STAR Protocols o CelPress

OPEN ACCESS

Unified machine learning protocol for
copolymer structure-property predictions

Step 1e - N Lei Tao, Tom
®. Arbaugh, John
o nn Byrnes, Vikas
: —> 0 1 Varshney, Ying Li
: 2 1 yli2562@wisc.edu
o Step 2
Highlights
® W—J Detailed steps for
o . :
Install Necessary ' Construct The building machine
ns 5
| del f
Software : Datasets eam'lng modertor
Anaconda, Python, o Format and process the copolymers
TensorFlow ° polymer structures
Step 3 ¢ - N Consideration of both
—@ » = chemical
® 20 composition and
° 5 X sequence distribution
: z § .'*‘ $ B of copolymers
o x LA
o Step 4 o — Analysis of different
C:)—H = J copolymers types
0 using four machine
Optimize/Train the Models : Visualize your Models learning models
CNN, Fusion, FFNN, and ° Compare training and
RNN o testing R2 values Differentiation of
sequence patterns of
random, block, and
Structure-property relationships are extremely valuable when predicting the properties of gradient copolymers

polymers. This protocol demonstrates a step-by-step approach, based on multiple machine
learning (ML) architectures, which is capable of processing copolymer types such as alternating,
random, block, and gradient copolymers. We detail steps for necessary software installation and
construction of datasets. We further describe training and optimization steps for four neural
network models and subsequent model visualization and comparison using training and test
values.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional
guidelines for laboratory safety and ethics.

Tao et al., STAR Protocols 3,
101875

December 16, 2022 © 2022
The Author(s).
https://doi.org/10.1016/
j-xpro.2022.101875

mailto:yli2562@wisc.edu
https://doi.org/10.1016/j.xpro.2022.101875
https://doi.org/10.1016/j.xpro.2022.101875
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101875&domain=pdf

STAR Protocols ¢ CellPress

OPEN ACCESS

Unified machine learning protocol for copolymer
structure-property predictions

Lei Tao," >’ Tom Arbaugh,”¢ John Byrnes,® Vikas Varshney,* and Ying Li"->8*

"Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
?Department of Physics, Wesleyan University, Middletown, CT 06459, USA
3SRI International, San Diego, CA 92131, USA

“Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH
45433, USA

SDepartment of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706-1572, USA
éThese authors contributed equally

“Technical contact: lei.tao@uconn.edu

8Lead contact

*Correspondence: yli2562@wisc.edu
https://doi.org/10.1016/j.xpro.2022.101875

SUMMARY

Structure-property relationships are extremely valuable when predicting the
properties of polymers. This protocol demonstrates a step-by-step approach,
based on multiple machine learning (ML) architectures, which is capable of pro-
cessing copolymer types such as alternating, random, block, and gradient copol-
ymers. We detail steps for necessary software installation and construction of
datasets. We further describe training and optimization steps for four neural
network models and subsequent model visualization and comparison using
training and test values.

For complete details on the use and execution of this protocol, please refer to
Tao et al. (2022)."

BEFORE YOU BEGIN

This section includes the introduction of the fundamentals of machine learning model involved, the
minimal hardware requirements, and the installation procedures.

Regarding the machine learning model inputs, first the simplified molecular-input line-entry system
(SMILES) is used to represent each monomer of each copolymer. Then, a feature vector is obtained
for the repeat unit of each polymer using the Morgan fingerprint with radius 3. The number of oc-
currences of each substructure found in the monomer is labeled with a real number in the feature
vector.” This feature vector represents the composition information of copolymers. Stacking the
feature vectors of the different monomers in a specific order represents the sequence distribution
of a copolymer. The feature vector or the resultant feature matrix serves as the numerical input
that is readable by ML models.

Based on different datasets, the target properties of copolymers investigated in this study included
optoelectronic proper‘cies,5 "F nuclear magnetic resonance (NMR) signal-to-noise ratio (SN R),® and
glass transition temperature Ty.”** The protocol here demonstrates the application of the ML model
for ""F NMR SNR predictions. The prediction of other properties can be processed in a similar way.
While there is no limitation of the properties that can be processed by the machine learning models,
the performance can be highly problem-dependent. In general it is recommended to check a target
property in two aspects: a) if the targeted property relates to the polymer's monomer-level

)
et STAR Protocols 3, 101875, December 16, 2022 © 2022 The Author(s). 1

- This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:lei.tao@uconn.edu
mailto:yli2562@wisc.edu
https://doi.org/10.1016/j.xpro.2022.101875
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101875&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

¢ CellPress STAR Protocols

OPEN ACCESS

fingerprints that are used in this study; and b) if there is enough data available to develop the model.
The fidelity of the proposed model towards a new property will require a thorough investigation of
comparing different models via validation/verification on unseen test data. When the new property
is somewhat similar to these cases, these machine learning models could still be used through a
transfer learning strategy. In addition, the size of the dataset needed for reliable machine learning
is also problem-dependent. Some properties may require a large dataset while others may not.

