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Facilitating Early-Stage Backdoor Attacks in

Federated Learning With Whole Population

Distribution Inference
Tian Liu , Xueyang Hu , and Tao Shu

Abstract—The development of the Internet of Things (IoT)
combined with the emergence of federated learning (FL) makes
it possible for mobile edge computing (MEC) to gain insight
from physically separated data without violating privacy or bur-
dening communication. Due to the distributed nature of MEC
devices, researchers have uncovered that the FL is vulnerable
to backdoor attacks, which aim at injecting a subtask into the
FL without corrupting the performance of the main task. The
backdoor attack achieves high accuracy on both the main task
and the backdoor subtask when injected at FL model conver-
gence. However, the effectiveness of the backdoor is weak when
injected in early training stage. In this article, we strengthen the
early-injected backdoor attack by using information leakage. We
show that FL convergence can be expedited if the client’s data set
mimics the distribution and gradients of the whole population.
Based on this observation, we propose a two-phase backdoor
attack, which includes a preliminary phase for the subsequent
backdoor attack. Taking advantage of the preliminary phase, the
later injected backdoor achieves better effectiveness, as the back-
door effect is less likely to be diluted by normal model updates.
Extensive experiments are conducted on the MNIST data set
under various data heterogeneity settings to evaluate the effec-
tiveness of the proposed backdoor attack. The results show that
the proposed backdoor outperforms existing backdoor attacks in
both success rate and longevity, even when defense mechanisms
are in place.

Index Terms—Backdoor attack, federated learning (FL), pri-
vacy leakage, weight divergence.

I. INTRODUCTION

B
Y 2022 there will be 18 billion IoT devices connected

to the Internet to provide monitoring and computing

services [2]. Fueled by recent progress in machine learn-

ing, the data generated/collected by these devices can be

utilized to train machine learning models that enable intelli-

gent IoT applications. To overcome the issues in traditional
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centralized learning (CL), mobile edge computing (MEC),

which uses the computing and storage capabilities of end

devices, combined with federated learning (FL) [3], [4], serves

as a solution to protect data privacy, reduce communication

latency, and relieve the burden of the central server. Currently,

FL applications on mobile edge devices thrive in next-word

and emoji prediction on smartphones [5], [6], [7], [8], environ-

mental monitoring [9], and aiding in medical diagnosis among

hospitals [10], [11].

Due to the distributed nature of FL and inherent data non-

i.i.d.-ness across edge clients, the local model update uploaded

by a client may be different from others. As a result, it is diffi-

cult for the FL server to validate the legitimacy/truthfulness of

the received model updates. Such a difficulty provides a venue

for new attacks. Backdoor attack is one of the data poisoning

attacks [12], in which an adversary corrupts the global model

so that the new global model reaches high accuracy in both the

main task and a backdoor subtask activated by a trigger. This

backdoor attack has been shown to be unavoidable and compu-

tationally difficult to detect [13]. Especially, backdoor attacks

are more realistic in MEC scenarios. First, a large portion of

edge devices are IoT devices, which are not equipped with

sufficient security functions. As a result, a considerable num-

ber of IoT devices are susceptible to traffic interception and

manipulation. The attacker can easily corrupt a batch of clients

to launch backdoor attacks. Second, launching backdoor attack

requires little user privileges and does not need extra compu-

tation. Specifically, it only requires the access to the client’s

data and the capability of label flipping. As a result, backdoor

attacks can be easily applied to IoT devices. Due to the above

two reasons, backdoor attack remains a serious security threat

to FL-powered MEC applications.

Although backdoor FL attacks are powerful, they have

stringent requirements on the timing of attack. To make our

argument more concrete, in this article, we will focus on

single-shot backdoor attacks [12], due to their benefits of

stealthiness, simplicity in implementation, and the fact that

the more general multishot backdoor attacks can be built

upon them incrementally. Existing studies [12], [14] have

found that the optimal attack time for single-shot backdoor

attack, in which the adversary injects the designated back-

door trigger only once (so as to keep the attack stealthy),

should be when the global model is close to its convergence.

However, in MEC scenarios, the attacker cannot always have

the luxury of controlling injection time. This is because a

typical MEC-powered FL process involves a large number of

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Auburn University. Downloaded on September 04,2023 at 22:23:52 UTC from IEEE Xplore.  Restrictions apply. 



10386 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 12, 15 JUNE 2023

participants (IoT devices) over the entire training period, but

in each round of training, only a small number of randomly

selected devices will participate. There is no fixed participant

schedule, so no device can predict whether or when it will be

selected to participate in the training. As such, the backdoor

attack has to be opportunistic, and the attacker must try its best

to maximize both the strength and persistence of the injected

backdoor whenever it is called to participate in the training—

even when it is at an early stage of the training. In fact, a

backdoor injected in the early stage of the training (before

the FL model converges) can only generate a very weak back-

door effect for the following two reasons: 1) the strength of the

injected backdoor model update will be severely diluted by the

local model updates from other clients in the same round after

aggregation at the server, because the magnitude of the other

clients’ local model updates is significant when the global

model is not sufficiently converged and 2) the backdoor effect

of the injected subtask vanishes quickly in subsequent training

rounds as the injected backdoor will be overwritten by new

coming normal model updates in those rounds. As a result,

the earlier the backdoor is injected, the faster the backdoor

effect will diminish. In addition, IoT devices are usually con-

strained by its resources—power, computing, memory, storage,

etc. This requires an attack mechanism that runs in MEC to

be lightweight and resource-efficient. General-case backdoor

enhancing techniques, such as those in [13] and [15], require

a substantial amount of computational resources, and, hence,

are less suitable for MEC scenarios.

Realizing the stringent attack timing restriction in existing

single-shot backdoor attacks and resource restriction of IoT

devices, in this article, we are interested in studying a new

single-shot backdoor attack technique that allows the back-

door subtask to be injected in the early stage of FL training

while still achieving a strong and sustaining backdoor effect,

making the effect of the attack less dependent on the timing of

the attack, and, hence, making the attack more practical and

applicable to general MEC applications.

Our new attack technique is inspired by the latest research

findings on FL privacy, demonstrating that although private

client data is not directly revealed in FL, the shared FL

global model can unintentionally leak sensitive information

about the data on which it was trained [16], [17], [18], [19],

[20], [21]. This finding has motivated us to consider the fol-

lowing research problem: does FL information leakage render

a stronger backdoor attack in the early stage of FL train-

ing? The findings in [10] indicate that the slow and unstable

convergence of FL model is mainly caused by the weight

divergence of the local model updates of different clients. This

weight divergence is mainly decided by the difference in the

label distribution (henceforth referred to as the “distribution”)

and the difference in gradients between a single client’s local

data and the whole population’s data (i.e., the aggregation of

all client’s data). Therefore, reducing these differences will

shrink the weight divergence and henceforth expedite FL con-

vergence. This will increase the strength and sustainability of

early-stage backdoor attacks.

In this study, we propose a novel information leakage-

assisted two-phase FL backdoor attack, which enhances the

effectiveness of FL early-injected single-shot backdoor attack.

