VARIATION OF CANONICAL HEIGHT AND EQUIDISTRIBUTION
LAURA DEMARCO AND NIKI MYRTO MAVRAKI

ABSTRACT. Let m : E — B be an elliptic surface defined over a number field K, where B
is a smooth projective curve, and let P : B — E be a section defined over K with canonical
height hg(P) # 0. In this article, we show that the function ¢t — kg, (P;) on B(K) is the
height induced from an adelically metrized line bundle with continuous semipositive metrics
on B. The proof builds on work of Silverman and results from complex dynamical systems.
Applying arithmetic equidistribution theorems (of Chambert-Loir, Thuillier, and Yuan), we
obtain the equidistribution of points ¢ € B(K) where P, is torsion, and we give an explicit
description of the limiting distribution on B(C). Finally, combined with results of Masser
and Zannier, we show that — for any non-special section P of a family of abelian varieties
A — B that split as a product of elliptic curves — there is a positive lower bound on the
height h A, (Py), after excluding finitely many points ¢t € B, thus addressing a conjecture of
Zhang from 1998.

1. INTRODUCTION

Suppose £ — B is an elliptic surface defined over a number field K, so B is a smooth
projective curve and all but finitely many fibers E;, ¢t € B(K), are smooth elliptic curves.
We let i denote the Néron-Tate canonical height of F viewed as an elliptic curve over the
function field & = K (B); we let hg, denote the canonical height on a smooth fiber E;(K).

Suppose that P : B — E is a section defined over K for which hg(P) # 0, so, in particular,

the points P, on the fiber are not torsion in F; for all ¢. Tate showed that the function

t— hg,(P,)
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defines a Weil height on B(K), up to a bounded error [Ta]. More precisely, there exists a
divisor Dp € Pic(B) ® Q of degree equal to hg(P) so that

(1.1) hi,(P) = hpy (£) + O(1),

where hp, is a Weil height on B(K) associated to Dp. In a series of three articles [Sil,
Si3, Si4], Silverman refined statement (1.1) by analyzing the Néron decomposition of the
canonical height on the fibers

1
[K: Q)

where My denotes the set of places of the number field K, and n, = [K, : Q,] are the

integers appearing in the product formula [T, . M |z =1 for all z € K*.

In this article, we explain how Silverman’s conclusions about the local functions A Bow(P)

iLEt (Pt) = Z Ny 5\Et,U(Plf)

vEMK

are precisely the input needed to show that t — fLEt(Pt) is a “good” height function on the
base curve B, from the point of view of equidistribution. Combining his work with methods

from complex dynamics, as in [DWY], and the inequalities of Zhang on successive minima
[Zh2, Zh1], we prove:

Theorem 1.1. Let K be a number field and k = K(B) for a smooth projective curve B
defined over K. Fiz an elliptic surface E — B defined over K and a point P € E(k)
satisfying hg(P) # 0. Then

t— }AlEt (Pt>7
defined for t with smooth fibers, extends to a height function on all of B(K) induced from an

adelically metrized ample line bundle Lp, with continuous semipositive metrics, satisfying

hz,.(B) == ai(Lp)?/(2e1(Lp)) = 0.

Theorem 1.1 implies that our height function on B satisfies the hypotheses of the equidis-
tribution theorems of Chambert-Loir, Thuillier, and Yuan for points of small height on curves
[CL1, Th, Y], and we deduce the following:

Corollary 1.2. Let K be a number field and k = K(B) for a smooth projective curve B
defined over K. Fix an elliptic surface E — B defined over K and a point P € E(k)
satisfying fLE(P) # 0. There is a collection of probability measures pp = {ppy, : v € Mg}

on the Berkovich analytifications BS™ such that for any infinite, non-repeating sequence t,, €
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B(K) with
hg, (P,) — 0 asn — oo,

the discrete measures

1
| Gal(K /K) - t,| 2. o

teGal(K/K)tn
converge weakly on By" to the measure pup, at each place v of K.

Remark 1.3. The measures pp, of Corollary 1.2 are not difficult to describe, at least at the
archimedean places. At each archimedean place v, there is a canonical positive (1, 1)-current
T, on the surface E(C) (with continuous potentials away from the singular fibers) which
restricts to the Haar measure on each smooth fiber E;(C). The measure pp, on B(C) is just
the pull-back of this current by the section P. Moreover, at every place, the measure pp,
is the Laplacian of the local height function XEt,U(Pt), away from its singularities. We give
more details about (and a dynamical perpective on) the construction of the current 7, in

Section 3.

As a consequence of Theorem 1.1, and combined with the work of Masser and Zannier
IMZ1, MZ2, MZ3|, we obtain the so-called Bogomolov extension of their theorems. Fix
integer m > 2, and suppose that E; — B is an elliptic surface over a curve B, defined over
Q, fori =1,...,m. We consider sections P of the fiber product A = Ey xp--- x5 E,, = B
defined over Q. We say that a section P = (P, Py, ..., P,,) is special if the following two

conditions are satisfied.

(1) For each i = 1,...,m, either P; is torsion on E; or hg, (P;) # 0.
(2) For any pair 4,5 € {1,...,m} such that neither P, nor P; is torsion, there are an
isogeny ¢ : E; — E; and nonzero group endomorphisms a, b of E; so that ao ¢(P;) =
b(F;).
Note that the first condition is satisfied for every section P of A if we assume that each F;
is non-isotrivial, because then P; € E;(k) is torsion if and only if g, (P;) = 0.

If a family of abelian varieties A — B is isogenous to a fiber product of elliptic surfaces
(after performing a base change B’ — B if needed), we say that a section of A is special if
it is special on the fiber product.

It is not hard to see that a special section P will specialize to a torsion point P; in the fiber
A, for infinitely many ¢ € B(K). For a proof see [Za, Chapter 3] or, for a dynamical proof,

see [Del]. The converse statement is also true, but it is much more difficult: Masser and
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Zannier proved that if P, is torsion in A, for infinitely many ¢ € B(Q), then the section P
must be special [MZ2, MZ3]. We use Theorem 1.1 to extend these results of Masser-Zannier
from points of height 0 to points of small height:

Theorem 1.4. Let B be a quasiprojective smooth algebraic curve defined over Q. Suppose
A — B is a family of abelian varieties of relative dimension m > 2 defined over Q which
is isogenous to a fibered product of m > 2 elliptic surfaces. Let L be a line bundle on A
which restricts to an ample and symmetric line bundle on each fiber A;, and let hy be the

induced Néron-Tate canonical height on Ay, for each t € B(Q). For each non-special section
P : B — A defined over Q, there is a constant ¢ = c¢(L£, P) > 0 so that

{te B(Q): ilt(Pt) <c}
18 finite.

If A — B is isotrivial, then Theorem 1.4 is a special case of the Bogomolov Conjecture,
proved by Ullmo and Zhang [Zh3, U]. A key ingredient in their proofs is the equidistribution
theorem of Szpiro, Ullmo, and Zhang [SUZ]. In his 1998 ICM lecture notes [Zh4|, Zhang
presented a conjecture about geometrically simple families of abelian varieties, which stated,

in its most basic form:

Conjecture 1.5 (Zhang). Let B be a quasiprojective smooth algebraic curve defined over
Q. Suppose A — B is a non-isotrivial family of abelian varieties with fiber dimension > 1,
defined over Q with a simple generic fiber. Let L be a line bundle on A which restricts to
an ample and symmetric line bundle on each fiber Ay, and let h; be the induced Néron-Tate

canonical height on Ay, for each t € B(Q). For each non-torsion section P : B — A defined
over Q, there is a constant ¢ = c(L, P) > 0 so that

{t e B(Q): hy(P,) < ¢}
is finite.

