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Abstract—A Low Earth orbit (LEO) satellite constellation
consists of a large number of small satellites traveling in space
with high mobility and collecting vast amounts of mobility
data such as cloud movement for weather forecast, large herds
of animals migrating across geo-regions, spreading of forest
fires, and aircraft tracking. Machine learning can be utilized to
analyze these mobility data to address global challenges, and
Federated Learning (FL) is a promising approach because it
eliminates the need for transmitting raw data and hence is
both bandwidth and privacy-friendly. However, FL requires
many communication rounds between clients (satellites) and
the parameter server (PS), leading to substantial delays of
up to several days in LEO constellations. In this paper, we
propose a novel one-shot FL approach for LEO satellites, called
LEOShot, that needs only a single communication round to
complete the entire learning process. LEOShot comprises three
processes: (i) synthetic data generation, (ii) knowledge distillation,
and (iii) virtual model retraining. We evaluate and benchmark
LEOShot against the state of the art and the results show that
it drastically expedites FL convergence by more than an order
of magnitude. Also surprisingly, despite the one-shot nature, its
model accuracy is on par with or even outperforms regular
iterative FL schemes by a large margin.

Index Terms—Satellite communications, low Earth orbit
(LEO), federated learning, knowledge distillation, ensemble
model, synthetic data generation, teacher-student framework.

I. INTRODUCTION

Low Earth orbit (LEO) satellite constellations have re-
cently been burgeoning due to the rapid advances in satel-
lite communications (SatCom) technology. Positioned at
an altitude of 160-2,000 km above the Earth’s surface,
LEO satellites are often equipped with sensors and high-
resolution cameras to collect a vast amount of mobility-
related data, such as tracking and monitoring cloud move-
ments for weather forecast [1], hurricane and forest fire
movements [2], flooding situations, migration of large herds
of animals across geographic regions, and aircraft tracking.
Large-scale machine learning (ML) models can be utilized
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to analyze these mobility data to address global challenges
such as climate change, natural disasters, and abnormal
wildlife conditions. However, traditional ML methods require
downloading raw data such as satellite images to a ground
station (GS) or gateway for centralized model training, which
is not practical for SatCom because of its limited bandwidth,
large propagation delay, and privacy concerns (e.g., satellite
data and images may contain sensitive information such as
military activities or critical infrastructure locations).

Introducing federated learning (FL) [3] to SatCom appears
to be a viable solution because FL eliminates the need for
transmitting raw data by allowing satellites to train ML mod-
els locally (i.e., on-board) using their own data respectively
and only send the resulting model parameters to the GS
which acts as the PS to aggregate those local models into a
global model. However, FL requires many communication
rounds between clients (satellites) and the PS to re-train
and re-aggregate the models until it converges into a well-
functioning global model. As a result, this iterative process
can take several days or even weeks in the context of SatCom
[4], [5], because of the long propagation delay and, most
importantly, the highly sporadic and irregular connectivity
between LEO satellites and the GS. The latter is attributed
to the distinct trajectories of satellites and the GS,! which
leads to very intermittent and non-cyclic visits of satellites
to the GS (successively).

In this paper, we propose LEOShot, a novel one-shot FL
approach for LEO satellite constellations that accomplishes
the FL training process in a single communication round, yet
still obtaining a global model with competitive performance.
One-shot FL is an emerging paradigm [6] but its existing
methods cannot be directly applied to SatCom because they
(i) require the PS to have a publicly shareable dataset
that represents the client data distribution [7], [8], which
is hardly available, (ii) require clients to upload raw or

A satellite orbits at an inclination angle between 0° and 90 (typically
50-80°), whereas a GS constantly rotates on the 0° plane. These degrees
are in reference to the Equator of the Earth.
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synthetic data [9], [10], which contradicts the FL principle,

or (iii) still needs extra communication rounds to achieve

a satisfactory accuracy [11]. In contrast, LEOShot does not

share or transmit data in any form (e.g., raw or synthetic)

yet still attains a high-performing model in just a single
communication round. In summary, this paper makes the
following contributions:

o To the best of our knowledge, LEOShot is the first one-
shot FL approach proposed for SatCom. It drastically
reduces the adverse effect of highly sporadic and irregular
connectivity between satellites and GS by instating only
one communication round. Not only this, but it also oper-
ates without relying on any auxiliary datasets or raw-data
sharing, yet attaining competitive model performance.

