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ABSTRACT Microbial communities such as swarms or biofilms often form at the interfaces of solid substrates and open fluid

flows. At the same time, in laboratory environments these communities are commonly studied using microfluidic devices with

media flows and open boundaries. Extracellular signaling within these communities is therefore subject to different constraints

than signaling within classic, closed-boundary systems such as developing embryos or tissues, yet is understudied by compar-

ison. Here, we usemathematical modeling to show how advective-diffusive boundary flows and population geometry impact cell-

cell signaling in monolayer microbial communities. We reveal conditions where the intercellular signaling lengthscale depends

solely on the population geometry and not on diffusion or degradation, as commonly expected. We further demonstrate that

diffusive coupling with the boundary flow can produce signal gradients within an isogenic population, even when there is no

flow within the population. We use our theory to provide new insights into the signaling mechanisms of published experimental

results, and we make several experimentally verifiable predictions. Our research highlights the importance of carefully evalu-

ating boundary dynamics and environmental geometry when modeling microbial cell-cell signaling and informs the study of

cell behaviors in both natural and synthetic systems.

INTRODUCTION

Diffusive signaling coordinates multicellular processes

from embryogenesis and tissue development (1) to microbi-

al quorum sensing (QS) (2–6). In the classical picture of

diffusive signaling, the diffusible components are confined

to the vicinity of the cells, either by external barriers such

as an embryonic envelope, or by the cell membranes them-

selves in the case of direct cell-to-cell molecular exchange.

In these cases, global signaling properties are determined by

basic transport parameters such as the diffusivity of the

signaling molecule or the speed of advective flow within

the cell population (7).

However, in other cases, the diffusible components are free

to escape at the population boundaries, or are otherwise

affected by properties of the surrounding medium such as

fluid flow. These cases include microbial communities such

as biofilms or swarms, whose boundaries are usually open

and dynamic, and which often form at the interfaces of solid

substrates and fluid flows (8,9). In such environments, re-

sponses at the macroscopic (population) level depend on

both the features of the domain in which the cells grow and

the dynamics of the constituent cells. In particular, open

boundaries can significantly impact signaling behavior

within the community. Such impacts include modulation of

signaling depth and spatial signaling profiles (10), changes
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SIGNIFICANCE Microbial communities in natural environments and microfluidic devices are often exposed to open

boundaries and flows, but models used to characterize diffusive signaling in such systems often ignore how device
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to QS thresholds (9,11), and new challenges when respond-

ing to time-varying flows in a spatiotemporally robust

manner (8,12). Despite the importance of these impacts,

signaling in open geometries has been understudied relative

to signaling in closed geometries. In particular, although the

effects of open fluid flow overtop amicrobial layer have been

studied with modeling and experiments (9,11), the effects of

flow around the edges of a layer have not, to our knowledge.

When cell populations are very thin (e.g., a monolayer), the

effects of overtop flow need only propagate a cell diameter

to impact signaling properties, whereas the effects of edge

flow would need to propagate a length commensurate with

the entire population to do so. As we will show, open geom-

etries can induce counterintuitive signaling characteristics,

even when the open boundaries are restricted to the edges.

Laboratory experiments aimed at characterizing signaling

in microbial communities often rely on microfluidic devices.

Such experiments allow researchers to characterize the

behavior of spatially extended systems, thereby facilitating

the design of microbial consortia that maintain desired pop-

ulation fractions (13) or produce emergent spatiotemporal

patterns (14). Here, signaling provides the necessary intercel-

lular communication pathway to coordinate responses and

achieve population-level phenotypes. In typical microfluidic

experiments, cells are forced to grow in amonolayer, thereby

allowing for imaging of large populations at high resolution.

Such imaging capability facilitates the investigation of con-

sortia-scale spatiotemporal dynamics, emergent collective

behavior, and nematic effects (15,16). Importantly, manymi-

crofluidic devices employ open boundaries between the cell

population and the surrounding fluid to supply media to cells

and remove waste products and excess cells. Open boundary

geometries can strongly impact the dynamics of growing

microbial collectives and therefore place such microfluidic

devices into the same understudied paradigm as the afore-

mentioned biofilms and swarms.

