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Abstract—The distributed nature of distributed learning ren-
ders the learning process susceptible to model poisoning attacks.
Most existing countermeasures are designed based on a pre-
sumed attack model, and can only perform under the presumed
attack model. However, in reality a distributed learning system
typically does not have the luxury of knowing the attack model it
is going to be actually facing in its operation when the learning
system is deployed, thus constituting a zero-day vulnerability
of the system that has been largely overlooked so far. In this
paper, we study the attack-model-agnostic defense mechanisms
for distributed learning, which are capable of countering a
wide-spectrum of model poisoning attacks without relying on
assumptions of the specific attack model, and hence alleviating
the zero-day vulnerability of the system. Extensive experiments
are performed to verify the effectiveness of the proposed defense.

Index Terms—distributed machine learning, attack-model-
agnostic defense, heritage factor, threat and detection model

I. INTRODUCTION

In recent years we have witnessed the initial success of
machine-learning-based Al (artificial intelligence) in many
application domains, such as image processing, natural lan-
guage processing, autonomous driving, robotics, gaming,
medical science, and public safety. Encouraged by this initial
success, the size of learning is being scaled up, so as to
make a trained model more generalizable and applicable to
wider scopes. This is achieved by increasing not only the total
volume of data used to train the model, but also the number
of independent sources that collect the data under different
spatial and temporal scenarios and contribute them for model
training. For example, the medical imaging records from
multiple independent medical institutions can be garnered to
train a disease diagnosis model that is more accurate than
what can be achieved by using data from any one institution
alone [1]. In line with this momentum, distributed machine
learning technology has received a lot of interests recently.
A distributed machine learning algorithm allows each source
to first train an individual model (a.k.a. child model) just
based on its own dataset, and then utilize the training result
from all child models to construct a generalized model. As
such, distributed machine learning enjoys the highly desirable
benefit of data privacy, because it only requires the sharing
of child model’s training outcome (i.e., training parameters
or gradients), rather than a direct disclosure of data across
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different sources. In addition, the training over different data
sources can be paralleled and crowd-sourced to a cluster of
machines, and therefore parallelism and high-speed is another
benefit provided by distributed machine learning.

While distributed machine learning provides many nice
features, researchers are concerned about its security prob-
lems, especially its vulnerability to model poisoning attacks.
In particular, because the validity of the final learning outcome
depends on the correctness of every child model and as the
learning has a distributed structure, an attacker may simply
compromise a subset of the data sources and tamper the train-
ing of their child models to compromise the final generalized
model. Similar damage may also be caused when some data
sources are malicious, injecting false child model parameters
(or gradients) into the distributed learning process. Even
worse, the iterative structure of many distributed machine
learning algorithms allow the injected false model parameters
to propagate among both global and child models, eventually
affecting the validity of both the generalized model and all
child models. In light of these threats, the countermeasures
that allow the model server to check the validity (or the likeli-
hood of being valid) of the shared local training outcome, and
to eliminate the suspicious workers is extremely important, as
it provides the guarantee for the convergence and the quality
of the final global model in the distributed learning process.

Most existing countermeasures in distributed learning are
designed based on a presumed attack model, and present
their defense capabilities under that presumed attack model.
However, they achieve limited defense effectiveness when
facing different attack models other than the one that it was
designed against. For example, the defense methods described
in [2] and [3] are focusing on the targeted attack models,
and their common goal is to prevent the mis-classification of
a certain label. However, when facing the untargeted attack
which aims to distort the global convergence, such targeted
attack defense methods very often achieve poor performance.

In reality, however, when a distributed learning system
is being deployed, it typically does not have the luxury of
knowing the attack models that will actually be launched
against it in its operation, thus constituting a zero-day vul-
nerability for the distributed learning system. Pre-stacking up
a variety of countermeasures during the deployment of the
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learning system, each of which is designed specifically for
a particular attack model that is anticipated to occur to the
underlying system - a method commonly adopted by the soft-
ware engineering industry to counter viruses, is not a feasible
solution for learning systems because the countermeasures
against different attack models are typically not compatible
with each other. Therefore, when a new distributed learning
system is being deployed, it is critical to embed in the system
a wide-spectrum counter-attack defense mechanism, whose
operation relies on little assumptions of the attack model (i.e.,
being attack model agnostic), and thus is able to counter a
wide range of possible attacks. Such a defense mechanism
will give the learning system an effective first line of defense
when the system is born, alleviating the zero-day vulnerability
of the system.