When the dimension of the fibers 4, is equal to 2, the finiteness of {t € B(Q) : hy(P,) = 0}
for sections as in Conjecture 1.5 was established recently by Masser and Zannier in [MZ4].
It is well known that the conclusion of Conjecture 1.5 can fail to hold if A is not simple and
certainly fails if it is a family of elliptic curves, as mentioned above. However, the results
of Masser and Zannier in their earlier work [MZ2, MZ3| suggested a formulation of Zhang’s

conjecture for the non-simple case when A splits as a product of elliptic curves where the
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“non-torsion” hypothesis on P should be replaced by “non-special”; this is what we proved

in our Theorem 1.4.

Remark 1.6. Theorem 1.1, Corollary 1.2, and Theorem 1.4 were obtained in the special
case of the Legendre family B, = {y* = z(z — 1)(z — )} over B = P! and the abelian
variety A, = E, x F,, for sections P with 2-coordinates in Q(¢) in [DWY], using methods
from complex dynamical systems, without appealing to Silverman and Tate’s results on the
height function. Moreover, restricting further to sections P with constant z-coordinate (in
P!(Q)), Theorem 1.4 was obtained without relying on the theorems of Masser and Zannier
and gave an alternate proof of their result. This includes the special case treated by Masser
and Zannier in their article [MZ1]. For sections with constant z-coordinate, the hypothesis
on P (that hg(P) # 0) is equivalent to asking that 2(P) # 0,1, 00 [DWY, Proposition 1.4].

Comments and acknowledgements. This project was motivated, in part, by experi-
ments to visualize Silverman’s results on the variation of canonical height [Sil, Si3, Si4] in
terms of the measures pp, at archimedean places, and to examine their dependence on P.
In particular, the measure detects the failure of the local height function g, »(P:) to be har-
monic; compare with the comments on non-analyticity preceding Theorem 1.0.3 of [Sil]. The
images appearing in Section 6 were first presented at the conference in honor of Silverman’s
birthday, August 2015.

We thank Charles Favre, Dragos Ghioca, Robert Rumely, Joseph Silverman, and Amaury
Thuillier for helpful suggestions. Our research was supported by the National Science Foun-

dation and the Simons Foundation.

2. SILVERMAN’S WORK

2.1. Preliminaries. Let F be a product formula field of characteristic 0, so there exists a

family Mz of non-trivial absolute values on F and a collection of positive integers n, for

v € Mr so that
IT Izl =1

veEM £
for all z € F*. Let E/F be an elliptic curve with origin O, expressed in Weierstrass form as

E = {y* + ayzy + asy = 2° + apx® + ayx + ag}
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with discriminant A. Denote by
hg : E(F) = [0,00)

the Néron-Tate canonical height function; it can be defined by

hp(P) = L lim w

2 n—oo n
where h is the naive Weil height on P! and z : E — P! is the degree 2 projection to the
x-coordinate.

For each v € Mz, we let F, denote the completion of F with respect to |- |, and C, denote
the completion of the algebraic closure of F, with respect to |- |,. For each v, we fix an

embedding of F into C,. The canonical height has a decomposition into local heights, as

- 1
") = G /F) P 2 D mAn(Q)

QeGal(F/F)-P vEMF

for P € E(F)\ {O}, with the local heights Ag, characterized by three properties [Si2,
Chapter 6, Theorem 1.1, page 455]:

(1) Ag, is continuous on E(C,) \ {O} and bounded on the complement of any v-adic
neighborhood of O;

(2) the limit of \g,(P) — L log |z(P)], exists as P — O in E(C,); and

(3) for all P = (z,y) € E(C,) with [2]P # O,

. A 1
Apo([2]P) = 4Ag . (P) —log |2y + ayz + as, + 2 log |Als,.

2.2. Variation of canonical height: the set up. Now let K be a number field and
E — B an elliptic surface defined over a number field K with zero section O : B — E. Let

P : B — E be a non-zero section defined over K, and assume that

hp(P) # 0

when viewing P as a point on the elliptic curve E defined over k = K (B). For each t € B(K)
such that the fiber E}; is non-singular, we have a point P, € Et(F) We will investigate the
function

t e g, (P)
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which is well defined at all but finitely many ¢ € B(K). Furthermore, via the embedding of
K into C, for each place v € My, we may view £ — B as defined over C, and consider the
Néron local heights Ag, ,(P;) on the non-singular fibers E; as functions of ¢ € B(C,).

Let Dg(P) be the Q-divisor on B defined by

(2.1) = Y Apo,(P)- (7).

veB(K)
Here, S\E,Ordv(P) is the local canonical height of the point P on the elliptic curve E over

k = K (B) at the place ord,, for each 7 € B(K). The degree of Dg(P) is equal to hg(P). Tt
follows from the definitions that supp Dg(P) is a subset of the finite set

{t € B(K): E, is singular} U {t € B(K) : P, = O;}.
By enlarging K, we may assume that the support of Dg(P) is contained in B(K).

Remark 2.1. That Dg(P) is a Q-divisor is standard, following from the fact that the
numbers \ E.ord, (P) can be viewed as arithmetic intersection numbers on a Néron local model.
See [Si2, Chapter I1I, Theorem 9.3] for a proof that ﬁE(P) € Q; see [CS, Section 6 and p. 203]
and [Lal, Chapter 11 Theorem 5.1] for proofs that each local function A E.v also takes values

in Q; see [DG, Theorem 1.1] for a dynamical proof.

2.3. Variation of canonical height: quasi triviality. Let hp,_p) be an analytic Weil
height on B(K) as defined in [Si4, §3 Example 1(a)]. That is, we let g be the genus of B,
and for each point v € B(K), we choose an element &, of K(B) which has a pole of order

2g + 1 at v and no other poles. For each non-archimedean place v of K, set

=Y A, (P) Tog” 50l

'yeB(K

)\DE(P) (

for all t € B(C,) \ supp Dg(P). For archimedean places v, the local height is defined by

Z >\E' 01rdAY 1Og (1 + ’5’}’@)’3) :

~EB(K)

We set

1
hDE(P)<t) = ‘ Gal(F/K) | Z Z )\DE (P)w

seCal(K/K)t vEMx
for all t € B(K). For fixed choices of &,, we will call the associated height hpgpy our

“reference height” for the divisor Dg(P). Silverman proved:
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Theorem 2.2. [Si4, Theorem II1.4.1] For any choice of reference height hp,(py, there is a
finite set S of places so that
;\Et,v(Pt) = )\DE(P),v(t)
for allt € B(K) \ supp Dg(P) and allv € My \ S.