Here, we use mathematical modeling to investigate the ef-

fects of open, advective boundaries on cell-cell signaling

within a bacterial monolayer. Surprisingly, in contrast to

the closed-boundary case, we find that the spatial extent of

signaling from a source cell does not depend on the diffu-

sion coefficient, but rather depends entirely on the popula-

tion geometry. When the signal can degrade, we find that

the signaling extent is determined by the minimum of the

geometric lengthscale and the classical lengthscale set by

the ratio of diffusion to degradation. Furthermore, we find

that flow at the boundary can introduce signal gradients

within the population—even if flow is absent within the

population itself—due to the diffusive exchange of

signaling molecules with the boundary region. We compare

our results to published data on bacterial monolayers in a

microfluidic device that signal via a QS factor.

RESULTS

We consider a continuum model of bacteria in a monolayer

(Fig. 1 A). Such monolayer configurations are typical of the

leading edge of growing colonies or biofilms (17–19) and

are often imposed by thin cell-trapping regions in microflui-

dic devices (4,5,10) (Fig. 1 B). To investigate boundary ef-

fects, we confine the monolayer to a rectangle with length

L and width w. These parameters can be thought of as the

characteristic lengthscales of a natural population, or as

the precise dimensions of the rectangular trapping region

in a microfluidic device. We specify the boundary condi-

tions in detail in the following sections.

To investigate intercellular signaling, we suppose that

cells secrete a molecule at a constant rate a that can diffuse

with coefficient D and degrade with rate g. Secretion of

diffusible molecules is a ubiquitous signaling strategy

in bacteria, employed in natural functions such as QS

(20,21), and probed or engineered in microfluidic experi-

ments (4,5,11,22). In the following sections, we investigate

the effects of open boundaries and fluid flow on the proper-

ties of such signaling in steady state.

Open boundaries and constant signal production

make the signaling lengthscale independent of

diffusion

We first investigate the spatial extent of signaling from a

given source cell, without flow; we consider flow in a

A B

FIGURE 1 We model bacteria growing in a spatially extended microfluidic device using a continuum framework. (A) Top view of the device. Cells are

confined to a thin trapping region T of width w and length L, wherein they grow in a monolayer. The trapping region interfaces with two three-dimensional

flow channels, an upper flow channel Fþ and a lower flow channel F�. The boundaries between the trapping region and the flow channels are open and

therefore subject to flow effects. (B) Side view of the device. The trapping region has cross-sectional area A. Flow channels each have cross-sectional

area Af . To see this figure in color, go online.

Cell signaling with open boundaries
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subsequent section. To investigate the spatial extent of

signaling, it is often convenient to consider some cells as

‘‘senders’’ of the signaling molecules and other cells as ‘‘re-

ceivers.’’ For example, in a system with closed boundaries,

such as a developing embryo, signaling molecules are

‘‘sent’’ from one end of the embryo and ‘‘received’’ by

cell nuclei in the bulk of the embryo (7). Similarly, in micro-

bial communities, often one subpopulation of cells secretes

a diffusible signal that a second subpopulation receives, as

has been realized and studied in microfluidic experi-

ments (10,23).

In the case of a developing embryo, the classic synthesis-

diffusion-clearance model (7) predicts that the signal will

establish an exponential concentration profile in steady

state. With molecular diffusion coefficient D and degrada-

tion rate g, this profile will have a lengthscale l ¼ffiffiffiffiffiffiffiffiffi
D=g

p
, given that the system is long (L[ l). The experi-

mental devices we model have length much longer than

width (L[w, see Fig. 2), such that this assumption estab-

lishes a consistent basis for comparison. However, with

open boundaries, molecules can leave the system not just

by degrading but also by diffusing across the boundary. It

is thus unclear what effect open boundaries will have on

the signaling lengthscale.

To address this question, we consider the sender-receiver

system shown in Fig. 2 A, where cells in the left half of the

trapping region T (x < 0) produce the diffusible signal, and

cells in the right half (xR 0) do not. We assume a zero-order

functional form for signal production and initially no chem-

ical degradation of the signaling molecules. Our system thus

models engineered microbial strains with constitutive or

inducible promoters and without signaling feedback. Such

systems allow isolation of diffusible-signal communication

from the canonical QS mechanism in studies of microbial

consortia (10,24). Although we only consider the zero-order

functional form for signal production, we examine the

impact of first-order degradation (below).

The signal concentration cðx; yÞ obeys the diffusion equa-
tion with production rate a,

_c ¼ DV2cþ a½1 � qðxÞ�; (1)

where the Heaviside function qðxÞ ensures that signal pro-
duction only occurs for x < 0. Here, c has units of molecules

per volume (and thus a has units of volumetric concentra-

tion per time) even though it only varies in the x- and y-di-

rections. Because we are interested in open boundaries,

where molecules can be lost by diffusion, degradation is

not required for c to reach steady state. Signaling molecules

often have a large half-life, and are not absorbed into micro-

fluidic device material (25). Therefore, we neglect degrada-

tion here, and we consider its effects in the next section.

