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ABSTRACT. The main result of this paper is that two large collections of er-
godic measure preserving systems, the Odometer Based and the Circular Sys-
tems have the same global structure with respect to joinings that preserve
underlying timing factors. The classes are canonically isomorphic by a contin-
uous map that takes synchronous and anti-synchronous factor maps to syn-
chronous and anti-synchronous factor maps, synchronous and anti-synchro-
nous measure-isomorphisms to synchronous and anti-synchronous measure-
isomorphisms, weakly mixing extensions to weakly mixing extensions and
compact extensions to compact extensions. The first class includes all fi-
nite entropy ergodic transformations that have an odometer factor. By re-
sults in [6], the second class contains all transformations realizable as dif-
feomorphisms using the untwisted Anosov—Katok method. An application of
the main result will appear in a forthcoming paper (7] that shows that the
diffeomorphisms of the torus are inherently unclassifiable up to measure-
isomorphism. Other consequences include the existence of measure distal
diffeomorphisms of arbitrary countable distal height.
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1. INTRODUCTION

The isomorphism problem in ergodic theory was formulated by von Neu-
mann in 1932 in his pioneering paper [20]. Simply put, it asks to determine
when two measure preserving actions are isomorphic, in the sense that there is
a measure isomorphism between the underlying measure space that intertwines
the actions. It has been solved completely only for some special classes of trans-
formations. Halmos and von Neumann [13] used the unitary operators defined
by Koopman to completely characterize ergodic measure preserving transfor-
mations with pure point spectrum, these transformations can be concretely
realized (in a Borel way) as translations on compact groups. Another notable
success was the use of the Kolmogorov entropy to distinguish between measure
preserving systems. Ornstein’s work showed that entropy completely classifies
a large class of highly random systems, such as independent processes, mixing
Markov chains and many smooth systems such as geodesic flows on surfaces of
negative curvature.

Closely related to the isomorphism problem is the study of structural prop-
erties of measure preserving systems. These including mixing properties and
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compactness. A famous example is the Furstenberg-Zimmer structure theo-
rem for ergodic measure preserving transformations, which characterizes every
ergodic transformation as an inverse limit system of compact extensions fol-
lowed by a weakly mixing extension. This result is fundamental for studying
recurrence properties of measure preserving systems and the related proofs of
Szemeredi-type combinatorial theorems ([9]).

In this paper we present a new phenomenon, Global Structure Theory. Most
structure theorems in ergodic theory consider a single transformation in vitro.
The approach here is study whole, intact ecosystems of transformations with
their inherent relationships.

Our main result shows that two large collections of measure preserving trans-
formations have exactly the same structure with respect to factors and isomor-
phisms (and more generally, joinings). More concretely, we define the odome-
ter based transformations to be those finite entropy transformations that con-
tain a non-trivial odometer factor. Spectrally, this is equivalent to the associ-
ated unitary operator having infinitely many finite period eigenvalues. To each
fixed odometer, and the corresponding class of odometer based systems we will
construct a second class of symbolic systems that we call the circular systems.
These circular systems all have a certain irrational rotation factor. In [6], we
have shown that these circular systems coincide with the ergodic transforma-
tions realizable as diffeomorphisms of the torus using the untwisted method of
Approximation-by-Conjugacy, due to Anosov-Katok [1].

We can make two categories by taking as the objects these two classes of
systems and by taking morphisms to be factor maps (or more generally join-
ings) that preserve the underlying timing structure. The main result of this
paper is that these two categories are isomorphic by a map that takes measure-
isomorphisms to measure-isomorphisms, weakly mixing extensions to weakly
mixing extensions and compact extensions to compact extensions. It then fol-
lows that it takes distal towers to distal towers. Moreover the map preserves the
simplex of non-atomic invariant measures, takes rank one transformations to
rank one transformations and much more. (This will be discussed further in the
forthcoming [8].) In other words the global structure of these two categories is
identical. As a consequence there is further evidence that the world of smooth
systems is as rich as that of abstract ergodic transformations. For example, we
now can construct diffeomorphisms of the torus preserving Lebesgue measure
that are measure theoretically distal with an arbitrary distal height.

We can get more detail by considering systems based on a fixed odometer
map and circular systems based on that odometer map and an arbitrary fast
growing coefficient sequence. Doing so gives us collections of pairwise isomor-
phic categories that can be amalgamated to yield the statement above. The
main theorem is framed in this more granular setting.

This question as to what restrictions does the smooth structure place on the
ergodic properties also goes back to J. von Neumann who in the same foun-
dational paper from 1932 where he formulated the isomorphism problem also
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expressed the likelihood that any abstract measure preserving transformation
is isomorphic to a continuous measure preserving transformation and perhaps
even to a differentiable one. This brief remark eventually gave rise to one of the
outstanding problems in smooth dynamics, namely:

Does every ergodic MPT have a smooth model?

By a smooth model is meant an isomorphic copy of the transformation which
is given by smooth diffeomorphism of a compact manifold preserving a mea-
sure equivalent to the volume element. Soon after entropy was introduced,
A. G. Kushnirenko showed that such a diffeomorphism must have finite entropy,
and up to now this is the only restriction that is known.

From a global perspective, a natural way to attack this problem is to compare
the complexity of the abstract ergodic systems with that of the smooth systems,
considered up to measurable isomorphism. The study of the descriptive com-
plexity of collections of ergodic systems, anticipated by work of Feldman [4],
began in earnest in the 1990’s with work of Beleznay and Foreman [2].

Results of this nature have become known as anti-classification results, creat-
ing the need for a precise definition of what a classification is. Informally a clas-
sification is a method of determining isomorphism between transformations,
perhaps by computing (in a liberal sense) other invariants for which equiva-
lence is easy to determine.

The key words here are method and computing. For negative theorems, the
more liberal a notion one takes for either word, the stronger the theorem. One
natural notion is the Borel/non-Borel distinction. Saying a set X or function
f is Borel is a loose way of saying that membership in X or the computation
of f can be done using a countable (possibly transfinite) protocol whose basic
input is membership in open sets. To say that X or f is not Borel is saying
that determining membership in X or computing f cannot be done with any
amount of countable resources.

In the context of classification problems, saying that an equivalence relation
E on a space X is not Borel is saying that there is no countable amount of in-
formation and no countable transfinite protocol for determining, for arbitrary
x,y € X whether xEy. Any such method must inherently use uncountable re-
sources. !

In considering the isomorphism relation as a collection .# of pairs (S, T) of
measure preserving transformations, Hjorth [14] showed that .# is not a Borel
set. However the pairs of transformations he used to demonstrate this were
inherently non-ergodic?, leaving open the essential problem:

Is isomorphism of ergodic measure preserving transformations Borel?

'Many well known classification theorems have as immediate corollaries that the resulting
equivalence relation is Borel. An example of this is the Spectral Theorem, which has a con-
sequence that the relation of Unitary Conjugacy for normal operators is a Borel equivalence
relation.

2The ergodic components of the pairs were very simple transformations.
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This question was answered by Foreman, Rudolph, and Weiss in [5], where
they gave a negative answer. This answer can be interpreted as saying that
determining isomorphism between ergodic transformations is inaccessible to
countable methods that use countable amounts of information.

Returning to the question of smooth models, if one could show that the the
isomorphism relation for smooth mappings is a Borel relation then we would
know that not all ergodic systems have a smooth model. It turns out that even
when restricted to the smooth diffeomorphisms of the torus preserving Leb-
esgue measure, the isomorphism relation is not Borel. In a forthcoming paper
[7] we will show

THEOREM (Anti-classification of diffeomorphisms). If M is either the torus T?,
the disk D, or the annulus, then the measure-isomorphism relation among pairs
(S, T) of measure preserving C*-diffeomorphisms of M is not a Borel set with
respect to the C*°-topology.

To do this we will use an improvement of the construction in our earlier paper
with D. Rudolph and map it via the main result of the present paper and [6] to
a smooth setting.

Here is a more concrete description of the results in the paper. In the present
paper we are concerned with the entire class G238 of systems based on a fixed
odometer and the relations between them. The odometer is determined by a
sequence of positive integers greater than one, (k;, : n € N). The the circular
operator is determined by an additional sequence of integers (I, : n € N). For
this paper, the sequence of /,;’s can be arbitrary subject to the requirement that
Y 1/1, < co. However for realizing circular systems as diffeomorphisms there
is a fixed growth rate, determined by the size of the alphabet of the odometer
based system and (k, : n € N ), that the sequence of /,;’s must eventually exceed.

We describe G2 symbolically here, but show in a forthcoming paper that 623
consists of representations of arbitrary ergodic systems with finite entropy that
have the specific odometer as a factor. In the language of “cutting and stacking”
constructions these are those constructions where no spacers are introduced.
We fix (I, : n € N'), and hence a sequence of circular operators. Applying these to
each of the elements of 098 we obtain a second class, €9, of circular systems.
This class consists of some of the extensions of a fixed irrational rotation which
is determined by the circular operator. As remarked above, for suitably chosen
coefficient sequences, this class can be characterized as those transformations
realizable as diffeomorphisms using the Anosov-Katok technique. We consider
the two classes as categories where the morphisms are graph joinings which are
either the identity on the base or reverse it. These are called synchronous and
anti-synchronous joinings respectively. Our main theorem then takes the form

THEOREM 1.1. For a fixed circular coefficient sequence (ky, 1, : n € N) the cat-
egories OB and €A are isomorphic by a functor & that takes synchronous
joinings to synchronous joinings, anti-synchronous joinings to anti-synchronous
Jjoinings, synchronous and anti-synchronous isomorphisms to synchronous and
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anti-synchronous isomorphisms and weakly mixing extensions to weakly mixing
extensions.®

This theorem is proved in two stages. We first prove it in the special case that
the joinings are graph joinings: the joinings correspond to factor maps. This is
Theorem 7.2, and is most commonly used in applications.

In Section 7.4 the morphisms in the categories of 028 and ¢ % are expanded
to include general synchronous and non-synchronous joinings, rather than just
graph joinings. Because ergodic joinings are not closed under composition, in
extending Theorem 7.2 one is forced to consider non-ergodic joinings.

We have provided a detailed table of contents which enumerates the contents
of the paper. Here is a brief summary. Much of the section following this one is
standard, with the exception §2.6, which exposes generic sequences for trans-
formations and extends that notion to joinings. In §3, the reader will find an
explanation of our two categories and a proof that circular systems contain a
canonical rotation factor. Section 4 is primarily concerned with defining a map
i that is a symbolic analogue of complex conjugation on the unit circle. In Sec-
tions 5 and 6 the mapping & is defined on morphisms, while §7 contains the
proof of the main result. In §8 there is a more detailed analysis of the dynamical
properties of our mapping & which may prove useful in the future, and in the
final section we collect some problems that are left open.

2. PRELIMINARIES

This section establishes some of the conventions we follow in this paper.
There are many sources of background information on this including any stan-
dard text or [21] or [16]. A small portion of the material in this section was
presented in [6], but is repeated here in an attempt to be self-contained. The
reader is referred to [6] for any missing definitions.

2.1. Measure spaces. We call separable non-atomic probability spaces measure
spaces and denote them (X, %, u), where 28 is the Boolean algebra of measur-
able subsets of X and u is a countably additive non-atomic measure defined on
2.* We will often identify two members of 8 that differ by a set of u-measure
0 and seldom distinguish between 28 and the o-algebra of classes of measur-
able sets modulo measure zero unless we are making a pointwise definition and
need to claim it is well defined on equivalence classes.

We will frequently use without explicit mention the Maharam-von Neumann
result that every standard measure space is isomorphic to ([0,1],%3, 1) where A
is Lebesgue measure and 28 is the algebra of Lebesgue measurable sets.

If (X, %, 1) and (Y, %€, v) are measure spaces, an isomorphism between X and
Y is a bijection ¢ : X — Y such that ¢ is measure preserving and both ¢ and

3E. Glasner showed that the functor takes compact extensions to compact extensions.
“We will occasionally make an exception to this by calling discrete probability measures on a
finite set measures; we hope that context makes the difference clear.
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¢! are measurable. We will ignore sets of measure zero when discussing iso-
morphisms; i.e., we allow the domain and range of ¢ to be subsets of X and Y
(resp.) of measure one. A measure preserving system is an object (X, %, u, T)
where T : X — X is a measure isomorphism. A factor map between two mea-
sure preserving systems (X, %, u, T) and (Y,%¥,v,S) is a measurable, measure
preserving function ¢: X — Y such that So¢p =¢o T. A factor map is an isomor-
phism or conjugacy between systems if and only if ¢ is a measure isomorphism.
Following common practice, we will use the word conjugacy interchangeably
with isomorphism in this context.

For a fixed measure space (X, 1) we can consider the collection of measure
preserving transformations 7 : X — X. These form a group that can be endowed
with a Polish topology that has basic open sets described as follows. We fix a
finite measurable partition &/ of X and an € > 0 and take as a neighborhood
of T

N (T, 4, €) d:"f{s: Y u(TaASa) <e}.
acd
Details about this topology can be found in many sources including [12, 21].

2.2. Joinings. We remind the readers of the definitions. Extensive treatments of
joinings can be found in [11, 17]. All of the definitions and basic results about
joinings necessary for this paper occur in Chapter 6 of the latter reference.

DEFINITION 2.1. A joining between two measure preserving systems (X, %, u, T)
and (Y,%€,v,S) is a measure p on X x Y defined on the product o-algebra 8®%¢
such that

1. pis T x S invariant,
2. for each set Be 8, p(Bx Y) = u(B),
3. for each set C€ €, p(X x C) =v(C).

The graphs of factor maps provide natural examples of joinings. We charac-
terize these with a definition.

DEFINITION 2.2. A joining p is a graph joining between X and Y if and only if
for all C € € and all € > 0, there is a B € 28 such that

p((BxY)A(X x(C)) <e.

A joining p between (X,%,u, T) and (Y,¥6,v, S) is an invertible graph joining
if and only for all B € &8 there is a C € € such that

€)) p(BxY)AXx(C)=0
and vice versa: for all C € €, there is a B € 98 such that equation (1) holds.
Here are some standard facts (see [11]):

PROPOSITION 2.3. Let X=(X,%,u,T) andY = (Y,€,v,S). Then

1. There is a canonical one-to-one correspondence between the collection of
graph joinings of X and Y and the collection of factor maps from X toY. A
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graph joining concentrates on the graph of the factor map. We can represent
the graph joining corresponding to a measure preserving map ¢: X — Y by

‘O(p = f(éx X 6¢(x))d[,t(JC).

2. There is a canonical one-to-one correspondence between the collection of in-
vertible graph joinings of X and Y and the collection of conjugacies between
Xand.

3. Suppose that B' < B and €' < € are Boolean algebras that generate %
and € respectively as o -algebras. Let p be a joining of X with Y such that
for all e > 0 and all C € €' there are By,...,B, € B’ such that we have
p(U; (B; x Y)A(X x Q) <€, then p is a graph joining.

We note that perhaps a more proper term for an invertible graph joining is
the earlier usage diagonal joining. In view of the results of this section we will
often be careless and say that p is a factor map or p is a conjugacy/ isomorphism
to mean that p is a graph joining or p is an invertible graph joining.

To each joining p of X and Y we can associate its adjoint p*, the joining of Y
with X defined for B€ 98 and C € €6 as:

p*(CxB)=p(BxC).

If p is a graph joining corresponding to a factor map n: X — Y, then p* concen-
trates on { (y,x) : m(x) = y}.
The following is immediate:

PROPOSITION 2.4. p is an invertible graph joining if and only if both p and p*
are graph joinings.

Thus we can apply Proposition 2.3, item 3 to both p and p* to get a criterion
for being the joining associated with a conjugacy.

A potential source of confusion. Proposition 2.3 allows us to identify graph
joinings with factor maps and invertible graph joinings with conjugacies. These
joinings are always ergodic as joinings. However, there are non-ergodic con-
jugacies between ergodic measure preserving transformations. More explic-
itly: there are ergodic systems (X, T) and (X, S) and non-ergodic isomorphisms
d: (X, T)— (X, S).> The associated joining p¢ is, however, ergodic as a T x S-
invariant measure.

Let (X, ), (Y,v) and (Z, i) be measure spacesand rx: X — Yandnz: Z—-Y
be factor maps. We can define a canonical joining of X and Z that reflects the
factor structure as follows. We let {u,: ye Y} and {fi,: y € Y} be the disinte-
grations of X and Z over Y respectively. The relatively independent joining of X
and Z over Y is the joining p:

p= [ty x aviy)

5In unpublished work, the second author has given examples of isomorphic ergodic transfor-
mations where every conjugacy is non-ergodic.

JOURNAL OF MODERN DYNAMICS VOLUME 15, 2019, 345-423



FROM ODOMETERS TO CIRCULAR SYSTEMS: A GLOBAL STRUCTURE THEOREM 353

We will denote p by u xy fi and sometimes write the corresponding system as
X x Y Z.

We will be concerned about categories of measure preserving systems where
the morphisms are joinings. For this we must describe the composition opera-
tion. Suppose we are given joinings pxy between X and Y and pyz between
Y and Z. Then (Y,v) is a common factor of both (X x Y, pxy) and (Y x Z, py z)
and we can consider the relatively independent joining pxy xy pyz.

We define the composition of pxy and pyz to be the projection of the rela-
tively independent joining of pxy and py~ to a measure on X x Z. Formally, if
A< X x Z and p is the relatively independent joining, then:

pxyopyz(A) =p{(x,y2):x,z€ A}).
EXAMPLE 2.5. Suppose that 7p: X — Y and 77 : Y — Z are factor maps. If pxy

is the joining associated with my and py is the joining associated with ;, then
(p} ,0p%y)* is the joining associated with the factor map 7y o7g: X — Z.°

The following are standard facts (e.g., in [11, §6.2]):

PROPOSITION 2.6. 1. The operation of composition of joinings is associative:
if p1,p2 and ps are joinings, then

(p10p2) 0 p3 = p1o(p2°pP3).
2. Suppose that 1% : X — X' and n” : Z — Z' are factor maps Let p, and p»
be joinings of X,Y and Y, Z respectively. Let p] be the projection of py to
a joining of X' and Y via nX x id and p; be defined similarly. Finally let
(p10p2)" be the projection of the composition of py and p» to a joining of
X' with Z'. Then:
pTop; =(p1op2)".
2.3. Symbolic systems. Let  be a countable or finite alphabet endowed with
the discrete topology. Then 7 can be given the product topology, which makes
it into a separable, totally disconnected space that is compact if X is finite.

Notation. If u = (0y,...,0,-1) € 2 is a finite sequence of elements of X, then
we denote the cylinder set based at k in X7 by writing (u);. If k = 0 we ab-
breviate this and write (u). Explicitly: (u)r ={fe€Z%: f [ [k k+n)=u}. The
collection of cylinder sets form a base for the product topology on 7.
Notation. For a word w € <N we will write | w| for the length of w. We will write
1,1y for the characteristic function of the interval (w) in 7.

The shift map

sh:x% - 3?2
defined by setting sh(f)(n) = f(n+1) is a homeomorphism. If u is a shift invari-
ant Borel measure then the resulting measure preserving system (=%, %, u, sh)

6In the following, in the context of factor maps n : X — Y we will be sloppy about whether
this is associated with a joining of X with Y or a joining of Y with X.
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is called a symbolic system. The closed support of y is a shift invariant closed
subset of 27 called a symbolic shift or sub-shift.

Symbolic shifts are often described intrinsically by giving a collection of words
that constitute a clopen basis for the support of an invariant measure. Fix a lan-
guage X, and a sequence of collections of words (#}, : n € N ) with the properties
that:

1. for each n all of the words in #;, have the same length ¢,

2. each w € #;, occurs at least once as a subword of each w' € #;,41,

3. there is a summable sequence (¢, : n € N) of positive numbers such that
for each n, every word w € #;,+1 can be uniquely parsed into segments

2) UpWoUi1 W7 ... WU
such that each w; € #},, u; € <N and for this parsing
iluil
<

qn+1

€n+1-

The segments u; in formula (2) are called the spacer or boundary portions of w.

DEFINITION 2.7. A sequence (¥}, : n € N) satisfying properties 1-3 will be called
a construction sequence.

Associated with a construction sequence is a symbolic shift defined as follows.
Let K be the collection of x € 2% such that every finite contiguous subword of x
occurs inside some w € #;,. Then K is a closed shift invariant subset of =7 that
is compact if  is finite.”

Formally, we have constructed a symbolic shift. To get a measure preserving
system we find a shift invariant measure p concentrating on K and write (K, ).
In [6] we define the notion of a uniform construction sequence and show that
the resulting K are uniquely ergodic.

We want to be able to unambiguously parse elements of K. For this we will
use construction sequences consisting of uniquely readable words.

DEFINITION 2.8. Let X be a language and # be a collection of finite words in X.
Then ¥ is uniquely readable if and only if whenever u, v, w e # and uv = pws
then either p or s is the empty word.

In our constructions we will restrict our measures to a natural set:

DEFINITION 2.9. Suppose that (#;, : n € N) is a construction sequence for a
symbolic system K with each #}, uniquely readable. Let S be the collection of
x € K such that there are sequences of natural numbers (a;,: meN), (b, :me
N') going to infinity such that for all m there is an n, x [ [-a;;, bm) € #5.