o LEOShot comprises (i) synthetic data generation that gen-
erates images mimicking real satellite images instead of
downloading them; (ii) knowledge distillation that trains
(instead of aggregates) a global model using a teacher-
student framework; iii) virtual model retraining that refines
the global model iteratively toward high performance but
without any extra communication rounds.

o Unlike conventional FL. which assumes an identical ML
model architecture for all clients, LEOShot allows clients
to use different model architectures to cater to their own
preferences and resource constraints. This is much more
flexible and helps solve the data heterogeneity and system
heterogeneity among LEO satellites.

« We demonstrate via extensive simulations that LEOShot
dramatically accelerates FL. convergence by more than an
order of magnitude as compared to the state-of-the-art FL-
SatCom approaches. In the meantime, the accuracy of its
trained models outperforms existing methods by a large
margin despite its one-shot nature.

Paper Organization. Section II provides an overview of
recent work that utilizes the FL in SatCom. Section III
describes the FL-SatCom network model as well as commu-
nication links among satellites and GS. Section IV explains
the proposed LEOShot framework and its component in
detail. The performance evaluation of LEOShot is provided
in Section V. Finally, Section VI concludes this paper.

II. RELATED WORK
A. FL for SatCom

While FL-SatCom is still in its infancy, a few studies
have attempted to apply FL to SatCom. Chen et al. [12]
directly applied FedAvg [13] to SatCom to demonstrate FL’s
advantages in avoiding the need to download raw data to
a GS. FedISL [14] leverages intra-plane inter-satellite-link
(ISL) to reduce the long waiting time for satellites to become
visible to the PS, but only performs well under an ideal setup
where the PS is either a GS located at the North Pole (NP)
or a medium Earth orbit (MEO) satellite positioned directly
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above the Equator. In addition, FedISL overlooks the Doppler
shift resulting from the high relative speed between LEO
satellites (clients) and MEO-satellite (PS). Another approach
called FedHAP [15] was proposed which introduces one or
multiple high altitude platforms (HAPs) floating at 18-25km
above the Earth’s surface as PS. As a result of using HAPs,
the convergence speed of FL is improved by having more
visible satellites, but more hardware is required. Another
most recent approach, FedLEO [16], has been proposed
to enhance the convergence process of FL in the LEO
constellation. FedLEO achieved this through the use of intra-
plane model propagation and scheduling of sink satellites. It
is however necessary for each satellite to run a scheduler to
determine which satellite will be the sink to send its model,
resulting in a delay for models to be exchanged with the GS.

The above are all synchronous FL approaches. There are
also asynchronous FL approaches proposed for SatCom that
allow the PS to proceed to the next training rounds without
waiting for the model updates from all the clients. Razmi
et al. [17] proposed FedSat, which assumes that the GS is
located at NP to simplify the problem so that every satellite
visits the GS at regular intervals (once every orbital period).
To overcome this limitation, they proposed another approach
FedSatSchedule [5], which uses a scheduler to reduce model
staleness by predicting satellites’ visiting patterns to the
GS. However, several days are required to reach a model
convergence. Another recent approach called FedSpace [4]
formulated an optimization problem to dynamically schedule
model aggregation based on predicting connectivity between
LEO satellites and the GS, but it requires each satellite
to upload a small portion of its data so that the GS can
schedule model aggregation, which contradicts FL’s principle
of avoiding raw data sharing. Another recently proposed FL-
SatCom approach, AsyncFLEO [18], is proposed to offer a
drastic solution to the staleness challenge that requires several
days for asynchronous FL-SatCom approaches to converge.
It is capable of achieving convergence within a few hours,
but is still subject to a high number of communication rounds
and hence there is still large room for improvement.