The essence of our idea is that if we expedite the FL conver-

gence, the backdoored model update will be less diluted by

model updates from normal clients, leading to a stronger and

longer-lasting backdoor effect. We do not directly strengthen

the backdoor attack itself. Instead, we design a preliminary

phase, where a distinguishing feature is that attacker-controlled

clients play the role of accomplice and reach out to the FL

global model by uploading “beneficial” model updates that

speed up the convergence of the global model to pave the

way for the subsequent backdoor injection. Specifically, in the

preliminary phase, attacker-controlled clients first perform a

passive inference attack to obtain an estimate of the whole pop-

ulation distribution. Then, instead of training on the original

local data, they train on locally crafted data sets, whose distri-

butions align with the inferred whole population distribution,

so that the weight divergence is reduced, and the FL model

converges more quickly. When the backdoor client is selected,

a regular single-shot backdoor attack is launched. Because

convergence is facilitated by the preliminary phase, the back-

door attack is able to achieve better strength and sustainability,

and the main task accuracy is less likely to deteriorate as the

dilution effect of normal model updates is reduced. This is in

sharp contrast to the existing backdoor attacks, in which the

single-shot backdoor is injected directly without any camou-

flage. Thus, their backdoor effect is weaker, and the attack is

less stealthy. Part of this work (i.e., the proposed two-phase

backdoor attack algorithm) was presented at IEEE SECON

2022 [1]. This journal paper significantly extends [1] in that

it not only presents the proposed attack algorithm, but also

studies several important attributes/properties of the algorithm,

including the algorithm’s generalizability, stability, and feasi-

bility, and evaluates the performance of the algorithm under

more comprehensive settings as well.

To our knowledge, we are the first in the literature that

enhances the effectiveness of FL backdoor attacks by utilizing

the information leaked from the FL model. Our contributions

in this study are fourfold.

1) We provide a theoretical analysis that the intra-aggregation

weight divergence between a model in FL setting and

CL setting consists of a gradient difference term and a

distribution difference term, and we show that the weight

divergence is bounded and the gap is small. The former

finding motivates the design of the proposed attack pre-

liminary phase, that is mimicking the behavior of CL can

facilitate the FL convergence, which further overcomes

the weakness of the single-shot backdoor attack. And the

latter finding, the bounded and small gap of the weight

divergence, theoretically supports the approximation in

the proposed inference attack and provides an accuracy

guarantee for the inferred distribution results.

2) We propose a novel optimization-based whole popu-

lation distribution inference attack utilizing the above

approximation and the linearity of the cross-entropy.

Unlike the existing property inference attack, in which it

can only generate binary property inference results, our

proposed inference attack produces precise quantitative

property information about the data set.
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TABLE I
NOTATION AND DEFINITIONS

3) We propose a preliminary phase for the early-injected

single-shot backdoor attack, which improves the attack

effectiveness by reducing the dilution effect from local

updates of normal clients.

4) Extensive experiments are conducted in various data

heterogeneity settings to evaluate the accuracy of the

proposed whole population distribution inference attack,

the improvement in the convergence of the FL global

model, and the effectiveness of the backdoor attack.

Paper Organization: This article is structured as follows.

We start by providing the background and related work in

Section II. We present the threat model and attack design phi-

losophy in Section III. Subsequently, the overview and the

detailed attack steps are presented in Section IV. The experi-

mental setup and results are presented in Sections V and VI,

respectively. We evaluate the robustness of the proposed

backdoor attack against two-defense mechanisms and discuss

potential defenses in Section VII, and we conclude our work

in Section VIII.

Throughout this article, we use the notation in Table I.

II. BACKGROUND AND RELATED WORK

A. Federated Learning

The whole population D = ∪N
k=1Dk is allocated to N clients,

and each client maintains Dk. Each client maintains a local

model trained from the local training data set. And a central

server maintains a global model by aggregating the local model

updates from the participating client in each training round.

The objective of FL training is to minimize the loss

F(w) =
1

|D|

∑

(x,y)∈D

L(w; (x, y)). (1)

To achieve this goal, each client k optimizes their local model

weights wk to minimize the loss function

Fk(w) =
1

|Dk|

∑

(x,y)∈Dk

L(w; (x, y)). (2)

Here, we describe the FedAvg aggregation method [4],

which iteratively performs the following three steps.

1) Global Model Synchronization: In the Tth aggregation,

the central server randomly selects K (K ≤ N) from the

N clients and broadcasts the latest global model wT to

the selected clients: w
T,0
k ← wT .

2) Local Model Training: Each client k updates its own

local model wT
k by running an SGD on the local data

set Dk for t steps. The τ th step on client k follows:

w
T,τ+1
k ← w

T,τ
k − η∇Fk

(

wT,τ
)

(3)

where η is the local learning rate.

3) Global Model Update: After performing local training

for t steps, the client transmits the model update �wT
k =

w
T,t
k −w

T,0
k back to the central server. The central server

then updates the global model by performing a weighted

average on the local model updates sent by K clients

wT+1 ← wT +

K
∑

k=1

nk

n
�wT

k (4)

where nk = |Dk| is the number of training data on the

client k and n =
∑K

k=1 nk is the total number of training

data used by the selected clients.

B. Related Work

1) Property Inference Attack Against FL: We mainly dis-

cuss the literature related to property inference attacks.

The property inference attack was first proposed by

Ateniese et al. [22] against the hidden Markov models and

support vector machines. Ganju et al. [23] designed a prop-

erty inference attack on fully connected networks, in which the

adversary trains a meta-classifier to classify the target classifier

depending on whether it possesses the property of interest or

not. A malicious user can infer attributes that characterize the

entire data class or a subset of data [20]. Scholars summarized

the techniques to defend against inference attacks in [24].

We also note that our whole population distribution infer-

ence attack is similar to that of [25], where Wang et al.

analyzed the relationship between the number of data samples

of a specific label and the magnitude of the corresponding gra-

dients. Our work differs from their work from the following

two perspectives: 1) their work draws a comparison between a

pair of labels and generates a binary output of which label pos-

sesses a larger number of data samples, while our work is able

to provide a precise quantitative distribution of all labels and

2) their work has a high-computation complexity and needs

to be performed multiple rounds to get a satisfying inference

result, while in our work the distribution can be inferred in

one training round and requires far less computation.

2) Backdoor Attack Against FL: The backdoor attack is

one of the data poisoning attacks whose goal is to mis-

classify inputs with backdoor triggers as the target class,

while not affecting the accuracy of the model on clean

data. The backdoor was first introduced in [12]. They also

proposed train-and-scale and constrain-and-scale techniques to

maximize the attack impact while evading anomaly detection.

The researchers [13] introduced an edge-case backdoor that

targets data at the trailing end of a distribution. They also

claimed that the backdoors against FL are unavoidable and

computationally hard to detect. To make the backdoor stealth-

ier, scholars in [26] decomposed a centralized backdoor into

parts, and each trigger is injected by a client. The distributed

backdoor is more effective and persistent than the centralized
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backdoor. However, the distributed backdoor is fully activated

only when all distributed triggers are injected. Additionally,

to survive the new-coming normal updates, the injection of

local triggers must be finished in a short attack window. Given

that the attacker cannot manipulate the timing of selecting a

compromised client to participate in the training, the above

conditions are hardly satisfied in practice.

3) Defenses Against FL Backdoor Attack: Defense against

backdoor attacks falls mainly into two categories, robust

aggregation and differential privacy (DP).

Robust Aggregation: One approach from existing work

focuses on building a robust aggregation algorithm that esti-

mates the most possible aggregation rather than directly

taking a weighted average. These robust aggregations, such

as FoolsGold [27], Krum [28], Bulyan [29], RFA [30], and

trimmed mean [31], are designed based on the statistical

characteristics of model updates and aim to identify and

de-emphasize possibly malicious model updates in the aggre-

gation. Most of the robust aggregations are built on the

assumption of the i.i.d. data distribution across the participat-

ing clients. However, this assumption is hardly met in practice.