In terms of the machine learning algorithm, four ML models are applied to the copolymer dataset to
correlate the molecular numerical input to the property output, including a feed-forward neural
network (FFNN) model, a convolutional neural network (CNN) model, a recurrent neural network
(RNN) model, and a combined FFNN/RNN (Fusion) model. For FFNN, the feature vector of a copol-
ymer Fag is calculated as the molar-weighted summation of each monomer’s feature vector: Fag=
Fama+ Fgmg. Fa and Fp are feature vectors for monomers A and B, respectively. ma and mg are
molar-weighted ratios of monomers A and B, respectively. This representation considers the copol-
ymer’s composition information, but ignores the information of copolymers’ sequence distribution.
For the other three ML models, by stacking the feature vectors of two monomers into a feature ma-
trix, the sequence distribution of copolymers is considered explicitly.

Repository download and environment installation
O® Timing: <30 min
1. Use a computer hardware that supports the installation of anaconda python 3.7.

Note: The computer used in this protocol is a DELL Precision 3650 Tower Workstation with the
following hardware: 11th Generation Intel Core i7-11700 (16 MB Cache, 8 Core, 2.5 GHz-4.9
GHz), 32 GB (2 x 16 GB) DDR4 UDIMM non-ECC Memory, and Nvidia RTX A4000 (16 GB, 4
DP), 256 GB PCle NVMe Class 40 M.2 SSD. This specification is recommended but not
required. GPU is not necessary but recommended. The download and installations times
may vary based on specific computing resources.

2. Clone the GitHub repository which includes the training scripts and datasets.
3. Install Anaconda3 and the necessary packages.
a. Find anaconda installation instructions here.
b. Activate anaconda, navigate to the directory of the repository and create an environment with
the required packages using:

> conda create —name copolymer —-file requirements. txt —channel conda-forge |

c. Check the new environment using:

> conda env list |

d. Activate the environment using:

| > conda activate copolymer |

e. Check whether all packages in requirements.txt are installed.

| > conda list |

2 STAR Protocols 3, 101875, December 16, 2022

https://github.com/figotj/Copolymer
https://docs.anaconda.com/anaconda/install/

STAR Protocols ¢? CellP’ress

OPEN ACCESS

If not, please use the following command to install the missing package.

> conda install package-name or > pip install package-name |

f. Add conda environment into Jupyter notebook.

>python -mipykernel install —user —name (environment name) —display-name (environment name)

g. Start Jupyter Notebook using:

| > jupyter notebook |

h. Set the kernel to use the created environment to run the Jupiter Notebook file.

A CRITICAL: RDKit is only supported with python versions <3.8.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Dataset 2 GitHub https://github.com/figotj/Copolymer

Software and algorithms

Anaconda 3 Anaconda Inc. https://www.anaconda.com/products/distribution
Python version 3.7 Python Software Foundation https://www.python.org

Tensorflow 2.3.0 Open-source software https://tensorflow.org

RDKit Open-source software https://rdkit.org

Model Codes GitHub https://github.com/figotj/Copolymer

STEP-BY-STEP METHOD DETAILS

All original code can be found at https://github.com/figotj/Copolymer. There are four .py files to be
executed to build and train the ML models. To showcase the workflow of the model, a Jupyter Note-
book file demonstrating the main steps of the model building can be found at https://github.com/
figotj/Copolymer/blob/main/Protocol_Copolymer_19F%20MRl.ipynb.

Import dependencies
® Timing: <1 min

1. Import the necessary python packages as well as setting TensorFlow to use available GPU hard-
ware.

Note: The dependencies contained within these cells are included in the requirements.txt file
contained in the repository and are necessary to train the following models.

>import pandas as pd
>import numpy as np
>import pickle

>from rdkit import Chem

STAR Protocols 3, 101875, December 16, 2022 3

https://github.com/figotj/Copolymer
https://github.com/figotj/Copolymer/blob/main/Protocol_Copolymer_19F%20MRI.ipynb
https://github.com/figotj/Copolymer/blob/main/Protocol_Copolymer_19F%20MRI.ipynb
https://github.com/figotj/Copolymer
https://www.anaconda.com/products/distribution
https://www.python.org/
https://tensorflow.org/
https://rdkit.org/
https://github.com/figotj/Copolymer

