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Abstract—In remote, rural, and disadvantaged areas,
telesurgery can be severely hindered by limitations of com-
munication infrastructure. In conventional telesurgery, delays
as small as 300ms can produce fatal surgical errors. To miti-
gate the effect of communication delays during telesurgery, we
intfroduce a semi-autonomous system that decouples the user
interaction from the robot execution. This system uses a physics-
based simulator where a surgeon can demonstrate individual
surgical subtasks, with immediate graphical feedback. Each
subtask is performed asynchronously, unaffected by communi-
cation latency, jitter, and packet loss. A surgical step recognition
module extracts the intended actions from the observed surgeon-
simulation interaction. The remote robot can perform each one
of these actions autonomously. The action recognition system
leveraged a transfer learning approach that minimized the data
needed during training, and most of the learning is obtained
from simulated data. We tested this system in two tasks: fluid-
submerged peg transfer (resembling bleeding events) and sur-
gical debridement. The system showed robustness to delays of
up to 5 seconds, maintaining a performance rate of 87% for peg
transfer and 88% for debridement. Also, the framework reduced
the completion time under delays by 45% and 11% during peg
transfer and debridement, respectively.

Index Terms—Medical robotics, telesurgical robotics, human
robot interaction, deep learning, transfer learning.
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I. INTRODUCTION

N MILITARY medicine, the wounded must receive skilled
Isurgical attention to address their injuries as soon as pos-
sible, to minimize blood loss and improve the likelihood of
survival. The pioneering telesurgery work of SRI International
in the late 1980s was focused on developing such capabilities.
However, practical considerations, such as the lack of reliable
communications bandwidth in austere environments, posed
a significant challenge to the deployment of such systems.
If these limitations could be overcome, the resulting system
could improve medical care, reduce the risks to forward
deployed medical personnel and allow greater numbers to be
treated with the limited number of surgeons in theatre.

Previous works show that delays can have a fatal effect
in teleoperated robotic surgery [1], [2], [3], [4], [5]. It has
been shown that delays as small as 200 milliseconds can
significantly affect surgical performance [5]. Furthermore,
task performance degradation caused by delays can lead to
increased mortality risk during surgery [1]. Even when the
fastest networks are in place, unpredictable delays are almost
unavoidable and common for long-distance telecommunica-
tion [6], [7]. In addition, the low-quality communication in
austere areas leads to jitters and interruptions, directly affect-
ing telesurgery. Therefore, to mitigate these problems, we
introduce a ASAP (A Semi-Autonomous Precise) robotic
framework. This frame- work allows the surgeon to per-
form the surgery without experiencing delays in visual feed-
back while the procedure is performed remotely in a semi-
autonomous manner. Moreover, this framework aims to reduce
the need to constantly query for the user’s decision, which is
necessary for remote operation in areas of no connectivity or
space exploration.

This work tackles the communication challenges by decou-
pling the operator interface from robot manipulation. This
is achieved using a virtual representation of the real surgi-
cal scenario, where the user can operate without experiencing
communication interruptions or latency delays. The surgeon’s
actions are recognized and encoded into unit surgical routines
(surgemes), which in turn are sent to the remote robot, where
such surgemes are performed semi-autonomously. This archi-
tecture eliminates the need for a constant stream of information
(visual and kinematic), making it possible to teleoperate
through unreliable networks and greatly reducing the band-
width necessary to perform such procedures. The framework
comprises four modules: 1) Recognition, 2) Communication,
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3) Scene Interpretation, and 4) Execution. The first module is
recognition. This module takes the motions indicated by the
physician in the simulator and recognizes the surgical action,
which is then encoded into a surgeme. Then, the classified
surgeme is sent through the communication module to the
remote robot. At the remote robot side, a vision module is
used to segment, recognize, and track the elements in the envi-
ronment that are relevant to the surgery. The execution module
relies on the environment information from the vision module
and the recognized surgeme to execute it autonomously. This
high-level information exchange significantly reduces the data
needed for teleoperation and allows safe, semi-autonomous
execution of surgical maneuvers. Finally, to increase the sur-
geon’s situational awareness, the execution module sends back
the environment objects’ positions and the robot pose to
the user, which in turn are used to update the simulator
state.

We evaluated the framework’s performance using two sur-
gical tasks: 1) A peg transfer task, which includes grasping,
dual- arm coordination, and obstacle avoidance. The peg trans-
fer setup includes immersed objects in a bleeding simulator.
The presence of bleeding introduces additional challenges to
object recognition algorithms and motor control. 2) A surgical
debridement, which is a dual-hand procedure that deals with
soft tissue manipulation and arm coordination.

The performance of the recognition module was evaluated
in terms of the percentage of surgeme recognition for two
transfer learning settings: transfer learning between tasks and
transfer learning between robots. During the evaluation, data
from the target domain was gradually added to the training
process to observe the effect on recognition accuracy. Then,
the performance of the entire system was assessed in the pres-
ence of delays. We first studied the performance under no
delay and then tested it under several increments up to 5s to
simulate extreme communication challenges.

The contributions of this paper are:

o A framework for semi-autonomous operation that is ro-

bust to delays up to 5 seconds.

« A framework that reduces the information transferred
during teleoperation by 99%.

« A developed model for data transfer between robots, that
achieved an accuracy of 89% for surgeme recognition,
using only 50% of the target domain data.

o A developed model for learning between tasks, which
achieved an accuracy of 85% for surgeme recognition,
and a superior convergence rate than the classification
without transfer learning.

« Studied the effect of delays w.r.t teleoperation in two
surgical scenarios, where the framework showed to miti-
gate the effect of delays by 45% (peg-transfer) and 11%
(de-bridement).

II. BACKGROUND

This section summarizes the main strategies in previous
work that have been used to mitigate the effect of delays:
1) Information compression, which reduces the transmis-
sion time [8].

2) Incorporation of autonomy to reduce the communication
frequency between the surgeon and the robot [9], [10].

3) Predictive displays [11], [12] to reduce the effect of
delays on the user interface [13], [14], [15], [16],
[17], [18].