In this paper, focusing on the general category of model
poisoning attacks, we study the attack-model-agnostic defense
mechanisms in distributed machine learning by exploring
several main-stream untrageted attack countermeasures such
as Krum [4] and AFA [5]. We also propose two new attack-
model-agnostic countermeasures to defend against general
model poisoning attacks in distributed learning: the Drop-one,
and Structural Similarity (SSIM) detection. We evaluate these
detection methods against several main stream untargeted
attack models, and compare their effectiveness under different
attack settings. Our contributions include the following three
folds:

o Targeting the general category of model poisoning at-
tacks, we propose two novel attack-model-agnostic de-
fense methods for distributed learning: Drop-One and
SSIM detection. It is worth noting that in contrast to
the existing detection methods that compute the decision
boundary based on the snapshot of the training outcome
in current iteration, the SSIM method considers the trace
of training outcomes in a sequence of iterations (i.e., the
current and the past K iterations). For better detection
accuracy, SSIM regards the gradients from each epoch
as a series of vectors, and finds out the most suspicious
gradients by exploiting historic information.

« We propose a new metric, the Heritage Factor, to mea-
sure and study the false parameter propagation between
child models in different iterations of distributed learn-
ing. Such a metric also enables us to characterize the
impact of attack injected initially into a single child
model on the validity of the final generalized model.

« We conduct extensive model poisoning attack experi-
ments over the MNIST dataset under a wide range of
attack models, and observe that the magnitude of the
injected attack vector is the dominant factor for the
effectiveness of the attack regardless of the attack model.
Based on this observation, we verify through extensive
experiments the effectiveness of the proposed attack-
model-agnostic countermeasure mechanisms over a wide
range of attack magnitudes.

To the best of our knowledge, our work is the first to sys-
tematically study the attack-model-agnostic countermeasures
against model poisonings in distributed learning systems.

II. RELATED WORK
A. Poisoning Attacks

Distributed learning is vulnerable to poisoning attacks.
According to the goal of the attackers, the poisoning attacks
can be divided into two categories, the targeted attacks that
aims to reduce the accuracy on a given class, as described in
[6] and [7], and the untargeted attack, whose goal is to prevent
the distributed learning system from converging to its optimal
solution as described in [8] [9] [10] [11]. We believe that the
untargeted attacks that threat the entire learning system has
severe consequences than targeted attacks, therefore, we focus
on the defense mechanisms against the untargeted attacks in
this paper.

B. Defense Methods

Based on the potential attack models, the defense method
could also be divided into two categories. The targeted de-
fense proposed in [2] and [3] were based on the prior knowl-
edge of the attack models. And more generally, Krum and
Multi-Krum [4], AFA [5], Trimmed-Mean [10], Median [12]
and Bulyan [13] are proposed to counter the untargeted at-
tacks in distributed learning systems. These countermeasures
utilize the statistical information such as gaussian similarity,
cosine similarity, mean and median along each dimensions of
the uploaded gradients, and draw the decision boundary to
eliminate the outlying votes which are regarded as the attack
vectors. It is worth noting that most of these methods compute
the decision boundary based on the snapshot of the gradients
in the current iteration, the SSIM proposed in this paper utilize
the current and the historical gradients to differentiate the
suspicious collaborators from the honest ones.

III. MODEL DESCRIPTION AND PROBLEM FORMULATION
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Fig. 1. High-level system architecture.

Authorized licensed use limited to: Auburn University. Downloaded on September 04,2023 at 22:22:51 UTC from IEEE Xplore. Restrictions apply.



A. Overview

Figure 1 illustrates the high-level architecture of our dis-
tributed learning system. It is an abstract example of the
parameter server [14] system. The system contains one server,
which is responsible for maintaining the global parameters,
and NV collaborators (also referred to as peers in the following
text). There exists the communication protocol that allows
the collaborators to share the training information through
local gradients upload and global parameters download. In the
following, we describe the role and tasks of each components:
the parameter server and the collaborators in details.

