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ABSTRACT. The main result of this paper is that two large collections of er-

godic measure preserving systems, the Odometer Based and the Circular Sys-

tems have the same global structure with respect to joinings that preserve

underlying timing factors. The classes are canonically isomorphic by a contin-

uous map that takes synchronous and anti-synchronous factor maps to syn-

chronous and anti-synchronous factor maps, synchronous and anti-synchro-

nous measure-isomorphisms to synchronous and anti-synchronous measure-

isomorphisms, weakly mixing extensions to weakly mixing extensions and

compact extensions to compact extensions. The first class includes all fi-

nite entropy ergodic transformations that have an odometer factor. By re-

sults in [6], the second class contains all transformations realizable as dif-

feomorphisms using the untwisted Anosov–Katok method. An application of

the main result will appear in a forthcoming paper [7] that shows that the

diffeomorphisms of the torus are inherently unclassifiable up to measure-

isomorphism. Other consequences include the existence of measure distal

diffeomorphisms of arbitrary countable distal height.
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1. INTRODUCTION

The isomorphism problem in ergodic theory was formulated by von Neu-

mann in 1932 in his pioneering paper [20]. Simply put, it asks to determine

when two measure preserving actions are isomorphic, in the sense that there is

a measure isomorphism between the underlying measure space that intertwines

the actions. It has been solved completely only for some special classes of trans-

formations. Halmos and von Neumann [13] used the unitary operators defined

by Koopman to completely characterize ergodic measure preserving transfor-

mations with pure point spectrum, these transformations can be concretely

realized (in a Borel way) as translations on compact groups. Another notable

success was the use of the Kolmogorov entropy to distinguish between measure

preserving systems. Ornstein’s work showed that entropy completely classifies

a large class of highly random systems, such as independent processes, mixing

Markov chains and many smooth systems such as geodesic flows on surfaces of

negative curvature.

Closely related to the isomorphism problem is the study of structural prop-

erties of measure preserving systems. These including mixing properties and
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compactness. A famous example is the Furstenberg-Zimmer structure theo-

rem for ergodic measure preserving transformations, which characterizes every

ergodic transformation as an inverse limit system of compact extensions fol-

lowed by a weakly mixing extension. This result is fundamental for studying

recurrence properties of measure preserving systems and the related proofs of

Szemeredi-type combinatorial theorems ([9]).

In this paper we present a new phenomenon, Global Structure Theory. Most

structure theorems in ergodic theory consider a single transformation in vitro.

The approach here is study whole, intact ecosystems of transformations with

their inherent relationships.

Our main result shows that two large collections of measure preserving trans-

formations have exactly the same structure with respect to factors and isomor-

phisms (and more generally, joinings). More concretely, we define the odome-

ter based transformations to be those finite entropy transformations that con-

tain a non-trivial odometer factor. Spectrally, this is equivalent to the associ-

ated unitary operator having infinitely many finite period eigenvalues. To each

fixed odometer, and the corresponding class of odometer based systems we will

construct a second class of symbolic systems that we call the circular systems.

These circular systems all have a certain irrational rotation factor. In [6], we

have shown that these circular systems coincide with the ergodic transforma-

tions realizable as diffeomorphisms of the torus using the untwisted method of

Approximation-by-Conjugacy, due to Anosov–Katok [1].

We can make two categories by taking as the objects these two classes of

systems and by taking morphisms to be factor maps (or more generally join-

ings) that preserve the underlying timing structure. The main result of this

paper is that these two categories are isomorphic by a map that takes measure-

isomorphisms to measure-isomorphisms, weakly mixing extensions to weakly

mixing extensions and compact extensions to compact extensions. It then fol-

lows that it takes distal towers to distal towers. Moreover the map preserves the

simplex of non-atomic invariant measures, takes rank one transformations to

rank one transformations and much more. (This will be discussed further in the

forthcoming [8].) In other words the global structure of these two categories is

identical. As a consequence there is further evidence that the world of smooth

systems is as rich as that of abstract ergodic transformations. For example, we

now can construct diffeomorphisms of the torus preserving Lebesgue measure

that are measure theoretically distal with an arbitrary distal height.

We can get more detail by considering systems based on a fixed odometer

map and circular systems based on that odometer map and an arbitrary fast

growing coefficient sequence. Doing so gives us collections of pairwise isomor-

phic categories that can be amalgamated to yield the statement above. The

main theorem is framed in this more granular setting.

This question as to what restrictions does the smooth structure place on the

ergodic properties also goes back to J. von Neumann who in the same foun-

dational paper from 1932 where he formulated the isomorphism problem also
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expressed the likelihood that any abstract measure preserving transformation

is isomorphic to a continuous measure preserving transformation and perhaps

even to a differentiable one. This brief remark eventually gave rise to one of the

outstanding problems in smooth dynamics, namely:

Does every ergodic MPT have a smooth model?

By a smooth model is meant an isomorphic copy of the transformation which

is given by smooth diffeomorphism of a compact manifold preserving a mea-

sure equivalent to the volume element. Soon after entropy was introduced,

A. G. Kushnirenko showed that such a diffeomorphism must have finite entropy,

and up to now this is the only restriction that is known.

From a global perspective, a natural way to attack this problem is to compare

the complexity of the abstract ergodic systems with that of the smooth systems,

considered up to measurable isomorphism. The study of the descriptive com-

plexity of collections of ergodic systems, anticipated by work of Feldman [4],

began in earnest in the 1990’s with work of Beleznay and Foreman [2].

Results of this nature have become known as anti-classification results, creat-

ing the need for a precise definition of what a classification is. Informally a clas-

sification is a method of determining isomorphism between transformations,

perhaps by computing (in a liberal sense) other invariants for which equiva-

lence is easy to determine.

The key words here are method and computing. For negative theorems, the

more liberal a notion one takes for either word, the stronger the theorem. One

natural notion is the Borel/non-Borel distinction. Saying a set X or function

f is Borel is a loose way of saying that membership in X or the computation

of f can be done using a countable (possibly transfinite) protocol whose basic

input is membership in open sets. To say that X or f is not Borel is saying

that determining membership in X or computing f cannot be done with any

amount of countable resources.

In the context of classification problems, saying that an equivalence relation

E on a space X is not Borel is saying that there is no countable amount of in-

formation and no countable transfinite protocol for determining, for arbitrary

x, y ∈ X whether xE y . Any such method must inherently use uncountable re-

sources.1

In considering the isomorphism relation as a collection I of pairs (S,T ) of

measure preserving transformations, Hjorth [14] showed that I is not a Borel

set. However the pairs of transformations he used to demonstrate this were

inherently non-ergodic2, leaving open the essential problem:

Is isomorphism of ergodic measure preserving transformations Borel?

1Many well known classification theorems have as immediate corollaries that the resulting

equivalence relation is Borel. An example of this is the Spectral Theorem, which has a con-

sequence that the relation of Unitary Conjugacy for normal operators is a Borel equivalence

relation.
2The ergodic components of the pairs were very simple transformations.
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This question was answered by Foreman, Rudolph, and Weiss in [5], where

they gave a negative answer. This answer can be interpreted as saying that

determining isomorphism between ergodic transformations is inaccessible to

countable methods that use countable amounts of information.

Returning to the question of smooth models, if one could show that the the

isomorphism relation for smooth mappings is a Borel relation then we would

know that not all ergodic systems have a smooth model. It turns out that even

when restricted to the smooth diffeomorphisms of the torus preserving Leb-

esgue measure, the isomorphism relation is not Borel. In a forthcoming paper

[7] we will show

THEOREM (Anti-classification of diffeomorphisms). If M is either the torus T
2,

the disk D, or the annulus, then the measure-isomorphism relation among pairs

(S,T ) of measure preserving C∞-diffeomorphisms of M is not a Borel set with

respect to the C∞-topology.

To do this we will use an improvement of the construction in our earlier paper

with D. Rudolph and map it via the main result of the present paper and [6] to

a smooth setting.

Here is a more concrete description of the results in the paper. In the present

paper we are concerned with the entire class OB of systems based on a fixed

odometer and the relations between them. The odometer is determined by a

sequence of positive integers greater than one, 〈kn : n ∈ N〉. The the circular

operator is determined by an additional sequence of integers 〈 ln : n ∈N〉. For

this paper, the sequence of ln ’s can be arbitrary subject to the requirement that
∑

1/ln < ∞. However for realizing circular systems as diffeomorphisms there

is a fixed growth rate, determined by the size of the alphabet of the odometer

based system and 〈kn : n ∈N 〉, that the sequence of ln ’s must eventually exceed.

We describe OB symbolically here, but show in a forthcoming paper that OB

consists of representations of arbitrary ergodic systems with finite entropy that

have the specific odometer as a factor. In the language of “cutting and stacking”

constructions these are those constructions where no spacers are introduced.

We fix 〈 ln : n ∈N 〉, and hence a sequence of circular operators. Applying these to

each of the elements of OB we obtain a second class, C B, of circular systems.

This class consists of some of the extensions of a fixed irrational rotation which

is determined by the circular operator. As remarked above, for suitably chosen

coefficient sequences, this class can be characterized as those transformations

realizable as diffeomorphisms using the Anosov–Katok technique. We consider

the two classes as categories where the morphisms are graph joinings which are

either the identity on the base or reverse it. These are called synchronous and

anti-synchronous joinings respectively. Our main theorem then takes the form

THEOREM 1.1. For a fixed circular coefficient sequence 〈kn , ln : n ∈ N 〉 the cat-

egories OB and C B are isomorphic by a functor F that takes synchronous

joinings to synchronous joinings, anti-synchronous joinings to anti-synchronous

joinings, synchronous and anti-synchronous isomorphisms to synchronous and
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anti-synchronous isomorphisms and weakly mixing extensions to weakly mixing

extensions.3

This theorem is proved in two stages. We first prove it in the special case that

the joinings are graph joinings: the joinings correspond to factor maps. This is

Theorem 7.2, and is most commonly used in applications.

In Section 7.4 the morphisms in the categories of OB and C B are expanded

to include general synchronous and non-synchronous joinings, rather than just

graph joinings. Because ergodic joinings are not closed under composition, in

extending Theorem 7.2 one is forced to consider non-ergodic joinings.

We have provided a detailed table of contents which enumerates the contents

of the paper. Here is a brief summary. Much of the section following this one is

standard, with the exception §2.6, which exposes generic sequences for trans-

formations and extends that notion to joinings. In §3, the reader will find an

explanation of our two categories and a proof that circular systems contain a

canonical rotation factor. Section 4 is primarily concerned with defining a map

\ that is a symbolic analogue of complex conjugation on the unit circle. In Sec-

tions 5 and 6 the mapping F is defined on morphisms, while §7 contains the

proof of the main result. In §8 there is a more detailed analysis of the dynamical

properties of our mapping F which may prove useful in the future, and in the

final section we collect some problems that are left open.

2. PRELIMINARIES

This section establishes some of the conventions we follow in this paper.

There are many sources of background information on this including any stan-

dard text or [21] or [16]. A small portion of the material in this section was

presented in [6], but is repeated here in an attempt to be self-contained. The

reader is referred to [6] for any missing definitions.

2.1. Measure spaces. We call separable non-atomic probability spaces measure

spaces and denote them (X ,B,µ), where B is the Boolean algebra of measur-

able subsets of X and µ is a countably additive non-atomic measure defined on

B.4 We will often identify two members of B that differ by a set of µ-measure

0 and seldom distinguish between B and the σ-algebra of classes of measur-

able sets modulo measure zero unless we are making a pointwise definition and

need to claim it is well defined on equivalence classes.

We will frequently use without explicit mention the Maharam-von Neumann

result that every standard measure space is isomorphic to ([0,1],B,λ) where λ

is Lebesgue measure and B is the algebra of Lebesgue measurable sets.

If (X ,B,µ) and (Y ,C ,ν) are measure spaces, an isomorphism between X and

Y is a bijection φ : X → Y such that φ is measure preserving and both φ and

3E. Glasner showed that the functor takes compact extensions to compact extensions.
4We will occasionally make an exception to this by calling discrete probability measures on a

finite set measures; we hope that context makes the difference clear.
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φ−1 are measurable. We will ignore sets of measure zero when discussing iso-

morphisms; i.e., we allow the domain and range of φ to be subsets of X and Y

(resp.) of measure one. A measure preserving system is an object (X ,B,µ,T )

where T : X → X is a measure isomorphism. A factor map between two mea-

sure preserving systems (X ,B,µ,T ) and (Y ,C ,ν,S) is a measurable, measure

preserving function φ : X → Y such that S ◦φ=φ◦T . A factor map is an isomor-

phism or conjugacy between systems if and only if φ is a measure isomorphism.

Following common practice, we will use the word conjugacy interchangeably

with isomorphism in this context.

For a fixed measure space (X ,µ) we can consider the collection of measure

preserving transformations T : X → X . These form a group that can be endowed

with a Polish topology that has basic open sets described as follows. We fix a

finite measurable partition A of X and an ε > 0 and take as a neighborhood

of T

N (T,A ,ε)
def=

{

S :
∑

a∈A

µ(Ta∆Sa) < ε

}

.

Details about this topology can be found in many sources including [12, 21].

2.2. Joinings. We remind the readers of the definitions. Extensive treatments of

joinings can be found in [11, 17]. All of the definitions and basic results about

joinings necessary for this paper occur in Chapter 6 of the latter reference.

DEFINITION 2.1. A joining between two measure preserving systems (X ,B,µ,T )

and (Y ,C ,ν,S) is a measure ρ on X ×Y defined on the product σ-algebra B⊗C

such that

1. ρ is T ×S invariant,

2. for each set B ∈B, ρ(B ×Y ) =µ(B),

3. for each set C ∈C , ρ(X ×C ) = ν(C ).

The graphs of factor maps provide natural examples of joinings. We charac-

terize these with a definition.

DEFINITION 2.2. A joining ρ is a graph joining between X and Y if and only if

for all C ∈C and all ε> 0, there is a B ∈B such that

ρ((B ×Y )∆(X ×C )) < ε.

A joining ρ between (X ,B,µ,T ) and (Y ,C ,ν,S) is an invertible graph joining

if and only for all B ∈B there is a C ∈C such that

ρ((B ×Y )∆(X ×C )) = 0(1)

and vice versa: for all C ∈C , there is a B ∈B such that equation (1) holds.

Here are some standard facts (see [11]):

PROPOSITION 2.3. Let X= (X ,B,µ,T ) and Y= (Y ,C ,ν,S). Then

1. There is a canonical one-to-one correspondence between the collection of

graph joinings of X and Y and the collection of factor maps from X to Y . A
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graph joining concentrates on the graph of the factor map. We can represent

the graph joining corresponding to a measure preserving map φ : X → Y by

ρφ =
∫

(δx ×δφ(x))dµ(x).

2. There is a canonical one-to-one correspondence between the collection of in-

vertible graph joinings of X and Y and the collection of conjugacies between

X and Y.

3. Suppose that B
′ ⊆ B and C

′ ⊆ C are Boolean algebras that generate B

and C respectively as σ-algebras. Let ρ be a joining of X with Y such that

for all ε > 0 and all C ∈ C
′ there are B1, . . . ,Bn ∈ B

′ such that we have

ρ(
⋃

i (Bi ×Y )∆(X ×C )) < ε, then ρ is a graph joining.

We note that perhaps a more proper term for an invertible graph joining is

the earlier usage diagonal joining. In view of the results of this section we will

often be careless and say that ρ is a factor map or ρ is a conjugacy/isomorphism

to mean that ρ is a graph joining or ρ is an invertible graph joining.

To each joining ρ of X and Y we can associate its adjoint ρ∗, the joining of Y

with X defined for B ∈B and C ∈C as:

ρ∗(C ×B) = ρ(B ×C ).

If ρ is a graph joining corresponding to a factor map π : X → Y , then ρ∗ concen-

trates on
{

(y, x) : π(x) = y
}

.

The following is immediate:

PROPOSITION 2.4. ρ is an invertible graph joining if and only if both ρ and ρ∗

are graph joinings.

Thus we can apply Proposition 2.3, item 3 to both ρ and ρ∗ to get a criterion

for being the joining associated with a conjugacy.

A potential source of confusion. Proposition 2.3 allows us to identify graph

joinings with factor maps and invertible graph joinings with conjugacies. These

joinings are always ergodic as joinings. However, there are non-ergodic con-

jugacies between ergodic measure preserving transformations. More explic-

itly: there are ergodic systems (X ,T ) and (X ,S) and non-ergodic isomorphisms

φ : (X ,T ) → (X ,S).5 The associated joining ρφ is, however, ergodic as a T ×S-

invariant measure.

Let (X ,µ), (Y ,ν) and (Z , µ̃) be measure spaces and πX : X → Y and πZ : Z → Y

be factor maps. We can define a canonical joining of X and Z that reflects the

factor structure as follows. We let
{

µy : y ∈ Y
}

and
{

µ̃y : y ∈ Y
}

be the disinte-

grations of X and Z over Y respectively. The relatively independent joining of X

and Z over Y is the joining ρ:

ρ =
∫

(µy × µ̃y )dν(y).

5In unpublished work, the second author has given examples of isomorphic ergodic transfor-

mations where every conjugacy is non-ergodic.
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We will denote ρ by µ×Y µ̃ and sometimes write the corresponding system as

X ×Y Z .

We will be concerned about categories of measure preserving systems where

the morphisms are joinings. For this we must describe the composition opera-

tion. Suppose we are given joinings ρX Y between X and Y and ρY Z between

Y and Z . Then (Y ,ν) is a common factor of both (X ×Y ,ρX Y ) and (Y ×Z ,ρY Z )

and we can consider the relatively independent joining ρX Y ×Y ρY Z .

We define the composition of ρX Y and ρY Z to be the projection of the rela-

tively independent joining of ρX Y and ρY Z to a measure on X ×Z . Formally, if

A ⊆ X ×Z and ρ is the relatively independent joining, then:

ρX Y ◦ρY Z (A) = ρ(
{

(x, y, z) : x, z ∈ A
}

).

EXAMPLE 2.5. Suppose that π0 : X → Y and π1 : Y → Z are factor maps. If ρX Y

is the joining associated with π0 and ρY Z is the joining associated with π1, then

(ρ∗
Y Z ◦ρ∗

X Y )∗ is the joining associated with the factor map π1 ◦π0 : X → Z .6

The following are standard facts (e.g., in [11, §6.2]):

PROPOSITION 2.6. 1. The operation of composition of joinings is associative:

if ρ1,ρ2 and ρ3 are joinings, then

(ρ1 ◦ρ2)◦ρ3 = ρ1 ◦ (ρ2 ◦ρ3).

2. Suppose that πX : X → X ′ and πZ : Z → Z ′ are factor maps Let ρ1 and ρ2

be joinings of X ,Y and Y , Z respectively. Let ρπ
1 be the projection of ρ1 to

a joining of X ′ and Y via πX × i d and ρπ
2 be defined similarly. Finally let

(ρ1 ◦ρ2)π be the projection of the composition of ρ1 and ρ2 to a joining of

X ′ with Z ′. Then:

ρπ
1 ◦ρπ

2 = (ρ1 ◦ρ2)π.

2.3. Symbolic systems. Let Σ be a countable or finite alphabet endowed with

the discrete topology. Then ΣZ can be given the product topology, which makes

it into a separable, totally disconnected space that is compact if Σ is finite.

Notation. If u = 〈σ0, . . . ,σn−1 〉 ∈Σ<∞ is a finite sequence of elements of Σ, then

we denote the cylinder set based at k in ΣZ by writing 〈u 〉k . If k = 0 we ab-

breviate this and write 〈u 〉. Explicitly: 〈u 〉k =
{

f ∈ΣZ : f � [k,k +n) = u
}

. The

collection of cylinder sets form a base for the product topology on ΣZ.

Notation. For a word w ∈Σ<N we will write |w | for the length of w . We will write

1〈w 〉 for the characteristic function of the interval 〈w 〉0 in ΣZ.

The shift map

sh : ΣZ →ΣZ

defined by setting sh( f )(n) = f (n+1) is a homeomorphism. If µ is a shift invari-

ant Borel measure then the resulting measure preserving system (ΣZ,B,µ, sh)

6In the following, in the context of factor maps π : X → Y we will be sloppy about whether

this is associated with a joining of X with Y or a joining of Y with X .
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is called a symbolic system. The closed support of µ is a shift invariant closed

subset of ΣZ called a symbolic shift or sub-shift.

Symbolic shifts are often described intrinsically by giving a collection of words

that constitute a clopen basis for the support of an invariant measure. Fix a lan-

guage Σ, and a sequence of collections of words 〈Wn : n ∈N 〉 with the properties

that:

1. for each n all of the words in Wn have the same length qn ,

2. each w ∈Wn occurs at least once as a subword of each w ′ ∈Wn+1,

3. there is a summable sequence 〈εn : n ∈N 〉 of positive numbers such that

for each n, every word w ∈Wn+1 can be uniquely parsed into segments

u0w0u1w1 . . . wl ul+1(2)

such that each wi ∈Wn , ui ∈Σ<N and for this parsing
∑

i |ui |
qn+1

< εn+1.

The segments ui in formula (2) are called the spacer or boundary portions of w .

DEFINITION 2.7. A sequence 〈Wn : n ∈N 〉 satisfying properties 1-3 will be called

a construction sequence.

Associated with a construction sequence is a symbolic shift defined as follows.

Let K be the collection of x ∈ΣZ such that every finite contiguous subword of x

occurs inside some w ∈Wn . Then K is a closed shift invariant subset of ΣZ that

is compact if Σ is finite.7

Formally, we have constructed a symbolic shift. To get a measure preserving

system we find a shift invariant measure µ concentrating on K and write (K,µ).

In [6] we define the notion of a uniform construction sequence and show that

the resulting K are uniquely ergodic.

We want to be able to unambiguously parse elements of K. For this we will

use construction sequences consisting of uniquely readable words.

DEFINITION 2.8. Let Σ be a language and W be a collection of finite words in Σ.

Then W is uniquely readable if and only if whenever u, v, w ∈W and uv = pw s

then either p or s is the empty word.

In our constructions we will restrict our measures to a natural set:

DEFINITION 2.9. Suppose that 〈Wn : n ∈ N 〉 is a construction sequence for a

symbolic system K with each Wn uniquely readable. Let S be the collection of

x ∈K such that there are sequences of natural numbers 〈am : m ∈N 〉, 〈bm : m ∈
N 〉 going to infinity such that for all m there is an n, x � [−am ,bm) ∈Wn .

Note that S is a dense shift invariant Gδ set. The following lemma is routine:

7 The symbolic shifts built from construction sequences coincide with transformations built

by cut-and-stack constructions.
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LEMMA 2.10. Fix a construction sequence 〈Wn : n ∈N 〉 for a symbolic system K

in a finite language. Then:

1. K is the smallest shift invariant closed subset of ΣZ such that for all n, and

w ∈Wn , K has non-empty intersection with the basic open interval 〈w 〉 ⊂
ΣZ.

2. Suppose that there is a unique invariant measure ν on S ⊆ K, then ν is

ergodic.

Proof. Item 1 is clear from the definitions. If X is a Polish space, T : X → X is a

Borel automorphism and D is a T -invariant Borel set with a unique T -invariant

measure on D , then that measure must be ergodic. �

Let 〈Wn : n ∈N 〉 be a uniquely readable construction sequence, and s ∈ S. By

the unique readability, for each n either s(0) lies in a well-defined subword of s

belonging to Wn or in a spacer of a subword of s belonging to some Wn+k .

LEMMA 2.11. Suppose that K is built from 〈Wn : n ∈N 〉 and ν is a shift invariant

measure on K concentrating on S. Then for ν-almost every s there is an N for all

n > N , there are an ≤ 0 < bn such that s � [an ,bn) ∈Wn .

Proof. Let Bn be the collection of s ∈ S such that for some an ≤ 0 < bn , s �

[an ,bn) ∈ Wn but s(0) is in a boundary portion of s � [an ,bn). By the Ergodic

Theorem and clause 3.) of the definition of a construction sequence
∑

ν(Bn) <
∞.

It follows from the Borel–Cantelli Lemma that for almost all s there is an

N such that for all n ≥ N , s ∉ Bn . Fix an s ∈ S and such an N . From the

definition of S there are arbitrarily large n∗ > N and an∗ ≤ 0 < bn∗ such that

s � [an∗ ,bn∗) ∈Wn∗ . Using backwards induction from n∗ to N and the definition

of Bn , this also holds for all n ∈ [N ,n∗). �

2.4. Locations. By Lemma 2.11 for ν-almost all x and for all large enough n

there is a unique k with 0 ≤ k < qn such that s � [−k, qn −k) ∈Wn .

DEFINITION 2.12. Let s ∈ S and suppose for some 0 ≤ k < qn , s � [−k, qn−k) ∈Wn .

We define rn(s) to be the unique k with this property. We will call the interval

[−k, qn−k) the principal n-block of s, and s � [−k, qn−k) its principal n-subword.

The sequence of rn ’s will be called the location sequence of s.

We interpret rn(s) = k as saying that s(0) is the kth symbol in the principal

n-subword of s containing 0. We can view the principal n-subword of s as being

located on an interval I inside the principal n +1-subword. Counting from the

beginning of the principal n+1-subword, the rn+1(s)th position is located at the

rn(s)th position in I .

REMARK 2.13. Suppose that s ∈ S has a principal n-block for all n ≥ N . Let

N ≤ n < m. It follows immediately from the definitions that rn(s) and rm(s)

are well defined and the rm(s)th position of the principal m-block of s is in the

rn(s)th position inside the principal n-block of s.
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The next lemma tells us that an element of s is determined by knowing any

tail of the sequence 〈rn(s) : n ≥ N 〉 together with a tail of the principal subwords

of s.

LEMMA 2.14. Suppose that s, s′ ∈ S and 〈rn(s) : n ≥ N 〉 = 〈rn(s′) : n ≥ N 〉 and for

all n ≥ N , s and s′ have the same principal n-subwords. Then s = s′.