The next subsections explain these strategies in more detail.

A. Information Compression

Researchers have developed data compression frameworks
to address the problem of latency during teleoperation [8].
However, in many cases, these frameworks require special-
ized communication protocols and encoding algorithms that
can efficiently process the information from robotic sensors
(i.e., 3D point clouds, multiple view cameras, and haptic
information) [19], [20].

Stokto et al. proposed a method for compressing 3D point
cloud streams that were used to reconstruct a virtual scene.
The user interacts in the reconstructed virtual environment,
allowing them to explore the space freely. To stream the
point cloud, the data is divided into small blocks and com-
pressed using a lossless real-time compressor [11], [21].
Naceri et al. [22] more recently addressed the challenge of
streaming 3D information by reducing the live feed to a
single camera on the robot’s gripper while the rest of the
environment is reproduced virtually. For the 3D stream, the
framework compresses the color and the point-cloud frames
separately, and the color- depth correspondence is found on
the user side. Schimpe et al. [20] addresses the challenge
of streaming simultaneous videos from multiple cameras for
mobile robot teleoperation. The authors propose an adaptive
video streaming that automatically allocates and reconfigures
the bitrate according to the network latency [20]. Finally,
Doniec et al. [19] addressed the issue of communication
robustness for applications where information integrity is crit-
ical (i.e., submarine operation). This work uses an encoding
scheme of two layers to prevent any errors during the live
feed, working up to a latency of 100ms. Though research in
data compression mitigates the effects of latency and band-
width limitations, it cannot reliably deal with long network
interruptions [8]. Thus, autonomy has been incorporated as
part of teleoperation frameworks since it can reduce the com-
munication frequency between the user and the robot. The
following section discusses the incorporation of autonomy in
telesurgery.

B. Autonomy in Surgery

Information compression systems require continuous com-
munication due to the need for a surgeon to perform the entire
surgery. However, it has been shown that automating small
surgery segments can mitigate transmission delays [23], [24].
The feasibility of fully automated surgery has been demon-
strated in limited cases such as mastoidectomy [25] and
cochleostomy [26]. Nevertheless, full autonomy has not been
generalizable to other procedures due to challenges associ-
ated with task complexity, soft tissue dynamics, and trust.
Semi- autonomous surgical systems provide a middle ground
where the surgeon maintains task control and performs the
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decision- making while the robot automates small segments
of the task [23], [27].

A popular approach to semi-autonomous surgery is to
extract task segments from low-level teleoperation data [28],
[29], [30], and then autonomously complete these segments. A
system for Robotic Minimally Invasive Surgery (R-MIS) was
presented in [31], where the surgeon’s actions are segmented
and further recognized. Then, a predictive controller model
drives a robot assistant to automatically perform the recog-
nized actions while the operator maintains supervisory control.
A similar semi-autonomous system is presented in [29]. The
robot automates the task segments (surgemes) using Gaussian
Process Regression to generate trajectories based on demon-
strations. However, the surgeon maintains task control to
modify robot motion using supervisory functions based on
Bayesian optimization. These systems demonstrate the advan-
tage of breaking down the surgery into segments (surgemes)
and locally delegating the execution of these surgemes to the
machine. Such systems relax the need for continuous commu-
nication and provide supervisory control to the surgeon.

C. Augmented Reality and Predictive Displays

Predictive displays and virtual and augmented reality
systems have been used for decades for mobile robot tele-
operation [11], [32], manipulation using haptic devices [33],
[34], [35], and more recently telesurgery [36], [37]. Some
researchers have leveraged these technologies to mitigate
the effect of delays and network interruptions. For example,
Bejczy et al. implemented a control system for a phantom
robot under delays [38]. The presented system used a dis-
play showing the predicted gripper pose of the phantom during
delayed teleoperation, resulting in a 13% reduction of the com-
pletion time with respect to traditional teleoperation. Further,
Xiong et al. proposed using a predictive display showing a vir-
tual replica of the environment to explore independently from
the image streaming frame rate. The teleoperation interface
simultaneously controlled the real and virtual robot [12]. This
strategy was effective as long as the task was simple enough
to be completed without feedback from the real environment.
The work in [37] reduced the effect delays at the user interface
by integrating a system for surgery where the display shows
the predicted position of the surgical grippers. The system con-
cept was tested during a peg transfer laparoscopic task. Finally,
The work in [39] proposes a framework called DESERTS that
addresses the problem of delays during remote surgery by let-
ting the operator perform the procedure in a virtual replica
of the surgical environment. This virtual system automati-
cally recognized the surgical steps carried out during the task.
Concurrently, the remote robot received high-level surgical
steps that were completed autonomously. Our work expands
the DESERTS framework [39] by incorporating a debride-
ment task and reducing the data requirements of surgical step
recognition through transfer learning.

III. METHODS

The ASAP framework replaces the live-stream video with
a simulator-based interface to reduce the information traffic.

Il SIMULATOR

Fig. 1.

Framework Architecture.

While the user operates a simulated robot in a replica of the
surgical environment, they can also observe the pose of the
remote robot and other task-related objects presented through
an alpha-blended view in the simulator. At the remote site, an
object recognition system identifies these objects of interest
in the robot’s visual field and forwards them to the simulator
for reconstruction. We tested our framework using the two
tasks from the DESK dataset [40]: a peg transfer and surgical
debridement.

The use of surgemes allows for a high-level abstraction of
the surgical procedure, hence reducing the size of the pack-
ages sent through the network. Our framework consists of
four primary components: recognition, communication, scene
interpretation, and execution modules (shown in Figure 1),
which are described in detail as follows.