For the FL with non-i.i.d. data among clients, robust aggrega-

tion algorithms could misidentify non-i.i.d. but normal model

updates as malicious or vice versa, and then their weight could

be reduced or raised in the aggregation, which degrades the

accuracy of the FL model. These approaches are capable of

minimizing the impact of malicious model updates to a certain

level but cannot completely eliminate them [32].

DP: DP was originally designed to protect individual pri-

vacy. FL with various DP schemes were proposed, e.g., the

Bayesian DP [33], local DP [34], [35], [36], and central

DP [37]. The algorithm and performance of differentially pri-

vate FL were analyzed in [38]. Researchers in [14] discovered

that by adding noise, the model update could also reduce the

effect of malicious model updates. DP has been shown to be

effective in mitigating backdoor attacks but comes at the cost

of loss of model accuracy. The effectiveness of both local

DP and central DP in defending against backdoor attacks was

explored in [39]. Cui et al. [40] proposed a deferentially pri-

vate FL based on GAN, which satisfies DP while optimizing

the data utility.

III. THREAT MODEL AND ATTACK DESIGN PHILOSOPHY

A. Threat Model

The adversary’s goal is to improve the effectiveness and

lifespan of the backdoor injected in the early training stage.

Also, the backdoor should be stealthy, i.e., the impact on the

main task accuracy should be as small as possible.

We consider a practical scenario where the attacker com-

promises multiple clients. Since launching a backdoor attack

requires higher user privileges, we assume that only a few

of them have the capability to launch the backdoor attack,

while the rest can interact with the FL model multiple times

as accomplices. As in [12], we assume that the client perform-

ing the backdoor attack has the ability to flip labels and set

their own learning rate and local steps to maximize the back-

door effect while minimizing impact on the main learning task.

Others are equipped with the ability to adjust the local distri-

bution of labels, in which the attacker could obtain data from

a public data set, or use data augmentation techniques, such

as random rotation, random zoom, random crop, and sampling

techniques, to change the number of samples for each label.

This assumption is practical, as these operations require lit-

tle computation and minimal user privileges and, thus, can be

easily integrated into data preprocessing.

B. Attack Design Philosophy

Let wa denote the local model of a backdoor client. The

backdoor attack achieves its malicious goal by trying to sub-

stitute the new global model wT with a local backdoor model

wT
a in (4). FL aggregation with a backdoor model update is as

follows:

wT+1 ← wT +
∑

k �=a

nk

n
�wT

k +
na

n
�wa. (5)

The malicious model wa can fully replace the global model

by a scaling factor γ = (n/na) only when the global model

converges, i.e.,
∑

k �=a (nk/n)�wT
k ≈ 0. When the FL global

model converges, the new-coming normal client model updates

are too small to overwrite the backdoor effect. As a result, the

injected backdoor can last a long time. However, for early-

injected backdoors, the global model substitution is diluted

due to
∑

k �=a (nk/n)�wT
k �= 0, making the attack less effective.

In fact, not only does the backdoor not reach its maximum

effectiveness but the accuracy of the main task might also

deteriorate as a result of the scaling operation. In general, the

magnitude of the model update decreases as the FL model is

close to convergence. The backdoor effect is more likely to

be undermined and overwritten more quickly by new model

updates when injected in an earlier training stage. Our main

insight is that the early-injected backdoor effect would be more

effective if the early training stage convergence is expedited,

i.e.,
∑

k �=a (nk/n)�wT
k is reduced.

We consider a C-class classification FL problem with cross-

entropy as the loss function. The loss function of a client k

computed on its local data set Dk is defined as

F(w; Dk) =

C
∑

c=1

pk(y = c)Ex∈Dk|y=c

[

log fc(x; wk)
]

(6)

where pk(y = c) denotes the proportion of class c in Dk, and

fc is the probability of a training sample x belonging to the

cth class.

Due to the non-i.i.d. data distribution among participating

clients and multiple SGDs are performed on the same local

data set, the locally trained model in the FL scheme could

introduce weight divergence, which deteriorates the FL global

model. And this contributes to the performance gap between

CL and FL. Therefore, the CL on the whole population serves

as the upper bound of the FL. The weight divergence between

the models in CL and FL settings can be used to characterize

how good an FL model is.

Consider three models, the local model of the kth client wk,

the FL global model w, and the CL model wcen trained on D.

Previous works [41], [42] have analyzed the weight divergence
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Fig. 1. Illustration of weight divergence relationship among an FL client’s
local model, FL global model, and CL model.

of the FL model w and the CL model wcen throughout the

training process and tried to catch what causes such a weight

divergence. They proved that the weight divergence between

w and wcen throughout T global aggregations is bounded by

two terms: 1) the sum of the distribution distance between

each client’s local data and the whole population and 2) the

weight divergence inherited from the (T − 1)th aggregation.

And such a divergence is accumulated over time, and finally

leads to a model accuracy degradation.

Inspired by their work, we are more interested in the intra-

aggregation weight divergence, i.e., the weight divergence

between two aggregations between wcen and w, and wcen

and wk. To remove the influence of previous aggregations,

we let the CL model and the client’s local model synchro-

nize with the Tth FL global model, i.e., w
T,0
cen ← wT and

w
T,0
k ← wT . And the CL model and client’s local model

perform t steps training on the whole population data. The

weight divergence relationship among the three models can be

visualized in Fig. 1. The weights after τ steps are as follows:

wT,τ
cen = wT,τ−1

cen − η∇F
(

wT,τ−1
cen ; D

)

= wT,τ−1
cen − η

C
∑

c=1

p(y = c)∇Ex∈D|y=c

[

log fc

(

x; wT,τ−1
cen

)]

(7)

w
T,τ
k = w

T,τ−1
k − η∇F

(

w
T,τ−1
k ; Dk

)

= w
T,τ−1
k − η

C
∑

c=1

p(y = c)∇Ex∈Dk|y=c

[

log fc

(

x; w
T,τ−1
k

)]

. (8)

We have the following proposition.

Proposition 1: At the Tth FL global aggregation, let the

local model wk and the CL model on the entire population wcen

synchronize with the FL global model wT , i.e., w
T,0
k ← wT ,

and w
T,0
cen ← wT . And, we have p(y = c) =

∑K
k=1 pk(y = c),

where p(y = c) and pk(y = c) are denoted as the propor-

tion of the label c on D and Dk. Let each model train for t

steps, in which the global aggregation conducts. The model

weight divergence between w and wcen, and wk and wcen after

t training steps are bounded by the following two equations,

respectively:
∥
∥
∥
∥

wT,t − wT,t
cen

∥
∥
∥
∥

≤ η

t
∑

τ=1

[∥
∥
∥
∥
∥

C
∑

c=1

K
∑

k=1

nk

n
pk(y = c)

[

∇Ex∈Dk |y=c

[

log
(

fc

(

w
T,τ−1
k

)]

− ∇Ex∈D|y=c

[

log
(

fc

(

wT,τ−1
cen

)]]
∥
∥
∥
∥
∥

]

(9)

∥
∥
∥w

T,t
k − wT,t

cen

∥
∥
∥

≤ η

t
∑

τ=1

[∥
∥
∥
∥

C
∑

c=1

[

(p(y = c) − pk(y = c)
]

∇Ex∈D|y=c

[

log(fc

(

w
T,τ−1
k

)]
∥
∥
∥
∥

+

∥
∥
∥
∥

C
∑

c=1

pk(y = c)

[

∇Ex∈Dk |y=c

[

log fc

(

x; w
T,τ−1
k

)]

− ∇Ex∈D|y=c

[

log

(

fc

(

x; wT,τ−1
cen

)
]]∥

∥
∥
∥

]

. (10)

The proof can be found in the Appendix, and we have the

following remarks.