Proof. Since s, s′ ∈ S there are sequences 〈an , a′
n ,bn ,b′

n : n ≥ N 〉 tending to in-

finity such that s � [−an ,bn) ∈ Wn and s′ � [a′
n ,b′

n) ∈ Wn . Since rn(s) = rn(s′) we

know that an = a′
n and bn = b′

n . Since s and s′ have the same principal subwords,

s � [an ,bn) = s′ � [a′
n ,b′

n). The lemma follows. �

REMARK 2.15. We record some consequences of Lemma 2.14:

1. Suppose that we are given a sequence 〈un : M ≤ n 〉 with un ∈ Wn . If we

specify which occurrence of un in un+1 is the principal occurrence, and

the distances of the principal occurrence to the beginning and end of un+1

go to infinity, then 〈un : M ≤ n 〉 determines an s ∈ S ⊆K completely up to

a shift k with |k| ≤ qM .

2. A sequence 〈rn : N ≤ n 〉 and sequence of words wn ∈ Wn comes from an

infinite word s ∈ S if both rn and qn − rn go to infinity and that the rn+1

position in wn+1 is in the rn position in a subword of wn+1 identical to

wn .

Caveat: just because 〈rn : N ≤ n 〉 is the location sequence of some s ∈ S

and 〈wn : N ≤ n 〉 is the sequence of principal subwords of some s′ ∈ S, it

does not follow that there is an x ∈ S with location sequence 〈rn : N ≤ n 〉
and sequence of subwords 〈wn : N ≤ n 〉.

3. If x, y ∈ S have the same principal n-subwords and rn(y) = rn(x)+1 for all

large enough n, then y = sh(x).

2.5. A note on inverses of symbolic shifts. We define operators we label rev(),

and apply them in several contexts.

DEFINITION 2.16. If x is in K, we define the reverse of x by setting rev(x)(k) =
x(−k). For A ⊆K, define

rev(A) = {rev(x) : x ∈ A }.

If w is a word, we define rev(w) to be the reverse of w . If we are viewing w as

sitting on an interval, we take rev(w) to sit on the same interval. Similarly, if W

is a collection of words, rev(W ) is the collection of reverses of the words in W .

If (K, sh) is an arbitrary symbolic shift then its inverse is (K, sh−1). It will be

convenient to have all of our shifts go in the same direction, thus:

PROPOSITION 2.17. The map φ sending x to rev(x) is a canonical isomorphism

between (K, sh−1) and (rev(K), sh).

We will use the notation L
−1 for the system (L, sh−1) and rev(L) for the system

(rev(L), sh).
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We can say more. For a fixed symbolic shift K, the canonical isomorphism

φ : L−1 → rev(L) gives rise to a canonical correspondence

ρ↔ ρ′

between joinings ρ of (K, sh) with (L, sh−1) and ρ′ of (K, sh) with (rev(L), sh).

We will also use the following remark.

REMARK 2.18. Assume that there is a unique non-atomic measure on a shift

invariant set S ⊆ K. Then there is also a unique non-atomic shift invariant

measure on rev(S) and for this measure, which we denote ν−1, we have ν(〈w 〉) =
ν−1(〈rev(w)〉).

2.6. Generic points and sequences. Let T be a measure preserving transforma-

tion from (X ,µ) to (X ,µ), where X is a compact metric space. Let C (X ) be the

space of all complex valued functions. Then a point x ∈ X is generic for T if and

only if for all f ∈C (X ),

lim
N→∞

(

1

N

)N−1
∑

0

f (T n(x)) =
∫

X
f (x)dµ(x).

The Ergodic Theorem tells us that for a given f and ergodic T equation above

holds for a set of µ-measure one. Intersecting over a countable dense set of f

gives a set of µ-measure one of generic points. For symbolic systems K⊆ΣZ we

can describe generic points x as being those x such that the µ-measure of all

basic open intervals 〈u 〉0 is equal to the density of k such that u occurs in x

at k.

The symbolic systems we consider will be built from construction sequences

and are characterized by the limiting properties of finite information. We now

describe how this works in greater detail. A more complete discussion of what

follows can be found in [22].

Let µ be a shift invariant measure on a symbolic system K defined by a

uniquely readable construction sequence 〈Wn : n ∈ N 〉 in a finite language Σ.

Assume that qn is the length of the words in Wn . By µm we will denote the dis-

crete measure on the finite set Σm given by µm(u) = µ(〈u 〉). By µ̂n(w) we will

denote the discrete probability measure on Wn defined by

µ̂n(w) =
µqn

(〈w 〉)
∑

w ′∈Wn
µqn

(〈w ′ 〉)
.

Thus µ̂n(w) is the relative measure of 〈w 〉 among all 〈w ′ 〉, w ′ ∈ Wn . The

denominator is a normalizing constant to account for spacers at stages m > n

and for shifts of size less than qn .

Explicitly, if An = { s ∈K : s(0) is the start of a word in Wn }, then {sh j (An)}
qn−1

j=0

are disjoint and their union has a measure that tends to one as n grows to

infinity. The set An is partitioned into |Wn | many sets by the words w ∈ Wn

and µ̂n gives their relative size in An . Since the measure of an arbitrary finite

cylinder set can be calculated along the individual columns represented by a

fixed w , it is clear that the µ̂n(w) determine uniquely the measure µ.
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Using the unique readability of words in Wk a word w in Σqk+l determines a

unique sequence of words w j in Wk such that ,

w = u0w0u1w1 . . . w J u J+1.

When w ∈Wk+l , each u j is in the region of spacers added in Wk+l ′ , l ′ ≤ l . We will

denote the empirical distribution of Wk -words in w by EmpDistk (w). Formally,

EmpDistk (w)(w ′) =
∣

∣

{

0 ≤ j ≤ J : w j = w ′ }∣
∣

J +1
, w ′ ∈Wk .

Then EmpDist extends to a measure on P (Wk ) in the obvious way.

To finitize the idea of a generic point in K we introduce the notion of a

generic sequence of words.

DEFINITION 2.19. A sequence 〈vn ∈Wn : n ∈N 〉 is a generic sequence of words if

and only if for all k and ε> 0 there is an N for all m,n > N ,

‖EmpDistk (vm)−EmpDistk (vn)‖var < ε.

The sequence is generic for a measure µ if for all k:

lim
n→∞

‖EmpDistk (vn)− µ̂k‖var = 0

where ‖ ‖var is the variation norm on probability distributions.

It follows that if 〈vn : n ∈N 〉 is a generic sequence of words then it is generic

for a unique measure µ. Even though Definition 2.19 involves only the mea-

sures µ̂k it is easy to see (using the Ergodic Theorem) that for any u ∈ Σk , if

〈vn : n ∈N 〉 is generic then the density of the occurrences of u in the vn will

converge to µ(〈u 〉).

We can summarize the exact relationship between the empirical distribu-

tions and the µqk
by saying that the empirical distribution is the proportion of

occurrences of w ′ ∈ Wk among the k-words that appear in vn , whereas µqk
is

approximately the density of the locations of the start of k-words in vn . Letting

u ∈Wk , d be the density of the positions where an occurrence of u begins in vn ,

and ds be the density of locations of letters in some spacer ui we see that these

are related by

d =
(

EmpDist(vn)(u)

qk

)

(1−ds).

We record the following consequence of the Ergodic Theorem for future ref-

erence:

PROPOSITION 2.20. Let K be an ergodic symbolic system with construction se-

quence 〈Wn : n ∈ N 〉 and measure µ. Then for any generic s the sequence of

principal subwords of s, 〈wn : n ∈ N 〉, is generic for µ. In particular, generic

sequences for µ exist.

We will need a characterization of when a generic sequence of words 〈wn :

n ∈N 〉 determines an ergodic measure.
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DEFINITION 2.21. A sequence 〈vn : n ∈N 〉 with vn ∈Wn is an ergodic sequence

if for any k and ε> 0 there are n0 > k, and m0 such that for all m ≥ m0, if

vm = u0w0u1w1u2 . . .u J w J u J+1

is the parsing of vm into Wn0
words and spacers ui then there is a subset I ⊆

{0,1,2 . . . , J } with |I |/J > 1−ε and for all j , j ′ ∈ I

‖EmpDistk (w j )−EmpDistk (w j ′)‖var < ε.(3)

Notice that in the definition of an ergodic sequence 〈vn 〉 we are not assuming

that it is a generic sequence for a measure. This follow easily (see Lemma 2.23),

but we have not made it part of the definition to emphasize its finitary nature.

In the next lemma we use the fact that the language Σ is finite.

LEMMA 2.22. Any generic sequence 〈vn : n ∈N 〉 for an ergodic measure µ is an

ergodic sequence.

Proof. Suppose we are given k and ε> 0. For all δ> 0 we can apply the Ergodic

Theorem to find an N much bigger than qk and a set B with µ(B) > 1−δ such

that for all s ∈ B and all w ∈Wk :
∣

∣

∣

∣

∣

1

N

N−1
∑

0

1〈w 〉(T i s)−µqk
(〈w 〉)

∣

∣

∣

∣

∣

< δ.

Fix a generic point s for µ. Let I =
{

i ≥ 0 : T i s ∈ B
}

, and define an infinite

sequence of disjoint intervals of length N that cover I by inductively letting

i0 = min(I ), and i j+1 = min
({

i ∈ I : i ≥ i j +N
})

. We take the intervals to be the

sequence

[i0, i0 +N −1], [i1, i1 +N −1], [i2, i2 +N −1], . . . .

Notice that the complement of these intervals in Z
+ has density less than δ

since their union clearly covers I .

Though this is an infinite sequence of intervals, the fact our language is finite

implies that only finitely many distinct words of length N occur as subwords of s

on these intervals. For each such word w∗, the density of those i in the domain

of w∗ such that an occurrence of a w ∈Wk starts at i is within δ of µqk
(〈w 〉).8

Next take n0 large enough that N /qn0
< δ, and parse s into words from Wn0

and the sections of s corresponding to spacers in words in W j for some j ≥ n0+1.

By taking n0 large enough we can take the density of locations in s occurring in

spacers to be arbitrarily small. Let δ′ be this density.

The words from Wn0
have length much larger than N , and we can collect

all those words w ∈ Wn0
that are (1−

p
δ)-covered by the N -intervals we chose

above into a set A ⊆Wn0
.

The proportion of s � Z+ not covered by words in A can be split into the

spacer section and the portion inside words w in B = Wn0
à A. For w ∈ B the

8By taking N À qk , we can account for negligible “end effects” so that we have
∣

∣

∣

1
N

∑N−qk−1
0 1〈w 〉(T i s)−µqk

(〈w 〉)
∣

∣

∣< δ. We ignore end effects in the rest of the proof.
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complement of the N -intervals has density at least
p
δ. It follows that the den-

sity of sections of s covered by elements of B is less than
p
δ.

Thus the fraction of s not covered by words in A is at most
p
δ+δ′. It is now

clear that if δ,δ′ are chosen to be sufficiently small then
∑

w∈A

µ̂n0
(w) > 1−ε,(4)

and all w ∈ A will have the property that

‖EmpDistk (w)− µ̂k‖var < ε/2,

which implies inequality (3) for pairs of words in A. Using inequality (4) and

the fact that 〈vn 〉 is generic for µ gives an m0 so that for all m ≥ m0 when vm is

parsed into n0 words a (1−ε)-fraction will lie in A. This concludes the proof. �

We will also need the converse to Lemma 2.22, namely that the limiting mea-

sure defined by an ergodic sequence is, in fact, ergodic.

LEMMA 2.23. An ergodic sequence is generic and the measure µ defined by an

ergodic sequence 〈vn : n ∈N 〉 is ergodic.

Proof. Inequality (3) implies that for each k and w ∈Wk , the limit of the density

of occurrences of w in vn exists as n goes to infinity. It follows (since Wk is finite)

that 〈vn : n ∈N 〉 is a generic sequence and hence it defines a unique measure µ.

The ergodicity of µ is equivalent to the fact that the ergodic averages of all

L2 functions converge almost everywhere to a constant. Functions of the form

1〈w 〉 where w ∈
⋃

n Wn and their shifts linearly span a dense set in L2 from which

it easily follows that if µ were not ergodic there would be some k, and w ∈ Wk

with (1/N )
∑N−1

0 1〈w 〉(T i x) converging µ-a.e. to a non-constant function. This

means that there is a γ> 0 and disjoint sets B0,B1 of positive measure in K such

that for all large enough N for all x0 ∈ B0, x1 ∈ B1
∣

∣

∣

∣

∣

1

N

N−1
∑

0

1〈w 〉(T i x0)−
1

N

N−1
∑

0

1〈w 〉(T i x1)

∣

∣

∣

∣

∣

≥ γ.(5)

Take ε small compared to γ and µ(B0),µ(B1). Find n0,m0 as in the definition

of ergodic sequence for this k and ε. Choose N large enough that inequality (5)

holds and so that qn0
/N is negligible. Finally take m ≥ n0 so that N /qm is negli-

gible.

The inequality (5) depends only on the initial (N + qk )-block of x0 and x1.

Thus for large enough m we can compute µ(B0) and µ(B1) by the empirical

distributions of the (N +qk )-blocks in vm .

Since N is large compared to qn0
the frequency of occurrence of w in a

block of length N + qk is determined by its frequencies in the words in Wn0

in the n0-parsing of vm . We now get a contradiction to inequality (5), since

except for an ε-fraction, these Wn0
-words have their k-words distributed very

close to µ̂k (w). �

If S and T are symbolic systems then a joining ρ of S and T will be a sym-

bolic system, but may not have well-defined construction sequence, even if S
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and T do.9 Accordingly we must generalize our definition of empirical distribu-

tion to take into account the relative locations of words in typical (s, t ) ∈K×L.

We express this by shifting one of the basic open sets and considering words

(w, shs(v)), which we view as starting at the locations (0, s).

Let 〈Wn : n ∈ N 〉 and 〈Vn : n ∈ N 〉 be uniquely readable construction se-

quences for K and L in the languages Σ,Λ respectively. Assume for simplicity

that all words in Wn and Vn have the same length.

Let n ≤ n′ < n + l . Then we can uniquely parse a word w ∈Wn+l as

w = u0w0u1w1 . . . w J u J+1

where each w j ∈Wn and each u j is in the region of spacers for words in Wn+l ′ ,

l ′ < l . The similar statement holds for v ′
k
∈ Vn′ , and v ∈ Vn+l :

v = u′
0v ′

0u′
1v ′

1 . . . v ′
K u′

K+1.

The definition must take into account the relative shifts of w and v , the shifts

of (w j , vk ) allow spacers to occur in different places and for the possibility that

J 6= K .

Let n ≤ n′ < n + l be natural numbers, s, s′ ∈ Z, and (w ′, v ′) ∈ Wn × Vn′ , and

(w, v) ∈ Wn+l × Vn+l . Write w and v in terms of n and n′-words as above. For

s, s′, define an occurrence of (w ′, shs′(v ′)) in (w, shs(v)) to be a j ≤ J such that

w j = w ′ and if k is the location of w j in w then v ′ occurs at k + s′ in shs(v).

We note the bijection between occurrences of (w ′, shs′(v ′)) in (w, shs(v)) and

occurrences of (v ′, sh−s′(w ′)) in (v, sh−s(w)).

In defining empirical distributions for joinings we generalize Definition 2.19.

The empirical distribution of a shifted pair is defined to be the proportion of

times it occurs, relative to the proportion of times arbitrary pairs with the same

shift occur.

DEFINITION 2.24. Fix w, s, v . Let A be the collection
{

j : for some (w∗, v∗) ∈Wn ×Vn′ , (w∗, shs′(v∗)) occurs at j in (w, shs(v))
}

.

Assume that A 6= ;. For w ′ ∈Wn and v ′ ∈ Vn′ , we define:

EmpDistn,n′,s′(w, shs(v))(w ′, v ′) =
∣

∣

{

0 ≤ j ≤ J : (w ′, shs′(v ′)) occurs at j
}
∣

∣

|A|
.

As before, EmpDistn,n′,s′(w, shs(v)) extends uniquely to a probability measure

on P (Wn ×Vn′). Definition 2.24 facilitates a notion of a generic sequence for a

joining.

DEFINITION 2.25. A sequence of 〈 (wn , vn , sn) ∈ Wn × Vn ×Z : n ∈ N 〉 is called

generic if and only if

1.
∑ |sn |

qn
<∞ and

9We run into this problem when considering joinings of circular systems and their inverses

that project to the \-map on the canonical factors; these notions are defined in future sections.
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2. for all n,n′, s′ and ε> 0 there is an N for all m,m′ > N ,

‖EmpDistn,n′,s′(wm , shsm (vm))−EmpDistn,n′,s′(wm′,shsm′ (vm′))‖var < ε.

The definition of an ergodic sequence of pairs is done analogously.

It is easy to check that 〈 (wn , vn , sn) : n ∈N 〉 is generic/ergodic if and only if

〈 (vn , wn ,−sn) : n ∈N 〉 is generic/ergodic. For ergodic joinings the analogues of

Proposition 2.20, and Lemmas 2.22 and 2.23 hold and are proved in exactly the

same way.

We have given these definitions in the case of a product of two symbolic

shifts, but they generalize immediately to products of three or more shifts. For

example, to consider three shifts with construction sequences 〈Un 〉n , 〈Vn 〉n ,

〈Wn 〉n , we would consider a sequence of the form

〈 (un , vn , wn , sn , tn) : n ∈N 〉,

where the words belong to the respective construction sequences and the sn ’s

and tn ’s give the shifts relative to the first coordinate.

We will be concerned with compositions of joinings, which involves products

of three shifts. To prepare for this we need the notion of a conditional empirical

distribution.

DEFINITION 2.26. Let n,n′ < n + l . Given a fixed w∗ ∈ Wn′ and a pair (w, v) ∈
Wn+l ×Vn+l and (s, s′) we define the conditional empirical distribution to be

EmpDistn,s′((w, shs(v)|w∗)(v ′)

=
∣

∣

{

0 ≤ j ≤ J : (w∗, shs′(v ′)) occurs at j
}∣

∣

∣

∣

{

j ≤ J : for some v∗ ∈ Vn , (w∗, shs′(v∗)) occurs at j
}∣

∣

for v ′ ∈Wn .

Using the same ideas, we can define the empirical distribution conditioned

on v∗ ∈ Vk by looking at (sh−s(w), v) and counting occurrences of (sh−s′(w ′), v∗)

for the w ′ ∈Wk ′ .

This definition generalizes to products of three or more systems. When work-

ing in three or more systems, there will be multiple s’s playing the role of s′ in

Definition 2.26. They will refer to the position of the sequences being counted,

relative to the conditioning sequence. So for example, if K,L,M have construc-

tion sequences 〈Un 〉n ,〈Vn 〉n ,〈Wn 〉n and 〈 (un , vn , wn , sn , tn) : n ∈N 〉 is a generic

sequence for a joining ρ of K, L, and M, then

EmpDistsk,k ′,s,s′(un , shsn (vn), shtn (wn)|v)

counts pairs (shs(u), shs′(w)), where (u, w) ∈ Uk ×Wk ′ have been shifted by s

and s′ relative to v .

Let ρ1 be a T1 ×T2-invariant measure on X ×Y and ρ2 a T2 ×T3-invariant

measure on Y ×Z . Recall from Section 2.2 that the composition of ρ1 and ρ2 is

defined to be projection of the relative independent joining of ρ1 and ρ2 over
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the common factor Y to a measure on X × Z . We now describe a method for

detecting generic sequences for relatively independent joinings.

Suppose that systems X and Z have a common factor Y .

(X ,B,µ,T ) (Z ,D, µ̃, T̃ )

(Y ,C ,ν,S)

H
H
HHj

�
�

���

Let ρ = X×Y Z be the relatively independent joining of X and Y . Let µy , µ̃y ,ρy

be the distintegrations of µ, µ̃ and ρ respectively. Then the relatively indepen-

dent joining ρ is characterized by the fact that for ν-a.e. y ,

ρy =µy × µ̃y .(6)

Let 〈An ,Ãn ,A ′
n : n ∈N 〉 be sequences of refining partitions that generate B, D,

and C , respectively. Since the sequence of partitions An × Ã
′

n generates B⊗D,

equation (6) is equivalent to the property that for all Ak ∈ Ak , Ãk ∈ Ãk , and

ν-a.e. y ,

µy (Ak )× µ̃y (Ãk ) = ρy (Ak × Ãk ).(7)

To finitize this we approximate µy (Ak ) by µ(Ak |A′
m(y)) for large m, where A′

m(y)

is the atom of A
′

m to which y belongs. We let µy (Ak ) be shorthand for the

distribution 〈µy (Ak ) : Ak ∈ Ak 〉, and µ(Ak |A ′
m)(y) stands for the conditional

distribution µ(Ak |A′
m(y)), Ak ∈Ak . (We use similar notation in Lemma 2.27 for

the conditional distribution given by ρ,µ and µ̃ on various partitions.)

By Martingale convergence,10 for ε > 0 and fixed k, if m is sufficiently large

then for (1−ε) proportion of the y ′ in the same atom as y :

‖µy ′(Ak )−µ(Ak |A ′
m)(y)‖var < ε

but for a collection of A′
m of whose union has ν-measure less than ε.

One can deal similarly with µ̃n and ρy . We have shown

LEMMA 2.27. In the notation above, ρ is the relatively independent joining of µ

and µ̃ if and only if for all k,ε> 0, for all large enough m, there is a collection of

atoms Am ∈A
′

m of total measure at least 1−ε for which:

‖ρ(Ak × Ãk |Am)−µ(Ak |Am)× µ̃(Ãk |Am)‖var < ε.(8)

We now express Lemma 2.27 in terms of sequences of finite words. Suppose

that 〈Un 〉,〈Vn 〉, and 〈Wn 〉 are the uniquely readable construction sequences for

X , Y , and Z .

PROPOSITION 2.28. Let 〈 (un , vn , wn , sn , tn) ∈ Un ×Vn ×Wn ×Z
2 : n ∈N 〉 be a se-

quence of words. Suppose that

1. 〈 (un , vn , sn)〉n is generic for ρ1.

2. 〈 (vn , wn , tn)〉n is generic for ρ2.

10See, e.g., [11, Theorem 14.26, page 261].
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3. for all ε > 0,k and s∗ for all sufficiently large k ′ there is an N and a set

Gk ′ ⊂ Vk ′ and for each v ∈Gk ′ a set of indices Iv ⊆ [0, qk ′) that satisfies |Iv | >
(1−ε)qk ′ such that for all n > N :

(a)
∑

v∈Gk′
EmpDist(vn)(v) > 1−ε and

(b) for all v ∈Gk ′ and s ∈ Iv ,

‖EmpDistk,k,s,s+s∗(un , shsn (vn), shtn (wn)|v)

−EmpDistk,s(un , shsn (vn)|v)∗EmpDistk,s+s∗(vn , shtn−sn (wn)|v)‖var

is less than ε.

If ρ is the relatively independent joining of ρ1,ρ2 then 〈 (un , vn , wn , sn , tn):n ∈N〉
is a generic sequence for ρ.

Proof. Observe that the hypothesis 3b implies a similar equation for any k1 < k

while the other parameters are fixed. Now use hypothesis 3a with a summable

sequence of ε’s and we can conclude by the Borel–Cantelli lemma that for ν-

almost every y ∈ Y for k ′ sufficiently large, if vk ′(y) is the principal k ′-block of

y with location rk ′ , then the inequality in 3b will hold for s = rk ′ and v = vk ′(y).

Now by hypotheses 1 and 2, the single empirical distributions are converging

to (ρ1)y and (ρ2)y respectively (where (ρi )y is the disintegration of ρi over y).

It follows by integration that the sequence of (un , vn , wn , sn , tn)’s is generic

for a measure ρ on X ×Y ×Z , which is the relatively independent joining. �

REMARK 2.29. It follows immediately from hypothesis 3 of Proposition 2.28 that

if we are given a finite set F of natural numbers then for all sufficiently large

k ′ we can find an N , Gk ′ , and Iv as in hypothesis 3 so that 3a and 3b hold

simultaneously for all s∗ ∈ F .

An immediate corollary of this is

COROLLARY 2.30. Suppose that 〈 (un , vn , wn , sn , tn) : n ∈N 〉 satisfies the hypothe-

ses of Proposition 2.28. Then 〈 (un , shtn (wn)) : n ∈N 〉 is generic for ρ1 ◦ρ2.

There is a converse to Proposition 2.28, namely that a generic sequence for

the relatively independent joining of two symbolic systems satisfies the condi-

tions 1-3 of the proposition. The first two are immediate while the third simply

expresses the fact that the generic sequence is actually representing the rela-

tively independent joining. For later use we record this:

LEMMA 2.31. Given joinings ρ1 of X ×Y and ρ2 of Y ×Z if 〈 (un , vn , wn , sn , tn) :

n ∈ N 〉 is generic for the relatively independent joining ρ then it satisfies the

hypotheses of Proposition 2.28.

2.7. Unitary operators. We will use spectral tools introduced by Koopman and

studied by Halmos and von Neumann. We reprise the basic facts we will use.

Readers unfamiliar with this material can find it in [21] or [11]. Let (X ,B,µ,T )

and (Y ,C ,ν,S) be measure preserving systems.
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If T : X → Y is a measure preserving transformation then T induces a unitary

isometry UT : L2(Y ) → L2(X ) by setting

UT ( f ) = f ◦T.

If T is an isomorphism then UT is invertible. Moreover if U : L2(Y ) → L2(X ) is

multiplicative on bounded functions then there is a measure preserving trans-

formation T : X → Y such that U =UT .

If π : X → Y is a factor map, then the map f 7→ f ◦π gives an injection of L2(Y )

into L2(X ), whose range is a closed UT invariant subspace. Conversely if M ⊆
L2(X ) is a closed UT invariant subspace containing 1 that is closed under taking

complex conjugates, truncation and multiplication by elements of M ∩L∞(X ),

then there is a factor Y ⊆ X such that M = L2(Y ).

For the rest of this discussion assume that T is ergodic. Then the eigenvalues

of UT all have multiplicity one and form a subgroup GT ⊆T. The group GT is

an isomorphism invariant.

The collection of eigenfunctions generate a closed subspace of L2(X ) corre-

sponding to a factor K of X . This factor is called the Kronecker factor. If H is

any subgroup of GT then there is a further factor KH of K that is canonically

determined by the eigenfunctions coming from eigenvalues in H .

