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Abstract

It is widely recognized that the Web contributes to user polarization and such po-
larization affects not just politics but also peoples’ stances about public health, such
as vaccination. Understanding polarization in social networks is challenging because it
depends not only on user attitudes but also their interactions and exposures to infor-
mation. We adopt Social Judgment Theory to operationalize attitude shift and model
user behavior based on empirical evidence from past studies. We design a social sim-
ulation to analyze how content sharing affects user satisfaction and polarization in a
social network. We investigate the inŕuence of varying tolerance in users and selectively
exposing users to congenial views. We őnd that (1) higher user tolerance slows down
polarization and leads to lower user satisfaction; (2) higher selective exposure leads
to higher polarization and lower user reach; and (3) both higher tolerance and higher
selective exposure lead to a more homophilic social network.

Keywords: Echo Chambers, Selective Exposure, User Tolerance, Social Networks

1 Introduction

As the COVID-19 pandemic crosses the two-year mark, we can see that it has established
a new normal, not only in the objective challenges it poses to society and business but also
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in terms of widespread attitudes and behaviors that are antivax, antimask, and antiscience.
Polarization on such topics is a societal problem since it makes rational decision-making and
resource allocation difficult. The Web enables fast information diffusion across traditional
boundaries, which unfortunately has contributed to polarization. Speciőcally, social media
inŕuences users in subtle ways, especially regarding politics (Nahon, 2015); moreover, online
and offline political participation is correlated (Johnson et al., 2020; Bode et al., 2014).

We simulate two factors identiőed by prior research that inŕuence polarization. First,
selective exposure to congenial (attitude-conforming) information exacerbates conőrmation
bias, polarizing opinions further (Stroud, 2010; Garrett et al., 2014; Kim, 2015; Westerwick
et al., 2017). Selective exposure arises in and strengthens echo chambers, wherein a person
encounters only beliefs or opinions that coincide with their own so that their existing views
are reinforced, and alternative ideas are suppressed. Conversely, cross-cutting exposure (to
uncongenial i.e., attitude-disconőrming information) has a depolarizing effect (Kim, 2015),
though with caveats (Garrett et al., 2014; Kim, 2019).

Second, user tolerance for ideas that contradict their own mitigates polarization (Coscia
and Rossi, 2022).

We analyze the effects of selective exposure and tolerant users on polarization among
users at large. Speciőcally, we investigate the following research questions.

RQtolerance. Does higher tolerance among users in a social network help mitigate polariza-

tion?

RQexposure. Does selective exposure to congenial information contribute to polarization?

We develop a multiagent social simulation to investigate these research questions.
To address RQtolerance, we model tolerant users by having a higher tolerance level toward

both opposing and congenial views. We operationalize tolerance in users using Social Judg-
ment Theory (Sherif and Hovland, 1961), which deőnes tolerant people as those having a
wider latitude of noncommitment. For RQexposure, we emulate selective exposure by őltering
posts based on the receiving user’s stance toward a given issue.

For RQtolerance, we őnd that tolerant users do mitigate polarization but achieve lower user
satisfaction than users with lower tolerance. Surprisingly, higher tolerance also leads to a
more homophilic social network. For RQexposure, we őnd that higher selective exposure leads
to more polarization, and a more homophilic social network. Higher selective exposure leads
to higher aggregate user satisfaction in the social network but with fewer satisőed users.

Analyzing the dynamics of polarization based on information sharing on social media can
help us identify potential interventions. Since most content őltering (algorithmic selective
exposure) in use today is based on artiőcial intelligence (AI), this work can help us better
understand the social and political aspects of using AI. Our őndings suggest avenues for
further theoretical development in tandem with consideration of interventions to reduce
polarization in online social networks.

Organization. The rest of the paper is organized as follows: Section 2 describes the back-
ground and discusses related work. Section 3 explains our methodology, including deőnitions
and the simulation design, assumptions and limitations. Section 4 details the experimental



setup, results of our experimentation, and statistical analysis of the results. Section 5 in-
cludes a discussion on results, and threats to the validity of this work and concludes with
future directions.

2 Background and Related Work

The Theory of Cognitive Dissonance (Festinger, 1957) asserts that when a person is con-
fronted with contrasting ideas, it causes psychological discomfort making that person more
selective in their information consumption, potentially causing conőrmation bias. Conőrma-
tion bias is the tendency of people to accept “conőrmingž evidence at face value while sub-
jecting “dis-conőrmingž evidence to critical evaluation (Lord et al., 1979), resulting in people
gravitating toward information that aligns with (conőrms) their existing views. Bias exists
in the selection and sharing of information, especially news (Hart et al., 2009; Knobloch-
Westerwick, 2014).

Selective exposure is a tendency of people to choose and spend more time on information
that is consistent with their existing beliefs (Klapper, 1960; Redlawsk, 2002; Taber and
Lodge, 2006), though some prior works suggest that partisan selective exposure may be
a myth (Kinder and Sears, 1981; Zaller, 1992). Freedman and Sears (1965) argue against
voluntary selective exposure in favor of de facto selectivity. They claim that most examples of
selectivity in mass communication can be attributed to complex factors such as demography,
education, social connections, and occupation, which are incidental to their supportiveness to
the receiver’s existing beliefs. People prefer supportive information in some situations while
dissonant information in other situations (Hargittai et al., 2008). Individuals with strong
preferences are more likely to spend more time reading negative (uncongenial) information
about their choice (Meffert et al., 2006), perhaps to critique it (Hargittai et al., 2008).

2.1 Social Media and Politics

The number of users on social media platforms has increased rapidly over the years. Only
8% of the Internet users in the US used some social networking platform in 2005 (Lenhart,
2009), whereas in 2021, 69% use Facebook, and 40% use Instagram (Auxier and Anderson,
2021). The use of social networking sites for political discussions has also increased over
the years. Social media is now among the most common ways in which people, particularly
young adults, obtain their political news (Inőeld, 2020). A meta-analysis from 36 past studies
assessing the relationship between social media use and participation in civic and political
life found a positive correlation between the two, with more than 80% of the coefficients as
positive (Boulianne, 2015). Polarization measured based on online social interactions shows
a good correlation with offline polarization (Morales et al., 2015). Adults who use social
networking platforms as a political tool are more likely to participate in politics (Bode et al.,
2014). This is true across various cultural and geographical boundaries, including empirical
evidence from the US (Inőeld, 2020), Pakistan (Ahmad et al., 2019), and Taiwan (Zhong
et al., 2022).