2.4. Variation of canonical height: continuity. Fix a point t, € B(K) and a uniformizer
u € K(B) for ty, and consider the function

(2.2) Vito(t) = Ao (Pr) + Agoray, (P) log [u(t)].,
which is not a priori defined at ty. Theorem 2.2 implies that
VP,t(),’U =0

for all but finitely many places v in a v-adic neighborhood of ¢y. Silverman also proved the
following:

Theorem 2.3. [Si3, Theorem I1.0.1] Fiz ty € B(K) and a uniformizer u at ty. For all
v € Mg, there exists a neighborhood U C B(C,) containing to so that the function Vpy, . of
(2.2) extends to a continuous function on U.

3. A DYNAMICAL PERSPECTIVE

Recall that the Néron-Tate height h g and its local counterparts A £ can be defined dynam-
ically. Letting E be an elliptic curve defined over a number field K, the multiplication-by-2
endomorphism ¢ on E descends to a rational function of degree 4 on P!, via the standard

quotient 7 identifying a point P with its additive inverse:

(3.1) E-—-E

]P>1 i) ]Pﬂ
An elementary, but key, observation is that a point is torsion on E if and only if its quotient
in P is preperiodic for f,. The height hp on E(K) satisfies
A | .
hp(P) = 5 lim —h(f§(7P))

2 n—soo 4M
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where A is the standard logarithmic Weil height on P*(K). Now let E — B be an elliptic
surface defined over a number field K, and let P : B — E be a section, also defined over K.
In this section, we use this dynamical perspective to give a proof of the subharmonicity of
the local height functions ¢ — Ag, ,(P;) and the extensions Vpy, ., of (2.2). We will present
this fact as an immediate consequence of now-standard complex-dynamical convergence ar-
guments, at least when the fiber F; is smooth and the local height A g,0(P;) is finite. Near
singular fibers, we utilize the maximum principle and standard results on removable singu-
larities for subharmonic functions. The same reasoning applies in both archimedean and
non-archimedean settings.

In §3.3 we provide the background to justify the explicit description of the distributions

ip, from Corollary 1.2 at the archimedean places v of K, as mentioned in Remark 1.3.

3.1. Canonical height and escape rates. As in §2.1, we let E be an elliptic curve in
Weierstrass form, defined over a product-formula field F of characteristic 0. We define a
rational function f = ¢/1 on P! by the formula

f(x(P)) = x([2]P)

for all P € E(F). Here z(P) is the x—coordinate for a point P; this function z plays
the role of 7 in (3.1). In coordinates, we have ¢(z) = z* — byz? — 2bgx — by and ¥ (x) =
413 + box® + 2byx + b = (2y + ayx + az)? for P = (z,y).

By a lift of f, we mean any homogeneous polynomial map F on A%, defined over F, so
that 7o F = for, where 7 : A%\ {(0,0)} — P! is the tautological projection. A lift of a
point x € P! is a choice of X € A?\ {(0,0)} so that 7(X) = z.

The standard lift of f will be the map F : A2 — A? defined by

(3.2) Fz,w) = (w'é(z/w), w'i(z/w)) .
For each v € Mz, the v-adic escape rate is defined by

Ge oz w) = Tim 220l

n—00 4n

where
[(z, W), = max{]|z],, [w],}.

Any other lift of f is of the form cF for some ¢ € F*; observe that

1
ch,v = gF,v + g log |C|’U'
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Note that
Grolaz,ay) = Gro(z,y) + log|al,

for any choice of lift F. Furthermore, Gp, is continuous on C2 \ {(0,0)}, as proved in
the archimedean case by [HP, FS]. For non-archimedean absolute values v, Gp, extends
continuously to the product of Berkovich affine lines A" x Alem\ {(0,0)} [BR, Chapter
10).
Proposition 3.1. For the standard lift ¥ of f, and for each place v of F, the local canonical
height function satisfies

. 1 1 1
Apo(P) = 50r(2,y) = 5 loglyly — 5 log|Al
where x(P) = (x : y).

Proof. The proof is immediate from the properties of Gz, by checking the three characterizing

conditions for \ Ew- O

3.2. Variation of canonical height: subharmonicity. Now let K be a number field and
E — B an elliptic surface defined over K with zero section O : B — E. Let k = K(B);
viewing F as an elliptic curve defined over k, we also fix a point P € FE(k). Recall the
function Vpy, »(t) defined in (2.2).

Theorem 3.2. For every ty € B(K) and uniformizer u in k at ty, the function

Vptgw(t) == 5‘Et,v(Pt) + 5‘E,ordtO (P)log |u(t)].,

extends to a continuous and subharmonic function on a neighborhood of ty in the Berkovich

analytification BJ".

The continuity was already established in Theorem 2.3, though it was not explicitly stated

for the Berkovich space. The argument below takes care of that. We begin with a lemma.

Lemma 3.3. Fiz a € k* and ty € B(K). Let u € k be a uniformizer at ty. For each place
v of K, the function
t — log ||, — (ordy, @) log |u(t)],

15 harmonic in a neighborhood of ty in the Berkovich analytification BJ".

Proof. This is Silverman’s [Si3, Lemma II.1.1(c)] plus a removable singularities lemma for
harmonic functions. See also [BR, Proposition 7.19] for the extension of a harmonic function
to a disk in the Berkovich space B2". O
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Fix P € E(k). Let F and X be lifts of f and x(P) to k?, respectively. Iterating F', we set

(An, B,) == F"(X) € k?

and observe that

i d¢, Ay, ordy, By,
(33) Gronay (X) = — Timm 24010 An, 00 B}
n—o00 4n
from the definition of the escape rate. We let F; and X; denote the specializations of F' and

X at a point t € B(K); they are well defined for all but finitely many t. Observe that if F
is the standard lift for £ then so is F; for all ¢.

Proposition 3.4. Fiz P € E(k), ty € B(K), and v € My. For any choice of lifts F of f
and X of x(P), the function

Gp(t;v) = G o(Xi) + Gre, (X) log |u(t)],

extends to a continuous and subharmonic function in a neighborhood of ty in B3".

Proof. First observe that the conclusion does not depend on the choices of ' and X. Indeed,
Georw(Xy) + Gergo (@ X) logu(t)]y = Gro(Xe) + Grue (X) log [u(t)]

1
+ 3 (log ety — (ordy, ¢) logfu(t)l.)

+ log|ay|, — (ordy, «) log |u(t)],

for any ¢, € k*. So by Lemma 3.3 the function G'p(t; v) is continuous and subharmonic for
one choice if and only if it is continuous and subharmonic for all choices.

Let F be the standard lift of f. Suppose that P = O. Since F(1,0) = (1,0), we compute
that

Go(t;v) = Gr,»(1,0) + Gry,(1,0) log [u(t)|, = 0.
Now suppose that P # O. Fix t, € B(K) and local uniformizer u at t;. Choose a lift F of
f so that the coefficients of ' have no poles at ty, with Fi, # (0,0). Choose lift X of z(P)

so that X; is well defined for all ¢ near ¢, and Xy, # (0,0). As above, we write
FH(X) = (AnaBn)

and put

a, = min{ordy, A,,ords, By}
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so that a,, > 0 for all n and a9 = 0. Set

Fu(t) = F*(Xy) fu(t)™

For each place v of K, we set

log || 5 (1)l
hnﬂ)(t) == 4—n

By construction, the limit of h,,, (for ¢ near ¢, with ¢ # ty) is exactly the function Gp for
these choices. In fact, for ¢ in a small neighborhood of ¢y, but with ¢ # ¢y, the function f; on
P! is a well-defined rational function of degree 4; so the specialization of the homogeneous
polynomial map F; satisfies F, '{(0,0)} = {(0,0)}. Furthermore, as the coefficients of F}
depend analytically on ¢, the functions h,,, converge locally uniformly to the function Gp
away from t = ty. This can be seen with a standard telescoping sum argument, used often
in complex dynamics, as in [BH, Proposition 1.2]. In particular, Gp is continuous on a
punctured neighborhood of .

