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Facilitating Early-Stage Backdoor Attacks in
Federated Learning With Whole Population
Distribution Inference

Tian Liu

Abstract—The development of the Internet of Things (IoT)
combined with the emergence of federated learning (FL) makes
it possible for mobile edge computing (MEC) to gain insight
from physically separated data without violating privacy or bur-
dening communication. Due to the distributed nature of MEC
devices, researchers have uncovered that the FL is vulnerable
to backdoor attacks, which aim at injecting a subtask into the
FL without corrupting the performance of the main task. The
backdoor attack achieves high accuracy on both the main task
and the backdoor subtask when injected at FL. model conver-
gence. However, the effectiveness of the backdoor is weak when
injected in early training stage. In this article, we strengthen the
early-injected backdoor attack by using information leakage. We
show that FL convergence can be expedited if the client’s data set
mimics the distribution and gradients of the whole population.
Based on this observation, we propose a two-phase backdoor
attack, which includes a preliminary phase for the subsequent
backdoor attack. Taking advantage of the preliminary phase, the
later injected backdoor achieves better effectiveness, as the back-
door effect is less likely to be diluted by normal model updates.
Extensive experiments are conducted on the MNIST data set
under various data heterogeneity settings to evaluate the effec-
tiveness of the proposed backdoor attack. The results show that
the proposed backdoor outperforms existing backdoor attacks in
both success rate and longevity, even when defense mechanisms
are in place.

Index Terms—Backdoor attack, federated learning (FL), pri-
vacy leakage, weight divergence.

I. INTRODUCTION

Y 2022 there will be 18 billion IoT devices connected
Bto the Internet to provide monitoring and computing
services [2]. Fueled by recent progress in machine learn-
ing, the data generated/collected by these devices can be
utilized to train machine learning models that enable intelli-
gent IoT applications. To overcome the issues in traditional
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centralized learning (CL), mobile edge computing (MEC),
which uses the computing and storage capabilities of end
devices, combined with federated learning (FL) [3], [4], serves
as a solution to protect data privacy, reduce communication
latency, and relieve the burden of the central server. Currently,
FL applications on mobile edge devices thrive in next-word
and emoji prediction on smartphones [5], [6], [7], [8], environ-
mental monitoring [9], and aiding in medical diagnosis among
hospitals [10], [11].

Due to the distributed nature of FL and inherent data non-
i.i.d.-ness across edge clients, the local model update uploaded
by a client may be different from others. As a result, it is diffi-
cult for the FL server to validate the legitimacy/truthfulness of
the received model updates. Such a difficulty provides a venue
for new attacks. Backdoor attack is one of the data poisoning
attacks [12], in which an adversary corrupts the global model
so that the new global model reaches high accuracy in both the
main task and a backdoor subtask activated by a trigger. This
backdoor attack has been shown to be unavoidable and compu-
tationally difficult to detect [13]. Especially, backdoor attacks
are more realistic in MEC scenarios. First, a large portion of
edge devices are IoT devices, which are not equipped with
sufficient security functions. As a result, a considerable num-
ber of IoT devices are susceptible to traffic interception and
manipulation. The attacker can easily corrupt a batch of clients
to launch backdoor attacks. Second, launching backdoor attack
requires little user privileges and does not need extra compu-
tation. Specifically, it only requires the access to the client’s
data and the capability of label flipping. As a result, backdoor
attacks can be easily applied to IoT devices. Due to the above
two reasons, backdoor attack remains a serious security threat
to FL-powered MEC applications.

Although backdoor FL attacks are powerful, they have
stringent requirements on the timing of attack. To make our
argument more concrete, in this article, we will focus on
single-shot backdoor attacks [12], due to their benefits of
stealthiness, simplicity in implementation, and the fact that
the more general multishot backdoor attacks can be built
upon them incrementally. Existing studies [12], [14] have
found that the optimal attack time for single-shot backdoor
attack, in which the adversary injects the designated back-
door trigger only once (so as to keep the attack stealthy),
should be when the global model is close to its convergence.
However, in MEC scenarios, the attacker cannot always have
the luxury of controlling injection time. This is because a
typical MEC-powered FL process involves a large number of
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participants (IoT devices) over the entire training period, but
in each round of training, only a small number of randomly
selected devices will participate. There is no fixed participant
schedule, so no device can predict whether or when it will be
selected to participate in the training. As such, the backdoor
attack has to be opportunistic, and the attacker must try its best
to maximize both the strength and persistence of the injected
backdoor whenever it is called to participate in the training—
even when it is at an early stage of the training. In fact, a
backdoor injected in the early stage of the training (before
the FL model converges) can only generate a very weak back-
door effect for the following two reasons: 1) the strength of the
injected backdoor model update will be severely diluted by the
local model updates from other clients in the same round after
aggregation at the server, because the magnitude of the other
clients’ local model updates is significant when the global
model is not sufficiently converged and 2) the backdoor effect
of the injected subtask vanishes quickly in subsequent training
rounds as the injected backdoor will be overwritten by new
coming normal model updates in those rounds. As a result,
the earlier the backdoor is injected, the faster the backdoor
effect will diminish. In addition, IoT devices are usually con-
strained by its resources—power, computing, memory, storage,
etc. This requires an attack mechanism that runs in MEC to
be lightweight and resource-efficient. General-case backdoor
enhancing techniques, such as those in [13] and [15], require
a substantial amount of computational resources, and, hence,
are less suitable for MEC scenarios.

Realizing the stringent attack timing restriction in existing
single-shot backdoor attacks and resource restriction of IoT
devices, in this article, we are interested in studying a new
single-shot backdoor attack technique that allows the back-
door subtask to be injected in the early stage of FL training
while still achieving a strong and sustaining backdoor effect,
making the effect of the attack less dependent on the timing of
the attack, and, hence, making the attack more practical and
applicable to general MEC applications.

Our new attack technique is inspired by the latest research
findings on FL privacy, demonstrating that although private
client data is not directly revealed in FL, the shared FL
global model can unintentionally leak sensitive information
about the data on which it was trained [16], [17], [18], [19],
[20], [21]. This finding has motivated us to consider the fol-
lowing research problem: does FL information leakage render
a stronger backdoor attack in the early stage of FL train-
ing? The findings in [10] indicate that the slow and unstable
convergence of FL model is mainly caused by the weight
divergence of the local model updates of different clients. This
weight divergence is mainly decided by the difference in the
label distribution (henceforth referred to as the “distribution”)
and the difference in gradients between a single client’s local
data and the whole population’s data (i.e., the aggregation of
all client’s data). Therefore, reducing these differences will
shrink the weight divergence and henceforth expedite FL con-
vergence. This will increase the strength and sustainability of
early-stage backdoor attacks.

In this study, we propose a novel information leakage-
assisted two-phase FL backdoor attack, which enhances the

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 12, 15 JUNE 2023

effectiveness of FL early-injected single-shot backdoor attack.
The essence of our idea is that if we expedite the FL conver-
gence, the backdoored model update will be less diluted by
model updates from normal clients, leading to a stronger and
longer-lasting backdoor effect. We do not directly strengthen
the backdoor attack itself. Instead, we design a preliminary
phase, where a distinguishing feature is that attacker-controlled
clients play the role of accomplice and reach out to the FL
global model by uploading “beneficial” model updates that
speed up the convergence of the global model to pave the
way for the subsequent backdoor injection. Specifically, in the
preliminary phase, attacker-controlled clients first perform a
passive inference attack to obtain an estimate of the whole pop-
ulation distribution. Then, instead of training on the original
local data, they train on locally crafted data sets, whose distri-
butions align with the inferred whole population distribution,
so that the weight divergence is reduced, and the FL model
converges more quickly. When the backdoor client is selected,
a regular single-shot backdoor attack is launched. Because
convergence is facilitated by the preliminary phase, the back-
door attack is able to achieve better strength and sustainability,
and the main task accuracy is less likely to deteriorate as the
dilution effect of normal model updates is reduced. This is in
sharp contrast to the existing backdoor attacks, in which the
single-shot backdoor is injected directly without any camou-
flage. Thus, their backdoor effect is weaker, and the attack is
less stealthy. Part of this work (i.e., the proposed two-phase
backdoor attack algorithm) was presented at IEEE SECON
2022 [1]. This journal paper significantly extends [1] in that
it not only presents the proposed attack algorithm, but also
studies several important attributes/properties of the algorithm,
including the algorithm’s generalizability, stability, and feasi-
bility, and evaluates the performance of the algorithm under
more comprehensive settings as well.

To our knowledge, we are the first in the literature that
enhances the effectiveness of FL backdoor attacks by utilizing
the information leaked from the FL. model. Our contributions
in this study are fourfold.

