Biophysical Journal . e
Biophysical Society

Signaling in microbial communities with open
boundaries

James J. Winkle,' Soutick Saha,” Joseph Essman,” Matthew R. Bennett,”” William Ott,"" Kresimir Josi¢,">*"
and Andrew Mugler®*

"Department of Mathematics, University of Houston, Houston, Texas; ?Department of Physics and Astronomy, Purdue University, West
Lafayette, Indiana; ®Department of BioSciences, Rice University, Houston, Texas; “Department of Biology and Biochemistry, University of
Houston, Houston, Texas; and *Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania

ABSTRACT Microbial communities such as swarms or biofilms often form at the interfaces of solid substrates and open fluid
flows. At the same time, in laboratory environments these communities are commonly studied using microfluidic devices with
media flows and open boundaries. Extracellular signaling within these communities is therefore subject to different constraints
than signaling within classic, closed-boundary systems such as developing embryos or tissues, yet is understudied by compar-
ison. Here, we use mathematical modeling to show how advective-diffusive boundary flows and population geometry impact cell-
cell signaling in monolayer microbial communities. We reveal conditions where the intercellular signaling lengthscale depends
solely on the population geometry and not on diffusion or degradation, as commonly expected. We further demonstrate that
diffusive coupling with the boundary flow can produce signal gradients within an isogenic population, even when there is no
flow within the population. We use our theory to provide new insights into the signaling mechanisms of published experimental
results, and we make several experimentally verifiable predictions. Our research highlights the importance of carefully evalu-
ating boundary dynamics and environmental geometry when modeling microbial cell-cell signaling and informs the study of
cell behaviors in both natural and synthetic systems.

SIGNIFICANCE Microbial communities in natural environments and microfluidic devices are often exposed to open
boundaries and flows, but models used to characterize diffusive signaling in such systems often ignore how device
geometry, boundary conditions, and media flow influence signaling behavior. We demonstrate how the effective signaling
capacity of these communities can be shaped by population geometry and advective-diffusive boundary flow in quasi-2D
environments. Our approach provides a general framework to understand and control advection-reaction-diffusion
systems—and their interactions with cellular signaling networks—in both natural and synthetic environments.

INTRODUCTION basic transport parameters such as the diffusivity of the
signaling molecule or the speed of advective flow within
the cell population (7).

However, in other cases, the diffusible components are free
to escape at the population boundaries, or are otherwise
affected by properties of the surrounding medium such as
fluid flow. These cases include microbial communities such
as biofilms or swarms, whose boundaries are usually open
and dynamic, and which often form at the interfaces of solid
substrates and fluid flows (8,9). In such environments, re-
sponses at the macroscopic (population) level depend on
both the features of the domain in which the cells grow and
the dynamics of the constituent cells. In particular, open

Diffusive signaling coordinates multicellular processes
from embryogenesis and tissue development (1) to microbi-
al quorum sensing (QS) (2-6). In the classical picture of
diffusive signaling, the diffusible components are confined
to the vicinity of the cells, either by external barriers such
as an embryonic envelope, or by the cell membranes them-
selves in the case of direct cell-to-cell molecular exchange.
In these cases, global signaling properties are determined by
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to QS thresholds (9,11), and new challenges when respond-
ing to time-varying flows in a spatiotemporally robust
manner (8,12). Despite the importance of these impacts,
signaling in open geometries has been understudied relative
to signaling in closed geometries. In particular, although the
effects of open fluid flow overtop a microbial layer have been
studied with modeling and experiments (9,11), the effects of
flow around the edges of a layer have not, to our knowledge.
When cell populations are very thin (e.g., a monolayer), the
effects of overtop flow need only propagate a cell diameter
to impact signaling properties, whereas the effects of edge
flow would need to propagate a length commensurate with
the entire population to do so. As we will show, open geom-
etries can induce counterintuitive signaling characteristics,
even when the open boundaries are restricted to the edges.