Selective exposure to political information is correlated with polarizing people’s opinions
to align with the values of the political party they support (Stroud, 2010; Garrett et al.,



2014; Kim, 2015; Westerwick et al., 2017). Though the causal direction, i.e., whether selec-
tive exposure leads to polarization or the other way around, is less obvious (Stroud, 2010).
Stroud (2010) investigate the causal relationship between partisan selective exposure and po-
larization and őnd strong evidence suggesting selective exposure leads to polarization while
őnding limited evidence suggesting the reverse causal direction. Schkade et al. (2007) őnd
that intragroup deliberation on social issues among like-minded people leads to more ex-
treme and less diverse ideological beliefs, while Bail et al. (2018) observe that exposure to
opposing views on social media can increase political polarization. Habitual online news
users are less likely to exercise selectivity to get attitude-consistent exposure, which reduces
their likelihood of participating in the political system (Knobloch-Westerwick and Johnson,
2014). The longer individuals spend on attitude-consistent content associated with biased
sources, the more immediate attitude reinforcement occurs, and its inŕuence can be detected
even after a couple of days of exposure (Westerwick et al., 2017).

Cross-cutting exposure refers to being exposed to oppositional viewpoints. Cross-cutting
exposure in social networks fosters political tolerance and makes individuals aware of legit-
imate rationales for oppositional viewpoints (Mutz, 2002b). Exposure to disagreeing view-
points contributes to people’s ability to generate reasons, particularly why others might
disagree with their view (Price et al., 2002). Kim and Chen (2016) őnd that exposure
to cross-cutting perspectives results in a higher level of political engagement, though this
increase may depend on the social media platform used.

Cross-cutting exposure, widely assumed to encourage an open and tolerant society, is
not necessarily the environment that produces enthusiastically participatory individuals.
People belonging to social networks involving greater political disagreement are less likely to
participate in politics (Mutz, 2002b,a). Constant exposure to disagreement may necessitate
trade-offs in other social network characteristics such as relationship intimacy and frequency
of communication (Mutz, 2002b). Conŕict-avoiding individuals, in particular, are more likely
to respond negatively to cross-cutting exposure by limiting their political participation to
avoid confrontation and putting their social relationships at risk (Mutz, 2002a).

Garrett et al. (2014) examine survey data following elections in the US and Israel and őnd
consistent results despite cultural differences. Their őndings suggest that pro and counter-
attitudinal information exposure has a distinct inŕuence on perceptions of and attitudes
toward members of opposing political parties.

Mutz (2002a) analyzes the consequences of cross-cutting exposure on political participa-
tion. They őnd that people whose social networks involve greater political disagreement are
less likely to participate in politics and are more likely to hold politically ambivalent views.

Though many studies have investigated polarization using empirical data from social
media, a common limitation has been that past studies either look at one-time exposure or
study these effects in isolation. For instance, Stroud (2007) studies the effects of selective
exposure using empirical evidence but relies on data from one-time exposure and studies
the immediate effects without differentiating the long-term effects. However, the evidence
from past studies suggests that political participation and its effect is a long-term process
that unfolds over time based on multiple exposures (Gerber et al., 2003; Valentino and
Sears, 1998). Further, existing research has focused chieŕy on effect at an individual level,
i.e., relying on self-reported data of how an individual’s stance is inŕuenced by exposure
to potentially polarizing content. However, self-reporting is susceptible to user bias and



overlooks how changes in one part of the social network can inŕuence other parts.

2.2 Multiagent Social Simulation

Many earlier models on opinion and inŕuence propagation are based on a centralized diffusion
process, overlooking the decentralized nature of information diffusion in social networks.

Kempe et al. (2003) design two fundamental diffusion models for inŕuence maximization,
namely, the Independent Cascade Model (ICM) and the Linear Threshold Model (LTM).
Inŕuence in these models is transferred through the correlation graph starting from a set
of seed nodes (activated nodes). Inŕuence decreases when hopping further away from the
activated node.

Jiang et al. (2017) design a preference-aware and trust-based inŕuence maximization
model called the Preference-based Trust Independent Cascade Model (PTICM) that takes
into account user preferences and trust between users in computing inŕuence propagation.

Li et al. (2019) design a novel agent-based seeding algorithm for inŕuence maximization
named Enhanced Evolution-Based Backward selection that models individual user prefer-
ences and social context based on social inŕuence and homophily. Their results suggest
that individuals are inŕuenced by their social context much more than retaining their own
opinions. Though the Prior Commitment Level (PCL) of a user is an essential factor for
inŕuence propagation, users tend to revise their PCL over time.

Chen et al. (2020) propose a group polarization model based on the SIRS epidemic model
and factor in the relationship strength based on the J-A (Jager and Amblard) model. They
use a BA network model due to its closeness to the real-world social network structure and
a Monte Carlo method to conduct simulation experiments.

Kozitsin and Chkhartishvili (2020) develop an agent-based model to explore how agents’
activity patterns affect the formation of echo chambers. They use a personalizing system
algorithm to control mutual interactions among agents and decide what information the
agents are exposed to. They őnd that the critical parameter that guides agents’ opinion
dynamics is the probability of publishing a post, i.e., agents who often publish posts tend to
enter echo chambers.

Hązła et al. (2019) use a geometric model of polarization and demonstrate that societal
opinion polarization often arises as an unintended byproduct of inŕuencers attempting to
promote a product or an idea. Gaitonde et al. (2021) extend this work to show that the
exact form of polarization in such models is quite nuanced. Even when strong polarization
does not hold, weaker notions of polarization can attain nonetheless.

Baumann et al. (2020) propose a radicalization model that uses a reinforcement mech-
anism to drive opinions to extremes starting from moderate initial conditions. They show
that the transition from a global consensus to a radicalized state is mostly governed by social
inŕuence and the controversialness of topics discussed.

Wang et al. (2019) model a rumor-propagation framework based on information entropy
to understand information distortion and its polarization effects in social networks. They
őnd that mass polarization toward a positive or negative consensus occurs when a synergistic
mechanism between preferential trust and polarization tendencies is sustained. The segrega-
tion of the population into groups of different polarities happens under certain conditions.



We design a multiagent social simulation to emulate information diffusion on social net-
works. We model user behavior based on existing social science theories and empirical
evidence from prior studies.

3 Methodology

We now describe our social simulation model and agents’ interaction.

3.1 Social Simulation Definitions

Deőnition 1 (Social Network) A social network is an undirected graph with nodes rep-
resenting users and the links connecting the nodes representing a relationship between two
users.

A social network is represented as G = (nodes, edges), where nodes = {a1, . . . , an} are
users and edges = {(a1, a2), (a4, a9),. . . , (ax, ay)} represent a direct connection between pair
of users in the social network. An agent can only interact with its neighbors in the social
network.

Deőnition 2 (Agent) An agent represents a user in the social network.

Each agent is independent and has attributes deőning its preferences such as user activity,
and sharing preference. User activity captures how active an agent is, and sharing preference
captures agents’ willingness to share a post on the social network. Both range over [0, 1] (0
represents most inactive/unwilling and 1 most active/willing). An agent is capable of taking
two actions, sharing a post, and providing sanctions to posts.

Deőnition 3 (Post) A post is a message shared by an agent with its neighbors in the social
network.