1) Weprovide atheoretical analysis that the intra-aggregation

weight divergence between a model in FL setting and
CL setting consists of a gradient difference term and a
distribution difference term, and we show that the weight
divergence is bounded and the gap is small. The former
finding motivates the design of the proposed attack pre-
liminary phase, that is mimicking the behavior of CL can
facilitate the FL convergence, which further overcomes
the weakness of the single-shot backdoor attack. And the
latter finding, the bounded and small gap of the weight
divergence, theoretically supports the approximation in
the proposed inference attack and provides an accuracy
guarantee for the inferred distribution results.

2) We propose a novel optimization-based whole popu-
lation distribution inference attack utilizing the above
approximation and the linearity of the cross-entropy.
Unlike the existing property inference attack, in which it
can only generate binary property inference results, our
proposed inference attack produces precise quantitative
property information about the data set.
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TABLE I
NOTATION AND DEFINITIONS

Notation Definitions
-1l £2 norm.
Dy, D Training data on the k-th client and the whole pop-
ulation, respectively. And we have D = Ul]gf: 1 Dk
Nk, N Number of training samples in Dy, and D, respec-
tively. And we have n = Z,le n.
wg, wT Weight of the k-th local model and the global model
in the T'-th aggregation, respectively.
Fy,(wg; Dy), Loss function on the k-th client and the CL model,
F(w; D) respectively.
V L(wg; Dy,), Loss gradient of the client k and the CL model,
V L(w; D) respectively.
ply =c¢) Proportion of the label c in the training data, and we

have Zle ply=c)=1.

3) We propose a preliminary phase for the early-injected
single-shot backdoor attack, which improves the attack
effectiveness by reducing the dilution effect from local
updates of normal clients.

4) Extensive experiments are conducted in various data
heterogeneity settings to evaluate the accuracy of the
proposed whole population distribution inference attack,
the improvement in the convergence of the FL global
model, and the effectiveness of the backdoor attack.

Paper Organization: This article is structured as follows.

We start by providing the background and related work in
Section II. We present the threat model and attack design phi-
losophy in Section III. Subsequently, the overview and the
detailed attack steps are presented in Section IV. The experi-
mental setup and results are presented in Sections V and VI,
respectively. We evaluate the robustness of the proposed
backdoor attack against two-defense mechanisms and discuss
potential defenses in Section VII, and we conclude our work
in Section VIII.
Throughout this article, we use the notation in Table I.

II. BACKGROUND AND RELATED WORK
A. Federated Learning

The whole population D = U;cvlek is allocated to N clients,
and each client maintains D;. Each client maintains a local
model trained from the local training data set. And a central
server maintains a global model by aggregating the local model
updates from the participating client in each training round.
The objective of FL training is to minimize the loss

1
Fw) = —

D > Lw; (x.). M

(x,y)eD

To achieve this goal, each client k optimizes their local model
weights wy to minimize the loss function

1
Fr(w) = —

il > Lowi (x, ). 2)

(x.y)eDg

Here, we describe the FedAvg aggregation method [4],
which iteratively performs the following three steps.

1) Global Model Synchronization: In the Tth aggregation,

the central server randomly selects K (K < N) from the

N clients and broadcasts the latest global model w’ to

the selected clients: w,{’o <« wl,
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2) Local Model Training: Each client k updates its own
local model w,{ by running an SGD on the local data
set Dy for t steps. The tth step on client k follows:

wp T W = pVF (W) 3)
where 7 is the local learning rate.

3) Global Model Update: After performing local training
for ¢ steps, the client transmits the model update Aw,{ =
w,{’t - w,{’o back to the central server. The central server
then updates the global model by performing a weighted
average on the local model updates sent by K clients

K
with Wl 4 Z @Aw,{ “4)
k=1 n

where ny = |Dg| is the number of training data on the
client k and n = Zszl ny is the total number of training
data used by the selected clients.

B. Related Work

1) Property Inference Attack Against FL: We mainly dis-
cuss the literature related to property inference attacks.
The property inference attack was first proposed by
Ateniese et al. [22] against the hidden Markov models and
support vector machines. Ganju et al. [23] designed a prop-
erty inference attack on fully connected networks, in which the
adversary trains a meta-classifier to classify the target classifier
depending on whether it possesses the property of interest or
not. A malicious user can infer attributes that characterize the
entire data class or a subset of data [20]. Scholars summarized
the techniques to defend against inference attacks in [24].

We also note that our whole population distribution infer-
ence attack is similar to that of [25], where Wang et al.
analyzed the relationship between the number of data samples
of a specific label and the magnitude of the corresponding gra-
dients. Our work differs from their work from the following
two perspectives: 1) their work draws a comparison between a
pair of labels and generates a binary output of which label pos-
sesses a larger number of data samples, while our work is able
to provide a precise quantitative distribution of all labels and
2) their work has a high-computation complexity and needs
to be performed multiple rounds to get a satisfying inference
result, while in our work the distribution can be inferred in
one training round and requires far less computation.

2) Backdoor Attack Against FL: The backdoor attack is
one of the data poisoning attacks whose goal is to mis-
classify inputs with backdoor triggers as the target class,
while not affecting the accuracy of the model on clean
data. The backdoor was first introduced in [12]. They also
proposed train-and-scale and constrain-and-scale techniques to
maximize the attack impact while evading anomaly detection.
The researchers [13] introduced an edge-case backdoor that
targets data at the trailing end of a distribution. They also
claimed that the backdoors against FL. are unavoidable and
computationally hard to detect. To make the backdoor stealth-
ier, scholars in [26] decomposed a centralized backdoor into
parts, and each trigger is injected by a client. The distributed
backdoor is more effective and persistent than the centralized
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backdoor. However, the distributed backdoor is fully activated
only when all distributed triggers are injected. Additionally,
to survive the new-coming normal updates, the injection of
local triggers must be finished in a short attack window. Given
that the attacker cannot manipulate the timing of selecting a
compromised client to participate in the training, the above
conditions are hardly satisfied in practice.

3) Defenses Against FL Backdoor Attack: Defense against
backdoor attacks falls mainly into two categories, robust
aggregation and differential privacy (DP).

Robust Aggregation: One approach from existing work
focuses on building a robust aggregation algorithm that esti-
mates the most possible aggregation rather than directly
taking a weighted average. These robust aggregations, such
as FoolsGold [27], Krum [28], Bulyan [29], RFA [30], and
trimmed mean [31], are designed based on the statistical
characteristics of model updates and aim to identify and
de-emphasize possibly malicious model updates in the aggre-
gation. Most of the robust aggregations are built on the
assumption of the i.i.d. data distribution across the participat-
ing clients. However, this assumption is hardly met in practice.
For the FL with non-i.i.d. data among clients, robust aggrega-
tion algorithms could misidentify non-i.i.d. but normal model
updates as malicious or vice versa, and then their weight could
be reduced or raised in the aggregation, which degrades the
accuracy of the FL model. These approaches are capable of
minimizing the impact of malicious model updates to a certain
level but cannot completely eliminate them [32].

DP: DP was originally designed to protect individual pri-
vacy. FL. with various DP schemes were proposed, e.g., the
Bayesian DP [33], local DP [34], [35], [36], and central
DP [37]. The algorithm and performance of differentially pri-
vate FL were analyzed in [38]. Researchers in [14] discovered
that by adding noise, the model update could also reduce the
effect of malicious model updates. DP has been shown to be
effective in mitigating backdoor attacks but comes at the cost
of loss of model accuracy. The effectiveness of both local
DP and central DP in defending against backdoor attacks was
explored in [39]. Cui et al. [40] proposed a deferentially pri-
vate FL based on GAN, which satisfies DP while optimizing
the data utility.

III. THREAT MODEL AND ATTACK DESIGN PHILOSOPHY
A. Threat Model

The adversary’s goal is to improve the effectiveness and
lifespan of the backdoor injected in the early training stage.
Also, the backdoor should be stealthy, i.e., the impact on the
main task accuracy should be as small as possible.

We consider a practical scenario where the attacker com-
promises multiple clients. Since launching a backdoor attack
requires higher user privileges, we assume that only a few
of them have the capability to launch the backdoor attack,
while the rest can interact with the FL. model multiple times
as accomplices. As in [12], we assume that the client perform-
ing the backdoor attack has the ability to flip labels and set
their own learning rate and local steps to maximize the back-
door effect while minimizing impact on the main learning task.
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Others are equipped with the ability to adjust the local distri-
bution of labels, in which the attacker could obtain data from
a public data set, or use data augmentation techniques, such
as random rotation, random zoom, random crop, and sampling
techniques, to change the number of samples for each label.
This assumption is practical, as these operations require lit-
tle computation and minimal user privileges and, thus, can be
easily integrated into data preprocessing.