Note that S is a dense shift invariant ¢s set. The following lemma is routine:

7 The symbolic shifts built from construction sequences coincide with transformations built
by cut-and-stack constructions.
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LEMMA 2.10. Fix a construction sequence (#y: n € N) for a symbolic system K
in a finite language. Then:

1. K is the smallest shift invariant closed subset of £% such that for all n, and
w e Wy, K has non-empty intersection with the basic open interval (w) C
22,

2. Suppose that there is a unique invariant measure v on S € K, then v is
ergodic.

Proof. Item 1 is clear from the definitions. If X is a Polish space, T: X — X is a
Borel automorphism and D is a T-invariant Borel set with a unique T-invariant
measure on D, then that measure must be ergodic. g

Let (#; : neN) be a uniquely readable construction sequence, and s € S. By
the unique readability, for each n either s(0) lies in a well-defined subword of s
belonging to #;, or in a spacer of a subword of s belonging to some #,. .

LEMMA 2.11. Suppose that K is built from (¥, : n € N) and v is a shift invariant
measure on K concentrating on S. Then for v-almost every s there is an N for all
n> N, there are a, <0 < by, such that s | [ay,, by) € #;.

Proof. Let B, be the collection of s € S such that for some a, <0< by, s |
[an, by) € #;, but s(0) is in a boundary portion of s | [a,, by). By the Ergodic
Theorem and clause 3.) of the definition of a construction sequence ) v(Bj) <
Q.

It follows from the Borel-Cantelli Lemma that for almost all s there is an
N such that for all n = N, s ¢ B,,. Fix an s € S and such an N. From the
definition of S there are arbitrarily large n* > N and a,- < 0 < by~ such that
s | lan*, by+) € Wy+. Using backwards induction from n* to N and the definition
of B, this also holds for all n€ [N, n*). O

2.4. Locations. By Lemma 2.11 for v-almost all x and for all large enough n
there is a unique k with 0 < k < g, such that s [ [-k, g, — k) € #},.

DEFINITION 2.12. Let s € S and suppose for some 0 < k< gn,s [ [-k, gn—k) € #},.
We define rj(s) to be the unique k with this property. We will call the interval
[—k, gn—k) the principal n-block of s, and s | [-k, g, — k) its principal n-subword.
The sequence of r,,’s will be called the location sequence of s.

We interpret r,,(s) = k as saying that s(0) is the k™ symbol in the principal
n-subword of s containing 0. We can view the principal n-subword of s as being
located on an interval I inside the principal n + 1-subword. Counting from the
beginning of the principal 7+ 1-subword, the r,,,,(s)™ position is located at the
rn ()™ position in I.

REMARK 2.13. Suppose that s € S has a principal n-block for all n = N. Let
N = n < m. It follows immediately from the definitions that r,(s) and r(s)
are well defined and the r,,(s)™ position of the principal m-block of s is in the
()™ position inside the principal n-block of .
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The next lemma tells us that an element of s is determined by knowing any
tail of the sequence (r,(s) : n = N) together with a tail of the principal subwords
of s.

LEMMA 2.14. Suppose that s,s' € S and (rp(s):n=N)=(r,(s"): n= N) and for
alln= N, s and s' have the same principal n-subwords. Then s =s'.

Proof. Since s,s’ € S there are sequences (ay, a,, by, b}, : n = N) tending to in-
finity such that s | [-ay, b,) € #;, and s | [a),, b)) € #y. Since ry(s) = r,(s') we
know that a,, = a, and b, = b),. Since s and s’ have the same principal subwords,
s [ [an, by) = ' | [a),, b}). The lemma follows. O

REMARK 2.15. We record some consequences of Lemma 2.14:

1. Suppose that we are given a sequence (uy,: M < n) with u, € #;. If we
specify which occurrence of u,, in 1,4, is the principal occurrence, and
the distances of the principal occurrence to the beginning and end of ;4]
go to infinity, then (u, : M < n) determines an s € S €K completely up to
a shift k with |k| < gu.

2. A sequence (r, : N < n) and sequence of words w;, € #; comes from an
infinite word s € S if both r, and g, — r,, go to infinity and that the r;,;
position in wy4; is in the r;, position in a subword of w;; identical to
Why.

Caveat: just because (r,: N < n) is the location sequence of some s€ S
and (w, : N < n) is the sequence of principal subwords of some s’ € S, it
does not follow that there is an x € S with location sequence (r,: N < n)
and sequence of subwords (w, : N < n).

3. If x, y € S have the same principal n-subwords and r,(y) = r,(x) + 1 for all
large enough n, then y = sh(x).

2.5. A note on inverses of symbolic shifts. We define operators we label rev(),
and apply them in several contexts.

DEFINITION 2.16. If x is in K, we define the reverse of x by setting rev(x)(k) =
x(—k). For AcK, define

rev(A) = {rev(x): x € A}.

If w is a word, we define rev(w) to be the reverse of w. If we are viewing w as
sitting on an interval, we take rev(w) to sit on the same interval. Similarly, if #’
is a collection of words, rev(#") is the collection of reverses of the words in #'.

If (K, sh) is an arbitrary symbolic shift then its inverse is (K, sh™1). It will be
convenient to have all of our shifts go in the same direction, thus:

PROPOSITION 2.17. The map ¢ sending x to rev(x) is a canonical isomorphism
between (K, sh™1) and (rev(K), sh).

We will use the notation ™! for the system (L, sh™!) and rev(L) for the system
(rev(L), sh).
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We can say more. For a fixed symbolic shift K, the canonical isomorphism
¢: L~! — rev(L) gives rise to a canonical correspondence

!
p=p
between joinings p of (K, sh) with (L, sh™1) and p’ of (K, sh) with (rev(L), sh).
We will also use the following remark.

REMARK 2.18. Assume that there is a unique non-atomic measure on a shift
invariant set S € K. Then there is also a unique non-atomic shift invariant
measure on rev(S) and for this measure, which we denote v~!, we have v({w)) =
v (rev(w))).

2.6. Generic points and sequences. Let T be a measure preserving transforma-
tion from (X, p) to (X, 1), where X is a compact metric space. Let C(X) be the
space of all complex valued functions. Then a point x € X is generic for T if and
only if for all f e C(X),

) 1 N-1 " B
lim (N) Y f(r (x))—fo(x)du(x).

N—o0 0

The Ergodic Theorem tells us that for a given f and ergodic T equation above
holds for a set of yu-measure one. Intersecting over a countable dense set of f
gives a set of y-measure one of generic points. For symbolic systems K < 27 we
can describe generic points x as being those x such that the y-measure of all
basic open intervals (u)¢ is equal to the density of k such that u« occurs in x
at k.

The symbolic systems we consider will be built from construction sequences
and are characterized by the limiting properties of finite information. We now
describe how this works in greater detail. A more complete discussion of what
follows can be found in [22].

Let p be a shift invariant measure on a symbolic system K defined by a
uniquely readable construction sequence (#; : n € N) in a finite language X.
Assume that g, is the length of the words in #},. By y,, we will denote the dis-
crete measure on the finite set X" given by p,, (1) = p({u)). By {1, (w) we will
denote the discrete probability measure on #;, defined by

B Kq, (w))
Ywew, Hq, (W)

Thus f1,(w) is the relative measure of (w) among all (w'), w' € #;,. The
denominator is a normalizing constant to account for spacers at stages m > n
and for shifts of size less than g,,.

Explicitly, if A, = {s €K : s(0) is the start of a word in #},}, then {shf(An)};.’ig1
are disjoint and their union has a measure that tends to one as n grows to
infinity. The set A, is partitioned into |#},| many sets by the words w € %,
and i, gives their relative size in A,. Since the measure of an arbitrary finite
cylinder set can be calculated along the individual columns represented by a
fixed w, it is clear that the [i,(w) determine uniquely the measure p.

ﬂn(w)
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Using the unique readability of words in #} a word w in 2%+ determines a
unique sequence of words w; in #} such that,

W=UyWoUy W ... Wylji].

When w € #},;, each u; is in the region of spacers added in #},y, I < I. We will

denote the empirical distribution of #}-words in w by EmpDist; (w). Formally,

Ho<j<J:wj=w'}|
J+1

Then EmpDist extends to a measure on 2 (#},) in the obvious way.
To finitize the idea of a generic point in K we introduce the notion of a
generic sequence of words.

EmpDist,(w)(w') = , W eW,.

DEFINITION 2.19. A sequence (v, € #;,: neN) is a generic sequence of words if
and only if for all k and € > 0 there is an N for all m,n > N,

| EmpDist;.(vy,) — EmpDist;. (Vi) lyar < €.
The sequence is generic for a measure p if for all k:
lim_ || EmpDist;(vn) ~ fllvar = 0
where || || yqr is the variation norm on probability distributions.

It follows that if (v, : n € N) is a generic sequence of words then it is generic
for a unique measure u. Even though Definition 2.19 involves only the mea-
sures fli it is easy to see (using the Ergodic Theorem) that for any u € =¥, if
(v, :neN) is generic then the density of the occurrences of u in the v, will
converge to u({u)).

We can summarize the exact relationship between the empirical distribu-
tions and the ug4, by saying that the empirical distribution is the proportion of
occurrences of w' € #; among the k-words that appear in v,, whereas (i, is
approximately the density of the locations of the start of k-words in v,,. Letting
u € Wy, d be the density of the positions where an occurrence of u begins in vy,
and d; be the density of locations of letters in some spacer u; we see that these
are related by

B EmpDist(v,)(u)
qdk

d

(1-ds).

We record the following consequence of the Ergodic Theorem for future ref-
erence:

PROPOSITION 2.20. Let K be an ergodic symbolic system with construction se-
quence (#; : n € N) and measure . Then for any generic s the sequence of
principal subwords of s, {wy, : n € N), is generic for u. In particular, generic
sequernces for i exist.

We will need a characterization of when a generic sequence of words (w,, :
neN) determines an ergodic measure.
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DEFINITION 2.21. A sequence (v, :neN) with v, € %, is an ergodic sequence
if for any k and e > 0 there are ng > k, and my such that for all m = my, if

Um=UgWolhha W Up ... UjW U +1

is the parsing of v,, into #,, words and spacers u; then there is a subset I
{0,1,2...,J} with |I|/J>1-¢cand for all j,j €I

3 IIEmpDistk(wj) — EmpDistk(wjr) | yar <E.

Notice that in the definition of an ergodic sequence (v, ) we are not assuming
that it is a generic sequence for a measure. This follow easily (see Lemma 2.23),
but we have not made it part of the definition to emphasize its finitary nature.
In the next lemma we use the fact that the language X is finite.

LEMMA 2.22. Any generic sequence (v, :n € N) for an ergodic measure |1 is an
ergodic sequence.

Proof. Suppose we are given k and € > 0. For all § > 0 we can apply the Ergodic
Theorem to find an N much bigger than g; and a set B with u(B) >1 -6 such
that for all s€ B and all w € #4:
1 N-1 ;
¥ 2 L (T'9) = pg (w))| <0.
0

Fix a generic point s for u. Let I = {i=0: Tise B}, and define an infinite
sequence of disjoint intervals of length N that cover I by inductively letting
ip =min(l), and ij.; =min({i€I:i=ij+ N}). We take the intervals to be the
sequence

lig, i+ N —11,[i1,i; + N—1],[is,io+ N—1],....

Notice that the complement of these intervals in Z* has density less than §
since their union clearly covers 1.

Though this is an infinite sequence of intervals, the fact our language is finite
implies that only finitely many distinct words of length N occur as subwords of s
on these intervals. For each such word w*, the density of those i in the domain
of w* such that an occurrence of a w € ¥ starts at i is within 8 of pg, (w)).?

Next take ng large enough that N/q,, <6, and parse s into words from #},,
and the sections of s corresponding to spacers in words in W; for some j = np+1.
By taking ny large enough we can take the density of locations in s occurring in
spacers to be arbitrarily small. Let 6’ be this density.

The words from #},, have length much larger than N, and we can collect
all those words w € #j, that are (1 —V/3)-covered by the N-intervals we chose
above into a set AS #},.

The proportion of s [ Z* not covered by words in A can be split into the
spacer section and the portion inside words w in B = #},, ~ A. For w € B the

8By taking N > qx, we can account for negligible “end effects” so that we have

+ Zév_qk_l Loy (T78) = g, (€ w))| < 8. We ignore end effects in the rest of the proof.
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complement of the N-intervals has density at least v/5. It follows that the den-
sity of sections of s covered by elements of B is less than v/3.
Thus the fraction of s not covered by words in A is at most V& +&’. It is now
clear that if §,6' are chosen to be sufficiently small then
) Y fny(w)>1-¢,
weA

and all w € A will have the property that
| EmpDist; (w) — fixllyar <€/2,

which implies inequality (3) for pairs of words in A. Using inequality (4) and
the fact that (v, is generic for u gives an my so that for all m = my when v, is
parsed into ny words a (1 —€)-fraction will lie in A. This concludes the proof. [

We will also need the converse to Lemma 2.22, namely that the limiting mea-
sure defined by an ergodic sequence is, in fact, ergodic.

LEMMA 2.23. An ergodic sequence is generic and the measure u defined by an
ergodic sequence (v, : n €N is ergodic.

Proof. Inequality (3) implies that for each k and w € #4%, the limit of the density
of occurrences of w in v, exists as n goes to infinity. It follows (since #% is finite)
that (v, : neN) is a generic sequence and hence it defines a unique measure .

The ergodicity of u is equivalent to the fact that the ergodic averages of all
L? functions converge almost everywhere to a constant. Functions of the form
1(wy where w € U, #}, and their shifts linearly span a dense set in L? from which
it easily follows that if u were not ergodic there would be some k, and w € #}
with (1/N) ¥, -1 1<w>(Tix) converging p-a.e. to a non-constant function. This
means that there is a y > 0 and disjoint sets By, B; of positive measure in K such
that for all large enough N for all xp € By, x; € By

1 N-1 ; 1 N-1 ;

(5) ~ ; Liwy (T"x0) = ; Loy (T x1)| 2 7.

Take € small compared to y and p(By), 1(B1). Find ng, my as in the definition
of ergodic sequence for this k and €. Choose N large enough that inequality (5)
holds and so that g,,/N is negligible. Finally take m = ng so that N/g,, is negli-
gible.

The inequality (5) depends only on the initial (V + gx)-block of xy and x;.
Thus for large enough m we can compute u(By) and p(B;) by the empirical
distributions of the (N + gi)-blocks in vy,.

Since N is large compared to g, the frequency of occurrence of w in a
block of length N + gy is determined by its frequencies in the words in %/,
in the ny-parsing of v,,. We now get a contradiction to inequality (5), since
except for an e-fraction, these #},,-words have their k-words distributed very
close to fir(w). O

If S and T are symbolic systems then a joining p of S and T will be a sym-
bolic system, but may not have well-defined construction sequence, even if S
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and T do.” Accordingly we must generalize our definition of empirical distribu-
tion to take into account the relative locations of words in typical (s, ) e K x L.
We express this by shifting one of the basic open sets and considering words
(w, sh’(v)), which we view as starting at the locations (0, s).

Let (#, : n € N) and (7, : n € N) be uniquely readable construction se-
quences for K and L in the languages Z, A respectively. Assume for simplicity
that all words in #;, and 7;, have the same length.

Let n < n' <n+ 1. Then we can uniquely parse a word w € #;,,; as

W=uUyWouiwy...Wylj+1

where each w; € #,, and each u; is in the region of spacers for words in #,,,
I’ < I. The similar statement holds for v} € %y, and v € ¥,

I N A A o
V= UgUgUy V) .. Vgl .
The definition must take into account the relative shifts of w and v, the shifts

of (wj, vy) allow spacers to occur in different places and for the possibility that

J#K.

Let n < n' < n+1 be natural numbers, s,s’ € Z, and (w',v') € #,, x ¥y, and
(w, v) € Wyt1 x Vyey. Write w and v in terms of n and n’-words as above. For
s,s', define an occurrence of (w', sh® () in (w, sh®(v)) to be a j <7 such that
wj = w' and if k is the location of w; in w then v' occurs at k + 5" in sh*(v).
We note the bijection between occurrences of W', sh® (V")) in (w,sh®(v)) and
occurrences of (v, sh™ (w")) in (v, sh™S(w)).

In defining empirical distributions for joinings we generalize Definition 2.19.
The empirical distribution of a shifted pair is defined to be the proportion of
times it occurs, relative to the proportion of times arbitrary pairs with the same
shift occur.

DEFINITION 2.24. Fix w, s, v. Let A be the collection
{j :for some (w*, v*) e W, x Vyy, (w*, sh® (v*)) occurs atjin (w, sh®(v)) }
Assume that A # @. For w' € #,, and v' € ¥,;, we define:

{o=<j=<7J: (w', sh® (v)) occurs at it
| Al .
As before, EmpDist,, ,, (w, sh®(v)) extends uniquely to a probability measure

on Wy, x V). Definition 2.24 facilitates a notion of a generic sequence for a
joining.

EmpDist,, ,, o(w, sh* () (w',v) =

DEFINITION 2.25. A sequence of {(wy, Vn,Sn) € W xVyxZ : n e N) is called
generic if and only if

1. ZM<ooand
qn

9We run into this problem when considering joinings of circular systems and their inverses
that project to the §-map on the canonical factors; these notions are defined in future sections.
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2. for all n,n',s" and € > 0 there is an N for all m,m’ > N,
| EmpDist,, (W, Sh* (1)) = EmpDist,, o (Wpy, B (V1)) | var < €.
The definition of an ergodic sequence of pairs is done analogously.

It is easy to check that ((wy, v,,s,) : n € N) is generic/ergodic if and only if
((vn, wpn,—Ssp) :neN) is generic/ergodic. For ergodic joinings the analogues of
Proposition 2.20, and Lemmas 2.22 and 2.23 hold and are proved in exactly the
same way.

We have given these definitions in the case of a product of two symbolic
shifts, but they generalize immediately to products of three or more shifts. For
example, to consider three shifts with construction sequences (%, )n, (Vi) n,
(W) n, we would consider a sequence of the form

((Un, Uy, Wy, Sp, ty) : REN),

where the words belong to the respective construction sequences and the s,’s
and t,’s give the shifts relative to the first coordinate.

We will be concerned with compositions of joinings, which involves products
of three shifts. To prepare for this we need the notion of a conditional empirical
distribution.

DEFINITION 2.26. Let n,n’ < n+ 1. Given a fixed w* € #;y and a pair (w,v) €
Wil % Vyyp and (s, s") we define the conditional empirical distribution to be

EmpDist,, ¢(w, sh*()|w*) (V)
~ [{0<j<7J:(w* sh® (V") occurs at j}|
~ |{j = J:for some v* € ¥y, (w*, sh¥' (v*)) occurs at j}|

for v' e ¥,

Using the same ideas, we can define the empirical distribution conditioned
on v* € 7 by looking at (sh™%(w), v) and counting occurrences of sh~'(w"), v*)
for the w' € #j.

This definition generalizes to products of three or more systems. When work-
ing in three or more systems, there will be multiple s’s playing the role of s’ in
Definition 2.26. They will refer to the position of the sequences being counted,
relative to the conditioning sequence. So for example, if IK,L,M have construc-
tion sequences (%n ) n, V) n, {Wn)n and {(Up, U, Wy, Sp, ty) : n €N is a generic
sequence for a joining p of K, L, and M, then

EmpDistsy i .5 (tn, Sh™ (v3), sh™ (w)|v)
counts pairs (shs(u),sh“"(w)), where (u, w) € % x #j» have been shifted by s

and s’ relative to v.

Let p; be a T} x T>-invariant measure on X x Y and p; a T, x T3-invariant
measure on Y x Z. Recall from Section 2.2 that the composition of p; and p» is
defined to be projection of the relative independent joining of p; and p, over
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the common factor Y to a measure on X x Z. We now describe a method for
detecting generic sequences for relatively independent joinings.
Suppose that systems X and Z have a common factor Y.

(X,B,u,T) (Z,92,i,T)

~

Y,€,v,9)

Let p = Xxy Z be the relatively independent joining of X and Y. Let y, iy, py
be the distintegrations of y, i and p respectively. Then the relatively indepen-
dent joining p is characterized by the fact that for v-a.e. y,

©®) Py =ty * fy.
Let (., oy, ), n € N) be sequences of refining partitions that generate %, 2,
and €, respectively. Since the sequence of partitions </, x </, generates 8® 2,

equation (6) is equivalent to the property that for all Ay € o), Ay € <, and
v-a.e. ¥,

@) Ly (Ap) % fiy(Ag) = py(Ag x A).

To finitize this we approximate y,(Ay) by u(Ag| A}, () for large m, where A, (y)
is the atom of «/,, to which y belongs. We let p,(<#) be shorthand for the
distribution (u(Ag) : Ax € &), and u(styl<f,),)(y) stands for the conditional
distribution p(Agl A}, (1), Ak € k. (We use similar notation in Lemma 2.27 for
the conditional distribution given by p, u and fi on various partitions.)

By Martingale convergence,'’ for ¢ > 0 and fixed k, if m is sufficiently large
then for (1 —¢) proportion of the y’ in the same atom as y:

Iy (o) = il ) Dl var < €
but for a collection of A}, of whose union has v-measure less than e.

One can deal similarly with (i, and p,. We have shown

LEMMA 2.27. In the notation above, p is the relatively independent joining of u
and 1 if and only if for all k,e > 0, for all large enough m, there is a collection of
atoms Ay, € o), of total measure at least 1 — € for which:

®) Ity x | Am) — (| Am) * el Ap) | var < €.
We now express Lemma 2.27 in terms of sequences of finite words. Suppose

that (%,),{Vn), and (#;,) are the uniquely readable construction sequences for
X,Y,and Z.