B. Local training

Assume that there are IV peers, all of which have agreed in
advance upon the same learning objective and training model
architecture. For simplicity, but without loss of the generality,
we choose the classification task as our objective, and neural
network as our training architecture in this paper. Each peer
maintains their own private dataset. These dataset should not
be shared as they may contain sensitive information.

Each peer ¢ maintains a local set of neural network param-
eters, denotes to wt. The peer starts training by downloading,
and replacing all local parameters with the global parameters
from the server. After that, the peer trains locally for one
epoch with Stochastic Gradient Descent optimization [15]. In
this epoch, the peer should train on all the local data, instead
of certain mini-batches. This single-epoch training produces
a set of gradients, denotes to g}'C as

gl = Wi — Wi (1)

where

. g}'€ denotes to peer 7’s true local gradients trained with
SGD at epoch k.
o wi denotes to the local weights(parameters) of peer i at
epoch k after the local training.
The peers will then upload the gradients g}'C to the parameter
server, and wait until the next iteration.

The next peer will perform the same process of download-
ing and replacing the local parameters by the parameters from
the server, which now contains the information uploaded by
the previous peer, train locally for one epoch, stop and upload
the gradients to the server. The iteration continues until all the
peers have trained locally for one epoch and then the next
iteration starts, where each peers will train for the second
epoch.

C. Parameter server

The parameter server maintains a set of global parameters,
denotes to w%l"bal. Each time the server receives a gradient
vector from a peer, it updates the set of global parameters by
the following formula:

global global

wi =w,_; + T]g;:C 2

where

e 7) is a constant that characterizes the percentage of
uploaded gradient to be aggregated into the global
parameters (or learning rate in conventional machine
learning).

e k—1 and k denote the epoch number, and

o g! is the local gradients upload by peer i at epoch k.

As shown in Figure 1, each upload is followed by an update,
and an iteration is finished after each peer has trained itself
for one epoch and has uploaded its local gradients.

IV. THREAT MODELS

Our proposed defense mechanisms seek to counter a full
range of model-poisoning attacks in distributed learning with-
out requiring pre-knowledge of the specific attack model.
Several representative model-poisoning attacks are presented
below. Note that our proposed defense mechanisms do not
depend on any of these specific attack models. Instead, as
will be clear shortly in Section VI, we will make observation
on some common behavior presented by these attack models,
which justifies our proposed model-agnostic defense mecha-
nisms.

A. Single Attacker

Similar to the honest peers, the attacker has access to
its own private data, and the communication channel with
the server. In order to take advantage of other collaborators’
training efforts, the attacker download the global parameters
once. That’s the only time that the attacker will perform
parameters downloading, and that particular set of global
parameters downloaded will be the last set of “pure” global
parameters, as it contains the training information from the
honest peers and has not been polluted yet.

After the initial download of global parameters, the attacker
solely trains on its own data. When it’s the attacker’s turn
to upload, the attacker fabricates a vector resembling the
features of the true gradients, and uploads it to the server. We
consider the following two model poisoning attack models,
and explain their strategies to fabricate the poisoning vector
with the maximum attacking effects.

1) Random Noise Attack: The random noise attack fabri-
cates the poisoning vector by uniformly generating a set of
random scalars within the range (also referred to as magnitude
in the following text) of [ry, 73] as

gl = e ~unif(ry, ). 3)

where € is uploaded to the parameter server as the true
gradients. In experiments, we create several groups of [r7, 73]
in order to observe the correlation between the poisoning
magnitude and the attack strength. At the same time, the
attacker takes the advantage of the global parameters down-
loaded, and trains itself for one epoch.

2) Gradient Ascent Attack: Gradient ascent attack fab-
ricates the poisoning vector by first creating a temporary
model. Then, the attacker downloads the global parameters
into the temporary model, and perform gradient ascent
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optimization for one epoch. The resulting gradients, serving
as the poisoning vector, will be uploaded to the server. Similar
to Equation 1, the gradients is computed by subtracting the
parameters downloaded from the parameters after gradient
ascent training in current epoch as

P i
8y —€=Wi — Wi

“)

where wi,_, is equivalent to the global parameters w& >

which was downloaded to the temporary model.