At the archimedean places v, and for each n, the function h,,, is clearly continuous and
subharmonic in a neighborhood of #y3. At non-archimedean places v, this definition extends

to a Berkovich disk around t, setting
1
hnw(t) = an max{log[A,(T) /T, log[B,(T)/T""]:}

where [-]; is the seminorm on K[[T]] associated to the point ¢. Each of these functions h,,,
is continuous and subharmonic for ¢ in a Berkovich disk around . (Compare [BR] Example
8.7, Proposition 8.26(D), and equation (10.9).)

Lemma 3.5. For all v, and by shrinking the radius r if necessary, the functions h,, are
uniformly bounded from above on the (Berkovich) disk D,..

Proof. As observed above, the functions h,, , converge locally uniformly away from ¢t = ¢, to
the continuous function Gp(t). Choose a small radius r, and let
M, = sup |Ir‘1ax P ()
n tly=r
which is finite by the convergence. Because the functions are subharmonic, the Maximum
Principle implies that h,,,(t) < M, throughout the disk of radius r, for all n. For the non-
archimedean places, there is also a Maximum Principle on the Berkovich disk, where the role
of the circle of radius r is played by the Type II point associated to the disk of radius r (see
[BR] Proposition 8.14). O
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We can now complete the proof of Proposition 3.4. As each h,, is subharmonic, and the
functions are uniformly bounded from above on the disk by Lemma 3.5, we know that the
(upper-semicontinuous regularization of the) limsup of these functions is subharmonic. See

[BR] Proposition 8.26(F) for a proof in the non-archimedean case. O

Proof of Theorem 3.2. Subharmonicity now follows from Proposition 3.1, Lemma 3.3, and
Proposition 3.4. The continuity at each archimedean place follows from Theorem 2.3. The
continuity at each non-archimedean place is a combination of the continuity on the punctured
Berkovich disk (as in the proof of Proposition 3.4) and the continuity on Type I (classical)

points given in Theorem 2.3. O

3.3. The measures on the base. Here we provide more details about the description of
the measures appearing in the statement of Corollary 1.2, as discussed in Remark 1.3.

Fix an archimedean place v and any point ¢ty € B(K). Choosing a uniformizer u at t,
recall the definition of Vpy, , from (2.2). We define

(3.4) ppy = ddVpy, »(t)

on a neighborhood of t; in B**; note that this is indepedent of the choice of u. Note that

v

itpy can be expressed as
Hpy = dda}\Et,v(Pt)

for ¢ outside of the finitely many points in the support of the divisor Dg(P) or where the
fiber E; is singular. Note, further, that pup, assigns no mass to any individual point %,
because the potentials are bounded by Theorem 3.2. The details on the metric and the
equidistribution theorem in Section 4 will show that these are exactly the measures that
arise as the distribution of the points of small height in Corollary 1.2.

It is well known that the local height function on a smooth elliptic curve is a potential for

the Haar measure. That is, for fixed ¢ we have
dd N g, o(-) = wi — 0,

where w; is the normalized Haar measure on F; and ¢, is a delta-mass supported at the origin
of Ey; see, e.g., [La2, Theorem I1.5.1]. We present an alternative proof of this fact related to

dynamics as part of Proposition 3.6, as a consequence of Proposition 3.1.

Proposition 3.6. Let E — B be an elliptic surface and P : B — E a section, both defined
over a number field K. Let S C E be the union of the finitely many singular fibers in E.
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For each archimedean place v of K, there is a positive, closed (1,1) current T, on E\ S with
locally continuous potentials so that T,|g, is the Haar measure on each smooth fiber, and

P*T, is equal to the measure fip,,.

Remark 3.7. As T, has continuous potentials, the restriction 7,|g, and the pullback P*T,
are well defined. That is, we have T, |g, = dd°(g|g,) where g is a locally defined potential of
T,, and P*T, = dd°(g o P) locally on B. The measure yp, has no atoms, so it is determined
by T, along the image of P in F'\ S.

Proof of Proposition 3.6. Let us fix any small neighborhood U in the base curve B(C) so
that all fibers E; are smooth for t € U. Let f, be the map on P! defined in §3.1; by shrinking
U if necessary, we can find lifts F; of f; that are holomorphic in ¢t € U. From [HP, FS] (or
the proof of [BH, Proposition 1.2]), we know that the escape rate
log || F} v
gFtny(Z’w) — ]_lm Og|| t (z7w)||

n—o00 4n

is continuous and plurisubharmonic as a function of (¢,z,w) € U x (C?\ {(0,0)}). The
current

dd°Gp, »(z,w)
projects to a closed and positive (1,1)-current T, on the complex surface U x P!, with locally
continuous potentials. This current T, has the property that, restricted to each fiber P!, its
total mass is 1; and the induced measure on the fiber is the measure of maximal entropy for
the rational map f; [Ly, HP].

The restriction E|y of the elliptic surface E over U maps with degree 2 to the complex
surface U x P! by the projection 7 of (3.1). The current T, can be pulled back to E as
%ddc(g o) where g is a locally-defined continuous potential for T,. Covering the base of
E\S by sets of the form U, the local definitions glue to form the closed, positive (1, 1)-current
T,on E\S.

If P: B — FE is a section defined over the number field K, then P*T, has potential given
locally by

1 1
3 gomo P = B Gr, »(Xt)
for any lift X; of m(P;) € P!. Proposition 3.1 yields that P*T, must coincide with the

measure /ip, defined in (3.4).
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Finally, to conclude that T,|g, is equal to the normalized Haar measure w;, we may use
the well-known dynamical fact that for each fixed ¢ in the base, the measure w; projects by

7 to P! to the unique measure of maximal entropy for the map f;; see, e.g., [Mi, §7]. 0

4. THE ADELIC METRIC AND EQUIDISTRIBUTION

In this section we give the proofs of Theorem 1.1 and Corollary 1.2.

We first outline the proofs. Let £ — B be an elliptic surface defined over a number field
K with zero section O : B — E, and let P : B — E be a section also defined over K so that
hi(P) # 0. Recall from §2.2 that we introduced a Q-divisor

Dp(P)= Y Apoa,(P)-(7)
veB(K)
on B. By enlarging K, we may assume that supp Dg(P) lies in B(K). We will define an
adelic metric on the ample line bundle Lp associated to the Q-divisor Dg(P), inducing a

height function hz, such that
hz,(t) = hg,(P;) for all but finitely many ¢ € B(K)

and

hz,(t) > 0 for all t € B(K).

Applying Silverman’s results on the variation of canonical height, Theorems 2.2 and 2.3, we
will deduce that the metric is continuous and adelic. From Theorem 3.2, we will conclude that
the metric is also semipositive in the sense of Zhang [Zh1]. We will use Zhang’s inequalities
[Zh2] to deduce that the height of the underlying curve hz (B) := ¢1(Lp)?/(2¢1(Lp)) may
be computed as

hz,(B) = 0.
Consequently, we will be able to apply the equidistribution results of Chambert-Loir, Thuil-
lier, and Yuan [CL1, Th, Y] to complete our proofs.