Laboratory experiments aimed at characterizing signaling
in microbial communities often rely on microfluidic devices.
Such experiments allow researchers to characterize the
behavior of spatially extended systems, thereby facilitating
the design of microbial consortia that maintain desired pop-
ulation fractions (13) or produce emergent spatiotemporal
patterns (14). Here, signaling provides the necessary intercel-
lular communication pathway to coordinate responses and
achieve population-level phenotypes. In typical microfluidic
experiments, cells are forced to grow in a monolayer, thereby
allowing for imaging of large populations at high resolution.
Such imaging capability facilitates the investigation of con-
sortia-scale spatiotemporal dynamics, emergent collective
behavior, and nematic effects (15,16). Importantly, many mi-
crofluidic devices employ open boundaries between the cell
population and the surrounding fluid to supply media to cells
and remove waste products and excess cells. Open boundary
geometries can strongly impact the dynamics of growing
microbial collectives and therefore place such microfluidic
devices into the same understudied paradigm as the afore-
mentioned biofilms and swarms.

Here, we use mathematical modeling to investigate the ef-
fects of open, advective boundaries on cell-cell signaling
within a bacterial monolayer. Surprisingly, in contrast to
the closed-boundary case, we find that the spatial extent of
signaling from a source cell does not depend on the diffu-

FIGURE 1

Cell signaling with open boundaries

sion coefficient, but rather depends entirely on the popula-
tion geometry. When the signal can degrade, we find that
the signaling extent is determined by the minimum of the
geometric lengthscale and the classical lengthscale set by
the ratio of diffusion to degradation. Furthermore, we find
that flow at the boundary can introduce signal gradients
within the population—even if flow is absent within the
population itself—due to the diffusive exchange of
signaling molecules with the boundary region. We compare
our results to published data on bacterial monolayers in a
microfluidic device that signal via a QS factor.

RESULTS

We consider a continuum model of bacteria in a monolayer
(Fig. 1 A). Such monolayer configurations are typical of the
leading edge of growing colonies or biofilms (17-19) and
are often imposed by thin cell-trapping regions in microflui-
dic devices (4,5,10) (Fig. 1 B). To investigate boundary ef-
fects, we confine the monolayer to a rectangle with length
L and width w. These parameters can be thought of as the
characteristic lengthscales of a natural population, or as
the precise dimensions of the rectangular trapping region
in a microfluidic device. We specify the boundary condi-
tions in detail in the following sections.

To investigate intercellular signaling, we suppose that
cells secrete a molecule at a constant rate o that can diffuse
with coefficient D and degrade with rate y. Secretion of
diffusible molecules is a ubiquitous signaling strategy
in bacteria, employed in natural functions such as QS
(20,21), and probed or engineered in microfluidic experi-
ments (4,5,11,22). In the following sections, we investigate
the effects of open boundaries and fluid flow on the proper-
ties of such signaling in steady state.

Open boundaries and constant signal production
make the signaling lengthscale independent of
diffusion

We first investigate the spatial extent of signaling from a
given source cell, without flow; we consider flow in a

y=w/2

y=0

We model bacteria growing in a spatially extended microfluidic device using a continuum framework. (A) Top view of the device. Cells are

confined to a thin trapping region 7 of width w and length L, wherein they grow in a monolayer. The trapping region interfaces with two three-dimensional
flow channels, an upper flow channel . and a lower flow channel F_. The boundaries between the trapping region and the flow channels are open and
therefore subject to flow effects. (B) Side view of the device. The trapping region has cross-sectional area A. Flow channels each have cross-sectional
area Ay. To see this figure in color, go online.
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subsequent section. To investigate the spatial extent of
signaling, it is often convenient to consider some cells as
“senders” of the signaling molecules and other cells as “re-
ceivers.” For example, in a system with closed boundaries,
such as a developing embryo, signaling molecules are
“sent” from one end of the embryo and “received” by
cell nuclei in the bulk of the embryo (7). Similarly, in micro-
bial communities, often one subpopulation of cells secretes
a diffusible signal that a second subpopulation receives, as
has been realized and studied in microfluidic experi-
ments (10,23).

In the case of a developing embryo, the classic synthesis-
diffusion-clearance model (7) predicts that the signal will
establish an exponential concentration profile in steady
state. With molecular diffusion coefficient D and degrada-
tion rate vy, this profile will have a lengthscale A =
\/D/7v, given that the system is long (L > 1). The experi-
mental devices we model have length much longer than
width (L > w, see Fig. 2), such that this assumption estab-
lishes a consistent basis for comparison. However, with
open boundaries, molecules can leave the system not just
by degrading but also by diffusing across the boundary. It
is thus unclear what effect open boundaries will have on
the signaling lengthscale.