Agents in a social network interact by sharing posts that can be represented as Post =
(a, t, s), where a is the author, t is the topic mentioned in (or discussed in) the post, and s
is the stance of the post towards the topic (continuous value in [−1, 1], where −1 represents
extreme opposition and 1 extreme support for the issue).

A post serves as a timestep and is used to track changes in the social network over time.
Updates to the social network and agent’s attributes are made after a post has completed
diffusion in the social network (i.e., it has reached as many agents as possible).

Deőnition 4 (Sanction) A sanction is a reaction an agent has for a post it receives.

Sanctioning provides a foundation for how participants in a sociotechnical system (STS)
may seek to inŕuence each other’s decision making and steer the STS towards their preferred
direction (Nardin et al., 2016). Agents provide positive sanctions to congenial posts and
negative to uncongenial posts based on their stance on a given topic being discussed in the
post. Sanctioning is analogous to providing likes and comments to a post and captures
whether a user approves (likes) or disapproves (dislikes) the topic in a received post.



Deőnition 5 (Issue) An issue refers to the topic being discussed in a post.

Issues are predeőned, and all agents hold a stance on each issue. An agent’s stance toward
an issue is represented as a continuous value between [−1,1], with −1 indicating extreme
opposition, and 1 extreme support for the issue. Each agent has an overall pov (point-of-
view) that depends on its stance on various issues. The pov of an agent is computed as
the mean of its stance on all issues. pov ranges between [−1, 1], with −1 representing ex-
treme support for pov-1 (<0), 0 means neutral pov, and 1 extreme support for pov-2 (>0).

With respect to a post, an agent can be in one of the four states: (1) Nonreceiver: Agents
who have not yet received the post (all agents other than the author are in this state at the
start of the simulation); (2) Receiver: Agents who have received the post (but not yet shared
it); (3) Spreader: Agents who have shared the post with their friends; and (4) Disinterested:
Agents who received the post but chose not to share it further and lost interest in the post.

3.2 Social Simulation Model

The simulation starts with an agent (ax) sharing a post (pk) with its neighbors in the
social network. The receiver then decides whether to share the received post further with a
probability of sharing that depends on the content of the post and the receiver’s preferences.
An agents’ preference involves its sharing preference, how active the agent is on the social
network, and the agent’s stance toward the issue (supporting vs. opposing). The content
of a post includes the issue mentioned in the post and the post’s stance toward the issue.
Equation 1 describes the computation for sharing probability sP (ax, pk) for the agent ax to
share the post pk it received.

sP (ax, pk) = c1 × uA(ax, pk−1)× |uS(ax, i, pk−1)× pS(pk, i)| × sPref (ax, pk−1) (1)

c1 is a constant, ax is the receiver, pk is the kth post being shared in the social network,
and i is the issue being discussed in the shared post. uA(ax, pk−1) is the user activity of user
ax before the post pk is shared, uS(ax, i, pk−1) is the user ax’s stance towards issue i before the
post pk is shared, pS(pk, i) is the stance of the post towards issue i, and sPref (ax, pk−1) is the
sharing preference of user ax before the post pk is shared. An agent with low sPref (ax, pk−1)
is more likely not to share a post further and may enter the state Disinterested. Disinterested
agents are not candidates for sharing the post (pk) further.

The agents who receive the post provide a sanction. Sanctions can be positive or negative.
Sanctions by the receiver depend on how active the receiver is, its stance toward the issue
at hand, and the post’s stance toward the issue. Sanction by an agent ay for a post pk it
received from agent ax is computed using Equation 2.

Sanc(ay, pk, ax) = c1 × uA(ay, pk−1)× uS(ay, i, pk−1)× pS(py, i) (2)

Sanc(ay, pk, ax) is a sanction provided by agent ay for the post pk it received from agent
ax. Sanction scores affect user activity and the stance of each agent towards an issue. Agents



prefer positive sanctions (social acceptance), which increases their activity on the platform,
while negative sanctions discourage agents from sharing their views in the future, hence
reducing their participation (user activity). The update in user activity depends on the
sanctions received by an agent for the posts it shared. An agent’s user activity (uA(ax, pk))
after sharing a post pk is computed using Equation 3.

uA(ax, pk) = uA(ax, pk−1) + c2 ×
∑

ai∈neighbor(G,ax,pk)

Sanc(ai, pk, ax) (3)

c2 is a constant, uA(ax, pk−1) represents the user activity of agent ax before the post pk
is shared, and uA(ax, pk) represents the user activity of agent ax after the post pk is shared.
neighbor(G, ax, pk) refers to all neighbors of agent ax in the social network G that receive
the post pk directly from agent ax.

An agent’s stance toward an issue is inŕuenced by the sanctions it receives from other
agents. We model this shift in the stance of an agent using Social Judgment Theory (SJT)
(Sherif and Hovland, 1961), which describes how individuals change their position when con-
fronted with a competing position on a given issue. According to SJT, an individual shifts
their stance in the direction of the competing stance if the competing stance falls within
their latitude of acceptance (assimilation). In contrast, they will shift away from the com-
peting stance if the competing stance falls beyond their latitude of rejectance (contrast). For
instance, for an agent ax, that has a stance of uS(ax, i, pk) towards issue i, a threshold deter-
mining the latitude of acceptance uxi and a threshold determining the latitude of rejection
txi with txi > uxi. When this agent ax interacts with another agent ay, the following rules
are applied to compute the shift in the stance of agent ax towards an issue i.

diff_Stance(ax, ay, i, pk) = |uS(ax, i, pk)− uS(ay, i, pk)| (4)

diff_Stance(ax, ay, i, pk) is the absolute difference in the stances of agent ax and agent ay
on issue i as the post pk is being shared.

If diff_Stance(ax, ay, i, pk) < uxi, δuS(ax, ay, i, pk) = µ× (uS(ay, i, pk)− uS(ax, i, pk))

If diff_Stance(ax, ay, i, pk) > txi, δuS(ax, ay, i, pk) = µ× (uS(ax, i, pk)− uS(ay, i, pk))

else δuS(ax, ay, i, pk) = 0
(5)

µ represents the strength of the inŕuence between two agents. We assume the same
strength of inŕuence between all pairs of connected agents in the social network; hence the
value of µ is 1. The shift in the stance of an agent ax for sharing posts pk on issue i is
computed using the received sanction scores and the difference in stance (toward the issue
at hand) between the author or spreader (i.e., ax) of the post, and the receiver (i.e., ay)
(Equation 6).

∆S(ax, ay, i, pk) = c2 ×
Sanc(ay, pk, ax)

δuS(ax, ay, i, pk) + 1
(6)

∆S(ax, ay, i, pk) is the shift in stance (of agent ax) due to a sanction (by agent ay) for a
post pk it shared on issue i.