B. One-Shot FL

To the best of our knowledge, one-shot FL has not been
introduced into SatCom before. The studies [7], [8] employ
knowledge distillation [19] in which client-side models are
used as teacher models to train a server-side student model
(global model). However, the server is required to have
access to a public dataset in order to provide pseudo samples
for training purposes, which conflicts with FL’s privacy
principles. As an alternative to knowledge distillation, data
distillation [20] is used in [9], [10]. These studies, however,
show a notable underperformance; moreover, they require
uploading distilled/synthetic data generated by clients to a
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PS, which is incompatible with FL principles. Lastly, a
theoretical analysis of one-shot FL is presented in [21],
focusing on independently and identically distributed (IID)
data only.

Given the above challenges, none of the existing one-
shot frameworks can be practically applied without issues or
drawbacks. In addition, to develop a one-shot FL approach
for SatCom, it is necessary to take into account the SatCom
challenges such as long propagation delays, intermittent and
irregular visibility of LEO satellites, and bandwidth limita-
tions.

III. NETWORK MODEL

Fig. 1 illustrates an LEO constellation M consists of
N satellites equally distributed on O orbits. Each orbit
o € O = {o01,09,...,00} is located at an altitude h,
above the Earth with an inclination angle «, and has a
set of satellites M. Satellites in an orbit o travel with the
same velocity v, and has the same orbital period T,. Here,

Vo = ,/% and T, = \/CQJLME(RE + ho)3/2, where G

is the gravitational constant, My is the Earth’s mass, and
Rp = 6,371 km is the Earth’s radius.

In SatCom, satellite 7 can communicate with a GS g if the
Earth does not obstruct their line-of-sight (LoS) link. Mathe-
matically, this means 9., 4(t) £ Z(14(t), (rm(t) —14(t))) <
% — Dmin, where 7, (t) and r4(t) are the trajectories of m
and g, respectively, and ,,;,, is the minimum elevation angle
that depends on the GS location.

A. FL-SatCom System

Consider an FL-SatCom system, in which each satellite
m € M collects a set of Earth images D,, of size
dym, = |Dy,|. In addition, we assume that these images
are non-IID among satellites since they orbit the Earth at
irregular intervals and scan different areas. In a synchronous
FL system such as FedAvg [13], the PS (i.e., a GS) and
satellites train an ML model collaboratively to solve the
following problem
dm

FFm(U)),

()]

in F
arg min F'(w)

>

meM

where F'(w) indicates the overall loss function (e.g., SSE) of
the target model; w is the model weights; d = Zme M Am
is the total data size; F),(w) is the loss function of satellite
m, which can be expressed as

d
|
Frn(w) = == fon (w3 2m.j), (©)
m j=1

where fp,(-) is the training loss on a sample point z, ;.
During the training process, there are multiple communi-
cation rounds 5 = {0,1,2,...}. In each round, the GS first
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Fig. 1: FL-LEO network architecture, comprised of multiple
orbits each having multiple satellites.

transmits the latest global model weights w? to all satellites,
and each satellite m employs a local optimization scheme
such as gradient descent to update its model for I epochs as

i+l ) N
wﬁb = wrﬁn _nVFm(wfn 3 Ly,

), i=0,1,2,..,1—1 (3)

where 7 is the learning rate. Following that, each satellite
uploads its locally updated model to the GS for assembling

as
Wt = 3

meM

dm
B.1
Wy,

“
which completes a communication round. The above pro-
cedure iterates with an incremental 5 until the FL model
converges (e.g., a target accuracy, target loss, or the maximum
number of training rounds is reached).

A key challenge of this learning process arises from the
fact that the convergence of FL requires several communi-
cation rounds between LEO satellites and the GS, and each
communication can only happen when a satellite transiently
comes into the GS’s visible zone. As a result, FL would
take several days or even longer to reach convergence. This
motivated us to develop LEOShot, which requires only a
single communication round between satellites and the GS.