¢ CellPress STAR Protocols

OPEN ACCESS

>from rdkit.Chem import A11Chem

>from rdkit.Chem import Descriptors

>from rdkit.Chem import rdMolDescriptors

>from rdkit.Chem.Draw import IPythonConsole

>from rdkit.Chem import Draw

>from rdkit.Chem.Draw import rdMolDraw2D

>from keras.layers import Input, Dense

>from keras.models import Model

>from keras.utils import plot_model

>from keras.layers.merge import Concatenate

>from tensorflow.keras.models import Sequential, save_model,
> load_model

>from tensorflow.keras.layers import Dense, Flatten, LSTM,
> Embedding, Bidirectional, TimeDistributed, Reshape
>from tensorflow.keras.optimizers import Adam

>from tensorflow import keras

>from tensorflow.keras.layers import Conv2D, MaxPooling2D,
> Conv1D, MaxPoolinglD, Dropout

>import tensorflow as tf

>from sklearn.model_selection import train_test_split
>from sklearn.metrics import r2_score, mean_squared_error,
> mean_absolute_error

>import seaborn as sns

>from sklearn.model_selection import train_test_split
>import matplotlib.pyplot as plt

>import random

>import time

Construct datasets
® Timing: <1 min
2. Load, visualize, and pre-process the dataset from the original publication.

Note: The dataset contains the Nuclear Magnetic Resonance Signal-to-Noise Ratio (NMR
SNR) which will serve as the target property for training and predictions.

> DF_MRI = pd.read_excel (open(’./datasets/Dataset 2.xlsx’, ‘rb’), sheet_name='Data orga-
nized fluoro-monomer’)

4 STAR Protocols 3, 101875, December 16, 2022

STAR Protocols ¢? CellP’ress

OPEN ACCESS

. " o Molecular . .
TFEA HexaFOEA NonaFOEA PEGA HEA MSEA 1?': NMR Signal- Welght % weight Dispersity Smiles
o-Noise Ratioa Fluorine (Mn)b (P)b
C.O(C(=0)C(C['])
0 00 0.0 01 09 00 00 20 0.036740 - - [)CCOC(CF)F)F)C(F)
FFCL...
C.O(C(=0)C(CI"])
100 0.0 02 03 00 05 47 0117168 7100 125 [)CCOC(C(F)F)F)(C(F)
FFCL...
C.O(C(=0)C(C['])
2 00 0.0 02 03 05 00 61 0127174 8100 116 [)CCOC(C(F)(F)F)(C(F)
FFICL...
C.O(C(=0)C(C["])
3 00 0.0 02 04 00 04 46 0.105659 7800 126 [)CCOC(C(F)F)F)(C(F)
FFICL...
C.O(C(=0)C(CI'])
4 00 0.0 02 04 04 00 51 0.112017 ; - [))CCOC(CF)F)F)C(F
FFCL...
C.C(OC(=0)C(CI'NI*NC(F)
408 06 0.0 00 03 01 00 50 0.137867 4600 197 R OCOIGTE
: _ C.c(oc(=o)c(Crnrne(r)
400 06 0.0 00 04 00 00 31 0.120230 (FF O(CEOCCEE .
: _ C.c(oc(=o)e(Crnrne(r)
40 06 0.0 00 04 00 00 47 0120230 (FF O(CEOCCIE .
} _ C.c(oc(=0)c(CrNrne(F)
M1 06 0.0 00 04 00 00 52 0.120230 (FIF O(CEOCCIE .
M4 07 0.0 00 03 00 00 55 0.158419 - ELOCEOICCT DI PS(F)

(F)F.O(C(=0)C(C*II*...

271 rows x 11 columns

Figure 1. Copolymer datasets containing the SMILES and molar ration of every monomer in each copolymer

3. Construct a table containing the SMILES and molar ratio of every monomer in each copolymer.

Note: Figure 1 shows the summarized table for the copolymer dataset of 271 copolymer data

points. The chemical structure of each monomer is shown in Figure 2.

Train feed-forward neural network (FFNN)

® Timing: <1 min

4. Prepare the input for the training of the FFNN model.

a.

Calculate the feature vector of a copolymer Fag as the molar-weighted summation of each
monomer’s feature vector: Fag = Fama+ Fsmg.

Note: There are 271 copolymers. The feature vector for one monomer has a length of 80, and

a molar-weighted summation of two feature vectors also has a length of 80. Therefore, the size

of the input matrix is 271 x 80, as shown in Figure 3.

5. Build FFNN model using the TensorFlow package and train the model on the copolymer dataset.

a.

b.

Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the
number of neurons in each layer, and the learning rate.
Add 2 hidden layers with 24 neurons in the first layer and 64 neurons in the second layer. Use
the ‘ReLU’ activation function for all neurons. The model architecture is illustrated in Figure 4.
Train the model for 100 epochs with batch sizes of 128.