User stance after sharing post pk can be computed using Equation 7.

uS(ax, i, pk) = uS(ax, i, pk−1)+
∑

aj∈neighbor(G,ax,pk)

∆S(ax, aj, i, pk) (7)

uS(ax, i, pk−1) is the stance of the agent ax on issue i before it shares post pk, and
uS(ax, i, pk) is the stance of an agent ax on issue i after the posts pk is shared and sanctions
for it received from all other agents. The maximum allowed change in stance due to one
post is 0.20 and we bound user stance within [−1, 1] by restricting the values.

The codebase1 of our social simulation is publicly available.

3.3 Agent Goals and Actions

The simulation progresses with agents sharing posts with other agents, causing each post to
diffuse further in the social network. Each post receives a sanction from all agents that receive
it, and these sanctions, in turn, inŕuence its authors’ (spreaders’) activity score and stance
toward various issues. An agent supports a pov with which its aggregate stance toward
various issues is in agreement. Agents can take two actions, sharing a post and sanctioning a
received post. Agents in the simulation try to maximize their inŕuence and popularity in the
social network by sharing relevant content and providing appropriate sanctions. Accordingly,
we deőne two goals for each agentÐPromoting Views and User Satisfaction.

Promoting Views. All agents try to promote their views (povs) on different issues by
sharing relevant posts with their friends (neighbors in the social network). Agents also
achieve this by providing positive sanctions to what agrees with their views and negative
sanctions to what does not.

User Satisfaction. All agents try to maximize their satisfaction. User satisfaction is com-
puted based on the sanctions received from other agents. Agents change their stance
toward issues to ensure more aggregate positive sanctions over time.

3.4 Simplifying Assumptions and Limitations

We make simplifying assumptions to operationalize user attributes and online sharing be-
havior. First, we assume views (on an issue) to be binary in this simulation, i.e., either
supporting pov-1 or pov-2, meaning agents with no pov are nonparticipating. This is a
design choice as we intend to analyze the scenario where only motivated agents (i.e. agents
who have a pov) try to inŕuence and promote their views. As an agent becomes neutral in
its pov (i.e., an agent with pov as zero), it stops sharing posts and providing sanctions. We
assume all agents have some pov at the start of the simulation, and no agent has a neutral
pov.

Second, we assume the initial user attributes and stance of each post based on a proba-
bility distribution. We use a random normal distribution to populate initial user attributes
including the agent’s stance towards an issue, sharing preference, and post’s stance. This

1https://github.com/ahaque2/MultiAgent-Social-Simulation.git



ensures a balance of stance toward each party across issues and provides a reasonable starting
condition for the simulation.

Third, we assume all agents prefer getting positive sanctions over negative or none. They
accordingly change their stance on issues over time to ensure social acceptance (i.e., to get
aggregate positive sanctions from their neighbors). Sanctions also inŕuence user activity;
positive sanctions cause higher user activity while negative sanctions cause it to decline.

Our simulation models user preferences and emulates user behavior on social networks
to analyze polarization dynamics. However, our model has a few limitations that stem from
the simpliőcations (of user behavior and its inŕuence).

First, for simplicity, sharing of posts and opinion shifts are sequential in this simulation,
i.e., only one post is being shared in the network at any given time. Another post starts
diffusing in the network only when the previous post has completely diffused (i.e., has reached
all agents it could have). This limits the simulation to not factor in the effects of parallel
exposure to different (maybe conŕicting) information, i.e., being exposed to several posts
relating to an issue before forming (shifting) an opinion about it.

Second, the social network in this simulation is static, i.e., neither a new link is formed
nor an existing one severed at any time. However, selective exposure partially makes the
network dynamic by őltering posts based on the difference in stance between two agents
towards an issue. A dynamic social network demands far more computational resources and
some knowledge of the offline world to link or delink agents over time appropriately.

4 Experiments and Results

We now describe the experimental setup and the metrics used to measure changes in the
social network followed by results.

4.1 Initial Simulation Setup

We use the Facebook social network from Leskovec and Mcauley (2012) to seed the simula-
tion. The social network consists of 4,039 nodes (agents) and 88,234 edges (neighbors) and
an average clustering coefficient of 0.61.

The agents in the social network interact by sharing posts from a pool of artiőcially
generated posts without replacement. The stance of the posts follows a bounded normal
distribution (µ=0.00, σ=0.52, min=−1, max=1) such that there is equal support and op-
position for each issue. We predeőne six issues and generate an equal number of posts for
each issue. We use a total of ≈5,000 posts that are shared between agents in each run of the
experiment. Each simulation run ends when all posts in the pool of generated posts have
been shared in the social network.

We create ten independent initial distributions to assign different initial user attributes
for each simulation run. We set initial user satisfaction to zero for all agents. Each agent is
initialized with a sharing preference based on a random normal distribution bounded between
0 and 1 (average over all distributions, µ=0.5, σ=0.14, min=0, and max=1). User activity
is initialized based on a tailed distribution bounded between 0 and 1, skewed towards higher
values (average over all distributions: µ=0.874, σ=0.17, min=0, and max=1). Higher initial



user activity ensures greater activity and faster results. We compute kurtosis (Zwillinger
and Kokoska, 1999) for all user activity distributions. The average kurtosis (over all ten
distributions of user activity) was 1.54 (for a normal distribution, kurtosis is zero).

We assume two povs (Point-Of-Views), pov-1 and pov-2. Each agent has a pov in [−1,
1] that depends on its stance on various issues. Each agent’s stance towards different issues is
initialized based on a random normal distribution bounded in [−1, 1] centered around zero.
The stance distribution is such that on aggregate there is equal support and opposition for
each issue. The pov of each agent is computed as the average stance on issues favoring
each pov resulting in a normal distribution in [−1, 1] approximately centered around zero
(average over all distributions, µ =0.01, σ =0.11, min=-0.40, and max=0.44). This ensures
there is approximately equal support for each pov at the start of the simulation.

We ensure consistency between the agent stance who authors and shares the post and
the stance of the post by choosing the authors appropriately. If an agent supports issue A,
it will only start a supportive post on issue A, whereas an agent who opposes it starts only a
critical one on that issue. Agents are chosen to be authors of a post based on their activity
score and sharing preference half of the time and at random for the other half. Agents who
are more active or have a higher sharing preference are more likely to start sharing a post.

4.2 Metrics

We deőne primary and secondary metrics to measure various changes in the network over
time. Primary metrics focus on measuring polarization and user satisfaction, while sec-
ondary metrics compare initial and őnal user distribution for different user attributes for
each experiment.

4.2.1 Primary Metrics

Primary metrics include the following.

Polarization. Polarization measures the extent to which the resulting distribution of opin-
ions is polarized. We adopt the polarization index measure proposed by Morales et al.
(2015) to measure overall polarization in the social network. The polarization index is
inspired by the electric dipole moment and measures polarization as the distance between
two opposing ideologies. Polarization lies in [0, 1] with 0 indicating least polarization and
1 indicating most.

