0) is exactly the function GP for

these choices. In fact, for t in a small neighborhood of t0, but with t 6= t0, the function ft on

P1 is a well-defined rational function of degree 4; so the specialization of the homogeneous

polynomial map Ft satisfies F
�1
t {(0, 0)} = {(0, 0)}. Furthermore, as the coe�cients of Ft

depend analytically on t, the functions hn,v converge locally uniformly to the function GP

away from t = t0. This can be seen with a standard telescoping sum argument, used often

in complex dynamics, as in [BH, Proposition 1.2]. In particular, GP is continuous on a

punctured neighborhood of t0.

At the archimedean places v, and for each n, the function hn,v is clearly continuous and

subharmonic in a neighborhood of t0. At non-archimedean places v, this definition extends

to a Berkovich disk around t0, setting

hn,v(t) =
1

4n
max{log[An(T )/T

an ]t, log[Bn(T )/T
an ]t}

where [·]t is the seminorm on K[[T ]] associated to the point t. Each of these functions hn,v

is continuous and subharmonic for t in a Berkovich disk around t0. (Compare [BR] Example

8.7, Proposition 8.26(D), and equation (10.9).)

Lemma 3.5. For all v, and by shrinking the radius r if necessary, the functions hn,v are

uniformly bounded from above on the (Berkovich) disk Dr.

Proof. As observed above, the functions hn,v converge locally uniformly away from t = t0 to

the continuous function GP (t). Choose a small radius r, and let

Mv = sup
n

max
|t|v=r

hn,v(t)

which is finite by the convergence. Because the functions are subharmonic, the Maximum

Principle implies that hn,v(t)  Mv throughout the disk of radius r, for all n. For the non-

archimedean places, there is also a Maximum Principle on the Berkovich disk, where the role

of the circle of radius r is played by the Type II point associated to the disk of radius r (see

[BR] Proposition 8.14). ⇤
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We can now complete the proof of Proposition 3.4. As each hn,v is subharmonic, and the

functions are uniformly bounded from above on the disk by Lemma 3.5, we know that the

(upper-semicontinuous regularization of the) limsup of these functions is subharmonic. See

[BR] Proposition 8.26(F) for a proof in the non-archimedean case. ⇤

Proof of Theorem 3.2. Subharmonicity now follows from Proposition 3.1, Lemma 3.3, and

Proposition 3.4. The continuity at each archimedean place follows from Theorem 2.3. The

continuity at each non-archimedean place is a combination of the continuity on the punctured

Berkovich disk (as in the proof of Proposition 3.4) and the continuity on Type I (classical)

points given in Theorem 2.3. ⇤

3.3. The measures on the base. Here we provide more details about the description of

the measures appearing in the statement of Corollary 1.2, as discussed in Remark 1.3.

Fix an archimedean place v and any point t0 2 B(K). Choosing a uniformizer u at t0,

recall the definition of VP,t0,v from (2.2). We define

(3.4) µP,v := dd
c
VP,t0,v(t)

on a neighborhood of t0 in B
an

v
; note that this is indepedent of the choice of u. Note that

µP,v can be expressed as

µP,v = dd
c
�̂Et,v(Pt)

for t outside of the finitely many points in the support of the divisor DE(P ) or where the

fiber Et is singular. Note, further, that µP,v assigns no mass to any individual point t0,

because the potentials are bounded by Theorem 3.2. The details on the metric and the

equidistribution theorem in Section 4 will show that these are exactly the measures that

arise as the distribution of the points of small height in Corollary 1.2.

It is well known that the local height function on a smooth elliptic curve is a potential for

the Haar measure. That is, for fixed t we have

dd
c
�̂Et,v(·) = !t � �o

where !t is the normalized Haar measure on Et and �o is a delta-mass supported at the origin

of Et; see, e.g., [La2, Theorem II.5.1]. We present an alternative proof of this fact related to

dynamics as part of Proposition 3.6, as a consequence of Proposition 3.1.

Proposition 3.6. Let E ! B be an elliptic surface and P : B ! E a section, both defined

over a number field K. Let S ⇢ E be the union of the finitely many singular fibers in E.
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For each archimedean place v of K, there is a positive, closed (1,1) current Tv on E \S with

locally continuous potentials so that Tv|Et is the Haar measure on each smooth fiber, and

P
⇤
Tv is equal to the measure µP,v.

Remark 3.7. As Tv has continuous potentials, the restriction Tv|Et and the pullback P
⇤
Tv

are well defined. That is, we have Tv|Et = dd
c(g|Et) where g is a locally defined potential of

Tv, and P
⇤
Tv = dd

c(g �P ) locally on B. The measure µP,v has no atoms, so it is determined

by Tv along the image of P in E \ S.