Assume that φ is an isomorphism from (X ,T ) to (Y ,S). Then GT =GS and if

K X
H ,K Y

H are the factors of X and Y determined by H ⊆GT then Uφ determines

an unique isomorphism between K X
H and K Y

H .

It follows from this that if α ∈T is an eigenvalue of UT then there are factors

of X and Y isomorphic to rotation Rα of T by α. Moreover there is a unique

isomorphism Uπ
φ : (T,B,λ,Rα) → (T,B,λ,Rα) that intertwines Uφ and the pro-

jection maps of X and Y to (T,B,λ,Rα).

The analogous statement holds for odometers. If GT consists of finite order

eigenvalues and O is the corresponding odometer transformation, then there is

a unique isomorphism Uπ
φ : O →O that intertwines Uφ and the projection maps

of X and Y to O .

2.8. Stationary codes and d̄-distance. In this section we briefly describe a stan-

dard idea, that of a stationary code, that we will use to understand the existence

of factor maps and isomorphisms. We review some standard facts here. A reader

unfamiliar with this material who wants to see proofs should see [18].

DEFINITION 2.32. Suppose that Σ is a countable language. A code of length

2N +1 is a function Λ : Σ[−N ,N ] → Σ, where [−N , N ] is the interval of integers

starting at −N and ending at N .

Given a code Λ and an s ∈ΣZ we define the stationary code determined by Λ

to be Λ̄(s), where

Λ̄(s)(k) =Λ(s � [k −N ,k +N ]).

Let (ΣZ,B,ν, sh) be a symbolic system. Suppose we have two codes Λ0 and

Λ1 that are not necessarily of the same length. Define

D =
{

s ∈ΣZ : Λ0(s)(0) 6= Λ̄1(s)(0)
}

JOURNAL OF MODERN DYNAMICS VOLUME 15, 2019, 345–423



366 MATTHEW FOREMAN AND BENJAMIN WEISS

and d(Λ0,Λ1) = ν(D). Then d is a semi-metric on the collection of codes. The

following is a consequence of the Borel–Cantelli lemma.

LEMMA 2.33. Suppose 〈Λi : i ∈N 〉 is a sequence of codes such that
∑

i d(Λi ,Λi+1)

<∞. Then there is a shift invariant Borel map S : ΣZ →ΣZ such that for ν-almost

all s, limi→∞Λi (s) = S(s).

A shift invariant Borel map S : ΣZ →ΣZ, determines a factor (ΣZ,B,µ, sh) of

(ΣZ,B,ν, sh) by setting µ = S∗ν (i.e., µ(A) = ν ◦ S−1(A)). Hence a convergent

sequence of stationary codes determines a factor of (ΣZ,B,ν, sh).

Let Λ0 and Λ1 be codes. Define d̄(Λ̄0(s),Λ̄1(s)) to be

limN→∞
|
{

k ∈ [−N , N ] : Λ̄0(s)(k) 6= Λ̄1(s)(k)
}

|
2N +1

.

More generally we can define the d̄ metric on Σ[a,b] by setting

d̄[a,b](x, y) =
|
{

k ∈ [a,b) : x(k) 6= y(k)
}

|
b −a

.

For x, y ∈ΣZ, we set

d̄(x, y) = limN→∞d̄[−N ,N ](x � [−N , N ], y � [−N , N ]),

provided this limit exists.

To compute distances between codes we will use the following application of

the Ergodic Theorem.

LEMMA 2.34. Suppose that (ΣZ, sh,ν) is ergodic and let Λ0 and Λ1 be codes. Then

for almost all s ∈ S

d(Λ0,Λ1) = d̄(Λ̄0(s),Λ̄1(s)).

We finish with a useful remark:

REMARK 2.35. If w1 and w2 are words in a language Σ defined on an interval I

and J ⊂ I with |J |
|I | ≥ δ, then d̄I (w1, w2) ≥ δd̄ J (w1, w2).

3. ODOMETER BASED AND CIRCULAR SYMBOLIC SYSTEMS

Two types of symbolic shifts play central roles for the proofs of our main theo-

rem. We dub them odometer based and circular systems. In this section we give

some general facts about symbolic systems with uniquely readable construction

sequences, define odometer and circular systems, and show that every circular

system has a canonical rotation factor.

3.1. Odometer based systems. We recall the definition of an odometer trans-

formation. Let 〈kn : n ∈N 〉 be a sequence of natural numbers greater than or

equal to 2. Let

O =
∞
∏

n=0

Z/knZ

be the 〈kn 〉-adic integers. Then O naturally has a compact abelian group struc-

ture and hence carries a Haar measure µ. We make O into a measure preserving
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system O by defining T : O → O to be addition by 1 in the 〈kn 〉-adic integers.

Concretely, this is the map that “adds one to Z/k0Z and carries right.” Then T

is an invertible transformation that preserves the Haar measure µ on O . Let

Kn = k0 ∗k1 ∗k2 ∗·· ·∗kn−1.

The following results are standard:

LEMMA 3.1. Let O be an odometer system.

1. O is ergodic.

2. The map x 7→ −x is an isomorphism between (O,B,µ,T ) and (O,B,µ,T −1).

3. Odometer maps are transformations with discrete spectrum and the eigen-

values of the associated linear operator are the K th
n roots of unity (n > 0).

Any natural number a can be uniquely written as

a = a0 +a1k0 +a2(k0k1)+·· ·+a j (k0k1k2 . . .k j−1)

for some sequence of natural numbers a0, a1, . . . , a j with 0 ≤ a j < k j .

LEMMA 3.2. Suppose that 〈rn : n ∈ N 〉 is a sequence of natural numbers with

0 ≤ rn < k0k1 . . .kn−1 and rn ≡ rn+1 mod (Kn). Then there is a unique element

x ∈O such that rn = x(0)+x(1)k0 +·· ·+x(n)(k0k1 . . .kn−1) for each n.

We now define the collection of symbolic systems that have odometer maps

as their timing mechanism. This timing mechanism can be used to parse typical

elements of the symbolic system.

DEFINITION 3.3. Let 〈Wn : n ∈N 〉 be a uniquely readable construction sequence

with the properties that W0 = Σ and for all n,Wn+1 ⊆ (Wn)kn for some kn . The

associated symbolic system will be called an odometer based system.

Thus odometer based systems are those built from construction sequences

〈Wn : n ∈ N 〉 such that the words in Wn+1 are concatenations of words in Wn

of a fixed length kn . The words in Wn all have length Kn and the words ui in

equation (2) are all the empty words.

Equivalently, an odometer based transformation is one that can be built by

a cut-and-stack construction using no spacers. An easy consequence of the

definition is that for odometer based systems K, for all s ∈K and for all n ∈N,

rn(s) exists.

PROPOSITION 3.4. Let K be an odometer based system and suppose that ν is a

shift invariant measure. Then ν concentrates on S.

Proof. Let B =KàS. Then B is shift invariant. Suppose that ν gives B positive

measure. For s ∈ B let an(s) ≤ 0 ≤ bn(s) be the left and right endpoints of the

principal n-block of s. Then for all s ∈ B there is an N ∈N such that

1. for all n,−N ≤ an or

2. for all n,bn ≤ N .

We assume that ν gives the collection B∗ of s such that there is an N ∈N for all

n,−N ≤ an positive measure, the other case is similar.
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Define f : B∗ → N by setting f (s) = least N satisfying item 1. Then f is a

Borel function. Let Bn = f −1(n). Then the Bn ’s are disjoint, B∗ =
⋃

n≥0 Bn and

sh−1(Bn) = Bn+1. Hence for all n,m,ν(Bn) = ν(Bm), a contradiction. �

The next lemma justifies our terminology.

LEMMA 3.5. Let K be an odometer based system with each Wn+1 ⊆ (Wn)kn . Then

there is a canonical factor map

π : S →O ,

where O is the odometer system determined by 〈kn : n ∈N 〉.

Proof. For each s ∈ S, we know that for all n,rn(s) is defined and both rn and

kn − rn go to infinity. By Lemma 3.2, the sequence 〈rn(s) : n ∈ N 〉 defines a

unique element π(s) in O . It is easily checked that π intertwines sh and T . �

In the forthcoming paper [8] we show a strong converse to this result: if T has

finite entropy and an odometer factor then T can be presented by an odometer

based system.

Heuristically, the odometer transformation O parses the sequences s in S ⊆K

by indicating where the words constituting s begin and end. Shifting s by one

unit shifts this parsing by one. We can understand elements of s as being an

element of the odometer with words in Wn filled in inductively.

We will use the following remark about the canonical factor of the inverse of

an odometer based system.

REMARK 3.6. If π : L→O is the canonical factor map, then the function π : L→
O is also factor map from (L, sh−1) to O

−1 (i.e., O with the operation “−1”). If

〈Wn : n ∈N 〉 is the construction sequence for L, then 〈rev(Wn) : n ∈N 〉 is a con-

struction sequence for rev(L). If φ : L−1 → rev(L) is the canonical isomorphism

given by Proposition 2.17, then Lemma 3.1 tells us that the projection of φ to a

map φπ : O →O is given by x 7→ −x.

From this remark we immediately see

LEMMA 3.7. Let ρ ↔ ρ′ be the canonical correspondence between joinings of

(K, sh) and (L, sh−1) and joinings of (K, sh) and (rev(L), sh) given after Propo-

sition 2.17. Then the joining ρ concentrates on the set of pairs (s, t ) such that

πK(s) =−πL(t ) if and only if ρ′ concentrates on the collection of (s, t ) such that

πK(s) =πL
−1

(t ).

3.2. Circular systems. We now define and discuss circular systems. The pa-

per [6] showed that the circular systems give symbolic characterizations of

smooth diffeomorphisms defined by the Anosov–Katok method of conjugacies.

The construction sequences of circular systems have quite specific combinato-

rial properties that will be important to our understanding of the Anosov–Katok

systems and their centralizers in the third paper in this series.

We call these systems circular because they are closely tied to the behavior of

rotations by a convergent sequence of rationals αn = pn/qn . The rational rota-

tion by p/q permutes the 1/q intervals of the circle cyclically along a sequence
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determined by some numbers ji
def= p−1i (mod q): the interval [i /q, (i +1)/q)

is the j th
i

interval in the sequence.11 The operation C which we are about to

describe models the relationship between rotations by p/q and p ′/q ′ when q ′

is very close to q .

Let k, l , p, q be positive natural numbers with p < q relatively prime. Set

ji ≡q (p)−1i(9)

with ji < q . It is easy to verify that

q − ji = jq−i .(10)

Let Σ be a non-empty set. We define an operation C , which depends on p, q ,

an integer l > 1, and on sequences w0, . . . , wk−1 of words in a language Σ∪ {b,e}

by setting12

C (w0, w1, w2, . . . , wk−1) =
q−1
∏

i=0

k−1
∏

j=0

(bq− ji w l−1
j e ji ).(11)

To start our construction we frequently take p0 = 0 and q0 = 1. In this case we

adopt the convention that j0 = 0. Hence

C (w0, w1, . . . , wk−1) =
∏

j<k

bq w l−1
j .

REMARK 3.8.

• Suppose that each wi has length q , then the length of C (w0, w1, . . . , wk−1)

is kl q2.

• Every occurrence of an e in C (w0, . . . , wk−1) has an occurrence of a b to

the left of it. If p 6= 0 then every occurrence of a b has an e to the right of

it.

• Suppose that n < m and b occurs at position n in C (w0, w1, . . . , wk−1) and

e occurs at m and neither occurrence is in a wi . Then there must be some

wi occurring between n and m.

The C operator automatically creates uniquely readable words, as the next

lemma shows, however we will need a stronger unique readability assumption

for our definition of circular systems.

LEMMA 3.9. Suppose that Σ is a language, b,e ∉Σ, 0 < p < q and that u0, . . . ,uk−1,

v0, . . . , vk−1 and w0, . . . , wk−1 are words in the language Σ∪ {b,e} of some fixed

length q < l/2. Let

u =C (u0,u1, . . . ,uk−1)

v =C (v0, v1, . . . , vk−1)

w =C (w0, w1, . . . , wk−1).

11We assume that p and q are relatively prime and the exponent −1 is the multiplicative

inverse of p mod q .
12We use

∏

for repeated concatenation of words.
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Suppose that uv is written as pw s where p and s are words in Σ∪ {b,e}. Then

either p is the empty word and u = w, v = s or s is the empty word and u = p,

v = w.

Proof. The map i 7→ ji is one-to-one. Hence each location in the word of length

kl q2 is uniquely determined by lengths of nearby sequences of b’s and e’s. �

In fact something stronger is true: if σ ∈ Σ occurs at place m in w then m

is uniquely determined by the knowing the w0, w1, . . . , wk−1 and the kql/2+1

letters on either side of σ.

We now describe how to use the C operation to build a collection of sym-

bolic shifts. Our systems will be defined using a sequence of natural number

parameters kn and ln that is fundamental to the version of the Anosov–Katok

construction presented in [15].

Fix an arbitrary sequence of positive natural numbers 〈kn : n ∈N 〉. Let 〈 ln :

n ∈ N 〉 be an increasing sequence of natural numbers such that
∑

n 1/ln <∞.

From the kn and ln we define sequences of numbers: 〈pn , qn ,αn : n ∈N 〉. We

begin by letting p0 = 0 and q0 = 1 and inductively set

qn+1 = knln qn
2(12)

(thus q1 = k0l0) and take

pn+1 = pn qnknln +1.(13)

Then clearly pn+1 is relatively prime to qn+1.13

DEFINITION 3.10. A sequence of integers 〈kn , ln : n ∈N 〉 such that kn ≥ 2 and
∑

1/ln <∞, will be called a circular coefficient sequence.

Let Σ be a non-empty finite or countable alphabet. We will construct the

systems we study by building collections of words Wn in the alphabet Σ∪ {b,e}

by induction as follows:

• Fix a circular coefficient sequence 〈kn , ln : n ∈N 〉〉.
• Set W0 =Σ.

• Having built Wn we choose a set Pn+1 ⊆ (Wn)kn and form Wn+1 by taking

all words of the form C (w0, w1 . . . wkn−1) with (w0, . . . , wkn−1) ∈ Pn+1.14

We will call the elements of Pn+1 prewords.

Strong unique readability assumption. Let n ∈N, and view Wn as a collection

Λn of letters. Then each element of Pn+1 can be viewed as a word with letters

in Λn . We assume that in the alphabet Λn , each Pn+1 is uniquely readable.

DEFINITION 3.11. A construction sequence 〈Wn : n ∈N 〉 will be called circular if

it is built in this manner using the C -operators, a circular coefficient sequence

and each Pn+1 satisfies the strong unique readability assumption.

13pn and qn being relatively prime for n ≥ 1, allows us to define the integer ji in equation (9).

For q0 = 1, Z/q0Z has one element, [0], so we set p0
−1 = p0 = 0.

14Passing from Wn to Wn+1 we use C with parameters k = kn , l = ln , p = pn and q = qn and

take ji = (pn )−1i modulo qn . By Remark 3.8, the length of each of the words in Wn+1 is qn+1.
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It follows from Lemma 3.9 that each Wn in a circular construction sequence

is uniquely readable.

DEFINITION 3.12. A symbolic shift K built from a circular construction sequence

will be called a circular system.

For emphasis we will often write circular construction sequences as 〈W c
n : n ∈

N 〉 and the associated circular shift Kc . We sometimes write wc to emphasize

that a word is a circular word.

We will need to analyze the words constructed by C in detail. We start by

describing the boundary and interior portions of the words.

DEFINITION 3.13. Suppose that w = C (w0, w1, . . . , wk−1). Then w consists of

blocks of wi repeated l −1 times, together with some b’s and e’s that are not in

the wi ’s. The interior of w is the portion of w in the wi ’s. The remainder of w

consists of blocks of the form bq− ji and e ji . We call this portion the boundary

of w .

In a block of the form w l−1
j

the first and last occurrences of w j will be called

the boundary occurrences of the block w l−1
j

. The other occurrences will be the

interior occurrences.

While the boundary consists of sections of w made up of b’s and e’s, not all

b’s and e’s occurring in w are in the boundary, as they may be part of a power

w l−1
i

.

The boundary of w constitutes a small portion of the word:

LEMMA 3.14. The proportion of the word w written in equation (11) that belongs

to its boundary is 1/l . Moreover the proportion of the word that is within q letters

of boundary of w is 3/l .

The next lemma was proved in [6, Lemma 20].

LEMMA 3.15. Let Kc be a circular system and ν be a shift invariant measure on

K
c . Then the following are equivalent:

1. ν has no atoms.

2. ν concentrates on the collection of s ∈ K
c such that { i : s(i ) ∉ {b,e} } is un-

bounded in both Z
− and Z

+.

3. ν concentrates on S.

REMARK 3.16. Let Kc be a circular system.

1. There are only two invariant atomic measures, one concentrates on the

constant “b” sequence, the other on the constant “e” sequence.

2. For K
c , Lemma 2.11 can be strengthened to say that for all s ∈ S for all

large enough n, the principal n-block of s exists.

3. The symbolic shift Kc has zero topological entropy.

Proof. A direct inspection reveals that the only periodic points in K
c are the two

fixed points constant “b” and “e.”
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The second item follows because if s has a principal n-block at [an ,bn) then it

has a principal n+1-block at some [an+1, an+1 +qn+1) for an an+1 with |an+1| ≤
|an |+ (qn+1 −qn).

The fact that the topological entropy of Kc is zero follows easily from the fact

that the ln tend to infinity. �

3.3. The structure of the words. The words used to form circular transforma-

tions have quite specific combinatorial properties. We begin with an important

definition for our understanding of rotations; the three subscales at stage n +1.

Fix a sequence 〈W c
n : n ∈N 〉 defining a circular system. Using equation (11) we

define the subscales of a word w∗ ∈W
c

n+1:

Subscale 0 is the scale of the individual powers of w j ∈ W
c

n of the form

w l−1
j

; we call each such occurrence of a w l−1
j

a 0-subsection.

Subscale 1 is the scale of each term in the product
∏k−1

j=0
(bq− ji w l−1

j
e ji )

that has the form (bq− ji w l−1
j

e ji ); We call these terms 1-subsections.

Subscale 2 is the scale of each term of
∏q−1

i=0

∏k−1
j=0

(bq− ji w l−1
j

e ji ) that has

the form
∏k−1

j=0
(bq− ji w l−1

j
e ji ); We call these terms 2-subsections.

Summary

Whole Word:
∏q−1

i=0

∏k−1
j=0

(bq− ji w l−1
j

e ji )

2-subsection:
∏k−1

j=0
(bq− ji w l−1

j
e ji )

1-subsection: (bq− ji w l−1
j

e ji )

0-subsection: w l−1
j

By contrast we will discuss n-subwords of a word w . These will be subwords

that lie in W
c

n , the nth stage of the construction sequence. We will use n-block

to mean the location of the n-subword.

3.4. The canonical circle factor K . We now define a canonical factor K of a

circular system and show that this factor is isomorphic to a rotation of the circle

by α, where α is the limit of αn = pn

qn
as n goes to infinity.

DEFINITION 3.17. Let 〈kn , ln : n ∈ N 〉〉 be a circular coefficient sequence. Let

Σ0 = {∗}. We define a circular construction sequence such that each W
c

n has a

unique element as follows:

1. W0 = {∗} and

2. If W
c

n = {wn} then W
c

n+1 = {C (wn , wn , . . . , wn)}.

Let K be the resulting circular system.

It is easy to check that K has unique ergodic non-atomic measure, since

every wn occurs exactly kn(ln −1)qn many times in wn+1.

Let Kc be an arbitrary circular system with coefficients 〈kn , ln 〉. Then K
c has

a canonical factor isomorphic to K . This canonical factor plays a role for circu-

lar systems analogous to the role odometer transformations play for odometer

based systems.
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To see K is a factor of Kc , we define the following function:

π(x)(i ) =
{

x(i ) if x(i ) ∈ {b,e}

∗ otherwise
(14)

We record the following easy lemma that justifies the terminology of Defini-

tion 3.17.

LEMMA 3.18. Let π be defined by equation (14). Then

1. π : Kc →K is a Lipshitz map,

2. π(sh±1(x)) = sh±1(π(x)) and thus

3. π is a factor map of Kc to K and (Kc )−1 to K
−1

A variant of item 3 is also true: π can be interpreted as a function from rev(Kc )

to rev(K ). With this interpretation π is also a factor map. We will call K the

circle factor of any circular system with construction coefficients 〈kn , ln : n ∈N 〉.
Fix a circular coefficient sequence 〈kn , ln : n ∈N 〉, and let K and 〈W α

n : n ∈
N 〉 be given in Definition 3.17. Let αn = pn/qn and α= limαn .

If s ∈ S, from rn(s) we can determine the locations of the beginnings and

ends of the words wα
n that contain s(0). Since |W α

n | = 1 for all n, for all s ∈ S the

sequence 〈rn(s) : n ∈N〉 uniquely determines s.

THEOREM 3.19. Let ν be the unique non-atomic shift invariant measure on K .

Then

(K ,B,ν, sh) ∼= (S1,D,λ,Rα),

where Rα is the rotation of the unit circle by α and B,D are the σ-algebras of

measurable sets.

Proof. A more involved geometric proof of this fact is given in [6]. Here we

present a simple algebraic proof. As usual we identify the unit circle S1 with

[0,1) and use additive notation for the group operations.

By Remark 3.16 , For all s ∈ S for all large enough n, the principal n-block of

s exists. We define a map φ0 : S → [0,1) by a limiting process. For s such that

rn(s) exists, we let

ρn(s) =
p

qn

if and only if

p ≡ pnrn(s) mod qn .

CLAIM 3.20. If rn is defined, then |ρn+1(s)−ρn(s)| < 2/qn .

Proof. From equation (11), we see that the position of s(0) in an n + 1-block

is determined by the parameters i ∈ [0, qn −1), j ∈ [0,kn −1), l∗ ∈ [0, ln −1] and

rn , which determine its location among the 2-subsections, 1-subsections, 0-

subsections and inside the n-words wn respectively. Explicitly,

rn+1(s) = i (knln qn)+ j (ln qn)+ (qn − ji )+ l∗qn + rn(s),

where rn(s) is the position of s(0) in its principal wn-word.
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From the definition of ρn+1, and working mod 1,

ρn+1 = rn+1(s)

(

pn+1

qn+1

)

= rn+1(s)

(

pn

qn
+

1

qn+1

)

Expanding this, using our formula for rn+1(s) and the fact that all but two terms

of rn+1(s) are divisible by qn , we get

ρn+1 =
(

− ji

(

pn

qn

)

+ rn(s)

(

pn

qn

))

+
(

i

qn
+δ

)

(15)

where

δ=
j

kn qn
+

1

knln qn
+

l∗

knln qn
+

rn(s)− ji

knln q2
n

.

The first and third terms of equation (15) cancel, thus

ρn+1 = ρn +δ.

Since δ< 2/qn , the claim follows. �

Since the sequence 1/qn is summable, for almost all s,〈ρn(s) : n ∈ ω〉 is

Cauchy. We define

φ0(s) = lim
n

ρn(s).

It is easy to check that φ0 is one-to-one. By the unique ergodicity of the rotation

Rα, Theorem 3.19 will be proved when we establish

CLAIM 3.21. The map φ0 : S → [0,1) satisfies

φ0(sh(s)) =Rα(φ0(s)).

In particular, if ν is the unique invariant measure on S

(K ,C ,ν, sh) ∼= ([0,1),B,λ,Rα).

Proof. Suppose that rn(s) and rn(sh(s)) both exist. Then rn(sh(s)) = rn(s)+ 1.

If follows that ρn(sh(s)) = ρn(s)+pn/qn . Taking limits we see that φ0(sh(s)) =
φ0(s)+ limn αn =φ0(s)+α. �

This finishes the proof of Theorem 3.19. �

3.5. Kronecker factors. Both odometer transformations and irrational rotations

of the circle are ergodic discrete spectrum transformations. Because the odome-

ter transformation based on 〈kn : n ∈ N 〉 is a factor of any odometer based

system T and the rotation Rα is a factor of any circular system S, both are fac-

tors of the respective Kronecker factors of T or S. In general it is not the whole

Kronecker factor in either case.

We make the following lemma explicit in the case of odometer based transfor-

mations. In the case of systems with a circle factor the exactly analogous results

hold.
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LEMMA 3.22. Let (K,B,µ,T ) and (L,C ,ν,S) be measure preserving systems. Sup-

pose that K has an odometer factor O and that φ : K → L is an isomorphism.

Then there is a unique odometer factor O
∗ of L with an isomorphism φπ : O →O

∗

such that the following diagram commutes:

K L

O O
∗

-

φ

?

πK

?

πL

-
φπ

If each finite order eigenvalue of L has multiplicity 1 (e.g., if L is ergodic), then

O
∗ is the unique odometer factor of L isomorphic to O .

Proof. Since the unitary operator Uφ : L2(K) → L2(K) takes eigenfunctions to

eigenfunctions, we know that Uφ takes the subspaces of L2(K) corresponding to

O to a subspace of L2(L) corresponding to an isomorphic copy of O . The lemma

follows. �

An immediate corollary of Lemma 3.22 is that if K and L are ergodic odometer

based systems over the same odometer O , with projections πK and πL , then φπ

is an isomorphism between the canonical odometer factors.

We record the following consequences for later use:

PROPOSITION 3.23. Suppose that K and L are both ergodic odometer based sys-

tems with coefficients 〈kn : n ∈ N 〉. Then any isomorphism φ : K→ L takes the

canonical odometer factor O
K of K to the canonical odometer factor O

L of L.

Similarly if Kc and L
c are both ergodic circular systems with the same coeffi-

cient sequences 〈kn , ln : n ∈N 〉〉, then any isomorphism between K
c and L

c takes

the canonical rotation K
K to the canonical rotation factor K

L.

Proof. In the first case there is a unique factor of K and L corresponding to

the eigenvalues of O
K and O

L. Any isomorphism must preserve the factor cor-

responding to these eigenvalues. The same argument works for K , as it is

isomorphic to the rotation by α= limn pn/qn . �

3.6. Uniform systems. In [6] it is established that the strongly uniform circular

systems with sufficiently fast growing 〈 ln : n ∈ N 〉 are realizable as measure

preserving diffeomorphisms of the torus. Strongly uniform systems are those for

which each word in Wn occurs the same number of times in each word in Wn+1.