To address this question, we consider the sender-receiver
system shown in Fig. 2 A, where cells in the left half of the
trapping region 7 (x < 0) produce the diffusible signal, and
cells in the right half (x > 0) do not. We assume a zero-order

functional form for signal production and initially no chem-
ical degradation of the signaling molecules. Our system thus
models engineered microbial strains with constitutive or
inducible promoters and without signaling feedback. Such
systems allow isolation of diffusible-signal communication
from the canonical QS mechanism in studies of microbial
consortia (10,24). Although we only consider the zero-order
functional form for signal production, we examine the
impact of first-order degradation (below).

The signal concentration ¢(x, y) obeys the diffusion equa-
tion with production rate o,

¢ = DV?c+afl — 6(x)], 1)

where the Heaviside function 6(x) ensures that signal pro-
duction only occurs for x < 0. Here, ¢ has units of molecules
per volume (and thus o has units of volumetric concentra-
tion per time) even though it only varies in the x- and y-di-
rections. Because we are interested in open boundaries,
where molecules can be lost by diffusion, degradation is
not required for c to reach steady state. Signaling molecules
often have a large half-life, and are not absorbed into micro-
fluidic device material (25). Therefore, we neglect degrada-
tion here, and we consider its effects in the next section.
Eq. 1 does not capture diffusion of signaling molecules
through the cell membrane, but rather describes the dy-
namics of signaling molecule concentration in extracellular
space. A more detailed model would include separate partial
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= 0 0.05 receiver” setup. (A) Cells on the left (orange) secrete
a diffusible signal, whereas cells on the right (blue)
-0.5 0 do not. (B) Steady-state concentration profile with
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x/W no signal degradation (Eq. 5). (C) Signal profile at

the midline (y = 0) with degradation rate vy
(Eq. 9), characterized by diffusion lengthscale A =

v/D/v. (D) With degradation, signaling is limited
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k= 1. To see this figure in color, go online.
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differential equation (PDEs) for intracellular and extracel-
lular compartments coupled via diffusion through the cell
membrane. However, here we capture the combined effects
of molecule production and secretion into the extracellular
space with a single rate, a. Eq. 1 then describes diffusion
of signaling molecules within the extracellular space.

Eq. I also neglects cell growth. We are interested in the
diffusion of molecules over distances w on the order of
100 um, with diffusion coefficient D on the order of hun-
dreds of microns squared per second. We therefore neglect
cell growth because the typical diffusion timescale w?/ D
is tens of seconds, which is much smaller than the typical
growth and division timescale of tens of minutes to hours.

To determine the effect of open boundaries, we assume
that the upper and lower boundaries (y = *w/2) between
the trapping region and the flow channels are absorbing with
respect to the signaling molecule, so that the signal concen-
tration vanishes there:

clx, =w/2) =0. )

We will see later that absorbing boundary conditions are
appropriate if we assume the flow speed is large, an assump-
tion we make for our sender-receiver analysis. Since we are
modeling a long system (L > w), we take L — 0. A sender-
receiver system of precisely this type (with open boundaries
aty = *w/2 and with L >> w) was created in microfluidic
experiments in previous work (10). We compare our predic-
tions to these experiments in the discussion.

Far from the sender cells, the signal concentration must
vanish:

c(,y) = 0. 3)

Far from the receiver cells, the concentration must
become independent of x. The diffusion equation there reads
¢ = D6§c -+ o, which in steady state and with Eq. 2 is
solved by

1y

- —=—. 4
8 2w? @
With the four boundary conditions in Eqs. 2, 3, and 4, we
solve Eq. 1 in steady state by separating variables and
ensuring continuity of the solution and its derivative at the

sender-receiver interface (appendix A). The result is

f(y),with f(y) =

2
aw
o(—,y) = D

gy 0 JF0) 2 et coslaiy/) - x <O
c\X,y)= ——

D Zn = Oaneiqrﬂ/w COS(%}’/W) X Z O’

®

where a,=2(—1)"/q> and g,=m(2n+1). The signal con-
centration given by Eq. 5 is shown in Fig. 2 B. The concen-
tration vanishes at the open boundaries and decays across
the sender-receiver interface.