Remark 1: The intra-aggregation weight divergence ‖wT −

wT
cen‖ is determined by the difference between the gradient

of the local model taken on Dk, k ∈ [1, K] and the gradient

of the CL model taken on D. This gradient difference can be

reduced by increasing the local data sample size. The weight

divergence is also an increasing function of the number of

internal training steps. Therefore, increasing the number of

local data samples or decreasing the internal training steps

can mitigate weight divergence.

Remark 2: The intra-aggregation weight divergence ‖wT
k −

wT
cen‖ is mainly due to two parts, which are the distribution

difference between Dk and D, that is,
∑C

c=1(pk(y = c) −

p(y = c)), and the gradient difference between the gra-

dient calculated on Dk and the gradient calculated on

D over classes, that is, [∇Ex∈Dk|y=c[ log fc(x; w
T,t−1
k )] −

∇Ex∈D|y=c[ log(fc(x; w
T,t−1
cen )]].

According to Remark 2, the weight divergence ‖wT,t−w
T,t
cen‖

could be mitigated by reducing the following two terms: 1) the

difference between the data distribution of Dk and that of D,

implying the first term in the (10) is reduced and 2) the differ-

ence between the gradient calculated on Dk and that calculated

on D, implying the second term in the (10) is reduced.

As a result, a client in an FL setting could benefit from mim-

icking the distribution and gradients of the whole population

to achieve better convergence behavior (faster convergence or

higher model accuracy). This finding is a double-edged sword.

On the one hand, a benign client can use it to alleviate weight

divergence to facilitate FL convergence, as the data sharing

strategy proposed in [41]. On the other hand, an adversary

could also take advantage of the finding. As will be shown in

the next section, we propose a two-phase backdoor attack, in

which the above finding is utilized by an adversary to improve

the FL global convergence performance and further enhance

both the strength and persistence for the subsequent single-shot

backdoor injection.

IV. PROPOSED TWO-PHASE BACKDOOR ATTACK

In this section, leveraging the aforementioned insights, we

present an overview of our proposed two-phase backdoor

attack. We then describe the detailed workflow of the proposed

backdoor attack.

A. Overview

Our proposed two-phase backdoor attack, illustrated in

Fig. 2, consists of a preliminary phase and an attack phase.

The proposed backdoor is different from existing backdoor

attacks in the preliminary phase, which can be adapted to
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Fig. 2. Flowchart of the proposed two-phase backdoor attack.

any existing backdoor attacks. The goal of the preliminary

phase is to accelerate the convergence of the FL model so that

the subsequent backdoor can be more effective and consistent.

Specifically, an attacker-controlled client first launches a pas-

sive whole population distribution inference attack by analyz-

ing their local model updates and the FL global model update.

To reduce weight divergence and improve the convergence

behavior of the FL model, attacker-compromised clients then

craft local training data by augmentation and downsampling so

that the distribution pk(y) aligns with the inferred whole popu-

lation distribution p̂(y). This step reduces the first term in (10),

i.e., the distribution difference
∑C

c=1(pk(y = c) − p(y = c)).

A dynamic sample size determination method is also utilized

in crafting the data set to reduce the second term in (10),

i.e., the gradient distance [∇Ex∈Dk|y=c[ log fc(x; w
T,t−1
k )] −

∇Ex∈D|y=c[ log(fc(x; w
T,t−1
cen )]]. Instead of training on the orig-

inal local data set, attacker-compromised clients train on the

crafted data sets and submit the model updates to the central

server. These steps seem legitimate but benefit the subsequent

injected backdoor by reducing the dilution effect of other client

model updates. When the backdoor client is selected, the back-

door is injected by training on a poisoned local data set and

scales the malicious model updates by γ to ensure that the

injected backdoor survives aggregation on the server.

Our proposed two-phase backdoor attack improves the

performance of the early-injected backdoor because of the

following features.

1) We propose a passive whole population distribution

inference attack that requires no access to other clients’

local data samples or their model updates.

2) By crafting the local data set using the inferred whole

population distribution and sampling/augmentation tech-

niques, the FL model weight divergence can be reduced,

which facilitates the FL model convergence.

3) By reducing both the distribution difference and the gra-

dient difference between the client’s local data and the

whole population data, the convergence of the FL model

is improved. As a result, the backdoor model is less

diluted by model updates from normal clients, leading

to a stronger and longer-lasting backdoor effect.

B. Attack Workflow

1) Preliminary Phase: Whole Population Distribution

Inference:

Step 1 (Approximation of the CL Model Updates): The

attacker’s goal is to estimate the whole population distribution

p(y) in the following expression of the gradient of the CL loss

function:

∇F(wcen; D) =

C
∑

c=1

p(y = c)∇Ex∈D|y=c

[

log fc(x; wcen)
]

. (11)

Therefore, p(y) can be calculated if the values of

∇Ex∈D|y=c[ log fc(x; wcen)] and ∇F(wcen; D) are known. Since

accessing the CL model is unrealistic, based on the findings

in Remark 1, we approximate the CL model update by the FL

model update

K
∑

k=1

nk

n
�wk ≈ �wcen = η

t
∑

τ=1

∇F
(

wτ−1
cen ; D

)

. (12)

The reasonability of the approximation is demonstrated by

the following.

1) The bounded and small intra-aggregation weight diver-

gence between the CL and the FL model. In

Proposition 1, we show that the intra-aggregation weight

divergence between a model in CL and FL settings is

bounded by the difference in the gradient of the local

data and the whole population. This gradient difference

is usually caused by the difference in the number of

samples between the local data and the whole popula-

tion. The adversary could refer to a public data set or

use augmentation techniques to narrow the difference.

Furthermore, although the number of internal training

epochs increases the gap, the number of local training

epochs in practice is relatively small (usually 2 to 5),

and, therefore, the impact of the number of internal train-

ing epochs should be minor. As a result, the FL model

would not deviate much from the CL model within one

aggregation.

2) The accurate global distribution inferred from the

approximation. Extensive experiments are conducted in

Section VI-A to verify that the approximation produces

accurate results of whole distribution inference. The set-

tings of these experiments are comprehensive as they

cover both the balanced/imbalanced global distribution

and the different non-i.i.d.-ness among local data. The

results in all settings show that the difference between

the true and the global distributions inferred from the

approximation is condensed and small.

Step 2 (Decomposition of the Model Updates): Combining

(11) and (12), we have the following gradient expression:

K
∑

k=1

nk

n
�wk = η

t
∑

τ=1

C
∑

c=1

p(y = c)∇Ex∈D|y=c

[

log fc

(

x; wτ−1
cen

)]

.

(13)

The model update of the compromised client a can be

expressed as

�wa = η

t
∑

τ=1

∇Fk

(

wτ−1
a ; Da

)

= η

t
∑

τ=1

C
∑

c=1

pa(y = c)∇Ex∈Da|y=c

[

log fc

(

x; wτ−1
a

)]

. (14)
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Normally, the gradient is calculated directly by

the partial derivative of the loss, for example,

∇Fk(wa; Da) = ([∂Fk(wa, Da)]/[∂wa]). Taking advan-

tage of the linearity of the cross-entropy loss, the gradient

∇Fk(wa, Da) can also be viewed as a weighted average

over ∇Ex∈Da|y=c[logfc(x; wa)]. If the adversary gets a good

estimate of ∇Ex∈D|y=c[ log fc(x; wcen)], the global distribution

p(y) can be estimated by minimizing the difference between

(13) and (14).

Step 3 (Estimation of the Gradients): The difference

between the gradient calculated on D and Da is mainly

caused by the difference in the data sample sizes. Typically,

a larger data set size would provide a less biased estimate.