Proof of Proposition 3.6. Let us fix any small neighborhood U in the base curve B(C) so

that all fibers Et are smooth for t 2 U . Let ft be the map on P1 defined in §3.1; by shrinking

U if necessary, we can find lifts Ft of ft that are holomorphic in t 2 U . From [HP, FS] (or

the proof of [BH, Proposition 1.2]), we know that the escape rate

GFt,v(z, w) = lim
n!1

log ||F n

t
(z, w)||v
4n

is continuous and plurisubharmonic as a function of (t, z, w) 2 U ⇥ (C2 \ {(0, 0)}). The

current

dd
cGFt,v(z, w)

projects to a closed and positive (1,1)-current T̂v on the complex surface U⇥P1, with locally

continuous potentials. This current T̂v has the property that, restricted to each fiber P1, its

total mass is 1; and the induced measure on the fiber is the measure of maximal entropy for

the rational map ft [Ly, HP].

The restriction E|U of the elliptic surface E over U maps with degree 2 to the complex

surface U ⇥ P1 by the projection ⇡ of (3.1). The current T̂v can be pulled back to E as
1
2 dd

c(g � ⇡) where g is a locally-defined continuous potential for T̂v. Covering the base of

E\S by sets of the form U , the local definitions glue to form the closed, positive (1, 1)-current

Tv on E \ S.
If P : B ! E is a section defined over the number field K, then P

⇤
Tv has potential given

locally by
1

2
g � ⇡ � P =

1

2
GFt,v(Xt)

for any lift Xt of ⇡(Pt) 2 P1. Proposition 3.1 yields that P
⇤
Tv must coincide with the

measure µP,v defined in (3.4).



VARIATION OF CANONICAL HEIGHT AND EQUIDISTRIBUTION 15

Finally, to conclude that Tv|Et is equal to the normalized Haar measure !t, we may use

the well-known dynamical fact that for each fixed t in the base, the measure !t projects by

⇡ to P1 to the unique measure of maximal entropy for the map ft; see, e.g., [Mi, §7]. ⇤

4. The adelic metric and equidistribution

In this section we give the proofs of Theorem 1.1 and Corollary 1.2.

We first outline the proofs. Let E ! B be an elliptic surface defined over a number field

K with zero section O : B ! E, and let P : B ! E be a section also defined over K so that

ĥE(P ) 6= 0. Recall from §2.2 that we introduced a Q-divisor

DE(P ) =
X

�2B(K)

�̂E,ord� (P ) · (�)

on B. By enlarging K, we may assume that suppDE(P ) lies in B(K). We will define an

adelic metric on the ample line bundle LP associated to the Q-divisor DE(P ), inducing a

height function hLP
such that

hLP
(t) = ĥEt(Pt) for all but finitely many t 2 B(K)

and

hLP
(t) � 0 for all t 2 B(K).

Applying Silverman’s results on the variation of canonical height, Theorems 2.2 and 2.3, we

will deduce that the metric is continuous and adelic. From Theorem 3.2, we will conclude that

the metric is also semipositive in the sense of Zhang [Zh1]. We will use Zhang’s inequalities

[Zh2] to deduce that the height of the underlying curve hLP
(B) := c1(LP )2/(2c1(LP )) may

be computed as

hLP
(B) = 0.

Consequently, we will be able to apply the equidistribution results of Chambert-Loir, Thuil-

lier, and Yuan [CL1, Th, Y] to complete our proofs.

4.1. The metric and its properties. Let m 2 N be such that

D = m ·DE(P )
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is an integral divisor. Let Lm be the associated line bundle on B. Note that deg(Lm) =

mĥE(P ) > 0 so Lm is ample; by replacing m with a multiple, we may assume that Lm is

very ample.

Fix a place v of K. Let U be an open subset of Ban

v
. Each section s 2 Lm(U) is identified

with a meromorphic function f on U satisfying

(f) � �D.

We set

ks(t)kv =

8
><

>:

e
�m�̂Et,v(Pt)|f(t)|v if f(t) is finite and nonzero

0 if ordt f > �m �̂E,ordt(P )

e
�mVP,t,v(t) otherwise,

taking a locally-defined uniformizer u = f
1/ ordt f at t in the definition of VP,t,v from (2.2).

Theorem 4.1. The metric k·k = {k·kv}v2MK on Lm is continuous, semipositive, and adelic.

Proof. The continuity and semipositivity follows from Theorem 3.2. (In [CL2], semipositivity

of a continuously metrized line bundle on a curve is defined terms of subharmonicity of

potentials for the curvature form at each archimedean place, and as a uniform limit of

“smooth semipositive” metrics at each non-archimedean place. In [Th], it is established

that subharmonicity of potentials is a su�cient notion at all places, and he proves in [Th,

Theorem 4.3.3] that this notion of semipositivity coincides with that of Zhang [Zh1]. See

also [FG, Lemma 3.11, Theorem 3.12] where this same argument is applied in a dynamical

context.) The adelic condition follows from Theorem 2.2. ⇤

4.2. The associated height function. A height function on B(K) is defined by setting

hP (t) :=
1

m

1

|Gal(K/K) · t|

X

s2Gal(K/K)·t

X

v2MK

�nv log k�(s)kv(4.1)

where � is any global section of Lm which is nonvanishing along the Galois orbit of t, and

k·kv is the metric of §4.1. Recall that suppDE(P ) ⇢ B(K); we may assume that our sections

� are defined over K, and the product formula guarantees our height is independent of the

choice of �.

Our next goal is to prove the following two important facts about this height function hP .