The signaling lengthscale is set by the decay length of the
concentration profile in the right half (x > 0) of the trapping

Cell signaling with open boundaries

region. The decay length is obtained by integrating the pro-
file, normalized by its value at the interface (x = 0). Doing

so along the midline (y = 0), we obtain a measure of
signaling depth,
“ c(x,0) kw
A = d = — 6
[ #Go = ©

where k=m(3"." oan /qn)/>  —oaw =1.021. We observe
that, since the coefficients a, fall off rapidly as n=3, Eq. 6
is well approximated by the fundamental of the series solu-
tion and the resulting approximate signaling depth is w/# to
first order.

Eq. 6 shows that the signaling lengthscale A depends only
on w, the width of the trapping region between the two open
boundaries. Surprisingly, it is independent of the diffusion
coefficient, D. In fact, the lack of a diffusion-dependent
lengthscale is already apparent in Eq. 5, where we see that
D factors out of the solution and is absent from the exponen-
tial x dependence. Thus the diffusion coefficient affects the
overall amplitude of the signal, but not how it decays with
distance from the sender-receiver interface.

The mathematical reason that Eq. 6 does not depend on D
is that Eq. 1 involves only a zero-order reaction (26,27),
namely production at the constant rate o. Consequently,
all parameters in Eq. 1 can be removed by scaling length
by w, time by w?/D, and concentration by aw?/D. All
lengthscales must then depend only on w, as demonstrated
in Egs. 5 and 6. We will see in the next section that this re-
striction no longer holds when adding the first-order degra-
dation reaction.

The physical reason that Eq. 6 does not depend on D is the
following. When diffusion increases, the amplitude of the
profile decreases, in both open and closed systems, as diffu-
sion spreads the signaling molecules across space. In closed
systems, this spreading leads to an increased signaling
lengthscale as higher diffusion allows molecules to travel
farther from the source. However, in open systems,
increasing the spread of molecules across space also in-
creases the rate at which they cross the open boundaries.
Molecules that would have diffused farther from the source
if boundaries were closed are the ones that are more likely to
be lost. In systems with open boundaries, the two opposing
effects of signal loss across the open boundaries and signal
diffusion cancel exactly, so that the signaling lengthscale is
independent of diffusion.

With degradation, the signaling lengthscale is
bounded from above by the geometry

Degrading enzymes can introduce active degradation in
microbial populations. For example, expression of AiiA
lactonase can significantly accelerate the degradation of
signaling molecules inside bacteria (28), which can translate
to an effective extracellular molecule loss for sufficiently
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fast diffusion across the membrane. Moreover, extracellular
signal degradation can be induced and controlled in engi-
neered microbial consortia (6,29).

To examine how degradation impacts signaling in open
geometries and to more directly compare the behavior of
our model with that of the closed-boundary synthesis-diffu-
sion-clearance model, we introduce degradation with rate y
into Eq. 1:

¢ = DV?c+ o[l — 0(x)] — ve. )

The solution far from the receiver cells generalizes from
Eq. 4 to

aw? 22
= — |1
D w2

cosh(y/4)
B cosh(w/ZA)} '

®)

where A = +/D/7 is the closed-boundary diffusion length-
scale. We use ¢(— %,y) as a boundary condition for Eq. 7
together with the boundary conditions given in Egs. 2
and 3. Solving Eq. 7 using the same approach as in the pre-
vious section (appendix A), we obtain

an? | FO) = D2, nel" cos(am/w) - <0

c(x,y)= .
b Zn = OA"e—X//” COS((IHY/W) x>0,
®
where A, = 2(— 1)n(fn/w)2/q,, and 6 = wi/

\/@22* + w2 Note that, in the zero-degradation limit

(A>w), we have F(y)—=f(), tn—=w/qu, Ayx—a,, and
Eq. 9 reduces to Eq. 5, as expected.