PROPOSITION 2.28. Let ((tn, Un, Wn, Sn, tn) € Un x Vy x Wy x Z? : n €N be a se-
quence of words. Suppose that

1. {((un, v, Sn))n is generic for p;.

2. {(vp, Wy, ty) )y is generic for p,.

10See, e.g., [11, Theorem 14.26, page 261].
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3. foralle >0,k and s* for all sufficiently large k' there is an N and a set
Gy <V and for each v € Gy a set of indices I, < [0, gy') that satisfies |I,,| >
(1-€)qy such that foralln> N:

@ Xyeg, EmpDist(vy)(v) >1—¢€ and
(b) forallve Gy and s€ I,

|EmpDisty ;. ¢ ¢4 s (Un, Sh™ (vp), sh™ (wy,)|v)
— EmpDisty. ((u, sh* (v,)|v) * EmpDist; ¢, o (Vn, shi" =S (w0l var

is less than e.

If p is the relatively independent joining of p1, p2 then ((un, vy, Wy, Sp, tr):REN)
is a generic sequence for p.

Proof. Observe that the hypothesis 3b implies a similar equation for any k; < k
while the other parameters are fixed. Now use hypothesis 3a with a summable
sequence of €’s and we can conclude by the Borel-Cantelli lemma that for v-
almost every y € Y for k' sufficiently large, if v (y) is the principal k’-block of
y with location ry/, then the inequality in 3b will hold for s = rp and v = vy (y).
Now by hypotheses 1 and 2, the single empirical distributions are converging
to (p1)y and (p2), respectively (where (p;)y is the disintegration of p; over y).
It follows by integration that the sequence of (i, vy, Wy, Sy, ty)’s is generic
for a measure p on X x Y x Z, which is the relatively independent joining. [

REMARK 2.29. It follows immediately from hypothesis 3 of Proposition 2.28 that
if we are given a finite set F of natural numbers then for all sufficiently large
k' we can find an N, Gy, and I, as in hypothesis 3 so that 3a and 3b hold
simultaneously for all s* € F.

An immediate corollary of this is

COROLLARY 2.30. Suppose that {(un, Uy, Wy, Sp, ty) : B € N) satisfies the hypothe-
ses of Proposition 2.28. Then {(up, shi»(w,)):neN) is generic for py o py.

There is a converse to Proposition 2.28, namely that a generic sequence for
the relatively independent joining of two symbolic systems satisfies the condi-
tions 1-3 of the proposition. The first two are immediate while the third simply
expresses the fact that the generic sequence is actually representing the rela-
tively independent joining. For later use we record this:

LEMMA 2.31. Given joinings p1 of X x Y and p, of Y x Z if ((uy, Vn, Wy, Sy, tn)
n € N) is generic for the relatively independent joining p then it satisfies the
hypotheses of Proposition 2.28.

2.7. Unitary operators. We will use spectral tools introduced by Koopman and
studied by Halmos and von Neumann. We reprise the basic facts we will use.
Readers unfamiliar with this material can find it in [21] or [11]. Let (X, %, u, T)
and (Y,%¥,v,S) be measure preserving systems.
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If T: X — Y is a measure preserving transformation then 7 induces a unitary
isometry Ut : L?>(Y) — L?(X) by setting

Ur(f)=foT.

If T is an isomorphism then Ut is invertible. Moreover if U : L?(Y) — L?(X) is
multiplicative on bounded functions then there is a measure preserving trans-
formation T : X — Y such that U = U7y.

If 7: X — Y is a factor map, then the map f — forn gives an injection of L?>(Y)
into L2(X), whose range is a closed Ur invariant subspace. Conversely if M <
[2(X) is a closed Uy invariant subspace containing 1 that is closed under taking
complex conjugates, truncation and multiplication by elements of M N L*°(X),
then there is a factor Y < X such that M = L2(Y).

For the rest of this discussion assume that T is ergodic. Then the eigenvalues
of U7 all have multiplicity one and form a subgroup Gr < T. The group Gr is
an isomorphism invariant.

The collection of eigenfunctions generate a closed subspace of L%(X) corre-
sponding to a factor K of X. This factor is called the Kronecker factor. If H is
any subgroup of Gr then there is a further factor Ky of K that is canonically
determined by the eigenfunctions coming from eigenvalues in H.

Assume that ¢ is an isomorphism from (X, T) to (Y, S). Then Gt = Gg and if
K g, K }; are the factors of X and Y determined by H < Gt then U, determines
an unique isomorphism between K 1)51 and K fl

It follows from this that if a € T is an eigenvalue of Ut then there are factors
of X and Y isomorphic to rotation %, of T by a. Moreover there is a unique
isomorphism Uq’g (T, 8,1, Rq) — (T,98,1, %) that intertwines Uy and the pro-
jection maps of X and Y to (T,%8,1,%,).

The analogous statement holds for odometers. If G consists of finite order
eigenvalues and @ is the corresponding odometer transformation, then there is
a unique isomorphism U(Z :0 — O that intertwines Uy and the projection maps
of Xand Y to 0.

2.8. Stationary codes and d-distance. In this section we briefly describe a stan-
dard idea, that of a stationary code, that we will use to understand the existence
of factor maps and isomorphisms. We review some standard facts here. A reader
unfamiliar with this material who wants to see proofs should see [18].

DEFINITION 2.32. Suppose that Z is a countable language. A code of length
2N +1 is a function A : ZI"NN . 5 where [-N, N] is the interval of integers
starting at — N and ending at N.
Given a code A and an s € =7 we define the stationary code determined by A
to be A(s), where
A(s)(k) = A(s | [k— N, k+ NJ).

Let (24,4, v, sh) be a symbolic system. Suppose we have two codes A and
A, that are not necessarily of the same length. Define

D={5¢3%: R(9)0) £ M (O |
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and d(Ag, A1) =v(D). Then d is a semi-metric on the collection of codes. The
following is a consequence of the Borel-Cantelli lemma.

LEMMA 2.33. Suppose (A;:ie€N) is a sequence of codes such thaty_; d(A;, Ait+1)
<oo. Then there is a shift invariant Borel map S : % — 37 such that for v-almost
all s, lim;_.oo A; (s) = S(s).

A shift invariant Borel map S:*? — X7, determines a factor (X%, 4, , sh) of
(2,9, v,sh) by setting u = S*v (i.e., u(A) = vo S 1(A)). Hence a convergent
sequence of stationary codes determines a factor of (24,2, v, sh).

Let Ag and A; be codes. Define d(Ag(s), A1(s)) to be

[{ke[-N,NI: Ag(s)(k) # A () (k)
2N +1 ’
More generally we can define the d metric on Z[4? by setting
I{kelab):x(k)#y)}
b-a ’

lim N—oo

Ci[u,b] (x,y) =

For x,y € =%, we set
d(x,y) =limy_codi-nn (X [ [-N, N1,y | [-N, N]),

provided this limit exists.
To compute distances between codes we will use the following application of
the Ergodic Theorem.

LEMMA 2.34. Suppose that (X%, sh,v) is ergodic and let Ay and A be codes. Then
for almost all se S )
d(No, A1) = d(No(s), A1(8)).

We finish with a useful remark:

REMARK 2.35. If w; and w; are words in a language X defined on an interval I

and J c I with % >0, then d;(wl, wo) Eﬁd_](wl, wo).

3. ODOMETER BASED AND CIRCULAR SYMBOLIC SYSTEMS

Two types of symbolic shifts play central roles for the proofs of our main theo-
rem. We dub them odometer based and circular systems. In this section we give
some general facts about symbolic systems with uniquely readable construction
sequences, define odometer and circular systems, and show that every circular
system has a canonical rotation factor.

3.1. Odometer based systems. We recall the definition of an odometer trans-
formation. Let (k;,:n € N) be a sequence of natural numbers greater than or
equal to 2. Let

[e.°]

o=1[]z/k,z

n=0
be the (k;)-adic integers. Then O naturally has a compact abelian group struc-
ture and hence carries a Haar measure u. We make O into a measure preserving
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system @ by defining T : O — O to be addition by 1 in the (k,)-adic integers.
Concretely, this is the map that “adds one to Z/koZ and carries right.” Then T
is an invertible transformation that preserves the Haar measure p on ©. Let
Ko=ko*ky*ky*-*ky_.

The following results are standard:

LEMMA 3.1. Let @ be an odometer system.

1. @ is ergodic.

2. The map x — —x is an isomorphism between (0,3, u, T) and (0, %, 1, T™).

3. Odometer maps are transformations with discrete spectrum and the eigen-
values of the associated linear operator are the K" roots of unity (n > 0).

Any natural number a can be uniquely written as
a=ap+ a1k0 + az(kokl) +ee 4+ dj(k'()klkz... kj—l)
for some sequence of natural numbers ay, ay,...,a; with 0 < a; <k;.

LEMMA 3.2. Suppose that {r, : n € N) is a sequence of natural numbers with
0<ry<koky...kp—1 and rp, = ryy1 mod (K,). Then there is a unique element
x € O such that ry, = x(0) + x(1) ko + - - + x(n) (koky ... kn—1) for each n.

We now define the collection of symbolic systems that have odometer maps
as their timing mechanism. This timing mechanism can be used to parse typical
elements of the symbolic system.

DEFINITION 3.3. Let (#7,: n € N) be a uniquely readable construction sequence
with the properties that #; = Z and for all n,#,,+1 < #;)*n for some k,. The
associated symbolic system will be called an odometer based system.

Thus odometer based systems are those built from construction sequences
(W, : n € N) such that the words in #},,; are concatenations of words in #;,
of a fixed length k,. The words in #/, all have length K;, and the words u; in
equation (2) are all the empty words.

Equivalently, an odometer based transformation is one that can be built by
a cut-and-stack construction using no spacers. An easy consequence of the
definition is that for odometer based systems KK, for all s € K and for all n € N,
1, (s) exists.

PROPOSITION 3.4. Let K be an odometer based system and suppose that v is a
shift invariant measure. Then v concentrates on S.

Proof. Let B=IK ~S. Then B is shift invariant. Suppose that v gives B positive
measure. For s € B let a,(s) <0 < b, (s) be the left and right endpoints of the
principal n-block of s. Then for all s € B there is an N € N such that

1. forall n,—N < a, or

2. for all n,b, < N.

We assume that v gives the collection B* of s such that there is an N € N for all
n,—N < a, positive measure, the other case is similar.
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Define f : B* — N by setting f(s) = least N satisfying item 1. Then f is a
Borel function. Let B, = f~!(n). Then the B,’s are disjoint, B* = J,s¢ B, and
sh™'(B,,) = B,,+1. Hence for all n, m,v(B,) = v(B,,), a contradiction. O

The next lemma justifies our terminology.

LEMMA 3.5. Let K be an odometer based system with each Wy.1 S (W;)*». Then
there is a canonical factor map

n:S—0,
where O is the odometer system determined by (k,:neN).

Proof. For each s € S, we know that for all n,r,(s) is defined and both r;, and
kn — rn go to infinity. By Lemma 3.2, the sequence (r,(s) : n € N) defines a
unique element 7(s) in @. It is easily checked that & intertwines sh and T. [

In the forthcoming paper [8] we show a strong converse to this result: if T has
finite entropy and an odometer factor then T can be presented by an odometer
based system.

Heuristically, the odometer transformation €@ parses the sequences s in S €K
by indicating where the words constituting s begin and end. Shifting s by one
unit shifts this parsing by one. We can understand elements of s as being an
element of the odometer with words in %/, filled in inductively.

We will use the following remark about the canonical factor of the inverse of
an odometer based system.

REMARK 3.6. If 7: L — @ is the canonical factor map, then the function 7: L —
O is also factor map from (L, sh™) to @7! (i.e., O with the operation “—17). If
(W, : neN) is the construction sequence for L, then (rev(#},) : n€N) is a con-
struction sequence for rev(L). If ¢ : L~! = rev(L) is the canonical isomorphism
given by Proposition 2.17, then Lemma 3.1 tells us that the projection of ¢ to a
map ¢" : 0 — O is given by x— —x.

From this remark we immediately see

LEMMA 3.7. Let p — p' be the canonical correspondence between joinings of
(K, sh) and (L,sh™') and joinings of (K,sh) and (rev(L),sh) given after Propo-
sition 2.17. Then the joining p concentrates on the set of pairs (s, t) such that
7 (s) = —n (1) if and only if p' concentrates on the collection of (s, t) such that
¥ (s) =aL" (1).

3.2. Circular systems. We now define and discuss circular systems. The pa-
per [6] showed that the circular systems give symbolic characterizations of
smooth diffeomorphisms defined by the Anosov-Katok method of conjugacies.
The construction sequences of circular systems have quite specific combinato-
rial properties that will be important to our understanding of the Anosov-Katok
systems and their centralizers in the third paper in this series.

We call these systems circular because they are closely tied to the behavior of
rotations by a convergent sequence of rationals a, = p,/q,. The rational rota-
tion by p/q permutes the 1/q intervals of the circle cyclically along a sequence
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determined by some numbers j; def p~li (mod q): the interval [i/q, (i +1)/q)
is the leh interval in the sequence.!! The operation ¢ which we are about to
describe models the relationship between rotations by p/q and p’/q' when ¢’
is very close to g.

Let k, I, p, g be positive natural numbers with p < g relatively prime. Set

©) Jji=q 7l
with j; < g. It is easy to verify that
(10) q-Ji=Jjg-i-

Let Z be a non-empty set. We define an operation %, which depends on p, g,
an integer [/ > 1, and on sequences wy,..., Wr_1 of words in a language Z U {b, e}
by setting'?

q-1k-1 , ‘
(1) € (wo, w1, Wy, ..., w-1) = [ [TbT Fwi el
i=0 j=0

To start our construction we frequently take py =0 and gy = 1. In this case we
adopt the convention that j, = 0. Hence

= qyyl-1
6 (Wwo, Wi,..., Wi_1) Hb w; .

j<k
REMARK 3.8.
» Suppose that each w; has length g, then the length of € (wy, wy, ..., wi-1)
is klq®.

« Every occurrence of an e in 6 (wy, ..., Wi-1) has an occurrence of a b to
the left of it. If p # 0 then every occurrence of a b has an e to the right of
it.

o Suppose that n < m and b occurs at position n in € (wg, wy,..., Wir—1) and
e occurs at m and neither occurrence is in a w;. Then there must be some
w; occurring between n and m.

The ¢ operator automatically creates uniquely readable words, as the next
lemma shows, however we will need a stronger unique readability assumption
for our definition of circular systems.

LEMMA 3.9. Suppose thatX is a language, b,e ¢ Z, 0 < p < q and that uy, ..., Uk_1,
vo,..., Vk—1 and wy, ..., Wyx—1 are words in the language X~ U {b, e} of some fixed
length g <1/2. Let
u=%up,u,..., Ug_1)
v=% (v, V1,..., Vk_1)
w =% (wy, Wi,..., Wk_1).
'we assume that p and ¢ are relatively prime and the exponent —1 is the multiplicative

inverse of p mod q.
12\e use [T for repeated concatenation of words.
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Suppose that uv is written as pws where p and s are words in 2 U {b,e}. Then
either p is the empty word and u = w,v = s or s is the empty word and u = p,
v=w.

Proof. The map i — j; is one-to-one. Hence each location in the word of length
klq? is uniquely determined by lengths of nearby sequences of b’s and e’s. [

In fact something stronger is true: if o € X occurs at place m in w then m
is uniquely determined by the knowing the wy, w;,..., wi-; and the kql/2+1
letters on either side of .

We now describe how to use the % operation to build a collection of sym-
bolic shifts. Our systems will be defined using a sequence of natural number
parameters k, and [, that is fundamental to the version of the Anosov-Katok
construction presented in [15].

Fix an arbitrary sequence of positive natural numbers (k,:neN). Let (I, :
n € N) be an increasing sequence of natural numbers such that } ,, 1/, < co.
From the k, and [,, we define sequences of numbers: {p,, qn, a,:neN). We
begin by letting py = 0 and gy = 1 and inductively set

(12) qn+1 = knlnqn2
(thus q; = kolp) and take
(13) Pn+1 = Pnqnknly +1.

Then clearly p, is relatively prime to g;1.'3

DEFINITION 3.10. A sequence of integers (ky, [, : n € N) such that k, =2 and
Y 1/1, < oo, will be called a circular coefficient sequence.

Let Z be a non-empty finite or countable alphabet. We will construct the
systems we study by building collections of words #}, in the alphabet Z U {b, e}
by induction as follows:

o Fix a circular coefficient sequence (ky, [, : ne€N)).

o Set #y=2.

« Having built #;, we choose a set P,4 S #;)kn and form #,,.1 by taking
all words of the form € (wg, wy ... wi,-1) with (wo, ..., wg, 1) € Pyt

We will call the elements of P, prewords.

Strong unique readability assumption. Let n € N, and view #/, as a collection
A, of letters. Then each element of P, can be viewed as a word with letters
in A;,. We assume that in the alphabet A, each P, is uniquely readable.

DEFINITION 3.11. A construction sequence {#}, : n € N ) will be called circular if
it is built in this manner using the ¢-operators, a circular coefficient sequence
and each P, satisfies the strong unique readability assumption.

13, and g;, being relatively prime for n = 1, allows us to define the integer j; in equation (9).
For qo = 1, Z/goZ has one element, [0], so we set py~ ! = pg =0.

14Passing from #; to #;,4+1 we use € with parameters k = ku,l =1, p = pn and g = g5 and
take j; = (pn)~'i modulo ;. By Remark 3.8, the length of each of the words in #},41 is qn+1.
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It follows from Lemma 3.9 that each #;, in a circular construction sequence
is uniquely readable.

DEFINITION 3.12. A symbolic shift K built from a circular construction sequence
will be called a circular system.

For emphasis we will often write circular construction sequences as (%, : n €
N) and the associated circular shift K°. We sometimes write w° to emphasize
that a word is a circular word.

We will need to analyze the words constructed by ¥ in detail. We start by
describing the boundary and interior portions of the words.

DEFINITION 3.13. Suppose that w = € (wy, w,..., Wig—1). Then w consists of
blocks of w; repeated [ —1 times, together with some b’s and e’s that are not in
the w;’s. The interior of w is the portion of w in the w;’s. The remainder of w
consists of blocks of the form b9~/ and e/i. We call this portion the boundary
of w.

In a block of the form wj._l the first and last occurrences of w; will be called

the boundary occurrences of the block wj.‘l. The other occurrences will be the
interior occurrences.

While the boundary consists of sections of w made up of b’s and e’s, not all
b’s and e’s occurring in w are in the boundary, as they may be part of a power
wf‘l.

The boundary of w constitutes a small portion of the word:

LEMMA 3.14. The proportion of the word w written in equation (11) that belongs
to its boundary is 1/1. Moreover the proportion of the word that is within q letters
of boundary of w is 3/1.

The next lemma was proved in [6, Lemma 20].

LEMMA 3.15. Let K€ be a circular system and v be a shift invariant measure on
K. Then the following are equivalent:

1. v has no atoms.

2. v concentrates on the collection of s € K¢ such that {i: s(i) ¢ {b,e}} is un-
bounded in bothZ~ and Z*.

3. v concentrates on S.

REMARK 3.16. Let K€ be a circular system.
1. There are only two invariant atomic measures, one concentrates on the

constant “b” sequence, the other on the constant “e” sequence.
2. For K¢ Lemma 2.11 can be strengthened to say that for all s € S for all
large enough n, the principal n-block of s exists.

3. The symbolic shift K¢ has zero topological entropy.

Proof. A direct inspection reveals that the only periodic points in K¢ are the two
fixed points constant “b” and “e.”
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The second item follows because if s has a principal n-block at [ay, b;,) then it
has a principal n + 1-block at some [a;+1, @n+1 + Gn+1) for an a1 with |an.1| <
lan| + (qn+1— gn).

The fact that the topological entropy of K€ is zero follows easily from the fact
that the [, tend to infinity. O

3.3. The structure of the words. The words used to form circular transforma-
tions have quite specific combinatorial properties. We begin with an important
definition for our understanding of rotations; the three subscales at stage n + 1.
Fix a sequence (#,° : n € N) defining a circular system. Using equation (11) we
define the subscales of a word w* e #7 ;:
Subscale 0 is the scale of the individual powers of w; € #;; of the form

w'~1; we call each such occurrence of a w;‘l a 0-subsection.

] )
Subscale 1 is the scale of each term in the product H?;&(bq‘ﬁ wj.‘lefi )
that has the form (b9 /i w;.’lej"); We call these terms I-subsections.

Subscale 2 is the scale of each term of H?;Ol Hf;é(bq‘fi wj.‘lefi) that has

the form H?;&(bq i wj.‘leji); We call these terms 2-subsections.

Summary
Whole Word: H?:_OI ]'[;?;5 (b9 i w}‘lej")
2-subsection: H?;é (b9 Ji wj._l eli)
1-subsection: (b9~ Tiwl-1eliy
0-subsection: w 5._1

By contrast we will discuss n-subwords of a word w. These will be subwords
that lie in #,°, the n™™ stage of the construction sequence. We will use n-block
to mean the location of the n-subword.

3.4. The canonical circle factor .#. We now define a canonical factor £ of a
circular system and show that this factor is isomorphic to a rotation of the circle

by @, where « is the limit of a, = % as n goes to infinity.