Eq. 1 does not capture diffusion of signaling molecules

through the cell membrane, but rather describes the dy-

namics of signaling molecule concentration in extracellular

space. A more detailed model would include separate partial

A

B

C D

FIGURE 2 Signaling lengthscale in a ‘‘sender-

receiver’’ setup. (A) Cells on the left (orange) secrete

a diffusible signal, whereas cells on the right (blue)

do not. (B) Steady-state concentration profile with

no signal degradation (Eq. 5). (C) Signal profile at

the midline (y ¼ 0) with degradation rate g

(Eq. 9), characterized by diffusion lengthscale l ¼ffiffiffiffiffiffiffiffiffi
D=g

p
. (D) With degradation, signaling is limited

by the minimum of l and kw=p, where w is the

lengthscale of the trapping region, see (A) and

kz1. To see this figure in color, go online.

Winkle et al.

2810 Biophysical Journal 122, 2808–2817, July 11, 2023



differential equation (PDEs) for intracellular and extracel-

lular compartments coupled via diffusion through the cell

membrane. However, here we capture the combined effects

of molecule production and secretion into the extracellular

space with a single rate, a. Eq. 1 then describes diffusion

of signaling molecules within the extracellular space.

Eq. 1 also neglects cell growth. We are interested in the

diffusion of molecules over distances w on the order of

100 mm, with diffusion coefficient D on the order of hun-

dreds of microns squared per second. We therefore neglect

cell growth because the typical diffusion timescale w2= D

is tens of seconds, which is much smaller than the typical

growth and division timescale of tens of minutes to hours.

To determine the effect of open boundaries, we assume

that the upper and lower boundaries (y ¼ 5w=2) between
the trapping region and the flow channels are absorbing with

respect to the signaling molecule, so that the signal concen-

tration vanishes there:

cðx; 5 w = 2Þ ¼ 0: (2)

We will see later that absorbing boundary conditions are

appropriate if we assume the flow speed is large, an assump-

tion we make for our sender-receiver analysis. Since we are

modeling a long system (L[w), we take L/N. A sender-

receiver system of precisely this type (with open boundaries

at y ¼ 5w=2 and with L[w) was created in microfluidic

experiments in previous work (10). We compare our predic-

tions to these experiments in the discussion.

Far from the sender cells, the signal concentration must

vanish:

cðN; yÞ ¼ 0: (3)

Far from the receiver cells, the concentration must

become independent of x. The diffusion equation there reads

_c ¼ Dv2ycþ a, which in steady state and with Eq. 2 is

solved by

cð�N; yÞ ¼
aw2

D
f ðyÞ;with f ðyÞ ¼

1

8
�

y2

2w2
: (4)

With the four boundary conditions in Eqs. 2, 3, and 4, we

solve Eq. 1 in steady state by separating variables and

ensuring continuity of the solution and its derivative at the

sender-receiver interface (appendix A). The result is

cðx; yÞ¼
aw2

D

8
><

>:

f ðyÞ �
X

N

n ¼ 0
ane

qnx=w cosðqny=wÞ x < 0

X
N

n ¼ 0
ane

� qnx=w cosðqny=wÞ xR 0;

(5)

where anh2ð� 1Þn=q3n and qnhpð2nþ1Þ. The signal con-

centration given by Eq. 5 is shown in Fig. 2 B. The concen-

tration vanishes at the open boundaries and decays across

the sender-receiver interface.

The signaling lengthscale is set by the decay length of the

concentration profile in the right half (xR 0) of the trapping

region. The decay length is obtained by integrating the pro-

file, normalized by its value at the interface (x ¼ 0). Doing

so along the midline (y ¼ 0), we obtain a measure of

signaling depth,

L ¼

Z
N

0

dx
cðx; 0Þ

cð0; 0Þ
¼

kw

p
; (6)

where khpð
P

N

n¼ 0an =qnÞ=
P

N

n0 ¼ 0an0z1:021. We observe

that, since the coefficients an fall off rapidly as n� 3, Eq. 6

is well approximated by the fundamental of the series solu-

tion and the resulting approximate signaling depth is w=p to

first order.

Eq. 6 shows that the signaling lengthscaleL depends only

on w, the width of the trapping region between the two open

boundaries. Surprisingly, it is independent of the diffusion

coefficient, D. In fact, the lack of a diffusion-dependent

lengthscale is already apparent in Eq. 5, where we see that

D factors out of the solution and is absent from the exponen-

tial x dependence. Thus the diffusion coefficient affects the

overall amplitude of the signal, but not how it decays with

distance from the sender-receiver interface.