A. Recognition Module

The operator works directly on a realistic simulation that
corresponds to the remote robot’s environment. Here, a recog-
nition system identifies high-level surgical actions (surgemes)
from the end effector trajectories and video scenes. Then, these
surgemes are sent to the remote robot, where they are executed
semi-autonomously. To leverage the sequential nature of a sur-
gical task, the recognition module predicts surgemes using an
LSTM architecture [41]. A notation for the LSTM is defined
as follows. Let each surgeme instance be a sequence of kine-
matic and video frames of length T, with true labels [y,}thl
where y, € AKX and AK is a probability simplex in K dimen-
sions for K classes. The LSTM predicts class probability y; €
AK at time t. As our framework consists of 7 surgeme classes,
we have K = 7. The seven classes for the peg transfer are:
1) Approach object, 2) Align and Grasp, 3) Lift, 4) Bring
together (grippers), 5) Transfer object, 6) Approach peg, and
T) Drop. Alternatively, The seven surgeme classes for debride-
ment are: 1) Approach skin, 2) Align and Grasp, 3) Lift,
4) Approach to cut, 5) Cut, 6) Approach to drop, and 7) Drop.
We use a cross-entropy loss defined in Equation (1) to train the
LSTM network. The literature recommends the cross-entropy
loss for multi-class classification [42], such as our surgeme
recognition task.

F* i
L(y.5) =)D yixlog(ix) €Y

t=1 k=1
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TABLE I
AVERAGE DTW DISTANCES BETWEEN THE TWO TASK SEQUENCES

| | Peg Transfer | Debridement |

96.25 112.69
112.69 106.24

Peg Transfer
Debridement

The LSTM was used to predict the surgeme at every time
step. This frame-wise prediction allowed for proper surgeme
identification before the operator completes the action, mit-
igating the impact of delays in the system. In this work,
the recognition module framework was extended to learn
in conditions of data scarcity. The LSTM infers the next
surgeme through the hidden states based on the action his-
tory. Following the hidden layers, there are a series of fully
connected dense layers that use the LSTM layer’s outputs to
generate features for classification. A transfer learning archi-
tecture was included to allow the recognition system to learn
in a simulated domain, test in a real domain, and learn from
surgemes obtained from different procedures.

1) Transfer Learning Between Tasks: Transfer learning was
achieved by pre-training a network in the domain of one task
(i.e., peg transfer) and then using the weights obtained in that
training to initialize the network in the target task domain (i.e.,
surgical debridement).

Let Wy be the parameter matrix for the LSTM. This W,
was optimized using stochastic gradient descent for the cross-
entropy loss described in Equation (1). Once the training is
complete in the source domain, we obtain W,+. Then, W, is
used as the initial weight matrix in the target network instead
of using a randomized set of vectors.

The peg transfer and debridement tasks involve similar
surgemes such as approach skin/peg, align, and grasp. How-
ever, the same surgeme can have a very different kinematic
appearance during different tasks. For example, the object
grasp during peg-and-pole and the skin grasp during debride-
ment look different, given that the former is a solid object
and the latter is done on soft, deformable tissue. The dynamic
time warping (DTW) distance metric was used to show that the
two sequences are different. Table I shows the average DTW
distance between every combination of two sequences for the
two surgical tasks. These sequences were (X, y, z) comprised
of gripper position vectors in inches.

Table I shows that surgeme sequences resemble other
surgemes in the same task better than their surgeme coun-
terparts in a different task. Thus, learning from another task
presents the challenge of having the same surgemes looking
different.

2) Transfer Learning Between Robots: The problem of
transfer learning between robots was addressed using the Fast
Fourier Transform (FFT) algorithm to map the kinematic data
from different robots to the same space. The FFT algorithm
allows mapping a time series to a frequency domain. Further-
more, FFT outputs a set of frequency component bins that can
represent spatial or geometric features of the signal. Therefore,
our current framework replaces the feature reduction done with
PCA with a feature extraction using a histogram obtained from
the FFT frequency bins.

Figure 1 shows the developed framework. First, we reduced
the dataset to the standard kinematic features in all the robots:
grippers’ position, orientation, and state (open or close). Next,
the positional features were measured in the cartesian coordi-
nate system (x, y, z), while the orientation was represented
by the angles roll, pitch, and yaw. This gives 14 distinct
features for each arm (7 each). Thus, for every frame t a
14-dimensional vector X; was created by concatenating the
kinematic features. Then the signal of X; was mapped to
a common space using the FFT discrete function F (see
Equation (2)). Finally, a Multi-Layered Perceptron (MLP) was
used to classify the new kinematic features.

=T i
FOOr =Y X We 6D where Wr=e T (2)
t=1
where T is the total number of frames in the surgeme sequence,
X; is the feature vector, and 1 < k < 7. Using a robot-agnostic
set of features allows us to leverage information from robots
of multiple domains.

B. Communication Module

The communication module was in charge of transmit-
ting data between the operator and the remote robot by
facilitating message passing, including high-level surgeme
commands and feedback information. The communication
module includes two components: (1) Operator to Robot: The
identified surgeme in the simulator is sent to the remote robot.
This module allows to deal with disruptions. When disruptions
occur (delay or interruption), the missing surgeme information
from the operator is transferred back to the robot as soon as the
connection is re-established. The surgemes are communicated
using a TCP protocol. (2) Robot to Operator: The operator
state is updated with the latest feedback as early as possi-
ble. In case of disruption, the most recent feedback is sent to
the operator after the network is re-established. During this
communication, the priority is to send the latest data to avoid
packet drop. Thus, a UDP protocol is adopted to alleviate the
costly handshakes and to update the simulator with the latest
feedback messages.

C. Scene Interpretation Module

The scene interpretation module first identifies the objects
and estimates their position in the real world (using seman-
tic segmentation). The simulator then uses this information
to update the scene. Figure 3 shows the simulator interface.
We first describe the object recognition unit running on the
robot side. Then, we describe the simulator’s display unit,
which reproduces the remote robot scene in the simulator. For
the Object Recognition Unit, a 3D camera (Intel Realsense)
was mounted on a remote ABB YuMi teleoperated robot. The
camera streams color (RGB) and Depth image frames. This
image stream was used to understand the environment state.
This module extracts the 3D object poses, and robot tool-tip
poses using two neural network-based architectures, Darknet
(YoloV3), and Mask-RCNN. Since the YoloV3 network can
only identify objects as regions of interest, an object tracker
was added to track objects of the same class (for example,
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Fig. 6. Peg transfer setup with simulated bleeding.