To compute polarization we deőne A− as the relative population with pov-1 (i.e., negative
pov, <0) and A+ as the relative population with pov-2 (i.e., positive pov, >0). We
compute the normalized difference in the populations using the relative populations A−

and A+.

∆A = |A+ − A−| (8)

We then compute the gravity center (mean) of each population, gc− and gc+, and deőne
the pole distance, d, as the normalized distance between the two gravity centers. d can
be expressed as.



d =
|gc+ − gc−|

|max(A+)−min(A−)|
(9)

max(A+) expresses the maximum possible value for positive opinions (pov>0), and min(A−)
expresses the minimum possible value for negative opinions (pov<0).

The network polarization (Polarization(G, pk)) after the post pk is shared on the social
network is deőned based on the function of the difference in size between the population
of both povs (∆A) and the pole distance d.

Polarization(G, pk) = (1−∆A)d (10)

Polarity. Polarity is indicative of the pov that has greater aggregate support in the social
network. We measure polarity as the mean pov of all agents. Polarity ranges over [−1,
1], with −1 indicating absolute support (by all agents) for one pov (pov-1) and +1 for
the other (pov-2), and 0 for neutral pov.

Polarity(G, pk) =
∑

ai∈G

POV (ai, pk)

numAgents(G) (11)

Homophily. Homophily measures the homogeneity of a network structure with respect to
some attribute (i.e., the agents’ pov in this case). Homophily is shown to be useful in
link prediction between users in a social network (Yuan et al., 2014). Higher homophily is
indicative of greater segregation in the social network. We use the assortativity of a social
network (Newman, 2003) to measure homophily. The value of homophily ranges over
[−1, 1], with 1 indicating a perfectly assortative network and values in [−1, 0] indicating
a perfectly disassortative network.

Homophily(G, pk) =

∑
i eij −

∑
i aibj

1−
∑

i aibj
(12)

where eij is the fraction of edges in a network that connects a vertex of type i to one of
type j, and ai and bj are the fractions of each type (based on the agents’ pov) of the end
of an edge attached to vertices of type i, and type j respectively. The type depends on
the agent’s pov, and we group agents into 20 equally spaced groups based on their pov.
We use the networkx 2 implementation of assortativity to compute network homophily.

User Satisfaction. User satisfaction measures how satisőed the overall social network is
based on the outcome of individual user actions. To operationalize the computation for
user satisfaction (for each agent), we use the sanction scores that an agent gets for sharing
posts with other agents in the social network to compute the update in user satisfaction
(Equation 13). We take the mean of each user’s satisfaction to compute overall network
satisfaction (Equation 14).

2https://networkx.org/documentation/stable/reference/algorithms/assortativity.html



uSat(ax, pk) = uSat(ax, pk−1) + c2
∑

ai∈neighbor(G,ax,pk)

Sanc(ai, pi, ax) (13)

netSat(G, pk) =
∑

ai∈G

uSat(ai, pk)

numAgents(G) (14)

where uSat(ax, pk) refers to the user satisfaction of agent ax after the post pk has been
shared, uSat(ax, pk−1) refers to the user satisfaction of agent ax before the post pk has
been shared, and netSat(G, pk) measures the overall network user satisfaction after post
pk has been shared.

4.2.2 Secondary Metrics

We deőne secondary metrics to compare user distribution (based on count) in the initial
(at the start of the simulation run) and őnal (after completion of each simulation run)
populations. We deőne three secondary metrics based on user attributes (such as user
activity and user’s pov), and the primary metric on user satisfaction. Secondary metrics are
computed after all posts are shared. Secondary metrics include the following.

Satisőed users. User distribution (percentage) in initial and őnal populations with nega-
tive (<0), zero (=0), or positive (>0) user satisfaction.

Active users. User distribution (percentage) in initial and őnal populations with low (<0.75),
medium (>0.75 and <0.90), or high (>0.90) user activity.

Polarized users User distribution (percentage) in initial and őnal populations with high
(>0.10 or <−0.10) or low (>−0.10 and <0.10) intensity of povs.

Table A.2 describes the secondary metrics and lists their thresholds.

4.3 Experiments

To address RQtolerance (Does higher tolerance among users in a social network help mitigate
polarization? ), we vary agents’ tolerance levels. To address RQexposure (Does selective ex-
posure to congenial information contribute to polarization? ), we vary the levels of selective
exposure in our simulation. We analyze the inŕuence of changing these conőgurations on
the primary and secondary metrics.

To mitigate the effects of stochasticity we run the simulation ten times with different
initial distributions for the agent’s attributes while keeping the social network and shared
posts the same to ensure a fair comparison. For each experiment, we compute the primary
and secondary metrics. The reported results are averages of ten simulation runs.

Figures 1 and 2 compare how polarization, polarity, homophily, and user satisfaction
change with more posts being shared under different experimental settings. Tables 1 and
2 summarize our őndings for the two experiments. Tables 4 and 5 include results from the
statistical analysis. Tables A.1 and A.2 include a description of the notation used to explain



Figure 1: Experiment 1 (Tolerance): Comparing polarization, homophily, network polarity,
and user satisfaction of agents in a social network with different tolerance levels.

the simulation design and metrics, respectively. Sections 4.3.1 and 4.3.2 describe the exper-
imental setup and results of the two experiments in detail.

4.3.1 Experiment 1: Tolerant Users

The tolerance of an agent is deőned based on its latitude of noncommitment (Sherif and
Hovland, 1961), i.e., the difference between the latitude of acceptance (assimilation) and
latitude of rejectance (contrast). The higher difference implies more tolerance. A more
tolerant agent is less reactive to sanctions it receives from other agents for its shared posts,
i.e., a more tolerant agent is less likely to change its stance on issues based on sanctions from
agents who differ from its stance above a threshold (level of tolerance).

We run the simulation with three levels of tolerance, namely, high, medium, and low.
High tolerant agents have a higher latitude of noncommitment (70%) and change their stance
only based on sanctions from agents within a smaller (30%) difference in stance (between
receiver and spreader) toward an issue. If a high tolerant agent receives a sanction from an
agent who differs in stance (on the issue in the shared post) greater than 30%, it discards
that sanction and does not update its stance. medium tolerant agents have a latitude of
noncommitment as 40%, and low tolerant agents have a latitude of noncommitment as 10%.

Figure 1 shows changes in the primary metrics as more and more posts are shared. When
agents have a high tolerance, polarization grows slower than when tolerance is medium or
low. The polarization is constantly lower when tolerance in agents is high compared to



medium or low. Homophily grows faster when the agent’s tolerance is high, compared
to medium or low, and social networks whose agents have higher tolerance end up with
higher homophily after all posts are shared. The overall user satisfaction at low tolerance
is constantly higher than high or medium.

Table 1 shows the proportion of receiver (spreader and disinterested) and nonreceiver
agents after all posts are shared. The number of receivers (agents who receive a post) is
highest when tolerance is medium and lowest when tolerance is high. The number of
disinterested agents is highest when tolerance is high.