STAR Protocols 3, 101875, December 16, 2022 5

¢ CellPress STAR Protocols

OPEN ACCESS

HexaFOEA TFEA PEGA
FF o F i 0
Fpor e O

F
NonaFOEA MSEA HEA

9 ? 2 HO i
FFFFFV\Og S0 ~0

Figure 2. The chemical structure of each monomer using a SMILES to molecules function

d. Output the training R?, MAE, and RMSE as well as the test R?, MAE, and RMSE after the
training is completed.

>model = keras.models.Sequential ()

>model .add (Dense (units = 24, input_dim =

> x_train.shape([l],activation="relu’))

>model .add (Dense (units = 64, activation='relu’))
>model .add (Dense (units = 1))

>model .compile (optimizer=keras.optimizers.Adam (

> learning rate=0.001), loss="mean_squared_error",
> metrics=["mean_squared_error"])

>Model =model .fit (x_train, y_train, epochs = 1000,

> batch_size =128, validation_data = (x_test, y_test),

> verbose=2)

6. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the FFNN model against
the ground truth. A parity plot is the outcome of the model training/validation.

Train convolutional neural network (CNN)
O Timing: <5 min

7. Prepare the input for the training of the CNN model.
a. Stack feature vectors into a feature matrix based on the sequential distribution of the copol-
ymer .
b. Reshape the size of the feature matrix to be suitable for the CNN architecture.

Note: There are 271 copolymers. The feature vector for one monomer has a length of 80, and
100 feature vectors are stacked to represent a copolymer. The number of each monomer s set
in the same proportion as their composition in the copolymer, e.g., stacking 55 F4 and 45 Fg if
the molar ration of the copolymer A:B is 55:45. Finally the size of the input matrix is
271 x 100 x 80, as shown in Figure 5.

8. Build CNN model using the TensorFlow package and train the model on the copolymer dataset.

a. Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the
number of neurons in each layer, and the learning rate.

6 STAR Protocols 3, 101875, December 16, 2022

STAR Protocols

Mix_X.shape

(271, 80)

Mix_X

array([[1. , 6. , . , ..., 0. , 0.9, 0.],
[1. , 0.5, 0. , , 0.,0.3,0.1,
[1. , 0. , 0., , 0. ,0.3,0.1,
vy
[1. ,0.,0., ..., 0.6, 0.4, 0.],
[1. ,0.,0., ..., 0.6, 0.4, 0. 1,
[1. ,0.,0., ..., 0.7, 8.3, 0. 1])

Figure 3. The numerical input of copolymers for the CNN model

b. Add 3 2D Convolutional layers with 8 filters in each layer. Use the ‘ReLU’ activation functions
and change kernel sizes. The model architecture is illustrated in Figure 6.

c. Apply a dropout rate of 0.3 during the training process which involves 200 epochs.

d. Output the training R?, MAE, and RMSE as well as the test R?, MAE, and RMSE after the
training is completed.

>model = Sequential ()

>model.add (Conv2D(8, (10, 10), activation='relu’,
> input_shape=X_train.shape[l:]))

>model.add (Conv2D(8, (4, 4), activation='relu’))
>model .add (Conv2D(8, (3, 3), activation='relu’))
>model.add (MaxPooling2D (pool_size=(2, 2)))
>model .add (Dropout (0.3))

>model.add (Flatten())

>model .add (Dense (1))
>optimizer=keras.optimizers.Adam(lr=0.005)
>model .compile (optimizer=optimizer,

> loss='mean_absolute_error’)

>Model=model .fit (x=X_train, y=y_train, epochs=200,

> batch_size=64, validation_split=0.2)

9. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the CNN model against
the ground truth. A parity plot is the outcome of the model training/validation.

Train recurrent neural network (RNN)
® Timing: <2 min

10. Prepare the input for the training of the RNN model.

¢? CellPress

OPEN ACCESS

STAR Protocols 3, 101875, December 16, 2022 7

¢ CellPress STAR Protocols

OPEN ACCESS

n Figure 4. FFNN model’s architecture
input: | [(None, 80)]
InputLayer
output: | [(None, 80)]
\ 4
input: | (None, 80)
Dense
output: | (None, 24)
\ 4
input: | (None, 24)
Dense
output: | (None, 64)
\ 4
input: | (None, 64)
Dense
output: | (None, 1)

Note: Similar to CNN model, the feature vector for one monomer has a length of 80, and 100
feature vectors are stacked to represent a copolymer. The size of the input matrix is
271 x 100 x 80, as shown in Figure 5.

11. Build RNN model using the TensorFlow package and train the model on the copolymer dataset.

a. Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the
number of neurons in each layer, and the learning rate.

b. Call the custom function getRNNmodel() to build units for the RNN model.

c. Add 2 bidirectional long short-term memory (LSTM) layers with 20 neurons per layer, 1 time-
distributed layer, and 1 reshape layer. The model architecture is illustrated in Figure 7.

d. Train the model for 120 epochs on batch sizes of 4.

e. Output the training R?, MAE, and RMSE as well as the test R?, MAE, and RMSE after the
training is completed.