B. Communication Model

In a symmetric radio frequency channel with additive white
Gaussian noise (AWGN), the signal-to-noise ratio (SNR)
between a satellite m and a GS g can be expressed as [22]:

_ PG,G,

SNR™-9) = KT BT,
m,g

5
where P is the transmitter power, G,,, and G, are the total
antenna gains of satellite m and an GS g, respectively, K is
the Boltzmann constant (1.38 x 10723.J/K), T is the noise
temperature at the receiver, B is the channel bandwidth, and
L, 4 is the free-space pass-loss between satellite m and a
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Fig. 2: Overview of the proposed LEOShot framework.

GS g. As long as the LoS link between a satellite m and
a GS g is not obstructed by the Earth, then L, , can be

expressed as
(el

where ||m, g||2 is the Euclidean distance between a satellite
m and a GS g when they are visible to each other, f is the
carrier frequency, and c is the light speed. For exchanging
local or global model weights (w,,, or w) between a satellite

dr|m, gll2f
C

(©)

Li,g =
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m and a GS g, the total required time ¢; can be calculated
as

z[P|

R

Transmission delay

[[m, gll2

ty + +tm +ts (7)

N——
Propagation delay

where t,,, and ¢, are the processing delay at m-th satellite and
a GS g, respectively, |P| is the number of sample points, z
is the number of bits in each sample, and R is the maximal
achievable data rate, which can be computed by the Shannon
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formula as

R ~ Blogy(14+ SNR(m,g)) ®)

IV. THE LEOSHOT FRAMEWORK

LEOShot is operated at the server end. Fig. 2 provides an
overview of the LEOShot framework, which is comprised of
three phases: (a) synthetic data generation, which synthesizes
a representative dataset as a proxy of all the satellites’ local
data, (b) knowledge distillation, for distilling information
from the satellite models (teacher models) to train a server
model (student model), and (c) virtual model retraining,
for training virtual local models iteratively until the server
model converges. Algorithm 1 outlines the entire process of
LEOShot.

Algorithm 1: LEOShot’s 3-phase process
Input: Satellites’ models, L,ng,ns, @, y, J,I ;1,72
Output: Server model parameters
> Phase 1: Synthetic data generation
1 Generate batches of random noises x and labels y
2 Initialize server model (student) and generator G
3 foreach epoch j of training G do
4 Calculate losses Reg, Ren, Rk Le., () using
eqns. (10), (11), and (12)
Calculate the generator loss Ri,,,, via (14)
Generate/Update &
Retrain the weights of G on generated Z via (14)
end
> Phase 2: Knowledge distillation
9 foreach epoch j of training server model do
10 Calculate loss R, of the server model via (16)
1 Retrain the weights of the server model via (17)
12 end
13 return wg
> Phase 3: Virtual Model Retraining
Generate L virtual models
Cluster z into L Partitions
foreach epoch j of updating server model do
foreach virtual model w; do

e 9 & w»m

14
15
16
17

> All models train in parallel

18 Initialize w; <+ wg

19 Train w; using its assigned partition of &
20 end
1 L
21 Update w, + ¢ > ;24 wy
22 end
23 return ws

As a background, the server begins its operation once it
receives all the client models from all the orbits via sink
satellites. A sink satellite [15] is a satellite on each orbit
who (1) collects all the models from other satellites on the
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same orbit (via intra-orbit model relay), (2) assembles them
together into a partial global model [15] and (3) sends it to
the server.

A. Synthetic Data Generation

The objective of this phase is to build a generator G to
generate high-quality unlabeled synthetic data (i.e., having
sufficient features for correct classification) without having to
download any real data from satellites to a GS or requiring
any auxiliary (i.e., publicly available) datasets. To achieve
this objective, we use the ensemble of the client (satel-
lite) models uploaded by various sink satellites to generate
synthetic data (see Fig. 2a). Note that a salient feature of
LEOShot is that it allows heterogeneous model architectures
of these client models. That is, each client can decide and
use its own preferred neural network rather than a common
architecture used by all the satellites (as dictated by the
standard FL). We achieve this by using an ensemble of all the
client models and frain the target global model via knowledge
distillation (instead of by averaging model weights).