Proposition 4.2. The height function hP satisfies

hP (t) = ĥEt(Pt)
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for all t 2 B(K) such that the fiber Et is smooth.

Proposition 4.3. The height function hP satisfies

hP (t) � 0

for all t 2 B(K).

Proof of Proposition 4.2. First fix t 2 B(K) \ suppDE(P ) with smooth fiber Et. Choose a

section � defined over K that does not vanish along the Galois orbit of t, and let f be the

associated meromorphic function on B. Then f takes finite and nonzero values along the

Galois orbit of t. We have,

hP (t) =
1

m

1

|Gal(K/K) · t|

X

s2Gal(K/K)·t

X

v2MK

nv (m �̂Es,v(Ps)� log |f(s)|v)

=
1

m

1

|Gal(K/K) · t|

X

s2Gal(K/K)·t

X

v2MK

mnv �̂Es,v(Ps)

= ĥEt(Pt).

where the second equality follows from the product formula.

For t0 2 suppDE(P ) such that Et0 is smooth, it is necessarily the case that Pt0 = Ot0 (as

observed in §2.2), and therefore ĥEt0
(Pt0) = 0. To compute hP (t0), observe that t0 2 B(K)

so its Galois orbit is trivial; fixing a uniformizer u 2 K(B) at t0, we have

hP (t0) =
X

v2MK

nv VP,t0,v(t0)

where VP,t0,v is the function of (2.2) associated to the uniformizer u.

We can compute hP (t0) using the dynamical interpretation of the local heights, described in

Section 3.1. Fix a Weierstrass equation for E in a neighborhood of t0 and write P = (xP , yP ).

The assumption that Pt0 = Ot0 is equivalent to ordt0 xP < 0. After possibly shrinking U ,

write xP = (u)ordt0 (xP )
A0 for the chosen uniformizer u and a function A0 2 K(B) that does

not vanish in U . We choose a lift X of xP on U defined as X = (A0, B0), where B0 :=

(u)� ordt0 (xP ). Notice that A0 and B0 are regular at t0. Let F be the standard lift in these

coordinates, defined in (3.2); it satisfies Ft0(1, 0) = (1, 0), and we have GF,ordt0
(A0, B0) = 0.

Since ordt0 �E = 0, Proposition 3.1 implies that

VP,t0,v(t) =
1

2
GFt,v(A0(t), B0(t))�

1

12
log |�E(t)|v
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for all t 2 U . Therefore,

VP,t0,v(t0) =
1

2
GFt0 ,v

(A0(t0), 0)�
1

12
log |�E(t0)|v

=
1

2
lim
n!1

1

4n
log kFn

t0
(A0(t0), 0)kv �

1

12
log |�E(t0)|v

=
1

2
lim
n!1

1

4n
log |A0(t0)

4n |v �
1

12
log |�E(t0)|v

=
1

2
log |A0(t0)|v �

1

12
log |�E(t0)|v.

The product formula now yields that hP (t0) = 0, as claimed. ⇤

To prove Proposition 4.3, we first reduce to the case that the elliptic surface E ! B

has semi-stable reduction; that is, all of its fibers are either smooth or have multiplicative

reduction. The next lemma describes how the height associated with the divisor DE(P )

behaves under base extensions of the elliptic surface E ! B. It is adapted from [Si3,

Reduction Lemma II.2.1]. We include it here for completeness.

Lemma 4.4. Let µ : B0 ! B be a finite map of smooth projective curves, let E
0 ! B

0
be

a minimal model for E ⇥B B
0
, and let P

0 : B0 ! E
0
be the extension of the section P . For

each t0 2 B(K) and t
0
0 2 µ

�1({t0}) ⇢ B
0(Cv), there is a neighborhood U of t

0
0 in B

0(Cv) and

a regular non-vanishing function f on U such that

VP,t0,v(µ(t
0))� VP 0,t00,v

(t0) = log |f(t0)|v

on U \ {t00}. In particular,

VP,t0,v(t0)� VP 0,t00,v
(t00) = log |f(t00)|v.

Proof. Let u be a uniformizer at t0, u0 a uniformizer at t00 and n = ordt00
(µ⇤

u). Since local

heights are invariant under base extension we have

�̂E0,ordt00
(P 0) = n �̂E,ordt0

(P ).(4.2)

Notice that for all t0 in a punctured neighborhood of t00 the fibers E
0
t0 are smooth. Hence the

map E
0 ! E gives an isomorphism between the fibers E 0

t0 ! Eµ(t0). Under this isomorphism

P
0
t0 2 E

0
t0 is mapped to Pµ(t0) 2 Eµ(t0). Invoking now the uniqueness of the Néron local heights,

we have

�̂Eµ(t0),v(Pµ(t0)) = �̂E0
t0 ,v

(P 0
t0).(4.3)
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Combining (4.2) and (4.3) we get that for t0 in a punctured neighborhood of t00,

VP,t0,v(µ(t
0)) = VP 0,t00,v

(t0) + �̂E,ordt0
(P ) log

����
u(µ(t0))

u0n(t0)

����
v

.