B. Attack Design Philosophy

Let w, denote the local model of a backdoor client. The
backdoor attack achieves its malicious goal by trying to sub-
stitute the new global model w’ with a local backdoor model
wg in (4). FL aggregation with a backdoor model update is as
follows:

&)

wlth T 4 EAwT—i— n—aAwa.
]; n k n
The malicious model w, can fully replace the global model
by a scaling factor y = (n/n,) only when the global model
converges, i.e., Zk# (nk/n)Aw,{ ~ 0. When the FL global
model converges, the new-coming normal client model updates
are too small to overwrite the backdoor effect. As a result, the
injected backdoor can last a long time. However, for early-
injected backdoors, the global model substitution is diluted
due to Zk#a (ng /n)Aw,{ # 0, making the attack less effective.
In fact, not only does the backdoor not reach its maximum
effectiveness but the accuracy of the main task might also
deteriorate as a result of the scaling operation. In general, the
magnitude of the model update decreases as the FL model is
close to convergence. The backdoor effect is more likely to
be undermined and overwritten more quickly by new model
updates when injected in an earlier training stage. Our main
insight is that the early-injected backdoor effect would be more
effective if the early training stage convergence is expedited,
ie., Zk;ﬁa (nk/n)Aw,{ is reduced.
We consider a C-class classification FL problem with cross-
entropy as the loss function. The loss function of a client k
computed on its local data set Dy is defined as

c
F(w; Dy) = Zpk(y = 0)Exenyy=c[logfe(r; wp) ]

c=1

(6)

where pi(y = c¢) denotes the proportion of class ¢ in Dy, and
f¢ is the probability of a training sample x belonging to the
cth class.

Due to the non-i.i.d. data distribution among participating
clients and multiple SGDs are performed on the same local
data set, the locally trained model in the FL scheme could
introduce weight divergence, which deteriorates the FL global
model. And this contributes to the performance gap between
CL and FL. Therefore, the CL on the whole population serves
as the upper bound of the FL. The weight divergence between
the models in CL and FL settings can be used to characterize
how good an FL model is.

Consider three models, the local model of the kth client wy,
the FL global model w, and the CL model weey, trained on D.
Previous works [41], [42] have analyzed the weight divergence

Authorized licensed use limited to: Auburn University. Downloaded on September 04,2023 at 22:23:52 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: FACILITATING EARLY-STAGE BACKDOOR ATTACKS IN FEDERATED LEARNING

Client k
WkT,O «wT, - ZL
\ w,’ — CL
T,0 T \ k T,2
Wegn < W5\ wo T3
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T2 ~h, .. wT+1
wcen WT’3 —~— > -
cen w St

cen

Fig. 1. Illustration of weight divergence relationship among an FL client’s
local model, FL global model, and CL model.

of the FL model w and the CL model wce, throughout the
training process and tried to catch what causes such a weight
divergence. They proved that the weight divergence between
w and wcen throughout T global aggregations is bounded by
two terms: 1) the sum of the distribution distance between
each client’s local data and the whole population and 2) the
weight divergence inherited from the (7" — 1)th aggregation.
And such a divergence is accumulated over time, and finally
leads to a model accuracy degradation.

Inspired by their work, we are more interested in the intra-
aggregation weight divergence, i.e., the weight divergence
between two aggregations between ween and w, and Ween
and wy. To remove the influence of previous aggregations,
we let the CL model and the client’s local model synchro-
nize with the Tth FL global model, i.e., wCTeg <~ wl and
w,fo < w!. And the CL model and cl1ents local model
perform ¢ steps training on the whole population data. The
weight divergence relationship among the three models can be
visualized in Fig. 1. The weights after 7 steps are as follows:
D)

cen cen

Wit = el _ nVF(

c
=Wl =0 Y P = O VEeny=c[logf (s wlr)] D)
c=1
w,{’r = w,{’ VF(WZI I Dk)

=w - Zp(y = C)VExeDkb:c[logﬁ(x: W,f”_l)]. ®)
c=1
We have the following proposition.
Proposition 1: At the Tth FL global aggregation, let the
local model wy and the CL model on the entire population weep

synchronize with the FL global model w7, i.., WZ’O <~ wl,
and wl? <« w’. And, we have p(y = ¢) = Z,Ilepk(y =¢),

where p(y = ¢) and pyx(y = ¢) are denoted as the propor-
tion of the label ¢ on D and Dy. Let each model train for ¢
steps, in which the global aggregation conducts. The model
weight divergence between w and weep, and wy and weey, after
t training steps are bounded by the following two equations,
respectively:

Wi —wig
<77Xt:[ ZZ Pk(y—c)[VExeDk\y L[log(ﬁ( [ 1)]
. =1 k=1
— VExep)y= L[log fe Ze,f ! H 9)
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Wi — Ween

<ni[

‘ T.t Tt

XC: [ =) —pe(y = C)]VExeDb—C[log(f‘(WkT - l)] H

Mm

iy = C)[VEXEDH)_CI:IngC(x WkTr l)]

Il

The proof can be found in the Appendix, and we have the
following remarks.

Remark 1: The intra-aggregation weight divergence |[w! —
wl, |l is determined by the difference between the gradient
of the local model taken on Dy, k € [1, K] and the gradient
of the CL model taken on D. This gradient difference can be
reduced by increasing the local data sample size. The weight
divergence is also an increasing function of the number of
internal training steps. Therefore, increasing the number of
local data samples or decreasing the internal training steps
can mitigate weight divergence.

Remark 2: The intra-aggregation weight divergence ||w,{ -
wl,. |l is mainly due to two parts, which are the distribution
difference between Dy and D, that is, Zle(pk(y = ¢) —
p(y = c¢)), and the gradient difference between the gra-
dient calculated on Dy and the gradient calculated on

D over classes, that is, [VEyep,y=c[logfec(x; wth 1)] —

VEsenpy=c[ log(f(x; ween 11

According to Remark 2, the weight divergence ||wT”—wcTéf1 |
could be mitigated by reducing the following two terms: 1) the
difference between the data distribution of Dy and that of D,
implying the first term in the (10) is reduced and 2) the differ-
ence between the gradient calculated on Dy and that calculated
on D, implying the second term in the (10) is reduced.

As aresult, a client in an FL setting could benefit from mim-
icking the distribution and gradients of the whole population
to achieve better convergence behavior (faster convergence or
higher model accuracy). This finding is a double-edged sword.
On the one hand, a benign client can use it to alleviate weight
divergence to facilitate FL convergence, as the data sharing
strategy proposed in [41]. On the other hand, an adversary
could also take advantage of the finding. As will be shown in
the next section, we propose a two-phase backdoor attack, in
which the above finding is utilized by an adversary to improve
the FL global convergence performance and further enhance
both the strength and persistence for the subsequent single-shot
backdoor injection.

- VEXED\}—C[IOg (fc X5 WcTe; ! (10)

IV. PROPOSED TWO-PHASE BACKDOOR ATTACK

In this section, leveraging the aforementioned insights, we
present an overview of our proposed two-phase backdoor
attack. We then describe the detailed workflow of the proposed
backdoor attack.

A. Overview

Our proposed two-phase backdoor attack, illustrated in
Fig. 2, consists of a preliminary phase and an attack phase.
The proposed backdoor is different from existing backdoor
attacks in the preliminary phase, which can be adapted to
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Fig. 2. Flowchart of the proposed two-phase backdoor attack.

any existing backdoor attacks. The goal of the preliminary
phase is to accelerate the convergence of the FL. model so that
the subsequent backdoor can be more effective and consistent.
Specifically, an attacker-controlled client first launches a pas-
sive whole population distribution inference attack by analyz-
ing their local model updates and the FL global model update.
To reduce weight divergence and improve the convergence
behavior of the FL model, attacker-compromised clients then
craft local training data by augmentation and downsampling so
that the distribution py(y) aligns with the inferred whole popu-
lation distribution p(y). This step reduces the first term in (10),
i.e., the distribution difference Zle(pk(y =c) —ply =0)).
A dynamic sample size determination method is also utilized
in crafting the data set to reduce the second term in (10),
i.e., the gradient distance [VEep|y=c[logf.(x; w,{’til)] —
VEyepjy=cllog(fc(x; wcTef1 l)]]. Instead of training on the orig-
inal local data set, attacker-compromised clients train on the
crafted data sets and submit the model updates to the central
server. These steps seem legitimate but benefit the subsequent
injected backdoor by reducing the dilution effect of other client
model updates. When the backdoor client is selected, the back-
door is injected by training on a poisoned local data set and
scales the malicious model updates by y to ensure that the
injected backdoor survives aggregation on the server.

Our proposed two-phase backdoor attack improves the
performance of the early-injected backdoor because of the
following features.

1) We propose a passive whole population distribution
inference attack that requires no access to other clients’
local data samples or their model updates.

2) By crafting the local data set using the inferred whole
population distribution and sampling/augmentation tech-
niques, the FL. model weight divergence can be reduced,
which facilitates the FL. model convergence.