DEFINITION 3.17. Let (kj,l,,: n € N)) be a circular coefficient sequence. Let
Xy = {*}. We define a circular construction sequence such that each %, has a
unique element as follows:

1. #5 ={*} and

2. IfW,; = {wy} then #, | = {6 (wn, wy,..., wy)}.
Let £ be the resulting circular system.

It is easy to check that £ has unique ergodic non-atomic measure, since
every wy, occurs exactly k, (I, — 1)g, many times in wy.

Let K¢ be an arbitrary circular system with coefficients (k;, [,;). Then K¢ has
a canonical factor isomorphic to £". This canonical factor plays a role for circu-
lar systems analogous to the role odometer transformations play for odometer
based systems.
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To see % is a factor of K¢, we define the following function:

x() ifx(i)e{b, e}
* otherwise

(14) 7 (x)() ={

We record the following easy lemma that justifies the terminology of Defini-
tion 3.17.

LEMMA 3.18. Let 7 be defined by equation (14). Then
1. n:K°®— A& is a Lipshitz map,
2. w(sh*'(x)) = sh*'(n(x)) and thus
3. 7 is a factor map of K¢ to & and (K€)™ to & 1

A variant of item 3 is also true: 7 can be interpreted as a function from rev(lK¢)
to rev(£’). With this interpretation x is also a factor map. We will call £ the
circle factor of any circular system with construction coefficients (ky, [,: n €N ).

Fix a circular coefficient sequence (ky,l,: ne€N), and let £ and (¥, :n¢€
N') be given in Definition 3.17. Let a,, = pn/q, and a =lima,,.

If se S, from r,(s) we can determine the locations of the beginnings and
ends of the words wy, that contain s(0). Since |#,| =1 for all n, for all s€ S the
sequence (1, (s) : n € N) uniquely determines s.

THEOREM 3.19. Let v be the unique non-atomic shift invariant measure on % .
Then
(le/ﬂ%,vy Sh) = (Sl,@)/lﬂ%a))

where %, is the rotation of the unit circle by « and 98,92 are the o -algebras of
measurable sets.

Proof. A more involved geometric proof of this fact is given in [6]. Here we
present a simple algebraic proof. As usual we identify the unit circle S' with
[0,1) and use additive notation for the group operations.

By Remark 3.16 , For all s € S for all large enough n, the principal n-block of
s exists. We define a map ¢ : S — [0,1) by a limiting process. For s such that

r,(8) exists, we let

p
(8)=—
Pn q

n
if and only if
p=pnrp(s) mod gy.

CLAIM 3.20. Ifr, is defined, then |p,+1(S) — prn(s)| <2/qp.

Proof. From equation (11), we see that the position of s(0) in an n + 1-block
is determined by the parameters i € [0,q,—1),j € [0,k, —1),I* € [0,], — 1] and
rn, which determine its location among the 2-subsections, 1-subsections, 0-
subsections and inside the n-words w, respectively. Explicitly,

rn+1(8) = l(knlnqn) + ](lnqn) + (qn - ]z) + l*qn +1,(8),
where 1, (s) is the position of s(0) in its principal w;,-word.
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From the definition of p,+;, and working mod 1,
Pn+1 )

n+l1

Pn+1 =Tn+1(8) (

=Tn+1(8) (&‘i‘ )
qdn  dn+1

Expanding this, using our formula for 7,1 (s) and the fact that all but two terms
of r,,4+1(s) are divisible by ¢q,, we get

i
(15) Pn+1 = (—ji(&)+rn(ﬂ(&))+(—+6)
qn dn dn
where ] ) " ]
-_J . + +r"(s)_2]i.
kndn  knlngn  knlngn knlnary
The first and third terms of equation (15) cancel, thus

Pn+1=pPn+06.
Since 6 < 2/qy, the claim follows. O

Since the sequence 1/g, is summable, for almost all s,{p,(s) : n € w) is
Cauchy. We define

po(s) = li;lnpn(s).

It is easy to check that ¢ is one-to-one. By the unique ergodicity of the rotation
24, Theorem 3.19 will be proved when we establish

CLAIM 3.21. The map ¢y : S — [0,1) satisfies
$Po(sh(s)) = RalPo(s)).
In particular, if v is the unique invariant measure on S
(X ,€,v,sh) = ([0,1), 8,1, Ra).

Proof. Suppose that r,(s) and r,(sh(s)) both exist. Then r,(sh(s)) = r,(s) + 1.
If follows that p,(sh(s)) = pn(S) + pn/gn. Taking limits we see that ¢g(sh(s)) =
Po(s) +lim, a, = ¢o(s) +a. O

This finishes the proof of Theorem 3.19. U

3.5. Kronecker factors. Both odometer transformations and irrational rotations
of the circle are ergodic discrete spectrum transformations. Because the odome-
ter transformation based on (k; : n € N) is a factor of any odometer based
system T and the rotation %, is a factor of any circular system S, both are fac-
tors of the respective Kronecker factors of T or S. In general it is not the whole
Kronecker factor in either case.

We make the following lemma explicit in the case of odometer based transfor-
mations. In the case of systems with a circle factor the exactly analogous results
hold.
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LEMMA 3.22. Let (K,%,u,T) and (L,6,v,S) be measure preserving systems. Sup-
pose that K has an odometer factor © and that ¢ : K — L is an isomorphism.
Then there is a unique odometer factor G* of L with an isomorphism ¢ :0 — C*
such that the following diagram commutes:

K

L

C —— 0"
If each finite order eigenvalue of L has multiplicity 1 (e.g., if L is ergodic), then
O* is the unique odometer factor of L isomorphic to ©.

Proof. Since the unitary operator Uy : [%2(K) — [%(K) takes eigenfunctions to
eigenfunctions, we know that Uy takes the subspaces of L%(K) corresponding to
@ to a subspace of L?(L) corresponding to an isomorphic copy of @. The lemma
follows. U

An immediate corollary of Lemma 3.22 is that if K and L are ergodic odometer
based systems over the same odometer @, with projections mx and 7, then ¢”
is an isomorphism between the canonical odometer factors.

We record the following consequences for later use:

PROPOSITION 3.23. Suppose that K and L are both ergodic odometer based sys-
tems with coefficients (k, : n € N). Then any isomorphism ¢ : K — L takes the
canonical odometer factor 6% of K to the canonical odometer factor G* of L.

Similarly if K¢ and L¢ are both ergodic circular systems with the same coeffi-
cient sequences {kn, l,: neN)), then any isomorphism between K¢ and L€ takes
the canonical rotation ™ to the canonical rotation factor #".

Proof. In the first case there is a unique factor of K and L corresponding to
the eigenvalues of @ and @". Any isomorphism must preserve the factor cor-
responding to these eigenvalues. The same argument works for £, as it is
isomorphic to the rotation by a =1lim, p,,/q. g

3.6. Uniform systems. In [6] it is established that the strongly uniform circular
systems with sufficiently fast growing (I, : n € N) are realizable as measure
preserving diffeomorphisms of the torus. Strongly uniform systems are those for
which each word in #;, occurs the same number of times in each word in #;,,.
These systems carry unique non-atomic invariant measures, simplifying much
of what we do later in this paper. For example the correspondence between the
measures v on uniform odometer systems K and v¢ on their uniform circular
system counterparts K¢ given in equation (33), is automatic.

In the forthcoming [8] we show that non-uniform circular systems with suf-
ficiently fast growing ([, : n € N) are realizable as measure preserving diffeo-
morphisms of the torus, provided that the measures of the words in #;, go to
Zero.
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4. DETAILS OF CIRCULAR SYSTEMS

This section examines the circular systems defined in Section 3.2 in more
detail. Initially we are given a circular coefficient sequence (ky,[,: n€N)) and
(gn:neN)where g, satisfies the inductive definition in equation (12). When n
is fixed, we again let j; = (p,)~'i modulo g, and 0 < j; < g,,. Without significant
loss of generality it is convenient to assume that ) 1/g, < 1/10.

To understand joinings of circular systems we will be comparing generic ele-
ments (s, ) of circular K€ and L€, and their parsings into subwords. We will use
the following terminology:

DEFINITION 4.1. Let u, v be finite sequences of elements of U {b, e} of length g.
Given intervals I and J in Z of length g we can view u and v as functions having
domain I and J respectively. We will say that u is shifted by k relative to v if and
only if I is the shift of the interval J by k. We say that u is the k-shift of v if and
only if u and v are the same words and [ is the shift of the interval J by k.

4.1. Understanding the words. We elaborate on the descriptions given in Sec-
tion 3.3. Our first combinatorial lemma is the following:

LEMMA 4.2. Let w =€ (wy,..., Wk,-1) for some n and q = qn, k= kp,1 =1,. View
w as a word in the alphabet = U {b, e} lying on the interval of integers [0, klqg?).

1. If my and m, are the locations of the beginnings of 0-subsections in the
same 2-subsection, then mg =4 m.

2. If mg and m, are such that my is the location of the beginning of a 0-
subsection occurring in a 2-subsection H?;é(bq —Ji wj.‘lefi) and m; the be-
ginning of a 0-subsection occurring in the next 2-subsection
Hf;&(b"‘jiﬂ w}‘leji“) then my —mg =4 — ji.

Proof. To see the first point, the indices of the beginnings of 0-subsections in
the same 2-subsection differ by multiples of ¢ coming from powers of a w; and
intervals of w of the form b7 Jiel:,

To see the second point, let u and v be consecutive 2-subsections. In view
of the first point it suffices to consider the last 0-subsection of u and the first 0-
subsection of v. But these sit on either side of an interval of the form e/i b7 Ji+1,
Since ji+qg—ji+1=4 (P li-p7ti+1) =4 -p! =4 — J1, we see that mo—my =4
q+ji+4q—jis1=q 1. O

Assume that u € #;,+1 and v € #;,4+1 Urev(#;,,+1) and v is shifted with respect
to u. On the overlap of u and v, the 2-subsections of u split each 2-subsection
of v into either one or two pieces. Since all of the 2-subsections in both words
have the same length, the number of pieces in the splitting and the size of
each piece is constant across the overlap except perhaps at the two ends of the
overlap. If u splits a 2-subsection of v into two pieces, then we call the left piece
of the pair the even piece and the right piece the odd piece.

If v is shifted only slightly, it can happen that either the even piece or the
odd piece does not contain a 1-subsection. In this case we will say that split is
trivial on the left or trivial on the right.
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LEMMA 4.3. Suppose that the 2-subsections of u divide the 2-subsections of v
into two non-trivial pieces. Then

1. the boundary portion of u occurring between each consecutive pair of 2-
subsections of u completely overlaps at most one 0-subsection of v

2. there are two numbers s and t such that the positions of the 0-subsections
of v in even pieces are shifted relative to the 0-subsections of u by s and the
positions of the 0-subsections of v in odd pieces are shifted relative to the 0
subwords of u by t. Moreover s=4t — Jj.

Proof. This follows easily from Lemma 4.2 O

In the case where the split is trivial we get Lemma 4.3 with just one coefficient,
sort.
A special case Lemma 4.3 that we will use is

LEMMA 4.4. Suppose that the 2-subsections of u divide the 2-subsections of v into
two pieces and that some occurrence of an n-subword of v in an even (resp. odd)
piece is lined up with an occurrence of some n-word in u. Then every occurrence
of an n-word in an even (resp. odd) piece of v is either

(@) lined up with some n-subword of u or . .
(b) lined up with a portion of a 2-subsection that has the form eJib97Ji,

Moreover, no n-subword in an odd (resp. even) piece of v is lined up with an
n-subword in u.

4.2. Full measure sets for circular systems. Fix a summable sequence (e,:n¢€
N ) of numbers in [0, 1) and a circular coefficient sequence {k;, [, : neN). Aswe
argued in the proof of Lemma 3.14, the proportion of boundaries that occur in
words of #,’ is always summable, independently of the way we build #, . Recall
the set S € K€ given in Definition 2.9, where K¢ is the symbolic shift defined
from a construction sequence.

DEFINITION 4.5. We define some sets that a typical generic point for a circular
system eventually avoids. Let

1. E; be the collection of s € S such that s does not have a principal n-block
or s(0) is in the boundary of that n-block,

2. Eg ={s:5(0) is in the first or last £, [, copies of w in a power of the form
w1 where w e #,},

3. E,lZ = {s:5s(0) is in the first or last €, k,, 1-subsections of the 2-subsection
in which s(0) is located },

4. E% ={s:5(0) is in the first or last €, q, 2-subsections of the principal r + 1-
block of s}.

LEMMA 4.6. Assume that Y 1/1, < co. Let v be a shift invariant measure on
S S K€, where K€ is a circular system. Then
1.
Y V(E,) < co.
n
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Assume that () is a summable sequence, then fori=0,1,2,

Y v(EL) < co.
n
Proof. This is an application of the Ergodic Theorem. (Il

In particular we see

COROLLARY 4.7. Forv-almost all s there is an N = N(s) such that for alln> N,

1. s(0) is in the interior of its principal n-block,
2. s¢EL.

In particular, for almost all s and all large enough n,
3. ifs|[=1u(s),—rn(s) + qn) = w, then

ST =1n(8) = qn,—1n()) =s [ [-14(8) + qn,—Tn +2q5) = w.

Uor wh™t

4. s(0) is not in a string of the form w(l)”_ 1

Proof. This follows from the Borel-Cantelli Lemma. ([l

The elements s of S such that some shift sh*(s) fails Corollary 4.7 form a
measure zero set. Consequently we work on those elements of S whose whole
orbit satisfies Corollary 4.7. Note, however, that the N (sh*(s)) depends on the
shift k.

DEFINITION 4.8. We will call n mature for s (or say that s is mature at stage n)
if and only if 7 is so large that s ¢ E,, UlUp<;<2 E}, for all m = n.

Thus if s is mature at stage n then for all m > n the principal m-block of s
exists and conclusions 1-4 of Corollary 4.7 hold.

Recall that in Section 3.2, we defined a canonical factor of a circular system
which we called the circle factor. Since the notion of maturity only involves the
punctuation of the words involved, it is an easy remark that for all s€ S, n is
mature for s just in case n is mature for 7(s), where 7 is the canonical factor
map.

For the following definition and lemma, we view s € S as a function with do-
main Z, and s € #}, as a function with domain [0, g,,) or, sometimes, an interval
[k, k+ g5). In each of these cases we use dom(s) to mean the domain of s.

DEFINITION 4.9. We will use the symbol 9, in multiple equivalent ways. If s€ S
or s € #,5 we define d,, = 0,,(s) to be the collection of i such that sh(s)(0) is in
the boundary portion of an n-subword of s. This is well-defined by our unique
readability lemma. In the spatial context we will say that s € 9, if s(0) is in the
boundary of an n-subword of s.

For se S
On(s) <\ J{1L,1+qn): 1€ dom(s) and s [ [, 1+ qn) € W7}
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An integer i is in 8,(s) € Z if and only if shi(s), viewed as an element of K¢,
belongs to the n-boundary, 9;,.

In what follows we will be considering a generic point s and all of its shifts.
We will use the fact if s is mature at stage n, then we can detect locally those i
for which the i-shifts of s are mature.

LEMMA 4.10. Suppose that s € S, n is mature for s and n < m.

1. Suppose that i € (=1, (S), gm — Tm(8)). Then n is mature for shi(s) if and
only if
@ i¢Unsk<mOr and
(b) $h'(s) € Unskam(E) U EL UEY).

2. For all but at most (O p<k<m 1/ 1K) + (X n<k<m 6€xGi+1)/ Gm portion of the
i €[=1rm(S), gm—rm(s)), the point shi(s) is mature for n.

In particular, if -1 > supm(l/qm)Zk’":_n1 6k Gr+1, 111 > Zfzn 1/l and n
is mature for s, the upper density of those i € Z for which the i-shift of s is not
mature for n is less than 1/1;,_1 +€,-1.

Similarly, we have the following:

LEMMA 4.11. Suppose that s € S and s has a principal n-block. Then n is mature
provided that s ¢ E, UUp<m, ES, UEL UE2,. In particular, if n is mature for s and
s is not in a boundary portion of its principal n—1-block or in Eg_l UE,11_1 uEfl_l,
then n—1 is mature for s.

4.3. The  map. Proposition 3.23 implies that any isomorphism ¢ between an
ergodic (K¢ sh) and (K¢, sh™!) induces an isomorphism ¢” between (%, sh)
and (%, sh™!), where % is the canonical circle factor. Because (%,sh™!) is
canonically isomorphic with (rev(%), sh) (Proposition 2.17) and (%, sh) is iso-
morphic to the rotation 2 of the circle, we see that (rev(.£"), sh) is isomorphic
to the rotation Z_,,.

We use a specific isomorphism f: (£, sh) — (rev(£'), sh) as a benchmark for
understanding of potential maps ¢ : K¢ — rev(IK). If we view £ as a rotation
%, of the unit circle by a radians one can view the transformation jj as a sym-
bolic analogue of complex conjugation z — z on the unit circle, which is an
isomorphism between 2, and %_,. Copying f over to a map on the unit circle
gives an isomorphism ¢ between %, and %_,. Such an isomorphism must be
of the form

for some . It follows immediately from this characterization that f is an invo-
lution, however for completeness we prove this directly (and symbolically) in
Proposition 4.20.

As usual we find it more convenient to work on the unit interval I = [0, 1)
rather than the unit circle. The complex conjugacy map z — z corresponds to
the map x— 1—-x on [0,1).
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We begin by recalling from equation (11) the formula for a w e # ¢ , that is

n+1
of the form € (wy, ..., wi,—1):
ik
(16) w= ]‘[ _]'[(bq Twi™ el
i=0j=0
where g = gu, k = kp, 1 =1, and j; =4, (pn)~'i with 0 < j; < g,,. By examining
this formula we see that
q k . ,
rev(w) = [] [ /' reviwy_ ' b7~ Jo.
i=1j=1

Applying the identity in formula (10), we see that this can be rewritten as'®

q k . .
17 rev(w) = [ [ (e 7 rev(wi_ "' b).
i=1j=1
We can reindex again and get another form of equation (17):
q-1k-1 . .
(18) rev(w) = [] [] e 7+ rev(wk_j_l)l_lbf”l).
i=0 j=0
We can now state the basic lemma about the way w lines up with a shift of
rev(w).

LEMMA 4.12. Let w € Wncﬂ and view w as sitting at location [0, qp+1) S Z. Let
q = qn and k = k;. Consider sh™/' (rev(w)) as being the word rev(w) in location
[j1,Gn+1 + J1)) S Z. For all but at most 2kq of the occurrences of an n-subword
w; of w starting in a location r € [0, gn+1), the reversed word rev(wy._ j-1) occurs
in sh™)' (rev(w)) starting atr.

Proof. The word w starts with a block of g b’s and then a block of [ -1 copies
of wy, whereas rev(w) starts with a block of g — j; e’s followed by I -1 copies of
rev(wy_;). Hence if we shift rev(w) to the right by j; (to get sh™/' (rev(w))) the
first copy of rev(wy_;) is aligned with the first copy of wy in w. Hence all of the
copies of rev(wy_1) in the first 1-subsection are aligned with the copies of wy in
the first 1-subsection of w. Because the consecutive blocks of b’s and e’s (or e’s
and b’s) in the 2-subsections add up to g we see that every copy of rev(wy_;_1)
in the first 2-subsection of sh™/! (rev(w)) is aligned with a copy of w -

We now argue as in Section 4.1. At the end of each 2-subsection, w has a
block of e’s of length j;, followed at the beginning of the next 2-subsection, by
a block of b’s of length q — j; 4. Together the e’s and b’s form a block of length
Jji+q—ji+1, which is equivalent mod(q) to —j;. Similarly the combined length of
a block of b’s and e’s finishing and starting consecutive 2-subsections of rev(w)
is equal to —j; mod(q).

Both the beginning of the block of e’s ending the k™ 2-subsection and the
end of the block of b’s starting the k + 1°7 2-subsection are of distance less than
g from the location of the end of the k™ 2-subsection. It follows from this and

15We take jg=0.
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the comments in the previous paragraph, that if S; and S, are consecutive 2-
subsections of w and S and ), are the corresponding 2-subsections of rev(w)
then the beginning of the first occurrence of rev(wy_) in S, is within 24 of the
first occurrence of wy in S, and their locations are equivalent mod(g). Hence
inside the first 1-subsection, the 0-subsections are lined up except for at most 2
copies of wy. This pattern is continued through S,, giving at most 2k locations
of n-blocks that are not aligned in S,.

Since there are less than g 2-subsections with potential misalignments, the
lemma is proved. 0

The next proposition gives a somewhat more detailed view of the situation
of Lemma 4.12.

PROPOSITION 4.13. Let w,w' € #,{,| and suppose that
w =€ (vo, V1,-.., Vg,-1) and W' =€y, vy,..., v ).

We look at the relative positions of n-words in w and sh™ I (rev(w")).

1. Each occurrence of v; in w is either lined up with an occurrence of
rev( U;cn—i—l) or entirely lined up with a section of 8,, inside sh™J' (rev(w")).
2. There is a number C such that for all i the number of occurrences of v;
lined up with an occurrence of rev(v}cn_i_l) is C. It follows that the number
of occurrences of v; not lined up with an occurrence ofrev(v;cn_l._l) is the
constant K=C—q(l-1).