>def getRNNmodel (LSTMunits) :

> RNNmodel = Sequential ()

> RNNmodel .add (Bidirectional (LSTM (LSTMunits,

> return_sequences=True) , input_shape=(100, 80)))

> RNNmodel .add (Bidirectional (LSTM (LSTMunits,

> return_sequences=True)))

> RNNmodel .add (TimeDistributed (Dense (int (LSTMunits/2) ,
> activation="relu")))

> RNNmodel . add (Reshape ((int (LSTMunits/2*100),)))

> RNNmodel .add (Dense (1))

> return RNNmodel

8 STAR Protocols 3, 101875, December 16, 2022

STAR Protocols ¢? CellP’ress

OPEN ACCESS

>LSTMunits = 20

>RNNmodel = getRNNmodel (LSTMunits)

>RNNmodel .compile (loss='mse’, optimizer='adam’,
> metrics=['mean_squared_error’])

>Model = RNNmodel .fit (X_train, y_train, validation_split=0.2,

> epochs=200, batch_size=64)

12. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the RNN model against
the ground truth. A parity plot is the outcome of the model training/validation.

Train fusion model
® Timing: <2 min

Mix_X_10eBlock.shape

(271, 1ee, 89)
Mix_X_1@eBlock

array([[[1, @0, ©, ..., 0, 1, @],
[1J e) e) LA e) e) e]J
[1) e’ e) LA) 0) 1) e]’

[1) e) e) LA) 0} 1) e]’
[1) e) 0) ¢ 0) 1) e])
[1, 0, @, ..., 0, 1, @]],

[[1, 0, @, ..., 0, 1, O],
[1) 01 e) o ey, e) e) e]J
[11 1J 0)) 0) 9) e]’

[1: 0, 0, ..., 0, 1, 9],
[1) 1, 6, ..., 0, 0, 0]:
[1) 0, 0, ..., 0, 1, 0]],

[[1) 0, 0, ..., 0, 1, 0],
[1) 0, 0, ..., 90, 0, 0],
[1: 0, 0, ..., 0, 0, e]:
[1) 0, 0, ..., 0, 1, 0]:

[1, 6, 0, ..., 0, 0, 0],
[1, @, @, ..., 0, 1, @]],

Figure 5. The numerical input of copolymers for the CNN model

STAR Protocols 3, 101875, December 16, 2022 9

¢? CellPress

OPEN ACCESS

input: | [(None, 100, 80, 1)]
InputLayer
output: | [(None, 100, 80, 1)]
/
input: one, 100, 80, 1
Conv2D : ™)
output: | (None, 91, 71, 8)
A 4
input: one, 91, 71, 8
Conv2D 2 ®)
output: | (None, 88, 68, 8)
input: one, 88, 68, 8
Conv2D A ®)
output: | (None, 86, 66, 8)
mput: one, 86, 66, 8
MaxPooling2D P ™)
output: | (None, 43, 33, 8)
A 4
nput: | (None, 43, 33, 8)
Dropout
output: | (None, 43, 33, 8)
input: | (None, 43, 33, 8)
Flatten
output: [(None, 11352)
input: | (None, 11352)
Dense
output: (None, 1)

Figure 6. CNN model’s architecture

13. Prepare the numerical input for the training of the Fusion model.

STAR Protocols

a. Calculate the weighted sum of feature vectors to consider molecular composition in the

FFNN component.

b. Prepare a vector of 1/0 bit to represent the sequence distributions of copolymers in the RNN

component.

Note: If using “1"” for monomer “A"” and “0"” for monomer “B”, then stacking 100 bits of 1/0

can represent the sequence distribution of copolymers.

14. Build the fusion model by combining the FFNN architecture and RNN architecture.

a. Employ Keras RandomSearch to optimize hyperparameters such as the number of layers, the
number of neurons in each layer, and the learning rate.

10 STAR Protocols 3, 101875, December 16, 2022

STAR Protocols

input: | [(None, 100, 80)]
InputLayer
output: | [(None, 100, 80)]
y
input: one, 100, 80
Bidirectional(LSTM) P il)
output: | (None, 100, 40)
y
. input: | (None, 100, 40)
Bidirectional(LSTM)
output: | (None, 100, 40)
A
input: one, 100, 40
TimeDistributed(Dense) P *)
output: | (None, 100, 10)
A
input: | (None, 100, 10)
Reshape
output: | (None, 1000)
input: | (None, 1000)
Dense
output: (None, 1)

Figure 7. RNN model architecture

b. Add the Recurrent Neural Network (RNN) components of the Fusion model. Each unit has 2
bidirectional LSTM layers with 20 neurons each and 1 time-distributed layer.

c. Add the Feed Forward Neural Network (FFNN) component which contains 2 hidden layers
with 8 neurons each with the ‘ReLU’ activation function.

d. Combine the two components using a concatenate layer and a final layer of 8 neurons with
the ‘ReLU’ activation function. The model architecture is illustrated in Figure 8.

e. Train the model for 300 epochs on batch sizes of 32.

f. Output the training R?, MAE, and RMSE as well as the test R?, MAE, and RMSE after the
training is completed.