The solution given by Eq. 9 is shown in Fig. 2 C, where
we see that the signal penetrates more deeply into the
receiver cell population as A increases, but that the signaling
depth eventually saturates. Indeed, with degradation the
penetration depth of the signal defined in Eq. 6 becomes

A= Z,‘,’;:OA,,&_) kw/m  A>w
Zn’:oAn’ A A < w,

where the second case follows from the fact that ¢, — A for
A < w. Eq. 10 is plotted in Fig. 2 D. We recover the diffu-
sion-independent result given by Eq. 6 in the limit of small
degradation, A >> w. In this limit, signal loss due to diffu-
sion into the flow channels dominates over signal loss due
to degradation. When degradation is strong, A < w,
signaling depth approaches the closed-boundary length-
scale, A. In this limit, signaling molecules typically degrade
before they diffuse into the flow channels. Overall, we have

A < min{A, kw / 7}, (11)

10)

a bound that reflects the influence of both degradation and
open boundaries on signaling depth.
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Flow outside the population introduces signal
gradients within the population

Thus far we have considered the effects of open boundaries,
but not fluid flow in the boundary regions. Surrounding
flows are common in natural settings (8,12), and flow is
often desired or operationally necessary in channels bound-
ing the trapping region in a microfluidic device (30,31). To
investigate the effects of boundary flow on signaling in a
bacterial population, we return to the simplest case of a ho-
mogeneous population (all cells secrete the signal) with no
signal degradation (Fig. 3 A). We introduce flow at a con-
stant velocity v in the x-direction within the flow channels
JF + that lie outside the upper and lower boundaries of the
trapping region (y = #*w/2). Because flow breaks the
translational symmetry of the signal profile in the x-direc-
tion, we assume the length of the trapping region, L, is finite.

We assume that the signaling molecule concentration in
the flow channels does not depend on the z-direction.
Indeed, this type of dimension reduction is often performed
when studying pollutant transport in rivers (32) or shallow-
water flows (33). Below we eliminate dependence on the
y-direction as well, and we justify the overall reduction by
comparing a mixing timescale within cross sections of the
flow channels with an advective lengthscale. See (8) for a
similar approach to dimension reduction.

Let b+ (x,y) denote the volumetric concentration of
signaling molecule in F .. The dynamics in the trapping re-
gion and flow channels obey

¢ = DVic+q, (12)

b. = DV*h. —vdb., (13)

where a is the signal production rate and v is the flow veloc-
ity. Although cells can exit the trapping region and enter the
flow channels, we assume that signal production in the chan-
nels is negligible. We also assume that there is no flow in the
trapping region. However, the trapping region and the flow
channels are coupled by diffusion of molecules across the
boundaries. Correspondingly, we impose continuity of the
profiles at the boundaries,

clx, £ w/2) =b.(x, £ w/2), (14)

as well as their derivatives, dyc|,_ .,,» = Ob=|,_ 4,
To solve Eqgs. 12 and 13 in steady state, we assume that,
whereas the concentration in the flow channels changes in
the x-direction due to the flow, it is constant in the y-direc-
tion, so that b (x,y) = b_(x,y) = b(x). Such an approx-
imation is valid when the length L of the flow channels is an
order of magnitude larger than their width (32). This length-
to-width ratio is on the order of 200 : 1 for the experimental
devices we model. Justifying our assumption that signaling
molecule concentration depends only on x more carefully,
we argue that signaling molecule concentration quickly ho-
mogenizes in each cross section of each flow channel
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relative to other scales in the system. The mixing timescale
in a cross section of a flow channel is given by As/ D.
The corresponding advective lengthscale in the flow
channel is (Af/D)v. Using typical experimental values
(10) D = 500 um?*/s, Ay = 10 um x 10 um, and v =

25 um/s, the advective lengthscale becomes 5 um, a length-
scale that is a mere 1/400 fraction of the length of a 2 mm
flow channel.

Because b no longer depends on y, the net flux of signal
into the flow channels can no longer be accounted for by en-
forcing continuity of the y-derivative at the boundaries.
Instead, this flux appears as an effective source term in
Eq. 13, whose magnitude is determined by flux balance.
Specifically, in a slice of length Ax, the flux of signaling
molecules out of the trapping region, aAAx, must equal
the flux into the two flow channels, @(24;)Ax. Thus, the
effective source term is @ = a/20 for the area ratio
® = A;/A, which we refer to as the flow-channel capacity.
Correspondingly, Eq. 13 becomes

b = Db — vd.b+ a/20. (15)

We solve Eq. 15 in steady state by direct integration in ap-
pendix B, where we show that, for long flow channels with
sufficiently fast flow, the profile b(x) in the bulk is insensi-
tive to the boundary conditions atx = Oandx = L. Inthe
bulk, the profile is linear in x,