These systems carry unique non-atomic invariant measures, simplifying much

of what we do later in this paper. For example the correspondence between the

measures ν on uniform odometer systems K and νc on their uniform circular

system counterparts K
c given in equation (33), is automatic.

In the forthcoming [8] we show that non-uniform circular systems with suf-

ficiently fast growing 〈 ln : n ∈ N 〉 are realizable as measure preserving diffeo-

morphisms of the torus, provided that the measures of the words in Wn go to

zero.
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4. DETAILS OF CIRCULAR SYSTEMS

This section examines the circular systems defined in Section 3.2 in more

detail. Initially we are given a circular coefficient sequence 〈kn , ln : n ∈N 〉〉 and

〈qn : n ∈N 〉 where qn satisfies the inductive definition in equation (12). When n

is fixed, we again let ji = (pn)−1i modulo qn and 0 ≤ ji < qn . Without significant

loss of generality it is convenient to assume that
∑

1/qn < 1/10.

To understand joinings of circular systems we will be comparing generic ele-

ments (s, t ) of circular Kc and L
c , and their parsings into subwords. We will use

the following terminology:

DEFINITION 4.1. Let u, v be finite sequences of elements of Σ∪{b,e} of length q .

Given intervals I and J in Z of length q we can view u and v as functions having

domain I and J respectively. We will say that u is shifted by k relative to v if and

only if I is the shift of the interval J by k. We say that u is the k-shift of v if and

only if u and v are the same words and I is the shift of the interval J by k.

4.1. Understanding the words. We elaborate on the descriptions given in Sec-

tion 3.3. Our first combinatorial lemma is the following:

LEMMA 4.2. Let w =C (w0, . . . , wkn−1) for some n and q = qn ,k = kn , l = ln . View

w as a word in the alphabet Σ∪ {b,e} lying on the interval of integers [0,kl q2).

1. If m0 and m1 are the locations of the beginnings of 0-subsections in the

same 2-subsection, then m0 ≡q m1.

2. If m0 and m1 are such that m0 is the location of the beginning of a 0-

subsection occurring in a 2-subsection
∏k−1

j=0
(bq− ji w l−1

j
e ji ) and m1 the be-

ginning of a 0-subsection occurring in the next 2-subsection
∏k−1

j=0
(bq− ji+1 w l−1

j
e ji+1 ) then m1 −m0 ≡q − j1.

Proof. To see the first point, the indices of the beginnings of 0-subsections in

the same 2-subsection differ by multiples of q coming from powers of a w j and

intervals of w of the form bq− ji e ji .

To see the second point, let u and v be consecutive 2-subsections. In view

of the first point it suffices to consider the last 0-subsection of u and the first 0-

subsection of v . But these sit on either side of an interval of the form e ji bq− ji+1 .

Since ji +q − ji+1 ≡q (p)−1i −p−1(i +1) ≡q −p−1 ≡q − j1, we see that m0−m1 ≡q

q + ji +q − ji+1 ≡q − j1. �

Assume that u ∈Wn+1 and v ∈Wn+1 ∪ rev(Wn+1) and v is shifted with respect

to u. On the overlap of u and v , the 2-subsections of u split each 2-subsection

of v into either one or two pieces. Since all of the 2-subsections in both words

have the same length, the number of pieces in the splitting and the size of

each piece is constant across the overlap except perhaps at the two ends of the

overlap. If u splits a 2-subsection of v into two pieces, then we call the left piece

of the pair the even piece and the right piece the odd piece.

If v is shifted only slightly, it can happen that either the even piece or the

odd piece does not contain a 1-subsection. In this case we will say that split is

trivial on the left or trivial on the right.
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LEMMA 4.3. Suppose that the 2-subsections of u divide the 2-subsections of v

into two non-trivial pieces. Then

1. the boundary portion of u occurring between each consecutive pair of 2-

subsections of u completely overlaps at most one 0-subsection of v

2. there are two numbers s and t such that the positions of the 0-subsections

of v in even pieces are shifted relative to the 0-subsections of u by s and the

positions of the 0-subsections of v in odd pieces are shifted relative to the 0

subwords of u by t . Moreover s ≡q t − j1.

Proof. This follows easily from Lemma 4.2 �

In the case where the split is trivial we get Lemma 4.3 with just one coefficient,

s or t .

A special case Lemma 4.3 that we will use is

LEMMA 4.4. Suppose that the 2-subsections of u divide the 2-subsections of v into

two pieces and that some occurrence of an n-subword of v in an even (resp. odd)

piece is lined up with an occurrence of some n-word in u. Then every occurrence

of an n-word in an even (resp. odd) piece of v is either

(a) lined up with some n-subword of u or

(b) lined up with a portion of a 2-subsection that has the form e ji bq− ji .

Moreover, no n-subword in an odd (resp. even) piece of v is lined up with an

n-subword in u.

4.2. Full measure sets for circular systems. Fix a summable sequence 〈εn : n ∈
N 〉 of numbers in [0,1) and a circular coefficient sequence 〈kn , ln : n ∈N 〉. As we

argued in the proof of Lemma 3.14, the proportion of boundaries that occur in

words of W
c

n is always summable, independently of the way we build W
c

n . Recall

the set S ⊆ K
c given in Definition 2.9, where K

c is the symbolic shift defined

from a construction sequence.

DEFINITION 4.5. We define some sets that a typical generic point for a circular

system eventually avoids. Let

1. En be the collection of s ∈ S such that s does not have a principal n-block

or s(0) is in the boundary of that n-block,

2. E 0
n = { s : s(0) is in the first or last εnln copies of w in a power of the form

w ln−1 where w ∈Wn },

3. E 1
n = { s : s(0) is in the first or last εnkn 1-subsections of the 2-subsection

in which s(0) is located },

4. E 2
n = { s : s(0) is in the first or last εn qn 2-subsections of the principal n+1-

block of s }.

LEMMA 4.6. Assume that
∑

1/ln < ∞. Let ν be a shift invariant measure on

S ⊆K
c , where K

c is a circular system. Then

1.
∑

n

ν(En) <∞.
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Assume that 〈εn 〉 is a summable sequence, then for i = 0,1,2,

2.
∑

n

ν(E i
n) <∞.

Proof. This is an application of the Ergodic Theorem. �

In particular we see

COROLLARY 4.7. For ν-almost all s there is an N = N (s) such that for all n > N ,

1. s(0) is in the interior of its principal n-block,

2. s ∉ E i
n .

In particular, for almost all s and all large enough n,

3. if s � [−rn(s),−rn(s)+qn) = w, then

s � [−rn(s)−qn ,−rn(s)) = s � [−rn(s)+qn ,−rn +2qn) = w.

4. s(0) is not in a string of the form w
ln−1
0 or w

ln−1
kn−1

.

Proof. This follows from the Borel–Cantelli Lemma. �

The elements s of S such that some shift shk (s) fails Corollary 4.7 form a

measure zero set. Consequently we work on those elements of S whose whole

orbit satisfies Corollary 4.7. Note, however, that the N (shk (s)) depends on the

shift k.

DEFINITION 4.8. We will call n mature for s (or say that s is mature at stage n)

if and only if n is so large that s ∉ Em ∪
⋃

0≤i≤2 E i
m for all m ≥ n.

Thus if s is mature at stage n then for all m > n the principal m-block of s

exists and conclusions 1-4 of Corollary 4.7 hold.

Recall that in Section 3.2, we defined a canonical factor of a circular system

which we called the circle factor. Since the notion of maturity only involves the

punctuation of the words involved, it is an easy remark that for all s ∈ S, n is

mature for s just in case n is mature for π(s), where π is the canonical factor

map.

For the following definition and lemma, we view s ∈ S as a function with do-

main Z, and s ∈Wn as a function with domain [0, qn) or, sometimes, an interval

[k,k +qn). In each of these cases we use dom(s) to mean the domain of s.

DEFINITION 4.9. We will use the symbol ∂n in multiple equivalent ways. If s ∈ S

or s ∈W
c

m we define ∂n = ∂n(s) to be the collection of i such that shi (s)(0) is in

the boundary portion of an n-subword of s. This is well-defined by our unique

readability lemma. In the spatial context we will say that s ∈ ∂n if s(0) is in the

boundary of an n-subword of s.

For s ∈ S

∂n(s) ⊆
⋃{

[l , l +qn) : l ∈ dom(s) and s � [l , l +qn) ∈Wn

}

.
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An integer i is in ∂n(s) ⊆ Z if and only if shi (s), viewed as an element of Kc ,

belongs to the n-boundary, ∂n .

In what follows we will be considering a generic point s and all of its shifts.

We will use the fact if s is mature at stage n, then we can detect locally those i

for which the i -shifts of s are mature.

LEMMA 4.10. Suppose that s ∈ S, n is mature for s and n < m.

1. Suppose that i ∈ [−rm(s), qm − rm(s)). Then n is mature for shi (s) if and

only if

(a) i ∉
⋃

n≤k≤m ∂k and

(b) shi (s) ∉
⋃

n≤k<m(E 0
k
∪E 1

k
∪E 2

k
).

2. For all but at most (
∑

n<k≤m 1/lk )+ (
∑

n≤k<m 6εk qk+1)/qm portion of the

i ∈ [−rm(s), qm − rm(s)), the point shi (s) is mature for n.

In particular, if εn−1 > supm(1/qm)
∑m−1

k=n
6εk qk+1, 1/ln−1 >

∑∞
k=n

1/lk and n

is mature for s, the upper density of those i ∈ Z for which the i -shift of s is not

mature for n is less than 1/ln−1 +εn−1.

Similarly, we have the following:

LEMMA 4.11. Suppose that s ∈ S and s has a principal n-block. Then n is mature

provided that s ∉ En ∪
⋃

n≤m E 0
m ∪E 1

m ∪E 2
m . In particular, if n is mature for s and

s is not in a boundary portion of its principal n−1-block or in E 0
n−1∪E 1

n−1∪E 2
n−1,

then n −1 is mature for s.

4.3. The \\\ map. Proposition 3.23 implies that any isomorphism φ between an

ergodic (Kc , sh) and (Kc , sh−1) induces an isomorphism φπ between (K , sh)

and (K , sh−1), where K is the canonical circle factor. Because (K , sh−1) is

canonically isomorphic with (rev(K ), sh) (Proposition 2.17) and (K , sh) is iso-

morphic to the rotation Rα of the circle, we see that (rev(K ), sh) is isomorphic

to the rotation R−α.

We use a specific isomorphism \ : (K , sh) → (rev(K ), sh) as a benchmark for

understanding of potential maps φ : Kc → rev(Kc ). If we view K as a rotation

Rα of the unit circle by α radians one can view the transformation \ as a sym-

bolic analogue of complex conjugation z 7→ z̄ on the unit circle, which is an

isomorphism between Rα and R−α. Copying \ over to a map on the unit circle

gives an isomorphism φ between Rα and R−α. Such an isomorphism must be

of the form

φ(z) = z̄e2πiβ

for some β. It follows immediately from this characterization that \ is an invo-

lution, however for completeness we prove this directly (and symbolically) in

Proposition 4.20.

As usual we find it more convenient to work on the unit interval I = [0,1)

rather than the unit circle. The complex conjugacy map z 7→ z̄ corresponds to

the map x 7→ 1−x on [0,1).
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We begin by recalling from equation (11) the formula for a w ∈ W
c

n+1 that is

of the form C (w0, . . . , wkn−1):

w =
q−1
∏

i=0

k−1
∏

j=0

(bq− ji w l−1
j e ji ),(16)

where q = qn ,k = kn , l = ln and ji ≡qn
(pn)−1i with 0 ≤ ji < qn . By examining

this formula we see that

rev(w) =
q
∏

i=1

k
∏

j=1

e jq−i rev(wk− j )l−1bq− jq−i .

Applying the identity in formula (10), we see that this can be rewritten as15

rev(w) =
q
∏

i=1

k
∏

j=1

(eq− ji rev(wk− j )l−1b ji ).(17)

We can reindex again and get another form of equation (17):

rev(w) =
q−1
∏

i=0

k−1
∏

j=0

(eq− ji+1 rev(wk− j−1)l−1b ji+1 ).(18)

We can now state the basic lemma about the way w lines up with a shift of

rev(w).

LEMMA 4.12. Let w ∈ W
c

n+1 and view w as sitting at location [0, qn+1) ⊆ Z. Let

q = qn and k = kn . Consider sh− j1 (rev(w)) as being the word rev(w) in location

[ j1, qn+1 + j1)) ⊆ Z. For all but at most 2kq of the occurrences of an n-subword

w j of w starting in a location r ∈ [0, qn+1), the reversed word rev(wk− j−1) occurs

in sh− j1 (rev(w)) starting at r .

Proof. The word w starts with a block of q b’s and then a block of l −1 copies

of w0, whereas rev(w) starts with a block of q − j1 e’s followed by l −1 copies of

rev(wk−1). Hence if we shift rev(w) to the right by j1 (to get sh− j1 (rev(w))) the

first copy of rev(wk−1) is aligned with the first copy of w0 in w . Hence all of the

copies of rev(wk−1) in the first 1-subsection are aligned with the copies of w0 in

the first 1-subsection of w . Because the consecutive blocks of b’s and e’s (or e’s

and b’s) in the 2-subsections add up to q we see that every copy of rev(wk− j−1)

in the first 2-subsection of sh− j1 (rev(w)) is aligned with a copy of w j .

We now argue as in Section 4.1. At the end of each 2-subsection, w has a

block of e’s of length ji , followed at the beginning of the next 2-subsection, by

a block of b’s of length q − ji+1. Together the e’s and b’s form a block of length

ji+q− ji+1, which is equivalent mod(q) to − j1. Similarly the combined length of

a block of b’s and e’s finishing and starting consecutive 2-subsections of rev(w)

is equal to − j1 mod(q).

Both the beginning of the block of e’s ending the kth 2-subsection and the

end of the block of b’s starting the k +1st 2-subsection are of distance less than

q from the location of the end of the kth 2-subsection. It follows from this and

15We take jq = 0.
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the comments in the previous paragraph, that if S1 and S2 are consecutive 2-

subsections of w and S′
1 and S′

2 are the corresponding 2-subsections of rev(w)

then the beginning of the first occurrence of rev(wk−1) in S′
2 is within 2q of the

first occurrence of w0 in S2 and their locations are equivalent mod(q). Hence

inside the first 1-subsection, the 0-subsections are lined up except for at most 2

copies of w0. This pattern is continued through S2, giving at most 2k locations

of n-blocks that are not aligned in S2.

Since there are less than q 2-subsections with potential misalignments, the

lemma is proved. �

The next proposition gives a somewhat more detailed view of the situation

of Lemma 4.12.

PROPOSITION 4.13. Let w, w ′ ∈W
c

n+1 and suppose that

w =C (v0, v1, . . . , vkn−1) and w ′ =C (v ′
0, v ′

1, . . . , v ′
kn−1).

We look at the relative positions of n-words in w and sh− j1 (rev(w ′)).

1. Each occurrence of vi in w is either lined up with an occurrence of

rev(v ′
kn−i−1

) or entirely lined up with a section of ∂n inside sh− j1 (rev(w ′)).

2. There is a number C such that for all i the number of occurrences of vi

lined up with an occurrence of rev(v ′
kn−i−1

) is C . It follows that the number

of occurrences of vi not lined up with an occurrence of rev(v ′
kn−i−1

) is the

constant K =C −q(l −1).

Proof. The first part is clear from the proof of Lemma 4.12. The second part

follows because all of the 1-subsections in a given 2-subsection of w have the

same alignment relative to sh− j1 (rev(w ′)). �

Since the total number of occurrences of n-subwords is k(l −1)q , the propor-

tion of n-subwords lined up with ∂n in sh− ji (rev(w ′)) is at most 2/l .

Suppose that K is given by the canonical construction sequence 〈W α
n : n ∈

N 〉. We define a sequence of functions 〈Λn : n ∈ N 〉 and argue that they con-

verge to an isomorphism from K to rev(K ).

We begin by defining an increasing sequence of natural numbers. Recall the

definition of the Anosov–Katok coefficients pn and qn given in equations (13)

and (12). Since pn and qn are relatively prime we can define (pn)−1 in Z/qnZ.

For the following definition we will view (pn)−1 as a natural number with 0 ≤
(pn)−1 < qn .16

We let A0 = 0 and

An+1 = An − (pn)−1.(19)

LEMMA 4.14. If An is defined as above, then |An+1| < 2qn .

16In the notation used to define C , (pn )−1 = j1. However the notation j1 is ambiguous (it

depends on n), so we use (pn )−1 in this context.
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Proof. This is proved inductively using the fact that qn+1 > 2qn . �

Let K be the circular system in the language Σ = {∗}, as given in Defini-

tion 3.17. We now define a stationary code Λn with domain S that approximates

elements of rev(K ) by defining

Λn(s) =
{

sh An+2rn (s)−(qn−1)(rev(s))(0) if rn(s) is defined

b otherwise.
(20)

Since for all s ∈ S and all large enough n, rn(s) is defined, the default value is

only obtained for finitely many n.

LEMMA 4.15. Λn is given by a finite code.

Proof. To check whether rn(s) is defined one need only examine s on the interval

[−qn , qn] ⊆ Z. The relevant portion of rev(s) necessary to compute Λn(s) is

contained in s � [−qn −|An |, qn +|An |]. Therefore Λn is determined by a finite

code. �

The formula in equation (20) can be understood as follows. Suppose s ∈ S and

s has a principal n-block. Then the element s∗ defined as sh2rn (s)−(qn−1)(rev(s))

belongs to rev(K ), has a principal n-block that is the reverse of the principal

n-block of s and moreover, the principal n-block of s∗ is exactly lined up with

the principal n-block of s.

The reverse of the principal n-block of s begins with a block of qn−1−(pn−1)−1

many e’s, and hence if s′ = sh(−(pn−1)−1)+2rn (s)−(qn−1)(rev(s)) then the first n −1-

subword of the principal n-block of s′ is lined up with the first n −1-subword

of the principal n-block of s. The rest of the terms used to define An (coming

from An−1) are used for lower order adjustments inside this principal n-block.

Thus, a qualitative description of Λ̄n(s) can be given as follows:

1. It first reverses the principal n-block of s leaving it exactly lined up.

2. It then adjusts the result by shifting so that the first occurrence of a reverse

n−1-block lines up with the first n−1-subword of the principal n-block of s.

(So far we have described sh(−(pn−1)−1)+2rn (s)−(qn−1)(rev(s)).) By Lemma 4.12,

we get a sequence where the principal n-block of Λn(s) has the vast major-

ity of its n−1-blocks lined up with the n−1-blocks of s: all of them except

those that span a section of boundary at the juncture of two 2-subsections

of the principal n-word of s.

3. Finally it shifts by An−1, which is the cumulative adjustment at earlier

stages.

The next lemma follows from this description:

LEMMA 4.16. Let n < m and suppose that s ∈ K has a principal m-block. Let

s′ = sh2rm−q+Am−An (r ev(s)). Then at least

m−1
∏

n

(

1−
2

(li −1)

)
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proportion of the n-blocks in the principal m-block of s are lined up with n-

blocks in s′.

Proof. We first consider m = n+1. By Lemma 4.12, all but 2kn qn of the n-blocks

in w are aligned with the n-blocks in sh− j (rev(w)). This is proportion

1−
2kn qn

kn qn(ln −1)
= 1−

2

ln −1
.

The general result follows by induction. �

THEOREM 4.17. Suppose that 〈kn , ln : n ∈ N 〉 is a circular coefficient sequence.

Then the sequence of stationary codes 〈Λn : n ∈N 〉 converges to a shift invariant

function \ : K → ({∗}∪{b,e})Z that induces an isomorphism \ from K to rev(K ).

Proof. We first show that the sequence 〈Λn : n ∈N 〉 converges, which will follow

if we show that the code distances between the Λn and Λn+1 are summable. For

notational simplicity, let q = qn ,k = kn , l = ln and j ≡q (pn)−1 with 0 ≤ j < q .

Claim: There is a summable sequence of positive numbers δn such that for

almost all s, the d̄-distance between Λ̄n(s) and Λ̄n+1(s) is bounded by δn , and

Λ̄n(s) and Λ̄n+1(s) agree on all but at most δn proportion of the n-blocks of s.

We use Lemma 2.34, which tells us that for a typical s ∈ S, the code distance

between Λn and Λn+1 is d̄(Λn(s),Λn+1(s)), which is defined to be the density of

D
def= {k : Λn(shk (s))(0) 6=Λn+1(shk (s))(0)}.(21)

Because |W α
n | = 1 for each n, there is only one possible n-subword at any

location of any element of rev(K ). Thus to compute d̄-distance, it suffices to

count positions where the Λm ’s disagree on the locations of the n-subwords.

By Lemma 4.10 for a typical s ∈ S ⊆K and all n,

In
def=

{

i : n is not mature for shi (s)
}

has density at most 1/ln−1+εn−1, hence we can neglect these i when computing

the density of D .

This allows us to assume that rn+1(s) is defined. We compute the density of

the difference between Λ̄n and Λ̄n+1 as they pass across an n +1-block in s. If

this number is d then the distance between Λn and Λn+1 is bounded by the

sum of d and the density of In .

As Λn+1 crosses an n + 1-block it produces the reverse n + 1-block shifted

by An+1. Explicitly, if w is the n +1-block of s, as Λn+1 crosses w it produces

sh An+1 (rev(w)). As Λn passes across this same section, each time it crosses an

n-block w ′ it produces sh An (rev(w ′)). If w ′ starts at r then the beginning of this

copy of sh An (rev(w ′)) is r − An .

We begin by rewriting sh An+1 (rev(w)) as sh An (sh− j (rev(w))) where j = (pn)−1.

By Lemma 4.12, all but 2kq of the n-blocks in w are aligned with the n-blocks

in sh− j (rev(w)). Hence, relative to the complement of In , the portion of the
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principal n +1-block w of s that lies in an n-block aligned with an n-block of

sh− j (rev(w)) is

k(l −1)q2 −2kq

k(l −1)q2
= 1−

2

(l −1)q
.(22)

Because there is only one possible n-word, whenever sh An (rev(w ′)) is aligned

with sh An (sh− j (rev(w))) they are equal.

Putting this altogether, we see that Λn and Λn+1 agree on all of the n-sub-

words of the principal n +1-block of s that are aligned with sh− j (rev(w)). The

disagreements are limited to the n-subwords that are not aligned and the boun-

dary. The total length of the disagreements is therefore bounded by

(2kq)∗q +kq2 = 3kq2.

This has proportion 3kq2/kl q2 = 3/l .

Thus the distance between Λn and Λn+1 is bounded by 1/ln−1+εn−1+3/ln . In

particular the distances are summable and the sequence 〈Λ̄n : n ∈N 〉 converges

almost everywhere to a function \ : K → (Σ∪ {b,e})Z.

We now show that \ is an isomorphism between K and rev(K ). Since Λ̄n

takes an n-block to a shift of the reverse n-block, it makes sense to discuss

the principal n-block of Λ̄(s). Since the rn ’s cohere as in Remark 2.13, for n <
m, rm(Λ̄m(s)) is in the rn(Λ̄m(s))th position of the principal n-block of Λ̄m(s)

(provided both rn and rm are defined). An application of the Ergodic Theorem

shows that if Dn is defined to be the collection of s such that

rn(Λ̄n(s)) exists and the principal n-words of Λ̄n(s) and Λ̄n+1(s) disagree,

then
∑

ν(Dn) <∞. From the Borel–Cantelli Lemma, it follows that for almost

every s for all large enough n the principal n-blocks of Λ̄n(s) and Λ̄n+1(s) are

the same, and thus that for s ∈ S,\(s) ∈ rev(K ).

We now argue that if s is typical and s∗ = \(s) then s∗ ∈ rev(S). It suffices to

show that limn→∞−rn(s∗) =−∞ and limn→∞ qn − rn(s∗) =∞.17

If n is mature for s and large enough that for m > n,Λ̄m(s) and Λ̄n(s) have

the same principal n-blocks, then rn(s∗) = rn(s)+ An unless rn(s) ∈ [0, |An |). As-

suming that rn(s) ≥ |An |, we know from Lemma 4.14 that

rn(s)−2qn−1 < r∗
n (s) < rn(s).

Hence, −r∗
n (s) ≤ 2qn−1 − rn(s) and qn − r∗

n (s) ≥ qn − rn(s). Applying Lemma 4.10

(using the fact that
∑

nqn−1/qn <∞, and hence
∑

|An |/qn <∞) we see that for

large n, rn(s) > |An | and that rn(s)−2qn−1 →∞. Since qn − rn(s) →∞ we have

shown that s∗ ∈ rev(S).

As noted before Theorem 3.19, if s ∈ S then s is determined by any tail of the

sequence 〈rn(s) : n ∈N 〉. In particular, if we know a tail of 〈rn(s∗) : n ∈N 〉 we

17We are adopting the convention that in defining rn (s∗) for s∗ ∈ rev(S) we count rn from the

left end of an n-block. Thus the position r in a word w ∈W
α

n corresponds to the position q−1−r

in rev(w).
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can determine s∗. Since for large n, rn(s∗) = rn(s)+ An , \ is one-to-one on a set

of measure one.

We can now conclude that \ is an isomorphism. It is shift invariant since it

is a limit of stationary codes, it maps from S to rev(S), and is one-to-one on

a set of ν-measure one. If we define a measure µ on the Borel sets of rev(K )

by setting µ(A) = ν(\−1(A)), then µ is a shift invariant, non-atomic measure on

rev(S). Since S is uniquely ergodic, rev(S) is as well and thus µ must be equal

to the unique invariant measure ν. We have shown that \ is an isomorphism

between K and rev(K ). �

DEFINITION 4.18. We denote the limit of 〈Λ̄n : n ∈N 〉 by \ : K → rev(K ).