The mathematical reason that Eq. 6 does not depend on D

is that Eq. 1 involves only a zero-order reaction (26,27),

namely production at the constant rate a. Consequently,

all parameters in Eq. 1 can be removed by scaling length

by w, time by w2=D, and concentration by aw2=D. All

lengthscales must then depend only on w, as demonstrated

in Eqs. 5 and 6. We will see in the next section that this re-

striction no longer holds when adding the first-order degra-

dation reaction.

The physical reason that Eq. 6 does not depend onD is the

following. When diffusion increases, the amplitude of the

profile decreases, in both open and closed systems, as diffu-

sion spreads the signaling molecules across space. In closed

systems, this spreading leads to an increased signaling

lengthscale as higher diffusion allows molecules to travel

farther from the source. However, in open systems,

increasing the spread of molecules across space also in-

creases the rate at which they cross the open boundaries.

Molecules that would have diffused farther from the source

if boundaries were closed are the ones that are more likely to

be lost. In systems with open boundaries, the two opposing

effects of signal loss across the open boundaries and signal

diffusion cancel exactly, so that the signaling lengthscale is

independent of diffusion.

With degradation, the signaling lengthscale is

bounded from above by the geometry

Degrading enzymes can introduce active degradation in

microbial populations. For example, expression of AiiA

lactonase can significantly accelerate the degradation of

signaling molecules inside bacteria (28), which can translate

to an effective extracellular molecule loss for sufficiently

Cell signaling with open boundaries
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fast diffusion across the membrane. Moreover, extracellular

signal degradation can be induced and controlled in engi-

neered microbial consortia (6,29).

To examine how degradation impacts signaling in open

geometries and to more directly compare the behavior of

our model with that of the closed-boundary synthesis-diffu-

sion-clearance model, we introduce degradation with rate g

into Eq. 1:

_c ¼ DV2cþ a½1 � qðxÞ� � gc: (7)

The solution far from the receiver cells generalizes from

Eq. 4 to

cð�N; yÞ ¼
aw2

D
FðyÞ;FðyÞ ¼

l2

w2

�
1 �

coshðy=lÞ

coshðw=2lÞ

�
;

(8)

where l ¼
ffiffiffiffiffiffiffiffiffi
D=g

p
is the closed-boundary diffusion length-

scale. We use cð�N; yÞ as a boundary condition for Eq. 7

together with the boundary conditions given in Eqs. 2

and 3. Solving Eq. 7 using the same approach as in the pre-

vious section (appendix A), we obtain

cðx; yÞ¼
aw2

D

8
><

>:

FðyÞ �
X

N

n ¼ 0
Ane

x=‘n cosðqny=wÞ x < 0

X
N

n ¼ 0
Ane

� x=‘n cosðqny=wÞ xR 0;

(9)

where An ¼ 2ð� 1Þnð‘n=wÞ
2=qn and ‘n ¼ wl=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2nl
2 þ w2

q
. Note that, in the zero-degradation limit

(l[w), we have FðyÞ/f ðyÞ, ‘n/w=qn, An/an, and

Eq. 9 reduces to Eq. 5, as expected.

The solution given by Eq. 9 is shown in Fig. 2 C, where

we see that the signal penetrates more deeply into the

receiver cell population as l increases, but that the signaling

depth eventually saturates. Indeed, with degradation the

penetration depth of the signal defined in Eq. 6 becomes

L ¼

P
N

n ¼ 0
An‘nP

N

n0 ¼ 0
An0

/

�
kw=p l[w

l l � w;
(10)

where the second case follows from the fact that ‘n/ l for

l � w. Eq. 10 is plotted in Fig. 2 D. We recover the diffu-

sion-independent result given by Eq. 6 in the limit of small

degradation, l[w. In this limit, signal loss due to diffu-

sion into the flow channels dominates over signal loss due

to degradation. When degradation is strong, l � w,

signaling depth approaches the closed-boundary length-

scale, l. In this limit, signaling molecules typically degrade

before they diffuse into the flow channels. Overall, we have

L%minfl; kw =pg; (11)

a bound that reflects the influence of both degradation and

open boundaries on signaling depth.