Our generator G was inspired by the generative adversarial
network (GAN) [23], but is distinct from it as we do not
require public datasets. Given a randomly generated input
z (e.g., Gaussian white noise) and a random label y, our
generator attempts to generate synthesized data & with similar
features to the data collected by satellites, by solving the
following optimization problem:

min Reen 2 Rep(D(2),y) +R(2), (€))

where Rgen, denotes the overall loss of the generator,
Rer(+) is a cross-entropy loss (e.g., classification loss), and
R(%) is a regularization term used to steer Z towards more
realistic data (e.g., images). Here, D(Z) is the average logits
of the ensemble model given an input & (where logits are
the output of usually the last fully connected layer), and is
defined by

D(z)

1
= WZﬁ(i,wm), (10)

leL

where fi(Z,wi,) is an estimation function of the ensemble
model received from orbit [, that returns the logits of £ when
the model parameter wy, is given. Eq. (10) allows us to
(indirectly) measure how well the generated synthetic data
Z mimics both the distribution and the particular instances
of the original satellite data, without accessing the original
data. In fact, attempting to access satellites’ training data
contradicts the FL principles. Moreover, unlike traditional
FL algorithms (e.g., FedAvg), our design of generator (9)
uses logits (as in D(-)) instead of client model weights,
which enables our approach to deal with heterogeneous client
models.

The regularizer R(Z) serves the purpose of improving the
stability of the generator. The need comes from the fact
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that the ensemble of satellite models is trained on non-IID
datasets, and therefore tend to make the generator unstable
and get stuck in suboptimal local minima. Additionally, there
is a risk of overfitting the synthetic data, which ultimately
hinders the generator from achieving high levels of accuracy
[24]. Therefore, we use a BatchNorm (BN) layer during
training to normalize the feature maps to reduce the impact
of covariate shifts [25] and overcome the gradient vanishing
problem (so that the distance between synthetic images and
original satellite images can be continuously reduced). In
addition, this BN layer also implicitly stores the average
logits as channel-wise means and variances. Thus finally, the
R(z) realized by this BN layer can be expressed by

R (@) = £ 5 3 (@) = pually +103() = oy ],) (1D

where 1,(%) and o2(%) are the batch-wise estimation of the
mean and variance, respectively, associated with the b-th BN
layer of the generator, and 5, and aﬁb are the mean and
variance of the b-th BN layer of f;(Z,wk,). As a result
of adding this regularization term, our designed generator
outputs synthetic images with high quality that are close to
the original satellite images.

B. Knowledge Distillation

In this phase, we strive to distill the knowledge from the
ensemble of all the client models to train a server (i.e., global)
model. Although the generated synthetic data has high qual-
ity, it is not useful for knowledge distillation because of the
large gap between the ensemble model’s decision boundaries
and the server model’s decision boundary [26]. To address
this issue, we force the generator to generate more synthetic
data with different distributions and then employ Kullback-
Leibler (KL) divergence to minimize the distance between
the predictions (proxy of decision boundary) of the ensemble
model and the server model during synthetic data generation
(bottom of Fig. 2a). The new regularizer term that represents
the KL divergence is

RKLg., () =1- H{KL(Dc(4),Q) + KL(Dp(#),Q))} (12)
Q= (Da(#) + D)), (13)

where K L(-) denotes the KL divergence loss, D¢(%) is the
server model’s logits, and Dg(&) is the ensemble model’s
average logits.