3) By reducing both the distribution difference and the gra-
dient difference between the client’s local data and the
whole population data, the convergence of the FL. model
is improved. As a result, the backdoor model is less
diluted by model updates from normal clients, leading
to a stronger and longer-lasting backdoor effect.

B. Attack Workflow

1) Preliminary Phase:
Inference:

Whole Population Distribution
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Step 1 (Approximation of the CL Model Updates): The
attacker’s goal is to estimate the whole population distribution
p(y) in the following expression of the gradient of the CL loss
function:

C
Y P = ) VErepjy—c[logfe(x: ween)]. (11)
c=1

Therefore, p(y) can be calculated if the values of
VExepjy=cl log fc(x; Ween)] and VF(Ween; D) are known. Since
accessing the CL model is unrealistic, based on the findings
in Remark 1, we approximate the CL model update by the FL
model update

K t

n N 1
;? 1 AW Aween =7 ) 1VF( Wi ,D)
= =

The reasonability of the approximation is demonstrated by

the following.

1) The bounded and small intra-aggregation weight diver-
gence between the CL and the FL model. In
Proposition 1, we show that the intra-aggregation weight
divergence between a model in CL and FL settings is
bounded by the difference in the gradient of the local
data and the whole population. This gradient difference
is usually caused by the difference in the number of
samples between the local data and the whole popula-
tion. The adversary could refer to a public data set or
use augmentation techniques to narrow the difference.
Furthermore, although the number of internal training
epochs increases the gap, the number of local training
epochs in practice is relatively small (usually 2 to 5),
and, therefore, the impact of the number of internal train-
ing epochs should be minor. As a result, the FL. model
would not deviate much from the CL model within one
aggregation.

2) The accurate global distribution inferred from the
approximation. Extensive experiments are conducted in
Section VI-A to verify that the approximation produces
accurate results of whole distribution inference. The set-
tings of these experiments are comprehensive as they
cover both the balanced/imbalanced global distribution
and the different non-i.i.d.-ness among local data. The
results in all settings show that the difference between
the true and the global distributions inferred from the
approximation is condensed and small.

Step 2 (Decomposition of the Model Updates): Combining

(1 1) and (12), we have the following gradient expression:

Z Awg = nz Zp(y = 0)VExep)y= c[logfc<x Ween )]

=1 c=1
(13)

The model update of the compromised client a can be
expressed as

VF(Ween; D) =

12)

t
Awg, =1 Z VFk<wZ_1; Da)
=1
t C
=1 3 Paly = OVEen e logfe (v wi )| (14)
=1 c=1
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Normally, the gradient is calculated directly by
the partial derivative of the loss, for example,
VF Wa; Dg) = ([0Fk(Wg, Dg)]/[0w,]). Taking advan-

tage of the linearity of the cross-entropy loss, the gradient
VFi(wg, D,) can also be viewed as a weighted average
over VEyep,|y=cllogfc(x; wa)]. If the adversary gets a good
estimate of VEyepjy=c[logf.(x; ween)], the global distribution
p(y) can be estimated by minimizing the difference between
(13) and (14).

Step 3 (Estimation of the Gradients): The difference
between the gradient calculated on D and D, is mainly
caused by the difference in the data sample sizes. Typically,
a larger data set size would provide a less biased estimate.
The adversary could obtain a more accurate estimate of
VEyepjy=cl l0g fc(x; Ween)] by augmenting D, using data aug-
mentation techniques or referring to a public data set when
some of the classes are absent from the local data. However,
purely pursuing a large data sample size is not always prac-
tical and effective, as some data augmentation methods are
computationally expensive and time-consuming, or generate
similar samples, which could on the contrary harm the accu-
racy of the estimation. Therefore, we adopt a dynamic data size
determination algorithm proposed in [43] to determine when
to stop the increase. The method evaluates the amount of aug-
mentation by measuring the directional distance between the
gradient of the augmentation and the estimate of the gradi-
ent. A scaler 6 € [0, 1], which indicates the cosine similarity
between the gradient of augmentation and the gradient esti-
mate, is used to determine when to stop the augmentation.
A greater 0 indicates a more accurate estimate, but a greater
amount of augmentation.

Step 4 (Optimization-Based  Global  Distribution
Estimation): In the previous step, the attacker gets a
good estimate of VEyecp|y=c[logf.(x; a)] by augmenting D,
the inference of whole population distribution p(y) can then
be formulated as an optimization problem, which seeks a p(y)
that minimizes the difference of two losses in (13) and (14)

min

PG

K t C
> aw] =03 D0 p0r = OVEren, [ log (x W“”H

k=1 t=1c=1

C
st. Y py=c) =1 (15)
c=1

where lele (nk /n)Aw,{ is the FL global model update in the
aggregation T'th and can be obtained by taking the difference
between the (T—1)th and the T'th synchronization of FL global
model.

Since the distribution p(y) is not differentiable, an evolution
algorithm is used to solve the optimization above. The evolu-
tion algorithm begins with a randomly initialized population
of p(y), namely, “fathers.” Next, the individuals in the fathers
go through mutation and crossover operations with a certain
probability to generate more diverse individuals, namely, “chil-
dren.” Then, fathers and children are evaluated by an objective
value, in which the individuals with better objective value will
enter the next generation. Algorithms 1 and 2 detail the steps
to solve the optimization.
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Algorithm 1 Whole Population Distribution Inference by the
Evolution Algorithm

Input: Number of classes C, population size S.
Output: An estimate of the whole population distribution p(y).
1. g=0.
. Initialize the distribution population pg, which consists of S
individuals. Each individual py ; satisfies Zle posy=c)=1.
: Compute the FL global model update Awl.
: Evaluate individuals in population pgy by Algorithm 2.
: while the termination criterion is not satisfied do
g=g+1
Create population qg by crossover and mutation of individuals
from pg_;.
8:  Evaluate each individual in pg_; in the children by
Algorithm 2.
9:  Select S best individuals to population pg from the populations
Pg—1 and qg.
10: end while
11: Return the best individual in population pg.

N

Algorithm 2 Evaluation of the Objective Values

Input: Number of classes C, internal training steps f, learning rate
n, the global model update AwT, the label composition p(y).
Output: The objective value defined in Eq. (15).
I: T}}e attacker synchronizes with the latest global model wZ’O <«
wh.
2:fort=1:tdo
3: forc=1:Cdo
4: The attacker calculates the gradient component on class c:
VEyep,ly=cl logfe(x wg ™™ 1.
5:  end for
6:  The model weight is updated by:
T,T T,t—1

7: Wy =Wy _—
1Y%, Py = O VErep,jy=cl logfex; wh T H1.
8: end for .

9: Return the objective value [|Aw! — Awg I, where Awg =wy
7,0

wg’

2) Preliminary Phase: Auxiliary Data Set Construction:
After the adversary gets the inference of the whole popula-
tion distribution, instead of training on the original local data
set, the compromised client trains on an auxiliary data set,
which is crafted to align with the inferred global distribution.

The basic idea of auxiliary data set construction is to
augment the data in classes with inadequate samples and
downsample the data in classes with excessive samples based
on the inferred whole population distribution. Algorithm 3
describes the steps in constructing the auxiliary data set. In
particular, the attacker first determines the total size of the
auxiliary data set. The attacker then calculates the amount of
data needed for each class by the size of the data set and the
inferred global distribution. As for the augmentation operation,
the adversary with a limited computation budget can use trivial
methods, such as random shift, random rotation, random shear,
and random zoom, while a strong adversary could utilize more
advanced methods, such as data synthesis and data reconstruc-
tion. For the downsample operation, it randomly samples from
current data until the desired number of samples is reached.
The auxiliary data set constructed in this way mitigates both
terms in (10).
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Algorithm 3 Auxiliary Data Set Construction

Input: Auxiliary dataset size M, the inferred data distribution PO,
number of classes C, the compromised dataset D,
Output: Auxiliary dataset Dgyy.
1: Calculate the data size of each class ¢ by Mo < M x p(y = ¢)
forc=1,...,C.
2: Calculate the data size of each class ¢ of Dy, |Dglc|, where
Dylc :={xly : x € Dg,y = c}.

3: for ¢ = 1:C do

4. if |Dylc| < M. then

5: Augment |Dg|c| to M.

6: else

7 Down-sample from D,|c, such that |Dg|c| = M.
8: end if

9: Auxiliary dataset Dy < nglDu|c.

10: end for

11: Shuffle Dgyy.
12: Return Dgyy.

