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Abstract—The distributed nature of distributed learning ren-
ders the learning process susceptible to model poisoning attacks.
Most existing countermeasures are designed based on a pre-
sumed attack model, and can only perform under the presumed
attack model. However, in reality a distributed learning system
typically does not have the luxury of knowing the attack model it
is going to be actually facing in its operation when the learning
system is deployed, thus constituting a zero-day vulnerability
of the system that has been largely overlooked so far. In this
paper, we study the attack-model-agnostic defense mechanisms
for distributed learning, which are capable of countering a
wide-spectrum of model poisoning attacks without relying on
assumptions of the specific attack model, and hence alleviating
the zero-day vulnerability of the system. Extensive experiments
are performed to verify the effectiveness of the proposed defense.

Index Terms—distributed machine learning, attack-model-
agnostic defense, heritage factor, threat and detection model

I. INTRODUCTION

In recent years we have witnessed the initial success of

machine-learning-based AI (artificial intelligence) in many

application domains, such as image processing, natural lan-

guage processing, autonomous driving, robotics, gaming,

medical science, and public safety. Encouraged by this initial

success, the size of learning is being scaled up, so as to

make a trained model more generalizable and applicable to

wider scopes. This is achieved by increasing not only the total

volume of data used to train the model, but also the number

of independent sources that collect the data under different

spatial and temporal scenarios and contribute them for model

training. For example, the medical imaging records from

multiple independent medical institutions can be garnered to

train a disease diagnosis model that is more accurate than

what can be achieved by using data from any one institution

alone [1]. In line with this momentum, distributed machine

learning technology has received a lot of interests recently.

A distributed machine learning algorithm allows each source

to first train an individual model (a.k.a. child model) just

based on its own dataset, and then utilize the training result

from all child models to construct a generalized model. As

such, distributed machine learning enjoys the highly desirable

benefit of data privacy, because it only requires the sharing

of child model’s training outcome (i.e., training parameters

or gradients), rather than a direct disclosure of data across

different sources. In addition, the training over different data

sources can be paralleled and crowd-sourced to a cluster of

machines, and therefore parallelism and high-speed is another

benefit provided by distributed machine learning.

While distributed machine learning provides many nice

features, researchers are concerned about its security prob-

lems, especially its vulnerability to model poisoning attacks.

In particular, because the validity of the final learning outcome

depends on the correctness of every child model and as the

learning has a distributed structure, an attacker may simply

compromise a subset of the data sources and tamper the train-

ing of their child models to compromise the final generalized

model. Similar damage may also be caused when some data

sources are malicious, injecting false child model parameters

(or gradients) into the distributed learning process. Even

worse, the iterative structure of many distributed machine

learning algorithms allow the injected false model parameters

to propagate among both global and child models, eventually

affecting the validity of both the generalized model and all

child models. In light of these threats, the countermeasures

that allow the model server to check the validity (or the likeli-

hood of being valid) of the shared local training outcome, and

to eliminate the suspicious workers is extremely important, as

it provides the guarantee for the convergence and the quality

of the final global model in the distributed learning process.

Most existing countermeasures in distributed learning are

designed based on a presumed attack model, and present

their defense capabilities under that presumed attack model.

However, they achieve limited defense effectiveness when

facing different attack models other than the one that it was

designed against. For example, the defense methods described

in [2] and [3] are focusing on the targeted attack models,

and their common goal is to prevent the mis-classification of

a certain label. However, when facing the untargeted attack

which aims to distort the global convergence, such targeted

attack defense methods very often achieve poor performance.

In reality, however, when a distributed learning system

is being deployed, it typically does not have the luxury of

knowing the attack models that will actually be launched

against it in its operation, thus constituting a zero-day vul-
nerability for the distributed learning system. Pre-stacking up

a variety of countermeasures during the deployment of the
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learning system, each of which is designed specifically for

a particular attack model that is anticipated to occur to the

underlying system - a method commonly adopted by the soft-

ware engineering industry to counter viruses, is not a feasible

solution for learning systems because the countermeasures

against different attack models are typically not compatible

with each other. Therefore, when a new distributed learning

system is being deployed, it is critical to embed in the system

a wide-spectrum counter-attack defense mechanism, whose

operation relies on little assumptions of the attack model (i.e.,

being attack model agnostic), and thus is able to counter a

wide range of possible attacks. Such a defense mechanism

will give the learning system an effective first line of defense

when the system is born, alleviating the zero-day vulnerability

of the system.