2) Shape Filtering: Since the dimensions of the detected

Fig. 2. Architecture overview for transfer learning between robots during surgeme recognition
Fig. 5.

Fig. 3.

Fig. 4. Detected objects in the peg transfer setup.

three triangular objects). Figure 4 shows the tracking and seg-
mentation of the peg transfer objects, and Figure 5 shows the
result of the same vision processing on the debridement skin.

The rapid changes during simulated blood turbulence in the
environment led to an increased ratio of false positives from
0.01 to 0.5. The false positives led to inconsistencies in the
object tracker, making it difficult to estimate the real position
of the objects in the scene. The false positives were filtered
out using the attributes listed below. For reference, Figure 6
shows the implementation of the turbulence setup.

1) Area Filtering: We included knowledge about the peg
board to further filter false positives with ‘pole’ labels. We
defined the pole boundary as an ROI (Region of Interest) for
pole detection. The corners of the boundary were defined as
[max(x;), max(y;)1, [max(x;), min(y;)1, [min(x;), min(y;)] and
[min(x;), max(y;)] where x; and y; are the coordinates of pole
i, withi =0, ..., 11 for a total of 12 poles. Figure 4 shows
the detected boundary.

objects have similar widths and heights, only detections with
an aspect ratio, o proportion (0.5 < a < 1.5) were consid-
ered. We extend the tracking algorithm, SORT, which can
additionally address noise, occlusion, and failed detection. The
tracker uses a filter to smooth the objects’ motion per frame.
It uses the object’s velocity and a Kalman filter to estimate
objects’ positions. These estimates are then used to keep track
of objects’ positions. The tracking system uses the object
detection information of the last ten frames and estimates the
confidence of the objects’ presence, reducing false positives.

3) Display Unit: This unit allows the operator to see what
is occurring at the remote site by reconstructing the scene from
the objects recognized by the semantics identification unit. The
simulator shows the remote robot environment in an alpha-
blended layout (objects, remote robot), as shown in Figure 3.
The simulator updates the alpha-blended objects at regular
time steps. As the simulated robot may run independently,
the position of the simulated robot and the alpha-blended real
robot may diverge. To control this discrepancy, the operator
can reset the simulated robot to synchronize with the alpha-
blended version. This allows the operator to perform error
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recovery when the remote robot fails. Figure 13 shows the
alpha blended objects in yellow in the simulator.

D. Execution Module

After receiving the surgeme from the user simulator, the
robot executes it in the real setting. The message the robot
receives contains the surgeme label, the prediction confidence,
and the surgeme parameters (e.g., for approach, the parameter
is the position in X, y, z to approach). Then, the robot exe-
cutes the surgemes only when sufficient confidence exists in
the classification result. The confidence threshold for surgeme
execution was set empirically after several evaluations. Once
the recognition module classifies the surgeme with high con-
fidence, the remote robot begins performing the surgeme.
This occurs before the operator finishes the task, leading to
a reduced lag between the operator and robot execution.

E. Surgeme Execution Unit

This unit performs a model-based execution of the surgemes
required to complete the peg transfer task. It requires two
inputs from the recognition module; surgeme label and param-
eter. The surgeme parameters represented a target location in
the environment (e.g., location of peg). To recognize these
parameters, we first utilized a CNN for object detection [43],
followed by a Mask-RCNN network for instance segmenta-
tion [44]. The execution of the surgemes in the peg transfer
task was particularly challenging in the simulated blood-
occluded setting [36], because the foreground and background
in the environment were uniform, and the liquid surface pro-
duced reflections, leading to depth image inaccuracies. To
mitigate this issue, morphological dilation was applied to the
object mask to fill holes in the depth image, leading to a
coherent and complete view.

IV. EXPERIMENTS AND RESULTS

The framework evaluation was done in three steps. First,
we assessed the accuracy of the surgeme recognition module,
as shown in Section I'V-A. Then, we measured the effective-
ness of two transfer learning models: 1) Transfer learning
between tasks (see Section IV-B, and 2) Transfer learning
between robots (see Section IV-C). Finally, we evaluated
the frame- work’s performance under delays, as discussed in
Section IV-D. Throughout the evaluation, two different tasks
were used. The first was a peg transfer, which is a standard
training task for laparoscopic surgery. The second was a surgi-
cal debridement task, which requires bi-manual manipulation
of soft tissue with a surgical blade.

A. Live Surgeme Recognition

This section summarizes the surgeme recognition
performance during the peg transfer task and debride-
ment trials. The frame-wise recognition accuracy for peg
transfer and debridement is shown in Tables IT and III,
respectively. The system shows a live surgeme recognition
accuracy of 70% for peg transfer and 90% for debridement.
The table also shows the percentage of surgeme history

TABLE 1T
LIVE SURGEME RECOGNITION PERFORMANCE. (HISTORY %) REFERS TO
THE PERCENTAGE OF THE SURGEME USED TO CROSS THE
CONFIDENCE THRESHOLD (%)

| [ ST [ S2] 53] 54 S5 [S6] ST [ Avwg |

Confidence Threshold | 90 | 40 | 40 | 80 80 70 | 70 -
History % 54 71 23 24 53 68 51 49
Accuracy 88 [ 25 | 63 | 8I 100 | 50 | 81 70

TABLE 111

LIVE SURGEME RECOGNITION PERFORMANCE DURING DEBRIDEMENT.
(HISTORY % ) REFERS TO THE PERCENTAGE OF THE SURGEME USED TO
CROSS THE CONFIDENCE THRESHOLD (Tt = 0.7)

| [ ST [ 52 ] 53 [ 54 [ 85 ] S6 | 57 | Avg |
Confidence Threshold 70 70 70 70 70 70 70 -
Accuracy 100 | 80 | 100 | 58 | 85 | 100 | 100 | 90
History % 4 55 13 5 3 17 33 12
TABLE IV

FRAMEWORK PERFORMANCE USING SURGEME RECOGNITION VS USING
THE SURGEME’S GROUND TRUTH

[ Task | Recognition System | Ground Truth |
[ Debridement | 0.875 [ 092 |
| Peg Transfer | 1 | 0.95 |

(third row in the table) that the system required to reach
the recognition threshold. The percentage of surgeme history
is defined as S7/S;, s7 being the number of frames of the
surgeme i that the LSTM used in the input to reach a
confidence threshold t, and S; is the total number of frames
of surgeme i (i.e., the length of the surgeme). The results
show that for the peg transfer task only 49% of the history
is required, while for debridement, only 12% of the surgeme
frames were necessary.