C. Attack Phase: Backdoor Injection

The attacker-compromised clients perform training on the
crafted auxiliary data set until the backdoor client equipped
with backdoor capability is selected. The backdoor client first
poisons its local data D, by adding backdoor triggers to a
subset of D,, and changes their labels to a target one to form
a poison data subset Dpoison. The rest of the data are kept
clean and are denoted as Dgjean. The attacker then performs
local training on Dyoison U Dclean aiming to maximize accuracy
on both the main task and the backdoor task

WZ = arg min[Fa(Wa; Dclean) + Fa (Wa; Dpoison)]-
Wa

After local training, the attacker scales the model updates by
a parameter y = (n/n;) ~ K to ensure that the backdoor
model update survives the aggregation and ideally replaces
the global model. The attacker could also use constrain-and-
scale or train-and-scale to improve its persistence and evade
anomaly detection mechanisms.

D. Coordination of Multiple Attacker-Controlled Clients

The above presentation of the attack process is based on a
single attacker-controlled client, but it can be easily extended
to the scenario, in which the attacker controls multiple clients.
The whole population distribution inference attack can be per-
formed by any one of the compromised clients. The inferred
global distribution is then shared with other attacker-controlled
clients, and each of them constructs and trains on the auxil-
iary data set locally. The use of multiple malicious clients can
further improve the accuracy of the FL. model.

V. EXPERIMENTAL SETUP
A. Data Set
We evaluate our proposed method on the handwritten digit
recognition data set, MNIST [44]. The data set contains 60 000
training data samples, and 10000 testing data samples. Each
data sample is a square 28 x 28 pixel image of a handwritten
single digit between 0 and 9.
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B. Evaluation Metrics

1) Accuracy of Whole Population Distribution Inference
Attack: We measure its accuracy by the £, distance of
the inferred whole population distribution p and the true
whole population distribution pgiobat, i.€., lp — Pgloballl»
referred to as inferred-to-true. A smaller distance indi-
cates a more accurate inference result. And, we also
evaluate the ¢, distance of the original distribution
on the kth client py and pgiobal, i€., |k — Pgloballl,
referred to as original-to-true. The difference between
such two distances is positively related to the amount of
weight divergence, which can be reduced by the whole
population distribution alignment.

2) Main Task FL Model Accuracy Gain by Whole
Population Distribution Alignment: We measure the FL.
global model accuracy as a function of training epochs
for regular FL (clients train on the original data sets)
and preliminary phase assisted FL (clients train on
crafted local data sets that align with the gradients and
distribution of the whole population).

3) Main Task FL Model Accuracy in Presence of Backdoor
Attack: We also present the accuracy of the main task
when the backdoor attack is in place. As mentioned
previously, the main task might deteriorate due to the
scaling operation and the dilution from the normal model
updates, especially, when they are large in the early
training stage. The server could reject the model updates
if an unexpected drop is observed in the accuracy of the
main task.

4) Backdoor Attack Success Rate and Longevity: Given a
classifier f(-), the backdoor attack accuracy is defined
as the portion of samples in the backdoor samples that
the classifier predicts as the target label y,

{|x € Dpoison : f(x) = yt}|
|Dpoison| -

AcCChackdoor =

The test data are constructed by adding the backdoor
triggers to the original test data samples. To avoid the
influence of the original data of the target label, we
remove the data of the target label in the test data. We
plot the backdoor success rate of 20 global epochs since
injection to assess their longevity.

C. FL System Setting

We implement the FL and the proposed two-phase back-
door attack using the PyTorch framework. We conduct our
experiments on Google Colab Pro (CPU: Intel Xeon CPU @
2.20 GHz; RAM: 13 GB; GPU: Tesla P100-PCIE-16 GB with
CUDA 11.2).

The data set is allocated to 100 clients. In each global
model aggregation, ten clients are randomly selected to partic-
ipate in the FL training. Each client maintains a local model
consisting of two convolutional layers and two fully con-
nected layers. Due to the inherent data non-i.i.d.-ness across
edge clients, there can be a significant difference between
the local distributions (non-i.i.d.-ness) and whole popula-
tion distribution (whole population imbalance). We consider
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TABLE II
MNIST DATA SET SETTINGS

Settings ~ Whole population ~ Local distribution
1 balanced non-i.i.d.,, « = 1
2 balanced non-i.i.d., o = 0.1
3 imbalanced non-i.id., a =1
4 imbalanced non-i.i.d.,, « = 0.1

both balanced/imbalanced whole population and different non-
i.i.d.-ness among clients’ local data (Table II) to evaluate the
effectiveness, generalizability, stability, and feasibility of the
proposed two-phase backdoor attack. The whole population
imbalance is simulated by randomly sampling 50%—-100% for
each class of the original data set. And, we use the Dirichlet
distribution [45] with a hyperparameter « to generate different
data distributions among clients, where a smaller « indicates
a greater non-i.i.d.-ness.

1) Preliminary Phase: The clients are randomly selected
to participate in a training round, with a certain percentage of
clients training on D,u, Which aligns with the whole popula-
tion by Algorithm 3. The FL model is trained with full-batch
gradient descent with internal epoch t = 1 and learning rate
n=0.1.

As specified in Section III, the adversary has the ability to
enlarge the local data set using augmentation techniques or
referring to public data sets. In our experiment, we assume
that the adversary is equipped with trivial augmentation meth-
ods. We also assume that the attacker holds 1% of the MNIST
data set, from which the attacker can draw data samples and
complement the auxiliary data set. In the dynamic data size
determination algorithm that determines when to stop the aug-
mentation, we set § = (0.8, which means that the augmentation
operation stops when the cosine similarity between the gradi-
ent of augmentation and the gradient estimate reaches 0.8. To
avoid the influence of the size of D,,x, we set the size of Djyx
to be the same as that of the original data set. The fractions of
clients controlled by the attacker are chosen to be 5%, 10%,
and 20% of the total number of clients denoted as ours_5,
ours_10 and ours_20, respectively. And they are collectively
referred to as ours.

2) Attack Phase: We use pixel pattern backdoors, as the
same as those in [12] and [26]. We set the 4 x 4 pixels in the
upper left corner of the image to white (pixel value of 0), and
swap the label with the target label 0. The ratio between the
size of the backdoor trigger and the size of the data sample
is 2%.

The performance of the proposed backdoor (both the main
task accuracy and the backdoor success rate) is evaluated on an
FL with mini-batch gradient descent with a batch size of 128.
The backdoor client poisons 40 out of 128 data samples in
each mini-batch and locally trains for poison epochs of 10
with a poison learning rate of 0.05. The global learning rate is
the same as the local learning rate n = 0.1. The scaling factor
isy =K =10.

VI. EXPERIMENTAL RESULTS
A. Accuracy of the Whole Population Distribution Inference

The global distribution inference attack is launched at
every epoch of the first 30 epochs. We present the box
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plot of ||px — pgloballl (referred to as original-to-true) and
P — Pgloballl (referred to as inferred-to-true) in Fig. 3. In
all four settings, compared to original-to-true, inferred-to-true
is significantly smaller and more condensed, indicating that
the proposed whole population distribution inference attack
achieves high accuracy. Furthermore, our proposed inference
attack is equally accurate in both balanced and imbalanced
whole population distribution settings (setting 1 versus setting
2 and setting 3 versus setting 4).

We also plot the inferred-to-true as a function of train-
ing epochs (shown in Fig. 4) to demonstrate the stability of
the proposed whole population distribution inference attack.
The FL model begins to converge at epoch 20, so our infer-
ence attack window covers different convergence stages of the
training process. Results show that the inference results are
stationary along the training process, which means that the
inference is accurate regardless of the training stage, includ-
ing the early, the middle, and the convergence stages of the
training. Such results provide performance guarantee for the
subsequent backdoor attack. The fluctuations presented in
Fig. 4 are due to the randomness of the local distributions
in the selected clients in each FL training round. Especially,

Authorized licensed use limited to: Auburn University. Downloaded on September 04,2023 at 22:23:52 UTC from IEEE Xplore. Restrictions apply.



10394
Setting 1 Setting 2

5‘8 ,-..A-x»""""..h“"‘.‘ 38 b ,.:o:.u-.:ﬁ""".“
c8 71»‘ 81 Wi

3 . = 4

8 ] /. 8 g lr'}*

L Q4 LQ apote??

© T T © T T T
5 10 15 20 5 10 15 20
Global epoch Global epoch
Setting 3 Setting 4

%8 - P

c8 At B A

3 a7 3 -~

§s1 A gs| /

< & l:l/. ) < & -" o

o o
5 10 15 20 5 10 15 20
Global epoch Global epoch
FedAvg Ours_ 5 —«— Ours_10 —— Ours_20
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of the clients that perform the alignment, averaged over ten experiments.

the fluctuation becomes more noticeable when clients’ local
distributions are more non-i.i.d. (settings 2 and 4). To further
reduce such fluctuations and improve the accuracy of the infer-
ence, the adversary could further refine the inference result by
performing statistical analysis on multiple inference results,
such as averaging or clustering.