Thus, with our BN and KL regularization terms, we
reformulate our generator optimization problem (9) as

(14)

where v; and 7» are hyper-parameters to trade-off between
the two losses. In addition, we optimize the weights of our
generator G for .J epochs using SGD as follows:

j=1,2,....J (15)

Rigen = ming |Ree(D(2),y) +Ren(2) + 2Rk Lq.. (2)

. - P o
w]Gen = w]Ge.n - nS/VRGCTL(w]G@n; (.’L‘, y)J 1)7
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where wé .n, 18 the generator’s model at iteration j, and 7,
is the G’s learning rate.

After these optimization procedures, our generator can
generate synthetic images not only of high quality but also
of a distribution that resembles the original satellite data to
enable effective knowledge distillation.

Referring to Fig. 2b, the next step after generating the
synthetic data Z is to commence the updating and retraining
of the server model until it attains an acceptable accuracy.
To this end, the synthetic data Z is fed to both the ensemble
of satellite models which acts as the teacher, and the server
model which acts as the student. Subsequently, the average
logits are computed as the outcome of training the teacher
model using (10), which can be used for both homogeneous
and heterogeneous ensemble models. The average logits are
then applied to distill the knowledge from the ensemble
(teacher) model to the server (student) model by minimizing
the prediction error between the two models, through the KL
divergence as follows:

Rirs (&) = KL(D(&), Ds(2)) (16)

where D(Z) is the logits of the server model after being
trained on the generated synthetic data z. Since the satellite
models are trained on non-IID data, we aim to improve the
accuracy of the server model and address the issue of poor
performance or divergence problem encountered in [24]. To
achieve this, we further optimize the server model parameters
by employing SGD as

wl =wl™t = VRkrs(wi=1;277Y), j=1,2,...,J (17)

where wg is the server model at iteration j, and 7, denotes
the learning rate of the server model. Note that our method is
different from [24] which uses local batch normalization at
each client to harmonize local data distributions but requires
several rounds of communication between server and clients.
Instead, we use generated synthetic data to resemble the
original satellite data and it allows us to directly train a server
model locally using SGD, without the need for communica-
tion or averaging satellite models which are influenced by
non-IID data distributions. On the downside, synthetic data
may not be as good as real data; to address this, in Phase 3
we retrain our server model to improve model accuracy.

As a result of this phase, we have successfully trained a
server model that leverages the knowledge from the ensemble
satellite models and the generated synthetic data, and we have
taken into account the possible heterogeneity of both the data
and models involved. Fig. 2b illustrates the entire knowledge
distillation process.

C. Virtual Model Retraining

Although the knowledge distillation phase outputs a func-
tional server model, the model performance still has notable

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on September 04,2023 at 22:04:22 UTC from IEEE Xplore. Restrictions apply.



room for improvement (e.g., the classification accuracy was
merely 70% on the MNIST dataset). Certainly, allowing for
extra communication rounds (and aggregation) between the
GS and the LEO satellites will improve model accuracy, but
this clearly contradicts our goal of one-shot learning and
will also negatively impact the convergence speed. Thus, we
propose a novel method that transforms the distributed FL
into a localized version, by creating virtual local models
on the server and trains those models locally until the
server model converges. Specifically, our method consists
of four steps: (i) clone L copies of the server model to
serve as the initial virtual local models, (ii) partition the
generated synthetic data (after labeling them using a K-means
clustering algorithm) into L groups, each with the same class
distribution as one of the L orbits (distributions were received
at the end of model dissemination), (iii) train each virtual
model on one of the L data groups, (iv) aggregate the weights
of these trained virtual models to obtain an updated server
model. The above repeats until the server model converges,
which is the final global model. Fig. 2c illustrates the entire
retraining process for virtual models.