Flow outside the population introduces signal

gradients within the population

Thus far we have considered the effects of open boundaries,

but not fluid flow in the boundary regions. Surrounding

flows are common in natural settings (8,12), and flow is

often desired or operationally necessary in channels bound-

ing the trapping region in a microfluidic device (30,31). To

investigate the effects of boundary flow on signaling in a

bacterial population, we return to the simplest case of a ho-

mogeneous population (all cells secrete the signal) with no

signal degradation (Fig. 3 A). We introduce flow at a con-

stant velocity v in the x-direction within the flow channels

F5 that lie outside the upper and lower boundaries of the

trapping region (y ¼ 5w=2). Because flow breaks the

translational symmetry of the signal profile in the x-direc-

tion, we assume the length of the trapping region, L, is finite.

We assume that the signaling molecule concentration in

the flow channels does not depend on the z-direction.

Indeed, this type of dimension reduction is often performed

when studying pollutant transport in rivers (32) or shallow-

water flows (33). Below we eliminate dependence on the

y-direction as well, and we justify the overall reduction by

comparing a mixing timescale within cross sections of the

flow channels with an advective lengthscale. See (8) for a

similar approach to dimension reduction.

Let b5ðx; yÞ denote the volumetric concentration of

signaling molecule in F5. The dynamics in the trapping re-

gion and flow channels obey

_c ¼ DV2cþ a; (12)

_b5 ¼ DV2b5 � vvxb5 ; (13)

where a is the signal production rate and v is the flow veloc-

ity. Although cells can exit the trapping region and enter the

flow channels, we assume that signal production in the chan-

nels is negligible. We also assume that there is no flow in the

trapping region. However, the trapping region and the flow

channels are coupled by diffusion of molecules across the

boundaries. Correspondingly, we impose continuity of the

profiles at the boundaries,

cðx; 5 w = 2Þ ¼ b5 ðx; 5 w = 2Þ; (14)

as well as their derivatives, vycjy¼5w=2 ¼ vyb5jy¼5w=2.

To solve Eqs. 12 and 13 in steady state, we assume that,

whereas the concentration in the flow channels changes in

the x-direction due to the flow, it is constant in the y-direc-

tion, so that bþðx;yÞ ¼ b�ðx;yÞ ¼ bðxÞ. Such an approx-

imation is valid when the length L of the flow channels is an

order of magnitude larger than their width (32). This length-

to-width ratio is on the order of 200 : 1 for the experimental

devices we model. Justifying our assumption that signaling

molecule concentration depends only on x more carefully,

we argue that signaling molecule concentration quickly ho-

mogenizes in each cross section of each flow channel

Winkle et al.
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relative to other scales in the system. The mixing timescale

in a cross section of a flow channel is given by Af = D.

The corresponding advective lengthscale in the flow

channel is ðAf =DÞv. Using typical experimental values

(10) D ¼ 500 mm2/s, Af ¼ 10 mm � 10 mm, and v ¼
25 mm/s, the advective lengthscale becomes 5 mm, a length-

scale that is a mere 1=400 fraction of the length of a 2 mm

flow channel.

Because b no longer depends on y, the net flux of signal

into the flow channels can no longer be accounted for by en-

forcing continuity of the y-derivative at the boundaries.

Instead, this flux appears as an effective source term in

Eq. 13, whose magnitude is determined by flux balance.

Specifically, in a slice of length Dx, the flux of signaling

molecules out of the trapping region, aADx, must equal

the flux into the two flow channels, bað2Af ÞDx. Thus, the
effective source term is ba ¼ a=2Q for the area ratio

Q ¼ Af =A, which we refer to as the flow-channel capacity.

Correspondingly, Eq. 13 becomes

_b ¼ Dv2xb � vvxbþ a
�
2Q: (15)

We solve Eq. 15 in steady state by direct integration in ap-

pendix B, where we show that, for long flow channels with

sufficiently fast flow, the profile bðxÞ in the bulk is insensi-

tive to the boundary conditions at x ¼ 0 and x ¼ L. In the

bulk, the profile is linear in x,

bðxÞ ¼
a

2Qv
x; (16)

which satisfies Eq. 15 by inspection. The linearity of Eq. 16

validates the effective source term a=2Q in Eq. 15.

This term is a local approximation in x for the rate of in-

crease of flow channel concentration due to diffusive

coupling with the trapping region under a flux balance

argument. The linearity enforces the flux balance approxi-

mation because the diffusion operator in Eq. 12 satisfies

V2½cðx; yÞþbðxÞ� ¼ V2cðx; yÞ when b is linear. The result-

ing cðx; yÞ is quadratic in y, linear in x, and satisfies the

boundary condition in Eq. 14,

cðx; yÞ ¼
aw2

D
f ðyÞ þ

a

2Qv
x; (17)

where f ðyÞ is given by Eq. 4.