># define two sets of inputs

>inputA = Input (shape=(100,1))

>inputB = Input (shape=(80))

># the first branch operates on the first input
>RNNmodel = Sequential ()

>RNNmodel .add (Bidirectional (LSTM (LSTMunits,

> return_sequences=True), input_shape=(100,1)))
>RNNmodel .add (Bidirectional (LSTM (LSTMunits,

> return_sequences=True)))

>RNNmodel .add (TimeDistributed (Dense (int (LSTMunits/2),

> activation="relu")))

¢? CellPress

OPEN ACCESS

STAR Protocols 3, 101875, December 16, 2022 11

¢ CellPress STAR Protocols

OPEN ACCESS

>RNNmodel .add (Reshape ((int (LSTMunits/2*100),)))

># the second branch opreates on the second input

>y = Dense (8, activation="relu") (inputB)

>y = Dense (8, activation="relu") (y)

>y = Model (inputs=inputB, outputs=y)

># combine the output of the two branches

>combined = Concatenate () ([RNNmodel .output, y.output])

># apply a FC layer and then a regression prediction on the

># combined outputs

>z = Dense (8, activation="relu") (combined)

>z = Dense (1, activation="1linear") (z)

># our model will accept the inputs of the two branches and

># then output a single value

>model = Model (inputs=[RNNmodel. input, y.input], outputs=z)
>model .compile (optimizer=keras.optimizers.Adam(lr=0.001),
> loss="mean_squared_error",

> metrics=["mean_squared_error"])

>Model = model .fit (x=[xtrain_A, xtrain_B], y=ytrain_B,

> validation_data=([xtest_A, xtest_B], ytest_B),

> epochs=300, batch_size=32, verbose=2)

15. Visualize results using matplotlib.

Note: The results visualization compares the predicted values from the Fusion model against
the ground truth. A parity plot is the outcome of the model training/validation.

EXPECTED OUTCOMES

This protocol describes a step-by-step workflow to build four ML models to establish structure-prop-
erty relationships for copolymers. Both monomer composition and sequence distribution are neces-
sary information for ML models to learn the features of copolymers. Focusing on the different data-
sets, we build four ML model including FFNN, CNN, RNN, and Fusion model. The outcome of the
protocol is a reliable ML model suitable for copolymer informatics. Different models’ training loss
and validation loss versus the number of epochs are shown in Figure 9. It is illustrated that the
most difficult model to converge is the Fusion model considering the high peaks in its loss value
curves. Since the Fusion model is a combination of FFNN and RNN models, it has a more complex
architecture and contains more parameters to optimize during the gradient descent process. The
two peaks indicate the complexity of the loss function and the difficulty of the convergence. One
possible cause of the two peaks is there is a tradeoff between the convergence of its FFNN compo-
nent and RNN component. Once the gradient descent leads to a more local minimum of the FFNN
component, the loss of the RNN components may be increasing, and when it is corrected to a more
local minimum of the RNN component, the loss of the FFNN components may start soaring. It is ex-
pected that after some adjustments, a balanced minimum for both FFNN and RNN components are
obtained as the final global minimum.

12 STAR Protocols 3, 101875, December 16, 2022

STAR Protocols ¢? CellP’ress

OPEN ACCESS

input: | [(None, 100, 1)]
InputLayer
output: | [(None, 100, 1)]
input: one, 100, 1
Bidirectional(LSTM) = o)
output: | (None, 100, 40)
input: one, 100, 40 input: one, 80
Bidirectional(LSTM) P i) InputLayer i [)l
output: | (None, 100, 40) output: | [(None, 80)]
input: one, 100, 40 mput: one, 80
TimeDistributed(Dense) 4 &) Dense i3 &)
output: | (None, 100, 10) output: | (None, 8)
input: | (None, 100, 10) input: | (None, 8)
Reshape Dense
output: | (None, 1000) output: | (None, 8)

N

input: | [(None, 1000), (None, 8)]
output: (None, 1008)

Concatenate

input: | (None, 1008)
output: (None, 8)

Dense

A
input: | (None, 8)

output: | (None, 1)

Dense

Figure 8. Fusion model’s architecture

The parity plot comparing the ML prediction and experimental ground truth is demonstrated in
Figure 10. Given a copolymer whose monomer composition and monomer sequence patterns
(random, block, or gradient) are known, the ML model can provide reliable property predictions
efficiently.