V. PERFORMANCE EVALUATION

A. Simulation setup

LEO Constellation. We consider a Walker-delta constella-
tion M, which consists of 40 LEO satellites distributed over
five orbits, each with eight satellites. Each orbit is located at
an altitude h, of 500km above the Earth’s surface with an
inclination angle of 80°. A GS is located in Rolla, MO, USA
(can be anywhere) with a minimum elevation angle ¥,,,;,, of
10°. For both LEOShot and baselines, Table I (upper part)
summarizes the parameters pertaining to the communication
links described in Section III-B. By using Systems Tool Kit
(STK), a software tool for analyzing satellite constellations,
we extract the visibility between satellites and the GS.
To obtain each set of results, we simulate communication

TABLE I: Simulation Parameters (upper: communication;
lower: training)

‘ Parameters ‘ Values ‘
Transmission power (satellite & GS) P 40 dBm
Antenna gain of (satellite & GS) Gy, Gs 6.98 dBi
Carrier frequency f 2.4 GHz
Noise temperature 1" 354.81 K
Transmission data rate R 16 Mb/sec
Number of local training epochs I 300
Learning rate 7 0.001
Mini-batch size by 32
Generator learning rate 7g 0.001
Weighting factors v1 &2 1& 10
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between satellites and the GS over a period of three days.
Baselines. We compare LEOShot with the state-of-the-art
approaches that were proposed most recently and are re-
viewed in Section II, including FedSpace [4], FedISL [14],
FedHAP [15], FedSat [17], and FedSatSchedule [5].

ML models and Dataset. An important implication of
LEOShot’s capability of allowing heterogeneous client mod-
els (cf. Section IV-A), is that the server no longer needs
to broadcast an initial model w® to all the clients, which
in the context of SatCom will save a significant amount
of time. However, for comparison with existing methods,
we assume a standard (homogeneous) FL setting where the
neural network architecture is common and broadcasting w°
is still required. We highlight that this setup substantially
favors baseline approaches and not ours. In the experiment,
all satellites train a ResNet-50 model. For each baseline, the
GS aggregates the satellite models into a global ResNet-50
model. For LEOShot, however, since a key component of
knowledge distillation is to train a smaller global model, the
GS trains a ResNet-18 model.

For comparison purposes, we use the same datasets as all
the baseline approaches use: MNIST [27] and CIFAR-10
[28]. Additionally, we consider a non-IID setting for both
datasets, where satellites in two orbits are trained with 4
classes while satellites in the other three orbits are trained
with the remaining 6 classes. The lower part of Table I
summarizes the training hyperparameters.

B. Results

Comparison with Baselines. As shown in Fig. 3,
LEOShot achieves the fastest convergence (on both datasets)
in only 90 minutes with an accuracy of 85.64% on MNIST
attained in a single communication round (the convergence
time includes waiting for at least one satellite per orbit to
be visible to upload a partial model to the GS). The second
fastest approach is FedISL [14] with the ideal setup described
in Section IT (GS at NP or MEO above the Equator), which
takes 3.5 hours for FL to converge with an accuracy of
82.67%. Without the ideal setup, its convergence time spikes
to 72 hours, and accuracy drops to 61.19%. FedSat [17]
and FedHAP [15] have marginally higher accuracy than
LEOShot but their convergence is significantly slower. Also
importantly, FedSat assumes an ideal setup (GS at NP)
similar to FedISL, and FedHAP requires extra hardware
(HAP) of substantial extra cost. FedSatSchedule [5] does not
have FedSat’s ideal assumption, and as a result, its accuracy
is only 76.32% and its convergence time doubles FedSat.

For all methods, accuracy on CIFAR-10 is lower than on
MNIST after the same amount of training time, which is
particularly prominent for FedSat [17]. On the other hand,
LEOShot maintains a very small difference, which demon-
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Fig. 3: Accuracy and Convergence Time comparison on non-IID data. For all approaches, convergence time was first measured
on MNIST and then fixed for CIFAR-10 to measure the accuracy.

strates certain robustness. Recall that LEOShot achieves high
accuracy in just a single communication round.

Effectiveness of using synthetic data in knowledge dis-
tillation. Pertaining to Section IV-A and IV-B, this subsection
(i) investigates whether using model logits or model param-
eters (weights or gradients) is more effective in producing a
server model, and (ii) assesses the test accuracy on multiple
deep learning (DL) models with the generated synthetic data.
Fig. 4 shows a sample of the generated synthetic images
using logits from satellites trained on MNIST and CIFAR-
10 datasets. These images approximate the distribution and
mimic the content of the real images very well, enabling an
effective knowledge distillation.