We describe the qualitative behavior of \ in a remark that we will use later:

REMARK 4.19. There is a summable sequence 〈δn 〉 such that for all but 1−δn

measure of s ∈ S ⊆ K , there is an interval I containing 0 in Λn(s) such that

s � I ∈ W
α

n , and moreover Λn+1(s) and Λn(s) agree on this interval. It follows

from the Borel–Cantelli Lemma that for almost all s and large enough n, \(s)

agrees with Λ̄n(s) on the principal n-block of s. Thus for a typical s and large

enough n, the map \ reverses the principal n-block while keeping its location

and then shifts it by An .

As noted at the beginning of this section, the next proposition follows imme-

diately from Theorem 3.19; however, we include a symbolic proof for complete-

ness.

PROPOSITION 4.20. The map \ is an involution.

Proof. It is immediate from the qualitative description of Λ̄n given before Lem-

ma 4.16 that each Λ̄n is an involution. To see that \2 is the identity, let ε> 0. We

can choose an m0 large enough that for all m ≥ m0, Λ̄m and \ agree with Λ̄m0
on

all but ε proportion of the m0-blocks and
⋃∞

m0+1∂k has measure ε∗10−6. Then

\◦Λ̄m0
is equal to the identity on a set of density at least 1−ε. Letting ε→ 0 and

m0 →∞ completes the argument. �

4.4. Synchronous and anti-synchronous joinings. Every odometer based sys-

tem has a built in metronome: its odometer factor defined in Lemma 3.5. Cor-

respondingly circular systems can be timed by their canonical rotation factor

defined in Lemma 3.18.

Joinings between odometer based and circular systems may induce non-trivial

automorphisms of the underlying timing structure. To avoid this complica-

tion we restrict ourselves to synchronous and anti-synchronous joinings: those

which preserve or exactly reverse the underlying timing. We now make this idea

precise.

Both the odometer transformations and rotations of a circle have easily un-

derstood inverse transformations and the isomorphisms between transforma-

tions and their inverses are given by the maps x 7→ −x and rev()◦ \ respectively.
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If K and L are either odometer based or circular systems let Kπ and L
π be the

corresponding odometer or rotation systems on which they are based.

DEFINITION 4.21.

• Let K and L be odometer based systems with the same coefficient se-

quence, and ρ a joining between K and L
±1. Then ρ is synchronous if

ρ joins K and L and the projection of ρ to a joining on K
π × L

π is the

graph joining determined by the identity map (the diagonal joining of the

odometer factors); ρ is anti-synchronous if ρ is a joining of K with L
−1 and

its projection to K
π× (L−1)π is the graph joining determined by the map

x 7→ −x.

• Let Kc and L
c be circular systems with the same coefficient sequence and

ρ a joining between K
c and (Lc )±1. Then ρ is synchronous if ρ joins Kc and

L
c and the projection to a joining of (Kc )π with (Lc )π is the graph joining

determined by the identity map of K with L , the underlying rotations;

ρ is anti-synchronous if it is a joining of Kc with (Lc )−1 and projects to the

graph joining determined by rev()◦ \ on K ×L
−1.

There is always a synchronous joining of odometer systems with the same un-

derlying timing factor O :

DEFINITION 4.22. Suppose that K and L are based on O . Then the relatively

independent joining of K and L over O is a synchronous joining, which we will

call the synchronous product joining. The relatively independent joining of K

and L
−1 over the map x 7→ −x we will call the anti-synchronous product join-

ing. We will use the same terminology for the independent joinings of circular

systems over the identity and rev()◦ \.

5. BUILDING THE FUNCTOR F

The main result of this paper concerns two categories whose objects are

odometer based systems and circular systems respectively. The morphisms in

these categories will be graph joinings. We will show that there is a functor tak-

ing odometer systems to circular systems that preserves the factor and conju-

gacy structure. In this section we focus on defining the function from odometer

based systems to circular systems that underlies the functorial isomorphism

between these categories.

We begin by defining a function from the odometer based symbolic shifts

K to the circular symbolic shifts K
c . After having done so we define F on the

pairs (K,µ) where µ is an invariant measure on K. Finally we define F on

synchronous and anti-synchronous graph joinings.

We will use the notation that Kn =
∏

i<n ki . Then the Kn ’s are the lengths of

the odometer based words in Wn and the qn ’s are the lengths of the circular

words in W
c

n .

Except where otherwise stated we will assume that we are working with a

fixed circular coefficient sequence 〈kn , ln : n ∈N 〉.
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Let Σ be a language and 〈Wn : n ∈ N 〉 be a construction sequence for an

odometer based system with coefficients 〈kn : n ∈ N 〉. Then for each n the

operation Cn is well-defined. We define a construction sequence 〈W c
n : n ∈N 〉

and bijections cn : Wn →W
c

n by induction as follows:

1. Let W
c

0 =Σ and c0 be the identity map.

2. Suppose that Wn ,W c
n and cn have already been defined.

W
c

n+1 =
{

Cn(cn(w0),cn(w1), . . . ,cn(wkn−1)) : w0w1 . . . wkn−1 ∈Wn+1

}

.

Define the map cn+1 by setting

cn+1(w0w1 . . . wkn−1) =Cn(cn(w0),cn(w1), . . . ,cn(wkn−1)).

We note in case 2 the prewords are

Pn+1 =
{

cn(w0)cn(w1) . . .cn(wkn−1) : w0w1 . . . wkn−1 ∈Wn+1

}

.

DEFINITION 5.1. Define a map F from the set of odometer based systems

(viewed as subshifts) to circular systems (viewed as subshifts) as follows. Sup-

pose that K is built from a construction sequence 〈Wn : n ∈N 〉. Define

F (K) =K
c ,

where K
c has construction sequence 〈W c

n : n ∈N 〉.

Suppose that Kc is a circular system with coefficients 〈kn , ln : n ∈N 〉. We can

recursively build functions cn
−1 from words in Σ∪{b,e} to words in Σ. The result

is a odometer based system 〈Wn : n ∈N 〉 with coefficients 〈kn : n ∈N 〉.18

If K is the resulting odometer based system then F (K) =K
c . Thus we see:

PROPOSITION 5.2. The map F is a bijection between odometer based symbolic

systems with coefficients 〈kn : n ∈N 〉 and circular symbolic systems with coeffi-

cients 〈kn , ln : n ∈N 〉.

Proof. That F is one-to-one follows from the unique readability of words occur-

ring in the construction sequence 〈Wn : n ∈N 〉. �

REMARK 5.3. It is clear from Definition 5.1 that F preserves uniformity and

strong uniformity (see [6] for these notions). In fact it preserves much more:

the simplex of non-atomic invariant measures, rank one transformations and

so on. We verify much of this in this paper and more in the forthcoming [8].

To understand the correspondence between measures on K and K
c we will

have to understand the structure of basic open intervals. Recall that we write

〈u 〉L to mean the basic open interval of K determined by u sitting on the inter-

val [L,L+|u|) ⊆Z. Without the subscript L, 〈u 〉 is shorthand for 〈u 〉0. We adopt

the same conventions for K
c , that the subscripts correspond to the beginning

of the sequence and without a subscript the sequence begins at zero.

18We are using the strong unique readability assumption on the Pn ’s to see the unique read-

ability of the words in the sequence 〈Wn : n ∈N 〉.
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5.1. Genetic markers. To see that F can be extended to a map from invari-

ant measures on odometer based systems to invariant measures on circular

systems, we begin by recalling how to identify elements of a symbolic system.

Suppose that 〈Wn : n ∈ N 〉 is a construction sequence for an odometer based

transformation K. Let 〈W c
n : n ∈N 〉 be the corresponding circular construction

sequence for K
c . By Lemma 2.14 to specify a typical s ∈ K or sc ∈ K

c , it suf-

fices to give a tail of the sequence of principal n-blocks 〈wn(s) : N ≤ n ∈N 〉 or

〈wc
n(sc ) : N ≤ n ∈N 〉 along with the locations 〈rn(s) : N ≤ n 〉 or 〈rn(sc ) : N ≤ n 〉.

DEFINITION 5.4. Suppose that u, v are words in Wn and Wn+1 respectively and

u occurs as an n-subword of v in a particular location. Viewing v as a concate-

nation w0w1 . . . wkn−1 of n-subwords, there is a j such that u = w j . Let j∗n = j

and call j∗n the genetic marker of u in v .

Suppose that u ∈Wn and v ∈Wn+k and u is an n-subword of v occurring at a

particular location. Then there is a sequence of words un = u, un+1, . . . , un+k−1,

un+k = v such that un+i is a n + i -subword of v at a definite location and the

location of u in v is inside un+i . Let j∗
n+i

be the genetic marker of un+i inside

un+i+1. We call the sequence ~j∗ = 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉 the genetic marker of u

in v . If ~j∗ is the genetic marker of some n-word inside and m-word, we will call

it an (n,m)-genetic marker.

If u occurs as a subword of v then the genetic marker 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉 of

that occurrence codes its location inside v .

Suppose that s ∈K has principal n-blocks 〈wn : n ∈N 〉. Each wn+1 is a con-

catenation of words v0v1 . . . vkn−1. Let

j ′n
def=

rn+1(s)− rn(s)

Kn
(23)

or equivalently

rn+1(s) = rn(s)+ j ′nKn .(24)

Each wn+1 is a concatenation of words v0v1 . . . vkn−1, and we see that s(0) be-

longs to v j ′n . In particular, the genetic marker of wn inside wn+k is the sequence

〈 j ′n , j ′n+1, . . . , j ′
n+k−1

〉.
Genetic markers for regions of words in W

c
n+k

. In circular words, genetic mark-

ers code regions rather than subwords. Given u and v as above, we can con-

sider the construction of cn+k (v) starting with the collection {cn(u) : u is an

n-subword of v }. Each of the genetic markers 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉 of a sub-

word u of v determines a region of n-subwords of cn+k (v). More explicitly, in

the first step of the construction we put u into the ( j∗n )th argument of Cn . At

the next step we put the result into the j∗n+1 argument of Cn+1 and so on. Thus

we see that there are bijections between

1. sequences 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉 with 0 ≤ j∗m < km ,

2. n-subwords u of v ,

3. the regions of vc occupied by the occurrences of powers (uc )ln−1 where uc

is the element of W
c

n determined by 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉.
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Thus genetic markers give the correspondence between the regions of cn+k (v)

that are not in
⋃

n<m≤n+k ∂m and particular occurrences of an n-word u in v .

The next lemma computes the number of occurrences of a cn(u) with a given

genetic marker 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉 in cn+k (v).

LEMMA 5.5. Suppose that uc occurs in vc with genetic marker 〈 j∗n , j∗n+1, . . . ,

j∗
n+k−1

〉. Then the number of occurrences of uc in vc with the same genetic

marker 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉 is

n+k−1
∏

n

qi (li −1).(25)

Proof. Fix m and vc ∈W
c

m . We prove equation (25) for n = m−k by induction on

k ≥ 1. If k = 1 then we have a single genetic marker j∗m−1. By formula (11) for

Cm−1 we see that the j∗m−1 argument occurs in vc exactly qn(ln −1) times.

Suppose now that we know that formula (25) holds for k −1. We show it for

k. Let n = m −k and uc be the n-subword of vc with genetic marker 〈 j∗n , j∗n+1,

. . . , j∗
n+k−1

〉. Let wc be the subword of vc with genetic marker 〈 j∗n+1, . . . , j∗
n+k−1

〉.
Then

|{occurrences of uc in vc with marker 〈 j∗n , j∗n+1, . . . , j∗n+k−1 〉}|
is equal to

|{occurrences of uc in wc with marker j∗n }|
× {occurrences of wc in vc with marker 〈 j∗n+1, . . . , j∗n+k−1 〉}|

The lemma follows. �

Since particular (n,m)-genetic markers 〈 j∗n , j∗n+1, . . . , j∗
n+k−1

〉 correspond to

powers of uc ’s that occur with the same multiplicity in vc , independently of the

marker, we see that for a given u and v :

|{occurrences of u in v}|
|{n-subwords of v}|

=
|{occurrences of cn(u) in cn+k (v)}|
|{circular n-subwords of cn+k (v)}|

(26)

We can restate equation (26) in the language of Section 2.6. It says that

EmpDist(v)(u) = EmpDist(cn+k (v))(cn(u)).(27)

In particular, if we fix a set S∗ of genetic markers we can compare the num-

ber of occurrences of a word with genetic marker in S∗ in v ∈ Wn+k with the

number of occurrences in the corresponding vc ∈W
c

n+k
. Specifically, the num-

ber of occurrences of a word uc in vc at some genetic marker in S∗ is |S∗| ∗
∏n+k−1

n qi (li −1). The proportion of n-words occurring with a genetic marker

in S∗ relative to all n-words occurring in vc is the same as the proportion of

n-words with genetic markers in S∗ occurring in v relative to the total number

of genetic markers. The number of (n,m)-genetic markers is
∏n+k−1

n ki so this

proportion is equal to

|S∗|
∏n+k−1

n ki

.(28)
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This is simply a restatement of our discussion involving empirical distributions

in Section 2.6.

We introduce some notation that allows us to compare densities of various

sets between odometer based and circular words. For sets A ⊆ [0,Km) and Ac ⊆
[0, qm) we denote their densities by

dm(A) = |A|/Km

d c
m(Ac ) = |Ac |/qm

Then dm and d c
m can be viewed as discrete probability measures on the sets

[0,Km) and [0, qm) respectively.

LEMMA 5.6. Let n ≤ m, w ∈Wm and wc def= cm(w) ∈W
c

m . We view w as sitting on

the interval [0,Km) and wc as sitting on [0, qm) Let S∗ be a collection of (n,m)-

genetic markers, g the total number of (n,m)-genetic markers and d = |S∗|/g . If:

A = {k ∈ [0,Km) : some u ∈ Wn with genetic marker in S∗ begins at k in w} and

Ac = {k ∈ [0, qm) : some uc ∈ W
c

n with genetic marker in S∗ begins at k in wc },

then the following equations hold:

dm(A) =
d

Kn
(29)

d c
m(Ac ) =

d

qn

m−1
∏

p=n

(1−1/lp )(30)

dm(A) =
(

d c
m(Ac )

∏m−1
p=n (1−1/lp )

)

(

qn

Kn

)

(31)

d c
m(Ac ) = dm(A)

(

m−1
∏

p=n

(1−1/lp )

)

(

Kn

qn

)

.(32)

Proof. We prove equation (30). Equation (29) is similar but easier. The other two

equations follow algebraically.

The union of the boundary regions ∂p for p = n to m −1 consist exactly of

the elements of [0, qm) that are not part of any n-word. We denote the com-

plement of
⋃m−1

p=n ∂p by
(

⋃m−1
p=n ∂p

)∼
. The various ∂p are pairwise disjoint and for

each n∗,
(

⋃m−1
p=n∗ ∂p

)∼
consists of the locations of entire n∗-words. Starting with

p = m −1, iteratively deleting boundary sections as p decreases to n, and using

Lemma 3.14 we see that the d c
m-measure of

(

⋃m−1
p=n ∂p

)∼
is

∏m−1
p=n (1−1/lp ).

Let B =
{

k ∈ [0, qm) : k is at the beginning of an n-word
}

. Then B consists of

a 1/qn portion of the regions made up of n-words; i.e.,
(

⋃m−1
p=n ∂p

)∼
. We note

that Ac ⊆ B and B is disjoint from
⋃m−1

p=n ∂p .

By Lemma 5.5, the number C1 of n-words occurring in wc with a given ge-

netic marker does not depend on the marker. Let C2 be the total number of

JOURNAL OF MODERN DYNAMICS VOLUME 15, 2019, 345–423



FROM ODOMETERS TO CIRCULAR SYSTEMS: A GLOBAL STRUCTURE THEOREM 391

n-words occurring in wc . Then:

|Ac |
|B |

=
|{n-words with genetic marker in S∗}

C2

=
|S∗|∗C1

g ∗C1

= d .

We compute conditional expectations to get equation (30):

d c
m(Ac ) = d c

m

(

Ac

∣

∣

∣

∣

∣

(

m−1
⋃

p=n
∂p

)∼)

dm

((

m−1
⋃

p=n
∂p

)∼)

= d c
m

(

Ac

∣

∣

∣

∣

∣

B ,

(

m−1
⋃

p=n
∂p

)∼)

dm

(

B

∣

∣

∣

∣

∣

(

m−1
⋃

p=n
∂p

)∼)

dm

((

m−1
⋃

p=n
∂p

)∼)

= d

(

1

qn

)m−1
∏

p=n

(1−1/lp )

Equation (29) is similar, and (31) and (32) follow from the first two equations by

substitution. �

The following relationship between pairs of measures ν on K and νc on K
c

is the limit of equation (32) as m goes to infinity:

νc (〈cn(u)〉) =
(

Kn

qn

)

ν(〈u 〉)
(

1−
∞
∑

n

νc (∂m)

)

.

This relationship will hold for a correspondence between measures that we

build in forthcoming sections.

We note that since ∂m has a density that depends only on the circular coeffi-

cient sequence, the measures of ∂m is the same for all invariant measures. If we

set d∂n be this density, then we can rewrite the previous equation as

νc (〈cn(u)〉) =
(

Kn

qn

)

ν(〈u 〉)
(

1−
∞
∑

n

d∂n

)

(33)

A consequence of equation (33) is that for all basic open sets u, ν(〈u 〉) deter-

mines νc (〈cn(u)〉) and vice versa.

For counting arguments the following inequalities will be helpful.

LEMMA 5.7. Let n be a number greater than 0. Then there are constants K U
n ,K L

n

between 0 and 1 such that for all k > 0 and wc ∈ W
c

n+k
and all collections S∗ of

(n,n +k)-genetic markers, if

Ac =
{

i : i is the location of a start of an n-subword of w c indexed in S∗ }

then

K L
n |S

∗| ≤
( |Ac |

qn+k

)

(

n+k−1
∏

m=0

km

)

≤ K U
n |S∗|.(34)
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Proof. By equation (25) there are

|Ac | = |S∗|∗
k−1
∏

m=0

qn+m(ln+m −1)

many i that occur at the beginning of occurrences of n-subwords with genetic

markers in S∗. Since

qn+k = knln q2
n

(

k−1
∏

m=1

kn+mln+m qn+m

)

we have:

|Ac |
qn+k

= |S∗|∗
(

1

qn

)

(

k−1
∏

m=1

(1−
1

ln+m
)

)(

1
∏k−1

m=0 kn+m

)

.

Since the 〈1/ln 〉 is a summable sequence,
∏k−1

m=1(1− 1
ln+m

) converges as k goes

to ∞. The inequality (34) follows. �

Since Kn+k =
∏n+k−1

m=0 km , inequality (34) can be rewritten as

K L
n

|S∗|
Kn+k

≤
|Ac |
qn+k

≤ K U
n

|S∗|
Kn+k

.(35)

Infinite genetic markers. Suppose that we are given a construction sequence

〈Wn : n ∈ N 〉 for an odometer based or circular system K, s ∈ S and an occur-

rence of an n-word u in s. Then we can inductively define an infinite sequence

of words 〈um : n ≤ m ∈N 〉, letting un = u, and um+1 to be the m +1-subword of

s that contains um . For each n < m we get a genetic marker 〈 j∗n , j∗n+1, . . . , j∗m−1 〉,
and these cohere as m goes to infinity. We define the infinite genetic marker to

be ~j∗ = 〈 j∗m : n ≤ m ∈N 〉.
If an n-word u occurs inside an occurrence of an m-word v in s, then v = um .

Thus their infinite genetic markers agree on the tail 〈 j∗
i

: m ≤ i ∈N 〉.
As in Remark 2.15, if we are given a sequence of words 〈um : n ≤ m 〉, with

um ∈Wm , and an infinite sequence 〈 jm : n ≤ m 〉 such that the genetic marker jm

denotes an instance of um in um+1 then we can find an s ∈K with 〈um : m ≥ n 〉
as a tail of its principal subwords. If K is odometer based then s is unique up

to a shift of size less than or equal to Km . A similar statement holds for circular

systems.

5.2. TUTUTU and U TU TU T . To understand the relationships between K and K
c , we de-

fine maps TU : S → Sc and U T : Sc → S where S ⊆ K and Sc ⊆ K
c are as in

Definition 2.9. The map TU will be one-to-one but U T will not, in general it is

continuum-to-one. Nevertheless U T ◦TU will be the identity map.

We begin by considering a element s ∈ S. Let un be the principal n-subword

of s. The sequence 〈un : n ∈N 〉 determines a sequence of circular words 〈uc
n :

n ∈N 〉 which we assemble to define TU (s). Let ~j = 〈 jn : n ∈N 〉 be the infinite

genetic marker of s(0). To describe TU (s) completely we need to define 〈r c
n :

n ∈N 〉. Set r c
0 = 0, and inductively define r c

n+1 to be the (r c
n)th position in the
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first occurrence of an n-word with genetic marker jn in uc
n+1. Set TU (s) to be

the element of Kc with principal subwords 〈uc
n : n ∈N 〉 and location sequence

〈r c
n : n ∈N 〉.
We define a map U T that associates an element of K to each element of Sc .

Given such an sc ∈ Sc , let 〈uc
n : n ≥ N 〉 be its sequence of principal n-subwords.

For each n ≥ N ,uc
n occurs as u j∗n in the preword corresponding to uc

n+1. Let

un = c−1
n (uc

n). Then the sequence of words 〈un : n ∈ N 〉 and genetic markers

〈 j∗n : n ≥ N 〉 determine an element of s ∈K except for the location of 0 in the

double ended sequence. (The sequence is double ended because s ∈ Sc .)

We determine this location arbitrarily in a manner that makes the sequence

of un ’s the principal n-blocks of s (n ≥ N ) and the j∗n the sequence of genetic

markers of these n-blocks. Let 0̄ be a sequence of zeros of length N . Then

0̄_〈 j∗n : n ≥ N 〉 is a well-defined member of the odometer O associated with

K. From equation (24), 0̄_〈 j∗n : n ≥ N 〉 determines a sequence 〈rn : n ∈ N 〉.
Thus by Lemma 2.14, the pair 〈un : n ≥ N 〉 and 0̄_〈 j∗n : n ≥ N 〉 determines a

unique element s of K which we will denote U T (sc ). It is easy to check that

U T ◦TU = i d and that for each s ∈ S, there is a perfect set of sc with U T (sc ) = s.

We can get more precise information about correspondences between K and

K
c by noting that if we are given a sequence 〈un : n ∈N 〉 of principal subwords

of an s ∈ S, the genetic markers 〈 jn : n ∈ N 〉 define an element sc of Kc up to

a choice (sc )π ∈ K . Specifically, suppose that s∗ ∈ K is such that the infinite

genetic marker of s∗(0) is 〈 jn : n ∈ N 〉. Then there is an sc ∈ K
c that has a

sequence of principal n-blocks 〈uc
n : n ∈N 〉.

The following lemma will be useful for understanding joinings.

LEMMA 5.8. Let s ∈ S. Then
{

TU (shk (s)) : k ∈Z
}

⊆
{

shk (TU (s)) : k ∈Z
}

. If s ∈
S, sc = TU (s) and u ∈ Wn , then there is a canonical correspondence between

occurrences of u in s and finite regions of sc where uc occurs. The occurrences of

uc in these finite regions have the same infinite genetic marker 〈 jm : m > n 〉 in

sc as u does in s.

Proof. Given an s ∈ S and a k, the shift shk (s) and s have a tail of the principal

n-blocks 〈un : N ≤ n 〉 in common. Moreover the genetic markers associated

with this tail are the same for both s and shk (s). It follows that TU (shk (s)) is a

shift of TU (s).

We can describe the correspondence as follows. If u occurs in s at k, then u

is the principal n-word of shk (s). Choose an N so large that some N -word u∗ is

the principal N -word of both s and shk (s). Then (u∗)c is the principal N -block

of sc . Let ~j be the genetic marker of the occurrence of u (at k) in u∗. The region

of sc corresponding to this occurrence of u is the collection of occurrences of

uc with the genetic marker ~j in the principal N -block of sc . �

5.3. Transferring measures up and down, I. In this section we develop the tool

we need for lifting measures on K to measures on K
c . This will also allow us

to establish a one-to-one correspondence between synchronous joinings on
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odometer systems and synchronous joinings on the corresponding circular sys-

tems. Throughout this section we will use π to denote either the projection of

an odometer based system to its canonical odometer factor or a circular system

to its canonical circular factor.

We begin with a proposition relating sequences of words in a construction

sequence for an odometer based system to sequences of words in a construction

sequence for a circular system.

PROPOSITION 5.9. Let 〈vn : n ∈N 〉 be a sequence with vn ∈Wn . Let vc
n = cn(vn).

Then

1. 〈vn : n ∈N 〉 is an ergodic sequence if and only if 〈vc
n : n ∈N 〉 is an ergodic

sequence.

2. 〈vn : n ∈N 〉 is a generic sequence for a measure ν if and only if 〈vc
n : n ∈N 〉

is a generic sequence for a measure νc . In case either sequence is generic,

the measures ν and νc satisfy equation (33).

Proof. Both parts follow immediately from the definitions using equations (27)

and (28) to relate the frequencies of k-words w ∈Wk in n-words u ∈Wn , for k < n

to the frequencies of ck (w) in the corresponding cn(u). Equation (33) follows

from the Ergodic Theorem and Lemma 5.6. �

We endow that collection of invariant measures on a symbolic system (K, sh)

with the weak* topology.

THEOREM 5.10. Let 〈Wn : n ∈N 〉 be a uniquely readable construction sequence

for an odometer based system K and 〈W c
n : n ∈ N 〉 be the associated circular

construction sequence for Kc . Then there is a canonical affine homeomorphism

ν 7→ νc between shift invariant measures ν concentrating on K and non-atomic,

shift invariant measures νc such that equation (33) holds between ν and νc .

Proof. By Proposition 3.4 and Lemma 3.15 we can assume that ν and νc concen-

trate on S and Sc respectively.

We begin by defining the correspondence for ergodic measures. Suppose that

we are given an ergodic measure ν and we want to associate a measure νc . Let

s ∈ S be a generic point for (K,ν). Let 〈vn : n ∈N 〉 be the sequence of principal

n-blocks of s. By Proposition 2.20 this sequence is generic for ν. By Proposition

5.9, if we let vc
n = cn(vn), then 〈vc

n : n ∈ N 〉 is an ergodic sequence. Let νc be

the measure associated with 〈vc
n : n ∈N〉. Then νc is ergodic and equation (33)

holds by Proposition 5.9.