LIMITATIONS

The model architectures demonstrated in this protocol have been designed and tested for the
polymer types and datasets referenced. Random, block, and gradient copolymers are investigated
and tested, but branched and graft copolymers are not considered because of their complex chain
architectures. As ML model performance is highly problem-dependent, further test is required in
terms of the applicability of the investigated four ML models for other properties. This protocol
demonstrates ML models for copolymers at monomer level by considering the monomer compo-
sition and monomer sequence patterns, but it doesn’t encode microscale or macroscale level fea-
tures of polymer such as average chain length, molecular weight, chain topology, crystallization,
etc. As the performance of copolymers is determined by their features at different levels, the
development of a multi-level ML model is preferred to better address the copolymer informatics
challenges.

STAR Protocols 3, 101875, December 16, 2022 13

¢ CellPress STAR Protocols

OPEN ACCESS

FFNN CNN
T 50 ;
5000 — loss \ —— loss
—— val_loss 40 ! —— val_loss
4000
@ 3000 8
o | -
2000 i T
1000 ‘
0 — = it]
0 200 400 600 800 1000 0 25 50 75 100 125 150 175 200
Epochs Epochs
RNN Fusion
300
—— loss —— loss
—— val_loss 2501 i —— val_loss
\ 2001
T (2} |
‘ 2 150
| |
‘ 100+
] 501
0 25 50 75 100 125 150 175 200 00 50 100 150 200 250 300
Epochs Epochs

Figure 9. Training loss and validation loss of the ML models versus the number of epochs

TROUBLESHOOTING

Problem 1
Create environment using requirements.txt may output conflict or error because of different OS of
computers (step Import Dependencies).

Potential solution
Create an environment and install each package manually.

e Download and install Anaconda https://www.anaconda.com/
o Create a new python 3.7 environment:

> conda create -nmyenv python=3.7

e Pip install required packages (change package version may cause code errors):

>pip install RDkit

>pip install numpy==1.18.5
>pip install pandas==1.2.4
>pip install scipy=1.4.1

>pip install scikit-learn

>pip install matplotlib

>pip install -user keras==2.4.3

>pip install —user tensorflow==2.2.0

>pip install -user tensorflow-gpu==2.2.0

14 STAR Protocols 3, 101875, December 16, 2022

https://www.anaconda.com/

STAR Protocols

FFENN CNN
140 140 1
%120 - %1201
2 @
¥ 100 - . 100 - oo
= [T 3. s e [°)
& 80 oS - & 801 e
:§ 60 - .. e ¢ 5 60 1 .
Q .’ ® § ® o
3 40 4 X X 3 40 A o ®
i ° TrainR2=082 | & Train R2 = 0.91
204 &7 Test R2=0.78 201 % Test R2=0.77
042 : : 0 : :
0 50 100 150 0 50 100 150
Experiment '°F MRI SNR Experiment '°F MRI SNR
RNN Fusion
140 140 -
%120 - 120
w =z
7100 1 ° 2100 1 3
= ®
4 ® = ?
g— 80 . %0 n 80 A oo -
S 60 - o e = 60
ki % o 2 ¥ =
S 40 1 o S 404 o
5 o
a " Train R%2 = 0.90 @ Train R2 = 0.88
20 1 Test R2=084 | o 20 A Test R2=0.84
0 T T 0 T T
0 50 100 150 0 50 100 150

Experiment '°F MRI SNR Experiment '°F MRI SNR

Figure 10. The parity plot of the four ML predicted SNR versus the experimental values

Problem 2
If plots appear only as text while running in Visual Studio code (step Construct Datasets).

Potential solution
Selecting the ellipsis next to the text, change the renderer to ‘image/png’.

Problem 3
Looking for GPU but it shows no GPU error while calling the tensorflow GPU function (step Import
Dependencies).

>physical_devices = tf.config.list_physical_devices('GPU’)

> tf.config.list_physical_devices ('GPU’)

Potential solution
GPU is recommended but not required. Ignore and using the default CPU setup for the model

training.

Problem 4
When processing the python dataframe, there may be warning message SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame (step Construct Datasets).

STAR Protocols 3, 101875, December 16, 2022

¢? CellPress

OPEN ACCESS

¢ CellPress STAR Protocols

OPEN ACCESS

Potential solution
It is a chained assignment warning and can be turned off using.

>pd.set_option(’mode.chained _assignment’, None)

Problem 5
Load python pickle file error when python package version is not compatible. ValueError: unsup-
ported pickle protocol: 5 (step Construct Datasets).