Eqs. 16 and 17 are shown in Fig. 3 B: cðx; yÞ is the surface
and bðxÞ is the long edge. We see that the concentration in-

creases not only in the flow channels (the edge), but also

within the cell population (the surface). Thus, diffusive

coupling between the flow channels and the trapping region

induces a signal gradient in the cell population, even though

the population itself is not subjected to the flow.

To get a sense of the magnitude of the gradient within the

cell population, we plot in Fig. 3 C the derivative vxcðx;yÞ,

A

B C

FIGURE 3 Effects of boundary flow. (A) Rightward flow is imposed at the upper and lower boundaries. (B) The flow induces a concentration gradient not

just at the boundaries (long edge), but also within the cell population (surface). (C) The gradient as a function of flow strength x and flow-channel capacityQ.

(B and C) Plots of Eq. 17. Parameters are x ¼ 100, Q ¼ 1, and aspect ratio 4 ¼ L=w ¼ 20 in (B) and 4 ¼ 20 in (C). The plot in (B) corresponds to the

blue circle in (C). To see this figure in color, go online.
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scaled by the characteristic lengthscale w and concentration

value aw2=D, as a function of the flow strength and the flow-

channel capacity Q. For the flow strength, we use the P�eclet

number of the flow channel x ¼ vL=D (a dimensionless

determinant of the flow speed relative to diffusion), in terms

of which the scaled derivative reads 42=2Qx, where 4 ¼ L=
w is the aspect ratio of the trapping region. We see that

the gradient vanishes for large Q and x but can be large

otherwise. For example, the case plotted in Fig. 3 B,

corresponding to the blue circle in Fig. 3 C, has parameters

estimated from recent microfluidic experiments with E. coli

(10), and we see that the gradient is substantial. Our

results are valid for x large, to justify the bulk assumption

(Appendix B), andQ not too large, to justify the assumption

of a well-mixed flow channel as discussed above. We see

in Fig. 3 C that the experimental parameters, x ¼ 100

and Q ¼ 1, are consistent with these assumptions.

We comment further on experimental comparisons in the

discussion.

DISCUSSION

We described and analyzed a tractable model to explain how

advective-diffusive boundary conditions shape signaling

response in spatially extended microbial communities. We

assumed bacteria are trapped in a monolayer within a region

bounded by two adjacent channels through which fluid

flows. With absorbing channels, we found that the signaling

lengthscale is determined (or, with degradation, bounded)

by the monolayer geometry, not the diffusion coefficient,

because diffusion disperses molecules but also hastens their

loss at the boundaries. We also found that flow at the bound-

aries can induce significant signal gradients in the popula-

tion and that this effect is most pronounced with small

flow channels at intermediate flow speeds. Although we

based the model on a microfluidic trap setting, a similar

approach can be used to describe more general situations.

For instance, a thin bacterial film growing in a pipe could

be modeled by assuming that an adjacent channel lies above

a layer of cells.

Our results could have significant impact on QS in micro-

bial populations. A principal function of QS circuits in nat-

ural systems is the detection of a quorum of cells that

triggers induction of a gene network. For example, a QS

signal can trigger the production of proteins that release

the extracellular matrix so that cells move to a mobile state

under starvation (2). Pai and You have described this as the

QS circuit’s sensing potential, which depends on the local

environment and a threshold level of signaling molecule

sensed by the cell (3). Our results can be used to generalize

this sensing potential framework to include environmental

influence on QS activation. We did not model cellular re-

sponses to the QS signal, but assumed that cells that express

the signal do so uniformly. Bacteria can respond to QS sig-

nals in complex ways, however. Dalwadi and Pearce have

used a model similar to the one we analyzed to show that

positive feedback can act as a low-pass filter and ensure a

robust collective response to oscillatory flow (8). In their

model the flow passes over the surface of a cell population

trapped in a pocket. Their analytical results are based on

the assumption that diffusion across this surface dominates

the diffusion in the direction of the flow, allowing them to

derive a tractable one-dimensional PDE for the signal con-

centration in the direction perpendicular to the flow.

Our model provides several experimentally testable pre-

dictions. First, for bacterial collectives growing in geome-

tries with open boundaries, chemical signaling depth can

be independent of the diffusion rate of the signaling mole-

cule. Second, when a flow channel borders a bacterial col-

lective, signaling molecule flux into the flow channel can

induce a graded signal concentration profile there. This

graded profile in the flow channel can induce signaling

molecule concentration gradients within the bacterial col-

lective, even when the bacterial collective is isogenic. In

this way, flow may play a role in differentiation. These pre-

dictions are testable, as bacteria such as E. coli can be engi-

neered to respond to the presence of a QS signal by

producing a fluorescent protein in a graded manner, or

when signal concentration reaches a threshold.