The other direction is similar, let sc ∈ Sc be generic for νc . Propositions 2.20

and 5.9 imply that if 〈vc
n : n ∈N 〉 is the sequence of principal n-blocks of sc and

vn = c−1
n (vc

n), then 〈vn : n ∈ N 〉 is ergodic and generic for a measure ν. Again

equation (33) holds by Proposition 5.9.

Suppose now that ν is an arbitrary measure on K. Write the ergodic decom-

position of ν as

ν=
∫

νi dµ(i ).
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We define νc by

νc =
∫

νc
i dµ(i ),

which gives a corresponding measure on K
c . Since equation (33) holds between

corresponding ergodic components νi and νc
i
, it holds between ν and νc .

By the ergodic decomposition theorem the map ν 7→ νc is a surjection. Since

the map is invertible, it is a bijection. The map is affine by construction.

It remains to show that it is a homeomorphism. To see that ν 7→ νc is weak*

continuous it suffices to show that for all ε> 0 and n ∈N there is a δ and an m

such that for all invariant µ,ν, if for all u ∈Wm

|µ(〈u 〉)−ν(〈u 〉)| < δ

we know that for all v ∈Wn we have

|µc (〈vc 〉)−νc (〈vc 〉)| < ε.

But the equation (33) easily implies this taking m = n and

δ<
[(

Kn

qn

)(

1−
∞
∑

n

d∂n

)]−1

∗ε/4.

The argument that the inverse is continuous is the same. �

DEFINITION 5.11. We will call a pair (ν,νc ) constructed as in Theorem 5.10 cor-

responding measures.

REMARK 5.12. It follows from Proposition 5.9 that if ν and νc are corresponding

measures on K and K
c and s ∈K is arbitrary then s is generic for ν if and only

if TU (s) is generic for νc . The point s is generic just in case its sequence of

principal subwords is generic for ν. By item 2 of Proposition 5.9, this holds just

in case the sequence of principal subwords of TU (s) is generic; i.e., TU (s) is

generic.

We can use Theorem 5.10 to characterize the possible simplexes of invariant

measures for circular systems. By a theorem of Downarowicz ([3, Theorem 5]),

every non-empty compact metrizable Choquet simplex is affinely homeomor-

phic to the simplex of invariant probability measures for a dyadic Toeplitz flow.

Note that the space of invariant probability measures is always a compact Cho-

quet simplex, hence this theorem is optimal.

Since Toeplitz flows are special cases of odometer based systems it follows

immediately that every non-empty compact metrizable Choquet simplex is af-

finely homeomorphic to the simplex of invariant measures of a 2-symbol odo-

meter based system.

Let K be a compact Choquet simplex and K an odometer based system hav-

ing its simplex of invariant probability measures affinely homeomorphic to K .

Let K
c be a circular system corresponding to an odometer based system K.

Then the non-atomic measures on K
c are a Choquet simplex isomorphic to

JOURNAL OF MODERN DYNAMICS VOLUME 15, 2019, 345–423



396 MATTHEW FOREMAN AND BENJAMIN WEISS

K . There are two additional ergodic measures, the atomic measures concentrat-

ing on the constant “b” sequence and on the constant “e” sequence. These two

atomic measures are isolated among the ergodic measures.

In the forthcoming [8] we discuss the question of invariant measures further

and show that F preserves several other properties, such as being rank one.

6. P−P−P−,P \P \P \, GENETIC MARKERS AND THE \-MAP

Our goal is to understand the structure of synchronous and anti-synchronous

joinings between pairs of ergodic systems (K,L±1). We will use Theorem 5.10

to define a bijection between synchronous joinings of odometer based systems

and synchronous joinings of circular systems. This is relatively easy: to a joining

of K with L that projects to the identity we can directly associate an odometer

system (K,L)× with a measure ν such that the corresponding measure νc on

((K,L)×)c can be identified with a measure on K
c×Lc that projects to the identity.

We carry out this construction out in detail in Section 7 and show that the map

ν 7→ νc given by Theorem 5.10 gives a bijection between synchronous joinings

of the two kinds of systems.

The situation for anti-synchronous joinings of K and L
−1 is more compli-

cated. In Lemma 3.7, we remarked that the anti-synchronous joinings of K

and L
−1 can be identified with joinings of K and rev(L) that concentrate on the

set {(s, t ) : πs =−πt }. Similarly, we can identify the anti-synchronous joinings

of Kc and (Lc )−1 with joinings of Kc with rev(Lc ) that concentrate on the set
{

(sc , t c ) : πt c = \(πsc )
}

. We give notation for these sets:

1. Let P−P−P− be the collection of anti-synchronous joinings ρ of K and L
−1.

2. Let P \P \P \ be the collection of anti-synchronous joinings ρc of Kc and (Lc )−1.

To understand the relationship between P−P−P− and P \P \P \ we need an analogue of

Lemma 5.6, and the corresponding analogue of equation (33). We now describe

the tools we use to do this.

Fix construction sequences for 〈Un : n ∈ N 〉 and 〈Vn : n ∈ N 〉 for K and L

respectively based on 〈kn : n ∈N 〉 and K
c ,Lc the corresponding circular systems

based on 〈kn , ln : n ∈N 〉.
Let (s, t ) be an arbitrary point in K×L with πt = −πs and s ∈ SK, t ∈ SL. Let

〈un : n ∈N 〉 and 〈vn : n ∈N 〉 be the sequence of principal subwords of s and t

respectively. If sc = TU (s) and t c = TU (t ), then 〈uc
n : n ∈N 〉 and 〈vc

n : n ∈N 〉 are

the sequences of principal subwords of sc and t c .

Let x = \(πsc ). Then x ∈ rev(K ) and set rn = rn(x).

DEFINITION 6.1. Define t̂ ∈ rev(Lc ) by taking 〈rev(vc
n) : n ∈ N 〉 as its principal

n-subword sequence and 〈rn : n ∈N 〉 as its location sequence.

We will study the relationship between P−P−P− and P \P \P \ via the function taking (s, t )

to (sc , t̂ ).

6.1. Genetic markers revisited. To understand the relationship between join-

ings ρ in P−P−P− and ρc in P \P \P \ we need to take into account the manner that \ shifts
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the reverse of the second coordinate of a the image of a generic pair (s, t ) for

K×L
−1 and the interplay between the map \ and genetic markers. Let n < m.

Suppose that (u′, rev(v ′)) is a pair of n-words coming from Un × rev(Vn) that

occur aligned inside m-words (u, rev(v)) ∈Um × rev(Vm). If u′ and rev(v ′) occur

at the same location in (u, rev(v)), then ~ju′ determines ~jv ′ in the following way:

for n ≤ r < m we must have

( jv ′)r = kr − ( ju′)r −1(36)

(where ~ju′ = ( jn , jn+1, . . . , jm−1)).

DEFINITION 6.2. Let (u′, v ′) ∈ Wn and (u, v) ∈ Wm . Define the (n,m)-genetic

marker of an occurrence of the pair (u′, rev(v ′)) in (u, rev(v)) to be (~ju′ ,~jv ′) where
~ju′ is the genetic marker of u′ in u and ~jv ′ is the genetic marker of v ′ in v .19 We

call ~ju′ and ~jv ′ a conjugate pair.

Being a conjugate pair is equivalent to satisfying the numerical relationship

given in equation (36) and thus either element of a conjugate pair determines

the other. Hence for purposes of counting conjugate pairs we need only use the

first coordinates, ju′ .

Let (u, rev(v)) ∈ Um × rev(Vm) be words that occur in a pair (s, rev(t )) ∈ K×
rev(L). Then the relative alignment of uc and rev(vc ) in (sc , t̂ ) is determined by

the \-map. This is approximated with a high degree of accuracy by where the

code Λm sends intervals. Accordingly:

DEFINITION 6.3. Define the pair (u, rev(v))c to be (uc , sh Am (rev(vc )).

Thus 〈 (u, rev(v))c 〉l determines a basic open interval in K
c × rev(Lc ) which

we might also write as (〈uc 〉l × rev(Lc ))∩ (Kc ×〈rev(vc )〉l+Am
). Alternatively we

could write this as
{

( f , g ) ∈K
c × rev(Lc ) : f � [l , l +qm) = uc and

g � [l + Am , l + Am +qm) = rev(vc )
}

.

We now have a lemma extending Lemma 4.13 which says that if u, v belong

to Un+1,Vn+1 then, relative to sh− j1 (rev(v)), all occurrences of (u′)c ∈ U
c
n in

uc are either lined up with an occurrence of a rev((v ′)c ) for some (v ′)c ∈ V
c

n or

a boundary section of sh− j1 (rev(vc ))). The lemma also says that if (u′)c and

rev((v ′)c ) are lined up then ~ju′ and ~jv ′ form a conjugate pair.20

PROPOSITION 6.4. Let n < m and u ∈ Um , v ∈ Vm . Then for u′ ∈ Un , v ′ ∈ Vn we

consider occurrences of (u′, rev(v ′))c in (u, rev(v))c .21

1. If (u′, rev(v ′))c occurs in (u, rev(v))c , then ~ju′ and ~jv ′ form a conjugate pair.

2. There is a constant C =C (n,m) such that all conjugate pairs occur C times.

19Note that the genetic marker ~ju′ denotes a different position inside rev(v) then it does in u.
20In this case both ~ju′ and ~jv ′ are of length one.
21Since Am 6= An we are considering different shifts in (u, rev(v))c and (u′, rev(v ′))c .
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3. There is a number K such that for all genetic markers ju′ the collection of

occurrences of words in uc with marker ju′ that are not lined up with words

in sh Am (r ev(vc )) is K .

4. Fix a conjugate pair ( ju′ , jv ′) of genetic markers of (u′, rev(v ′)). If k is a

location of an occurrence of (u′)c in uc with genetic marker ~ju′ , but not a

location of (u′, rev(v ′))c , then the section of sh Am (rev(vc )) in the interval

[k + An ,k + An +qn) is contained in
⋃m

i=n+1
∂i .

Proof. Item 1 is immediate from the definitions.

The latter items are asking about pairs of the form ((u′)c , sh An (rev((v ′)c )))

occurring in (uc , sh Am (rev(vc )). Such a pair occurs at k if and only if the pair

((u′)c , rev((v ′)c )) occurs aligned in (uc , sh Am−An (rev(vc ))) at k. Item 3 is equiva-

lent to saying that (u′)c is lined up with a portion of sh Am−An (rev(vc )) contained

in
⋃m

i=n+1
∂i .

We fix m and prove 2, 3, and 4 by induction on m−n. The case that m = n+1

is the content of Lemma 4.13. Suppose that the proposition is true for m and

n +1, we prove it for m and n.

A pair of n +1-circular words (w0, w1)c lined up in the shifted pair

(uc , sh Am−An+1 (rev(vc )))

must have conjugate genetic markers. Moreover, by induction, there is a num-

ber C0 such that any pair with conjugate genetic markers occurs lined up C0

many times and a number K0 such that the number of misaligned occurrences

of words with a particular (n +1,m) genetic marker is K0.

Fix an occurrence k of an n + 1-word w0 so that no word in sh Am (rev(vc ))

occurs at [k + An+1,k + An+1 + qn+1), i.e., w0 is not lined up with the reverse

of an n +1-word in sh Am−An+1 (rev(vc )). Then w0 is lined up with a segment of

sh Am−An+1 (rev(vc )) that is a subset of
⋃m

n+2∂i . To pass from Am−An+1 to Am−An

we shift by − j1, where j1 = p−1
n mod qn . Noting that each reversed n +1-word

ends with a string of b’s of length qn , we see that after the additional shift there

can be no n-subwords inside w0 lined up with anything besides a portion of

sh Am−An (rev(vc )) contained in
⋃m

n+1∂i .

Suppose that u′ and v ′ are n-words and we have an occurrence of (u′)c

and rev((v ′)c ) lined up in the pair (uc , sh Am−An (rev(vc ))). If ~ju′ = k_
0

~j∗
u′ and

~jv ′ = k_
1

~j∗
v ′ , we let (w0, w1) be the occurrence of n +1-subwords of (u, v) with

genetic markers ~j∗
u′ and ~j∗

v ′ that contain u′ and v ′. It follows from the previous

paragraph that the genetic markers of w0 and w1 are conjugate and wc
0 , rev(wc

1)

are aligned in (uc , sh Am−An+1 (rev(vc ))). By Lemma 4.13, k0 and k1 are conjugate

and thus ~ju′ and ~jv ′ are conjugate.

Further each conjugate pair occurs aligned the same number C1 of times in

the pair (wc
0 , sh− j1 (rev(wc

1))). The number C1 is independent of w0, w1 and k0

and k1. It follows now that given a conjugate pair of genetic markers (~ju′ ,~jv ′),

the number of occurrences of a pair of circular n-words with genetic marker ~ju′

in uc aligned with an occurrence of a circular word with genetic marker ~jv ′ is in

vc is C0 ∗C1.
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Note that the unaligned n-words are in two categories, those that are not

aligned because the n +1-words that contain them are not aligned, and those

that are subwords of n +1 words that are aligned. The latter n-words lose their

alignment from the final shift − j1. In each case, the unaligned n-words in u

occur across from boundary sections in the word sh Am−An (rev(vc )).

To count the number of misaligned occurrences of words with a given (n,m)

genetic marker we add up the number in each category. Fix an (n,m) genetic

marker j_n
~j . Our induction hypothesis gives a number K1 such that the n +1-

words with marker ~j not aligned with a reversed n+1-word in sh Am−An+1 (rev(vc ))

has cardinality K1. As noted above, all of these words are aligned with boundary

portions of sh Am−An (rev(vc )). The number of words with (n,m)-genetic marker

j_n
~j not aligned because they are subwords of misaligned instance of an n +1

word with genetic marker ~j is therefore K1 ∗qn(l −1), where the latter factor is

the number of times a given n-word occurs in an n +1-word.

The number of words with (n,m) genetic marker j_n
~j that are not aligned

even though they are subwords of an aligned n + 1-word is the number K in

Lemma 4.13. Hence the number of misaligned n-words in the second category

is C0 ∗K and for a given (n,m) genetic marker the number of unaligned words

is K1qn(l −1)+C0 ∗K . �

Thus, using the backwards C -operation to wrap words around the circle in

opposite directions introduces some slippage, but the slippage is uniform and

predictable.

DEFINITION 6.5. Suppose that ~j and ~j ′ are a conjugate pair of (n,m)-genetic

markers and uc ∈ U
c
m , vc ∈ V

c
m . Let (u′)c and (v ′)c have genetic markers ~j and

~j ′ in uc , vc respectively. Then the set of locations k such that (u′)c occurs in

uc starting at k with genetic marker ~j but rev((v ′)c ) does not occur starting at

k + An in sh Am (rev(vc )) is called the (n,m)-slippage of ~j .

A location k can belong to the slippage of ~j for two mutually exclusive rea-

sons. Either, for some proper tail segment ~j∗ of ~j , k is part of the slippage of

the subword of uc with genetic marker ~j∗ or k is part of the slippage of the jn

inside the n +1 word containing u′ caused by sh− j1 .

Let SLn,m stand for the (n,m)-slippage of n-subwords of uc ; i.e., the locations

k in uc of some n-word (u′)c such that there is no n-word rev((v ′)c ) at position

k + Am . Inside an m-word uc we find multiple copies of SLn,n+1 corresponding

the location of each n + 1 word in uc . Denote the union of these copies as

SLm
n,n+1. Then it follows that

SLn,m =
m−1
⋃

k=n

SLm
k,k+1 ∩ { locations of n-words }(37)

and moreover the union is disjoint.

The slippage is the portion of the words that we have no control over when

counting, so we want to be able to estimate the proportion of words in the
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slippage. Let

$m
n =

|SLn,m |
|{n-subwords of uc }|

(38)

The next proposition allows us to control the (n,m)-slippage by controlling the

successive (n,n +1)-slippages.

PROPOSITION 6.6.

1−$m
n =

m−1
∏

n

(

1−$i+1
i

)

.(39)

Proof. We begin by noting that for n∗ between n and m, all pairs (u∗, rev(v∗))

of n∗-words have the same proportion of slippage of n-words in (u∗, rev(v∗))c .

Thus $n∗
n is equal to the proportion of slippage of all of the n-words occuring

in pairs (u∗, rev(v∗))c of n∗-subwords of (u, rev(v))c .

The argument is similar to Lemma 5.6. Starting with n∗ = m −2 and decreas-

ing until n∗ = n +1, using that fact that the union in equation (37) is disjoint,

one inductively demonstrates that

(1−$m
n ) = (1−$n∗

n )
m−1
∏

n∗

(

1−$i+1
i

)

. �

We can combine item 3 of Lemma 6.4 with equation (39) to see that if k is in

SLn,m , then [k + An ,k + An +qn) is a subset of
⋃m

i=n+1
∂vc

i
. It thus follows from

Lemma 4.16 that

1−$m
n ≥

m−1
∏

n

(

1−
2

(li −1)

)

.(40)

Because the definition of $m
n was made entirely in terms of genetic markers,

the whole discussion could have been carried out simply by considering K
c ×

rev(K c ). The numerics depend only on the circular coefficient sequence, not

on particular construction sequences 〈Un ,Vn : n ∈N 〉.
Viewing the operator \ as the limit of the codes Λm , we can pass to infin-

ity and define SL∞
n similarly and let $∞

n be the proportion of locations k of

n-subwords of a typical s ∈K
c such that no n-subword of \(rev(π(s))) occurs at

k + An .

Then

(1−$∞
n ) =

∞
∏

n

(

1−$i+1
i

)

≥
∞
∏

n

(1−2/li )(41)

> 0.

It follows that
∑∞

1 $i+1
i

<∞.

We now formulate and prove the version of Lemma 5.6 involving the \ map.

One might expect that would require considering arbitrary pairs of genetic mar-

kers ~j and ~j ′. However, by Proposition 6.4, if u′ occurs in u with (n,m)-genetic
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marker ~j , then the only genetic marker it can occur lined up with in rev(v) is

its conjugate pair. Similarly either of the genetic markers of aligned words (u′)c

occurring in uc and sh An (rev((v ′)c )) occurring in sh Am (rev(vc )) determine the

other member of the conjugate pair.

It follows that we need only consider pairs (u′, rev(v ′)) whose genetic markers

are conjugate in (u, rev(v)). Since the map ~j to ~j ′ is a bijection we will refer

to either of ~j or ~j ′ as the genetic marker of a pair (u′, rev(v ′)) or equivalently

(u′, rev(v ′))c .

We are reduced to considering sets S∗ ⊆ { (n,m)-genetic markers} rather than

sets of pairs of genetic markers. Let n < m and let S∗ be a set of (n,m)-genetic

markers of pairs of n-words in (u, rev(v)). Let

A =
{

k ∈ [0,Km) : some u′ with genetic marker in S∗ begins at k in u
}

and

Ac =
{

k ∈ [0, qm) : for some u′ with genetic marker in S∗,

there is a v ′ such that (u′)c occurs beginning at k in uc

and rev((v ′)c ) occurs beginning at k + An in sh Am (rev(vc ))
}

and define

dm(A) = |A|/Km

d c
m(Ac ) = |Ac |/qm .

If (u′)c occurs at k in uc and rev((v ′)c ) occurs at k + An in sh Am (rev(vc )) then

(u′, rev(v ′))c occurs at k in (uc , sh Am (rev(vc )).

LEMMA 6.7. Let n < m and (u, v) ∈ Um × Vm . Let S∗ be a collection of (n,m)-

genetic markers, g the total number of (n,m)-genetic markers22 and d = |S∗|/g .

Then (in the notation above),

dm(A) =
d

Kn
(42)

d c
m(Ac ) =

d

qn

m−1
∏

p=n

(1−1/lp )(
m−1
∏

i=n

(1−$i+1
i )(43)

dm(A) =
(

d c
m(Ac )

∏m−1
p=n (1−1/lp )(

∏m−1
i=n

(1−$i+1
i

)

)

(

qn

Kn

)

(44)

d c
m(Ac ) = dm(A)

(

m−1
∏

p=n

(1−1/lp )

)(

m−1
∏

i=n

(1−$i+1
i )

)

(

Kn

qn

)

.(45)

Proof. The proof is essentially the same as the proof of Lemma 5.6, indeed the

proof of equation (42) is the same. Because all genetic markers occur with the

same frequency, after allowing for the portions uc in boundary sections and in

slippage (which are disjoint), d/qn is the density of locations k of occurrences

22As before it is easy to check that g =
∏m−1

n ki .
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of words with genetic markers in S∗. Once again equations (44) and (45) follow

from (42) and (43) by substitution. �

The equation relating ρ ∈P−P−P− and ρc ∈P \P \P \ that corresponds to equation (33) is

ρc
(

〈 (u, rev(v))c 〉
)

=
(

Kn

qn

)

ρ
(

〈 (u, v)〉
)

(

1−
∞
∑

n

ρc (∂m)

)

(1−$∞
n ).

Once again ρc (∂m) is independent of the choice of ρc . Setting d
∂m
ρ = ρc (∂m), we

can write the previous equation as

ρc
(

〈 (u, rev(v))c 〉
)

=
(

Kn

qn

)

ρ
(

〈 (u, v)〉
)

(

1−
∞
∑

n

d
∂m
ρ

)

(1−$∞
n ).(46)

Understanding empirical distributions of joinings along the natural map in-

volves studying how the slippage affects each pair of n-words. Fix u′ ∈Un , v ′ ∈
Vn and u ∈Um , v ∈ Vm where n < m. Let the conjugate pair (~j ,~j ′) be the genetic

marker of (u′, rev(v ′)) in (u, rev(v)). Then, as remarked earlier ~j ′ is determined

by ~j , since they are a conjugate pair. Define SLn,m(u′, rev(v ′)) to be the collec-

tion of locations k ∈ SLn,m of n-subwords of uc that have genetic marker ~j .

By item 3 of Proposition 6.4, |SLn,m(u′, rev(v ′))| is the same for all choices of

(u′, rev(v ′)). Since SLn,m is the union over all possible pairs of SLn,m(u′, rev(v ′)),

we see that

$m
n

def=
|SLn,m |

|{n-subwords of uc }|

=
|SLn,m(u′, rev(v ′))|

|{subwords of uc with genetic marker ~j }|
.(47)

From the definition,

EmpDistn,n,An
((u, rev(v))c )((u′)c , (rev(v ′))c )

is equal to

|{occurrences of (u′, rev(v ′))c in (u, rev(v))c }|
|for some (u∗, v∗) ∈Wn ×Vn , (u∗, rev(v∗))c occurs in (u, rev(v))c }|

.

This in turn is equal to

(1−$m
n )|{subwords of uc with genetic marker~j }|

(1−$m
n )|{n-subwords of uc }|

,

which in turn is equal to

EmpDistn,n,0(u, rev(v))(u′, rev(v ′)).

For notational convenience we write

EmpDist(u, rev(v))(u′, rev(v ′))
def= EmpDistn,n,0(u, rev(v))(u′, rev(v ′))

and

EmpDist((u, rev(v))c )((u′, rev(v ′))c )

def= EmpDistn,n,An
((u, rev(v))c )((u′)c , (rev(v ′))c ).
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Summarizing:

EmpDist(u, rev(v))(u′, rev(v ′)) = EmpDist((u, rev(v))c )(u′, rev(v ′))c .(48)

6.2. Transferring measures up and down, II. In this section we describe the

correspondence between joinings in P−P−P− and P \P \P \. We do this by considering

generic points for the joinings and transferring them up or down.

For the reader’s convenience we repeat a definition. Let (s, t ) be an arbitrary

point in K×L with πt =−πs and s ∈ SK, t ∈ SL. Let 〈un : n ∈N 〉 and 〈vn : n ∈N 〉
be the sequence of principal subwords of s and t respectively. Then 〈uc

n : n ∈N 〉
and 〈vc

n : n ∈ N 〉 are the sequences of principal subwords of sc = TU (s) and

t c = TU (t ). If x = \(πsc ), then x ∈ rev(K ) and we can set rn = rn(x). Recall

that we defined t̂ ∈ rev(Lc ) by taking 〈rev(vc
n) : n ∈N 〉 as its principal n-subword

sequence and 〈rn : n ∈N 〉 as its location sequence.

The following follows immediately from equation (27):

LEMMA 6.8. The sequence t is generic for an invariant measure µ on L if and

only if t̂ is generic for an invariant measure µ∗ on rev(Lc ).

We will study the relationship between P−P−P− and P \P \P \ via the function taking

(s, t ) to (sc , t̂ ). If [an ,bn] is the location of the principal n-block of sc , we define

wc
n as the word (uc

n , t̂n) (in the language Σ×Λ) where t̂n = t̂ � [An +an , An +bn].

Rephrasing this, if (un , rev(vn)) are the principal n-subwords of (s, t ) then wc
n =

(un , rev(vn))c .

PROPOSITION 6.9. The sequence 〈 (un , rev(vn)) : n ∈ N 〉 is a generic sequence

(resp. an ergodic sequence) if and only if 〈wc
n : n ∈N 〉 is a generic sequence (resp.

an ergodic sequence).

Proof. This follows immediately from equation (48). �

It is worth remarking that Proposition 6.9 can be restated in the language of

Definition 2.25 as saying that 〈 (un , rev(vn),0) : n ∈ N 〉 is a generic sequence if

and only if 〈 (uc
n , rev(vc

n), An) : n ∈N 〉 is a generic sequence.

The next theorem is the analogue of Theorem 5.10 adapted to lifting joinings

of K with L
−1 to joining of Kc with (Lc )−1. In the theorem the notation (ν,νc )

and (µ,µc ) refer to pairs of corresponding measures. We assume that K is built

in the language Σ and L is built in the language Λ.