The adversary could obtain a more accurate estimate of

∇Ex∈D|y=c[ log fc(x; wcen)] by augmenting Da using data aug-

mentation techniques or referring to a public data set when

some of the classes are absent from the local data. However,

purely pursuing a large data sample size is not always prac-

tical and effective, as some data augmentation methods are

computationally expensive and time-consuming, or generate

similar samples, which could on the contrary harm the accu-

racy of the estimation. Therefore, we adopt a dynamic data size

determination algorithm proposed in [43] to determine when

to stop the increase. The method evaluates the amount of aug-

mentation by measuring the directional distance between the

gradient of the augmentation and the estimate of the gradi-

ent. A scaler θ ∈ [0, 1], which indicates the cosine similarity

between the gradient of augmentation and the gradient esti-

mate, is used to determine when to stop the augmentation.

A greater θ indicates a more accurate estimate, but a greater

amount of augmentation.

Step 4 (Optimization-Based Global Distribution

Estimation): In the previous step, the attacker gets a

good estimate of ∇Ex∈D|y=c[logfc(x; a)] by augmenting Da,

the inference of whole population distribution p(y) can then

be formulated as an optimization problem, which seeks a p̂(y)

that minimizes the difference of two losses in (13) and (14)

min
p(y)

∥
∥
∥
∥
∥
∥

K
∑

k=1

nk

n
�wT

k − η

t
∑

τ=1

C
∑

c=1

p(y = c)∇Ex∈Da|y=c

[

log fc

(

x; wT,τ−1
a

)]

∥
∥
∥
∥
∥
∥

s.t.

C
∑

c=1

p(y = c) = 1 (15)

where
∑K

k=1 (nk/n)�wT
k is the FL global model update in the

aggregation Tth and can be obtained by taking the difference

between the (T−1)th and the Tth synchronization of FL global

model.

Since the distribution p(y) is not differentiable, an evolution

algorithm is used to solve the optimization above. The evolu-

tion algorithm begins with a randomly initialized population

of p(y), namely, “fathers.” Next, the individuals in the fathers

go through mutation and crossover operations with a certain

probability to generate more diverse individuals, namely, “chil-

dren.” Then, fathers and children are evaluated by an objective

value, in which the individuals with better objective value will

enter the next generation. Algorithms 1 and 2 detail the steps

to solve the optimization.

Algorithm 1 Whole Population Distribution Inference by the

Evolution Algorithm

Input: Number of classes C, population size S.
Output: An estimate of the whole population distribution p̂(y).

1: g = 0.
2: Initialize the distribution population p0, which consists of S

individuals. Each individual p0,s satisfies
∑C

c=1 p0,s(y = c) = 1.

3: Compute the FL global model update �wT .
4: Evaluate individuals in population p0 by Algorithm 2.
5: while the termination criterion is not satisfied do
6: g = g + 1.
7: Create population qg by crossover and mutation of individuals

from pg−1.
8: Evaluate each individual in pg−1 in the children by

Algorithm 2.
9: Select S best individuals to population pg from the populations

pg−1 and qg.
10: end while
11: Return the best individual in population pg.

Algorithm 2 Evaluation of the Objective Values

Input: Number of classes C, internal training steps t, learning rate
η, the global model update �wT , the label composition p(y).

Output: The objective value defined in Eq. (15).

1: The attacker synchronizes with the latest global model w
T,0
a ←

wT .
2: for τ = 1 : t do
3: for c = 1 : C do
4: The attacker calculates the gradient component on class c:

∇Ex∈Da|y=c[ log fc(x; w
T,τ−1
a )].

5: end for
6: The model weight is updated by:

7: w
T,τ
a = w

T,τ−1
a

−η
∑C

c=1 p(y = c)∇Ex∈Da|y=c[ log fc(x; w
T,τ−1
a )].

8: end for
9: Return the objective value ‖�wT −�wT

a ‖, where �wT
a = w

T,t
a −

w
T,0
a .

2) Preliminary Phase: Auxiliary Data Set Construction:

After the adversary gets the inference of the whole popula-

tion distribution, instead of training on the original local data

set, the compromised client trains on an auxiliary data set,

which is crafted to align with the inferred global distribution.

The basic idea of auxiliary data set construction is to

augment the data in classes with inadequate samples and

downsample the data in classes with excessive samples based

on the inferred whole population distribution. Algorithm 3

describes the steps in constructing the auxiliary data set. In

particular, the attacker first determines the total size of the

auxiliary data set. The attacker then calculates the amount of

data needed for each class by the size of the data set and the

inferred global distribution. As for the augmentation operation,

the adversary with a limited computation budget can use trivial

methods, such as random shift, random rotation, random shear,

and random zoom, while a strong adversary could utilize more

advanced methods, such as data synthesis and data reconstruc-

tion. For the downsample operation, it randomly samples from

current data until the desired number of samples is reached.

The auxiliary data set constructed in this way mitigates both

terms in (10).
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Algorithm 3 Auxiliary Data Set Construction

Input: Auxiliary dataset size M, the inferred data distribution p̂(y),
number of classes C, the compromised dataset Da

Output: Auxiliary dataset Daux.
1: Calculate the data size of each class c by Mc ← M × p̂(y = c)

for c = 1, . . . , C.
2: Calculate the data size of each class c of Da, |Da|c|, where

Da|c : = {x|y : x ∈ Da, y = c}.
3: for c = 1:C do
4: if |Da|c| < Mc then
5: Augment |Da|c| to Mc.
6: else
7: Down-sample from Da|c, such that |Da|c| = Mc.
8: end if
9: Auxiliary dataset Daux ← ∪C

c=1
Da|c.

10: end for
11: Shuffle Daux.
12: Return Daux.

C. Attack Phase: Backdoor Injection

The attacker-compromised clients perform training on the

crafted auxiliary data set until the backdoor client equipped

with backdoor capability is selected. The backdoor client first

poisons its local data Da by adding backdoor triggers to a

subset of Da, and changes their labels to a target one to form

a poison data subset Dpoison. The rest of the data are kept

clean and are denoted as Dclean. The attacker then performs

local training on Dpoison ∪Dclean aiming to maximize accuracy

on both the main task and the backdoor task

w∗
a = arg min

wa

[

Fa(wa; Dclean) + Fa

(

wa; Dpoison

)]

.

After local training, the attacker scales the model updates by

a parameter γ = (n/na) ≈ K to ensure that the backdoor

model update survives the aggregation and ideally replaces

the global model. The attacker could also use constrain-and-

scale or train-and-scale to improve its persistence and evade

anomaly detection mechanisms.

D. Coordination of Multiple Attacker-Controlled Clients

The above presentation of the attack process is based on a

single attacker-controlled client, but it can be easily extended

to the scenario, in which the attacker controls multiple clients.

The whole population distribution inference attack can be per-

formed by any one of the compromised clients. The inferred

global distribution is then shared with other attacker-controlled

clients, and each of them constructs and trains on the auxil-

iary data set locally. The use of multiple malicious clients can

further improve the accuracy of the FL model.

V. EXPERIMENTAL SETUP

A. Data Set

We evaluate our proposed method on the handwritten digit

recognition data set, MNIST [44]. The data set contains 60 000

training data samples, and 10 000 testing data samples. Each

data sample is a square 28 × 28 pixel image of a handwritten

single digit between 0 and 9.