Table 2 lists values for secondary metrics after all posts are shared. Secondary metrics
compare the proportion of satisőed, active, and polarized users in the initial (before any
posts are shared) and őnal (after sharing 5000 posts) populations based on thresholds de-
őned for secondary metrics (Table 2). The number of positively satisőed users is highest
when tolerance in users is high and lowest when tolerance is low. User activity shows
minor variation across different levels of tolerance. low tolerance leads to highest increase
in highly polarized agents, whereas it is lowest when tolerance in agents is high.

Takeaway (tolerance). Higher tolerance in users slows down polarization leading to
a less polarized network, higher network homophily, lower user satisfaction, and a low
number of highly polarized users than when tolerance in users is lower.

4.3.2 Experiment 2: Selective Exposure

We emulate selective exposure in our simulation by exposing each agent only to posts from
other agents who have a similar stance on the issue discussed in the post. To operationalize
selective exposure, we use a threshold value of the difference in the stances of two agents
beyond which they stop seeing each other’s posts. An agent sees posts only from other
agents whose stance differs from its stance on an issue in the post below a threshold. We
experiment with four threshold values for selective exposure, none (allow all agents to see
all content shared by neighbors without any őltering, i.e., no selective exposure), low (allow
a difference of 80% in the stance between sharing and receiving agents toward the issue in
the post), medium (allow 50% difference), and high (allow 20% difference). We maintain
the level of tolerance among users at medium for all scenarios in this experiment.

Figure 2 compares the inŕuence of different levels of selective exposure on all primary
metrics. high selective exposure leads to the highest polarization, and none leads to the
lowest. Polarization in a social network is constantly higher for higher levels of selective
exposure. Homophily is highest when selective exposure is high, and shows minor variations
across lowers levels of selective exposure. User satisfaction is highest when selective exposure
is high and shows minor differences across lower levels of selective exposure.

Table 1 shows the proportion of receiver (spreader and disinterested) and nonreceiver
agents after all posts are shared. High selective exposure experiences the lowest proportion
of receiver agents, while none selective exposure leads to most.

Table 2 compares the proportion of satisőed, active and polarized users in the initial
(before any posts are shared) and őnal (after sharing 5000 posts) populations based on
thresholds deőned for secondary metrics Table 2. medium selective exposure experiences
the highest number of positively satisőed users, whereas the highest number of negatively



Figure 2: Experiment 2 (Selective Exposure): Comparing polarization, homophily, network
polarity, and user satisfaction of agents in a social network with different levels of selective
exposure.

satisőed users is with none selective exposure. high selective exposure leads to the lowest
number of negatively satisőed users. The number of highly active users experiences the most
decline when selective exposure is medium, and the least when selective exposure is high.
high selective exposure leads to the highest number of highly polarized users, whereas none

and low selective exposure lead to the lowest.

Takeaway (selective exposure). Higher selective exposure leads to higher polariza-
tion, higher network homophily, higher overall user satisfaction, and a higher number of
polarized users than when selective exposure is lower.

4.3.3 Statistical Analysis

We conduct statistical analysis to test if different levels of selective exposure and tolerance
lead to statistically signiőcant differences in users’ pov (point-of-view) and primary metrics
(network polarization, homophily, polarity, and user satisfaction). For users’ pov we compare
the őnal distributions (after all posts are shared) of users’ pov at different levels of selective
exposure and tolerance to establish if the differences are statistically signiőcant. For primary
metrics, we compare the distributions of each primary metric (computed after sharing of each
post) at different levels of selective exposure and tolerance to identify differences in the overall
social network metrics.

To choose the applicable statistical tests appropriately we őrst evaluate the distributions.



Exp Conőg
Agent State

Receiver

Nonreceiver Spreader Disinterested

Tolerant
Users

Low 60.12 14.49 25.39
Medium 53.95 17.30 28.75
High 62.99 13.36 23.65

Selective
Exposure

None 54.76 16.88 28.36
Low 55.44 16.48 28.08
Medium 58.90 13.80 27.30
High 82.63 4.97 12.40

Table 1: Distribution of agents across different states in the őnal population for each
experimental setting. Results are from averages of ten simulation runs for each experiment.

Values are in % of the total population.

Exp Conőg
User Satisfaction User Activity User Polarity

Neg Zero Pos Low Medium High Low High

Initial Distribution 0.00 100.00 0.00 1.56 64.82 33.62 99.33 0.67

Tolerant
Users

Low 52.09 23.79 24.11 4.51 64.79 30.70 97.50 2.50
Medium 51.92 22.26 25.82 4.51 64.52 30.97 98.19 1.81
High 50.11 23.42 26.47 4.33 65.39 30.28 98.54 1.46

Selective
Exposure

None 51.74 23.25 24.01 4.48 64.82 30.70 98.69 1.31
Low 51.40 22.93 25.67 5.08 64.62 30.30 98.69 1.31
Medium 45.26 26.64 28.10 7.30 64.42 28.28 97.03 2.97
High 23.75 53.97 22.28 4.35 63.98 31.67 96.73 3.27

Table 2: Comparison between initial and őnal distributions of agents on secondary metrics
for different experiments. Results are from averages of ten simulation runs. The values are

in % of the total population.

We test the normality of distribution using the Shapiro-Wilks normality test (Shapiro and
Wilk, 1965). We use parametric statistical tests, namely paired t-test and one-way ANOVA
to compare distributions that are normal, and nonparametric tests, namely the Kruskal-
Wallis test for distributions that are not normal.

In addition to the statistical signiőcance test, we also compute the effect size for each
test. For parametric statistical tests we use Cohen’s d (Cohen, 1988) to compute the effect
size as the distributions under comparison have similar standard deviations and the sample
size is large (≈4,000). To interpret the effect size computed using Cohen’s d, we adapt the
interpretation from Cohen (1988) (see Table 3). For nonparametric statistical tests (Kruskal-
Wallis test) we use epsilon square (ϵ2) (Kelley, 1935) to compute the effect size based on
recommendations from Tomczak and Tomczak (2014). To interpret the effect size computed



using epsilon square (ϵ2) we adapt the interpretation from (Rea and Parker, 2014) for the
correlation coefficient and square threshold values of each bin as ϵ2 is a squared metric. The
resulting interpretation for ϵ2 effect size we use is as shown in Table 3. We chose ϵ2 over
other popular alternatives such as omega-squared (ω2) (Albers and Lakens , 2018), as ϵ2 is
less biased (Okada , 2013).

For all statistical signiőcance tests, we assume the null hypothesis to indicate similar
distribution between compared entities while the alternate hypothesis to indicate that there
exist statistically signiőcant differences in the compared distributions.

We use the signiőcance level, i.e., alpha, as 0.05 to accept or reject the null hypothesis.
We use the Kruskal-Wallis test to compare all primary metrics for different levels of

selective exposure and user tolerance. For selective exposure, we compare how different
levels (i.e., low, medium, and high) compare against none selective exposure, whereas for
user tolerance we compare each level of tolerance against each other in pairs.