= 100, ® = 1, and aspectratio 9 = L/w = 20in (B) and ¢ = 20 in (C). The plot in (B) corresponds to the

(16)

which satisfies Eq. 15 by inspection. The linearity of Eq. 16
validates the effective source term «/2@ in Eq. 15.
This term is a local approximation in x for the rate of in-
crease of flow channel concentration due to diffusive
coupling with the trapping region under a flux balance
argument. The linearity enforces the flux balance approxi-
mation because the diffusion operator in Eq. 12 satisfies
V2[c(x,y) +b(x)] = V?c(x,y) when b is linear. The result-
ing c(x,y) is quadratic in y, linear in x, and satisfies the
boundary condition in Eq. 14,

2
e(y) = Sf0) + 5 an

where f(y) is given by Eq. 4.

Eqgs. 16 and 17 are shown in Fig. 3 B: ¢(x, y) is the surface
and b(x) is the long edge. We see that the concentration in-
creases not only in the flow channels (the edge), but also
within the cell population (the surface). Thus, diffusive
coupling between the flow channels and the trapping region
induces a signal gradient in the cell population, even though
the population itself is not subjected to the flow.

To get a sense of the magnitude of the gradient within the
cell population, we plot in Fig. 3 C the derivative 0,c(x,y),
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scaled by the characteristic lengthscale w and concentration
value aw? /D, as a function of the flow strength and the flow-
channel capacity ®. For the flow strength, we use the Péclet
number of the flow channel £ = vL/D (a dimensionless
determinant of the flow speed relative to diffusion), in terms
of which the scaled derivative reads ¢? /2@¢, where ¢ = L/
w is the aspect ratio of the trapping region. We see that
the gradient vanishes for large ® and £ but can be large
otherwise. For example, the case plotted in Fig. 3 B,
corresponding to the blue circle in Fig. 3 C, has parameters
estimated from recent microfluidic experiments with E. coli
(10), and we see that the gradient is substantial. Our
results are valid for £ large, to justify the bulk assumption
(Appendix B), and ® not too large, to justify the assumption
of a well-mixed flow channel as discussed above. We see
in Fig. 3 C that the experimental parameters, £ = 100
and ® = 1, are consistent with these assumptions.
We comment further on experimental comparisons in the
discussion.

DISCUSSION

We described and analyzed a tractable model to explain how
advective-diffusive boundary conditions shape signaling
response in spatially extended microbial communities. We
assumed bacteria are trapped in a monolayer within a region
bounded by two adjacent channels through which fluid
flows. With absorbing channels, we found that the signaling
lengthscale is determined (or, with degradation, bounded)
by the monolayer geometry, not the diffusion coefficient,
because diffusion disperses molecules but also hastens their
loss at the boundaries. We also found that flow at the bound-
aries can induce significant signal gradients in the popula-
tion and that this effect is most pronounced with small
flow channels at intermediate flow speeds. Although we
based the model on a microfluidic trap setting, a similar
approach can be used to describe more general situations.
For instance, a thin bacterial film growing in a pipe could
be modeled by assuming that an adjacent channel lies above
a layer of cells.

Our results could have significant impact on QS in micro-
bial populations. A principal function of QS circuits in nat-
ural systems is the detection of a quorum of cells that
triggers induction of a gene network. For example, a QS
signal can trigger the production of proteins that release
the extracellular matrix so that cells move to a mobile state
under starvation (2). Pai and You have described this as the
QS circuit’s sensing potential, which depends on the local
environment and a threshold level of signaling molecule
sensed by the cell (3). Our results can be used to generalize
this sensing potential framework to include environmental
influence on QS activation. We did not model cellular re-
sponses to the QS signal, but assumed that cells that express
the signal do so uniformly. Bacteria can respond to QS sig-
nals in complex ways, however. Dalwadi and Pearce have
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used a model similar to the one we analyzed to show that
positive feedback can act as a low-pass filter and ensure a
robust collective response to oscillatory flow (8). In their
model the flow passes over the surface of a cell population
trapped in a pocket. Their analytical results are based on
the assumption that diffusion across this surface dominates
the diffusion in the direction of the flow, allowing them to
derive a tractable one-dimensional PDE for the signal con-
centration in the direction perpendicular to the flow.