It is worth noting is that the ascending algorithms is based
on the global parameters, not the attacker’s local parameters,
as the local parameters only contain the converging informa-
tion of the attacker’s data, and at the server-point-of-view,
it may not be the steepest ascending direction. The global
parameters, instead, contain the converging information from
all the honest peers, and the ascending gradients computed
from these parameters should yield to a better attacking
performance.

In order to compare the attacking impacts with the random
noise attack, we also take the magnitude of the ascent vector
into consideration. After the computation of € using gradient
ascent, it is normalized into different scale ranges. And in
general, the gradient ascent attack can be considered as a more
optimized case of the random noise attack, which the injected
random attack vector is the carefully computed ascending
gradients.

B. Multiple Attackers

In this subsection, we inject the distributed attacking flavor
into the previously-described single-attacker models. It is
assumed that all the attackers know the identity of other
attackers and can share information with others under the
condition of not revealing their own data.

1) Collaborative Random Noise Attack: Compared to the
random noise attack in the single-attacker scenario, collabo-
rative random noise attack can be seen as multiple attackers
working together towards the same attacking goal. With a
set overall magnitude (or range) of the attack vectors, the
group of attackers will collaborate to produce multiple attack
vectors, pretending to be the true gradients.

Denote the magnitude (range) of the overall attack vector
as [r'1,72), and denote the number of attackers as N,, The
attack vector that each attacker will generate is:

1

Ny " N,
Such collaborative attack strategy ensures the consistency of
the overall attack magnitude, while assigning the task of
computing a sub-attack vector to individual attackers.

2) Collaborative Gradient Ascent Attack: In Collaborative
Gradient Ascent Attack, one attacker computes the global
ascending gradients, upload part of the ascending gradients
to the server, and send the rest to the next attacker. The
next attacker will perform the same process of uploading
another part of the remaining gradients and send the rest

gi = € ~ unif( 73) (5)

7:17
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to the next attacker. Denote N, to the number of attackers,
and ai, as,...,a, to the attacker’s IDs, respectively. The first
attacker, a1, computes the ascending gradients e according to
Equation 4. The poisoning vectors that will be uploaded by
each attacker is:

An

8k

1

N,—(n—1)

(6)

n—1___
(e—Y &)
j=1

C. Heritage Factor

With plenty of threat models explained, in this section, the
essence of the attack models is described. We propose a new
concept, the Heritage Factor, under this particular architecture
of distributed learning system.

As already explained in Eq.(2), each collaborator is respon-
sible for uploading its local training gradients, denotes to g.
For honest peers, g’,i is the true gradients that is produced
from local training at epoch k, however, for adversaries, the
gradients that they upload contain poisoning vectors with
different magnitudes.

It is worth noting that if there exists no attacker, the dis-
tributed learning system should help each of the collaborators
to learn a more generalized model and converge faster [16],
[17]. From a human’s understandable perspective, we can
regard such learning procedure as a inheritance behavior.
The later peers “inherit” all the legacies from the previous
collaborators. The “legacy” is contained in the true gradients
that are aggregated by the update function on the parameter
server.

From an attacker’s perspective, the vectors uploaded can
be seen as a weighted sum of the attackers’ true gradients
and the attack vector. Denote the uploaded vector from an
attacker as g, we can formulate g} as:

gl = pg. + (1 — p)e )

where

g}; describes the vector to be uploaded by attacker <,
g, represents the true gradients produced by local train-
ing,

e denotes the attack vector, and

we define 0 < p < 1 to be the heritage factor, which
is a coefficient that specifies the percentage of the true
gradients information that will be inherited.

When p is 1, no attack vector is added to the true local
gradients, and the so-called attacker is not performing any
attacking activities. On the other extreme, when p is 0, the
entire uploaded vector would be the attack vector, and it will
contain no learned information (or legacy) from the local
model.

V. DEFENSE METHODS

In this section, we first describe the two proposed attack-
model-agnostic defense models, and then summarize the
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main-stream untargeted detection mechanisms. All the de-
fense methods are developed to be applied before the ag-
gregation of the local updates on the server to eliminate the
suspicious collaborators (or attackers).