Potential solution
Pip install pickle5 in the anaconda environment.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-
filled by the lead contact, Dr. Ying Li (yli2562@wisc.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data from publications and open website.

All original code has been deposited at https://github.com/figotj/Copolymer and archived at Zen-
odo (DOI) https://doi.org/10.5281/zenodo.7226849. They are publicly available as of the date of
publication.

Any additional information required to reanalyze the data reported in this paper is available from the
lead contact upon reasonable request.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from the Air Force Office of Scientific Research
through the Air Force's Young Investigator Research Program (FA9550-20-1-0183; Program Man-
ager: Dr. Ming-Jen Pan), Air Force Research Laboratory/UES Inc. (FA8650-20-S-5008, PICASSO pro-
gram), and the National Science Foundation (CMMI-1934829 and CAREER-2046751). Y.L. would
also like to thank the support from 3M’s Non-Tenured Faculty Award. This research also benefited
in part from the computational resources and staff contributions by the Booth Engineering Center
for Advanced Technology (BECAT) at the University of Connecticut. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of the U.S. Department of Defense and National Science Foundation. The au-
thors also acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at
Austin (Frontera project and the National Science Foundation award 1818253) for providing HPC re-
sources that have contributed to the research results reported within this article.

AUTHOR CONTRIBUTIONS

Y.L. and J.B. conceived the idea. Y.L., J.B., and V.V. supervised the research. Y.L. and L.T. contrib-
uted to the design of the project and data analysis. L.T. collected and analyzed the data and estab-
lished ML models. L.T. and T.A. wrote the first draft of the article, and all authors contributed equally
to revising the article.

DECLARATION OF INTERESTS

The authors declare no competing interests.

16 STAR Protocols 3, 101875, December 16, 2022

mailto:yli2562@wisc.edu
https://github.com/figotj/Copolymer
https://doi.org/10.5281/zenodo.7226849

STAR Protocols

REFERENCES

1.

Tao, L., Byrnes, J., Varshney, V., and Li, Y. (2022).
Machine learning strategies for the structure-
property relationship of copolymers. iScience
25, 104585.

. Morgan, H.L. (1965). The generation of a unique

machine description for chemical structures-a
technique developed at chemical abstracts
service. J. Chem. Doc. 5, 107-113.

. Tao, L., Varshney, V., and Li, Y. (2021).

Benchmarking machine learning models for
polymer informatics: an example of glass
transition temperature. J. Chem. Inf. Model. 61,
5395-5413.

4. Tao, L., Chen, G., and Lj, Y. (2021). Machine

learning discovery of high-temperature
polymers. Patterns 2, 100225.

. Wilbraham, L., Sprick, R.S., Jelfs, K.E., and

Zwijnenburg, M.A. (2019). Mapping binary

copolymer property space with neural networks.

Chem. Sci. 10, 4973-4984.

. Reis, M., Gusev, F., Taylor, N.G., Chung, S.H.,
Verber, M.D., Lee, Y.Z., Isayev, O., and Leibfarth,

F.A. (2021). Machine-learning-guided discovery
of 19F MRI agents enabled by automated
copolymer synthesis. J. Am. Chem. Soc. 143,
17677-17689.

¢? CellPress

OPEN ACCESS

7. Pilania, G., lverson, C.N., Lookman, T., and

Marrone, B.L. (2019). Machine-learning-based
predictive modeling of glass transition
temperatures: a case of polyhydroxyalkanoate
homopolymers and copolymers. J. Chem. Inf.
Model. 59, 5013-5025.

. Otsuka, S., Kuwajima, I., Hosoya, J., Xu, Y., and

Yamazaki, M. (2011). PoLylnfo: Polymer
Database for Polymeric Materials Design (IEEE)),
pp. 22-29.

STAR Protocols 3, 101875, December 16, 2022 17

http://refhub.elsevier.com/S2666-1667(22)00755-9/sref1
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref1
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref1
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref1
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref2
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref2
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref2
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref2
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref3
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref3
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref3
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref3
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref3
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref4
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref4
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref4
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref5
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref5
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref5
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref5
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref6
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref6
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref6
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref6
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref6
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref6
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref7
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref7
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref7
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref7
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref7
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref7
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref8
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref8
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref8
http://refhub.elsevier.com/S2666-1667(22)00755-9/sref8

	Unified machine learning protocol for copolymer structure-property predictions
	Before you begin
	Repository download and environment installation

	Key resources table
	Step-by-step method details
	Import dependencies
	Construct datasets
	Train feed-forward neural network (FFNN)
	Train convolutional neural network (CNN)
	Train recurrent neural network (RNN)
	Train fusion model

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