In this paper, focusing on the general category of model

poisoning attacks, we study the attack-model-agnostic defense

mechanisms in distributed machine learning by exploring

several main-stream untrageted attack countermeasures such

as Krum [4] and AFA [5]. We also propose two new attack-

model-agnostic countermeasures to defend against general

model poisoning attacks in distributed learning: the Drop-one,

and Structural Similarity (SSIM) detection. We evaluate these

detection methods against several main stream untargeted

attack models, and compare their effectiveness under different

attack settings. Our contributions include the following three

folds:

• Targeting the general category of model poisoning at-

tacks, we propose two novel attack-model-agnostic de-

fense methods for distributed learning: Drop-One and

SSIM detection. It is worth noting that in contrast to

the existing detection methods that compute the decision

boundary based on the snapshot of the training outcome

in current iteration, the SSIM method considers the trace

of training outcomes in a sequence of iterations (i.e., the

current and the past K iterations). For better detection

accuracy, SSIM regards the gradients from each epoch

as a series of vectors, and finds out the most suspicious

gradients by exploiting historic information.

• We propose a new metric, the Heritage Factor, to mea-

sure and study the false parameter propagation between

child models in different iterations of distributed learn-

ing. Such a metric also enables us to characterize the

impact of attack injected initially into a single child

model on the validity of the final generalized model.

• We conduct extensive model poisoning attack experi-

ments over the MNIST dataset under a wide range of

attack models, and observe that the magnitude of the

injected attack vector is the dominant factor for the

effectiveness of the attack regardless of the attack model.

Based on this observation, we verify through extensive

experiments the effectiveness of the proposed attack-

model-agnostic countermeasure mechanisms over a wide

range of attack magnitudes.

To the best of our knowledge, our work is the first to sys-

tematically study the attack-model-agnostic countermeasures

against model poisonings in distributed learning systems.

II. RELATED WORK

A. Poisoning Attacks

Distributed learning is vulnerable to poisoning attacks.

According to the goal of the attackers, the poisoning attacks

can be divided into two categories, the targeted attacks that

aims to reduce the accuracy on a given class, as described in

[6] and [7], and the untargeted attack, whose goal is to prevent

the distributed learning system from converging to its optimal

solution as described in [8] [9] [10] [11]. We believe that the

untargeted attacks that threat the entire learning system has

severe consequences than targeted attacks, therefore, we focus

on the defense mechanisms against the untargeted attacks in

this paper.

B. Defense Methods

Based on the potential attack models, the defense method

could also be divided into two categories. The targeted de-

fense proposed in [2] and [3] were based on the prior knowl-

edge of the attack models. And more generally, Krum and

Multi-Krum [4], AFA [5], Trimmed-Mean [10], Median [12]

and Bulyan [13] are proposed to counter the untargeted at-

tacks in distributed learning systems. These countermeasures

utilize the statistical information such as gaussian similarity,

cosine similarity, mean and median along each dimensions of

the uploaded gradients, and draw the decision boundary to

eliminate the outlying votes which are regarded as the attack

vectors. It is worth noting that most of these methods compute

the decision boundary based on the snapshot of the gradients

in the current iteration, the SSIM proposed in this paper utilize

the current and the historical gradients to differentiate the

suspicious collaborators from the honest ones.

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

Fig. 1. High-level system architecture.
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A. Overview

Figure 1 illustrates the high-level architecture of our dis-

tributed learning system. It is an abstract example of the

parameter server [14] system. The system contains one server,

which is responsible for maintaining the global parameters,

and N collaborators (also referred to as peers in the following

text). There exists the communication protocol that allows

the collaborators to share the training information through

local gradients upload and global parameters download. In the

following, we describe the role and tasks of each components:

the parameter server and the collaborators in details.

B. Local training

Assume that there are N peers, all of which have agreed in

advance upon the same learning objective and training model

architecture. For simplicity, but without loss of the generality,

we choose the classification task as our objective, and neural

network as our training architecture in this paper. Each peer

maintains their own private dataset. These dataset should not

be shared as they may contain sensitive information.