Also, we evaluated the recognition module’s effect on the
system’s performance. Table IV shows the task completion
rate of the framework using the surgeme classification model
vs. using the surgeme ground truth labels (i.e., recognition
accuracy of 100%). These results show that, compared to a
perfect system, the recognition module reduces the task com-
pletion rate by 0.13 and 0.04 for peg transfer and debridement,
respectively. In addition, we performed two unpaired, two-
sided T-tests, where HO is defined as “There is no difference
between the means of the task performance rate using the
surgeme’s ground truth and the surgeme recognition module”
The HO was accepted for both tasks (p = 0.56 and p = 0.3).
Meaning there is no significant difference between the means
of the two groups (ground truth vs. surgeme recognition).

Finally, Table V shows the task time introduced by each
system component. First, the recognition time (RT) was stud-
ied in isolation. The system uses an average of 5.6 seconds
to recognize the peg transfer surgemes and only 1.2 seconds
to classify the debridement surgemes. Then, we studied the
performance time, where the results show that the robot exe-
cutes the task faster than the operator(RE vs. SE) for peg
transfer and debridement. Finally, we assessed the recognition
system’s effect on the user’s waiting time (WT). It is impor-
tant to note that the wait time for recognition overlaps with the
user execution time (UE), meaning the user waits only when
the remote robot finishes the surgeme after them. In particular,
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TABLE V
SYSTEM RECOGNITION TIME vs USER EXECUTION TIME (‘i) RT:
RECOGNITION TIME, RE: ROBOT EXECUTION TIME, SE: SYSTEM
EXECUTION TIME (RT + RE), UE: USER EXECUTION TIME, W T: WAIT
TIME (SE - UE)

Surgeme | RT | RE SE UE WT
RT + RE SE—-UE
Peg Transfer (time in seconds)

S1 8.2 6.1 14.5 15.3 0.9
S2 72 6.5 13.7 10.1 35
53 1.4 6.3 1.7 6.3 1.4
$4 3.6 5.8 94 15 5.6
S5 9.6 85 18.1 18.2 0.1
S6 58 8.7 14.5 85 59
s7 35 9.2 12.7 6.9 5.8

Average | 5.6 7.3 12.9 11.5 1.5

Debridement (time in seconds)

S1 0.7 2.4 3.1 6.4 =33
s2 1.7 3.0 4.7 31 1.6
S3 03 4.1 44 2.0 24
S4 0.6 4.5 5.1 10.3 5.2
S5 0.4 182 18.6 12.8 58
S6 1.1 | 103 11.4 5.9 55
S7 38 34 72 11.5 4.3

Average 1.2 6.6 1.8 74 04

TABLE VI

SURGEME CLASSIFICATION ACCURACY OF THE BASELINE WITH
NON-TRANSFER LEARNING

Accuracy | S1 | 82 | 83 | 84 | 85 | S6 | S7 | Average
Testing 97 | 48 | 76 | 84 | 83 [ 85 | 87 83.7
Training | 97 | 59 | 83 | 93 | 88 | 88 | 89 90.4

Table V shows that the user waits an average of 1.5 seconds
during peg transfer and 0.4 seconds during debridement

B. Transfer Learning Between Tasks

Transfer learning is used to reduce the data requirements
and allow faster deployment. We used a previously developed
simulator where a YuMi robot performs a transfer-learning
task [36] and a Taurus robot (SRI International, Menlo Park,
CA) performs debridement task [45]. The objective was to
train a network in the source domain (peg-transfer) and test
it on the target domain (debridement). We used a simulation
dataset previously collected in [45]. This dataset contained
185 surgeme sequences from 5 subjects for peg transfer and
88 surgeme sequences from 3 subjects for debridement.

1) Transfer Learning vs No-Transfer Baseline: First, the
baseline (no-transfer learning) is presented, followed by the
results of different transfer learning setups. The evaluation
used a test-train split of 70% and 30%, respectively. The
surgeme recognition results for this transfer learning modality
are presented in Table VI.

Then, the network was trained with the data from the peg
transfer task, producing an average accuracy of 77%. This
network was re-trained on the debridement data with the
same split as the baseline. The resulting surgeme classification
accuracy is shown in Table VIL

2) Effect of Adding Training Data: To better understand
the transfer learning setup, we analyzed the effect of adding
debridement data to the training. To test this concept, we used
only 10% of the debridement data. This amount was increased

TABLE VII
SURGEME CLASSIFICATION ACCURACY ON THE TEST DATASET FOR THE
BASELINE (NO-TRANSFER LEARNING) AND TRANSFER
LEARNING METHODS

Accuracy S1 | S2 |83 | S4 | 585 | 86 | S7 | Mean
Baseline 97 | 48 | 76 | 84 | 83 | 85 | 87 83.7
Transfer Learning | 94 | 63 | 74 | 86 | 84 | 79 | 91 85.8
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Fig. 7. Impact of increasing the size of the target dataset. The slow increase in
accuracy of the transfer learning suggests that the network carries significant
momentum from the weights trained using the peg transfer task.

by 10% until 70% of the data was used. Since the other 30%
is used for testing, the number 70% represents all the train-
ing data available. Then, the network was initialized with the
training weights from the peg-transfer task (source domain)
and was retrained on the available debridement data (target
domain).