THEOREM 6.10. Suppose that 〈Un : n ∈ N 〉 and 〈Vn : n ∈ N 〉 are construction

sequences for two ergodic odometer based systems (K,ν) and (L,µ) with the same

sequence parameters 〈kn : n ∈ N 〉. Let (Kc ,νc ) and (Lc ,µc ) be the associated

ergodic circular systems built with a circular coefficient sequence 〈kn , ln : n ∈N 〉.
Then there is a canonical affine homeomorphism ρ 7→ ρc between the simplex

of anti-synchronous joinings ρ of (K,ν) and (L−1,µ) and the simplex of anti-

synchronous joinings of (Kc ,νc ) and ((Lc )−1,µc ) such that equation (46) holds

between ρ and ρc .
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Proof. Suppose that we are given an anti-synchronous ergodic joining ρ between

K and L
−1. Let (s, t ) be generic for ρ. By Lemma 2.22, the sequence of principal

n-blocks, 〈 (un , rev(vn)) : n ∈N 〉 is ergodic. By Proposition 6.9 the sequence 〈wc
n :

n ∈ N 〉 define an ergodic measure ρc . Since the 〈 (un , rev(vn)) : n ∈ N 〉 satisfy

equation (45), the Ergodic Theorem implies that ρc and ρ satisfy equation (46).

It is easy to check that the definition of ρc is independent of the choice of the

generic pair (s, t ).

For the other direction we can assume that we are given a generic pair (sc , t̂ )

for an ergodic measure ρc on K
c ×rev(Lc ) that concentrates on pairs (sc , rev(t c ))

in K
c × rev(Lc ) such that π(rev(t c )) = \(π(sc )). Taking principal subwords gives

us a generic sequence 〈 (uc
n , t̂n) : n ∈N 〉. Each t̂n is a well-defined word rev(vc

n)

in rev(V c
n ).

As in the definition of U T the pair (sc , rev(t̂ )) gives a pair of sequences of

genetic markers (〈 jn : n ≥ N 〉,〈 j ′n : n ≥ N 〉 for some N . Letting un = cn
−1(uc

n)

and vn = cn
−1(rev(t̂n)) the sequences 〈un , jn 〉 and 〈vn , j ′n 〉 determine a pair in

K×L up to finite translations. These sequences are defined independently of

the exactly location of the zero of t̂ ; the small shifts used in the definition of \

do not change the two sequences.

If we let (s, t ) = (U T (sc ),U T (rev(t̂ ))), making small adjustments if necessary

to make (s, t ) anti-synchronous, we get an element of K×L
−1. Applying Propo-

sition 6.9 again we see the theorem.

We can extend this correspondence to non-ergodic joinings ρ on K×L
−1 and

ρc on K
c × rev(Lc ), exactly as in Theorem 5.10; to go up we take an ergodic

decomposition of ρ,

ρ =
∫

ρi dµ(i )

and define

ρc =
∫

ρc
i dµ(i ).

To go down we use the ergodic decomposition theorem and the measure µ(i )

to reverse this process.

Clearly the map ρ 7→ ρc is an affine bijection. It remains to show that it is

continous. However, just as in Theorem 5.10, we see from equation (46), that for

each n there is a constant Cn , independent of ρ such that for all u ∈Un , v ∈ Vn ,

ρc (〈 (u,r ev(v))c 〉) =Cnρ(〈 (u, v)〉).

This clearly implies that the map ρ 7→ ρc is a weak* homeomorphism. �

The proof of Theorem 6.10 shows that (s, t ) is generic for ρ if and only if the

pair (sc , t̂ ) is generic for ρc . Moreover, the proofs of Theorems 5.10 and 6.10 are

quite robust. In particular the constructions of the corresponding measures are

independent of the various choices of generic points s or sc , (s, t ) or (sc , t̂ ).
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7. THE MAIN RESULT

We now turn to the main results of this paper. Fix an arbitrary circular co-

efficient sequence 〈kn , ln : n ∈ N 〉 for the rest of the section. Let OB be the

category whose objects are ergodic odometer based systems with coefficients

〈kn : n ∈N 〉. The morphisms between objects (K,µ) and (L,ν) will be synchro-

nous graph joinings of (K,µ) and (L,ν) or anti-synchronous graph joinings of

(K,µ) and (L−1,ν). We call this the category of odometer based systems.

Let CB be the category whose objects consists of all ergodic circular sys-

tems with coefficients 〈kn , ln : n ∈N 〉. The morphisms between objects (Kc ,µc )

and (Lc ,νc ) will be synchronous graph joinings of (Kc ,µc ) and (Lc ,νc ) or anti-

synchronous graph joinings of (Kc ,µc ) and ((Lc )−1,νc ). We call this the category

of circular systems.

REMARK 7.1. Were we to be completely precise, we would take objects in OB to

be presentations of odometer based systems by construction sequences

〈Wn : n ∈N 〉 without spacers together with suitable generic sequences and the

objects in CB to be presentations by circular construction sequences and their

generic sequences. This subtlety does not cause problems in the applications

so we ignore it.

The main theorem of this paper is the following:

THEOREM 7.2. For a fixed circular coefficient sequence 〈kn , ln : n ∈N 〉 the cate-

gories OB and C B are isomorphic by a function F that takes synchronous join-

ings to synchronous joinings, anti-synchronous joinings to anti-synchronous join-

ings, isomorphisms to isomorphisms and weakly mixing extensions to weakly

mixing extensions.

Elaborating on Example 2.5, we have the following:

COROLLARY 7.3. The map F preserves systems of factor maps (or alternatively

extensions). Explicitly: let 〈 I ,≤I 〉 be a partial ordering, 〈Xi : i ∈ I 〉 be a family

of odometer based systems and 〈πi , j : j ≤ i 〉 is a commuting family of factor

maps with πi , j : Xi → X j . Then 〈F (πi , j ) : j ≤ i 〉 is a commuting family of factor

maps among 〈F (Xi ) : i ∈ I 〉. Moreover the analogous statement holds for circular

systems 〈X c
i

: i ∈ I 〉, factor maps 〈πi , j : j ≤ i 〉 and F
−1.

Theorem 7.2 can be interpreted as saying that the whole isomorphism and

factor structure of systems based on the odometer 〈kn : n ∈ N 〉 is canonically

isomorphic to the isomorphism and factor structure of circular systems based

on 〈kn , ln : n ∈N 〉. We call this a Global Structure Theorem.

7.1. The proof of the main theorem. Before we prove theorem 7.2 we owe the

following lemma:

LEMMA 7.4. Both OB and CB are categories, and the composition of synchro-

nous joinings is synchronous, the composition of two anti-synchronous joinings

is synchronous and the composition of a synchronous and an anti-synchronous

joining (in either order) is anti-synchronous.
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Proof. To see that OB and CB are categories we must see that the morphisms

are closed under composition. This is equivalent to the statement that the com-

position of two synchronous or anti-synchronous joinings are synchronous or

anti-synchronous. This, in turn follows from Proposition 2.6 (item 2) applied to

joinings of odometers or rotations. �

We now prove Theorem 7.2.

Proof. By Proposition 5.2 the map F gives a bijection between the objects of

OB and CB and hence it remains to define the functor on the morphisms (i.e.,

joinings between systems (K,µ) and (L±1,ν)) and show that it preserves compo-

sition.

7.1.1. Defining F on morphisms. We split the definition of F (ρ) into two cases

according to whether ρ is synchronous or anti-synchronous. In both cases we

define F for arbitrary joinings even though the only joinings we use as mor-

phisms in the categories are graph joinings; in particular the morphisms in

each category are ergodic.

Case 1: ρρρ is synchronous.

Suppose that ρ a synchronous joining of odometer based systems K and L

with coefficient sequence 〈kn : n ∈ N 〉 that are constructed with symbols in Σ

and Λ from construction sequences 〈Un : n ∈N 〉 and 〈Vn : n ∈N 〉. We define a

new construction sequence 〈Wn : n ∈N 〉 with the symbol set Σ×Λ.

Given n, we put a sequence

〈 (σ0,λ0), (σ1,λ1) . . . (σKn−1,λKn−1)〉
into Wn if and only if there are words u = (σ0, . . . ,σKn−1) ∈ Un and v = (λ0, . . . ,

λKn−1) ∈ Vn .

It is easy to check that 〈Wn : n ∈ N 〉 is an odometer based construction se-

quence with coefficients 〈kn : n ∈ N 〉. Let (K,L)× be the associated odometer

based system. Since ρ is synchronous, it concentrates on members of K×L that

correspond to elements of (K,L)×. We can canonically identify ρ with a shift

invariant measure ν on (K,L)×.

Let ((K,L)×)c be the circular system associated with (K,L)×. We can apply

Theorem 5.10 to find shift invariant measure νc on ((K,L)×)c associated with ν

that is ergodic just in case ν is ergodic. Shift invariant measures on ((K,L)×)c

can be canonically identified with synchronous joinings on K
c ×L

c . Let ρc be

the joining of Kc ×L
c corresponding to νc . We let F (ρ) = ρc .

Explicitly: A generic sequence 〈 (un , vn ,0) : n ∈ N 〉 for the joining ρ, can be

viewed as a generic sequence 〈 (un , vn) : n ∈N 〉 for (K,L)× and transformed into

a generic sequence 〈 (uc
n , vc

n) : n ∈N 〉 for ((K,L)×)c . The latter corresponds to a

generic sequence of the form 〈 (uc
n , vc

n ,0) : n ∈N 〉 for the joining ρc . This process

is clearly reversible so F is a bijection between the synchronous joinings of OB

and the synchronous joinings of CB .

We must show that if ρ is a graph joining then so is ρc . Once this is estab-

lished it follows by symmetry that if ρ is an isomorphism then ρc is an iso-

morphism. Namely, if ρ∗ is the adjoint joining of L with K defined as ρ∗(A) =
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ρ({ (s, t ) : (t , s) ∈ A }), then (ρ∗)c = (ρc )∗. Hence ρ∗ is a graph joining if and only

if (ρc )∗ is a graph joining.

Suppose that ρ is a graph joining. We apply Proposition 2.3, part 3. It suffices

to show that for all basic open sets in K
c of the form 〈uc 〉0 where uc ∈U

c
n and all

ε> 0, there are words vc
1 , vc

2 . . . vc
k∗ that belong to

⋃

n V
c

n and locations l c
1 , . . . , l c

k∗

such that

ρc

(

(

〈uc 〉0 ×L
c
)

∆
(

K
c ×

⋃

〈vc
j 〉l c

j

)

)

< ε.(49)

Consider u such that cn(u) = uc . Because ρ is a graph joining, for all δ> 0 we

can find words v1, . . . , vk ′ and locations l1, . . . , lk ′ such that

ρ

(

(

〈u 〉0 ×L
)

∆
(

K×
⋃

i≤k ′
〈vi 〉li

)

)

< δ.(50)

Without loss of generality we can assume that for some m ≥ n each vi is an

m-word and that each li ≤ 0.

Let (s, t ) be generic for ρ and considering the pair sc = TU (s), t c = TU (t ).

Then by Remark 5.12 (sc , t c ) is generic for ρc . We will choose words vc
j

and loca-

tions l c
j

and compute the measure in inequality (49) by computing the density

of locations representing points in the symmetric difference.

Let

B0 = {k : u occurs at k in s, but for no i does vi occur in t at li +k }

B1 = {k : for some i , vi occurs in t at k + li but u does not occur in s at k }.

By inequality (50), B0 ∪B1 can be taken to have density less than δ.

Given words and locations {vc
j
, l c

j
: j ∈ J } we can define two sets B c

0 ,B c
1 ⊆Z, as

follows:

B c
0 = {k : uc occurs in sc at k but for no j does vc

j occurs in t c at l c
j +k }

B c
1 = {k : for some j , vc

j occurs in t c at l c
j +k but uc does not occur in sc at k }.

We need to find the words and locations vc
j
, l c

j
so that the density of B c

0 ∪B c
1 is

less than ε.

For each i , if −li is not the location of the beginning of an n-word in vi then

dropping 〈vi 〉li
reduces the measure of the symmetric difference in inequal-

ity (50). Thus, without loss of generality, we can assume that for all i , there is

an (n,m)-genetic marker ~j (i ) coding the location of the n-word in vi that starts

at −li . Since B0 ∪B1 has density less than δ, the density of k is such that either

1. u occurs at k but for each i , k is not the position of the beginning of an

n-word with genetic marker ~j (i ) in an occurrence of vi , or

2. for some i , k is the position of the beginning of an n-word with genetic

marker ~j (i ) in an occurrence of vi , but u does not occur at k

has density less than δ.

We are in a position to define the vc
j

and the l c
j
. For each i we define index

sets Ji and a collection {l c
j

: j ∈ Ji }. We arrange the Ji ’s so that they are pairwise
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disjoint and for some k∗,
⋃

i Ji = { j : 1 ≤ j ≤ k∗}. For j ∈ Ji , all of the vc
j

are the

same and equal to cm(vi ). For a fixed i , let {−l c
j

: j ∈ Ji } be the collection of

locations of the beginnings of n-subwords of cm(vi ) that have genetic marker
~j (i ).

To compute the density of B c
0 ∪B c

1 , it suffices to consider an extremely large

M and compute the density of B c
0 ∪B c

1 inside the principal M-subword (wc
0 , wc

1)

of (sc , t c ). Let (w0, w1) be the principal M-subword of (s, t ) and cM (w0) = wc
0

and cM (w1) = wc
1 .

We now argue as in Lemma 5.6. Let d0 be the density of B0 ∪B1 in (w0, w1)

and d c
0 be the density of B c

0 ∪B c
1 in (wc

0 , wc
1). Among all n-words the proportion

dp that begin with an element of B0∪B1 is d0∗Kn . The density of k ∈Z that start

n-words in (s, t ) is (1−µ(
⋃∞

n ∂i ))/qn . Letting d∗ be the density of k ∉
⋃M

n ∂i , we

see that d∗ is bounded away from 0 and 1 independently of M . The proportion

d c
p of circular n-subwords of (wc

0 , wc
1) that begin with a k ∈ B c

0 ∪B c
1 is

d c
0 ∗qn

(1−d∗)
.

Since ρ concentrates on {(s, t ) : π(s) = π(t )} and ρc concentrates on {(sc , t c ) :

π(sc ) =π(t c )}, the n-words with a particular genetic marker in w0 occupy the po-

sition of the same genetic marker in w1 and similarly for wc
0 and wc

1 . The (n, M)-

genetic markers set up a one-to-one correspondence between n subwords u∗

of w0 and regions of wc
0 that consist of occurrences of (u∗)c that have the same

genetic marker. Each of the regions of wc
0 with the same genetic marker have

the same number of n-words in them.

Temporarily call an n-subword of (wc
0 , wc

1) bad if it begins with a k in B c
0 ∪B c

1

and similarly for n-subwords of (w0, w1) and B0 ∪ B1. Then the property of

being bad is determined by the (n, M)-genetic marker of the n-word: if k is the

beginning of n-subword of w0 with genetic marker ~j , and k ′ is the beginning of

an n-subword of wc
0 with the same genetic marker in wc

0 , then k ∈ B0∪B1 if and

only if k ′ ∈ B c
0 ∪B c

1 .

It follows the proportion of bad n-subwords of (w0, w1) is the same as the

proportion of bad subwords of (wc
0 , wc

1). In other words,

dp = d c
p .

It follows that

d0 ∗Kn =
d c

0 ∗qn

(1−d∗)
.

Thus by taking δ small enough and M large enough we can make d0 as small as

we want, and thus arrange that d c
0 ¿ ε as desired.

To finish showing that F is a bijection between graph joinings in each cate-

gory and isomorphisms in each category we must also show that if ρc is a graph

joining then so is ρ. But this is very similar. Given a uc ∈ U
c
n , and an ε> 0 we

can find vc
1 , . . . , vc

k∗ and locations l c
1 , . . . , l c

k∗ so that inequality (49) holds. Again

we can assume that for some m, for all j , vc
j
∈W

c
m . The numbers |l c

j
| determine
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locations in vc
j

of beginnings of n-words. We can augment our collection of

locations by adding more l c
j
’s so that if l is the start of a location in vc

j
that has

the same (n,m)-genetic marker as l c
j
, then for some j ′ we have l c

j ′
= −l and

vc
j ′
= vc

j
. In doing this we do not increase the density of B c

0 ∪B c
1 . Reversing

the procedure above this gives words v j ∈
⋃

n Vn and locations l j such that the

density of B0 ∪B1 is less than ε. (Note the lack of boundary in K×L makes the

computation easier by reducing the density of B0 ∪B1.)

Case 2: ρρρ is anti-synchronous.

On the anti-synchronous joinings we take F to be the bijection between

anti-synchronous joinings of (K,µ) with (L−1,ν) and of the circular systems

(Kc ,µc ) with ((Lc )−1,νc ) defined in Theorem 6.10. We show that F takes anti-

synchronous graph joinings to anti-synchronous graph joinings and vice versa.

Having done this it will follow by a symmetry argument that F sends anti-

synchronous isomorphisms to anti-synchronous isomorphisms.

Suppose that ρ is an anti-synchronous graph joining; i.e., ρ is a graph joining

of K with L
−1 that concentrates on {(s, t ) : π(t ) = −π(s)}. The map x 7→ rev(x)

projects to the odometer map π(x) 7→ −π(x); in particular rev(L) is based on the

same odometer that L is. By Lemma 3.7 we can view ρ as a graph joining of

K with rev(L) that concentrates on {(s, t ) : π(s) = π(t )}. Similarly we view ρc as

concentrating on K
c × rev(Lc ).

We must show that for all basic open sets in K
c of the form 〈uc 〉0 where

uc ∈ U
c
n and all ε > 0, there are words vc

1 , vc
2 . . . vc

k∗ that belong to
⋃

n V
c

n and

locations l c
1 , . . . , l c

k∗ such that

ρc

(

(

〈uc 〉0 × rev(Lc )
)

∆
(

K
c ×

⋃

〈rev(vc
j )〉l c

j

)

)

< ε.

Consider u such that cn(u) = uc . Because ρ is a graph joining for all δ > 0

and all large enough m we can find words v1, . . . , vk ′ ∈ Vm and locations l1, . . . , lk ′

such that

ρ

(

(

〈u 〉0 × rev(L)
)

∆
(

K×
⋃

〈rev(vi )〉li

)

)

< δ.(51)

Without loss of generality we can assume that each li ≤ 0. We will take m suffi-

ciently large according to a restriction we define later.

Let (s, t ) be generic for ρ and let t̂ be as in Definition 6.1. Then (sc , t̂ ) is

generic for ρc . We argue as before considering sets

B0 = {k : u occurs at k in s,(52)

but for no i does rev(vi ) occur in rev(t ) at li +k }

B1 = {k : for some i , rev(vi ) occurs in rev(t ) at k + li ,(53)

but u does not occur in s at k }.

Then inequality (51) shows that B0 ∪B1 can be taken to have density less than

any positive δ.
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Given words and locations
{

vc
j
, l c

j
: j ∈ J

}

we consider B c
0 ,B c

1 ⊆Z, as follows:

B c
0 = {k : uc occurs in sc at k but for no j does vc

j occurs in t̂ at l c
j +k }

B c
1 = {k : for some j , vc

j occurs in t̂ at l c
j +k but uc does not occur in sc at k }.

Given {(vi , li ) : 1 ≤ i ≤ k ′}, we need to find the words and locations vc
j
, l c

j
so that

the density of B c
0 ∪B c

1 is less than ε. As in the synchronous case, for each i we

build index sets Ji so that the Ji ’s to be disjoint and have union the interval

{ j : 1 ≤ j ≤ k∗} for some k∗. For all j ∈ Ji we take vc
j
= cm(vi ). We need to find a

collection of locations {l j : j ∈ Ji }.

Fix an i ≤ k ′. Without loss of generality we can assume li is the beginning

of a reversed n-block rev(v ′) in rev(vi ), since otherwise, discarding 〈rev(vi )〉li

makes inequality (51) sharper. If (s0, rev(t0)) ∈K× rev(L) is an arbitrary member

of

(〈u 〉0 ×L)∩ (K×〈rev(vi )〉li
)

with π(s0) = −π(t0), then there is an m-word u∗ such that s0 ∈ 〈u∗ 〉li
. Let ~j (i )

be the genetic marker of u in u∗. We note that ~j (i ) does not depend on s0, since

it is determined entirely by the location of u in u∗ and u∗ must be aligned with

rev(vi ).

The genetic marker ~j (i ) defines a region of n-words in U
c
n inside an m-word

in U
c
m . Let Li be the collection of l that are at the beginning of an n-word in

U
c
n with genetic marker ~j (i ) in an m-word in U

c
m and set

{

l c
j : j ∈ Ji

}

=
{

Am − l : l ∈ Li

}

.(54)

This determines the collection
{

vc
j
, l c

j
: 1 ≤ j ≤ k∗ }

.

We now compute the density of B c
0 ∪B c

1 in terms of the density of B0 ∪B1.

To do this it suffices to consider a large enough M that sc has a principal M-

block [aM ,bM ) and compute densities inside this principal M-block. If this is

sufficiently small we can deduce that the density of B c
0 ∪B c

1 is small in Z. By

Remark 4.19, we can also assume that M is so large that \ restricted to this

principal M-block is equal to Λ̄M along this M-block; equivalently the principal

M-block of t̂ is [aM + Am ,bM + AM ).

From Proposition 6.4, we know that if I is an m-sub-block of sc � [aM ,bM )

then either:

1. the corresponding sub-block of t̂ is at sh Am (I ) or

2. I is part of the (m, M)-slippage.

By item 2 of Proposition 6.4, the number of m-sublocks in each case that corre-

spond to a given (n, M)-genetic marker does not depend on the genetic marker.

Further in the second case sh Am (I ) is entirely part of
⋃M

m+1∂i (t̂ ).

We compute the density d c
0 of elements of B c

0 ∪B c
1 by separating them into

these two sources. Explicity, we divide into:

Slippage: Those k ∈ B c
0 ∪B c

1 that begin an n-subword of a location of an m-

subword of sc that is in the (m, M)-slippage.
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Mistakes: those k ∈ B c
0 ∪B c

1 such that k is the location of the beginning of

a circular n-subword inside sc � [aM ,bM ) and [k + Am ,k +qm + Am) is the

location of an m-word in t̂ .

We compute the density of the Mistakes and the Slippage separately. Again

we will call n-subwords that begin with elements of B0 ∪B1 or B c
0 ∪B c

1 bad.

Both the Mistakes and the Slippage occur at the beginning of n-subwords of

sc � [aM ,bM ). Define db to be density of
⋃M

n+1∂i in [aM ,bM ). Then proportion

of k ∈ [aM ,bM ) that begin n-subwords is:

1−db

qn
.

Of these a proportion $M
m of the n-subwords are in the Slippage. Thus the

collection of k that belong to the Slippage has density

$M
m

(

1−db

qn

)

.

Since $M
m goes to zero as m goes to infinity we can make this term as small as

desired by taking m large enough.

Let [a′
M ,b′

M ) be the location of the principal M-block of s (and thus of rev(t )).

Let d0 be the density of B0 ∪B1 in [a′
M ,b′

M ).

Suppose now that k belongs to the Mistakes. Let ~j be the (n, M)-genetic

marker of the word beginning with k in sc � [aM ,bm). Then there is a unique

k ′ in [a′
M ,b′

M ) that is at the beginning of an n-subword of s � [a′
M ,b′

M ) and has

genetic marker ~j . By construction, for k that are not in the Slippage:

k ∈ B c
0 ∪B c

1 if and only if k ′ ∈ B0 ∪B1.(55)

Let dp be the proportion of m-subwords of s � [a′
M ,b′

M ) that begin with a k ∈
B0 ∪B1. Since every genetic marker is represented exactly the same number of

times in the complement of the slippage (Proposition 6.4), the proportion of

words that begin with k in the Mistakes is

d c
p = dp ∗ (1−$M

m ).(56)

If d0 is the density of B0 ∪B1 in [a′
M ,b′

M ) and d c
0 is the density of the Mistakes,

then

d0 = dp /Kn(57)

d c
0 = d c

p

(

1−db

qn

)

.(58)

Putting together equations (56), (57) and (58), we see that if we make d0 suffi-

ciently small we can make d c
0 as small as desired.

Summarizing. By taking M large enough, the density of B c
0 ∪B c

1 is well approxi-

mated by the density of B c
0 ∪B c

1 inside [am ,bm). This is the sum of the density

of the (m, M) slippage and the density of the Mistakes. We can make the density

of the Slippage arbitrarily small by taking m large enough and the density of the
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Mistakes arbitrarily small by taking δ0 sufficiently small. This establishes the

claim that if ρ is a graph joining then so is ρc .

We must show that if ρc is a graph joining then so is ρ. We suppose that we

are given a u ∈Un , we must find {vi , li : i ≤ k ′} so that equation (51) holds. Let

uc = cn(u) and approximate 〈uc 〉0 × rev(Lc ) using
{

vc
j
, l c

j
: i ≤ k∗ }

. Again, we

can assume that the collection of locations is saturated in the sense that if l is

the start of a location in vc
j

that has the same (n,m)-genetic marker as l c
j
, then

for some j ′ we have l c
j ′
=−l and vc

j ′
= vc

j
. In doing this we do not increase the

density of B c
0 ∪B c

1 . We can now use equations (56), (57) and (58) again to see

that if d c
0 is made sufficiently small then so is d0.

Our next claim is that ρ is an isomorphism if and only if ρc is an isomorphism.

Recall from Proposition 2.4 that ρ is an isomorphism if and only if both ρ and

ρ∗ are graph joinings. Thus if ρ is an isomorphism, both ρc and (ρ∗)c are graph

joinings. Since \ is an involution:

(ρ∗)c = (ρc )∗.

Thus if ρ is an isomorphism, so is ρc .

Reversing this line of reasoning shows that if ρc is an isomorphism then ρ is.

7.1.2. F preserves composition. To finish the proof that F is a functor we must

show that F preserves composition. The argument splits into four natural cases:

composing synchronous joinings, composing a synchronous joining with an

anti-synchronous joining on either side and composing two anti-synchronous

joinings. We will carefully work out the case for compositions of synchronous

embeddings, and discuss the appropriate modification in the cases involving at

least one anti-synchronous embedding after Lemma 7.5.

The cases differ only in that the shifts involved in the generic sequences have

different forms. For ergodic synchronous joinings generic sequences can be

taken to be of the form 〈 (un , vn ,0) : n ∈N 〉, whereas for anti-synchronous join-

ings of Kc and rev(Lc ) a natural generic sequence is of the form 〈 (uc
n , rev(vc

n),

An) : n ∈N 〉.23

Preparatory Remarks.