Our model provides several experimentally testable pre-
dictions. First, for bacterial collectives growing in geome-
tries with open boundaries, chemical signaling depth can
be independent of the diffusion rate of the signaling mole-
cule. Second, when a flow channel borders a bacterial col-
lective, signaling molecule flux into the flow channel can
induce a graded signal concentration profile there. This
graded profile in the flow channel can induce signaling
molecule concentration gradients within the bacterial col-
lective, even when the bacterial collective is isogenic. In
this way, flow may play a role in differentiation. These pre-
dictions are testable, as bacteria such as E. coli can be engi-
neered to respond to the presence of a QS signal by
producing a fluorescent protein in a graded manner, or
when signal concentration reaches a threshold.

As a first step in comparing our results with experiments,
we can consider a previous study in which a sender-receiver
system of the type in Fig. 2 A was constructed in a microflui-
dic device (10). The height of the trapping region was
w = 100 pum, from which Eq. 6 predicts that the signal
should extend for a lengthscale of A=w/m=32 um. The
measured lengthscale was A = 20 um, which agrees within
a factor of two. The prediction could be refined by consid-
ering the effects of boundary flow (Fig. 3) on the sender-
receiver geometry (Fig. 2), which could conceivably
increase the predicted lengthscale (the experimental param-
eters L = 2000 um, D = 500 p,mZ/s, v~ 25 um/s,
A =100 um x 1 wm, and Ay = 10 um x 10 um give
£ =vL/D = 100,00 = As/A = l,and ¢ = L/w =
20, as in Fig. 3 B). On the other hand, the fact that cells
in the experiment are nematically ordered with their long
axis pointing toward the open boundaries, as in Fig. 2 A
(15,16), could conceivably decrease the predicted length-
scale because diffusing molecules are subject to steric bar-
riers more often in the x-direction than in the y-direction.
Even without these refinements, it is encouraging that our
prediction is close to the experimental observation.

Our modeling could be extended, for example, to include
diffusion of signaling molecules across the cell membranes
(see, e.g., (3—5)). Currently, we assumed that cell-internal
and cell-external signaling molecule concentrations are
equal at steady state. This is tantamount to assuming that
the diffusion rate of signaling molecules through the cell
membrane, d, is infinite. When d is low, however, the
cross-membrane timescale, which scales as d~!, can
become important. First, when 0 <d < o0, in steady state



cell-internal and cell-external signaling molecule concentra-
tions will differ in the trapping domain. This difference will
increase as d decreases. Second, when the cell membrane is
impermeable (d = 0), cells will sequester all of the
signaling molecules they produce before said cells exit the
trapping region, resulting in no signaling through the extra-
cellular space. This sequestration effect will continue to
limit cell-cell signaling efficacy when d > 0, provided the
d~ ! timescale is long relative to other system timescales.

Importantly, our work suggests careful examination of
mathematical models used for open-boundary signaling sys-
tems, for example, in microfluidics with advective fluid
flow. If the chemical degradation timescales are long (25)
relative to signaling-region residence times, then a model
such as Eq. 1 should appear without a first-order degradation
term. Steady-state signaling profiles then depend on appro-
priate inclusion of boundary conditions to account for signal
loss, which may require more sophisticated mathematical
techniques for the resulting solution, e.g., Eq. 5. We antici-
pate that further analysis of timescales for reaction-advec-
tion-diffusion systems and other modeling advances can
be included in future work.

APPENDIX A

Here, we derive Eq. 9. As mentioned in the main text, Eq. 5 follows in the
limit of no degradation (1 >> w).

In the receiver domain (x > 0), the source term o is absent from Eq. 7.
Separating variables as ¢(x,y) = X(x)Y(y), Eq. 7 in steady state in this
domain becomes

¥x Y 1
X "y 32

where A = \/D/7y. Because the two terms on the left are each a function of
a different variable, and both sum to a constant, they must each equal a con-
stant themselves. Calling the second term’s constant — ¢>/w? for some un-
known g, we have 82Y/Y = — ¢*/w?, whose general solution is

Y(y) = Bsin(qy/w) + C cos(qy /w). (19)

The boundary conditions in Eq. 2 require that B = 0 and ¢ =
m(2n+1) =g, for nonnegative integer n. The first term in Eq. 18 then sat-
isfies 0°X/X = ¢2/w? + 1/A*=1/£2, whose general solution is

n>

(18)

X(x) = Ee'/" 4+ Ge /" (20)

The boundary condition in Eq. 3 requires that £ = 0. Thus, the solution
in the receiver domain is

2
cx = 0,y) = 2=

D Ao cos(q,y /w) 21

n=0

for some unknown A,,.