The effect of adding more training data in the target domain
is presented in Figure 7. The results show that even when
retraining with as little as eight samples, the classification
accuracy of the transfer learning setup was 76% which is
22.6% better than the no-transfer setup.

3) Effect of Retraining Network Layers: In object recog-
nition approaches, transfer learning is generally achieved by
retraining the last layers. This is because object-specific dis-
criminating features are learned in the last few layers of the
network. In contrast, the initial layers produce low-level image
features such as texture, edges, or shapes [46]. To analyze the
effect that the different LSTM layers have in surgical task clas-
sification, we proposed different model variations where we
only retrained specific segments of the LSTM: 1) The densely
connected layer (only the last layers) 2) The hidden states
(referred in the tables as the LSTM layer) and 3) Retraining
the entire network.

Figure 7 presents the effect of retraining the different layers
of the proposed model. We observe that retraining only the
hidden layers (the LSTM layers) achieves the same effect as
retraining the entire model.

Figure 8 shows the effect of transfer learning on the con-
vergence rates. All the networks were trained using a learning
rate of 0.005 with a stochastic gradient descent optimizer. The
transfer learning model allows the model to train faster than
the baseline. This is because the networks initialized with pre-
trained weights already obtained an initial advantage towards
the optima resulting in a faster convergence rate. Moreover,
the results show that our transfer learning model only needs

Authorized licensed use limited to: Purdue University. Downloaded on September 04,2023 at 20:31:46 UTC from IEEE Xplore. Restrictions apply.



GONZALEZ et al.: ASAP: SYSTEM FOR TELESURGERY DURING COMMUNICATION DELAYS 73

@
(=]
L

w
(=

b
=
1

—— Baseline (no transfer)
Complete Model Retrained

20 4 —— Dense Layer Retrain

—— LSTM Layer Retrain

&
.

classification accuracy

v T T T T T T T T
1] 25 a0 75 100 125 150 175 200
number of epochs

Fig. 8. Impact of retraining different layers in the model in the accuracy.
a third of the epochs to reach convergence compared to the
no-transfer baseline.

C. Transfer Learning Between Robots

The goal of this study was to transfer knowledge for
surgeme recognition using a diverse set of robots: Simulated
Taurus, Real Taurus, Real YuMi (ABB Robotics, Visteraos,
Sweden), and the dvRK surgical robot (Intuitive Surgical,
Sunnyvale CA.). First, to create surgeme features outside of
the robot space, we mapped the kinematic features to a sim-
pler geometric space using an FFT. Then, the FFT features
were taken as input to a classifier trained for surgeme recog-
nition. Figure 2 shows the transfer knowledge architecture.
Finally, the classification models were trained using simulated
data (simulated SRI Taurus) and tested on real robot data to
evaluate the system.

1) No-Transfer Baseline: First, three learning models were
evaluated using the FFT mapping described at the beginning
of this section: 1) A Random Forest (RF), 2) A Support
Vector Machine (SVM), and 3) A Multilayered Perceptron
(MLP)) [39]. Table VIII shows the recognition accuracy for
the no- transfer scenario using all the available data. In addi-
tion, the classification was assessed in two modalities: clas-
sifying the segmented surgeme and classifying every frame.
The first modality requires the surgeme to be segmented in
advance, and the second modality is suited for live surgeme
recognition. The framework produced models that can accu-
rately classify surgemes. The Taurus II simulator and the
real Taurus obtained a maximum accuracy of 88% and 94%,
respectively, when using Random Forest (RF). For the da Vinci
and YuMi robots, the maximum accuracy was achieved using
MLP, with a 95% accuracy for YuMi and a 97% accuracy for
da Vinci.

2) Transfer Learning Setup: The training was done exclu-
sively with simulation data and testing in the real robot for
the transfer learning scenario. Then, we increasingly added
data from the real scenario to the training set to simulate the
effects of the limited availability of the real data. We mea-
sured the presence of real data in the training model as a

ratio between the real and simulated data, defined as %SLI
Where X; = Xj,...,Xy is a set of simulated surgemes of

size IX;] = N _and Xf, = X1,...,X; is a set of real surgemes
of size i = [X!|. When the ratio value is zero, all the data

TABLE VIII
ACCURACY FOR THE NO-TRANSFER SCENARIO USING DIFFERENT
CLASSIFIERS. SURGEME SEGMENT CLASSIFICATION (LEFT) AND
FRAME-WISE CLASSIFICATION (RIGHT)

[ Robot | Segment | Frame |

RF | SVM | MLP | RF | SVM | MLP

Taurus sim | 88 87 78 86 58 73
Taurus 94 92 92 95 60 92
YuMi 91 93 95 88 48 86
dVRK 88 83 89 90 96 97

comes from the simulation. When the ratio value is 1, the data
had a 50%-50% (50/50 = 1) distribution for real-simulated
data. Figure 9 shows the classification accuracy of the models
for all the real robots when they are trained using real data
(orange line) against the performance when the training data
is gradually added to the simulation data (blue line).

3) Transfer Learning Evaluation: The Taurus II and da
Vinci robots showed a classification accuracy of 97.5% and
93%, respectively, even when no real examples were included
in the training set (data ratio = 0). Also, adding a few
real examples improved the surgeme recognition accuracy, as
shown in Figure 10. When the real to simulated data ratio was
15%- 85% (ratio = 0.18), the classification accuracies went
up to 99.7% for the Taurus II and 95.4% for the da Vinci.
The YuMi robot showed a slower convergence, with a ratio
of 22%-78% of real to simulated data producing an accuracy
of 81%.

D. System Evaluation Under Delays

The system was evaluated under several delay configura-
tions. Then, the task completion rate, completion time, and
recognition accuracy were measured. The first two metrics
were also used to assess the performance of the same tasks
using a standard teleoperation system.

1) Peg Transfer Semi-Submerged in Artificial Blood: We
set our peg transfer task based on the DESK dataset that was
previously developed [40]. The pegs and poles were partially
submerged in artificial blood to simulate the challenges during
surgery. In particular, the artificial blood adds scattering, and
reflections to the vision system, as shown in Figure 10.