4.1. The metric and its properties. Let m € N be such that

D =m- Dg(P)
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is an integral divisor. Let L,, be the associated line bundle on B. Note that deg(L,,) =
mﬁE(P) > 0 so L, is ample; by replacing m with a multiple, we may assume that £, is
very ample.

Fix a place v of K. Let U be an open subset of BY". Each section s € £,,(U) is identified

with a meromorphic function f on U satisfying

(f) > —D.
We set )
e~ e (P)| f(t)|, if f(t) is finite and nonzero
ls®)lo =4 0 if ord, f > ~m Ap o, (P)
e~ mVpio(t) otherwise,

taking a locally-defined uniformizer u = 4/ at ¢ in the definition of Vp,,, from (2.2).
Theorem 4.1. The metric ||-|| = {||-||v}oermy 0n Ly is continuous, semipositive, and adelic.

Proof. The continuity and semipositivity follows from Theorem 3.2. (In [CL2], semipositivity
of a continuously metrized line bundle on a curve is defined terms of subharmonicity of
potentials for the curvature form at each archimedean place, and as a uniform limit of
“smooth semipositive” metrics at each non-archimedean place. In [Th], it is established
that subharmonicity of potentials is a sufficient notion at all places, and he proves in [Th,
Theorem 4.3.3] that this notion of semipositivity coincides with that of Zhang [Zh1]. See
also [FG, Lemma 3.11, Theorem 3.12] where this same argument is applied in a dynamical

context.) The adelic condition follows from Theorem 2.2. 0

4.2. The associated height function. A height function on B(K) is defined by setting

(4.1) hp(t) = ! S —alogllé(s)le

m | Gal(K/K) -t 5k veris

where ¢ is any global section of £, which is nonvanishing along the Galois orbit of ¢, and
|| ||» is the metric of §4.1. Recall that supp Dg(P) C B(K); we may assume that our sections
¢ are defined over K, and the product formula guarantees our height is independent of the
choice of ¢.

Our next goal is to prove the following two important facts about this height function Ap.
Proposition 4.2. The height function hp satisfies

hp(t) = hg,(P)
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for all t € B(K) such that the fiber E, is smooth.

Proposition 4.3. The height function hp satisfies
hp(t) >0
for all t € B(K).

Proof of Proposition 4.2. First fix t € B(K) \ supp Dg(P) with smooth fiber E;. Choose a
section ¢ defined over K that does not vanish along the Galois orbit of ¢, and let f be the
associated meromorphic function on B. Then f takes finite and nonzero values along the
Galois orbit of t. We have,

helt) = e S 2 mm A (R) gl (9)l)
s€Gal(K/K)-t v€EMk

1 1 N
" mleamR A 2 2 mAna(P)

s€Gal(K/K)t vEMK

= hg,(P).

where the second equality follows from the product formula.
For ty € supp Dg(P) such that Ey, is smooth, it is necessarily the case that P,, = Oy, (as
observed in §2.2), and therefore fALEtO(PtO) = 0. To compute hp(ty), observe that ty € B(K)

so its Galois orbit is trivial; fixing a uniformizer u € K(B) at ty, we have

hp(to) = Z Ny VP,to,v<t0)

ve Mg
where Vpy, , is the function of (2.2) associated to the uniformizer w.

We can compute hp(ty) using the dynamical interpretation of the local heights, described in
Section 3.1. Fix a Weierstrass equation for E in a neighborhood of t, and write P = (zp, yp).
The assumption that P, = Oy, is equivalent to ord;, zp < 0. After possibly shrinking U,
write zp = (1) @) Ay for the chosen uniformizer v and a function Ay € K(B) that does
not vanish in U. We choose a lift X of xp on U defined as X = (Ag, By), where By :=
(u)*ordto(‘“’). Notice that Ay and By are regular at t5. Let F be the standard lift in these
coordinates, defined in (3.2); it satisfies Fy,(1,0) = (1,0), and we have Gg oa,, (Ao, Bo) = 0.
Since ordy, Agy = 0, Proposition 3.1 implies that

1 1
Vitoalt) = 5 G Aolt), Bolt)) — 75 log | Ar(t)l,
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for all t € U. Therefore,

1 1
Vptow(to) = 3 Gry, 0(Ao(to),0) — 3 log [Ag(to) o

1 . 1

- 1 im 4—10g||Ft (Ol g 2
1 n

= 3 Jim 4—log [Ao(to)"" o — log |Ag(to)lo
1 1

= S log| Aol — 15 log A (to).

The product formula now yields that hp(tg) = 0, as claimed. O

To prove Proposition 4.3, we first reduce to the case that the elliptic surface £ — B
has semi-stable reduction; that is, all of its fibers are either smooth or have multiplicative
reduction. The next lemma describes how the height associated with the divisor Dg(P)
behaves under base extensions of the elliptic surface £ — B. It is adapted from [Si3,

Reduction Lemma I1.2.1]. We include it here for completeness.

Lemma 4.4. Let u : B' — B be a finite map of smooth projective curves, let E' — B’ be
a minimal model for E xg B’, and let P’ : B' — E' be the extension of the section P. For
each ty € B(K) and tj € p='({to}) C B'(C,), there is a neighborhood U of t, in B'(C,) and
a reqular non-vanishing function f on U such that

VP,to,v(,u(t/)) - VP’,tg,v(t/) = log | f(t')]s
on U\ A{t,}. In particular,

Vptou(to) = Ve g (to) = log | £ (t)]o-

Proof. Let u be a uniformizer at to, u" a uniformizer at t; and n = ordy (¢*u). Since local

heights are invariant under base extension we have
(42) AElvordtb (P,) =N >\E,0rdt0 (P)

Notice that for all ¢’ in a punctured neighborhood of t{ the fibers Ej, are smooth. Hence the
map E' — E gives an isomorphism between the fibers £, — E,,y. Under this isomorphism
P}, € Ej, is mapped to P, € E, . Invoking now the uniqueness of the Néron local heights,

we have

(4.3) by

p(t')

(P,Lb(t’)) e )\E,;/W(Pt/’)'
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Combining (4.2) and (4.3) we get that for ¢’ in a punctured neighborhood of t,

u(p(t'))

um(t")

Veto(1t(t') = Vry o(t') + Mg ora,, (P) log

v

A\ 2B ordy (P)
The definition of n yields that the function f(t') = (M) et

) is regular and non-

vanishing at ¢. The first part of the lemma follows.

Finally, Theorem 2.3 allows us to conclude that

Vo (1(to)) — Vergo(to) = log [ f(to)]o
at the point ¢, as claimed. O

The following lemma will allow us to prove Proposition 4.3 in the case that a fiber has
multiplicative reduction. The proof is lengthy, but it is merely a collection of computations
using the explicit formulas for the local height functions, as in [Si2, Theorem VI.3.4, V1.4.2].

Lemma 4.5. Let E — B be an elliptic surface and let P : B — E be a non-zero section
defined over K. Then there exists a finite extension L of the number field K so that, for

each tog € B(K) such that Ey, has multiplicative reduction, there exists an z(ty) € L* so that
Vi, (to) = log | (to)]s

at all places v of L.