A. Drop One Detection

As the name suggest, the Drop One Detection method is
applicable when there’s only one attacker. We put the up-
loaded gradients into groups. Denote the set of collaborators
as C, where |C| = N. We generate N groups, and each group
contains [N —1 uploaded gradients, that is, each group contains
all but the gradients from the peer who has the same ID as
the group ID. More specifically, group j contains the set of
uploaded gradients {g} | Vi € C, i # j}.

After the grouping, the standard deviation of each group is
calculated, and compared with other groups’. The group, in
which the standard deviation is the smallest, is regarded as
the group in which the attacker’s gradients vector is dropped.

B. Series Structural Similarity

The Structural Similarity (SSIM) was first proposed in [18]
aiming to find the images that contain the best human percep-
tual information after the same amount of Mean Squared Error
(MSE) distortion. From the perspective of computer vision,
the Structural Similarity measures the luminance, contrast,
and the temporal and spatial correlations of pixels in an image.
In our scenario, comparing images is out of our scope, instead,
our goal is to find out the outliers from a set of uploaded
gradients vectors.

As the collaborators had all agreed on the local training
architecture and the training objectives, if there exists no
attacks, the gradients uploaded from each of the collaborators
will contain the common converging information that points
towards the global optimal solution. Therefore, by consider-
ing the uploaded gradients at each epoch as the structural
information of the overall distributed learning system, we
present the SSIM defense mechanism. Denote the series
of uploaded vectors of peer i by T! = {gi,gi,...gi},
where the 1,2, ..., k represents the epochs number. The SSIM
mechanism computes the structural similarity score [18] to
analyzes the trace of each peer and predicts the potential
attackers. The intuition is that the attackers would leave a
different trace in comparison with other honest collaborators.

A subtle change is made because of the fact that the ground
truth (or the “original reference image” in computer vision)
does not exist in the case of distributed learning, and therefore
multiple references are randomly chosen and the SSIM scores
are computed according to each reference. The majority vote
is taken from all references and the suspicious collaborator(s)
are eliminated.

C. Gaussian Detection (Krum)

The Krum detection method is proposed in [4] based on
the assumption that all gradients should follow the Gaussian
distribution, and that attackers/outliers should reside far away

1519

from honest collaborators. As previously denoted, the collec-
tion of all the uploaded vectors at epoch k is [g}c, gz,. .gr ]
The gradients mean puj and the standard deviation oy are
computed first. Then, for each uploaded vector, its distances
to the mean is calculated, and is represented by the multiples
of standard deviation o}, as

X3

(&% — 1)/ow (8)

A larger 0} indicates a larger distance from the mean, and the
corresponding uploader is more suspicious. Define the outlier
threshold dGaussian in epoch k to be the (1 — «) percentile
of the Gaussian distribution of zero mean and 0']% variance,
where « is a small and given probability that defines the
outliers. Then if 92 > dGaussian, its uploader 4 is regarded as
an attacker.

The Gaussian Detection method focuses more on the gra-
dients vectors’ magnitude, as the calculation of mean and
standard deviation ignores the high-dimension direction of
gradient vectors. The threshold used is observed from the
experiments to obtain the best accuracy.

D. Cosine Similarity Detection (AFA)

AFA [5] considers the Cosine Similarity between the
uploaded vectors. Instead of considering the magnitude of
uploaded gradients like Krum, AFA is developed under the
intuition that the attackers/outliers’ high dimensional gradient
direction are different from those from honest peers, which
instead may be pointing towards the global convergence point.
AFA starts by computing the mean p of all the uploaded vec-
tors. Then, the cosine similarity score between each uploaded
vector and the mean are computed as

gl 1 i1 8,1
OO gl ~ e e
A smaller cosine similarity score indicates the less similarity

from the mean, and the corresponding collaborator who obtain
a small score is more suspicious.

(€))

VI. EVALUATION
A. Dataset and setup

We evaluate our threat and detection models using the
MNIST dataset [19] which contains 60,000 images as the
training set, and 10,000 in the testing set. We implement
a distributed learning system which includes one parameter
server and multiple collaborators, each maintain the same
neural networks architecture. The training data are shuffled
and separated randomly into each peer.