To assess the efficacy of the developed framework, we eval-
uated both the ASAP framework and a standard teleoperation
system under three delay modalities: no delay, one second of
delay, and five seconds of delay.

Figure 11 shows the results for the framework’s completion
rate. The task completion rate was maintained in the presence
of delays. In particular, the framework shows the same com-
pletion rate of 88% for 1 second and 5 seconds of delay. In
contrast, the teleoperation performance dropped substantially
during the evaluation. First, it dropped to 56% at 0.5 seconds
and found its breaking point at 1 second delay, where the
completion rate dropped below 20%. Higher delays led to a
completion rate of 0%.

The task completion time was also evaluated. The results
are summarized in Figure 12. With no delays, the teleoper-
ation showed an advantage over our system: 72 seconds vs.
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91 seconds. Nevertheless, in the presence of delays, the com-
pletion time of the proposed framework increases at a much
slower rate.

We conducted unpaired t-tests comparing the performance
of ASAP vs the teleoperation baseline. The results show that
the completion time of the proposed framework was signif-
icantly different from the baseline at every delay step. This
indicates that from 0.5 seconds to 5 seconds of delay the ASAP
time performance was significantly better than the baseline
(see Figure 12).

trials were collected from three subjects. Each subject per-
formed eight trials for each delay type, completing 40 trials
at the end of the session. Figure 10 shows the debridement
surgemes.

Five delay configurations were adopted: 1) No delay,
2) 250ms of delay 3) 500ms of delay 2) One second of delay,
and 3) Five seconds of delay. Analogous to the previous task,
we measured the surgeme classification accuracy, the com-
pletion time, and the task success rate. Figure 13 shows a
snapshot of the framework working in real-time.

The results for the recognition accuracy at the remote side
using different delays are shown in Figure 14. These results
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Fig. 14. Surgeme recognition accuracy.

are displayed next to the frame-wise recognition accuracy on
the simulator side. The figure shows that the surgeme recog-
nition accuracy is maintained at over 90% until delays of 1s.
In particular, the surgeme prediction with no delays achieved
a classification accuracy of 98%. With the increase in delays,
the user adapts its execution behavior in the simulator. This
shift in the user changes the recognition accuracy to 88% when
the delay is 5 seconds. Figure 14 shows a softer drop in the
remote surgeme recognition when compared to the frame- wise
recognition in the simulator. In addition, we evaluated the task
completion time in the presence of delays (see Figure 16).
At 0.25 seconds, the framework reduces the teleoperation
completion time by 11%.

We also performed unpaired t-tests to compare the
performance of our framework at every delay point w.r.t the
teleoperation with no delay. The test showed no significant
differences at any delay setup with respect to the zero-delay
teleoperation baseline. This means that at 5 seconds of delay
our system showed a completion time that was comparable to
the performance of teleoperation with no delays (no signifi-
cant difference found). Moreover, adding 5 seconds of delay
to the system produced an average increase in the completion
time of 4.56 seconds, which is slightly lower than the added
delay.

3) Transmission Delays: Finally, we analyzed the transmis-
sion delays in the surgeme transfer in the absence of artificial
delays. For the surgeme transfer from the simulator to the
robot, the average delay was 0.057 seconds and a jitter of
0.048 seconds.

V. DISCUSSION

This section summarizes the findings for each one of the
framework components: A) The live surgeme recognition,
B) The transfer learning between tasks, and C) Transfer learn-
ing between robots, D) The system evaluation over delays, and
E) Future work.

A. Live Surgeme Recognition

Results from the live recognition system experiments show
that the framework requires a fraction of the surgeme his-
tory to achieve an accurate surgeme classification. The peg
transfer task required only 49% of the surgeme frames, while
the debridement required only 12% of the frames. This result
indicates that each instruction can be sent to the remote site
before the user finishes performing the instructions, giving the
remote robot time to “catch up” with the user even when
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Fig. 16. Completion time under delays during Debridement.
the instructions are sent asynchronously. The surgeme com-
pletion time results discussed in Section V-D confirm this
observation. In addition, the evaluation of the effect of surgeme
recognition on task performance (see Table IV) shows no sig-
nificant difference between using the ground truth labels and
the surgeme recognition system. This result indicates that the
error introduced by the surgeme recognition system does not
significantly impact the task completion rate of the system.
Finally, the user wait time results show that the time intro-
duced by the surgeme recognition system (5.6s and 1.2s, for
peg transfer and debridement respectively) is compensated in
two ways: the user performance overlaps with the recogni-
tion time and the robot performs the surgemes faster than
the human. Thus, this produces a maximum waiting time of
1.4 seconds for peg transfer and 0.4 seconds for debridement.

B. Transfer Learning Between Tasks

Surgical data in austere environments is scarce. Thus, the
transfer learning setup is particularly relevant to the proposed
framework since it is crucial to have a system that can learn
from data generated during simulation or from another surgical
task. By transferring the weights from surgeme recognition on
the peg transfer task to the debridement task, the classifier’s
performance increased by 10% when only 50% of the training
data was used. It was also shown that the non-transfer learning
setup requires 50% more data to achieve the same performance
as the transfer learning setup. To understand the role of each
layer in the transfer learning task, each layer was separately
retrained. It was found that it is necessary to retrain the hidden
layers because the temporal pattern of the kinematic sequences
can vary between the debridement and the peg transfer task.
Further, we found that the transfer learning models converged
to the solution faster than the non-transfer learning method.
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We also evaluated the effect of retraining different layers of
the network. This assessment showed that retraining the hidden
layers of the LSTM produced a higher accuracy and conver-
gence rate than retraining only the last layers. Overall the
performance increase indicates that the sequential information
of the target domain is relevant to improve the knowledge
transfer between surgical tasks.