Each peer i maintains a local set of neural network param-

eters, denotes to wi
k. The peer starts training by downloading,

and replacing all local parameters with the global parameters

from the server. After that, the peer trains locally for one

epoch with Stochastic Gradient Descent optimization [15]. In

this epoch, the peer should train on all the local data, instead

of certain mini-batches. This single-epoch training produces

a set of gradients, denotes to gi
k as

gi
k = wi

k −wi
k−1 (1)

where

• gi
k denotes to peer i’s true local gradients trained with

SGD at epoch k.

• wi
k denotes to the local weights(parameters) of peer i at

epoch k after the local training.

The peers will then upload the gradients gi
k to the parameter

server, and wait until the next iteration.

The next peer will perform the same process of download-

ing and replacing the local parameters by the parameters from

the server, which now contains the information uploaded by

the previous peer, train locally for one epoch, stop and upload

the gradients to the server. The iteration continues until all the

peers have trained locally for one epoch and then the next

iteration starts, where each peers will train for the second

epoch.

C. Parameter server

The parameter server maintains a set of global parameters,

denotes to wglobal
k . Each time the server receives a gradient

vector from a peer, it updates the set of global parameters by

the following formula:

wglobal
k = wglobal

k−1 + ηgi
k (2)

where

• η is a constant that characterizes the percentage of

uploaded gradient to be aggregated into the global

parameters (or learning rate in conventional machine

learning).

• k − 1 and k denote the epoch number, and

• gi
k is the local gradients upload by peer i at epoch k.

As shown in Figure 1, each upload is followed by an update,

and an iteration is finished after each peer has trained itself

for one epoch and has uploaded its local gradients.

IV. THREAT MODELS

Our proposed defense mechanisms seek to counter a full

range of model-poisoning attacks in distributed learning with-

out requiring pre-knowledge of the specific attack model.

Several representative model-poisoning attacks are presented

below. Note that our proposed defense mechanisms do not

depend on any of these specific attack models. Instead, as

will be clear shortly in Section VI, we will make observation

on some common behavior presented by these attack models,

which justifies our proposed model-agnostic defense mecha-

nisms.

A. Single Attacker

Similar to the honest peers, the attacker has access to

its own private data, and the communication channel with

the server. In order to take advantage of other collaborators’

training efforts, the attacker download the global parameters

once. That’s the only time that the attacker will perform

parameters downloading, and that particular set of global

parameters downloaded will be the last set of “pure” global

parameters, as it contains the training information from the

honest peers and has not been polluted yet.

After the initial download of global parameters, the attacker

solely trains on its own data. When it’s the attacker’s turn

to upload, the attacker fabricates a vector resembling the

features of the true gradients, and uploads it to the server. We

consider the following two model poisoning attack models,

and explain their strategies to fabricate the poisoning vector

with the maximum attacking effects.

1) Random Noise Attack: The random noise attack fabri-

cates the poisoning vector by uniformly generating a set of

random scalars within the range (also referred to as magnitude

in the following text) of [r̃1, r̃2] as

g̃i
k = ε ∼ unif(r̃1, r̃2). (3)

where ε is uploaded to the parameter server as the true

gradients. In experiments, we create several groups of [r̃1, r̃2]
in order to observe the correlation between the poisoning

magnitude and the attack strength. At the same time, the

attacker takes the advantage of the global parameters down-

loaded, and trains itself for one epoch.

2) Gradient Ascent Attack: Gradient ascent attack fab-

ricates the poisoning vector by first creating a temporary

model. Then, the attacker downloads the global parameters

into the temporary model, and perform gradient ascent
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optimization for one epoch. The resulting gradients, serving

as the poisoning vector, will be uploaded to the server. Similar

to Equation 1, the gradients is computed by subtracting the

parameters downloaded from the parameters after gradient

ascent training in current epoch as

g̃i
k = ε = wi

k −wi
k−1 (4)

where wi
k−1 is equivalent to the global parameters wglobal

k−1

which was downloaded to the temporary model.