B. Main Task Accuracy Under the Nonattack Scenario

We evaluate the performance gain of the proposed prelim-
inary phase in improving FL convergence by the accuracy of
the FL main task, shown in Fig. 5. In all four settings, com-
pared to FedAvg, the FL with global distribution alignment
converges faster, although they eventually reach the same accu-
racy. This performance gain is more perceptible before the FL
begins to converge and when a greater fraction of clients per-
form the proposed alignment. In addition, while the global
distribution alignment has more influence on the very early
stage (epoch 0 to epoch 10) for settings 1 and 3 (¢ = 1), a
higher non-i.i.d.-ness (¢ = 0.1 in settings 2 and 4) has more
impact on the middle training stage (epoch 5 to epoch 15).
The experimental results are consistent with the findings of
Proposition 1: reducing both the gradient and the distribu-
tion between the client’s local data and the whole population
could reduce the model weight divergence, leading to a better
convergence performance.

C. Backdoor Attack Performance

We present the impact of backdoor injection on the main
task accuracy as well as the backdoor success rate. We eval-
uate the proposed two-phase backdoor attack and compare it
with two existing backdoor attacks: 1) the centralized backdoor
attack [12] (referred to as baseline), in which the local data set
is poisoned by a centralized backdoor trigger and 2) the dis-
tributed backdoor attack [26] (referred to as DBA), in which
the backdoor trigger is partitioned into parts and each part is
injected separately.

1) Main Task Accuracy: Unlike the backdoors injected at
the convergence of the FL model, where the injection of
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are injected at FL epochs 10, 15, and 20, respectively. (a) Settings 1 and 2.
(b) Settings 3 and 4.

the backdoor barely disturbs the accuracy of the main task,
the early-injected backdoor usually noticeably deteriorates the
accuracy of the main task due to the model updates from
normal clients. When the backdoor is injected in the early
training stage, the accuracy of the main task usually experi-
ences a sudden drop and then gradually goes back to normal
status afterward. As introduced in [46], the central server could
monitor the FL. model main task accuracy and reject model
updates that make the main task accuracy abnormally low.
This approach could fail to be deployed on the FL system since
the central server does not always have access to the model
updates and test data, thus, cannot measure their accuracy, or
a false alarm could be triggered due to the extremely low local
accuracy caused by the participation of clients with extremely
non-i.i.d. data. However, the accuracy of the main task can still
be used to evaluate the stealthiness of the backdoor attack.
As shown in Fig. 6, the accuracy of the main task is affected
by backdoor injection to varying degrees. The dropped main
task is a collective consequence of the scaled-backdoored
model updates and model updates from the rest of the par-
ticipants. And such a main task accuracy drop becomes more
critical for a greater non-i.i.d.-ness among clients (settings 2
and 4). Compared to the baseline, our backdoor introduces
less drop in main task accuracy in most cases. In some cases,
the main task accuracy impacted by our proposed backdoor
attack presents a faster recovery rate. Furthermore, compared
to the baseline and ours, DBA suffers the greatest drop in the
main task accuracy and it takes much longer for the underlying
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Fig. 7. Backdoor success rate in 20 training epochs since backdoor injection.
(a) Settings 1 and setting 2. (b) Settings 3 and setting 4.

FL to return to normal. This phenomenon is even worsened
in the setting of high non-i.i.d.-ness (setting 2 and setting 4).
A possible explanation is that DBA requires multiple clients
sequentially to perform the injection of part of the backdoor
trigger to finish the injection of a complete backdoor, which
poses a longer and worse impact on the main task accuracy.
Especially, in the highly non-i.i.d. and globally unbalanced
scenario, given that the model updates are already far from
others, the consecutive injection and scale operations could
make the deviation even worse and prevent the FL model from
convergence (evidenced in setting 4). Thus, we conclude that
the proposed backdoor attack is more stealthy than the baseline
and the DBA.

2) Backdoor Attack Accuracy: To explore the effectiveness
of a backdoor before the FL. model converges, we inject cen-
tralized backdoors for the baseline and our method at the
global FL epochs 11, 16, and 21, respectively. To fairly com-
pare with DBA, the distributed backdoors are sequentially
injected and finished in the same round as the centralized
backdoors. For example, if the centralized backdoor is injected
in round 11, four distributed backdoor triggers are injected
separately in rounds 8§, 9, 10, and 11.

Fig. 7 presents the backdoor success rate for 20 FL global
epochs since the completion of the backdoor injection. For
each setting, injections are made in different epochs by the
same client. The injected backdoor has maximum effective-
ness immediately after injection. In subsequent epochs, as
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TABLE III
MEAN BACKDOOR SUCCESS RATE (%) OVER TEN FL EPOCHS SINCE
INJECTION (AVERAGED OVER TEN EXPERIMENTS)

Epoch  Baseline DBA Ours_5 Ours_10 Ours_20
Setting 1

11 958+1.8 23.24+4.1 941459 945+£1.5 959425

16 974+24 172+54 9744+13 956+39 95.3+1.6

21 95.3+53 145+1.3 95.3+4.2 96.3+34 95.7+1.9

Setting 2
11 529+4.7 77.84+28.4 74.0+ 23.0 76.6 + 12.2 80.6 4+ 27.2
16 61.34+27.567.8+10.8 75.0 £22.6 82.3 £14.4 784+ 17.8
21 68.44223 11.84+2.2 79.2+19.7 79.7+13.6 77.1 +18.1
Setting 3
11 155+ 6.5 13.5 pm3.2 44.8 +25.6 65.3 £ 28.1 66.1 + 25.1
16 57.74+16.5 9.7+1.9 69.3+18.3 66.1 +28.7 62.2+20.1
21 6444138 6.3+7.8 73.4+14.769.7+13.6 72.4+16.5
Setting 4
11 48.74+41.5 52.3+£10.3 67.1 + 18.2 75.1 4+ 26.5 88.3 £ 10.1
16 69.0+4.2 40.74+9.9 72.3+15.7 83.3+23.3 72.2+17.3
21 70.3+2.0 11.74+4.2 73.4+14.788.1+13.4 85.5+8.3

the FL model aggregates new normal updates, the effect of
the backdoor is weakened, which is reflected in the gradu-
ally decreasing success rate. In most cases, after 20 rounds
of backdoor injection, the success rates of almost all settings
and injection epochs are greater than those of the baseline
and DBA. DBA does not reach a similar backdoor effect as
in the baseline and ours. The reason for this gap could be
that the partially injected backdoor effect in previous rounds
is more likely to be hindered by normal local updates in the
subsequently injected backdoor parts. And in most cases, our
proposed backdoor retains a lower diminishing rate, compared
to the baseline.

Due to the non-i.i.d.-ness among clients’ local data, some
clients’ data may be in favor of the attack, while others are
not. In addition, the backdoor effect does not always steadily
decrease or bounces in some cases. Therefore, we evaluate
both attack strength and longevity by the mean attack success
rate of 10 FL epochs since injection (Table III). In general, the
backdoor injected in very early rounds (epoch 5 and epoch 10)
achieves a lower mean attack success rate, compared to the
ones injected in epoch 20. This degradation in the effectiveness
of the attack is made even worse when the whole population
is imbalanced (setting 1 versus setting 3) and non-i.i.d.-ness
among clients increases (setting 1 versus setting 2). In most
cases, our proposed backdoor attack outperforms the base-
line and the DBA. And compared to the baseline, the gain in
attack performance is positively related to the percentage of
attacker-controlled clients that perform the whole population
distribution alignment.

D. Overhead Analysis

1) Preliminary Phase: The computational cost of this
phase consists of three parts: 1) calculating the gradients of
the data of each label; 2) solving the optimization in (15); and
3) constructing the auxiliary data set.

For the first part, the attacker trains the FL global model on
the data samples of each label separately to obtain gradients
VEyep,|y=cllogfe(x; ws)], and because n = chzl ne, where
n. is the number of samples of label ¢, the time complexity
is the same as that of local training. Since the batch gradient
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Fig. 8. Inference accuracy (inferred-to-true) and time taken versus NFE.

has a time complexity of O(n’m), in which n is the number
of data samples and m is the number of features, the time
complexity of the first part is also O (n’m).

For the second part, we evaluate the number of function
evaluations (NFEs), which is commonly used to evaluate an
evolution algorithm. NFE is usually measured when a good
solution is delivered or when no significant change in the
solution is observed. We plot inferred-to-true and the real-
time used against NFE, shown in Fig. 8, to demonstrate the
effect of NFE on the inference accuracy and time. The NFE
is set to 400 in our experiment, because there is no significant
inference accuracy gain after 400 NFEs. The actual time taken
to solve the optimization with 400 NFEs is 4 s.

The construction of an auxiliary data set that is aligned with
the whole population consists of augmentation and sampling
operations. Examples of trivial augmentation methods are flip-
ping (O(np), where p is the number of pixels in each image),
rotation, random crop, and scale [they have the same complex-
ity as O(n)]. The sampling operation has a time complexity
of O(n). Therefore, the total complexity of constructing the
auxiliary data set is at most O(np) and the actual time spent
is 0.03 s.