Proof. The first part is clear from the proof of Lemma 4.12. The second part
follows because all of the 1-subsections in a given 2-subsection of w have the
same alignment relative to sh™/! (rev(w")). U

Since the total number of occurrences of n-subwords is k(I —1) ¢, the propor-
tion of n-subwords lined up with 9,, in sh™Ji(rev(w')) is at most 2/1.

Suppose that % is given by the canonical construction sequence (¥#,*: n €
N). We define a sequence of functions (A, : n € N) and argue that they con-
verge to an isomorphism from £ to rev(.%).

We begin by defining an increasing sequence of natural numbers. Recall the
definition of the Anosov-Katok coefficients p,, and g, given in equations (13)
and (12). Since p, and g, are relatively prime we can define (p,)~! in Z/q,Z.
For the following definition we will view (p,,)~! as a natural number with 0 <
(P) "' < qn.'°

We let Ag =0 and

(19) Aps1=An—(p) ™t

LEMMA 4.14. If A, is defined as above, then |A,+11 <2qy.

1611 the notation used to define ¢, (p,)~! = j1. However the notation j; is ambiguous (it
depends on n), so we use (pn)_l in this context.
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Proof. This is proved inductively using the fact that g,+1 > 2q,,. O

Let £ be the circular system in the language X~ = {*}, as given in Defini-
tion 3.17. We now define a stationary code A, with domain S that approximates
elements of rev(.£") by defining

shAnt2r(9=(@n =D (rey(s)) (0)  if r,,(s) is defined

(20) An(s) = { b otherwise.

Since for all s € S and all large enough n, r,(s) is defined, the default value is
only obtained for finitely many n.

LEMMA 4.15. A, is given by a finite code.

Proof. To check whether r,(s) is defined one need only examine s on the interval
[—gn,gn] < Z. The relevant portion of rev(s) necessary to compute A,(s) is
contained in s [ [-q, — |Anl, gn + |Anll. Therefore A, is determined by a finite
code. O

The formula in equation (20) can be understood as follows. Suppose s € S and
s has a principal n-block. Then the element s* defined as sh?"»(9=(4=1 (rev(s))
belongs to rev(%'), has a principal n-block that is the reverse of the principal
n-block of s and moreover, the principal n-block of s* is exactly lined up with
the principal n-block of s.

The reverse of the principal n-block of s begins with a block of ¢,,_1—(pn_1) ™"
many e’s, and hence if s’ = shC@n-0"D+2r()=(@=D (rey(s)) then the first n — 1-
subword of the principal n-block of s’ is lined up with the first 7 — 1-subword
of the principal n-block of s. The rest of the terms used to define A, (coming
from A;_;) are used for lower order adjustments inside this principal n-block.

Thus, a qualitative description of A,(s) can be given as follows:

1. It first reverses the principal n-block of s leaving it exactly lined up.

2. It then adjusts the result by shifting so that the first occurrence of a reverse
n—1-block lines up with the first n—1-subword of the principal n-block of s.
(So far we have described sh((Pr-1)")+2(9=(@n=D (rey(s)).) By Lemma 4.12,
we get a sequence where the principal n-block of A, (s) has the vast major-
ity of its n— 1-blocks lined up with the n—1-blocks of s: all of them except
those that span a section of boundary at the juncture of two 2-subsections
of the principal n-word of s.

3. Finally it shifts by A,_;, which is the cumulative adjustment at earlier
stages.

The next lemma follows from this description:

LEMMA 4.16. Let n < m and suppose that s € X has a principal m-block. Let
s’ = sh?'m=a+An=4n(rey(s)). Then at least

m—1 2
1;[ (1 CUi- 1))
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proportion of the n-blocks in the principal m-block of s are lined up with n-
blocks in s'.
Proof. We first consider m = n+1. By Lemma 4.12, all but 2k, gy of the n-blocks
in w are aligned with the n-blocks in sh™/ (rev(w)). This is proportion

2knqn ] 2

l-—mF—— = .
knqn(ln -1) ln -1

The general result follows by induction. U

THEOREM 4.17. Suppose that (kp, 1, : n € N) is a circular coefficient sequence.
Then the sequence of stationary codes (A, : n € N') converges to a shift invariant
functionti: & — ({x}U{b, e})? that induces an isomorphisml from & torev(x).

Proof. We first show that the sequence (Kn :n e€N) converges, which will follow
if we show that the code distances between the A,;, and A, ; are summable. For
notational simplicity, let g = g, k= ky, I = I, and j =4 (p,) ' with0< j<g.

Claim: There is a summable sequence of positive numbers 6, such that for
almost all s, the d-distance between A,(s) and A, (s) is bounded by §,, and
A, (s) and A,41(s) agree on all but at most §,, proportion of the n-blocks of s.

We use Lemma 2.34, which tells us that for a typical s € S, the code distance
between A, and A4 is d(A,(s), Ap+1(s)), which is defined to be the density of

def
@ D E {k: Ap(sh($)(0) # Aps1 (sh* () (0},

Because |#,"| = 1 for each n, there is only one possible n-subword at any
location of any element of rev(%"). Thus to compute d-distance, it suffices to
count positions where the A,;’s disagree on the locations of the n-subwords.

By Lemma 4.10 for a typical se S< £ and all n,

f(. . i
I, de { i : n is not mature for sh'(s) }

has density at most 1/1,,_1 +&,-1, hence we can neglect these i when computing
the density of D.

This allows us to assume that r,.;(s) is defined. We compute the density of
the difference between A, and A, as they pass across an n+ 1-block in s. If
this number is d then the distance between A, and A,;; is bounded by the
sum of d and the density of I,.

As A4+ crosses an n + 1-block it produces the reverse n + 1-block shifted
by Aj;+1. Explicitly, if w is the n+ 1-block of s, as A, crosses w it produces
sh1 (rev(w)). As A, passes across this same section, each time it crosses an
n-block w’ it produces sh(rev(w")). If w' starts at r then the beginning of this
copy of sh (rev(w')) is r — A,,.

We begin by rewriting sh* (rev(w)) as sh (sh™/ (rev(w))) where j = (p,) "
By Lemma 4.12, all but 2kq of the n-blocks in w are aligned with the r-blocks
in sh™/(rev(w)). Hence, relative to the complement of I,,, the portion of the
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principal 7+ 1-block w of s that lies in an n-block aligned with an n-block of
sh™J (rev(w)) is

k(1-1)g° -2kq 1 2

(22) k(l-1)g> ~~ (-1gq

Because there is only one possible n-word, whenever sh”” (rev(w')) is aligned
with sh?»(sh™/ (rev(w))) they are equal.

Putting this altogether, we see that A, and A,4; agree on all of the n-sub-
words of the principal 7 + 1-block of s that are aligned with sh™/ (rev(w)). The
disagreements are limited to the n-subwords that are not aligned and the boun-
dary. The total length of the disagreements is therefore bounded by

Qkq) * g+ kq? =3kq*.

This has proportion 3kq?/klq? = 3/1.

Thus the distance between A, and A4 is bounded by 1/1,,_1+€,-1+3/1,. In
particular the distances are summable and the sequence (A, : n € N') converges
almost everywhere to a function j: % — (ZU {b, e})%.

We now show that h is an isomorphism between % and rev(.%). Since A,
takes an n-block to a shift of the reverse n-block, it makes sense to discuss
the principal n-block of A(s). Since the ry’s cohere as in Remark 2.13, for n <
m, rm(Am(s)) is in the 7, (A, (s)™ position of the principal n-block of A,y (s)
(provided both r, and r,, are defined). An application of the Ergodic Theorem
shows that if D, is defined to be the collection of s such that

(A (8)) exists and the principal n-words of A;(s) and A, (s) disagree,

then Y} v(D;,) < oco. From the Borel-Cantelli Lemma, it follows that for almost
every s for all large enough 7 the principal n-blocks of A, (s) and A,1(s) are
the same, and thus that for s € S, (s) € rev(%).

We now argue that if s is typical and s* =(s) then s* € rev(S). It suffices to
show that lim,, ., —7,(s*) = —oo and lim, .o, g — ' (s*) = 00.”

If n is mature for s and large enough that for m > n,A,,(s) and A,(s) have
the same principal n-blocks, then rj,(s*) = r,(s) + A, unless r,(s) € [0,|A|). As-
suming that r,(s) = |A,|, we know from Lemma 4.14 that

rn(8) =2qn-1 <1y (8) <1p(s).

Hence, —7,,(s) <2q,-1 — rn(s) and g, —1,,(8) = g, — rn(s). Applying Lemma 4.10
(using the fact that }_ ng,-1/q, < oo, and hence }_ |A,l/ g, < oo) we see that for
large n, r,(s) > | Ayl and that r,(s) —2¢g,-1 — oo. Since g, — r,(s) — co we have
shown that s* € rev(S).

As noted before Theorem 3.19, if s € S then s is determined by any tail of the
sequence (ry,(s): n € N). In particular, if we know a tail of (r,(s*): n e N) we

17We are adopting the convention that in defining ry,(s*) for s* € rev(S) we count r,, from the
left end of an n-block. Thus the position r in a word w € #,% corresponds to the position g—1-r
in rev(w).
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can determine s*. Since for large n, r,(s*) = r,(s) + Ay, fj is one-to-one on a set
of measure one.

We can now conclude that f is an isomorphism. It is shift invariant since it
is a limit of stationary codes, it maps from S to rev(S), and is one-to-one on
a set of v-measure one. If we define a measure y on the Borel sets of rev(%)
by setting p(A) = v(11(A)), then p is a shift invariant, non-atomic measure on
rev(S). Since S is uniquely ergodic, rev(S) is as well and thus g must be equal
to the unique invariant measure v. We have shown that fj is an isomorphism
between £ and rev(%). 0

DEFINITION 4.18. We denote the limit of (A,,: neN) by f: & —rev(X).
We describe the qualitative behavior of fj in a remark that we will use later:

REMARK 4.19. There is a summable sequence (9, ) such that for all but 1 -6,
measure of s € S € %/, there is an interval I containing 0 in A, (s) such that
s[IeW,*, and moreover Kn+1(3) and Kn(s) agree on this interval. It follows
from the Borel-Cantelli Lemma that for almost all s and large enough n, f(s)
agrees with A,(s) on the principal n-block of s. Thus for a typical s and large
enough n, the map f reverses the principal n-block while keeping its location
and then shifts it by A,.

As noted at the beginning of this section, the next proposition follows imme-
diately from Theorem 3.19; however, we include a symbolic proof for complete-
ness.

PROPOSITION 4.20. The map 4 is an involution.

Proof. It is immediate from the qualitative description of A, given before Lem-
ma 4.16 that each A, is an involution. To see that hz is the identity, let € > 0. We
can choose an my large enough that for all m = my, A,, and § agree with [\mo on
all but € proportion of the mjg-blocks and Uoni’o +10k has measure € * 1075, Then
ho A, is equal to the identity on a set of density at least 1 —¢. Letting € — 0 and
mgy — co completes the argument. U

4.4. Synchronous and anti-synchronous joinings. Every odometer based sys-
tem has a built in metronome: its odometer factor defined in Lemma 3.5. Cor-
respondingly circular systems can be timed by their canonical rotation factor
defined in Lemma 3.18.

Joinings between odometer based and circular systems may induce non-trivial
automorphisms of the underlying timing structure. To avoid this complica-
tion we restrict ourselves to synchronous and anti-synchronous joinings: those
which preserve or exactly reverse the underlying timing. We now make this idea
precise.

Both the odometer transformations and rotations of a circle have easily un-
derstood inverse transformations and the isomorphisms between transforma-
tions and their inverses are given by the maps x — —x and rev() of respectively.
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If K and L are either odometer based or circular systems let K* and L” be the
corresponding odometer or rotation systems on which they are based.

DEFINITION 4.21.

e Let K and L be odometer based systems with the same coefficient se-
quence, and p a joining between K and L*!. Then p is synchronous if
p joins K and L and the projection of p to a joining on K" x L" is the
graph joining determined by the identity map (the diagonal joining of the
odometer factors); p is anti-synchronous if p is a joining of K with L™ and
its projection to K" x (L™1)” is the graph joining determined by the map
X— —X.

e Let K€ and L€ be circular systems with the same coefficient sequence and
p a joining between K¢ and (L€)*!. Then p is synchronous if p joins K¢ and
L and the projection to a joining of (K€)™ with (L.¢)” is the graph joining
determined by the identity map of £ with £, the underlying rotations;
p is anti-synchronous if it is a joining of K¢ with (L¢)~! and projects to the
graph joining determined by rev() o on & x £ 1.

There is always a synchronous joining of odometer systems with the same un-
derlying timing factor O

DEFINITION 4.22. Suppose that K and L are based on &. Then the relatively
independent joining of K and L over € is a synchronous joining, which we will
call the synchronous product joining. The relatively independent joining of K
and ! over the map x — —x we will call the anti-synchronous product join-
ing. We will use the same terminology for the independent joinings of circular
systems over the identity and rev() of;.

5. BUILDING THE FUNCTOR &

The main result of this paper concerns two categories whose objects are
odometer based systems and circular systems respectively. The morphisms in
these categories will be graph joinings. We will show that there is a functor tak-
ing odometer systems to circular systems that preserves the factor and conju-
gacy structure. In this section we focus on defining the function from odometer
based systems to circular systems that underlies the functorial isomorphism
between these categories.

We begin by defining a function from the odometer based symbolic shifts
K to the circular symbolic shifts K. After having done so we define % on the
pairs (K, ) where p is an invariant measure on K. Finally we define & on
synchronous and anti-synchronous graph joinings.

We will use the notation that K;, =[];<, ki;. Then the K},’s are the lengths of
the odometer based words in #;, and the g,’s are the lengths of the circular
words in #,;.

Except where otherwise stated we will assume that we are working with a
fixed circular coefficient sequence (ky, 1, : n € N).
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Let £ be a language and (%} : n € N) be a construction sequence for an
odometer based system with coefficients (k, : n € N). Then for each n the
operation %, is well-defined. We define a construction sequence (#,, : n€N)
and bijections ¢, : #;, — #,; by induction as follows:

1. Let #f = X and cp be the identity map.
2. Suppose that #,,, #,¢ and c, have already been defined.

o1 = 1 Gnlen(wo), cu(w), ..., n(wy, 1)) : Wow ... Wk, —1 € W1 }.
Define the map c,+; by setting
Cn+1(Wo Wy ... Wk, 1) = Enlcn(wy), cp(wr), ..., cn(wg,-1)).
We note in case 2 the prewords are
Pui1={cnwo)en(wn)...cn(Wi,—1) : wow ... Wk, —1 € Wni1 }.

DEFINITION 5.1. Define a map & from the set of odometer based systems
(viewed as subshifts) to circular systems (viewed as subshifts) as follows. Sup-
pose that K is built from a construction sequence (#},: n € N ). Define

F(K) =KE,
where K¢ has construction sequence (%, :ne€N).

Suppose that K¢ is a circular system with coefficients (k,, [, : n € N). We can
recursively build functions ¢, ! from words in ZU{b, e} to words in Z. The result
is a odometer based system (#},: n € N ) with coefficients (k,:neN )18

If K is the resulting odometer based system then & (K) = K°. Thus we see:

PROPOSITION 5.2. The map & is a bijection between odometer based symbolic
systems with coefficients (ky : n € N) and circular symbolic systems with coeffi-
cients {ky,l,,: n€N).

Proof. That & is one-to-one follows from the unique readability of words occur-
ring in the construction sequence (W, : neN). O

REMARK 5.3. It is clear from Definition 5.1 that & preserves uniformity and
strong uniformity (see [6] for these notions). In fact it preserves much more:
the simplex of non-atomic invariant measures, rank one transformations and
so on. We verify much of this in this paper and more in the forthcoming [8].

To understand the correspondence between measures on K and K¢ we will
have to understand the structure of basic open intervals. Recall that we write
(u)r to mean the basic open interval of K determined by u sitting on the inter-
val [L, L+ |ul) € Z. Without the subscript L, {u) is shorthand for (u)y. We adopt
the same conventions for K¢, that the subscripts correspond to the beginning
of the sequence and without a subscript the sequence begins at zero.

18\e are using the strong unique readability assumption on the Py’s to see the unique read-
ability of the words in the sequence (#},: n e N).
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5.1. Genetic markers. To see that & can be extended to a map from invari-
ant measures on odometer based systems to invariant measures on circular
systems, we begin by recalling how to identify elements of a symbolic system.
Suppose that (#;, : n € N) is a construction sequence for an odometer based
transformation K. Let (%, : n€N) be the corresponding circular construction
sequence for K. By Lemma 2.14 to specify a typical s € K or s¢ € K€, it suf-
fices to give a tail of the sequence of principal n-blocks (w,(s): N<neN) or
(w4 (s9): N < neN) along with the locations (r,(s): N < n) or (r,(s) : N < n).

DEFINITION 5.4. Suppose that u, v are words in #;, and #;,+1 respectively and
u occurs as an n-subword of v in a particular location. Viewing v as a concate-
nation wow; ... wy, 1 of n-subwords, there is a j such that u = w;. Let j, = j
and call j;; the genetic marker of u in v.

Suppose that u € #;, and v € #,,. and u is an n-subword of v occurring at a
particular location. Then there is a sequence of words u;, = u, Up+1, ..., Up+i-1,
Un+i = v such that u,,; is a n+ i-subword of v at a definite location and the
location of u in v is inside u,.;. Let j;lk i be the genetic marker of u,; inside

Un+ir1. We call the sequence j* = nrdnsrr+orJnpq ) the genetic marker of u
in v. If j* is the genetic marker of some n-word inside and m-word, we will call
it an (n, m)-genetic marker.

If u occurs as a subword of v then the genetic marker (j;;,j;‘l+1,...,j;+k_l) of
that occurrence codes its location inside v.

Suppose that s € K has principal n-blocks (w, : ne€N). Each w,, is a con-
catenation of words vovy...vg, 1. Let

.y def Tns1(8) —1p(s)
23 reet_pro ]
(23) In K,

or equivalently
(24) Tn1(8) = 1n(8) + j K.

Each wy4 is a concatenation of words vov;...vg,—1, and we see that s(0) be-
longs to v;; . In particular, the genetic marker of w, inside wy, is the sequence
(o dnsrre - Jnag—1)-
Genetic markers for regions of words in %7, . In circular words, genetic mark-
ers code regions rather than subwords. Given u and v as above, we can con-
sider the construction of ¢, (v) starting with the collection {c,(u) : u is an
n-subword of v}. Each of the genetic markers (j;,j;‘lﬂ,...,j:”k_l) of a sub-
word u of v determines a region of n-subwords of ¢, (v). More explicitly, in
the first step of the construction we put u into the ( j,’;)th argument of €. At
the next step we put the result into the j , argument of €+ and so on. Thus
we see that there are bijections between

1. sequences <j;’j;lk+1"”’j;’ﬁl+k71> with 0 < j < kpm,

2. n-subwords u of v,

3. the regions of v° occupied by the occurrences of powers (1)~ where u¢

is the element of %, determined by (j;, j, 1, J, 1)
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Thus genetic markers give the correspondence between the regions of ¢, (v)
that are not in U, <m<n+k 0m and particular occurrences of an n-word u in v.

The next lemma computes the number of occurrences of a ¢, (1) with a given
genetic marker (jy, j 1o+ J o q) N Cpik (V).

LEMMA 5.5. Suppose that u® occurs in v¢ with genetic marker {j,, jr i ...,
Jnik_1)- Then the number of occurrences of u‘ in v with the same genetic

marker <j;kz'j2+l""’j;+k—l> is

n+k-1

(25) [T gitti-D.

Proof. Fix m and v°¢ € #,,. We prove equation (25) for n = m— k by induction on
k=1. If k=1 then we have a single genetic marker j _,. By formula (11) for
%m-1 we see that the j; _, argument occurs in v¢ exactly g, (I, — 1) times.

Suppose now that we know that formula (25) holds for k —1. We show it for
k. Let n=m—k and u° be the n-subword of v° with genetic marker (j,, j_;,
cvor Jripoq)- Let w be the subword of v® with genetic marker (j ,,..., 5 ;1)
Then

l{occurrences of 1 in v with marker {jy, ji15--s g1 2

is equal to
|{occurrences of u° in w® with marker inll
x {occurrences of w* in v® with marker {j, 1,..., j,, )}
The lemma follows. ]

Since particular (n, m)-genetic markers {j;, j,.1,---»J, ;_;) correspond to
powers of u®’s that occur with the same multiplicity in v, independently of the
marker, we see that for a given u and v:

|[{foccurrences of u in v}| B [{occurrences of ¢, (u) in ¢, (V)}

26 =
(26) |{n-subwords of v}| |{circular n-subwords of ¢, (v)}|

We can restate equation (26) in the language of Section 2.6. It says that

@27 EmpDist(v)(u) = EmpDist(cy+ (V) (cn(1)).

In particular, if we fix a set S* of genetic markers we can compare the num-
ber of occurrences of a word with genetic marker in S* in v € #},,; with the
number of occurrences in the corresponding v € #/" . Specifically, the num-
ber of occurrences of a word u® in v° at some genetic marker in S* is |S*| *
HZ”“‘l gi(l; — 1). The proportion of n-words occurring with a genetic marker
in S* relative to all n-words occurring in v°¢ is the same as the proportion of
n-words with genetic markers in S* occurring in v relative to the total number
of genetic markers. The number of (7, m)-genetic markers is ]_[Z”C_1 k; so this
proportion is equal to

1S

n
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This is simply a restatement of our discussion involving empirical distributions
in Section 2.6.