As a first step in comparing our results with experiments,

we can consider a previous study in which a sender-receiver

system of the type in Fig. 2 Awas constructed in a microflui-

dic device (10). The height of the trapping region was

w ¼ 100 mm, from which Eq. 6 predicts that the signal

should extend for a lengthscale of Lzw=pz32 mm. The

measured lengthscale wasL ¼ 20 mm, which agrees within

a factor of two. The prediction could be refined by consid-

ering the effects of boundary flow (Fig. 3) on the sender-

receiver geometry (Fig. 2), which could conceivably

increase the predicted lengthscale (the experimental param-

eters L ¼ 2000 mm, D ¼ 500 mm2/s, v � 25 mm/s,

A ¼ 100 mm � 1 mm, and Af ¼ 10 mm � 10 mm give

x ¼ vL=D ¼ 100, Q ¼ Af =A ¼ 1, and 4 ¼ L=w ¼
20, as in Fig. 3 B). On the other hand, the fact that cells

in the experiment are nematically ordered with their long

axis pointing toward the open boundaries, as in Fig. 2 A

(15,16), could conceivably decrease the predicted length-

scale because diffusing molecules are subject to steric bar-

riers more often in the x-direction than in the y-direction.

Even without these refinements, it is encouraging that our

prediction is close to the experimental observation.

Our modeling could be extended, for example, to include

diffusion of signaling molecules across the cell membranes

(see, e.g., (3�5)). Currently, we assumed that cell-internal

and cell-external signaling molecule concentrations are

equal at steady state. This is tantamount to assuming that

the diffusion rate of signaling molecules through the cell

membrane, d, is infinite. When d is low, however, the

cross-membrane timescale, which scales as d� 1, can

become important. First, when 0<d <N, in steady state
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cell-internal and cell-external signaling molecule concentra-

tions will differ in the trapping domain. This difference will

increase as d decreases. Second, when the cell membrane is

impermeable (d ¼ 0), cells will sequester all of the

signaling molecules they produce before said cells exit the

trapping region, resulting in no signaling through the extra-

cellular space. This sequestration effect will continue to

limit cell-cell signaling efficacy when d > 0, provided the

d� 1 timescale is long relative to other system timescales.

Importantly, our work suggests careful examination of

mathematical models used for open-boundary signaling sys-

tems, for example, in microfluidics with advective fluid

flow. If the chemical degradation timescales are long (25)

relative to signaling-region residence times, then a model

such as Eq. 1 should appear without a first-order degradation

term. Steady-state signaling profiles then depend on appro-

priate inclusion of boundary conditions to account for signal

loss, which may require more sophisticated mathematical

techniques for the resulting solution, e.g., Eq. 5. We antici-

pate that further analysis of timescales for reaction-advec-

tion-diffusion systems and other modeling advances can

be included in future work.

APPENDIX A

Here, we derive Eq. 9. As mentioned in the main text, Eq. 5 follows in the

limit of no degradation (l[w).

In the receiver domain (xR 0), the source term a is absent from Eq. 7.

Separating variables as cðx; yÞ ¼ XðxÞYðyÞ, Eq. 7 in steady state in this

domain becomes

v2xX

X
þ
v2yY

Y
¼

1

l2
; (18)

where l ¼
ffiffiffiffiffiffiffiffiffi
D=g

p
. Because the two terms on the left are each a function of

a different variable, and both sum to a constant, they must each equal a con-

stant themselves. Calling the second term’s constant � q2=w2 for some un-

known q, we have v2yY=Y ¼ � q2=w2, whose general solution is

YðyÞ ¼ B sinðqy =wÞ þ C cosðqy =wÞ: (19)

The boundary conditions in Eq. 2 require that B ¼ 0 and q ¼

pð2nþ1Þhqn for nonnegative integer n. The first term in Eq. 18 then sat-

isfies v2xX=X ¼ q2n=w
2 þ 1=l2h1=‘2n, whose general solution is

XðxÞ ¼ Eex=‘n þ Ge� x=‘n : (20)

The boundary condition in Eq. 3 requires that E ¼ 0. Thus, the solution

in the receiver domain is

cðx R 0; yÞ ¼
aw2

D

XN

n ¼ 0

Ane
� x=‘n cosðqny =wÞ (21)

for some unknown An.