We use PyTorch [20], version 0.4.1, with the help of
Numpy and Torchvison packages, to implement our algo-
rithms. We set the global and local learning rate 7 to 0.01, and
batch size to 64. Cross Entropy is implemented as the loss
function and Stochastic Gradient Descent is adopted as the
optimizer. We conduct our experiments on Tesla P100 GPUs,
and all of our test results shown below are the averages of 50
runs.
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Fig. 2. Performance results of N = 10, single attacker, random noise attack
with multiple magnitudes.

B. Attacking Results

1) Single Random Noise Attack: Experiments are con-
ducted simulating the scenario where among all the collab-
orators, only one of them is an attacker, and that attacker
is launching the random noise attack against the distributed
learning system. Figure 2 demonstrates the relationship be-
tween the magnitude of attack vectors versus the final classi-
fication accuracy.

The attacker-free and control curves correspond to the
scenarios where there is no attacker, and when one peer does
not participate in the distributed learning. From this figure,
it is clear that the larger the magnitude of the attack vectors
are, the bigger disturbance is injected into the learning system,
therefore, the worse the classification performances are for the
honest peers.

Another observation is that when the attack magnitudes are
large (the first three subplots), the more epochs of training
conducted, the more disturbance the system has. Our guess is
that from the first several training epochs, the local training
has not converged yet, so its uploaded gradients vectors
do not contain enough converging information, causing the
global parameters to be polluted by the non-converging attack
vectors. The injected poisoning is then propagated to other
collaborators by global parameters downloading, and spread
throughout the entire distributed learning system, affecting
both the global server and all collaborators. Although each
honest collaborator is trying to minimize the loss, they are
not able to get to the final near-convergence stage since they
are only allowed to train for one epoch, which is not enough
to correct the poisoned parameters. This vicious process goes
on and on, and will not be reverted back. As a result, the more
training the system performs, the further away it is from the
optimal convergence point.

Another experiment is conducted to verify our guess. We
implemented the defense methods described in section V
to find out the potential attacker(s) after several epochs of
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Fig. 3. Performance results of N = 10, single attacker, gradient ascent

attack with multiple magnitudes.

training. Once a collaborator is classified as an attacker, the
server will stop using its upload for the global parameters
updating purposes. It turns out that at first, the distributed
learning system is not converging at all, but when the server
depicts and eliminates the uploaded vectors from the attacker,
the system starts to converge, and the performance results of
the honest collaborators starts to increase. Due to the space
limitation, the resulting figure is not present in this paper.

Such observation also correlates with our definition of the
Heritage Factor. The smaller the Heritage Factor is, the less
percentage of true gradients is inherited, causing the overall
performance to be degraded. The detailed experimental results
for Heritage Factor is demonstrated later this section.

2) Single Gradient Ascent Attack: The experiments for sin-
gle gradient ascent attack are launched under the same settings
as the single random noise attack. Figure 3 demonstrates the
performance results of among 10 collaborators, there exists
one attacker and the Gradient Ascent Attack is launched.
Similar to the ones in the single random noise attack, the
following observations can be extracted:

o the bigger the magnitude of the attack vector is, the

worse the performance of the honest collaborators are.

o the “diverging” information propagates within the sys-

tem, degrading the performance with the increase num-

ber of training epochs.
Comparing the subplots from Figures 2 and 3, it is suggested
that when the magnitude of the attack vector is set, the
gradient ascent attack has better attacking effectiveness, as
it drags the global parameters to the steepest ascending
direction, whereas in the random noise attack, the global
parameters are dragged to random directions. And again, in
such perspective, the gradient ascent attack can be seen as a
special case of the random noise attack.