We introduce some notation that allows us to compare densities of various
sets between odometer based and circular words. For sets A < [0, K};;) and A° <
[0, gm) we denote their densities by

Am(A) = Al K,
dy (A9 = 1A%l qm

Then d,, and df, can be viewed as discrete probability measures on the sets
[0, K;,) and [0, g,,) respectively.

def . ..
LEMMA 5.6. Let n<m, we Wy, and w® = cp(w) e W,,. We view w as sitting on
the interval [0, K,,) and w° as sitting on [0, ) Let S* be a collection of (n, m)-
genetic markers, g the total number of (n, m)-genetic markers and d = |S*|/g. If:
A={ke[0,Ky,): some uec W, with genetic marker in S* begins at k in w} and
A =1{k €[0,gm) : some u® € W,{ with genetic marker in S* begins at k in w°},
then the following equations hold:

d
(29) dm(A) X,
d m—1
(30) ag,(A9=— ] a-1/1)
dn p=n
@1 () = %) (@)

(32) d (A%) = dim(A)

m—1
[Ta- 1/1,,)) (ﬁ)
dn

p=n

Proof. We prove equation (30). Equation (29) is similar but easier. The other two
equations follow algebraically.

The union of the boundary regions d,, for p = n to m—1 consist exactly of
the elements of [0, g;;) that are not part of any n-word. We denote the com-

plement of U;’f:_,% dp by (U;’f:_nl Gp) . The various 0, are pairwise disjoint and for
each n*, (UZ‘:‘,}* 6,,)~ consists of the locations of entire n*-words. Starting with
p = m— 1, iteratively deleting boundary sections as p decreases to n, and using
Lemma 3.14 we see that the d},-measure of (U”f:‘,} 6,,) is H,’;":‘,%(l —1/1y).

Let B={ke€[0,gpm): k is at the beginning of an n-word}. Then B consists of
a 1/q, portion of the regions made up of n-words; i.e., (U;”:’,} 6p) . We note
that A° < B and B is disjoint from Up’”:_,} 0p.

By Lemma 5.5, the number C; of n-words occurring in w¢ with a given ge-
netic marker does not depend on the marker. Let C, be the total number of
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n-words occurring in w°. Then:

|A€| _ |{n-words with genetic marker in S *
Bl C

IS8T G

= —g T

=d.

We compute conditional expectations to get equation (30):

m—1 m-1
aa0=a (1 Uay] |an((Uar] |
p=n p=n
m—1 ~ m—1 ~ m—1 ~
_ae [ac s, Uap) dm(B Uap))dm((uap))
p=n p=n p=n
1 m—1
=d (—) [Ta-1/1,)
nl) p=n

Equation (29) is similar, and (31) and (32) follow from the first two equations by
substitution. g

The following relationship between pairs of measures v on K and v¢ on K¢
is the limit of equation (32) as m goes to infinity:

K o0
Ve en(w))) = (q—) v({u)) (1 —ZvC(am)).
n n

This relationship will hold for a correspondence between measures that we
build in forthcoming sections.

We note that since d,, has a density that depends only on the circular coeffi-
cient sequence, the measures of d,, is the same for all invariant measures. If we
set d° be this density, then we can rewrite the previous equation as

K o0
(33) Veenw)) = (q—")vuu))(l—zda”)
n n

A consequence of equation (33) is that for all basic open sets u, v({u)) deter-
mines v¢({c,(u))) and vice versa.
For counting arguments the following inequalities will be helpful.

LEMMA 5.7. Let n be a number greater than 0. Then there are constants KV, KL
between 0 and 1 such that for all k>0 and w* € ¥, , and all collections S* of
(n, n + k)-genetic markers, if

A ={i:i is the location of a start of an n-subword of w° indexed in S* }
then

|AC| n+k-1
(34) K,§|s*|s( )( I1 km)sK,‘{|s*|.
dn+k m=0
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Proof. By equation (25) there are

k-1
|A] =S| H In+mn+m—1)

m=0
many i that occur at the beginning of occurrences of n-subwords with genetic
markers in S*. Since

k-1
dn+k = knlnCIi( H kn+mln+m5hl+m)

m=1

|AC| L (L) [* 1 1
= 18" * | — (1- N = :
dn+k qn) \m=1 - 15,20 kn+m

Since the (1/[,) is a summable sequence, an‘:ll(l - ﬁ) converges as k goes
to oco. The inequality (34) follows. O

we have:

Since K,y = ]_['”k_1 km, inequality (34) can be rewritten as

m=0

S* A° S*

(35) K,%' |sustl]| |
n+k dn+k Kk

Infinite genetic markers. Suppose that we are given a construction sequence
(W, :neN) for an odometer based or circular system [K, s € S and an occur-
rence of an n-word u in s. Then we can inductively define an infinite sequence
of words (u;,,: n<meN), letting u, = u, and u,;+; to be the m + 1-subword of
s that contains u,,. For each n < m we get a genetic marker (j;, j, 1,---» j_1 )
and these cohere as m goes to infinity. We define the infinite genetic marker to
be j* = (j*:n<meN).

If an n-word u occurs inside an occurrence of an m-word v in s, then v = uy,.
Thus their infinite genetic markers agree on the tail (j:m<ieN).

As in Remark 2.15, if we are given a sequence of words (u,, : n < m), with
Um € Wm, and an infinite sequence ( j,, : n < m) such that the genetic marker j,,
denotes an instance of u,, in u;,.; then we can find an s € K with (u,, : m = n)
as a tail of its principal subwords. If K is odometer based then s is unique up
to a shift of size less than or equal to Kj,,. A similar statement holds for circular
systems.

5.2. TU and UT. To understand the relationships between K and K¢, we de-
fine maps TU : S — S® and UT : S° — S where S € K and S° < K€ are as in
Definition 2.9. The map TU will be one-to-one but UT will not, in general it is
continuum-to-one. Nevertheless UT o TU will be the identity map.

We begin by considering a element s € S. Let u, be the principal n-subword
of s. The sequence (u,:neN) determines a sequence of circular words (u}, :
n € N) which we assemble to define TU(s). Let j = (j,: n € N) be the infinite
genetic marker of s(0). To describe TU(s) completely we need to define (rj, :

neN). Set ry =0, and inductively define r;;, , to be the (r&)™ position in the
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first occurrence of an n-word with genetic marker j, in u;,,,. Set TU(s) to be
the element of K¢ with principal subwords (uf, : n € N) and location sequence
(ri:neN).

We define a map UT that associates an element of K to each element of S°.
Given such an s° € §¢, let (uf,: n = N) be its sequence of principal n-subwords.
For each n = N, u;, occurs as uj: in the preword corresponding to u; . Let
U, = c;1(ul). Then the sequence of words (u, : n € N) and genetic markers
(jn:n= N) determine an element of s € K except for the location of 0 in the
double ended sequence. (The sequence is double ended because s € S€.)

We determine this location arbitrarily in a manner that makes the sequence
of uy,’s the principal n-blocks of s (n = N) and the j, the sequence of genetic
markers of these n-blocks. Let 0 be a sequence of zeros of length N. Then
07 (j:n= Ny is a well-defined member of the odometer & associated with
K. From equation (24), 07(j; : n > N) determines a sequence (r, : n € N).
Thus by Lemma 2.14, the pair (u;, : n= N) and (_)’“(j,*l :n = N) determines a
unique element s of K which we will denote UT(s¢). It is easy to check that
UToTU = id and that for each s € S, there is a perfect set of s¢ with UT(s°) =s.

We can get more precise information about correspondences between K and
K¢ by noting that if we are given a sequence (u, : n € N} of principal subwords
of an s € S, the genetic markers (j, : n € N) define an element s¢ of K¢ up to
a choice (s9)” € #. Specifically, suppose that s* € % is such that the infinite
genetic marker of s*(0) is (j, : n € N). Then there is an s € £ ¢ that has a
sequence of principal n-blocks (u¢, : neN).

The following lemma will be useful for understanding joinings.

LEMMA 5.8. Let s€ S. Then {TU(sh*(s)):keZ} < {sh*(TU(s)): ke Z}. Ifse
S, s¢=TU(s) and u € #,, then there is a canonical correspondence between
occurrences of u in s and finite regions of s° where u® occurs. The occurrences of
u® in these finite regions have the same infinite genetic marker { jp, : m> n) in
s¢ as u does in s.

Proof. Given an s € S and a k, the shift sh¥(s) and s have a tail of the principal
n-blocks (u, : N < n) in common. Moreover the genetic markers associated
with this tail are the same for both s and sh¥(s). It follows that TU(sh*(s)) is a
shift of TU(s).

We can describe the correspondence as follows. If © occurs in s at k, then u
is the principal n-word of sh*(s). Choose an N so large that some N-word u* is
the principal N-word of both s and sh*(s). Then (1*)¢ is the principal N-block
of s¢. Let j be the genetic marker of the occurrence of u (at k) in u*. The region
of s corresponding to this occurrence of u is the collection of occurrences of
u® with the genetic marker j in the principal N-block of s°. O

5.3. Transferring measures up and down, I. In this section we develop the tool
we need for lifting measures on K to measures on K°. This will also allow us
to establish a one-to-one correspondence between synchronous joinings on
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odometer systems and synchronous joinings on the corresponding circular sys-
tems. Throughout this section we will use 7 to denote either the projection of
an odometer based system to its canonical odometer factor or a circular system
to its canonical circular factor.

We begin with a proposition relating sequences of words in a construction
sequence for an odometer based system to sequences of words in a construction
sequence for a circular system.

PROPOSITION 5.9. Let (v,:neN) be a sequence with v, € W,. Let v, = ¢, (vy).
Then
1. (vp:neN) is an ergodic sequence if and only if (v;,: n€N) is an ergodic
sequence.
2. {(vp:neN) is a generic sequence for a measure v if and only if (v;,: neN)
is a generic sequence for a measure v°. In case either sequence is generic,
the measures v and v° satisfy equation (33).

Proof. Both parts follow immediately from the definitions using equations (27)
and (28) to relate the frequencies of k-words w € #} in n-words u € #;,, for k < n
to the frequencies of ci(w) in the corresponding c,(u). Equation (33) follows
from the Ergodic Theorem and Lemma 5.6. U

We endow that collection of invariant measures on a symbolic system (KK, sh)
with the weak* topology.

THEOREM 5.10. Let (¥}, : n € N) be a uniquely readable construction sequence
for an odometer based system K and (W,{ : n € N) be the associated circular
construction sequence for K. Then there is a canonical affine homeomorphism
v — v¢ between shift invariant measures v concentrating on K and non-atomic,
shift invariant measures v° such that equation (33) holds between v and v°.

Proof. By Proposition 3.4 and Lemma 3.15 we can assume that v and v¢ concen-
trate on S and S° respectively.

We begin by defining the correspondence for ergodic measures. Suppose that
we are given an ergodic measure v and we want to associate a measure v°. Let
s € S be a generic point for (K,v). Let (v, : neN) be the sequence of principal
n-blocks of s. By Proposition 2.20 this sequence is generic for v. By Proposition
5.9, if we let v{, = c,(vy), then (v§, : n € N) is an ergodic sequence. Let v¢ be
the measure associated with (vy,: ne€N). Then v¢ is ergodic and equation (33)
holds by Proposition 5.9.

The other direction is similar, let s° € S¢ be generic for v¢. Propositions 2.20
and 5.9 imply that if (v}, : n € N ) is the sequence of principal n-blocks of s and
vp = ¢, (v5), then (v, : n € N) is ergodic and generic for a measure v. Again
equation (33) holds by Proposition 5.9.

Suppose now that v is an arbitrary measure on K. Write the ergodic decom-
position of v as

v :fv,'d,u(i).
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We define v¢ by
C C *
ve = f vidu(i),

which gives a corresponding measure on K°. Since equation (33) holds between
corresponding ergodic components v; and v{, it holds between v and v°.

By the ergodic decomposition theorem the map v — v¢ is a surjection. Since
the map is invertible, it is a bijection. The map is affine by construction.

It remains to show that it is a homeomorphism. To see that v — v is weak*
continuous it suffices to show that for all € >0 and n € N there is a 6 and an m
such that for all invariant g, v, if for all u e #},

[wu)) —vu)l<o
we know that for all v € #;, we have
(v —vev )l <e.

But the equation (33) easily implies this taking m = n and

Ky = 5\
S<|[=|[1=-Da%]| =xela.
qn n
The argument that the inverse is continuous is the same. g

DEFINITION 5.11. We will call a pair (v, v¢) constructed as in Theorem 5.10 cor-
responding measures.

REMARK 5.12. Tt follows from Proposition 5.9 that if v and v¢ are corresponding
measures on K and K¢ and s € K is arbitrary then s is generic for v if and only
if TU(s) is generic for v¢. The point s is generic just in case its sequence of
principal subwords is generic for v. By item 2 of Proposition 5.9, this holds just
in case the sequence of principal subwords of TU(s) is generic; i.e., TU(s) is
generic.

We can use Theorem 5.10 to characterize the possible simplexes of invariant
measures for circular systems. By a theorem of Downarowicz ([3, Theorem 5]),
every non-empty compact metrizable Choquet simplex is affinely homeomor-
phic to the simplex of invariant probability measures for a dyadic Toeplitz flow.
Note that the space of invariant probability measures is always a compact Cho-
quet simplex, hence this theorem is optimal.

Since Toeplitz flows are special cases of odometer based systems it follows
immediately that every non-empty compact metrizable Choquet simplex is af-
finely homeomorphic to the simplex of invariant measures of a 2-symbol odo-
meter based system.

Let K be a compact Choquet simplex and K an odometer based system hav-
ing its simplex of invariant probability measures affinely homeomorphic to K.
Let K¢ be a circular system corresponding to an odometer based system K.
Then the non-atomic measures on K¢ are a Choquet simplex isomorphic to
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K. There are two additional ergodic measures, the atomic measures concentrat-
ing on the constant “b” sequence and on the constant “e” sequence. These two
atomic measures are isolated among the ergodic measures.

In the forthcoming [8] we discuss the question of invariant measures further
and show that & preserves several other properties, such as being rank one.

6. P~,PY, GENETIC MARKERS AND THE fj-MAP

Our goal is to understand the structure of synchronous and anti-synchronous
joinings between pairs of ergodic systems (IK,L*!). We will use Theorem 5.10
to define a bijection between synchronous joinings of odometer based systems
and synchronous joinings of circular systems. This is relatively easy: to a joining
of K with L that projects to the identity we can directly associate an odometer
system (K,L)* with a measure v such that the corresponding measure v¢ on
(K,L)*)€ can be identified with a measure on K¢ xL°¢ that projects to the identity.
We carry out this construction out in detail in Section 7 and show that the map
v — v¢ given by Theorem 5.10 gives a bijection between synchronous joinings
of the two kinds of systems.

The situation for anti-synchronous joinings of K and L~! is more compli-
cated. In Lemma 3.7, we remarked that the anti-synchronous joinings of K
and L™! can be identified with joinings of K and rev(L) that concentrate on the
set {(s, ) :ms=—mnt}. Similarly, we can identify the anti-synchronous joinings
of K¢ and (L°)~! with joinings of K¢ with rev(L¢) that concentrate on the set
{(s%, 1) : e = h(mws®) }. We give notation for these sets:

1. Let P~ be the collection of anti-synchronous joinings p of K and L.
2. Let P! be the collection of anti-synchronous joinings p¢ of K¢ and (L)~

To understand the relationship between P~ and P! we need an analogue of
Lemma 5.6, and the corresponding analogue of equation (33). We now describe
the tools we use to do this.

Fix construction sequences for (%, : n € N) and (7, : ne N) for K and L
respectively based on (k, : n € N) and K¢,L° the corresponding circular systems
based on (ky, [, : n€N).

Let (s, 1) be an arbitrary point in K x L with 7¢ = —7s and s € S¥, t € S'. Let
(up:neN) and (v, : neN) be the sequence of principal subwords of s and ¢
respectively. If s = TU(s) and t“ = TU(¢), then (uy,: n€N) and (v;,: n €N ) are
the sequences of principal subwords of s¢ and ¢°.

Let x =f(s°). Then x e rev(£") and set ry, = ry(x).

DEFINITION 6.1. Define 7 € rev(L®) by taking (rev(v$) : n € N} as its principal
n-subword sequence and (7, : n €N ) as its location sequence.

We will study the relationship between P~ and P! via the function taking (s, 1)
to (s, P).

6.1. Genetic markers revisited. To understand the relationship between join-
ings p in P~ and p° in P! we need to take into account the manner that f shifts
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the reverse of the second coordinate of a the image of a generic pair (s, ¢) for
K x L~! and the interplay between the map  and genetic markers. Let n < m.
Suppose that (u/,rev(¢')) is a pair of n-words coming from %, x rev(¥;,,) that
occur aligned inside m-words (u,rev(v)) € %, x rev(¥y,). If 1’ and rev(v’) occur
at the same location in (u, rev(v)), then j,, determines j, in the following way:

for n < r < m we must have
(36) (jv’)r:kr_(ju’)r_l
(where Ju = (ny jnt1s--er jm—1))-

DEFINITION 6.2. Let (u/,v') € #,, and (u,v) € #y,. Define the (n, m)-genetic
marker of an occurrence of the pair (i, rev(v")) in (1, rev(v)) to be (j, j.») where
Jw is the genetic marker of ' in u and j, is the genetic marker of v’ in 1.9 We
call j,» and j, a conjugate pair.

Being a conjugate pair is equivalent to satisfying the numerical relationship
given in equation (36) and thus either element of a conjugate pair determines
the other. Hence for purposes of counting conjugate pairs we need only use the
first coordinates, j, .

Let (u,rev(v)) € %y, x rev(¥;;) be words that occur in a pair (s,rev(?)) € K x
rev(L). Then the relative alignment of ¢ and rev(v°) in (s¢, ) is determined by
the f-map. This is approximated with a high degree of accuracy by where the
code A, sends intervals. Accordingly:

DEFINITION 6.3. Define the pair (u,rev(v))¢ to be (1€, shm (rev(v©)).

Thus ((u,rev(v))¢); determines a basic open interval in K¢ x rev(L¢) which
we might also write as ((u); x rev(L°)) N (K¢ x (rev(v°) );44,,). Alternatively we
could write this as

{(f,® eK xrev(L%) : f I [I,]+qm) = u° and
g U+ Am, L+ A+ gm) =1ev(v) }.
We now have a lemma extending Lemma 4.13 which says that if u, v belong
to Un+1,Vn+1 then, relative to sh™/!(rev(v)), all occurrences of (u)¢ € %5 in
u® are either lined up with an occurrence of a rev((¢')) for some (/)¢ € 7,£ or

a boundary section of sh™/! (rev(v°))). The lemma also says that if (¢/)¢ and
rev((v')¢) are lined up then j,, and j,» form a conjugate pair.>

PROPOSITION 6.4. Let n<m and u € Up,v € Vy,. Then for u' € Uy, v' € ¥y, we
consider occurrences of (u',rev(v"))¢ in (u,rev(v))¢.!

1. If (u/,rev(v)))° occurs in (u,rev(v))S, then j, and j, form a conjugate pair.
2. There is a constant C = C(n, m) such that all conjugate pairs occur C times.

19Note that the genetic marker fu/ denotes a different position inside rev(v) then it does in u.
201n this case both j,/ and j,s are of length one.
21Gince Am # A we are considering different shifts in (u, rev(v))¢ and (W, rev(v'))C.
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3. There is a number K such that for all genetic markers j,, the collection of
occurrences of words in u® with marker j,s that are not lined up with words
in sh(rev(v°) is K.

4. Fix a conjugate pair (j,, j») of genetic markers of (u',rev(v')). If k is a
location of an occurrence of (u')¢ in u® with genetic marker j,s, but not a
location of (u/,rev(v))¢, then the section of sh»(rev(v°)) in the interval

[k+ Ap, k+ Ap + qy) is contained in U;’inﬁ 0;.

Proof. Item 1 is immediate from the definitions.

The latter items are asking about pairs of the form ((¢/)¢, sh™" (rev((v))%)))
occurring in (uS, sh (rev(v°)). Such a pair occurs at k if and only if the pair
(U, rev((v")9)) occurs aligned in (uf, shAn=4n (rev(v©))) at k. Item 3 is equiva-
lent to saying that ()¢ is lined up with a portion of shAm=4n (rev(v°©)) contained
inUZ, 0.

We fix m and prove 2, 3, and 4 by induction on m—n. The case that m=n+1
is the content of Lemma 4.13. Suppose that the proposition is true for m and
n+1, we prove it for m and n.

A pair of n+ 1-circular words (wy, w;)¢ lined up in the shifted pair

(uE, sh»=4n1 (rev (1))

must have conjugate genetic markers. Moreover, by induction, there is a num-
ber Cy such that any pair with conjugate genetic markers occurs lined up Cy
many times and a number Ky such that the number of misaligned occurrences
of words with a particular (n + 1, m) genetic marker is K.

Fix an occurrence k of an n+ 1-word wy so that no word in shm (rev(v°))
occurs at [k+ Apy1, k+ Apy1 + gn+1), i€, wy is not lined up with the reverse
of an n + 1-word in sh4m=4n1 (rev(v°)). Then wy is lined up with a segment of
shAm=4n+1 (rev(v©)) that is a subset of U ,0;. To pass from A;;—Api1 to A=Ay
we shift by — j;, where j; = p,,' mod g,,. Noting that each reversed n + 1-word
ends with a string of b’s of length g,, we see that after the additional shift there
can be no n-subwords inside wy lined up with anything besides a portion of
shAn=An(rev(v®)) contained in U™, 0;.