The definition of n yields that the function f(t0) =
⇣

u(µ(t0))
u0n(t0)

⌘�̂E,ordt0
(P )

is regular and non-

vanishing at t00. The first part of the lemma follows.

Finally, Theorem 2.3 allows us to conclude that

VP,t0,v(µ(t
0
0))� VP 0,t00,v

(t00) = log |f(t00)|v

at the point t00, as claimed. ⇤

The following lemma will allow us to prove Proposition 4.3 in the case that a fiber has

multiplicative reduction. The proof is lengthy, but it is merely a collection of computations

using the explicit formulas for the local height functions, as in [Si2, Theorem VI.3.4, VI.4.2].

Lemma 4.5. Let E ! B be an elliptic surface and let P : B ! E be a non-zero section

defined over K. Then there exists a finite extension L of the number field K so that, for

each t0 2 B(K) such that Et0 has multiplicative reduction, there exists an x(t0) 2 L
⇤
so that

VP,t0,v(t0) = log |x(t0)|v

at all places v of L.

Proof. We let

E : y2 = x
3 + ax+ b,(4.4)

be a minimal Weierstrass equation for E over an a�ne subset W ⇢ B defined over K with

t0 2 W . Here a, b 2 K(B) are regular functions at t0. Using this Weierstrass equation we

write

P = (xP , yP ),

where xP , yP 2 K(B). Since E ! B has multiplicative reduction over t0 2 B(K), we have

N := ordt0 �E � 1 and ordt0 a = 0;(4.5)

see [Si5, Proposition VII.5.1]. Let v be a place of K (archimedean or non-archimedean). We

denote by jE the j�invariant of E ! W , given by

jE(t) = 1728
(4a(t))3

�E(t)
.
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Notice that equation (4.5) yields that jE has a pole at t0. Hence, we can find a v�adic open

neighborhood U of t0 and an analytic map

 : U ! {q 2 Cv : |q|v < 1},

such that the following holds: If j is the modular j�invariant [Si2, Chapter V], then we have

jE(t) = j( (t)) and ordt0  = N.

The function  (t) is given as

 (t) =
1

jE(t)
+

744

j2
E
(t)

+
750420

j3
E
(t)

+ . . . 2 Z[[(jE(t))�1]].(4.6)

In the following, we choose a uniformizer u 2 K(B) at t0, and we identify  with its

expression  (t) 2 Cv[[u]] and write

 (t) = �u(t)N + u(t)N+1
f(t), for t 2 U \ {t0}.(4.7)

Equation (4.6) yields that � 2 K \{0} and f(t) 2 K[[u]]. Following the proof of [Si3, Section

6] and after possibly shrinking U we have isomorphisms

Et(Cv)
⇠�! C⇤

v

.
 (t)Z

⇠�! C (t),(4.8)

where C (t) is the elliptic curve given by y
2 = 4x3 � g2( (t))x � g3( (t)) for t 2 U \ {t0}.

Under these isomorphisms, we have

Pt 7! w(t) 7! (}(w(t), (t)),}0(w(t), (t))).

Here g2, g3 are the modular invariants, given by their usual q�series

g2(q) =
1

12

 
1 + 240

1X

n=1

n
3
q
n

1� qn

!
, g3(q) =

1

216

 
�1 + 504

1X

n=1

n
5
q
n

1� qn

!

and } is the Weierstrass }�function given by

}(w, q) =
1

12
+
X

n2Z

q
n
w

(1� qnw)2
� 2

1X

n=1

nq
n

1� qn
, }

0(w, q) =
X

n2Z

q
n
w(1 + q

n
w)

(1� qnw)3
.(4.9)

In view of [Si3, Lemma II.6.2], after possibly replacing P by �P , we may assume that

w : U ! Cv is an analytic map satisfying

0  m := ordt0 w  1

2
ordt0  .(4.10)
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In the following we identify w with its series in Cv[[u]] and write

w(t) = ↵u
m(t) + u

m+1(t)g(t),(4.11)

where ↵ 2 Cv and g(t) 2 Cv[[u]].

We claim that w(t) 2 K[[u]]. To see this, notice that from [Si5, Chapter III.1] we have

that for t 2 U

(}(w(t), (t)),}0(w(t), (t)) = (⌫�2(t)xP (t), 2⌫
�3(t)yP (t)),

where

⌫(t)12 =
�E(t)

�( (t))
.

In the equation above � denotes the modular discriminant given by

�(q) = g2(q)
3 � 27g3(q)

3
.

Since the functions  ,�E and � are defined over K, we have that Y (t) := 2⌫�3(t)yP (t) is

also defined over K. Since Y (t) = }
0(w(t), (t)) 2 K[[u]] and  (t) 2 K[[u]] we get that

w(t) 2 K[[u]].

Therefore, there are non-zero constants ↵, �, � 2 K \ {0}, non-negative integers k,m 2 N
and functions f(t), g(t), h(t) 2 K[[u]] such that for all t 2 U

 (t) = �u
N(t) + f(t)uN+1(t), w(t) = ↵u

m(t) + g(t)um+1, 1� w(t) = �u
k(t) + h(t)uk+1(t).