2) Backdoor Phase: The backdoor client poisons a subset
of local data by injecting the backdoor pattern and swaps the
label to the target label, then performs local training on the
poisoned local data set. The total time complexity is O (n°m).
The real-time spent on the backdoor attack with 10 internal
training epochs is around 13 s.

The complexity analyses are summarized in Table IV.
Gradient calculation and optimization are only needed to be
performed in the beginning to obtain an accurate inference of
the whole population distribution. The actual time taken for
these two steps is around 4 s, which is far less than the time
taken by the backdoor attack. Then, the inferred distribution
is shared among all attacker-controlled clients, which perform
the auxiliary data set construction, whose time complexity is
negligible.

VII. ROBUSTNESS OF THE PROPOSED ATTACK

In this section, we are interested in how the proposed
attacks will behave when defense mechanisms are in place.
In the following, we will analyze the effectiveness of the

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 12, 15 JUNE 2023

TABLE IV
TIME COMPLEXITY AND REAL-TIME SPENT ON
THE PROPOSED INFERENCE ATTACK

Operation Time complexity  Real time taken (s)
Gradient calculation O(n?m) 0.11
Optimization 400 NFEs 4.20
Auxiliary dataset construction O(nk) 0.03
Backdoor attack O(n?m) 13.37
Setting 1 Setting 2
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Fig. 9. Box plot of original-to-true (Original) and inferred-to-true of FedAvg,
FoolsGold, and DP based on 30 instances.

proposed two-phase backdoor attack against two main defense
strategies.

FoolsGold is a robust aggregation strategy, which calcu-
lates the cosine similarity of all historical gradient records
and assigns smaller aggregation weights to clients who con-
tinuously contribute similar gradient updates [27].

DP is a noise-based method that limits the effectiveness of
backdoor attacks by two key steps [39]: 1) model parame-
ters are clipped to limit the sensitivity of local model updates
and 2) the Gaussian noises are added to local model updates.
We consider a local DP, in which each client adds noise
before uploading the model updates to the server. We use
the (e, 8)-DP proposed in [47] with a popular choice of
o = 2log(1.25/8)/¢ with § = 107> and € = 50. The
clipping bound is set to the median of the norms of the
unclipped local model updates during training. The noises are
only applied to normal model updates, while the backdoor
client sends the nonperturbed backdoored model updates.

A. Whole Population Distribution Inference Accuracy
Against Defense Strategies

We first present the whole population distribution infer-
ence against FedAvg, FoolsGold, and DP, shown in Fig. 9.
Since FoolsGold does not interfere with benign FL settings,
the whole population distribution inference against FoolsGold
is as accurate as that in FedAvg. Although DP provides a
statistical guarantee for record-level information, DP does
not protect statistical information, such as the whole popu-
lation distribution. With DP in place, although the inference
is not as accurate as in the FedAvg case, the inferred-to-true
is still notably lower compared with original-to-true. Thus,
both FoolsGold and DP fail to defend against the proposed
inference attack.
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against (a) FoolsGold and (b) DP defense mechanisms.

B. Performance of the Backdoor Attack Against Defense
Strategies

We implement the proposed backdoor attack against
FoolsGold and DP in setting 1. We plot the backdoor suc-
cess rate for 20 epochs after injection to observe its injection
strength and longevity. Fig. 10(a) shows that in most cases
ours reaches a significantly higher success rate upon injec-
tion and maintains such a high success rate in the following
20 epochs. For example, when injected in the early train-
ing stage (at epoch 11), the baseline backdoor fails while
ours_5, ours_10, and ours_20 achieve attack success rates of
14%, 27%, and 10%, respectively. As the convergence is expe-
dited by the proposed preliminary phase, the model updates
from normal clients become smaller and more similar, so
that FoolsGold will reduce their assigned weights, and as a
result, the backdoored model updates become more influential.
Compared to ours and the baseline, the success rate curve of
the DBA has a different pattern, in which the success rate first
increases and then decreases and is more persistent than both
the baseline and ours in later rounds. However, in practice,
the requirement for clients with distributed backdoor triggers
to be selected in consecutive rounds can hardly be met.

Fig. 10(b) shows the attack performance against DP. Both
the baseline and ours achieve high-attack success rates that
are even comparable to those of FedAvg. This phenomenon
indicates that, instead of mitigating the backdoor effect, the
noise added to the normal clients helps the backdoored model
corrupt the FL. global model. A possible explanation is that
the added noise reduces the utility of normal model updates,
which on the contrary strengthens backdoored model updates
in the FL aggregation. Furthermore, ours is markedly better
than the baseline when the backdoor is injected in subsequent
rounds. For example, baseline and ours have similar attack
performance in the early training stage, e.g., epoch 11. And
ours performs distinctly better in the later training stage, that
is, the backdoors injected in epochs 16 and 21. Finally, both
the baseline and ours outperform DBA. This is because the
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effectiveness of the distributed backdoor is mitigated by both
benign model updates and DP noise multiple times before
DBA finishes injecting the complete backdoor.

C. Discussion of Defense Mechanisms

Existing defenses cannot eliminate the impact of inference
and backdoor attacks. Each of these defense mechanisms has
its pros and cons. We briefly examine some of strategies
against inference attacks and backdoor attacks and discuss
their effectiveness.

DP has been shown effective in defending against most
inference attacks, except property inference attack, to which
the proposed whole population inference attack belongs. The
reason is that the accuracy of the inference results is reversely
related to the scale of the added noise. Even the whole popula-
tion distribution inference result may not be satisfactory under
DP with a large noise scale, the result still helps in aligning
the distribution and benefits the subsequent backdoor attack
to some extent. As for defending against backdoor attacks,
DP is proven to be effective only if a low-clipping bound
and high variance are in use, and at the cost of degrading the
performance on its main task. Otherwise, when the noise vari-
ance is small, as shown in Section VII-B, in this article, the
small added noise in turn strengthens the backdoor attack.

Secure multiparty computation (MPC) is a cryptographic
approach that allows clients to submit encrypted/masked
model updates, such that the server can only learn the aggrega-
tion of the clients’ model updates. The representative methods
are homomorphic encryption (HE) and secret sharing. Many
works advocate the use of additive HE schemes, Paillier, to
protect FL [48], [49]. Considering the power constraints of
IoT devices, HE is hardly applicable in MEC scenario. A more
promising solution is secret sharing, where clients randomly
add zero-sum masks to model updates such that the masked
model updates are indistinguishable from random values [50],
[51], eliminating the risk of both inference and backdoor
attacks. And the added masks cancel out in the server aggre-
gation, so that the FL convergence will not be impacted. But
it has a strict requirement on synchronization.

Robust aggregation tries to alleviate the backdoor effect by
de-emphasizing the malicious ones via statistical properties
of model updates. However, in FL settings, the non-i.i.d. local
distributions among clients provide enough space for the back-
doored model updates to hide. In addition, the attack can easily
circumvent the defense by decomposing the backdoored model
into smaller or orthogonal ones.

Pruning and fine-tuning reduces backdoor impact by remov-
ing dormant neurons (neurons that are not activated by clean
data) of the FL model after the training stage [52]. However,
the attacker can train the backdoor model in a pruning-aware
way so that this method does not fully eliminate the backdoor
impact. In addition, it cannot remove the backdoor behavior
without significantly degrading the main task performance.

VIII. CONCLUSION

In this article, we proposed a novel information leakage-
assisted single-shot backdoor attack that improves the
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effectiveness of the backdoor injected in the early training
stage. We first showed that clients training on data sets that are
aligned with the whole population in both distribution and gra-
dient can improve the convergence of the FL model. Based on
this observation, we introduced a preliminary phase to the sub-
sequent backdoor attack, in which attacker-controlled clients
first infer the whole population distribution from the shared
FL model updates and then train on locally crafted data sets
that align with both the distribution and gradient of the whole
population. Benefiting from the preliminary phase, the sub-
sequent backdoor injection suffers less dilution effect from
the model updates of other clients and achieves better effec-
tiveness. We demonstrated the effectiveness of the proposed
backdoor attacks in the early training stage through exten-
sive experiments on a real-world data set. The results showed
that the proposed backdoor can achieve a longer lifespan than
existing backdoor attacks. We hope that our work draws atten-
tion to vulnerabilities in the early training stage of FL. Our
analysis and findings provide novel insights into the field of
strengthening FL attacks by information leakage, which could
help evaluate and improve the robustness of FL.
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similar steps. u

19)

ACKNOWLEDGMENT

Any opinions, findings, conclusions, or recommendations
expressed in this article are those of the authors and do not
necessarily reflect the views of NSF.