Proof. We let

(4.4) E:y*=2"+azx +0,

be a minimal Weierstrass equation for E over an affine subset W C B defined over K with
to € W. Here a,b € K(B) are regular functions at ty. Using this Weierstrass equation we

write
P = (JZP, yP)7
where zp,yp € K(B). Since E — B has multiplicative reduction over t, € B(K), we have

(4.5) N :=ordy, Agp > 1 and ords, a = 0;

see [Si5, Proposition VIL.5.1]. Let v be a place of K (archimedean or non-archimedean). We

denote by jg the j—invariant of £ — W, given by

je(t) = 1728(26‘;2%3.
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Notice that equation (4.5) yields that jg has a pole at t,. Hence, we can find a v—adic open

neighborhood U of t; and an analytic map
v:U—={¢qeC, : |q, <1},
such that the following holds: If j is the modular j—invariant [Si2, Chapter V], then we have
ji(t) = (1)) and ordy, ¥ = N.

The function ¥ (t) is given as

1 744 750420 . 1
w0 RO e s O

In the following, we choose a uniformizer v € K(B) at ty, and we identify ¢ with its

(4.6) P(t) =

expression ¢(t) € C,[[u]] and write

(4.7) Y(t) = put)N +u(®)N (L), for t € U\ {to}.
Equation (4.6) yields that 8 € K\ {0} and f(t) € K[[u]]. Following the proof of [Si3, Section

6] and after possibly shrinking U we have isomorphisms
(48) E(C) 3 Ci [y = Cu

where Cy) is the elliptic curve given by y? = 42® — go(¢(t))x — g3(¥(¢)) for t € U \ {to}.
Under these isomorphisms, we have

Foomow(t) = (p(w(), $(1), o (w(t), (1))

Here g5, g3 are the modular invariants, given by their usual g—series

and g is the Weierstrass p—function given by

nqg" , ¢ "w(l + q"w)
4.9 o+ 9 NV '

nEZ n=1 nez
In view of [Si3, Lemma I1.6.2], after possibly replacing P by —P, we may assume that

w: U — C, is an analytic map satisfying

1
(4.10) 0 <m :=ordy,w < 3 ordy, 1.
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In the following we identify w with its series in C,[[u]] and write
(4.11) w(t) = au™(t) +u™(t)g(t),

where o € C,, and g(t) € C,[[u]].
We claim that w(t) € K[[u]]. To see this, notice that from [Si5, Chapter II1.1] we have
that fort € U

(p(w(t), ¥(t)), o' (w(t), ¥(t)) = (v 2(B)zp(t), 207> ()yp(t)),
where

12 AE(t)
Y7 = Ry

In the equation above A denotes the modular discriminant given by
A(g) = 92(Q)3 - 2793(61)3-

Since the functions ¢, Ap and A are defined over K, we have that Y (t) := 2v73(t)yp(t) is
also defined over K. Since Y (t) = ¢'(w(t),®(t)) € K[[u]] and ¥(t) € K][u]] we get that
w(t) € K[[ul].

Therefore, there are non-zero constants a, 3,y € K \ {0}, non-negative integers k,m € N
and functions f(t), g(t), h(t) € K[[u]] such that for all t € U

(4.12)
D(t) = Bul (1) + fFO)uTHE), w(t) = au™(t) + g(H)u™ T, 1 —w(t) = yut(t) + h()u" ().

Next, we aim to express z(ty) (as in the statement of the lemma) in terms of o, 3,y € K.

Using the isomorphisms in 4.8, the uniqueness of the local canonical heights and the
explicit formulas for the local canonical heights [Si2, Theorem VI.3.4, V1.4.2], we get

(418)  Aue(P) = Aw(t) (1) = 3 Bs (%) log [(t)], — log |1 — w(®)],
(4.14) = 3 togl(1 = v(0" w01 (0wt

where By(s) = s — s+ 1/6 is the second Bernoulli polynomial.
Since ordg, ¥ = N > 1 and using (4.10), we get

(4.15) i 3 og (1 = (0 (1) (1 = (0" (t) ™) =0
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In what follows, for F(t) € C,[[u]] we write

F(t) :==0,(1), if lim F(t) =0.

t5to

In view of [Sil, Lemma 1.5.1], we have

(110) B (22 Y og o)), = YA~ log (0], + g log (0,

log |4 (1)1 log |4 (1)1
m2 a2V
= —log|u +—1 < >—logav

" oz u(t)], ;s |

— mlog [u(t)], + Ogéﬂ‘“ + 5 loglu(®)], + 0,(1).
Using equations (4.15) and (4.16), equation (4.13) yields
(4.17)
. 1 (m? N 1(m |2V log |5,
Ao (P, —| == - — +2k)1 Oe=—5(7zlo 1 o+ ———
punl B+ (5 =+ 2k doglu0)l, = 5 ( 7z toe (152 )~ togal, + £
(118) “log i, + ou(L)

Finally, notice that [Si2, Theorem VI.4.2] implies

A 1 d 1 N
A ora, (P) = ordyy (1 = w) + = By <Or to “’) ordy, ¥ = (— —m+ =+ Qk)

2 ordy, ¥ N 6
Therefore
1 2N log |5,
Vpiow(to) = im Vpy, () = —= <—1 (l ’m ) —log|al, + glfl ) —log |7lw
t—>t0 2 |ﬁ‘ 6
= log |z(to)lv,
2 -1
where x(tg) = % belongs to a finite extension of K, denoted by L.

Proof of Proposition 4.3. By [Si3, Lemma I1.2.2] there is a finite map of smooth projective
curves B’ — B such that if £/ — B’ is a minimal model for E x g B’, then E’ has semi-stable
reduction over the singular fibers of £ — B. Moreover, we may choose B’ so that everything
is defined over K. Thus, by Lemma 4.4 and using the product formula, we may assume that

the singular fibers of our elliptic surface £ — B have multiplicative reduction.
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For all t € B(K) for which E; is smooth, we know from Proposition 4.2 that hp(t) =
szt(B). The canonical height is always non-negative, so we may conclude that hp(t) > 0
for all such ¢.

Assume now that t; € B(K) has a fiber with multiplicative reduction. Enlarging the
number field K if necessary we may assume that ¢y € B(K) and that its corresponding x(t)
defined in the statement of Lemma 4.5 is in K*. Then, on using the product formula, Lemma

4.5 implies that hp(ty) = 0. This completes the proof. O

4.3. Proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let Lp be the line bundle on B induced from the divisor Dg(P).
From Theorem 4.1, we know that its m-th tensor power can be equipped with a continuous,
adelic, semipositive metric, so that the corresponding height function is (a multiple of) the
canonical height iLEt(H) on the smooth fibers. Thus, by pulling back the metric to Lp, we
obtain a continuous, semipositive, adelic metric on Lp inducing a height function hz, which
is precisely the function hp defined in (4.1).

[t remains to show that this height hp satisfies hp(B) = 0. This is a consequence of
Propositions 4.2 and 4.3 and Zhang’s inequalities on successive minima [Zh2]. Indeed, from
Proposition 4.3, we know that hp(t) > 0 for all t € B(K). In addition, since hp(P) # 0, we

know that there are infinitely many ¢ € B(K) for which
he,(P) = 0.