(4.12)

Next, we aim to express x(t0) (as in the statement of the lemma) in terms of ↵, �, � 2 K.

Using the isomorphisms in 4.8, the uniqueness of the local canonical heights and the

explicit formulas for the local canonical heights [Si2, Theorem VI.3.4, VI.4.2], we get

�̂Et,v(Pt) = �̂(w(t), (t)) = �1

2
B2

✓
log |w(t)|v
log | (t)|v

◆
log | (t)|v � log |1� w(t)|v(4.13)

�
X

n�1

log |(1�  (t)nw(t))(1�  (t)nw(t)�1)|v,(4.14)

where B2(s) = s
2 � s+ 1/6 is the second Bernoulli polynomial.

Since ordt0  = N � 1 and using (4.10), we get

lim
t
v!t0

X

n�1

log |(1�  (t)nw(t))(1�  (t)nw(t)�1)|v = 0.(4.15)
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In what follows, for F (t) 2 Cv[[u]] we write

F (t) := ov(1), if lim
t
v!t0

F (t) = 0.

In view of [Si1, Lemma I.5.1], we have

B2

✓
log |w(t)|v
log | (t)|v

◆
log | (t)|v =

log2 |w(t)|v
log | (t)|v

� log |w(t)|v +
1

6
log | (t)|v(4.16)

=
m

2

N
log |u(t)|v +

m

N2
log

✓
|↵|2N

v

|�|m
v

◆
� log |↵|v

�m log |u(t)|v +
log |�|v

6
+

N

6
log |u(t)|v + ov(1).

Using equations (4.15) and (4.16), equation (4.13) yields

�̂Et,v(Pt) +
1

2

✓
m

2

N
�m+

N

6
+ 2k

◆
log |u(t)|v = �1

2

✓
m

N2
log

✓
|↵|2N

v

|�|m
v

◆
� log |↵|v +

log |�|v
6

◆(4.17)

� log |�|v + ov(1).(4.18)

Finally, notice that [Si2, Theorem VI.4.2] implies

�̂E,ordt0
(P ) = ordt0(1� w) +

1

2
B2

✓
ordt0 w

ordt0  

◆
ordt0  =

1

2

✓
m

2

N
�m+

N

6
+ 2k

◆
.

Therefore

VP,t0,v(t0) = lim
t
v!t0

VP,t0,v(t) = �1

2

✓
m

N2
log

✓
|↵|2N

v

|�|m
v

◆
� log |↵|v +

log |�|v
6

◆
� log |�|v

= log |x(t0)|v,

where x(t0) =
�
m2/2N2�1/2

�↵m/N�1/2 belongs to a finite extension of K, denoted by L.

⇤

Proof of Proposition 4.3. By [Si3, Lemma II.2.2] there is a finite map of smooth projective

curves B0 ! B such that if E 0 ! B
0 is a minimal model for E⇥BB

0, then E
0 has semi-stable

reduction over the singular fibers of E ! B. Moreover, we may choose B0 so that everything

is defined over K. Thus, by Lemma 4.4 and using the product formula, we may assume that

the singular fibers of our elliptic surface E ! B have multiplicative reduction.
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For all t 2 B(K) for which Et is smooth, we know from Proposition 4.2 that hP (t) =

ĥEt(Pt). The canonical height is always non-negative, so we may conclude that hP (t) � 0

for all such t.

Assume now that t0 2 B(K) has a fiber with multiplicative reduction. Enlarging the

number field K if necessary we may assume that t0 2 B(K) and that its corresponding x(t0)

defined in the statement of Lemma 4.5 is in K
⇤. Then, on using the product formula, Lemma

4.5 implies that hP (t0) = 0. This completes the proof. ⇤

4.3. Proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let LP be the line bundle on B induced from the divisor DE(P ).

From Theorem 4.1, we know that its m-th tensor power can be equipped with a continuous,

adelic, semipositive metric, so that the corresponding height function is (a multiple of) the

canonical height ĥEt(Pt) on the smooth fibers. Thus, by pulling back the metric to LP , we

obtain a continuous, semipositive, adelic metric on LP inducing a height function hLP
which

is precisely the function hP defined in (4.1).

It remains to show that this height hP satisfies hP (B) = 0. This is a consequence of

Propositions 4.2 and 4.3 and Zhang’s inequalities on successive minima [Zh2]. Indeed, from

Proposition 4.3, we know that hP (t) � 0 for all t 2 B(K). In addition, since ĥE(P ) 6= 0, we

know that there are infinitely many t 2 B(K) for which

ĥEt(Pt) = 0.

(For a complex-dynamical proof, see [De1, Proposition 1.5, Proposition 2.3].) Therefore,

from Proposition 4.2, we may deduce that the essential minimum of hP on B is equal to 0.

Finally, from [Zh2, Theorem 1.10], we may conclude that hP (B) = 0. ⇤

Proof of Corollary 1.2. When combined with the equidistribution theorems of Yuan and

Thullier [Y, Th], we immediately obtain the corollary from Theorem 1.1. The measures µP,v

are the curvature distributions associated to the metrics k · kv at each place v. From the

definition of the metric in §4.1, we see that they are given locally by

µP,v = dd
c
VP,t0,v(t)

in a v-adic neighborhood of any point t0 2 B(K), and for any choice of uniformizer u at

t0. ⇤
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5. Proof of Theorem 1.4.