It is worth noting is that the ascending algorithms is based

on the global parameters, not the attacker’s local parameters,

as the local parameters only contain the converging informa-

tion of the attacker’s data, and at the server-point-of-view,

it may not be the steepest ascending direction. The global

parameters, instead, contain the converging information from

all the honest peers, and the ascending gradients computed

from these parameters should yield to a better attacking

performance.

In order to compare the attacking impacts with the random

noise attack, we also take the magnitude of the ascent vector

into consideration. After the computation of ε using gradient

ascent, it is normalized into different scale ranges. And in

general, the gradient ascent attack can be considered as a more

optimized case of the random noise attack, which the injected

random attack vector is the carefully computed ascending

gradients.

B. Multiple Attackers

In this subsection, we inject the distributed attacking flavor

into the previously-described single-attacker models. It is

assumed that all the attackers know the identity of other

attackers and can share information with others under the

condition of not revealing their own data.

1) Collaborative Random Noise Attack: Compared to the

random noise attack in the single-attacker scenario, collabo-

rative random noise attack can be seen as multiple attackers

working together towards the same attacking goal. With a

set overall magnitude (or range) of the attack vectors, the

group of attackers will collaborate to produce multiple attack

vectors, pretending to be the true gradients.

Denote the magnitude (range) of the overall attack vector

as [r̃1, r̃2], and denote the number of attackers as Na, The

attack vector that each attacker will generate is:

g̃i
k = ε ∼ unif(

1

Na
r̃1,

1

Na
r̃2) (5)

Such collaborative attack strategy ensures the consistency of

the overall attack magnitude, while assigning the task of

computing a sub-attack vector to individual attackers.

2) Collaborative Gradient Ascent Attack: In Collaborative

Gradient Ascent Attack, one attacker computes the global

ascending gradients, upload part of the ascending gradients

to the server, and send the rest to the next attacker. The

next attacker will perform the same process of uploading

another part of the remaining gradients and send the rest

to the next attacker. Denote Na to the number of attackers,

and a1, a2,...,an to the attacker’s IDs, respectively. The first

attacker, a1, computes the ascending gradients ε according to

Equation 4. The poisoning vectors that will be uploaded by

each attacker is:

g̃an

k =
1

Na − (n− 1)
(ε−

n−1∑
j=1

g̃
aj

k ) (6)

C. Heritage Factor

With plenty of threat models explained, in this section, the

essence of the attack models is described. We propose a new

concept, the Heritage Factor, under this particular architecture

of distributed learning system.

As already explained in Eq.(2), each collaborator is respon-

sible for uploading its local training gradients, denotes to gi
k.

For honest peers, gi
k is the true gradients that is produced

from local training at epoch k, however, for adversaries, the

gradients that they upload contain poisoning vectors with

different magnitudes.

It is worth noting that if there exists no attacker, the dis-

tributed learning system should help each of the collaborators

to learn a more generalized model and converge faster [16],

[17]. From a human’s understandable perspective, we can

regard such learning procedure as a inheritance behavior.

The later peers “inherit” all the legacies from the previous

collaborators. The “legacy” is contained in the true gradients

that are aggregated by the update function on the parameter

server.

From an attacker’s perspective, the vectors uploaded can

be seen as a weighted sum of the attackers’ true gradients

and the attack vector. Denote the uploaded vector from an

attacker as g̃i
k, we can formulate g̃i

k as:

g̃i
k = ρgi

k + (1− ρ)ε (7)

where

• g̃i
k describes the vector to be uploaded by attacker i,

• gi
k represents the true gradients produced by local train-

ing,

• ε denotes the attack vector, and

• we define 0 ≤ ρ ≤ 1 to be the heritage factor, which

is a coefficient that specifies the percentage of the true

gradients information that will be inherited.

When ρ is 1, no attack vector is added to the true local

gradients, and the so-called attacker is not performing any

attacking activities. On the other extreme, when ρ is 0, the

entire uploaded vector would be the attack vector, and it will

contain no learned information (or legacy) from the local

model.

V. DEFENSE METHODS

In this section, we first describe the two proposed attack-

model-agnostic defense models, and then summarize the
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main-stream untargeted detection mechanisms. All the de-

fense methods are developed to be applied before the ag-

gregation of the local updates on the server to eliminate the

suspicious collaborators (or attackers).