In the sender domain (x < 0), the source term a is present in Eq. 7. We

write the steady-state solution in this domain as the sum of a particular so-

lution, which is any function that satisfies Eq. 7 with a present, and the ho-

mogeneous solution, which satisfies Eq. 7 with a absent. For the particular

solution we use the limit far from the receiver cells, Eq. 8. For the homo-

geneous solution, we use Eqs. 19 and 20, where again B ¼ 0, but in this

domain G ¼ 0 to prevent the solution from diverging as x/ � N. Thus,

cðx < 0; yÞ ¼
aw2

D

"

FðyÞþ
XN

n ¼ 0

Hne
x=‘n cosðqny =wÞ

#

(22)

for some unknown Hn, where FðyÞ is as in Eq. 8.

Differentiating Eqs. 21 and 22 with respect to x, we see that continuity

of the derivative at x ¼ 0 requires that Hn ¼ �An for all n due to the

orthogonality of the cosines. Continuity of the solution at x ¼ 0 then

requires

2
XN

n ¼ 0

An cosðqny =wÞ ¼ FðyÞ: (23)

The orthogonality of cosines, expressed as

Z w=2

�w=2

dy cosðqmy =wÞcosðqny =wÞ ¼
w

2
dmn; (24)

allows us to invert Eq. 23,

An ¼
1

w

Z w=2

�w=2

dy FðyÞcosðqny =wÞ: (25)

Inserting FðyÞ from Eq. 8 and evaluating the integrals yields

An ¼
2ð� 1Þn‘2n
qnw2

: (26)

This completes the derivation of Eq. 9.

APPENDIX B

Here, we show that, for long channels with sufficiently fast flow, the profile

bðxÞ in the bulk is linear and insensitive to the boundary conditions. We will

illustrate this point by using two different choices for the boundary condi-

tion at x ¼ L and showing that the bulk profile is the same linear function

of x for both choices.

The bulk is defined by values of x that are small compared with the size

of the system in that direction, L, but large compared with the characteristic

lengthscale of the system. The characteristic lengthscale is a function of

diffusion and flow speed and consequently required by dimensional anal-

ysis to scale as D=v. Thus, the bulk is defined by D=v � x � L. Dividing

by L and recalling that x ¼ vL=D, this expression becomes

1 = x � x=L � 1: (27)

Defining e ¼ x=L, the two conditions in Eq. 27 become

xe[ 1; (28)

e � 1; (29)

respectively. For a bulk regime to exist, the two extremes in Eq. 27 must be

well separated, and therefore we must also have 1=x � 1, or

x[ 1: (30)

Given that x ¼ vL=D, Eq. 30 makes clear that a bulk regime exists for

sufficiently long channels (large L) with sufficiently fast flow (large v).

Eq. 15 in steady state is solved by directly integrating to find vxb and

integrating again to find bðxÞ. Enforcing the boundary conditions

bð0Þ ¼ bðLÞ ¼ 0 to set the integration constants and writing the result

in terms of e obtains
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bðxÞ ¼
aL

2Qv

�
e �

1 � exe

1 � ex

�
: (31)

Eqs. 28 and 30 allow us to neglect the ones in the numerator and denom-

inator, respectively, giving

bðxÞ ¼
aL

2Qv

	
e � exðe� 1Þ



: (32)

Eq. 29 allows us to neglect the e in the exponent, and Eq. 30 then allows

us to neglect the exponential altogether, giving

bðxÞ ¼
a

2Qv
x; (33)

where we have restored e ¼ x=L. We see that bðxÞ is a linear function of x

in the bulk.

Alternatively, we may have the boundary conditions bð0Þ ¼ 0 and

vxbx¼L ¼ 0, which correspond to rapid flushing of signaling molecules

with fresh medium at x ¼ 0, and steady-state accumulation downstream

for x > L. The solution of Eq. 15 that satisfies these conditions is

bðxÞ ¼
aL

2Qv

�
eþ

1 � exe

xex

�
: (34)

Again, Eq. 28 allows us to neglect the one in the numerator, giving

bðxÞ ¼
aL

2Qv

�
e �

exðe� 1Þ

x

�
; (35)

and Eq. 29 allows us to neglect the e in the exponent, at which point Eq. 30

allows us to neglect the exponential term altogether, giving

bðxÞ ¼
a

2Qv
x; (36)

where we have once again restored e ¼ x=L. Eq. 36 is the same as Eq. 33,

showing that the bulk profile is insensitive to the choice of boundary

condition.
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