5.1. Reduction to the case of a fiber product of elliptic surfaces. We first show

that, to prove the theorem, it su�ces to prove the result for sections of the fiber product

A = E1 ⇥B · · ·⇥B Em of m � 2 elliptic surfaces Ei ! B over the same base, and to assume

that the line bundle L is generated by the divisor

{OE1}⇥ E2 ⇥ · · ·Em + E1 ⇥ {OE2}⇥ · · ·⇥ Em + · · ·+ E1 ⇥ E2 ⇥ · · ·⇥ {OEm}.

Let B be a quasiprojective smooth algebraic curve defined over Q. Suppose A ! B is

family of abelian varieties defined over Q that is isogenous to a fibered product of m � 2

elliptic curves. That is, there is a branched cover B
0 ! B and m � 2 elliptic surfaces

Ei ! B
0 that give rise to an isogeny

E1 ⇥B0 · · ·⇥B0 Em ! A

over B0. Now let L be a line bundle on A which restricts to an ample and symmetric line

bundle on each fiber At for t 2 B. Then the line bundle L pulls back to a line bundle L0

on E1 ⇥B0 · · ·⇥B0 Em, and it again restricts to an ample and symmetric line bundle on each

fiber over t 2 B
0.

Now suppose that we have a section P : B ! A. The section P pulls back to a section P
0 :

B
0 ! A, and this in turn pulls back to a (possibly multi-valued) section of E1⇥B0 · · ·⇥B0 Em.

If multi-valued, we can perform a base change again, passing to a branched cover B00 ! B
0,

so that the induced section P
00 : B00 ! E1 ⇥B00 · · · ⇥B00 Em is well defined. By definition,

the assumption that P is non-special on A means that it is non-special as a section of

E1 ⇥B00 · · ·⇥B00 Em.

Finally, we observe that the conclusion of Theorem 1.4 does not depend on the choice of

line bundle. (We thank Joe Silverman for his help with this argument.) Recall that, on any

abelian variety A defined over Q, the notion of a “small sequence” of points is independent of

the choice of ample and symmetric line bundle. That is, if we take two ample and symmetric

divisors D1 and D2, then we know that there exists an integer m1 > 0 so that m1D1 �D2 is

ample; similarly there exists m2 > 0 so that m2D2 �D1 is ample. It follows from properties

of the Weil height machine that the heights hD1 and hD2 will then satisfy

1

m1
hD2 + C1  hD1  m2 hD2 + C2
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for real constants C1, C2. Upon passing to the canonical height, we conclude that

(5.1)
1

m1
ĥD2  ĥD1  m2 ĥD2

on the abelian variety. In particular, ĥD1(ai) ! 0 for some sequence in A(Q) if and only if

ĥD2(ai) ! 0. Now suppose we have a family of abelian varieties A ! B. Two line bundles L1

and L2 associated to relatively ample and symmetric divisors induce canonical heights ĥL1,t

and ĥL2,t on each fiber At. But recalling that ampleness persists on Zariski open sets [La3,

Theorem 1.2.17], there exist positive integers m1 and m2 so that the line bundles Lm1
1 ⌦L�1

2

and Lm2
2 ⌦ L�1

1 are relatively ample on a Zariski open subset of the base B. Passing to the

canonical heights once again, we find that the relation (5.1) holds uniformly over B (after

possibly excluding finitely many points). Therefore, for any section P : B ! A, there exists

a positive constant c(L1, P ) of Theorem 1.4 for the height ĥL1 if and only if it there exists

such a constant c(L2, P ) for ĥL2 .

5.2. Proof for a fiber product of elliptic curves. Fix integer m � 2, and let Ei ! B

for i = 1, . . . ,m be elliptic surfaces over the same base curve B, defined over Q. Let

A = E1 ⇥B · · · ⇥B Em, and let L be the line bundle on E1 ⇥B · · · ⇥B Em associated to the

divisor

D = {OE1}⇥ E2 ⇥ · · ·Em + E1 ⇥ {OE2}⇥ · · ·⇥ Em + · · ·+ E1 ⇥ E2 ⇥ · · ·⇥ {OEm}.

For all but finitely many t 2 B(Q), the canonical height ĥLt on the fiber At is easily seen

to be the sum of canonical heights (see, e.g., [HS] for properties of the height functions), so

that

ĥLt =
mX

i=1

ĥEi,t .

Now assume that P = (P1, . . . , Pm) is a section of A ! B. Define

ĥi(t) := ĥEi,t(Pi,t)

for i = 1, . . . ,m and for all t 2 B(Q) where all Ei,t are smooth elliptic curves. Suppose there

exists an infinite sequence {tn} ⇢ B(Q) for which

(5.2) ĥi(tn) ! 0 for all i = 1, . . . ,m
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as n ! 1. We will prove that for every pair (i, j), there exists an infinite sequence {sn} ⇢
B(Q) so that

ĥi(sn) = ĥj(sn) = 0

for all n. In this way, we reduce our problem to the main results of [MZ2, MZ3] which imply

that the pair (Pi, Pj) must be a special section of Ei ⇥B Ej. Finally, we observe that our

definition of a special section P = (P1, P2, . . . , Pm) is equivalent to the statement that every

pair (Pi, Pj) is special. Therefore, for any non-special section P , we can conclude that there

exists a constant c = c(P ) > 0 so that the set

{t 2 B(Q) : ĥLt(Pt) < c}

is finite.