Suppose that ' and v’ are n-words and we have an occurrence of (u)¢
and rev((v')°) lined up in the pair (u, sham=4n (rev(v°))). If fur = kO”j:’;, and
Ju = ki~ j:’j,, we let (wp, w) be the occurrence of n + 1-subwords of (u, v) with

genetic markers j:’:, and j:j‘, that contain u’ and v'. It follows from the previous
paragraph that the genetic markers of wy and w, are conjugate and wg,rev(wy)
are aligned in (u€, sh»~4n+1 (rev(v°))). By Lemma 4.13, ko and k; are conjugate
and thus j, and j, are conjugate.

Further each conjugate pair occurs aligned the same number C; of times in
the pair (wg,sh_j1 (rev(wlc))). The number C; is independent of wy, w; and ko
and k;. It follows now that given a conjugate pair of genetic markers (jy, ju/),
the number of occurrences of a pair of circular 7-words with genetic marker J,,
in u¢ aligned with an occurrence of a circular word with genetic marker j,/ is in
v°is Cy* Cy.
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Note that the unaligned n-words are in two categories, those that are not
aligned because the n + 1-words that contain them are not aligned, and those
that are subwords of n + 1 words that are aligned. The latter n-words lose their
alignment from the final shift —j;. In each case, the unaligned n-words in u
occur across from boundary sections in the word sh?»=4» (rev(v°)).

To count the number of misaligned occurrences of words with a given (n, m)
genetic marker we add up the number in each category. Fix an (n, m) genetic
marker j;, j. Our induction hypothesis gives a number K; such that the n + 1-
words with marker j not aligned with a reversed n+1-word in shm~4n1 (rev(v°))
has cardinality K;. As noted above, all of these words are aligned with boundary
portions of sh»~4»(rev(v¢)). The number of words with (1, m)-genetic marker
Jn j not aligned because they are subwords of misaligned instance of an n+ 1
word with genetic marker fis therefore K * g, (I — 1), where the latter factor is
the number of times a given n-word occurs in an n + 1-word.

The number of words with (n, m) genetic marker j;~ j that are not aligned
even though they are subwords of an aligned n + 1-word is the number K in
Lemma 4.13. Hence the number of misaligned n-words in the second category
is Cp * K and for a given (n, m) genetic marker the number of unaligned words
is K1gn(1—1)+ Co * K. O

Thus, using the backwards €-operation to wrap words around the circle in
opposite directions introduces some slippage, but the slippage is uniform and
predictable.

DEFINITION 6.5. Suppose that j and f’ are a conjugate pair of (n, m)-genetic
markers and u® € %, v° € 7,£. Let (/)¢ and (v')¢ have genetic markers fand
f’ in u®, v° respectively. Then the set of locations k such that («')¢ occurs in
u® starting at k with genetic marker fbut rev((¢v')°) does not occur starting at
k+ A, in shm (rev(v©)) is called the (n, m)-slippage of ]

A location k can belong to the slippage of j for two mutually exclusive rea-
sons. Either, for some proper tail segment j* of j, k is part of the slippage of
the subword of u¢ with genetic marker j* or k is part of the slippage of the jj,
inside the 7 + 1 word containing u' caused by sh~/'.

Let SL,,,, stand for the (n, m)-slippage of n-subwords of u¢; i.e., the locations
k in u® of some n-word (/)¢ such that there is no n-word rev((¢v')€) at position
k+ Ap,. Inside an m-word u¢ we find multiple copies of SL, ,+1 corresponding
the location of each n+ 1 word in u‘. Denote the union of these copies as
SL™ Then it follows that

n,n+1°
m-1
(37) SLp,m = kU SL{'v,1 N locations of n-words }
=n

and moreover the union is disjoint.
The slippage is the portion of the words that we have no control over when
counting, so we want to be able to estimate the proportion of words in the
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slippage. Let

[SLy,ml
38 @y = ’
(38) " |{n-subwords of u¢}|

The next proposition allows us to control the (n, m)-slippage by controlling the
successive (n, n+ 1)-slippages.

PROPOSITION 6.6.
m—1 .
(39) 1-o7 =[] (1-a!™).
n

Proof. We begin by noting that for n* between n and m, all pairs (u*,rev(v*))
of n*-words have the same proportion of slippage of n-words in (u*,rev(v*))°.
Thus (DZ is equal to the proportion of slippage of all of the n-words occuring
in pairs (u*,rev(v*))¢ of n*-subwords of (u,rev(v))°.

The argument is similar to Lemma 5.6. Starting with n* = m —2 and decreas-
ing until n* = n+ 1, using that fact that the union in equation (37) is disjoint,
one inductively demonstrates that

m—1 .
1-oM=0-ao7) [] 1-ai). O

We can combine item 3 of Lemma 6.4 with equation (39) to see that if k is in
SLp,m, then [k+ Ap, k+ A, + qy) is a subset of U], 0:.’6. It thus follows from
Lemma 4.16 that

m-1 2
(40) 1—@,@”2]‘[(1——).
n
Because the definition of @' was made entirely in terms of genetic markers,
the whole discussion could have been carried out simply by considering % ¢ x
rev(Z ). The numerics depend only on the circular coefficient sequence, not
on particular construction sequences (%, 7, :neN).
Viewing the operator f as the limit of the codes A;;, we can pass to infin-
ity and define SL}Y similarly and let @5 be the proportion of locations k of
n-subwords of a typical s € K¢ such that no n-subword of f(rev(r(s))) occurs at

k+ A,.
Then
1-op) =[[1-oi")
n
41) >[]a-2/1)
n
> 0.

It follows that }9° a)ﬁ“ < oo.

We now formulate and prove the version of Lemma 5.6 involving the iy map.
One might expect that would require considering arbitrary pairs of genetic mar-
kers j and j’. However, by Proposition 6.4, if u’ occurs in u with (n, m)-genetic
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marker j, then the only genetic marker it can occur lined up with in rev(v) is
its conjugate pair. Similarly either of the genetic markers of aligned words (/)¢
occurring in u¢ and sh™"(rev((v')¢)) occurring in sh”»(rev(v°)) determine the
other member of the conjugate pair.

It follows that we need only consider pairs («/,rev(v’)) whose genetic markers
are conjugate in (u,rev(v)). Since the map fto f’ is a bijection we will refer
to either of f or ]_"’ as the genetic marker of a pair (¢/,rev(v’)) or equivalently
(u',rev(v"))°.

We are reduced to considering sets S* < {(n, m)-genetic markers} rather than
sets of pairs of genetic markers. Let n < m and let S* be a set of (n, m)-genetic
markers of pairs of n-words in (u,rev(v)). Let

A={ke[0,K;):some u’ with genetic marker in S* begins at k in u}
and
A°={k€0,qy): for some u' with genetic marker in S*,

there is a v such that (¢')° occurs beginning at k in u°

and rev((v')°) occurs beginning at k + A,, in sh”” (rev(v9)) }
and define

dm(A) = Al Ky
d;, (A°) = |A°|/ gpm.

If (1))¢ occurs at k in u€ and rev((¢')¢) occurs at k+ A,, in sh4m(rev(v°)) then
(u/,rev(v"))€ occurs at k in (u€, sh™ (rev(v°)).

LEMMA 6.7. Let n < m and (u,v) € Uy, x Vyy. Let S* be a collection of (n, m)-
genetic markers, g the total number of (n, m)-genetic markers’> and d = |S*|/g.
Then (in the notation above),

d
(42) dm(A) X,
d m=1 m—1 .
43) dg,(A9=— [l a-u1)(J] a-aith
dn p=n i=n
ds,(A°) n
44 dm(A) = oL . (—)
e w Hp’";,}(l—1/lp)(n?1;1(1—w;.+1)) Ky
m-1 m—1 . K,
(45) dS,(A%) = dp(A) ]‘[(1—1/lp))(]"[(1—m;+1))(q—”).
p=n i=n n

Proof. The proof is essentially the same as the proof of Lemma 5.6, indeed the
proof of equation (42) is the same. Because all genetic markers occur with the
same frequency, after allowing for the portions u¢ in boundary sections and in
slippage (which are disjoint), d/q, is the density of locations k of occurrences

2275 before it is easy to check that g = ]'[Z“_1 k;.
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of words with genetic markers in S*. Once again equations (44) and (45) follow
from (42) and (43) by substitution. ([l

The equation relating p € P~ and p° € P! that corresponds to equation (33) is

K o0

pC(((u,rev(v)))) = (q—") p({(w,v))) (1 _ch(am)) (1-aP).
n n

Once again p°(d,) is independent of the choice of p¢. Setting dz'" = p(0m), we

can write the previous equation as

n

Ky e o
(46) P (((u,rev(v)®)) = (q—) p(((u, ) (1 - ng'") 1-a).

Understanding empirical distributions of joinings along the natural map in-
volves studying how the slippage affects each pair of n-words. Fix u’' € %,,v' €
¥, and 1 € Uy, v € ¥y, where n < m. Let the conjugate pair (J, f’ ) be the genetic
marker of (¢, rev(1')) in (u,rev(v)). Then, as remarked earlier j’ is determined
by j, since they are a conjugate pair. Define SLy,m(u',rev(v)) to be the collec-
tion of locations k € SL,, ,, of n-subwords of u¢ that have genetic marker j.

By item 3 of Proposition 6.4, |SLy, ,(u/,rev(v'))| is the same for all choices of
(u',rev(v")). Since SLy, , is the union over all possible pairs of SL;, ,,(u/,rev(v")),
we see that

m def |SLn,m|
" |{n-subwords of u¢}|
|SLp,m (', rev(v"))]

[{subwords of u¢ with genetic marker f}l .

(47) =

From the definition,
EmpDist,, , 4 ((u,1ev(1)*) (), (rev(v')®)
is equal to

[{occurrences of (¢, rev(v"))¢ in (u,rev(v))¢}|

|for some (u*, v*) € #;, x ¥, (u*,rev(v*))¢ occurs in (u,rev(v))¢}|’
This in turn is equal to
(1 - @™ |{subwords of u° with genetic marker j}|
(1 - @M |{n-subwords of u¢}|
which in turn is equal to

)

EmpDist,, ,, o(u,rev(v)) (1, rev(v')).
For notational convenience we write
EmpDist(u,rev(v)) (1, rev(v')) d=efEmpDistn’ny0(u,rev(v))(u’,rev(v'))
and
EmpDist((u,rev(v))) (1, rev(v))°)

€ EmpDist,, , 5 ((,rev()) (()°, (rev(v')°).
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Summarizing:

(48) EmpDist(u,rev(v)) (v, rev(v')) = EmpDist((u,rev(v))°) (1, rev(v))°.

6.2. Transferring measures up and down, II. In this section we describe the
correspondence between joinings in P~ and Pi. We do this by considering
generic points for the joinings and transferring them up or down.

For the reader’s convenience we repeat a definition. Let (s, f) be an arbitrary
point in K x L with 7t = —ns and seS¥ reSt Let (uy:neN)and (v,:neN)
be the sequence of principal subwords of s and ¢ respectively. Then (uy,: neN)
and (vy, : n € N) are the sequences of principal subwords of s¢ = TU(s) and
t°=TU(r). If x =h(ns°), then x € rev(£) and we can set r, = r,(x). Recall
that we defined 7 € rev(L°) by taking (rev(v¢): n € N) as its principal n-subword
sequence and (r,:n €N) as its location sequence.

The following follows immediately from equation (27):

LEMMA 6.8. The sequence t is generic for an invariant measure u on L if and
only if t is generic for an invariant measure u* on rev(L).

We will study the relationship between P~ and P! via the function taking
(s, 1) to (s%, 7). If [ay, by] is the location of the principal n-block of s¢, we define
w¢ as the word (u$, 7,) (in the language X x A) where #, = 7 [ [An + an, Ap + by).
Rephrasing this, if (u,,rev(v,)) are the principal n-subwords of (s, t) then wf, =
(Un,rev(vy))©.

PROPOSITION 6.9. The sequence {(u,,rev(vy)) : n € N) is a generic sequence
(resp. an ergodic sequence) if and only if (w;,: n € N) is a generic sequence (resp.
an ergodic sequence).

Proof. This follows immediately from equation (48). O

It is worth remarking that Proposition 6.9 can be restated in the language of
Definition 2.25 as saying that ((u,,rev(vy),0) : n € N) is a generic sequence if
and only if ((u§,rev(v9), A,): n€N) is a generic sequence.

The next theorem is the analogue of Theorem 5.10 adapted to lifting joinings
of K with L~! to joining of K¢ with (L°)~!. In the theorem the notation (v, v¢)
and (u, u°) refer to pairs of corresponding measures. We assume that KK is built
in the language X and L is built in the language A.

THEOREM 6.10. Suppose that (%, :n e N) and (¥, : n € N) are construction
sequences for two ergodic odometer based systems (K, v) and (L, u) with the same
sequence parameters {k, : n € N). Let (K°,v°) and (L, u°) be the associated
ergodic circular systems built with a circular coefficient sequence {kn,l,: neN).
Then there is a canonical affine homeomorphism p — p¢ between the simplex
of anti-synchronous joinings p of (K,v) and (L', ) and the simplex of anti-
synchronous joinings of (K¢,v¢) and (L)™', u°) such that equation (46) holds
between p and p°.
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Proof. Suppose that we are given an anti-synchronous ergodic joining p between
K and L~!. Let (s, t) be generic for p. By Lemma 2.22, the sequence of principal
n-blocks, ((u,,rev(v,)): neN) is ergodic. By Proposition 6.9 the sequence (w :
n € N) define an ergodic measure p°. Since the ((u,,rev(vy)) : n € N) satisfy
equation (45), the Ergodic Theorem implies that p¢ and p satisfy equation (46).
It is easy to check that the definition of p° is independent of the choice of the
generic pair (s, f).

For the other direction we can assume that we are given a generic pair (s, 7)
for an ergodic measure p¢ on K¢ x rev(L°) that concentrates on pairs (s¢,rev(z°))
in K¢ x rev(L®) such that m(rev(¢°)) = f(m(s°)). Taking principal subwords gives
us a generic sequence {(uy,, t,): neN). Each i, is a well-defined word rev( ve)
in rev(¥)).

As in the definition of UT the pair (s¢, rev(D)) gives a pair of sequences of
genetic markers ((j,:n= N), (j;l :n= N) for some N. Letting u, = cn_l(ufl)
and v, = ¢, ! (rev(f,)) the sequences {uy, j,) and (vy, j,) determine a pair in
K x L up to finite translations. These sequences are defined independently of
the exactly location of the zero of 7; the small shifts used in the definition of 4
do not change the two sequences.

If we let (s, £) = (UT(s%), UT (rev(1))), making small adjustments if necessary
to make (s, f) anti-synchronous, we get an element of K x L L Applying Propo-
sition 6.9 again we see the theorem.

We can extend this correspondence to non-ergodic joinings p on K xL™! and
¢ on K€ x rev(L°), exactly as in Theorem 5.10; to go up we take an ergodic
decomposition of p,

p=fpid;u(i)
and define
pc:fpfdu(i)-

To go down we use the ergodic decomposition theorem and the measure p(i)
to reverse this process.

Clearly the map p — p€ is an affine bijection. It remains to show that it is
continous. However, just as in Theorem 5.10, we see from equation (46), that for
each n there is a constant C,, independent of p such that for all u € %,,ve7;,,

P (u, rev(v)))) = Cpp( (1, v))).

This clearly implies that the map p — p° is a weak* homeomorphism. U

The proof of Theorem 6.10 shows that (s, f) is generic for p if and only if the
pair (s, 7) is generic for p¢. Moreover, the proofs of Theorems 5.10 and 6.10 are
quite robust. In particular the constructions of the corresponding measures are
independent of the various choices of generic points s or s¢, (s, 1) or (s, 7).
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7. THE MAIN RESULT

We now turn to the main results of this paper. Fix an arbitrary circular co-
efficient sequence (k;,[, : n € N) for the rest of the section. Let @B be the
category whose objects are ergodic odometer based systems with coefficients
(k; : neN). The morphisms between objects (K, i) and (L,v) will be synchro-
nous graph joinings of (K, ) and (L,v) or anti-synchronous graph joinings of
(K, p) and (L7, v). We call this the category of odometer based systems.

Let 6B be the category whose objects consists of all ergodic circular sys-
tems with coefficients {ky, [, : n € N'). The morphisms between objects (K¢, u)
and (L¢,v°) will be synchronous graph joinings of (K¢, u°) and (L¢,v°) or anti-
synchronous graph joinings of (K¢, u¢) and ((L¢)~!,v¢). We call this the category
of circular systems.

REMARK 7.1. Were we to be completely precise, we would take objects in &B to
be presentations of odometer based systems by construction sequences
(W, : neN) without spacers together with suitable generic sequences and the
objects in 6B to be presentations by circular construction sequences and their
generic sequences. This subtlety does not cause problems in the applications
SO we ignore it.

The main theorem of this paper is the following:

THEOREM 7.2. For a fixed circular coefficient sequence (kp, 1, : n € N) the cate-
gories OB and 6 B are isomorphic by a function & that takes synchronous join-
ings to synchronous joinings, anti-synchronous joinings to anti-synchronous join-
ings, isomorphisms to isomorphisms and weakly mixing extensions to weakly
mixing extensions.

Elaborating on Example 2.5, we have the following:

COROLLARY 7.3. The map & preserves systems of factor maps (or alternatively
extensions). Explicitly: let (I,<r) be a partial ordering, {(X;:i€ I) be a family
of odometer based systems and (7; j : j < i) is a commuting family of factor
maps withw; j: X; — Xj. Then (F (n; ;) : j <i) is a commuting family of factor
maps among (& (X;) : i € I). Moreover the analogous statement holds for circular
systems (X7 :i € I), factor maps (m; j: j<1) and F7 1.

Theorem 7.2 can be interpreted as saying that the whole isomorphism and
factor structure of systems based on the odometer (k, : n € N) is canonically
isomorphic to the isomorphism and factor structure of circular systems based
on {ky,1l,:neN). We call this a Global Structure Theorem.

7.1. The proof of the main theorem. Before we prove theorem 7.2 we owe the
following lemma:

LEMMA 7.4. Both OB and 6B are categories, and the composition of synchro-
nous joinings is synchronous, the composition of two anti-synchronous joinings
is synchronous and the composition of a synchronous and an anti-synchronous
joining (in either order) is anti-synchronous.

JOURNAL OF MODERN DYNAMICS VOLUME 15, 2019, 345-423



406 MATTHEW FOREMAN AND BENJAMIN WEISS

Proof. To see that OB and B are categories we must see that the morphisms
are closed under composition. This is equivalent to the statement that the com-
position of two synchronous or anti-synchronous joinings are synchronous or
anti-synchronous. This, in turn follows from Proposition 2.6 (item 2) applied to
joinings of odometers or rotations. (|

We now prove Theorem 7.2.

Proof. By Proposition 5.2 the map & gives a bijection between the objects of
OB and ¥B and hence it remains to define the functor on the morphisms (i.e.,
joinings between systems (I, u) and (L*!,v)) and show that it preserves compo-
sition.

7.1.1. Defining & on morphisms. We split the definition of % (p) into two cases
according to whether p is synchronous or anti-synchronous. In both cases we
define & for arbitrary joinings even though the only joinings we use as mor-
phisms in the categories are graph joinings; in particular the morphisms in
each category are ergodic.

Case 1: p is synchronous.

Suppose that p a synchronous joining of odometer based systems K and L
with coefficient sequence (k, : n € N) that are constructed with symbols in
and A from construction sequences (%, :ne€N) and (7, : n € N). We define a
new construction sequence (#}, : n € N ) with the symbol set Z x A.

Given n, we put a sequence

((g0,A0), (01,A1)...(OKk,-1,AK,-1))

into #}, if and only if there are words u = (oy,...,0k,-1) € %, and v = (Ay,...,
/11(',1—1) € .

It is easy to check that (#},: n € N) is an odometer based construction se-
quence with coefficients (k; : n € N). Let (K,L)* be the associated odometer
based system. Since p is synchronous, it concentrates on members of K x L that
correspond to elements of (K,L)*. We can canonically identify p with a shift
invariant measure v on (I, L)*.

Let ((K,1)*)¢ be the circular system associated with (IK,L)*. We can apply
Theorem 5.10 to find shift invariant measure v¢ on ((K,L)*)¢ associated with v
that is ergodic just in case v is ergodic. Shift invariant measures on ((I,L)*)¢
can be canonically identified with synchronous joinings on K¢ x L¢. Let p¢ be
the joining of K¢ x L° corresponding to v¢. We let & (p) = p°.

Explicitly: A generic sequence ((uy, vV,,0) : n € N) for the joining p, can be
viewed as a generic sequence {(uy, V) : n€N) for (K,L)* and transformed into
a generic sequence  (uy, vy) : n €N) for ((K,1L)*)¢. The latter corresponds to a
generic sequence of the form ((u$, v5,,0) : n € N) for the joining p°. This process
is clearly reversible so & is a bijection between the synchronous joinings of GB
and the synchronous joinings of €B.

We must show that if p is a graph joining then so is p°. Once this is estab-
lished it follows by symmetry that if p is an isomorphism then p° is an iso-
morphism. Namely, if p* is the adjoint joining of L with K defined as p*(A) =
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po((s,0):(t,s) € A}), then (p*)° = (p°)*. Hence p* is a graph joining if and only
if (p©)* is a graph joining.