B. Evaluation Metrics

1) Accuracy of Whole Population Distribution Inference

Attack: We measure its accuracy by the �2 distance of

the inferred whole population distribution p̂ and the true

whole population distribution pglobal, i.e., ‖p̂ − pglobal‖,

referred to as inferred-to-true. A smaller distance indi-

cates a more accurate inference result. And, we also

evaluate the �2 distance of the original distribution

on the kth client pk and pglobal, i.e., ‖pk − pglobal‖,

referred to as original-to-true. The difference between

such two distances is positively related to the amount of

weight divergence, which can be reduced by the whole

population distribution alignment.

2) Main Task FL Model Accuracy Gain by Whole

Population Distribution Alignment: We measure the FL

global model accuracy as a function of training epochs

for regular FL (clients train on the original data sets)

and preliminary phase assisted FL (clients train on

crafted local data sets that align with the gradients and

distribution of the whole population).

3) Main Task FL Model Accuracy in Presence of Backdoor

Attack: We also present the accuracy of the main task

when the backdoor attack is in place. As mentioned

previously, the main task might deteriorate due to the

scaling operation and the dilution from the normal model

updates, especially, when they are large in the early

training stage. The server could reject the model updates

if an unexpected drop is observed in the accuracy of the

main task.

4) Backdoor Attack Success Rate and Longevity: Given a

classifier f (·), the backdoor attack accuracy is defined

as the portion of samples in the backdoor samples that

the classifier predicts as the target label yt

Accbackdoor =

{

|x ∈ Dpoison : f (x) = yt

}

|

|Dpoison|
.

The test data are constructed by adding the backdoor

triggers to the original test data samples. To avoid the

influence of the original data of the target label, we

remove the data of the target label in the test data. We

plot the backdoor success rate of 20 global epochs since

injection to assess their longevity.

C. FL System Setting

We implement the FL and the proposed two-phase back-

door attack using the PyTorch framework. We conduct our

experiments on Google Colab Pro (CPU: Intel Xeon CPU @

2.20 GHz; RAM: 13 GB; GPU: Tesla P100-PCIE-16 GB with

CUDA 11.2).

The data set is allocated to 100 clients. In each global

model aggregation, ten clients are randomly selected to partic-

ipate in the FL training. Each client maintains a local model

consisting of two convolutional layers and two fully con-

nected layers. Due to the inherent data non-i.i.d.-ness across

edge clients, there can be a significant difference between

the local distributions (non-i.i.d.-ness) and whole popula-

tion distribution (whole population imbalance). We consider
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TABLE II
MNIST DATA SET SETTINGS

both balanced/imbalanced whole population and different non-

i.i.d.-ness among clients’ local data (Table II) to evaluate the

effectiveness, generalizability, stability, and feasibility of the

proposed two-phase backdoor attack. The whole population

imbalance is simulated by randomly sampling 50%–100% for

each class of the original data set. And, we use the Dirichlet

distribution [45] with a hyperparameter α to generate different

data distributions among clients, where a smaller α indicates

a greater non-i.i.d.-ness.

1) Preliminary Phase: The clients are randomly selected

to participate in a training round, with a certain percentage of

clients training on Daux, which aligns with the whole popula-

tion by Algorithm 3. The FL model is trained with full-batch

gradient descent with internal epoch t = 1 and learning rate

η = 0.1.

As specified in Section III, the adversary has the ability to

enlarge the local data set using augmentation techniques or

referring to public data sets. In our experiment, we assume

that the adversary is equipped with trivial augmentation meth-

ods. We also assume that the attacker holds 1% of the MNIST

data set, from which the attacker can draw data samples and

complement the auxiliary data set. In the dynamic data size

determination algorithm that determines when to stop the aug-

mentation, we set θ = 0.8, which means that the augmentation

operation stops when the cosine similarity between the gradi-

ent of augmentation and the gradient estimate reaches 0.8. To

avoid the influence of the size of Daux, we set the size of Daux

to be the same as that of the original data set. The fractions of

clients controlled by the attacker are chosen to be 5%, 10%,

and 20% of the total number of clients denoted as ours_5,

ours_10 and ours_20, respectively. And they are collectively

referred to as ours.

2) Attack Phase: We use pixel pattern backdoors, as the

same as those in [12] and [26]. We set the 4 × 4 pixels in the

upper left corner of the image to white (pixel value of 0), and

swap the label with the target label 0. The ratio between the

size of the backdoor trigger and the size of the data sample

is 2%.

The performance of the proposed backdoor (both the main

task accuracy and the backdoor success rate) is evaluated on an

FL with mini-batch gradient descent with a batch size of 128.

The backdoor client poisons 40 out of 128 data samples in

each mini-batch and locally trains for poison epochs of 10

with a poison learning rate of 0.05. The global learning rate is

the same as the local learning rate η = 0.1. The scaling factor

is γ = K = 10.

VI. EXPERIMENTAL RESULTS

A. Accuracy of the Whole Population Distribution Inference

The global distribution inference attack is launched at

every epoch of the first 30 epochs. We present the box

Fig. 3. Box plot of ‖pk−pglobal‖ (original-to-true) and ‖p̂−pglobal‖ (inferred-
to-true).

Fig. 4. ‖p̂ − pglobal‖ (inferred-to-true) versus the global training epoch.

plot of ‖pk − pglobal‖ (referred to as original-to-true) and

‖p̂ − pglobal‖ (referred to as inferred-to-true) in Fig. 3. In

all four settings, compared to original-to-true, inferred-to-true

is significantly smaller and more condensed, indicating that

the proposed whole population distribution inference attack

achieves high accuracy. Furthermore, our proposed inference

attack is equally accurate in both balanced and imbalanced

whole population distribution settings (setting 1 versus setting

2 and setting 3 versus setting 4).

We also plot the inferred-to-true as a function of train-

ing epochs (shown in Fig. 4) to demonstrate the stability of

the proposed whole population distribution inference attack.

The FL model begins to converge at epoch 20, so our infer-

ence attack window covers different convergence stages of the

training process. Results show that the inference results are

stationary along the training process, which means that the

inference is accurate regardless of the training stage, includ-

ing the early, the middle, and the convergence stages of the

training. Such results provide performance guarantee for the

subsequent backdoor attack. The fluctuations presented in

Fig. 4 are due to the randomness of the local distributions

in the selected clients in each FL training round. Especially,
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Fig. 5. Accuracy of the main task of 5%, 10%, and 20% of the local data
of the clients that perform the alignment, averaged over ten experiments.

the fluctuation becomes more noticeable when clients’ local

distributions are more non-i.i.d. (settings 2 and 4). To further

reduce such fluctuations and improve the accuracy of the infer-

ence, the adversary could further refine the inference result by

performing statistical analysis on multiple inference results,

such as averaging or clustering.

B. Main Task Accuracy Under the Nonattack Scenario

We evaluate the performance gain of the proposed prelim-

inary phase in improving FL convergence by the accuracy of

the FL main task, shown in Fig. 5. In all four settings, com-

pared to FedAvg, the FL with global distribution alignment

converges faster, although they eventually reach the same accu-

racy. This performance gain is more perceptible before the FL

begins to converge and when a greater fraction of clients per-

form the proposed alignment. In addition, while the global

distribution alignment has more influence on the very early

stage (epoch 0 to epoch 10) for settings 1 and 3 (α = 1), a

higher non-i.i.d.-ness (α = 0.1 in settings 2 and 4) has more

impact on the middle training stage (epoch 5 to epoch 15).

The experimental results are consistent with the findings of

Proposition 1: reducing both the gradient and the distribu-

tion between the client’s local data and the whole population

could reduce the model weight divergence, leading to a better

convergence performance.