Table 4 shows the results of the statistical signiőcance test for all primary metrics at
different levels of selective exposure and tolerance. The compared distributions correspond
to the value of each metric after each post is shared on the social network. We are effectively
comparing how the social network evolves (in terms of the metrics) as more and more posts
are shared. The p-values for each pair of distribution comparing the metrics indicate that
the difference in the distributions is statistically signiőcant and the null hypothesis can be
rejected, though the effect sizes vary. Based on the effect size, the difference between network
homophily when selective exposure is medium and high (compared to none selective ex-
posure) is very strong. The difference in polarization at high selective exposure (compared
with none) and high tolerance (compared with low) is strong. Similarly, the difference in
homophily between low and none selective exposure, and user satisfaction between high

and none selective exposure is also strong. For different levels of user tolerance, relatively
strong differences exist in polarization between low and medium, medium and high; in
homophily between Low and medium, high and low; and in polarity between high and
low. For different levels of selective exposure, a relatively strong difference (in comparison
to none selective exposure) exists in polarization at high; in polarity at medium; and in
user satisfaction at low. Other comparisons have an effect size of either moderate or weak.

Table 5 shows the results of the statistical signiőcance test comparing users’ pov at
different levels of selective exposure and tolerance. The compared distributions correspond
to the pov of each user after all posts are shared on the social network. We are effectively
comparing how the pov of users differ as a consequence of different levels of selective exposure
and tolerance at the start and end of each simulation run. The p-values for some of the
differences show that the differences are statistically signiőcant, though the effect sizes are
either small or very small.

5 Discussion

Polarization is slowed down substantially when tolerance in users is high. high tolerant
users experience the least network polarization and have less network polarity than when
users’ tolerance is low. The low polarization is plausibly because high tolerant users are
less likely to change their stance on issues based on sanctions they receive than low tolerant



Effect Size Interpretation

Epsilon-
Square (ϵ2)

Interpretation based on
(Rea and Parker, 2014)

[0.00, 0.01) Negligible
[0.01, 0.04) Weak
[0.04, 0.16) Moderate
[0.16, 0.36) Relatively strong
[0.36, 0.64) Strong
[0.64, 1.00] Very strong

Cohen’s d
(Cohen, 1988)

0.20 Small
0.50 Medium
0.80 Large

Table 3: Effect sizes and their interpretations (according to the cited works).

users, hence, slowing down change to a users’ pov. The number of highly polarized users is
lowest when user tolerance is high. Our results are consistent with the earlier work (Coscia
and Rossi, 2022), which found lower levels of network polarization with high user tolerance
in a social network.

Figure 1 shows user satisfaction when tolerance is low is constantly higher than when
tolerance is high, leading to a higher overall user satisfaction. However, the number of users
with positive satisfaction is higher when tolerance is high, compared to when tolerance is
medium or low (Table 2). This indicates that the sharing of posts in a social network
whose users have lower tolerance leads to higher overall user satisfaction but concentrated
among fewer users.

Surprisingly, high user tolerance leads to a more homophilic network (based on users’
pov) than when user tolerance is low or medium. Also, User reach (number of users who
receive a post) is lower when tolerance in users is high compared to low and medium.

high selective exposure leads to higher polarization than medium, low, and none

selective exposure, in that order. This is plausibly because when selective exposure is high

users are more likely to see congenial posts (posts that agree with their existing stance) and
are subject to fewer posts that may challenge their stance. Our őnding that higher selective
exposure leads to higher polarization agrees with earlier őndings from prior works (Stroud,
2010; Garrett et al., 2014; Kim and Chen, 2016). However, it is important to elucidate the
difference in the methodology between our work and prior works to understand the results
better. While ours is a multiagent simulation that captures the evolution of polarization as
caused by the social interactions between users, prior works (Stroud, 2010; Garrett et al.,
2014; Kim and Chen, 2016) primarily rely on self-reported survey data for their conclusions.
Further, prior works focus on how exposure to some information may polarize an individual’s
attitude in isolation rather than as a consequence of social interactions between multiple
users.

As expected, user satisfaction is higher for higher levels of selective exposure (Figure 2).
High user satisfaction may result because users receive more congenial posts with higher
selective exposure, leading to more positive sanctions and higher user satisfaction for some
users. The number of users with zero user satisfaction (i.e., users whose satisfaction didn’t



Exp Metric Dist1 Dist2 H-statistic p-value Effect Size

Tolerant
Users

Polarization
Low Medium 2784.62 <0.01 0.27
Medium High 2852.45 <0.01 0.28
High Low 4178.42 <0.01 0.42

Homophily
Low Medium 1894.71 <0.01 0.19
Medium High 15.27 <0.01 0.00
High Low 2353.32 <0.01 0.24

Polarity
Low Medium 67.88 <0.01 0.01
Medium High 1516.77 <0.01 0.15
High Low 1981.18 <0.01 0.20

User
Satisfaction

Low Medium 1111.50 <0.01 0.11
Medium High 10.60 <0.01 0.00
High Low 1075.30 <0.01 0.11

Selective
Exposure

Polarization
None Low 1336.62 <0.01 0.13
None Medium 2918.22 <0.01 0.29
None High 4317.15 <0.01 0.43

Homophily
None Low 5038.38 =0.04 0.50
None Medium 7316.85 <0.01 0.73
None High 7485.42 <0.01 0.75

Polarity
None Low 4.00 <0.01 0.00
None Medium 1813.12 <0.01 0.18
None High 6349.25 <0.01 0.63

User
Satisfaction

None Low 2927.38 <0.01 0.29
None Medium 1232.89 <0.01 0.12
None High 4286.36 <0.01 0.42

Table 4: Statistical signiőcance test results comparing primary metrics across different
levels of selective exposure and user tolerance. Dist1 and Dist2 refer to the distributions of
the corresponding primary metric for the overall social network (after all posts are shared)

at the speciőed levels of tolerance and selective exposure as applicable based on the
corresponding experiment (Exp). H-statistic represents the Kruskal-Wallis test statistic.

Effect size is computed using epsilon-squared (ϵ2).

change during the simulation run) is highest when selective exposure is high and the number
of negatively satisőed users is substantially lower (≈ 2×) than lower levels of selective expo-
sure. This indicates selective exposure ensures fewer users end up with aggregate negative
satisfaction.