A. Drop One Detection

As the name suggest, the Drop One Detection method is

applicable when there’s only one attacker. We put the up-

loaded gradients into groups. Denote the set of collaborators

as C, where |C| = N . We generate N groups, and each group

contains N−1 uploaded gradients, that is, each group contains

all but the gradients from the peer who has the same ID as

the group ID. More specifically, group j contains the set of

uploaded gradients {gi
k | ∀i ∈ C, i �= j}.

After the grouping, the standard deviation of each group is

calculated, and compared with other groups’. The group, in

which the standard deviation is the smallest, is regarded as

the group in which the attacker’s gradients vector is dropped.

B. Series Structural Similarity

The Structural Similarity (SSIM) was first proposed in [18]

aiming to find the images that contain the best human percep-

tual information after the same amount of Mean Squared Error

(MSE) distortion. From the perspective of computer vision,

the Structural Similarity measures the luminance, contrast,

and the temporal and spatial correlations of pixels in an image.

In our scenario, comparing images is out of our scope, instead,

our goal is to find out the outliers from a set of uploaded

gradients vectors.

As the collaborators had all agreed on the local training

architecture and the training objectives, if there exists no

attacks, the gradients uploaded from each of the collaborators

will contain the common converging information that points

towards the global optimal solution. Therefore, by consider-

ing the uploaded gradients at each epoch as the structural

information of the overall distributed learning system, we

present the SSIM defense mechanism. Denote the series

of uploaded vectors of peer i by Ti = {gi
1,g

i
2, ...,g

i
k},

where the 1, 2, ..., k represents the epochs number. The SSIM

mechanism computes the structural similarity score [18] to

analyzes the trace of each peer and predicts the potential

attackers. The intuition is that the attackers would leave a

different trace in comparison with other honest collaborators.

A subtle change is made because of the fact that the ground

truth (or the “original reference image” in computer vision)

does not exist in the case of distributed learning, and therefore

multiple references are randomly chosen and the SSIM scores

are computed according to each reference. The majority vote

is taken from all references and the suspicious collaborator(s)

are eliminated.

C. Gaussian Detection (Krum)

The Krum detection method is proposed in [4] based on

the assumption that all gradients should follow the Gaussian

distribution, and that attackers/outliers should reside far away

from honest collaborators. As previously denoted, the collec-

tion of all the uploaded vectors at epoch k is [g1
k, g2

k,. . . ,gn
k ].

The gradients mean μk and the standard deviation σk are

computed first. Then, for each uploaded vector, its distances

to the mean is calculated, and is represented by the multiples

of standard deviation σk as

θik = (gi
k − μk)/σk (8)

A larger θik indicates a larger distance from the mean, and the

corresponding uploader is more suspicious. Define the outlier

threshold δGaussian in epoch k to be the (1 − α) percentile

of the Gaussian distribution of zero mean and σ2
k variance,

where α is a small and given probability that defines the

outliers. Then if θik > δGaussian, its uploader i is regarded as

an attacker.
The Gaussian Detection method focuses more on the gra-

dients vectors’ magnitude, as the calculation of mean and

standard deviation ignores the high-dimension direction of

gradient vectors. The threshold used is observed from the

experiments to obtain the best accuracy.

D. Cosine Similarity Detection (AFA)
AFA [5] considers the Cosine Similarity between the

uploaded vectors. Instead of considering the magnitude of

uploaded gradients like Krum, AFA is developed under the

intuition that the attackers/outliers’ high dimensional gradient

direction are different from those from honest peers, which

instead may be pointing towards the global convergence point.

AFA starts by computing the mean μ of all the uploaded vec-

tors. Then, the cosine similarity score between each uploaded

vector and the mean are computed as

cos(β) =
gi
k · μ

||gi
k|| · ||μ||

=

∑n
j=1 g

i
kj
μj√∑n

j=1 g
i2
kj

√∑n
j=1 μ

2
j

. (9)

A smaller cosine similarity score indicates the less similarity

from the mean, and the corresponding collaborator who obtain

a small score is more suspicious.