In the sender domain (x < 0), the source term o is present in Eq. 7. We
write the steady-state solution in this domain as the sum of a particular so-
lution, which is any function that satisfies Eq. 7 with o present, and the ho-
mogeneous solution, which satisfies Eq. 7 with a absent. For the particular
solution we use the limit far from the receiver cells, Eq. 8. For the homo-
geneous solution, we use Eqs. 19 and 20, where again B = 0, but in this
domain G = 0 to prevent the solution from diverging asx— — 0. Thus,

Cell signaling with open boundaries

2

aw = ”
C(X < an) = ? F(y) + ZHngX/i” COS(QH}’/W)
n=0

(22)

for some unknown H,,, where F(y) is as in Eq. 8.

Differentiating Eqs. 21 and 22 with respect to x, we see that continuity
of the derivative at x = 0 requires that H, = — A, for all n due to the
orthogonality of the cosines. Continuity of the solution at x = O then
requires

23 A, cos(quy /w) = F(y). (23)

n=0

The orthogonality of cosines, expressed as

w/2 w
/ dy cos(qny / w)cos(q,y /w) = 56,,,,7, 24)
—w/2
allows us to invert Eq. 23,

1 w/2

A, = —/ dy F(y)cos(q,y / w). (25)
w —w/2

Inserting F(y) from Eq. 8 and evaluating the integrals yields
2(-1)"¢2
4 = 22V )2 " (26)
qnW

This completes the derivation of Eq. 9.

APPENDIX B

Here, we show that, for long channels with sufficiently fast flow, the profile
b(x) in the bulk is linear and insensitive to the boundary conditions. We will
illustrate this point by using two different choices for the boundary condi-
tion at x = L and showing that the bulk profile is the same linear function
of x for both choices.

The bulk is defined by values of x that are small compared with the size
of the system in that direction, L, but large compared with the characteristic
lengthscale of the system. The characteristic lengthscale is a function of
diffusion and flow speed and consequently required by dimensional anal-
ysis to scale as D/v. Thus, the bulk is defined by D/v <« x < L. Dividing
by L and recalling that £ = vL/D, this expression becomes

1/ < x/L < 1. @27

Defining ¢ = x/L, the two conditions in Eq. 27 become
Ee > 1, (28)
€ < 1, (29)

respectively. For a bulk regime to exist, the two extremes in Eq. 27 must be
well separated, and therefore we must also have 1/§ < 1, or

£> 1. (30)

Given that £ = vL/D, Eq. 30 makes clear that a bulk regime exists for
sufficiently long channels (large L) with sufficiently fast flow (large v).

Eq. 15 in steady state is solved by directly integrating to find 0,0 and
integrating again to find b(x). Enforcing the boundary conditions
b(0) = b(L) = 0 to set the integration constants and writing the result
in terms of € obtains
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b(x) 31)

al 1 — e
= —|le——.
2@v 1 — ¢f
Eqs. 28 and 30 allow us to neglect the ones in the numerator and denom-
inator, respectively, giving

ol
b(x) = ~——[e — & V).
(x) 20v [ ]
Eq. 29 allows us to neglect the € in the exponent, and Eq. 30 then allows
us to neglect the exponential altogether, giving

(32)

(33)

where we have restored ¢ = x/L. We see that b(x) is a linear function of x
in the bulk.

Alternatively, we may have the boundary conditions 5(0) = 0 and
0yby—r = 0, which correspond to rapid flushing of signaling molecules
with fresh medium at x = 0, and steady-state accumulation downstream
for x> L. The solution of Eq. 15 that satisfies these conditions is

al 1 — &
o) = 55 ()

Again, Eq. 28 allows us to neglect the one in the numerator, giving
al efle=1)
= — |€ —
20v £

and Eq. 29 allows us to neglect the € in the exponent, at which point Eq. 30
allows us to neglect the exponential term altogether, giving

(34)

b(x)

(35)

(36)

where we have once again restored ¢ = x/L. Eq. 36 is the same as Eq. 33,
showing that the bulk profile is insensitive to the choice of boundary
condition.
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