C. Backdoor Attack Performance

We present the impact of backdoor injection on the main

task accuracy as well as the backdoor success rate. We eval-

uate the proposed two-phase backdoor attack and compare it

with two existing backdoor attacks: 1) the centralized backdoor

attack [12] (referred to as baseline), in which the local data set

is poisoned by a centralized backdoor trigger and 2) the dis-

tributed backdoor attack [26] (referred to as DBA), in which

the backdoor trigger is partitioned into parts and each part is

injected separately.

1) Main Task Accuracy: Unlike the backdoors injected at

the convergence of the FL model, where the injection of

Fig. 6. Main task accuracy of the FL global model when the backdoors
are injected at FL epochs 10, 15, and 20, respectively. (a) Settings 1 and 2.
(b) Settings 3 and 4.

the backdoor barely disturbs the accuracy of the main task,

the early-injected backdoor usually noticeably deteriorates the

accuracy of the main task due to the model updates from

normal clients. When the backdoor is injected in the early

training stage, the accuracy of the main task usually experi-

ences a sudden drop and then gradually goes back to normal

status afterward. As introduced in [46], the central server could

monitor the FL model main task accuracy and reject model

updates that make the main task accuracy abnormally low.

This approach could fail to be deployed on the FL system since

the central server does not always have access to the model

updates and test data, thus, cannot measure their accuracy, or

a false alarm could be triggered due to the extremely low local

accuracy caused by the participation of clients with extremely

non-i.i.d. data. However, the accuracy of the main task can still

be used to evaluate the stealthiness of the backdoor attack.

As shown in Fig. 6, the accuracy of the main task is affected

by backdoor injection to varying degrees. The dropped main

task is a collective consequence of the scaled-backdoored

model updates and model updates from the rest of the par-

ticipants. And such a main task accuracy drop becomes more

critical for a greater non-i.i.d.-ness among clients (settings 2

and 4). Compared to the baseline, our backdoor introduces

less drop in main task accuracy in most cases. In some cases,

the main task accuracy impacted by our proposed backdoor

attack presents a faster recovery rate. Furthermore, compared

to the baseline and ours, DBA suffers the greatest drop in the

main task accuracy and it takes much longer for the underlying
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Fig. 7. Backdoor success rate in 20 training epochs since backdoor injection.
(a) Settings 1 and setting 2. (b) Settings 3 and setting 4.

FL to return to normal. This phenomenon is even worsened

in the setting of high non-i.i.d.-ness (setting 2 and setting 4).

A possible explanation is that DBA requires multiple clients

sequentially to perform the injection of part of the backdoor

trigger to finish the injection of a complete backdoor, which

poses a longer and worse impact on the main task accuracy.

Especially, in the highly non-i.i.d. and globally unbalanced

scenario, given that the model updates are already far from

others, the consecutive injection and scale operations could

make the deviation even worse and prevent the FL model from

convergence (evidenced in setting 4). Thus, we conclude that

the proposed backdoor attack is more stealthy than the baseline

and the DBA.

2) Backdoor Attack Accuracy: To explore the effectiveness

of a backdoor before the FL model converges, we inject cen-

tralized backdoors for the baseline and our method at the

global FL epochs 11, 16, and 21, respectively. To fairly com-

pare with DBA, the distributed backdoors are sequentially

injected and finished in the same round as the centralized

backdoors. For example, if the centralized backdoor is injected

in round 11, four distributed backdoor triggers are injected

separately in rounds 8, 9, 10, and 11.

Fig. 7 presents the backdoor success rate for 20 FL global

epochs since the completion of the backdoor injection. For

each setting, injections are made in different epochs by the

same client. The injected backdoor has maximum effective-

ness immediately after injection. In subsequent epochs, as

TABLE III
MEAN BACKDOOR SUCCESS RATE (%) OVER TEN FL EPOCHS SINCE

INJECTION (AVERAGED OVER TEN EXPERIMENTS)

the FL model aggregates new normal updates, the effect of

the backdoor is weakened, which is reflected in the gradu-

ally decreasing success rate. In most cases, after 20 rounds

of backdoor injection, the success rates of almost all settings

and injection epochs are greater than those of the baseline

and DBA. DBA does not reach a similar backdoor effect as

in the baseline and ours. The reason for this gap could be

that the partially injected backdoor effect in previous rounds

is more likely to be hindered by normal local updates in the

subsequently injected backdoor parts. And in most cases, our

proposed backdoor retains a lower diminishing rate, compared

to the baseline.

Due to the non-i.i.d.-ness among clients’ local data, some

clients’ data may be in favor of the attack, while others are

not. In addition, the backdoor effect does not always steadily

decrease or bounces in some cases. Therefore, we evaluate

both attack strength and longevity by the mean attack success

rate of 10 FL epochs since injection (Table III). In general, the

backdoor injected in very early rounds (epoch 5 and epoch 10)

achieves a lower mean attack success rate, compared to the

ones injected in epoch 20. This degradation in the effectiveness

of the attack is made even worse when the whole population

is imbalanced (setting 1 versus setting 3) and non-i.i.d.-ness

among clients increases (setting 1 versus setting 2). In most

cases, our proposed backdoor attack outperforms the base-

line and the DBA. And compared to the baseline, the gain in

attack performance is positively related to the percentage of

attacker-controlled clients that perform the whole population

distribution alignment.

D. Overhead Analysis

1) Preliminary Phase: The computational cost of this

phase consists of three parts: 1) calculating the gradients of

the data of each label; 2) solving the optimization in (15); and

3) constructing the auxiliary data set.

For the first part, the attacker trains the FL global model on

the data samples of each label separately to obtain gradients

∇Ex∈Da|y=c[ log fc(x; wa)], and because n =
∑C

c=1 nc, where

nc is the number of samples of label c, the time complexity

is the same as that of local training. Since the batch gradient
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Fig. 8. Inference accuracy (inferred-to-true) and time taken versus NFE.

has a time complexity of O(n2m), in which n is the number

of data samples and m is the number of features, the time

complexity of the first part is also O(n2m).

For the second part, we evaluate the number of function

evaluations (NFEs), which is commonly used to evaluate an

evolution algorithm. NFE is usually measured when a good

solution is delivered or when no significant change in the

solution is observed. We plot inferred-to-true and the real-

time used against NFE, shown in Fig. 8, to demonstrate the

effect of NFE on the inference accuracy and time. The NFE

is set to 400 in our experiment, because there is no significant

inference accuracy gain after 400 NFEs. The actual time taken

to solve the optimization with 400 NFEs is 4 s.

The construction of an auxiliary data set that is aligned with

the whole population consists of augmentation and sampling

operations. Examples of trivial augmentation methods are flip-

ping (O(np), where p is the number of pixels in each image),

rotation, random crop, and scale [they have the same complex-

ity as O(n)]. The sampling operation has a time complexity

of O(n). Therefore, the total complexity of constructing the

auxiliary data set is at most O(np) and the actual time spent

is 0.03 s.

2) Backdoor Phase: The backdoor client poisons a subset

of local data by injecting the backdoor pattern and swaps the

label to the target label, then performs local training on the

poisoned local data set. The total time complexity is O(n2m).

The real-time spent on the backdoor attack with 10 internal

training epochs is around 13 s.

The complexity analyses are summarized in Table IV.

Gradient calculation and optimization are only needed to be

performed in the beginning to obtain an accurate inference of

the whole population distribution. The actual time taken for

these two steps is around 4 s, which is far less than the time

taken by the backdoor attack. Then, the inferred distribution

is shared among all attacker-controlled clients, which perform

the auxiliary data set construction, whose time complexity is

negligible.

VII. ROBUSTNESS OF THE PROPOSED ATTACK

In this section, we are interested in how the proposed

attacks will behave when defense mechanisms are in place.