Fix a pair (i, j). First assume that neither Ei nor Ej is isotrivial. If Pi or Pj is torsion,

then the section (Pi, Pj) is special. Otherwise, we have ĥEi(Pi) 6= 0 and ĥEj(Pj) 6= 0, and

we may apply Theorem 1.1 to deduce that the height functions ĥi and ĥj are “good” on B.

More precisely, we let Mi and Mj be the adelically metrized line bundles on the base curve

B associated to the height functions ĥi and ĥj, from Theorem 1.1. They are both equipped

with continuous adelic metrics of non-negative curvature. By assumption, we have

(5.3) ĥi(tn) ! 0 and ĥj(tn) ! 0

as n ! 1. Therefore, we may apply the observation of Chambert-Loir [CL2, Proposition

3.4.2], which builds upon on Zhang’s inequalities [Zh2], to conclude that there exist integers

ni and nj so that Mi

ni and Mj

nj are isomorphic as line bundles on B and their metrics are

scalar multiples of one another. It follows that the height functions ĥi and ĥj are the same,

up to scale, and in particular they have the same zero sets. In other words, Pi,t is a torsion

point on Ei,t if and only if Pj,t is a torsion point on Ej,t (for all but finitely many t in B),

and there are infinitely many such parameters t 2 B(Q).

Now suppose that Ei is isotrivial. The existence of the small sequence tn in (5.3) implies

that either ĥEi(Pi) 6= 0 or Pi is torsion on Ei, and furthermore, if Pi is torsion, then it follows

that (Pi, Pj) is a special section of Ei ⇥B Ej. Similarly if Ej is isotrivial. In other words,

the existence of the sequence tn in (5.3) allows us to conclude that either (Pi, Pj) is a special

pair, or we have that both ĥEi(Pi) 6= 0 and ĥEj(Pj) 6= 0. Therefore, we may proceed as

above in the nonisotrivial case, applying Theorem 1.1 to deduce that the heights ĥi and ĥj



VARIATION OF CANONICAL HEIGHT AND EQUIDISTRIBUTION 27

coincide, up to scale, and in particular there are infinitely many parameters s 2 B(Q) where

ĥi(s) = ĥj(s) = 0.

This concludes the proof of Theorem 1.4.

6. Variation of canonical height, illustrated

In this final section, we provide a few illustrations of the distributions µP,v arising in Corol-

lary 1.2, for an archimedean place v. In Proposition 6.2, we present a complex-dynamical

proof that the archimedean measures µP,v will have support equal to all of B.

6.1. Images. Given E ! B and section P , we plot the parameters t where Pt is a torsion

point on the fiber Et of specified order. As proved in Corollary 1.2, the local height function

at each place

t 7! �̂Et,v(Pt)

determines the distribution of the torsion parameters; it is a potential for the measure µP,v

(away from the singularities). Recall that if we have two sections P and Q that are linearly

related on E, then the distributions of their torsion parameters in B will be the same.

Figure 6.1, top, illustrates the example of Silverman from [Si1, Theorem I.0.3]. Here, we

have

Et = {y2 + xy/t+ y/t = x
3 + 2x2

/t}

with B = P1 and Pt = (0, 0) in (x, y)-coordinates. Plotted are the torsion parameters of

orders 2n for all n  8; that is, the points t in the base B where Pt is torsion of order 2n on

the fiber Et. Roughly, a smaller yellow dot corresponds to higher order of torsion. Figure

6.1, bottom, is another section of the same family, where the x-coordinate of Pt is constant

and equal to �1/4. (Strictly speaking, this second P is not a section of our given E ! P1,

because the y-coordinate will not lie in K(B) ' Q(t) but in an extension; however, the

property of being torsion and the determination of its order is independent of which point

in the fiber we choose.) Observe the distinctly di↵erent pattern of yellow dots in the first

and second pictures, especially in the left half of the two pictures, illustrating the linear

independence in E(k) of the two sections.