(For a complex-dynamical proof, see [Del, Proposition 1.5, Proposition 2.3].) Therefore,
from Proposition 4.2, we may deduce that the essential minimum of hp on B is equal to 0.
Finally, from [Zh2, Theorem 1.10], we may conclude that hp(B) = 0. O

Proof of Corollary 1.2. When combined with the equidistribution theorems of Yuan and
Thullier [Y, Th], we immediately obtain the corollary from Theorem 1.1. The measures fip,
are the curvature distributions associated to the metrics || - ||, at each place v. From the

definition of the metric in §4.1, we see that they are given locally by

ppy = ddVp g, (t)

in a v-adic neighborhood of any point ty € B(K), and for any choice of uniformizer u at
to. U
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5. PROOF OF THEOREM 1.4.

5.1. Reduction to the case of a fiber product of elliptic surfaces. We first show
that, to prove the theorem, it suffices to prove the result for sections of the fiber product
A=F; xg---xgE,, of m > 2 elliptic surfaces F; — B over the same base, and to assume
that the line bundle £ is generated by the divisor

{Op,} x By X -+ B+ Ey x {Op,} X -+ X Ep+++-+ Ey X By x -+ x{0g,, }

Let B be a quasiprojective smooth algebraic curve defined over Q. Suppose A — B is
family of abelian varieties defined over Q that is isogenous to a fibered product of m > 2
elliptic curves. That is, there is a branched cover B’ — B and m > 2 elliptic surfaces

E; — B’ that give rise to an isogeny
E1 Xpre-- XB/Em—>A

over B’. Now let £ be a line bundle on A which restricts to an ample and symmetric line
bundle on each fiber A; for t € B. Then the line bundle £ pulls back to a line bundle £’
on Fy Xp --- xXpg E,,, and it again restricts to an ample and symmetric line bundle on each
fiber over t € B'.

Now suppose that we have a section P : B — A. The section P pulls back to a section P’ :
B’ — A, and this in turn pulls back to a (possibly multi-valued) section of Ey X g+ X g Eyp,.
If multi-valued, we can perform a base change again, passing to a branched cover B” — B’,
so that the induced section P” : B" — E| Xpgn -+ Xpgr E,, is well defined. By definition,
the assumption that P is non-special on A means that it is non-special as a section of
E| xgn---Xpgn E,,.

Finally, we observe that the conclusion of Theorem 1.4 does not depend on the choice of
line bundle. (We thank Joe Silverman for his help with this argument.) Recall that, on any
abelian variety A defined over Q, the notion of a “small sequence” of points is independent of
the choice of ample and symmetric line bundle. That is, if we take two ample and symmetric
divisors Dy and D,, then we know that there exists an integer m; > 0 so that m;D; — Dy is
ample; similarly there exists my > 0 so that moDy — D is ample. It follows from properties
of the Weil height machine that the heights hp, and hp, will then satisty

1
EhDQ + Cl S th S mo h’DQ + 02
1
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for real constants C,Cy. Upon passing to the canonical height, we conclude that

1 - ~ ~
(51) —hD2 S th S meo hD2
my

on the abelian variety. In particular, ﬂDl (a;) — 0 for some sequence in A(Q) if and only if
hp,(a;) = 0. Now suppose we have a family of abelian varieties A — B. Two line bundles £;
and L, associated to relatively ample and symmetric divisors induce canonical heights IAMM
and /Azgzt on each fiber A;. But recalling that ampleness persists on Zariski open sets [La3,
Theorem 1.2.17], there exist positive integers m; and m, so that the line bundles £ ® £;*
and £5? ® £ are relatively ample on a Zariski open subset of the base B. Passing to the
canonical heights once again, we find that the relation (5.1) holds uniformly over B (after
possibly excluding finitely many points). Therefore, for any section P : B — A, there exists
a positive constant ¢(Lq, P) of Theorem 1.4 for the height izcl if and only if it there exists
such a constant ¢(L,, P) for hy,.

5.2. Proof for a fiber product of elliptic curves. Fix integer m > 2, and let F; — B
for i = 1,...,m be elliptic surfaces over the same base curve B, defined over Q. Let
A=F, xg---xgkE,, and let £ be the line bundle on F; xp --- x5 F,, associated to the

divisor
D={0g} xEyx - En,+F x{0g} X -+ XE,+ -+ FE XFEyx---x{0g, }.

For all but finitely many ¢ € B(Q), the canonical height iLLt on the fiber A; is easily seen
to be the sum of canonical heights (see, e.g., [HS] for properties of the height functions), so

that .
he, =Y hp,,.
i=1
Now assume that P = (Py,..., P,) is a section of A — B. Define

hi(t) = hi, ,(Piy)

fori=1,...,m and for all t € B(Q) where all E;; are smooth elliptic curves. Suppose there

exists an infinite sequence {t,} C B(Q) for which

~

(5.2) hi(t,) = 0foralli=1,...,m
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as n — oo. We will prove that for every pair (i, j), there exists an infinite sequence {s,} C

B(Q) so that

ﬁz(sn) = }Alj(sn) =0
for all n. In this way, we reduce our problem to the main results of [MZ2, MZ3] which imply
that the pair (P, P;) must be a special section of E; xp E;. Finally, we observe that our
definition of a special section P = (P, P, ..., P,,) is equivalent to the statement that every
pair (P, P;) is special. Therefore, for any non-special section P, we can conclude that there

exists a constant ¢ = ¢(P) > 0 so that the set
{t € BQQ) : he,(P) < ¢}

is finite.

Fix a pair (¢,7). First assume that neither E; nor E; is isotrivial. If P; or P; is torsion,
then the section (P, P;) is special. Otherwise, we have hg, (P;) # 0 and fLEJ(]DJ) # 0, and
we may apply Theorem 1.1 to deduce that the height functions h; and izj are “good” on B.
More precisely, we let M; and ﬁj be the adelically metrized line bundles on the base curve
B associated to the height functions h; and izj, from Theorem 1.1. They are both equipped

with continuous adelic metrics of non-negative curvature. By assumption, we have
(5.3) hi(t,) = 0 and  h;(t,) — 0

as n — o0o. Therefore, we may apply the observation of Chambert-Loir [CL2, Proposition
3.4.2], which builds upon on Zhang’s inequalities [Zh2], to conclude that there exist integers
n; and n; so that Mm and Wj are isomorphic as line bundles on B and their metrics are
scalar multiples of one another. It follows that the height functions h; and ij are the same,
up to scale, and in particular they have the same zero sets. In other words, P, is a torsion
point on E;; if and only if P;; is a torsion point on E;,; (for all but finitely many ¢ in B),
and there are infinitely many such parameters t € B(Q).

Now suppose that FE; is isotrivial. The existence of the small sequence ¢, in (5.3) implies
that either h g, (P;) # 0 or P, is torsion on E;, and furthermore, if P; is torsion, then it follows
that (P, P;) is a special section of E; x g E;. Similarly if F; is isotrivial. In other words,
the existence of the sequence ¢, in (5.3) allows us to conclude that either (F;, P;) is a special
pair, or we have that both hg, (P,) # 0 and fLEJ(P]) # 0. Therefore, we may proceed as

above in the nonisotrivial case, applying Theorem 1.1 to deduce that the heights h; and ﬁj
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coincide, up to scale, and in particular there are infinitely many parameters s € B(Q) where

~

hi(s) = hi(s) = 0.