TABLE II: Comparison of DL models trained on synthetic
images

DL model Accuracy (%)
MNIST CIFAR-10
CNN (2 layers) 62.26 60.88
VGG-11 69.15 62.72
Wide-ResNet-40-1 [29] 71.51 66.79
ResNet-18 73.64 70.67
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For the first purpose, we conducted two experiments on
LEOShot. In the first experiment, satellite model parameters
are uploaded to the GS similarly to traditional FL. In the
second experiment, model logits are uploaded instead. All
the satellites train a ResNet-50 model on MNIST in the non-
IID setting. Fig. 5 shows the resulting test accuracy of each
partial global model derived from each orbit, as well as the
accuracy after averaging the weights or logits. The results
indicate that the test accuracy of each partial global model
varies depending on the data imbalance from each orbit. The
accuracy of the server model is only 31.74% when averaging
these partial models’ parameters, which underperforms the
individual partial models. In contrast, when averaging the
logits, the server model achieves an accuracy of 62.36%,
which outperforms all the individual partial models. This
interesting finding confirms that a single communication
round is far from sufficient for weight averaging (as in
traditional FL) to accommodate the discrepancy between
client models trained on non-IID data; but on the other hand,
averaging logits allows knowledge distillation through our
local training that minimizes the distance between logits of
our teacher and student models. In addition, using logits also
allows us to accommodate model heterogeneity.
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(b) Samples of generated synthetic images (CIFAR-10 dataset).

Fig. 4: Samples of synthetic images created by our generator
when satellites trained on various datasets.

For the second purpose, Table II reports the performance
of various DL models when trained using our synthesized
images. We can see that all the DL models achieve acceptable
accuracy, with ResNet-18 achieving the highest 73.64% on
MNIST. This set of results validates that the quality of our
synthesized images is reliable, which plays an important role
in transferring knowledge to the server model.

Impact of virtual model retraining. Pertaining to Sec-
tion IV-C, here we investigate how our use of virtual local
models affects the accuracy of the server model. As re-
ported in Table II, the server model achieves an accuracy
of 73.64% by using ResNet-18 as the target model and
MNIST as the training dataset. Note that this is achieved
without virtual model retraining. Now, with that, we clone
five virtual ResNet-18 models initialized with the initial
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Fig. 5: Test accuracy of partial models from sink satellites on
different orbits (solid lines) and the best accuracy obtained
by averaging logits or weights (dotted lines).

server model weights and train each virtual model on one
of five partitions of synthetic images. The final server model
is obtained via weight averaging. Our result in Fig. 3 shows
that the server model accuracy increases to 85.64% which is
a significant 16% improvement without requiring any extra
communication round.

VI. CONCLUSION AND FUTURE WORK

This work makes the first effort to introduce one-shot FL.
into SatCom. We propose a novel framework called LEOShot
to address the challenge of highly sporadic and irregular
visits of LEO satellites to a GS. Unlike prior work, LEOShot
does not require public datasets or client data uploads, thus
upholding important FL principles on data privacy protection
and communication efficiency. In addition, unlike standard
FL which dictates a common identical neural network ar-
chitecture for all the clients and the server, LEOShot allows
each client to choose its own preferred ML model based on its
computing resources and data properties. In our quantitative
study in comparison with the state-of-the-art benchmarks,
we find that LEOShot reduces FL training/convergence time
drastically up to 80 times (it converges in as short as
90 minutes); in the meantime, it achieves high accuracy
even under challenging non-IID settings and outperforms the
benchmarks by large margins.

In our future work, we aim to examine LEOShot on real
and diverse satellite datasets in different settings. This would
include exploring a variety of LEO constellations ranging
from sparse to dense constellations with GS located at differ-
ent geographical locations, as well as training heterogeneous
ML models across satellites and constellations.
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