Figure 6.2 illustrates the torsion parameters for two independent sections of the Legendre

family,

Et = {y2 = x(x� 1)(x� t)}



VARIATION OF CANONICAL HEIGHT AND EQUIDISTRIBUTION 28

Figure 6.1. At top, Silverman’s example from [Si1, Theorem I.0.3], with Et =
{y2 + xy/t + y/t = x3 + 2x2/t} and Pt = (0, 0), shown in the region {�2  Re t 
1, �1  Im t  1}. The singular fibers occur at t = 0,�2/27,�1, and one sees the
e↵ects of numerical error in a small neighborhood of these parameters. At bottom,
torsion parameters for section P having x-coordinate x(Pt) = �1/4 for all t.

over B = P1, studied in [MZ1]. The chosen sections are P2, with constant x-coordinate equal

to 2, and P5, with constant x-coordinate equal to 5. As in Figure 6.1, we plot the torsion

parameters of orders 2n for all n  8; generally, a smaller yellow dot signifies higher order
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Figure 6.2. Torsion parameters for sections of the Legendre family, studied in
[MZ1]; here, B = P1 and Et = {y2 = x(x� 1)(x� t)}. At left, the section P2 with
x((P2)t) = 2 for all t; at right, the section P5 with x((P5)t) = 5 for all t. Both are
shown in the region {�3  Re t  5, �4  Im t  4}

of torsion. It was proved in [DWY] that the limiting distributions for sections with constant

x-coordinate satisfy µPx,1 = µPx0 ,1 (at an archimedean place) if and only if x = x
0. It was

proved in [St] and [Ma] that there are no t 2 P1(K) for which both (P2)t and (P5)t are

torsion on Et. Again, observe the di↵erence in the geometry of the yellow dots for the two

independent sections.

Figure 6.3 illustrates our equidistribution result, Corollary 1.2, for the example of the

Legendre family with the section P5. Plotted are the torsion parameters of orders 2n with

(a) n  6, (b) n  8, and (c) n  10. Observe how the yellow dots fill in the “grid structure”

in the base curve B, exactly as do the torsion points for one elliptic curve.

Remark 6.1. As mentioned above, the smaller yellow dots in the illustrations correspond,

roughly, to higher orders of torsion. These images are produced with a standard escape-rate

algorithm. We use the dynamical system ft on P1, induced from multiplication by 2 on the

elliptic curve Et from Section 3, line (3.1). The coordinates on P1 are chosen so that 1 is

the image of the 0 of Et. We mark t yellow if |fn

t
(⇡(Pt))| � 10000 for some n  8.

6.2. Density of torsion parameters. In all of these examples, the yellow dots will fill in

the picture as the order of torsion grows, and the support of the measures µP,v is equal to
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Figure 6.3. Illustrating equidistribution: Torsion parameters of increasing or-
ders for a section of the Legendre family, with B = P1 and Et = {y2 = x(x�1)(x�t)}
and P5 as in Figure 6.2. At top, torsion parameters of orders 2n for n  6; bottom
left, of orders 2n for n  8, and bottom right, of orders 2n for n  10.

B(C). In fact, this will always be the case, for any (nontrivial) section of a complex elliptic

surface, as our final result, Proposition 6.2, shows.

Let E ! B be an elliptic surface over a projective curve B, defined over C, and let

P : B ! E be a section for which ĥE(P ) 6= 0 (over the function field k = C(B)). Let µP
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be the measure on B defined as in Proposition 3.6, that is as the pullback of the current T

that restricts to Haar measure on each smooth fiber. In other words, µP is locally defined

as the Laplacian of the function GP (t) introduced in Proposition 3.4, which is well defined

when working over C.

Proposition 6.2. Let E ! B be an elliptic surface over a projective curve B, defined over

C, and let P : B ! E be a section for which ĥE(P ) 6= 0 (over the function field k = C(B)).

Then the set

{t 2 B : Pt is torsion on Et}

is dense in B(C) and
suppµP = B(C).

We give a complex-dynamical proof, viewing Proposition 6.2 as a consequence of the main

result of [De1]. (We do not use the equidistribution result, Corollary 1.2.) An analytic proof

is also presented in [Za, Notes to Chapter 3].

Proof. Let B⇤ ⇢ B be a finitely-punctured Riemann surface such that the fiber Et is smooth

for all t 2 B
⇤. Let ⇡t : Et ! P1 be the degree-two projection and ft : P1 ! P1 be the

rational map induced by multiplication-by-2 on Et, as defined in the introduction to Section

3. It is well known that the holomorphic family {ft : t 2 B
⇤} is structurally stable; see, e.g.,

[Mc, Chapter 4]. Thus, over any simply-connected subset U of B⇤, there is a holomorphic

motion of the periodic points of ft which extends uniquely to a holomorphic motion of all of

P1, conjugating the dynamics.

The key observation is that µP is precisely the “bifurcation measure” of the pair (f, P ) on

B
⇤. See [De2, §2.7] and [De1] for definitions. The support of µP is equal to the bifurcation

locus of (f, P ); in particular, the parameters t 2 B
⇤ for which ⇡t(Pt) is preperiodic for ft are

dense in suppµP . Therefore, it su�ces to show that suppµP = B.

Suppose to the contrary that there is an open disk U ⇢ B
⇤ for which µP (U) = 0. Then

the pair (f, P ) is stable on U , and therefore ⇡t(Pt) cannot be a repelling periodic point for

any t 2 U . From the uniqueness of the holomorphic motion, it follows that t 7! ⇡t(Pt)

is part of the holomorphic motion on U . By analytic continuity, then, we deduce that

⇡t(Pt) must follow the motion of a point over all of B⇤. This implies that the pair (f, P ) is

stable throughout B⇤ and the measure µP is 0. But this is absurd by the assumption that

ĥE(P ) 6= 0; see [De1, Theorem 1.1]. ⇤
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