VI. EVALUATION

A. Dataset and setup
We evaluate our threat and detection models using the

MNIST dataset [19] which contains 60, 000 images as the

training set, and 10, 000 in the testing set. We implement

a distributed learning system which includes one parameter

server and multiple collaborators, each maintain the same

neural networks architecture. The training data are shuffled

and separated randomly into each peer.
We use PyTorch [20], version 0.4.1, with the help of

Numpy and Torchvison packages, to implement our algo-

rithms. We set the global and local learning rate η to 0.01, and

batch size to 64. Cross Entropy is implemented as the loss

function and Stochastic Gradient Descent is adopted as the

optimizer. We conduct our experiments on Tesla P100 GPUs,

and all of our test results shown below are the averages of 50
runs.
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Fig. 2. Performance results of N = 10, single attacker, random noise attack
with multiple magnitudes.

B. Attacking Results

1) Single Random Noise Attack: Experiments are con-

ducted simulating the scenario where among all the collab-

orators, only one of them is an attacker, and that attacker

is launching the random noise attack against the distributed

learning system. Figure 2 demonstrates the relationship be-

tween the magnitude of attack vectors versus the final classi-

fication accuracy.

The attacker-free and control curves correspond to the

scenarios where there is no attacker, and when one peer does

not participate in the distributed learning. From this figure,

it is clear that the larger the magnitude of the attack vectors

are, the bigger disturbance is injected into the learning system,

therefore, the worse the classification performances are for the

honest peers.

Another observation is that when the attack magnitudes are

large (the first three subplots), the more epochs of training

conducted, the more disturbance the system has. Our guess is

that from the first several training epochs, the local training

has not converged yet, so its uploaded gradients vectors

do not contain enough converging information, causing the

global parameters to be polluted by the non-converging attack

vectors. The injected poisoning is then propagated to other

collaborators by global parameters downloading, and spread

throughout the entire distributed learning system, affecting

both the global server and all collaborators. Although each

honest collaborator is trying to minimize the loss, they are

not able to get to the final near-convergence stage since they

are only allowed to train for one epoch, which is not enough

to correct the poisoned parameters. This vicious process goes

on and on, and will not be reverted back. As a result, the more

training the system performs, the further away it is from the

optimal convergence point.

Another experiment is conducted to verify our guess. We

implemented the defense methods described in section V

to find out the potential attacker(s) after several epochs of

Fig. 3. Performance results of N = 10, single attacker, gradient ascent
attack with multiple magnitudes.

training. Once a collaborator is classified as an attacker, the

server will stop using its upload for the global parameters

updating purposes. It turns out that at first, the distributed

learning system is not converging at all, but when the server

depicts and eliminates the uploaded vectors from the attacker,

the system starts to converge, and the performance results of

the honest collaborators starts to increase. Due to the space

limitation, the resulting figure is not present in this paper.

Such observation also correlates with our definition of the

Heritage Factor. The smaller the Heritage Factor is, the less

percentage of true gradients is inherited, causing the overall

performance to be degraded. The detailed experimental results

for Heritage Factor is demonstrated later this section.
2) Single Gradient Ascent Attack: The experiments for sin-

gle gradient ascent attack are launched under the same settings

as the single random noise attack. Figure 3 demonstrates the

performance results of among 10 collaborators, there exists

one attacker and the Gradient Ascent Attack is launched.

Similar to the ones in the single random noise attack, the

following observations can be extracted:

• the bigger the magnitude of the attack vector is, the

worse the performance of the honest collaborators are.

• the “diverging” information propagates within the sys-

tem, degrading the performance with the increase num-

ber of training epochs.

Comparing the subplots from Figures 2 and 3, it is suggested

that when the magnitude of the attack vector is set, the

gradient ascent attack has better attacking effectiveness, as

it drags the global parameters to the steepest ascending

direction, whereas in the random noise attack, the global

parameters are dragged to random directions. And again, in

such perspective, the gradient ascent attack can be seen as a

special case of the random noise attack.
3) Multiple Attackers: Figures 4 and 5 demonstrates the

experiment results when there are 10 collaborators and 2, 4
of them are attackers, respectively. The attackers share the

overall attack magnitude, and in this case, let the overall
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Fig. 4. Performance result of N = 10, 2 attackers, collaborative random
noise attack.