C. Transfer Learning Between Robots

The results for transfer learning between robots also con-
firm that the sequential information contributes to classification
accuracy. Table VI shows that regardless of the classification
algorithm, encoding sequential information into FFT features
produced higher accuracy than using the information of a
single frame. Furthermore, results for the simulated Taurus
showed an accuracy of 99.7% using a ratio of real to simu-
lated data of only 15% to 85%. This performance indicates that
surgeme classification in real environments can be achieved
using a very small percentage of real data. On the other hand,
the YuMi recognition accuracy converged slower, achieving
an accuracy of 81% at a real-to-simulated data ratio of 22%
to 78%. The discrepancy in accuracy between the Taurus
and the YuMi is likely due to the YuMi kinematics. The
YuMi robot does not have three degrees of freedom at the
gripper, as opposed to the other robots used, making the ori-
entation changes more abrupt. Thus, the teleoperators must
choose a convenient orientation and primarily rely on transla-
tion motions to generate smoother trajectories. In contrast, the
gripper’s position and orientation constantly changed for the
da Vinci, the Taurus II, and the simulated Taurus. This incon-
sistency in the teleoperation resulted in very different FFT
features for the YuMi, when compared to the FFT features
generated using the other robots. Thus, it required more of its
data during training to produce an accuracy of over 80%.

Finally, the da Vinci and Taurus II showed a faster con-
vergence to a classification accuracy of 95%, requiring little
to no data in the transfer learning setup. This indicates that
the FFT features describe the spatial properties (shapes) of
the surgemes adequately while retaining scale and translation
invariance.

D. System Evaluation Under Delays

To simulate the lack of communication infrastructure in
an austere environment, The ASAP framework was evaluated
under communication delays of up to 5 seconds. Two surgical
tasks were performed during the evaluation: 1) A peg transfer
and 2) A surgical debridement.

The system performance metrics show that the ASAP frame-
work is robust to delays as high as 5 seconds. For debridement,
there was no significant difference between the success rate at
250 milliseconds and the success rate at 5 seconds. In addition,
the peg transfer task showed no significant difference in the
task performance between no delays and 5 seconds of delay.

Conversely, the teleoperation system started to fail at delays
as small as 250ms. Particularly, the teleoperation setup at
250ms showed a completion rate of 58% for the peg transfer
task and 68% for debridement. Moreover, teleoperation was

unusable for delays longer than 1 second. These results repli-
cate similar values found in literature [1], [2], [3], [4], [5].

The ASAP framework reduced the teleoperation comple-
tion time by 45% for the peg transfer task at a delay of 0.5s
and 11% for debridement at a delay of 0.25s. This shows
that our system successfully mitigates the effect that delays
have on performance time. Two factors contributed to these
results. The first one is that during teleoperation, the user has
to stop every other frame to wait for the feedback image to
synchronize with the system controls. In comparison, when
operating using the ASAP framework the user only waits for
feedback when they wanted to check the remote robot state,
which mainly happened between surgical steps and not during
them. In addition, early surgeme recognition allowed sending
instructions after the user had performed an average of 49%
of the surgeme, for the peg transfer task and 12% for debride-
ment. These results show that the robot can start completing
the surgeme before the user finishes issuing it, further reducing
the idle time.

At 5 seconds of delay, the robot maintained a performance
rate of 88%, even when the surgeme recognition accuracy
at the simulator dropped to 78%. The task performance was
robust to drops in recognition because the surgeme prediction
accuracy at the robot side was an average of 0.1 higher than
the frame-wise accuracy at the simulator. This is because the
surgeme accuracy at the robot side does not solely depend on
the frame-wise classification of each surgeme. The accuracy
also depends on classification confidence. Thus, the robot did
not execute the surgeme until the prediction confidence was
reached (r > 0.7, where t is the confidence threshold).

Finally, when the delay was 5 seconds, it increased the
completion time by 4.56 seconds, for the surgical task. This
result implies that the system was not only able to predict the
surgeme early but that the robot was executing the surgemes
faster than the operator. Thus, the proposed system can mit-
igate the effects of delays as high as 5s and finish in a time
that was not significantly different than the standard undis-
turbed teleoperation, showing that the framework was robust
to delays while keeping a satisfactory performance accuracy.

E. Future Work

One limitation of the current framework is that it was tested
on visually-driven tasks. While vision is an essential com-
ponent of telesurgery, force feedback has also been shown
to be crucial to the success of many procedures [47]. Thus,
future work will include force feedback, allowing for contact-
rich procedures such as bleeding compression or cricothyro-
tomy. These procedures require a hybrid controller to combine
position and force control modes along the different axes.
Further, the feedback from both vision and force sensors must
be meaningfully combined to estimate the environment state.
Future research will include creating a hybrid force-position
control scheme with multi-modal feedback [48]. Moreover,
future research will also explore error-correcting methods
for the current framework. These methods can be addressed
autonomously on the robot side when the risk of performing
a corrective strategy is low.
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VI. CONCLUSION

In this paper, we proposed a framework to tackle the
effects of connectivity associated with telerobotic surgeries.
This framework provides a novel simulator interface where
the surgeon can operate directly on a virtual reality simulation
and the activities are mirrored on a remote robot, almost simul-
taneously. Thus, the surgeon can perform the surgery while
experiencing minimal latency in visual feedback. At the same
time, high-level commands are extracted from the operators’
motions and are sent to a remote robotic agent. We assessed
the framework’s performance in the presence of increasing
delays for two tasks: a peg transfer and surgical debridement.
Notably, the system maintained a task success rate of 87% and
88% respectively from no delays to 5 seconds of delay. We
also showed that the system produced a completion time that
was faster than teleoperation for the debridement task. With
delays as small as 0.25s, the system reduced the completion
time by 45% with respect to teleoperation. Moreover, trans-
fer learning between surgical tasks was explored. Our results
demonstrate that our framework can boost the performance of
surgeme recognition across surgical tasks. When using a pre-
trained network, it was found that the classification accuracy
achieved 76% with only 8 sequences in the target domain,
which is 22.5% better than a no-transfer scenario. To con-
clude, the presented semi-autonomous system decouples the
user interaction from the robot execution, allowing effective
teleoperation suitable for remote, rural, and disadvantaged
areas.
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