This concludes the proof of Theorem 1.4.

6. VARIATION OF CANONICAL HEIGHT, ILLUSTRATED

In this final section, we provide a few illustrations of the distributions ;1p, arising in Corol-
lary 1.2, for an archimedean place v. In Proposition 6.2, we present a complex-dynamical

proof that the archimedean measures pp, will have support equal to all of B.

6.1. Images. Given £ — B and section P, we plot the parameters ¢ where P, is a torsion
point on the fiber E; of specified order. As proved in Corollary 1.2, the local height function
at each place

t— 5\Et,v(Pt)

determines the distribution of the torsion parameters; it is a potential for the measure pp,
(away from the singularities). Recall that if we have two sections P and ) that are linearly
related on F, then the distributions of their torsion parameters in B will be the same.

Figure 6.1, top, illustrates the example of Silverman from [Sil, Theorem 1.0.3]. Here, we
have

E, = {y’ +zy/t +y/t = 2° + 227t}

with B = P! and P, = (0,0) in (z,y)-coordinates. Plotted are the torsion parameters of
orders 2" for all n < 8; that is, the points ¢ in the base B where P, is torsion of order 2" on
the fiber E;. Roughly, a smaller yellow dot corresponds to higher order of torsion. Figure
6.1, bottom, is another section of the same family, where the z-coordinate of P, is constant
and equal to —1/4. (Strictly speaking, this second P is not a section of our given £ — P,
because the y-coordinate will not lie in K(B) ~ Q(t) but in an extension; however, the
property of being torsion and the determination of its order is independent of which point
in the fiber we choose.) Observe the distinctly different pattern of yellow dots in the first
and second pictures, especially in the left half of the two pictures, illustrating the linear
independence in E(k) of the two sections.

Figure 6.2 illustrates the torsion parameters for two independent sections of the Legendre

family,
By ={y* = a(x - 1)(z — 1)}
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FIGURE 6.1. At top, Silverman’s example from [Sil, Theorem 1.0.3], with E;, =
{y? + xy/t +y/t = 2® + 222/t} and P, = (0,0), shown in the region {—2 < Ret <
1, =1 <Imt < 1}. The singular fibers occur at t = 0, —2/27,—1, and one sees the
effects of numerical error in a small neighborhood of these parameters. At bottom,
torsion parameters for section P having z-coordinate z(P;) = —1/4 for all t.

over B = P! studied in [MZ1]. The chosen sections are P, with constant x-coordinate equal
to 2, and P5, with constant x-coordinate equal to 5. As in Figure 6.1, we plot the torsion

parameters of orders 2" for all n < 8; generally, a smaller yellow dot signifies higher order
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FIGURE 6.2. Torsion parameters for sections of the Legendre family, studied in
[MZ1]; here, B = P! and E; = {y?> = 2(x — 1)(x — t)}. At left, the section P, with
z((P2):) = 2 for all ¢; at right, the section P5 with x((Ps);) = 5 for all . Both are
shown in the region {—3 < Ret <5, —4 <Imt <4}

of torsion. It was proved in [DWY] that the limiting distributions for sections with constant
r-coordinate satisfy fip, oo = P, 00 (at an archimedean place) if and only if x = 2'. It was
proved in [St] and [Ma] that there are no t € P'(K) for which both (P), and (Ps); are
torsion on E;. Again, observe the difference in the geometry of the yellow dots for the two
independent sections.

Figure 6.3 illustrates our equidistribution result, Corollary 1.2, for the example of the
Legendre family with the section Ps. Plotted are the torsion parameters of orders 2" with
(a) n <6, (b)n <8, and (c) n < 10. Observe how the yellow dots fill in the “grid structure”

in the base curve B, exactly as do the torsion points for one elliptic curve.

Remark 6.1. As mentioned above, the smaller yellow dots in the illustrations correspond,
roughly, to higher orders of torsion. These images are produced with a standard escape-rate
algorithm. We use the dynamical system f;, on P!, induced from multiplication by 2 on the
elliptic curve E; from Section 3, line (3.1). The coordinates on P! are chosen so that oo is
the image of the 0 of E;. We mark t yellow if | f}(7w(P;))| > 10000 for some n < 8.

6.2. Density of torsion parameters. In all of these examples, the yellow dots will fill in

the picture as the order of torsion grows, and the support of the measures pp, is equal to
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FIGURE 6.3. Tllustrating equidistribution: Torsion parameters of increasing or-
ders for a section of the Legendre family, with B = P! and E; = {y? = z(z—1)(z—t)}
and Ps as in Figure 6.2. At top, torsion parameters of orders 2" for n < 6; bottom
left, of orders 2™ for n < 8, and bottom right, of orders 2™ for n < 10.

B(C). In fact, this will always be the case, for any (nontrivial) section of a complex elliptic
surface, as our final result, Proposition 6.2, shows.

Let E — B be an elliptic surface over a projective curve B, defined over C, and let
P : B — FE be a section for which hg(P) # 0 (over the function field k& = C(B)). Let up
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be the measure on B defined as in Proposition 3.6, that is as the pullback of the current T
that restricts to Haar measure on each smooth fiber. In other words, up is locally defined
as the Laplacian of the function Gp(t) introduced in Proposition 3.4, which is well defined

when working over C.

Proposition 6.2. Let E — B be an elliptic surface over a projective curve B, defined over
C, and let P : B — E be a section for which hg(P) # 0 (over the function field k = C(B)).
Then the set

{t € B : P, is torsion on E,}

is dense in B(C) and
supp pup = B(C).

We give a complex-dynamical proof, viewing Proposition 6.2 as a consequence of the main
result of [Del]. (We do not use the equidistribution result, Corollary 1.2.) An analytic proof
is also presented in [Za, Notes to Chapter 3].

Proof. Let B* C B be a finitely-punctured Riemann surface such that the fiber E; is smooth
for all t € B*. Let m : E; — P! be the degree-two projection and f; : P! — P! be the
rational map induced by multiplication-by-2 on E;, as defined in the introduction to Section
3. It is well known that the holomorphic family {f; : t € B*} is structurally stable; see, e.g.,
[Mc, Chapter 4]. Thus, over any simply-connected subset U of B*, there is a holomorphic
motion of the periodic points of f; which extends uniquely to a holomorphic motion of all of
P!, conjugating the dynamics.

The key observation is that pp is precisely the “bifurcation measure” of the pair (f, P) on
B*. See [De2, §2.7] and [Del] for definitions. The support of up is equal to the bifurcation
locus of (f, P); in particular, the parameters ¢ € B* for which m(P;) is preperiodic for f; are
dense in supp pp. Therefore, it suffices to show that supp up = B.

Suppose to the contrary that there is an open disk U C B* for which pup(U) = 0. Then
the pair (f, P) is stable on U, and therefore m,;(F;) cannot be a repelling periodic point for
any t € U. From the uniqueness of the holomorphic motion, it follows that t — m(P,)
is part of the holomorphic motion on U. By analytic continuity, then, we deduce that
7:(P;) must follow the motion of a point over all of B*. This implies that the pair (f, P) is
stable throughout B* and the measure pp is 0. But this is absurd by the assumption that
hi(P) # 0; see [Del, Theorem 1.1]. O
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