REFERENCES

[1]1 T. Liu, X. Hu, and T. Shu, “Assisting backdoor federated learning with
whole population knowledge alignment in mobile edge computing,” in
Proc. 19th Annu. IEEE Int. Conf. Sens. Commun. Netw. (SECON), 2022,
pp. 416-424.

[2] T. Barnett, S. Jain, U. Andra, and T. Khurana, “Cisco visual networking
index (VNI) complete forecast update, 2017-2022,” presented at the
Americas/EMEAR Cisco Knowl. Netw. (CKN), 2018, pp. 1-30.

[3] J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Stat., vol. 54, Apr. 2017,
pp. 1273-1282.

[5] M. Chen, R. Mathews, T. Ouyang, and F. Beaufays, “Federated learning
of out-of-vocabulary words,” 2019, arXiv:1903.10635.

[6] T. Yang et al., “Applied federated learning: Improving Google keyboard
query suggestions,” 2018, arXiv:1812.02903.

[7]1 S.Ramaswamy, R. Mathews, K. Rao, and F. Beaufays, “Federated learn-
ing for emoji prediction in a mobile keyboard,” 2019, arXiv:1906.04329.

[8] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604.

[9]1 X. Han, H. Yu, and H. Gu, “Visual inspection with federated learning,”
in Image Analysis and Recognition, F. Karray, A. Campilho, and A. Yu,
Eds. Cham, Switzerland: Springer Int., 2019, pp. 52-64.

[10] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang,
“Federated learning for healthcare informatics,” J. Healthc. Inform. Res.,
vol. 5, no. 1, pp. 1-19, 2021.

T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis,
and W. Shi, “Federated learning of predictive models from federated
electronic health records,” Int. J. Med. Inform., vol. 112, pp. 59-67,
Apr. 2018.

(11]

[12] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” 2018, arXiv:1807.00459.
[13] H. Wang et al., “Attack of the tails: Yes, you really can backdoor

federated learning,” 2020, arXiv:2007.05084.
[14] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” 2019, arXiv:1911.07963.
[15] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “PoisonGAN:
Generative poisoning attacks against federated learning in edge com-
puting systems,” IEEE Internet Things J., vol. 8, no. 5, pp. 3310-3322,
Mar. 2021.
C. Dwork and M. Naor, “On the difficulties of disclosure prevention
in statistical databases or the case for differential privacy,” J. Privacy
Confidentiality, vol. 2, no. 1, p. 8, 2010.
M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Security, Denver, CO,
USA, 2015, pp. 1322-1333.
T. Orekondy, S. J. Oh, Y. Zhang, B. Schiele, and M. Fritz, “Gradient-
leaks: Understanding and controlling deanonymization in federated
learning,” 2018, arXiv:1805.05838.

(16]

[17]

(18]

Authorized licensed use limited to: Auburn University. Downloaded on September 04,2023 at 22:23:52 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: FACILITATING EARLY-STAGE BACKDOOR ATTACKS IN FEDERATED LEARNING 10399

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the GAN:
Information leakage from collaborative deep learning,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2017, pp. 603—-618.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc. IEEE
Symp. Security Privacy (SP), 2019, pp. 691-706.

M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” 2018, arXiv:1812.00910.
G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” Int. J. Security
Netw., vol. 10, no. 3, pp. 137-150, 2015.

K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using permuta-
tion invariant representations,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2018, pp. 619-633.

Y. Qu, M. P. Uddin, C. Gan, Y. Xiang, L. Gao, and J. Yearwood,
“Blockchain-enabled federated learning: A survey,” ACM Comput. Surv.,
vol. 55, no. 4, pp. 1-35, 2022.

L. Wang, S. Xu, X. Wang, and Q. Zhu, “Eavesdrop the com-
position proportion of training labels in federated learning,” 2019,
arXiv:1910.06044.

C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed backdoor
attacks against federated learning,” in Proc. Int. Conf. Learn. Represent.,
2020, pp. 1-19.

C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Mitigating sybils in
federated learning poisoning,” 2018, arXiv:1808.04866.

P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer,
“Machine learning with adversaries: Byzantine tolerant gradient
descent,” in Advances in Neural Information Processing Systems, vol. 30,
I. Guyon et al., Eds. Red Hook, NY, USA: Curran Assoc., Inc., 2017.
E. M. El Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulner-
ability of distributed learning in Byzantium,” in Proc. 35th Int. Conf.
Mach. Learn., vol. 80, Jul. 2018, pp. 3521-3530.

K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” 2019, arXiv:1912.13445.

D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in Proc. 35th Int.
Conf. Mach. Learn., vol. 80, Jul. 2018, pp. 5650-5659.

S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to detect
malicious clients for robust federated learning,” 2020, arXiv:2002.00211.
A. Triastcyn and B. Faltings, “Federated learning with Bayesian differ-
ential privacy,” in Proc. IEEE Int. Conf. Big Data (Big Data), 2019,
pp. 2587-2596.

M. Seif, R. Tandon, and M. Li, “Wireless federated learning with local
differential privacy,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2020,
pp- 2604-2609.

Y. Zhao et al.,, “Local differential privacy-based federated learning
for Internet of Things,” IEEE Internet Things J., vol. 8, no. 11,
pp- 8836-8853, Jun. 2021.

S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy, and W. Wei, “LDP-fed:
Federated learning with local differential privacy,” in Proc. 3rd ACM
Int. Workshop Edge Syst. Anal. Netw., 2020, pp. 61-66.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp- 3454-3469, 2020.

M. Naseri, J. Hayes, and E. De Cristofaro, “Local and central differ-
ential privacy for robustness and privacy in federated learning,” 2020,
arXiv:2009.03561.

L. Cui et al., “Security and privacy-enhanced federated learning for
anomaly detection in IoT infrastructures,” IEEE Trans. Ind. Informat.,
vol. 18, no. 5, pp. 3492-3500, May 2022.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

Z. Xiong, Z. Cai, D. Takabi, and W. Li, “Privacy threat and defense
for federated learning with non-i.i.d. data in AloT,” IEEE Trans. Ind.
Informat., vol. 18, no. 2, pp. 1310-1321, Feb. 2022.

R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample size selection in
optimization methods for machine learning,” Math. Program., vol. 134,
no. 1, pp. 127-155, 2012.

Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database.” ATT Labs. 2010. [Online]. Available: http://yann.lecun.com/
exdb/mnist

[45] T. Minka. “Estimating a Dirichlet distribution.” 2000. [Online].
Available: https://tminka.github.io/papers/dirichlet/minka-dirichlet.pdf

[46] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti:
A ledger for private and secure peer-to-peer machine learning,” 2018,
arXiv:1811.09904.

[47] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, 2016, pp. 308-318.

[48] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2020, pp. 493-506.

[49] H. Fang and Q. Qian, “Privacy preserving machine learning with homo-
morphic encryption and federated learning,” Future Internet, vol. 13,
no. 4, p. 94, 2021.

[50] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: Secure and ver-
ifiable federated learning,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 911-926, 2020.

[51] K. Bonawitz et al., “Practical secure aggregation for federated learning
on user-held data,” 2016, arXiv:1611.04482.

[52] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks in
federated learning,” 2020, arXiv:2011.01767.

Tian Liu received the B.S. degree in mathematics
and applied mathematics from Sichuan University,
Chengdu, China, in 2011, and the M.S. degree in
probability and statistics and the Ph.D. degree in
computer science and software engineering from
Auburn University, Auburn, AL, USA, in 2016 and
2022, respectively.

She is a Research Staff Member with Zhejiang
Laboratory, Hangzhou, China. Her research interests
focus on security and privacy issues in machine
learning algorithms on IoT and CPS.

Xueyang Hu received the B.S. degree in information
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2017, and the M.S. degree in com-
puter science and software engineering from Auburn
University, Auburn, AL, USA, in 2020, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Software
Engineering.

His research interests mainly focus on 5G
mmWave communication and optimization in wire-
less network.

Tao Shu received the B.S. and M.S. degrees in elec-
tronic engineering from the South China University
of Technology, Guangzhou, China, in 1996 and
1999, respectively, the first Ph.D. degree in com-
munication and information systems from Tsinghua
University, Beijing, China, in 2003, and the second
Ph.D. degree in electrical and computer engineering
from The University of Arizona, Tucson, AZ, USA,
in 2010.

He is currently an Associate Professor with the
Department of Computer Science and Software
Engineering, Auburn University, Auburn, AL, USA. Prior to his academic
position, he was a Senior Engineer with Qualcomm Atheros Inc., San Jose,
CA, USA, from December 2010 to August 2011. His research aims at address-
ing security and performance issues in wireless networking systems, with
strong emphasis on system architecture, protocol design, and performance
modeling and optimization.

Authorized licensed use limited to: Auburn University. Downloaded on September 04,2023 at 22:23:52 UTC from IEEE Xplore. Restrictions apply.