In the following, we will analyze the effectiveness of the

TABLE IV
TIME COMPLEXITY AND REAL-TIME SPENT ON

THE PROPOSED INFERENCE ATTACK

Fig. 9. Box plot of original-to-true (Original) and inferred-to-true of FedAvg,
FoolsGold, and DP based on 30 instances.

proposed two-phase backdoor attack against two main defense

strategies.

FoolsGold is a robust aggregation strategy, which calcu-

lates the cosine similarity of all historical gradient records

and assigns smaller aggregation weights to clients who con-

tinuously contribute similar gradient updates [27].

DP is a noise-based method that limits the effectiveness of

backdoor attacks by two key steps [39]: 1) model parame-

ters are clipped to limit the sensitivity of local model updates

and 2) the Gaussian noises are added to local model updates.

We consider a local DP, in which each client adds noise

before uploading the model updates to the server. We use

the (ε, δ)-DP proposed in [47] with a popular choice of

σ =
√

2 log (1.25/δ)/ε with δ = 10−5 and ε = 50. The

clipping bound is set to the median of the norms of the

unclipped local model updates during training. The noises are

only applied to normal model updates, while the backdoor

client sends the nonperturbed backdoored model updates.

A. Whole Population Distribution Inference Accuracy

Against Defense Strategies

We first present the whole population distribution infer-

ence against FedAvg, FoolsGold, and DP, shown in Fig. 9.

Since FoolsGold does not interfere with benign FL settings,

the whole population distribution inference against FoolsGold

is as accurate as that in FedAvg. Although DP provides a

statistical guarantee for record-level information, DP does

not protect statistical information, such as the whole popu-

lation distribution. With DP in place, although the inference

is not as accurate as in the FedAvg case, the inferred-to-true

is still notably lower compared with original-to-true. Thus,

both FoolsGold and DP fail to defend against the proposed

inference attack.
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Fig. 10. Backdoor success rate (%) of 20 training epochs since injection
against (a) FoolsGold and (b) DP defense mechanisms.

B. Performance of the Backdoor Attack Against Defense

Strategies

We implement the proposed backdoor attack against

FoolsGold and DP in setting 1. We plot the backdoor suc-

cess rate for 20 epochs after injection to observe its injection

strength and longevity. Fig. 10(a) shows that in most cases

ours reaches a significantly higher success rate upon injec-

tion and maintains such a high success rate in the following

20 epochs. For example, when injected in the early train-

ing stage (at epoch 11), the baseline backdoor fails while

ours_5, ours_10, and ours_20 achieve attack success rates of

14%, 27%, and 10%, respectively. As the convergence is expe-

dited by the proposed preliminary phase, the model updates

from normal clients become smaller and more similar, so

that FoolsGold will reduce their assigned weights, and as a

result, the backdoored model updates become more influential.

Compared to ours and the baseline, the success rate curve of

the DBA has a different pattern, in which the success rate first

increases and then decreases and is more persistent than both

the baseline and ours in later rounds. However, in practice,

the requirement for clients with distributed backdoor triggers

to be selected in consecutive rounds can hardly be met.

Fig. 10(b) shows the attack performance against DP. Both

the baseline and ours achieve high-attack success rates that

are even comparable to those of FedAvg. This phenomenon

indicates that, instead of mitigating the backdoor effect, the

noise added to the normal clients helps the backdoored model

corrupt the FL global model. A possible explanation is that

the added noise reduces the utility of normal model updates,

which on the contrary strengthens backdoored model updates

in the FL aggregation. Furthermore, ours is markedly better

than the baseline when the backdoor is injected in subsequent

rounds. For example, baseline and ours have similar attack

performance in the early training stage, e.g., epoch 11. And

ours performs distinctly better in the later training stage, that

is, the backdoors injected in epochs 16 and 21. Finally, both

the baseline and ours outperform DBA. This is because the

effectiveness of the distributed backdoor is mitigated by both

benign model updates and DP noise multiple times before

DBA finishes injecting the complete backdoor.

C. Discussion of Defense Mechanisms

Existing defenses cannot eliminate the impact of inference

and backdoor attacks. Each of these defense mechanisms has

its pros and cons. We briefly examine some of strategies

against inference attacks and backdoor attacks and discuss

their effectiveness.

DP has been shown effective in defending against most

inference attacks, except property inference attack, to which

the proposed whole population inference attack belongs. The

reason is that the accuracy of the inference results is reversely

related to the scale of the added noise. Even the whole popula-

tion distribution inference result may not be satisfactory under

DP with a large noise scale, the result still helps in aligning

the distribution and benefits the subsequent backdoor attack

to some extent. As for defending against backdoor attacks,

DP is proven to be effective only if a low-clipping bound

and high variance are in use, and at the cost of degrading the

performance on its main task. Otherwise, when the noise vari-

ance is small, as shown in Section VII-B, in this article, the

small added noise in turn strengthens the backdoor attack.

Secure multiparty computation (MPC) is a cryptographic

approach that allows clients to submit encrypted/masked

model updates, such that the server can only learn the aggrega-

tion of the clients’ model updates. The representative methods

are homomorphic encryption (HE) and secret sharing. Many

works advocate the use of additive HE schemes, Paillier, to

protect FL [48], [49]. Considering the power constraints of

IoT devices, HE is hardly applicable in MEC scenario. A more

promising solution is secret sharing, where clients randomly

add zero-sum masks to model updates such that the masked

model updates are indistinguishable from random values [50],

[51], eliminating the risk of both inference and backdoor

attacks. And the added masks cancel out in the server aggre-

gation, so that the FL convergence will not be impacted. But

it has a strict requirement on synchronization.

Robust aggregation tries to alleviate the backdoor effect by

de-emphasizing the malicious ones via statistical properties

of model updates. However, in FL settings, the non-i.i.d. local

distributions among clients provide enough space for the back-

doored model updates to hide. In addition, the attack can easily

circumvent the defense by decomposing the backdoored model

into smaller or orthogonal ones.

Pruning and fine-tuning reduces backdoor impact by remov-

ing dormant neurons (neurons that are not activated by clean

data) of the FL model after the training stage [52]. However,

the attacker can train the backdoor model in a pruning-aware

way so that this method does not fully eliminate the backdoor

impact. In addition, it cannot remove the backdoor behavior

without significantly degrading the main task performance.

VIII. CONCLUSION

In this article, we proposed a novel information leakage-

assisted single-shot backdoor attack that improves the
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effectiveness of the backdoor injected in the early training

stage. We first showed that clients training on data sets that are

aligned with the whole population in both distribution and gra-

dient can improve the convergence of the FL model. Based on

this observation, we introduced a preliminary phase to the sub-

sequent backdoor attack, in which attacker-controlled clients

first infer the whole population distribution from the shared

FL model updates and then train on locally crafted data sets

that align with both the distribution and gradient of the whole

population. Benefiting from the preliminary phase, the sub-

sequent backdoor injection suffers less dilution effect from

the model updates of other clients and achieves better effec-

tiveness. We demonstrated the effectiveness of the proposed

backdoor attacks in the early training stage through exten-

sive experiments on a real-world data set. The results showed

that the proposed backdoor can achieve a longer lifespan than

existing backdoor attacks. We hope that our work draws atten-

tion to vulnerabilities in the early training stage of FL. Our

analysis and findings provide novel insights into the field of

strengthening FL attacks by information leakage, which could

help evaluate and improve the robustness of FL.

APPENDIX
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where the inequality (1) holds due to the Cauchy–Schwarz

inequality. By induction, we have
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Hence, (9) has been proved. And the proof of (10) follows

similar steps.
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