In the characterization of the relatively independent joining ρ of ρ1 and ρ2

given in Lemma 2.27 and Proposition 2.28, the partitions Ak ,A ′
k

and Ãk are

given by 〈uk 〉s1
,〈vk 〉s2

and 〈wk 〉s3
for s1, s2, s3 ∈Z. Formally the partitions Ak ×

A
′

k
,Ak × Ãk and A

′
k
× Ãk and Ak ×A

′
k
× Ãk consist of all possible products of

these basic open sets. However, in the situation we are considering we have

synchronous and anti-synchronous joinings. For synchronous joinings we can

build a generating family for the relatively independent joining ρ of ρ1 and ρ2 by

considering products of pairs of basic open intervals in the same locations; e.g.,

pairs of the form 〈uk 〉s ×〈wk 〉s . As a consequence, for verifying the hypotheses

of Proposition 2.28 we can restrict our attention to the case where s∗ = 0.

23That is, 〈 (un , rev(vn ))c : n ∈N 〉.
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In the case of anti-synchronous joinings we need to distinguish the odome-

ter based from the circular systems. For anti-synchronous joinings of odometer

based systems K with M
−1 we can consider only intervals of the form 〈uk 〉s ×

〈rev(wk )〉s+s∗ where s∗ = 0. For anti-synchronous joinings of the circular sys-

tems K
c with M

c , asymptotically the Empirical Distances concentrate on words

of the form 〈uc
k
〉×〈rev(wc

k
)〉Ak

(where Ak is the amount of shift for \ at scale k).

Moreover, translations of sets of this form generate the measure algebra of the

anti-synchronous joining.

Thus in the proof of the next lemma, to verify the hypothesis 3 of Proposi-

tion 2.28 we can take s∗ = 0 or s∗ = Ak depending on whether ρ1 ◦ρ2 is synchro-

nous or anti-synchronous.

Fix odometer based systems K, L and M with construction sequences 〈Un :

n ∈ N 〉, 〈Vn : n ∈ N 〉 and 〈Wn : n ∈ N 〉 respectively. Let ρ1 and ρ2 be synchro-

nous graph joinings of K and L, and L and M respectively and ρ their relatively

independent joining over L.

Since ρ1 and ρ2 are graph joinings so is their composition. Thus the relatively

independent joining is ergodic. Hence by Lemma 2.31 we can find generic

sequences for ρ1,ρ2 and ρ that satisfy the hypothesis of Proposition 2.28.

LEMMA 7.5. Let 〈 (un , vn , wn ,0,0) : n ∈ N 〉 be generic for ρ. Then the sequence

〈 (uc
n , vc

n , wc
n ,0,0) : n ∈ N 〉 is generic for the relatively independent joining ρc of

ρc
1 with ρc

2.

Assuming the lemma, we show that F preserves compositions. Corollary 2.30

shows that 〈 (un , wn ,0) : n ∈ N 〉 is generic for ρ1 ◦ρ2. From the way that F is

constructed, if νc =F (ρ1 ◦ρ2), then 〈 (uc
n , wc

n) : n ∈N 〉 is generic for νc (viewed

as a measure on a circular system). From Lemma 7.5 and Corollary 2.30, we

know that 〈 (uc
n , wc

n ,0) : n ∈N 〉 is generic for ρc
1 ◦ρ

c
2. Hence F (ρ1 ◦ρ2) =F (ρ1)◦

F (ρ2) as desired.

It remains to prove Lemma 7.5.

Proof. We claim that 〈 (uc
n , vc

n , wc
n ,0,0) : n ∈N 〉 satisfies the hypotheses of Propo-

sition 2.28 for the joinings ρc
1 and ρc

2.

The first two hypotheses follow immediately: ρc
1 and ρc

2 are constructed by

taking the generic sequences 〈 (uc
n , vc

n ,0) : n ∈ N 〉 and 〈 (vc
n , wc

n ,0) : n ∈ N 〉 de-

termined by 〈 (un , vn ,0) : n ∈ N 〉 and 〈 (vn , wn ,0) : n ∈ N 〉 respectively, and the

measures did not depend on the precise generic sequence taken. Hypothesis 3

remains to be shown.

We are given ε> 0, k and s∗ and need to find (k ′)c ,Gc
(k ′)c and the Ivc ’s so that

inequalitites 3a and 3b hold. Since ρc
1 and ρc

2 are synchronous, so is the rela-

tively independent joining. By the preparatory remarks can take s∗, the relative

location of words in K and M to be 0. Since the sequence of (un , vn , wn ,0,0)’s

is generic for the relatively independent product of ρ1 and ρ2, we can find
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k ′, N ,Gk ′ ⊆ Vk ′ and for each v ∈Gk ′ a set Iv ⊂ [0,Kk ′) such that the conditions in

hypothesis 3 hold in the odometer context.24

Choose k ′ so large that the density db of the boundary portions of circular

k ′-words is less than ε∗10−6 and so that for each v ∈Gk ′ , there is an Iv with

|Iv | >
(

1− (ε∗10−6)

1−db

)

∗Kk ′ .

Let (k ′)c = k ′, and Gc
k ′ = {vc : v ∈ Gk ′}. For each vc ∈ Gc

k ′ we define the set

Ivc ⊆ [0, qk ′). Each Iv ⊆ [0,Kk ′) and each s ∈ Iv has a genetic marker ~js in v . We

let Ivc = {sc : sc has the same genetic marker in vc as some s ∈ Iv does in v}.

Equation (26) implies that

|Iv |
Kk ′

=
|Ivc |
qk ′

(1−db)

and thus |Ivc | > (1−ε)qk ′ .

Equation (27) implies that for v ∈Gk ′ and all large n,

EmpDist(vn)(v) = EmpDist(vc
n)(vc ),

from which hypothesis 3a follows immediately.

Fix a vc
0 ∈Gc

k ′ and an sc ∈ Ivc
0
. Let v0 ∈Gk ′ correspond to vc

0 , and s ∈ Iv corre-

spond to sc . Let (uc , wc ) ∈U
c
k
×W

c
k

. To see hypothesis 3b, we need to compute

the empirical distributions of (uc , wc ),uc and wc conditioned on vc
0 .

Let Ac be the collection of ((u′)c , vc
0 , (w ′)c ) ∈ U

c
k ′ ×V

c
k ′ ×W

c
k ′ such that uc oc-

curs at sc in (u′)c and wc occurs at sc in (w ′)c . Let B c be the collection of all

((u′)c , vc
0 , (w ′)c ) ∈U

c
k ′ ×V

c
k ′ ×W

c
k ′ . Then

EmpDistk,k,sc ,sc (uc
n , vc

n , wc
n |v

c
0)(uc , wc ) =

EmpDistk ′(uc
n , vc

n , wc
n)(Ac )

EmpDistk ′(uc
n , vc

n , wc
n)(B c )

.(59)

As in the definition of F in Subsection 7.1.1, we can view the relatively inde-

pendent joining ρ on K×L M as concentrating on a single odometer system

(K,L,M)× and ρc , the relatively independent joining of ρc
1,ρc

2 as concentrating

on ((K,L,M)×)c , which is canonically isomorphic to K
c ×Lc M

c .

In the odometer system (K,L,M)×, consider the set A consisting of those k ′-
words (u′, v0, w ′) such that u′ and w ′ have u and v in position s. Then Ac =
{(

(u′)c , vc
0 , (w ′)c

)

: (u′, v0, w ′) ∈ A
}

. Similarly B c =
{(

(u′)c , vc
0 , (w ′)c

)

: (u′, v0, w ′)
∈ B

}

. Equation (27) implies that

EmpDist(un , vn , wn)(A) = EmpDist(uc
n , vc

n , wc
n)(Ac )(60)

and

EmpDist(un , vn , wn)(B) = EmpDist(uc
n , vc

n , wc
n)(B c ).(61)

24For odometer systems, the length of the words in Uk ′ ,Vk ′ and Wk ′ is Kk ′ , for circular systems

the words at stage k ′ have length qk ′ .
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Finally, noting that

EmpDistk,k,s,s(un , vn , wn |v0)(u, w) =
EmpDistk ′(un , vn , wn)(A)

EmpDistk ′(un , vn , wn)(B)
(62)

and using equations (59) and (60), we see that

EmpDistk,k,sc ,sc (uc
n , vc

n , wc
n |v

c
0)(uc , wc )(63)

= EmpDistk,k,s,s(un , vn , wn |v0)(u, w).

Arguing in the same manner we see

EmpDistk,sc (uc
n , vc

n |v
c
0)(uc ) = EmpDistk,s(un , vn |v0)(u)(64)

EmpDistk,sc (vc
n , wc

n |v
c
0)(vc ) = EmpDistk,s(vn , wn |v0)(v).(65)

Since for large n,

‖EmpDistk,k,s,(un , vn , wn |v0)

−EmpDistk,s(un , vn |v)∗EmpDistk,s(vn , wn)|v)‖ < ε

from equations (63), (64), and (65), we get the desired conclusion that

‖EmpDistk,k,sc ,sc (uc
n , vc

n , wc
n |v

c
0)

−EmpDistk,sc (uc
n , vc

n |v
c
0)∗EmpDistk,sc (vc

n , wc
n |v

c
0)‖

is less than ε. �

Lemma 7.5 holds where one or both of the joinings ρ1 and ρ2 are anti-syn-

chronous as well, however the shift coefficients for the circular systems are

no longer all 0 but belong to {0,±An} depending on which joinings are anti-

synchronous. Similarly s∗ ∈ {0,±Ak }. The argument follows the same path until

it reaches equation (60). This equation relies, in turn on equation (27). The

analogue of equation (27) for anti-synchronous joinings is equation (48), which

in turn carries over to the relatively independent product. The upshot is that

equations (63), (64), and (65) hold after applying the appropriate shifts of uc
n

and vc
n relative to uc

n .

This finishes the proof of Theorem 7.2. �

7.2. Weakly-mixing and compact extensions. We now show that F preserves

weakly-mixing and compact extensions. The fact that compact extensions are

preserved is due to E. Glasner and we reproduce the proof here with his kind

permission.

PROPOSITION 7.6. Let (K,µ) and (L,ν) be ergodic and suppose that ρ and ρc are

corresponding synchronous joinings determining factor maps

π : K→ L

πc : Kc → L
c .

Then K is a weakly mixing extension of L (via π) if and only if Kc is a weakly

mixing extension of Lc (via πc ).
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Proof. Recall that if π : X → Y is a factor map from (X ,B,µ,T ) to (Y ,C ,ν,S),

then the extension is weakly-mixing if the relatively independent joining X ×Y X

of X with itself over Y is ergodic relative to Y . In case Y is ergodic, this simply

means that the relatively independent joining is ergodic.

Suppose that K and L are odometer based systems with construction se-

quences 〈Wn : n ∈N 〉 and 〈Vn : n ∈N 〉 respectively. If ρ is a synchronous factor

joining of K over L, and the extension is weakly-mixing then we can find an

ergodic sequence of words 〈 (un , vn , wn) ∈ Wn ×Vn ×Wn : n ∈ N 〉 that is generic

for the relatively independent joining of ρ with itself over L, i.e., ρ×L ρ. This

sequence will satisfy the hypotheses of Proposition 2.28. It follows that the se-

quence of (uc
n , vc

n , wc
n)’s is also generic for an ergodic measure ν. As we argued

in Lemma 7.5, the (uc
n , vc

n , wc
n)’s also satisfy the hypothesis of Proposition 2.28.

It follows that ν is the relatively independent joining ρc ×Lρ
c . Since ν is ergodic

ρc is weakly mixing.

If, on the other hand the sequence of (un , vn , wn) is not ergodic, then the

sequence (uc
n , vc

n , wc
n) is also not ergodic. Hence if ρc is weakly-mixing, then ρ

is weakly mixing. �

It is immediate from the Furstenberg-Zimmer structure theorem [11, Chapter

10, Proposition 10.14] that X is a relatively distal extension of Y if and only if

there is no intermediate extension Z of Y , with X being a non-trivial weakly-

mixing extension of Z . Thus F takes measure-distal extensions to measure-

distal extensions.

What requires more effort to establish is the following:

PROPOSITION 7.7. (E. Glasner) The functor F takes compact extensions to com-

pact extensions.

Proof. Glasner’s proof uses a result proved in the forthcoming [8]: If (K,µ) is an

ergodic odometer based system and X is a compact group extension of (K,µ)

then there is a representation of X as an odometer based system with the same

coefficients.

Since X is a compact extension of Y if and only if X is a factor of a com-

pact group extension of Y ,25 it suffices to show that F takes compact group

extensions to compact group extensions.

To prove that F takes compact group extensions to compact group exten-

sions we use a remarkable theorem of Veech that characterizes group exten-

sions π : X → Y of ergodic systems. The criteria is that every ergodic joining

of X with itself that is the identity on Y (i.e., ρ, as a measure, concentrates on

those pairs (x1, x2) such that π(x1) = π(x2)) comes from a graph joining which

is an isomorphism of (X ,B,µ,T ) that projects to the identity map on Y .26

Explicity, [11, Theorem 6.18 on page 136] shows that if, in the ergodic de-

composition of the relatively independent product X ×Y X , only graph joinings

appear, then X is a compact group extension. The converse follows from [11,

25See [10] for an explicit statement and proof.
26This first appears in [19].
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Proposition 6.15, part 2], that if X is a compact group extension of Y then every

ergodic self-joining of X over Y which is the identity on Y is a graph joining.

The map F takes ergodic joinings to ergodic joinings, and all graph joinings

to graph joinings, and the identity joining to the identity joining. Thus we see it

preserves group extensions. �

Furstenberg [9] and Zimmer [23] independently showed that for every ergodic

system X there is an ordinal α and a tower of extensions 〈Xβ : β≤α〉 such that

X0 is the trivial system, Xα = X and for all β< α, Xβ+1 is a compact extension

of Xβ, unless α=β+1 where Xα is either a compact or a weakly mixing exten-

sion of Xβ. If there is no compact extension at the end of the tower, then X is

measure-distal and 〈Xβ : β < α〉 is a distal tower approximating X . The least

ordinal such that X can be represented this way is the distal height or distal

order of X.

Let (K,µ) be an odometer based system and consider the odometer factor O .

Let (K′,µ′) be the Kronecker factor of (K,µ). Then we have

(K,µ)

(K′,µ′)

O ,

?

π1

?

π2

where π2 may or may not be a trivial factor map. This tower is carried by F to

(Kc ,µc )

((K′)c , (µ′)c )

Rα.

?

π1

?

π2

If K′ is a non-trivial extension of O , then Glasner’s result tells us that (K′)c is a

compact extension of Rα, but is silent on the issue of whether (K′)c is discrete

spectrum; i.e., we do not know whether F takes the Kronecker factor of K to

the Kronecker factor of Kc .

Suppose now that K is given by a finite tower of factors:

O K0 K1
. . . KN−1 =K,� � � �

where K0 is the Kronecker factor of K and for all i ,Ki+1 is the maximal compact

extension of Ki in K. Then K is distal of height N . The map F carries this to a
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tower of compact extensions

Rα K
c
0 K

c
1

. . . K
c
N−1 =K

c .� � � �

From this we see that the distal height of Kc is either N or 1+N .

We do not know an example whether the height of Kc can be 1+N . However

the ordinary skew product construction applied to odometers gives examples

of distal height N where O is the Kronecker factor. Hence from our analysis we

see that there are ergodic circular systems with distal height N for all finite N .

In [2], Beleznay and Foreman proved that for all countable ordinals α there

is an ergodic measure preserving transformation T of distal height α. In that

construction there are no eigenvalues of the operator UT of finite order. Hence if

we let O be an odometer with coefficient sequence 〈kn : n ∈N 〉 going to infinity,

T ×O is an ergodic transformation with distal height α and zero entropy. In

the forthcoming [8] we see that this implies that T ×O can be presented as

an odometer based transformation. By the analysis we just gave we see that

(T ×O )c is a circular system with height 1+α. In [8] we see that (T ×O )c can be

realized as a smooth transformation. For infinite α, 1+α=α, hence we have:

THEOREM 7.8. Let N be a finite or countable ordinal. Then there is an ergodic

measure distal diffeomorphism of T2 of distal height N .

7.3. Continuity. Fix a measure space (X ,µ). As noted in Section 2.3, we can

identify symbolic shifts built from construction sequences with cut-and-stack

constructions (whose levels generate X ). By fixing a countable generating set

in advance, we can make this association canonical. The levels in the cut-and-

stack construction give the relationship with arbitrary partitions of X . In this

way the usual weak topology on measure preserving transformation of X de-

scribed in Section 2.1 determines a topology on the presentations of symbolic

shifts as limits of construction sequences.

The finitary nature of the maps 〈cn : n ∈ N 〉 that give bijections between

words in Wn and words in W
c

n easily shows that the map F is a continuous map

from the presentations of odometer based systems to presentations of circular

systems. Thus we have

COROLLARY 7.9. The functor F is a homeomorphism from the objects in OB

to CB.

For the purposes of the complexity of the isomorphism relation we note

COROLLARY 7.10. The map F is a continuous reduction of synchronous conju-

gacy between odometer based systems and circular systems.

7.4. Extending the main result. In the main result we restricted the morphisms

to graph joinings, largely because compositions of graph joinings are ergodic

joinings. Unfortunately a composition of ergodic joinings is not necessarily

ergodic, and non-ergodic joinings also arise naturally as relatively independent

joinings of ergodic joinings. In this section we indicate how to extend our results

to the broader categories that include non-ergodic joinings as morphisms. For
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convenience, we will continue to require that our objects are ergodic measure

preserving systems.

Let OB+ and CB+ be the categories that have the same objects as OB and

CB , but where the collections of morphisms are expanded to include all syn-

chronous and anti-synchronous joinings (rather than just graph joinings).

In Section 7.1.1, the definition of F included all such joinings (F (ρ) for a

non-ergodic ρ was defined via an ergodic decomposition). Thus without modi-

fication we can view F as a map

F : OB+ →CB+.

To show that F is a morphism between these categories, i.e., to show preserves

composition for arbitrary morphisms, we develop a more combinatorial ap-

proach to lifting morphisms that coincides with the original definition.

We start by generalizing the notion of a generic sequence of words to include

non-ergodic measures. Suppose K is a symbolic system with a construction

sequence 〈Wn : n ∈ N 〉. Let µ be a shift invariant measure which we assume

is supported on the set S ⊆K (where S is given in definition 2.9). The ergodic

decomposition theorem gives a representation of µ as
∫

µp dλ(p), where each

µp is a shift invariant ergodic measure and λ is a probability measure on a set P

parameterizing the ergodic components. For each p, there is a generic sequence

of words 〈w
p
n : n ∈N 〉 for the measure µp . The main observation is that the set

of probability measures on words of a fixed length is compact. Thus for any

fixed k and ε> 0, we can find a finite set Pk ⊆ P of parameters so that for all p,

there is some p ′ ∈ Pk with27

‖µ̂p

k
− µ̂

p ′

k
‖ < ε.(66)

This gives a partition of the parameter space into sets {Ep : p ∈ Pk } such that

inequality (66) holds for all p ′ ∈ Ep .

Now let n be sufficiently large such that for each p ∈ Pk , we can find an

element w
p
n ∈Wn with

‖EmpDistk (w
p
n )− µ̂

p

k
‖ < ε.(67)

If we denote λ(Ep ) by α(p), then α(p) ≥ 0 and
∑

p∈Pk
αp = 1. It is clear that one

can obtain µ̂k up to a small error from the finite data {(w
p
n ,α(p)) : p ∈ Pk }, which

is a weighted finite collection of words.

For the symbolic sequences that we are interested in, such as the circular

systems, the measure of the spacers is independent of the invariant measure µ

(see Section 5.1). This means that for all n, p, the sum
∑

w ′∈Wn
µ

p
qn

(〈w ′ 〉) is the

same. In this context using inequality (67) we can arrange the inequality
∥

∥

∥

∥

∥

(

∑

p∈Pk

α(p)EmpDistk (w
p
n )

)

− µ̂k

∥

∥

∥

∥

∥

< ε.

27The notions of EmpDist and µ̂k are given in the beginning of Section 2.6.
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The measure λ is defined on the extreme points of the simplex of shift invariant

probability measures and if we choose the finite sets Pk to consist of points that

lie in the closed support of λ then we can easily ensure that when we go from

(k,ε) to a (k ′,ε′) with k ′ > k,ε′ < ε that Pk ′ ⊇ Pk . Taking a sequence k →∞ and

εk → 0 with
∑

εk <∞, we get a set {ν1,ν2, . . . } of ergodic measures and finite sets

Ik ⊆ Ik+1 of integers with probability measures αk on Ik such that (
∑

i∈Ik
αk (i )νi )

converges to µ in the weak* topology.

Let Prob(Ik ) denote the collection of probability measures on Ik .

DEFINITION 7.11. Let nk go monotonically to infinity and let
{

(w i
nk

,αk (i ))k

}

be a weighted sequence of words as above. Suppose that for each k and i ∈ Ik ,

‖EmpDistk (w i
nk

)−ν̂i ,k‖ < εk , then we call
{

(w i
nk

,αk (i ))
}

a generic sequence for µ.

We note that, for a fixed i , as k varies {w i
nk

} is a generic sequence for νi ,

which is one of the ergodic measures in the support of λ.

In a manner exactly analogous to the analysis in Section 2.6, Definition 7.11

can be extended to products of symbolic systems, allowing for shifting of words

in construction sequences.

Restricting our objects to ergodic systems (X ,B,µ,T ), (Y ,C ,ν,S), (Z ,D, µ̃, T̃ )

allows us to deal with the non-ergodic analogue of the material discussed be-

tween Definition 2.24 and Lemma 2.31 in a relatively straightforward way which

we now discuss.

For the analogue of Proposition 2.28 in the non-ergodic case let us make the

following observation. Fix a non-ergodic joining ρ of X and Y that has ergodic

decomposition ρ =
∫

ρp dλ(p), where, by the ergodicity of X and Y , each ρp is

also a joining of X with Y . Fix a k and an ε> 0 and a cylinder set determined

by a word u ∈W
X

k
, at location s∗ and let φ represent its indicator function. For

k ′ large, by the Martingale convergence theorem, there is a subset G of Y of

measure close to one such that when we look at the conditional expectation of

φ with respect to the partition induced by the principal k ′-words of y ∈ G , for

Ak ′ and compare it to E(φ|D), the error is small.

The element of that partition that contains y is given by a word vy ∈W
Y

k ′ and

a location parameter sy , and the conditional expectation is

ρ
(

shs∗(〈u 〉)∩ shsy (〈vy 〉)
)

ν(〈vy 〉)
.(68)

This easily gives a set Gk ′ ⊆Wk ′ with ν̂k (Gk ′) > 1−ε and a Jv ⊆ [0, qk ′) such that

for v ∈Gk ′ , j ∈ Jv , formula (68) gives a good approximation to ρy (shs∗(〈u 〉)) for

most of the y ∈ shsy (〈vy 〉).

If we have a generic sequence of weighted words for ρ, then we can use it

to calculate the expression in (68). This observation makes it possible for us to

formulate Proposition 2.28 for non-ergodic joinings.

We are given ergodic systems X ,Y , Z and are given construction sequences

〈Un ,Vn ,Wn : n ∈N 〉 such that for each n, the words in each Un ,Vn ,Wn have the

same length. Two joinings ρ1 of X and Y and ρ2 of Y and Z are given. The

analogue of Proposition 2.28 is now
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PROPOSITION 7.12. Let

〈

{(ui
nk

, v i
nk

, w i
nk

, si
nk

, t i
nk

) : i ∈ Ik },αk ∈ Prob(Ik ) : k ∈N
〉

(69)

be a sequence of weighted words and
∑

εk <∞. Suppose that the following hy-

pothesis are satisfied:

1. 〈 {(ui
nk

, v i
nk

, si
nk

) : i ∈ Ik },αk )〉k is generic for ρ1,

2. 〈 {(v i
nk

, w i
nk

, t i
nk

) : i ∈ Ik },αk 〉k is generic for ρ2,

3. For all ε,k, s∗ there are k ′, N and a set Gk ′ ⊂W
Y

k ′ and for each v ∈Gk ′ there

is a set Jv ⊆ [0, qk ′) such that

(a)
∑

v∈Gk′
EmpDist(vnk

)(v) > 1−ε

(b) |Jv | > (1−ε)qk ′

(c) For all v ∈Gk ′ and s ∈ Jv , if nk > N ,

∥

∥

∥

∥

∥

∑

i∈Ik

EmpDistk0,k0,s,s+s∗(ui
nk

, sh
si

kn (v i
nk

), sh
t i

kn (wnk
)|v)αk (i )

−
∑

i∈Ik

EmpDistk0,s(ui
nk

, sh
si

kn (v i
nk

)|v)αk (i )

∗
∑

i∈Ik

EmpDistk0,s+s∗(v i
nk

, sh
t i

nk
−si

kn (w i
nk

)|v)αk (i )

∥

∥

∥

∥

∥

< ε.

Then the weighted sequence given in (69) is generic for the relatively independent

joining X ×Y Z .

The analogues of Corollary 2.30 and Lemma 2.31 are easily verified, giving us

a characterization of compositions of non-ergodic joinings and the existence of

generic sequences satisfying the hypothesis of Proposition 7.12.

Verifying that F preserves composition is now straightforward in the manner

of Section 7.1.2: the Gc
k ′ and Jvc are constructed in exactly the same way. Check-

ing the conditional distributions of short words relative to longer words (k vs. k ′)
involves counting k ′-words, and these are counted using equation (27) for each

component (uk , vk , wk ) separately. The weighted average is then preserved.

8. OPEN PROBLEMS

We finish with two open problems that we find interesting and believe to be

feasible. The first is to characterize the class of transformations isomorphic to

circular systems in ergodic-theoretic terms. All circular systems have common

properties that can be described in terms of rigidity sequences or zero entropy.

Can one find a complete characterization using this type of notion?

The second problem can be stated as follows. For the smooth realization

problem, the underlying rotation α of a circular system must be Liouvillian;

however realization is not necessary for the results in this paper. Can an arbi-

trary irrational α be the underlying rotation of a circular system?
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