Fig. 5. Performance result of N = 10, 4 attackers, collaborative random
noise attack.

attack magnitude be [r1, r2], then the magnitude that each

attacker leverages is [12r1,
1
2r2], and [ 14r1,

1
4r2], respectively.

Comparing Figure 2, 4 and 5, where the only changing

variable is the number of attackers (or the attack magnitude

of each attacker), the performance of honest peers in Figure

2 is the lowest, followed by 4. This suggests that injecting a

single large attack vector has a stronger attack strength on the

distributed learning system than injecting small attack vectors

multiple times. The experiment results for multiple Gradient

Ascent Attack also suggest the same insights, the results are

omitted due to the limited space of the paper.

C. Defense Results

From Figures 2-5, it can be observed that the magnitude of

the injected attack vector is the dominant factor in deciding

the ultimate attack effectiveness, regardless of the attack

models. Therefore, in this subsection, we will focus on this

dominant factor and perform our defense over a wide range

of attack magnitudes. Ideally, we prefer to show our defense

results against all attack models presented in Section IV.

However, due to the space limit, here we can only present

Fig. 6. a)-c) Performance result of N = 10, single attacker, random noise
attack defense at multiple magnitudes. d) the correlation between heritage
factor and Accuracy.

the performance of our proposed defense mechanisms under

the random noise attack. This is because the random noise

attack can be seen as the most general case of the untargeted

attack, and other attack models can be regarded as special

cases of the random noise attack. Therefore, the performance

of the proposed defense mechanisms under the random noise

attack would be representative.

1) Single Attacker Defense: Figure 6 a) - c) demonstrates

the performance of our single detection models. It can be

seen that the larger the attack magnitude is, the better the

defense results is. When the attack magnitude is 0, where

there exists no attacker, all defense models result in random

guess accuracy.

Furthermore, when the attack magnitude is small, some

defense models do not perform as well. This is innocuous

in the distributed learning scenarios, as when the attack

magnitudes are too small to fool the detection models, they do

not achieve visible attacking impact on the overall distributed

learning system either. And if an uploaded vector is only a

little different from others, we can’t tell if it really is an attack

vector, or it is from an honest collaborators whose dataset is

different.

2) Multiple Attacker Defense: Figure 7 shows the per-

formance of our defense models on multiple attackers. The

results are achieved under the scenario where there are 10
peers, and 2 of them are attackers. We test 500 runs on each

defense model, and this figure demonstrates the number of

times 0, 1, or 2 attackers among all attackers are caught,

respectively. Comparing with Figure 6, the accuracy of the

defense models decrease when there are multiple attackers.

This is intuitive, as more than one attackers leverage the entire

attack vector for single attacker, the uploaded vector would

differ less from the honest peers’.

D. Heritage Factor

As the definition states, the Heritage Factor is the metric

that characterizes the percentage of the “legacy”, Figure 6d)
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Fig. 7. Performance result of N = 10, 2 attackers The blue, orange, and
green portions of the same bar indicates the number of times 2, 1, and 0
attackers are caught when there are in total 500 number of detection runs.

demonstrates the correlation between the Heritage Factor and

the classification accuracy of honest peers. It suggests that the

performance of the honest peers are in the positive relation

with the Heritage Factor. Some other interesting experimental

scenarios, including different number of total peers, different

number of attackers..,etc, are also conducted, but due to the

space limitation, those are not shown in this paper.

VII. CONCLUSION

In this paper, we study the attack-model-agnostic counter-

measures in distributed learning system based on the fact that

it’s unrealistic to gain knowledge on the attack models that

would be launched prior to the deployment of the distributed

learning system. We explore existing threat and detect models,

and propose the Drop-one and Structural Similarity (SSIM)

defenses that analyze both the current and historic gradients

to depict the attackers for poisoning attacks in distributed

learning. A new concept, the Heritage Factor is presented

that characterizes the false parameter propagation among the

entire distributed learning system. Such definition also enables

us to measure how “helpful” that one collaborator is to other

collaborators and to the system. We verify through exten-

sive experiments the effectiveness of the proposed attack-

model-agnostic countermeasures over a wide range of attack

magnitudes. To the best of our knowledge, our work is

the first to systematically study the attack-model-agnostic

countermeasures in distributed machine learning system.
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