Higher selective exposure leads to the lowest user reach (i.e., highest number of nonre-
ceivers, Table 1). This is most likely caused as a consequence of őltering out uncongenial
posts for each user which leads to fewer users receiving any given post than when no selective
exposure is applied. The number of disinterested is lowest in the case of high selective expo-



Exp Test Dist1 Dist2 Test Statistic p-value Effect Size

Tolerant
Users

Paired
t-test

Low Medium 1.35 =0.18 0.02
Medium High 0.72 =0.47 0.01
High Low 2.06 =0.04 0.03

One-way
ANOVA

Low Medium 1.08 =0.30 0.02
Medium High 0.26 =0.61 0.01
High Low 2.41 =0.12 0.03

Selective
Exposure

Paired
t-test

None Low 1.03 =0.30 0.02
None Medium 10.20 <0.01 0.17
None High 3.99 <0.01 0.07

One-way
ANOVA

None Low 0.56 =0.45 0.02
None Medium 57.66 <0.01 0.17
None High 9.48 <0.01 0.07

Table 5: Statistical signiőcance test results comparing a user’s pov (point-of-view) in the
őnal population (after all posts are shared) across different levels of selective exposure and

user tolerance. Dist1 and Dist2 refer to the distributions of users’ pov at the speciőed
levels of tolerance and selective exposure as applicable based on the corresponding

experiment (Exp). Effect size is computed using Cohen’s d.

sure demonstrating that selective exposure makes it less likely for a post to reach potentially
disinterested (i.e., users with a potentially uncongenial pov toward the post). This comes
at the cost of a low number of spreaders when selective exposure is high.

high selective exposure witnesses the least drop in highly active users between the start
and the end of the simulation. Our őndings on higher selective exposure leading to more
highly active users are consistent with some empirical őndings from prior work. Prior work
(Stroud, 2010) found selective exposure to congenial political information increases participa-
tion. At the same time, it undermines earlier work that found a positive role of cross-cutting
exposure on political participation (Kim and Chen, 2016).

high selective exposure leads to the highest number of highly polarized users at the end
of the simulation. high selective exposure also leads to a social network with the highest
homophily. Homophily shows some of the highest effect sizes in the statistical signiőcance
test analysis with values indicating a very strong relation implying that the change in over-
all network homophily is statistically signiőcant. The effect size is highest when selective
exposure is high, followed by medium, and then low indicating an increasing pattern of
homophily with higher selective exposure.

Our őndings have practical and valuable implications for social networking platforms that
have become an integral part of our lives. These platforms try to maximize user satisfaction
and often employ content őltering (algorithm selective exposure) to choose content based
on user preference. Our simulation shows achieving user satisfaction via selective exposure
can potentially increase polarization in the social network. High selectivity in exposure to
congenial content may lead to better user satisfaction (due to increased likelihood of viewing



congenial posts), but it also leads to more polarized users. On the other hand, social networks
whose users have a higher tolerance experience far less polarization among their users for the
same number of shared posts. However, the user satisfaction when users’ tolerance is higher
is lower.

Interestingly, network homophily (the tendency of being connected to users with similar
pov) increases in both experiments, i.e., higher selective exposure and higher tolerance in
users both lead to networks with higher homophily. Social networks with higher homophily
are more prone to forming echo chambers (wherein a person encounters only beliefs or opin-
ions that coincide with their own), which is a growing challenge for social media platforms.
While it is not incumbent on social networking platforms to mitigate its ill effects, such as
polarization among users and the formation of echo chambers, there are some beneőts to it.
For instance, our simulation shows higher selective exposure leads to the lowest user reach
(i.e., highest number of nonreceivers).

Our simulation model is a step toward understanding the social interactions between
users in a social network and how it inŕuences user behavior and polarization. A better
understanding the potential consequences of the interactions on a social network can show
us ways to mitigate the ill effects while still making the most of these social networking
platforms.

5.1 Threats to Validity

Modeling user behavior is a challenging task that demands an intricate understanding of
human psychology and an extensive operationalization of human traits. Though we model
each user based on theories from social science and relevant observations from previous
related works, the simpliőcations done to formalize the setup incur some threats to validity.

First, we assume equal strength of ties between each pair of connected users. In reality,
people have varying strengths of ties, affecting how they react to posts from others and how
it inŕuences them.

Second, we only consider a user’s own preferences and content of the post when deciding
to share a post, and providing sanctions. In reality, there may be a myriad of factors that
affect such decisions.

Third, the simulation runs on artiőcially generated data. User attributes and the posts
being shared are artiőcially generated based on suitable probability distributions. Though
we ensured appropriate distributions for initial user attributes, this does not guarantee a
reasonable replication of a real-world social network. Any generalizations based on these
őndings need to be veriőed with empirical data.

Forth, the results are based on simulation runs each of which ends after sharing ≈ 5,000
posts. While most plots indicate the simulation stabilizing (near the end of the simulation)
with the general direction of the plots being stable, there is no certainty that the same trends
will continue forever.

The results should be taken with caution. Although our model is based on assumptions
grounded in prior studies on polarization on social media, we use artiőcially generated data
for this analysis. Further, reliably modeling user behavior is nontrivial and requires a őne-
grained understanding of user behavior. We make simplifying assumptions in our model.



5.2 Future Directions

This work brings forth exciting directions for further research. First, it would help to develop
richer simulation models that capture the dynamics of social networks, such as forming
and severing ties between users and diffusing several posts simultaneously in the network.
Second, it would help to seed the simulation with data collected from real users via a human-
subject study. Third, it would be interesting to extend our model to incorporate methods
of intervention that can help mitigate polarization in a social network.
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Appendix

Notation Description
c1 A constant (scale factor) to scale up smaller values. We use

the value of 10.
c2 A constant (scale factor) to scale down the larger values. We

use the value of 0.1.
ax Agent x

pk kth post shared on the social network
uS(ax, i, pk) Stance of ax toward issue i after pk is shared
pS(pk, i) Stance of pk toward issue i

uA(ax, pk) Activity score for ax after pk is shared
sPref (ax, pk) Sharing preference of ax after pk is shared
sP (ax, pk) Probability of ax to share pk
Sanc(ay, pk, ax) Sanction ay provides on receiving pk from ax
δS(ax, ay, i, pk) difference in stance between the spreader (ax) and the receiver

(ay) on issue i as post pk is beingshared.
∆S(ax, ay, i, pk) shift in stance (of ax) due to a sanction (by ay) for pk it shared

on the issue i.
POV (ax, pk) pov of ax after pk has diffused in the social network
neighbor(G, ax, pk) all neighbors of ax in the social network G which receive pk

from ax
numAgents(G) Total number of agents in the social network G

A.1: Notations used to describe the simulation design.

Metric Description
Negative Satisőed Agents with user satisfaction less than zero
Zero Satisőed Agents with user satisfaction equal to zero
Positive Satisőed Agents with user satisfaction greater than zero
Low Activity Agents with user activity lower than or equal to 0.75
Medium Activity Agents with user activity between [0.75, 0.90]
High Activity Agents with user activity greater than or equal to 0.90
Low Polarized Agents with pov in [−0.1, 0.1]
High Polarized Agents with pov greater than 0.1 or lower than −0.1

A.2: Secondary metrics to compare initial and őnal user distribution based on agent’s state.