3) Multiple Attackers: Figures 4 and 5 demonstrates the
experiment results when there are 10 collaborators and 2, 4
of them are attackers, respectively. The attackers share the
overall attack magnitude, and in this case, let the overall
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Fig. 4. Performance result of N = 10, 2 attackers, collaborative random

noise attack.
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Fig. 5. Performance result of N = 10, 4 attackers, collaborative random
noise attack.

attack magnitude be [r1,r2], then the magnitude that each
attacker leverages is [$71, 3r2], and [§r1, {72], respectively.
Comparing Figure 2, 4 and 5, where the only changing
variable is the number of attackers (or the attack magnitude
of each attacker), the performance of honest peers in Figure
2 is the lowest, followed by 4. This suggests that injecting a
single large attack vector has a stronger attack strength on the
distributed learning system than injecting small attack vectors
multiple times. The experiment results for multiple Gradient
Ascent Attack also suggest the same insights, the results are
omitted due to the limited space of the paper.

C. Defense Results

From Figures 2-5, it can be observed that the magnitude of
the injected attack vector is the dominant factor in deciding
the ultimate attack effectiveness, regardless of the attack
models. Therefore, in this subsection, we will focus on this
dominant factor and perform our defense over a wide range
of attack magnitudes. Ideally, we prefer to show our defense
results against all attack models presented in Section IV.
However, due to the space limit, here we can only present
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Fig. 6. a)-c) Performance result of N = 10, single attacker, random noise
attack defense at multiple magnitudes. d) the correlation between heritage
factor and Accuracy.

the performance of our proposed defense mechanisms under
the random noise attack. This is because the random noise
attack can be seen as the most general case of the untargeted
attack, and other attack models can be regarded as special
cases of the random noise attack. Therefore, the performance
of the proposed defense mechanisms under the random noise
attack would be representative.

1) Single Attacker Defense: Figure 6 a) - ¢) demonstrates
the performance of our single detection models. It can be
seen that the larger the attack magnitude is, the better the
defense results is. When the attack magnitude is 0, where
there exists no attacker, all defense models result in random
guess accuracy.

Furthermore, when the attack magnitude is small, some
defense models do not perform as well. This is innocuous
in the distributed learning scenarios, as when the attack
magnitudes are too small to fool the detection models, they do
not achieve visible attacking impact on the overall distributed
learning system either. And if an uploaded vector is only a
little different from others, we can’t tell if it really is an attack
vector, or it is from an honest collaborators whose dataset is
different.

2) Multiple Attacker Defense: Figure 7 shows the per-
formance of our defense models on multiple attackers. The
results are achieved under the scenario where there are 10
peers, and 2 of them are attackers. We test 500 runs on each
defense model, and this figure demonstrates the number of
times 0, 1, or 2 attackers among all attackers are caught,
respectively. Comparing with Figure 6, the accuracy of the
defense models decrease when there are multiple attackers.
This is intuitive, as more than one attackers leverage the entire
attack vector for single attacker, the uploaded vector would
differ less from the honest peers’.

D. Heritage Factor

As the definition states, the Heritage Factor is the metric
that characterizes the percentage of the “legacy”, Figure 6d)
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Fig. 7. Performance result of N = 10, 2 attackers The blue, orange, and
green portions of the same bar indicates the number of times 2, 1, and 0
attackers are caught when there are in total 500 number of detection runs.

demonstrates the correlation between the Heritage Factor and
the classification accuracy of honest peers. It suggests that the
performance of the honest peers are in the positive relation
with the Heritage Factor. Some other interesting experimental
scenarios, including different number of total peers, different
number of attackers..,etc, are also conducted, but due to the
space limitation, those are not shown in this paper.

VII. CONCLUSION

In this paper, we study the attack-model-agnostic counter-
measures in distributed learning system based on the fact that
it’s unrealistic to gain knowledge on the attack models that
would be launched prior to the deployment of the distributed
learning system. We explore existing threat and detect models,
and propose the Drop-one and Structural Similarity (SSIM)
defenses that analyze both the current and historic gradients
to depict the attackers for poisoning attacks in distributed
learning. A new concept, the Heritage Factor is presented
that characterizes the false parameter propagation among the
entire distributed learning system. Such definition also enables
us to measure how “helpful” that one collaborator is to other
collaborators and to the system. We verify through exten-
sive experiments the effectiveness of the proposed attack-
model-agnostic countermeasures over a wide range of attack
magnitudes. To the best of our knowledge, our work is
the first to systematically study the attack-model-agnostic
countermeasures in distributed machine learning system.
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