Suppose that p is a graph joining. We apply Proposition 2.3, part 3. It suffices
to show that for all basic open sets in K¢ of the form (u )¢ where u° € %, and all
€ >0, there are words vy, v5 ... v{. that belong to U, %, and locations [f,..., ;..
such that

(49) pc((<uc>0xﬂ_C)A(chU( UJC>IJL)) <e.

Consider u such that ¢, (u) = u¢. Because p is a graph joining, for all § > 0 we
can find words vy,..., vy and locations I;,..., [ such that

(50) p(((u)oxﬂ_)A(Kx U<u,->l,.))<5.

i<k’
Without loss of generality we can assume that for some m = n each v; is an
m-word and that each [; <0.
Let (s, t) be generic for p and considering the pair s¢ = TU(s), t° = TU(¥).
Then by Remark 5.12 (s, t°) is generic for p¢. We will choose words vJC. and loca-
tions l]C. and compute the measure in inequality (49) by computing the density

of locations representing points in the symmetric difference.
Let

By ={k:uoccurs at k in s, but for no i does v; occurin ¢ at [; + k}

B; = {k:for some i, v; occurs in ¢ at k+ [; but u does not occur in s at k}.
By inequality (50), By U By can be taken to have density less than &.

Given words and locations {v;’f, l]C. : j € J} we can define two sets B§, Bf € Z, as
follows:

B = {k: u’ occurs in s° at k but for no j does v} occurs in ¢ at I7 + k}
B = {k:for some j, v;’f occurs in t€ at ljc- + k but u¢ does not occur in s¢ at k}.

We need to find the words and locations v]C., ljc. so that the density of Bj U By is
less than e.

For each i, if —I; is not the location of the beginning of an n-word in v; then
dropping (v;);, reduces the measure of the symmetric difference in inequal-
ity (50). Thus, without loss of generality, we can assume that for all i, there is
an (n, m)-genetic marker j(i) coding the location of the n-word in v; that starts
at —/;. Since By U B; has density less than §, the density of k is such that either

1. u occurs at k but for each i, k is not the position of the beginning of an

n-word with genetic marker f(i) in an occurrence of v;, or

2. for some i, k is the position of the beginning of an n-word with genetic

marker f(i) in an occurrence of v;, but u does not occur at k
has density less than 6.

We are in a position to define the v; and the l]C. . For each i we define index

sets J; and a collection {ljc. : j € Ji}. We arrange the J;’s so that they are pairwise
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disjoint and for some k*, U; J; ={j: 1= j < k*}. For j € J;, all of the vjc. are the
same and equal to ¢,;(v;). For a fixed i, let {—l]C. : j € Ji} be the collection of
locations of the beginnings of n-subwords of c;,(v;) that have genetic marker
J(@).

To compute the density of Bj U BY, it suffices to consider an extremely large
M and compute the density of By U By inside the principal M-subword (wg, w{
of (s ). Let (wp, w1) be the principal M-subword of (s, ) and ¢y (wo) = wg
and cp(wn) = wy.

We now argue as in Lemma 5.6. Let dy be the density of By u By in (wg, w,)
and dj be the density of Bju B{ in (wj, wy). Among all n-words the proportion
d, that begin with an element of ByU B is dj * K;,. The density of k € Z that start
n-words in (s, 1) is (1 — p(US°0:))/ gn. Letting d* be the density of k ¢ UZ,‘,/[ 0;, we
see that d* is bounded away from 0 and 1 independently of M. The proportion
d,, of circular n-subwords of (wg, wy) that begin with a k € By U By is

dg * qn

(1-d*)
Since p concentrates on {(s, t) : 7(s) = n(£)} and p® concentrates on {(s, t°) :
7(s%) = m(t°)}, the n-words with a particular genetic marker in wy occupy the po-
sition of the same genetic marker in w; and similarly for w§ and wy. The (n, M)-
genetic markers set up a one-to-one correspondence between n subwords u*
of wy and regions of wyg that consist of occurrences of (1*)¢ that have the same
genetic marker. Each of the regions of w{ with the same genetic marker have
the same number of n-words in them.

Temporarily call an n-subword of (wg, wy) bad if it begins with a k in B§ U By
and similarly for n-subwords of (wp, w;) and By U B;. Then the property of
being bad is determined by the (n, M)-genetic marker of the n-word: if k is the
beginning of n-subword of wy with genetic marker j, and k' is the beginning of
an n-subword of wg with the same genetic marker in wg, then k € Byu B if and
only if k' € B§ U B.

It follows the proportion of bad n-subwords of (wy, w;) is the same as the
proportion of bad subwords of (wg , wf). In other words,

dy= d;.
It follows that
ds « qyn
dox K, =—9 ™"
0 * Kp 1-d"

Thus by taking 6 small enough and M large enough we can make dj as small as
we want, and thus arrange that dj < € as desired.

To finish showing that . is a bijection between graph joinings in each cate-
gory and isomorphisms in each category we must also show that if p© is a graph
joining then so is p. But this is very similar. Given a u¢ € %, and an € > 0 we
can find vf,..., v}, and locations If,..., I, so that inequality (49) holds. Again
we can assume that for some m, for all j, U]C. e ¥#,5. The numbers IZJC.I determine
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locations in v]C. of beginnings of n-words. We can augment our collection of
locations by adding more l]C. 's so that if [ is the start of a location in vjc. that has
the same (n, m)-genetic marker as ljc., then for some j' we have l]C., =—/ and

v]C., = l/]c.. In doing this we do not increase the density of Bj U Bf. Reversing
the procedure above this gives words v; € U, 7, and locations /; such that the
density of By U By is less than €. (Note the lack of boundary in K x L makes the

computation easier by reducing the density of By U B;.)

Case 2: p is anti-synchronous.

On the anti-synchronous joinings we take & to be the bijection between
anti-synchronous joinings of (I, u) with (L™1,v) and of the circular systems
(K€, u°) with (@9~1 v°) defined in Theorem 6.10. We show that % takes anti-
synchronous graph joinings to anti-synchronous graph joinings and vice versa.
Having done this it will follow by a symmetry argument that & sends anti-
synchronous isomorphisms to anti-synchronous isomorphisms.

Suppose that p is an anti-synchronous graph joining; i.e., p is a graph joining
of K with L™! that concentrates on {(s, t) : 7(f) = —7(s)}. The map x — rev(x)
projects to the odometer map 7 (x) — —n(x); in particular rev(L) is based on the
same odometer that L is. By Lemma 3.7 we can view p as a graph joining of
K with rev(L) that concentrates on {(s, #) : (s) = n(¢)}. Similarly we view p¢ as
concentrating on K¢ x rev(L°).

We must show that for all basic open sets in K¢ of the form (u¢)y where
u‘ €y and all € > 0, there are words vf,v;...v{. that belong to U, 7, and
locations If,..., I7, such that

pc((( uyo x rev(l]_c))A([Kc x U(rev(v;) )1;‘)) <e.

Consider u such that ¢, (u) = u°. Because p is a graph joining for all § > 0
and all large enough m we can find words v,..., v € ¥, and locations [y, ..., [
such that

51) p(((u)oxrev(l]_))A([KxU(rev(ui)ni)) <.

Without loss of generality we can assume that each [; < 0. We will take m suffi-
ciently large according to a restriction we define later.
Let (s, t) be generic for p and let 7 be as in Definition 6.1. Then (s¢, 1) is
generic for p¢. We argue as before considering sets
(52) By ={k:uoccurs at kin s,
but for no i does rev(v;) occur in rev(z) at [; + k}
(53) B; = {k:for some i, rev(v;) occurs in rev(t) at k + [;,
but u does not occur in s at k}.

Then inequality (51) shows that By U B; can be taken to have density less than
any positive 6.
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Given words and locations { vjc., ljc. 1je] } we consider B, By € Z, as follows:

c
J
By = {k:for some j, v} occursin 7 at I + k but u“ does not occur in s° at k}.

B = {k:u occurs in s at k but for no j does v} occurs in 7 at I + k}

Given {(v;,1;): 1 <i < k'}, we need to find the words and locations v]C., l]C. so that
the density of Bju By is less than €. As in the synchronous case, for each i we
build index sets J; so that the J;’s to be disjoint and have union the interval
{j:1<j<k"}forsome k*. For all j € J; we take U]C. = ¢, (v;). We need to find a
collection of locations {/; : j € J;}.

Fix an i < k’. Without loss of generality we can assume /; is the beginning
of a reversed n-block rev(¢v') in rev(v;), since otherwise, discarding (rev(v;) )i,
makes inequality (51) sharper. If (sg,rev(#p)) € K x rev(L) is an arbitrary member
of

uro xL) N (K x (rev(v;))y,)

with 7(sg) = =7 (), then there is an m-word u* such that sp € (u*);,. Let f(i)
be the genetic marker of u in u*. We note that j(i) does not depend on so, since
it is determined entirely by the location of # in #* and u* must be aligned with
rev(v;).

The genetic marker (i) defines a region of n-words in % inside an m-word
in %},. Let L; be the collection of [ that are at the beginning of an n-word in
%, with genetic marker f(i) in an m-word in %, and set

(54) {licjelit={An-1:1eL;}.

This determines the collection { vjc., l;f l=sj<k*}

We now compute the density of Bj U B in terms of the density of By U B.
To do this it suffices to consider a large enough M that s has a principal M-
block [as, bys) and compute densities inside this principal M-block. If this is
sufficiently small we can deduce that the density of B U By is small in Z. By
Remark 4.19, we can also assume that M is so large that f restricted to this
principal M-block is equal to Ay, along this M-block; equivalently the principal
M-block of is [apr+ A, by + App).

From Proposition 6.4, we know that if I is an m-sub-block of s¢ [ [ans, ba)
then either:

1. the corresponding sub-block of i is at shm(I) or
2. I is part of the (m, M)-slippage.

By item 2 of Proposition 6.4, the number of m-sublocks in each case that corre-
spond to a given (n, M)-genetic marker does not depend on the genetic marker.
Further in the second case sh*(I) is entirely part of UM | 9;(?).

We compute the density d§ of elements of Bj U B by separating them into

these two sources. Explicity, we divide into:

Slippage: Those k € Bj U By that begin an n-subword of a location of an m-
subword of s¢ that is in the (m, M)-slippage.
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Mistakes: those k € Bj U B{ such that k is the location of the beginning of
a circular n-subword inside s° | [an, by) and [k + Ay, k+ G + Apy) is the
location of an m-word in 7.

We compute the density of the Mistakes and the Slippage separately. Again
we will call n-subwords that begin with elements of By U By or Bj U By bad.

Both the Mistakes and the Slippage occur at the beginning of n-subwords of
s¢ | lap, byp). Define dj, to be density of Uf{lﬂ 0; in [apg, bpy). Then proportion
of k € [apg, byy) that begin n-subwords is:

1-d,
an
Of these a proportion @ of the n-subwords are in the Slippage. Thus the
collection of k that belong to the Slippage has density

(5
Since @Y goes to zero as m goes to infinity we can make this term as small as
desired by taking m large enough.

Let [a;w, b;VI) be the location of the principal M-block of s (and thus of rev(?)).
Let dy be the density of By U B in [a),, b),).

Suppose now that k belongs to the Mistakes. Let j be the (1, M)-genetic
marker of the word beginning with k in s¢ [ [ap, by,). Then there is a unique
k' in [a),, b},) that is at the beginning of an n-subword of s | [}, b},) and has

0]

genetic marker f By construction, for k that are not in the Slippage:
(55) k € B§ U By if and only if k' € By U B;.

Let d), be the proportion of m-subwords of s I [6’;\/1’ bfvf) that begin with a k €
By U By. Since every genetic marker is represented exactly the same number of
times in the complement of the slippage (Proposition 6.4), the proportion of
words that begin with k in the Mistakes is

(56) ds=dyx(1-am.

If dy is the density of By U B, in [a),, b},) and df is the density of the Mistakes,
then

(57) do=dpl Ky,

1- db)

n

(58) d5 = |

Putting together equations (56), (57) and (58), we see that if we make dj suffi-
ciently small we can make d as small as desired.

Summarizing. By taking M large enough, the density of Bj U By is well approxi-
mated by the density of Bj U By inside [d;, by;). This is the sum of the density
of the (m, M) slippage and the density of the Mistakes. We can make the density
of the Slippage arbitrarily small by taking m large enough and the density of the
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Mistakes arbitrarily small by taking 6y sufficiently small. This establishes the
claim that if p is a graph joining then so is p€.

We must show that if p€ is a graph joining then so is p. We suppose that we
are given a u € %,, we must find {v;,[; : i < k'} so that equation (51) holds. Let
u‘ = cy(u) and approximate (u)q x rev(L®) using {vjc., I5:i<k* }. Again, we
can assume that the collection of locations is saturated in the sense that if / is
the start of a location in vJC. that has the same (n, m)-genetic marker as l]C., then

for some j’ we have ljc., =-land vjc., = v]C.. In doing this we do not increase the

density of BOC @] Bf . We can now use equations (56), (57) and (58) again to see
that if d§ is made sufficiently small then so is dy.

Our next claim is that p is an isomorphism if and only if p¢ is an isomorphism.
Recall from Proposition 2.4 that p is an isomorphism if and only if both p and
p* are graph joinings. Thus if p is an isomorphism, both p° and (p*)¢ are graph
joinings. Since f is an involution:

(P =(p)".
Thus if p is an isomorphism, so is p°.
Reversing this line of reasoning shows that if p¢ is an isomorphism then p is.

7.1.2. & preserves composition. To finish the proof that & is a functor we must
show that & preserves composition. The argument splits into four natural cases:
composing synchronous joinings, composing a synchronous joining with an
anti-synchronous joining on either side and composing two anti-synchronous
joinings. We will carefully work out the case for compositions of synchronous
embeddings, and discuss the appropriate modification in the cases involving at
least one anti-synchronous embedding after Lemma 7.5.

The cases differ only in that the shifts involved in the generic sequences have
different forms. For ergodic synchronous joinings generic sequences can be
taken to be of the form ((uy, v,,0) : n € N ), whereas for anti-synchronous join-
ings of K¢ and rev(L‘) a natural generic sequence is of the form ((uj, rev(vy,),
Ap):neN).?

Preparatory Remarks.

In the characterization of the relatively independent joining p of p; and p»
given in Lemma 2.27 and Proposition 2.28, the partitions dk,,d]é and <} are
given by (u)s,, (Vi )s, and {wy)s, for s1, sz, s3 € Z. Formally the partitions </} x
A, Ay x i and ) x oy and oy x ) x <. consist of all possible products of
these basic open sets. However, in the situation we are considering we have
synchronous and anti-synchronous joinings. For synchronous joinings we can
build a generating family for the relatively independent joining p of p; and p3 by
considering products of pairs of basic open intervals in the same locations; e.g.,
pairs of the form (uy)s x (wg )s. As a consequence, for verifying the hypotheses
of Proposition 2.28 we can restrict our attention to the case where s* = 0.

23That is, ((un,rev(vy))S: neN).
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In the case of anti-synchronous joinings we need to distinguish the odome-
ter based from the circular systems. For anti-synchronous joinings of odometer
based systems K with M~! we can consider only intervals of the form (u; ) x
(rev(wg) )s+s+ Where s* = 0. For anti-synchronous joinings of the circular sys-
tems K¢ with M€, asymptotically the Empirical Distances concentrate on words
of the form (u,cc) X (rev(wz) Y4, (Where Ay is the amount of shift for fj at scale k).
Moreover, translations of sets of this form generate the measure algebra of the
anti-synchronous joining.

Thus in the proof of the next lemma, to verify the hypothesis 3 of Proposi-
tion 2.28 we can take s* =0 or s* = Ay depending on whether p; o p; is synchro-
nous or anti-synchronous.

Fix odometer based systems [, L and M with construction sequences (%, :
neN), (¥, :neN) and (¥#; : n € N) respectively. Let p; and p, be synchro-
nous graph joinings of K and L, and L and M respectively and p their relatively
independent joining over L.

Since p; and p» are graph joinings so is their composition. Thus the relatively
independent joining is ergodic. Hence by Lemma 2.31 we can find generic
sequences for p1, p2 and p that satisfy the hypothesis of Proposition 2.28.

LEMMA 7.5. Let ((up, vy, wy,0,0) : n € N) be generic for p. Then the sequence
((us, ve,we,0,0) : neN) is generic for the relatively independent joining p¢ of
p{ with p5.

Assuming the lemma, we show that % preserves compositions. Corollary 2.30
shows that ((u,, w,,0) : n € N) is generic for p; o p,. From the way that & is
constructed, if v¢ = Z(p; 0 p2), then ((u},, wy;): n € N) is generic for v¢ (viewed
as a measure on a circular system). From Lemma 7.5 and Corollary 2.30, we
know that ((uy, wy,0) : n€N) is generic for p{ o p5. Hence & (p1 0 p2) = F(p1) 0
Z (p2) as desired.

It remains to prove Lemma 7.5.

Proof. We claim that ((u$, v§, ws,0,0) : n € N ) satisfies the hypotheses of Propo-
sition 2.28 for the joinings p{ and p3.

The first two hypotheses follow immediately: p{ and p$ are constructed by
taking the generic sequences ((u%, v5,0) : n € N) and ((v§, w;,0): n € N) de-
termined by ((uy, v,,0) : n € N) and ((vy, wy,0) : n € N) respectively, and the
measures did not depend on the precise generic sequence taken. Hypothesis 3
remains to be shown.

We are given € >0, k and s* and need to find (k)¢, G(Ck,)c and the I,’s so that
inequalitites 3a and 3b hold. Since p{ and p$ are synchronous, so is the rela-
tively independent joining. By the preparatory remarks can take s*, the relative
location of words in K and M to be 0. Since the sequence of (1, vy, wy,0,0)’s
is generic for the relatively independent product of p; and p», we can find
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k', N, Gy < ¥, and for each v € Gy a set I, c [0, Kp) such that the conditions in
hypothesis 3 hold in the odometer context.’*

Choose k' so large that the density d}, of the boundary portions of circular
k’'-words is less than e * 107 and so that for each v € Gy, there is an I,, with

1-(e*1079

I,| >
1] ( =4,

) * Kk’"

Let (K")¢ = k', and Gy, = {v°: v e Gy}. For each v° € Gy, we define the set
I,c €10,qy). Each I, € [0,Ky) and each s € I, has a genetic marker fs in v. We
let I, = {s°: s¢ has the same genetic marker in v° as some s € I, does in v}.
Equation (26) implies that

|IU| _ |IUC|

Ky  qu

(1-dp)

and thus |Ic| > (1 —€) gy
Equation (27) implies that for v € Gy and all large n,

EmpDist(v,)(v) = EmpDist(v;) (v°),

from which hypothesis 3a follows immediately.

Fix a vy € G}, and an s° € I;c. Let vy € Gy correspond to vg, and s € I, corre-
spond to s°. Let (u€, we) € %lg x ch. To see hypothesis 3b, we need to compute
the empirical distributions of (u¢, w®), u and w* conditioned on vg.

Let A° be the collection of ((u')¢, v§, (W')°) € %;, * VS x WS such that u® oc-
curs at s¢ in (¢#')¢ and w° occurs at s¢ in (w')¢. Let B¢ be the collection of all
(", vg, (W) € U, < V,5 x WS Then

. EmpDist,.(ué, ve, we)(A°)
(59)  EmpDisty ;. o o (U, Uy, Wy vG) (U, w€) = EmZDistl,z,(ug, vg, w’,%)(BC) .
As in the definition of & in Subsection 7.1.1, we can view the relatively inde-
pendent joining p on K x; M as concentrating on a single odometer system
(K,L,M)* and p¢, the relatively independent joining of p{, o5 as concentrating
on ((IK,L,M)*)¢, which is canonically isomorphic to K¢ xc M€,

In the odometer system (K, L,M)*, consider the set A consisting of those k'-
words (¢, vy, w') such that ' and w’ have u and v in position s. Then A° =
{(@H, v, W"e) : (W, vo, w') € A}. Similarly B® = {(()¢, v§, (w)°) : (W, vo, W)
€ B}. Equation (27) implies that

(60) EmpDist(up, vn, wy)(A) = EmpDist(uy,, ve, w;;)(A)
and
(61) EmpDist(up, vn, wy)(B) = EmpDist(us,, vy, wy) (B€).

24For odometer systems, the length of the words in %, ¥ and #}. is Ky, for circular systems
the words at stage k' have length g
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Finally, noting that
EmpDist . (Un, Uy, Wp) (A)

62 EmpDist Uy, Un, Wylvo) (U, w) = -
(62) p ks, (s Uny Wi Vo) ) EmpDist ., (Un, Vn, wy)(B)

and using equations (59) and (60), we see that
(63) EmpDisty. ;. o (Uy, Uy, wy|vg) (1€, we)
= EmpDisty i s s(Un, Un, wn|vo) (U, w).
Arguing in the same manner we see
(64) EmpDisty, i (uy, vy,|vg) () = EmpDisty, (1, | Vo) (1)
(65) EmpDisty. o (vy,, wy,|vg) (v°) = EmpDisty. (v, wy|v) (V).
Since for large n,
| EmpDisty. ;. ¢ (i, Vn, Wp| o)
— EmpDistk’s(un, Unplv) * EmpDistk,s(vn, wp)lv)l <e
from equations (63), (64), and (65), we get the desired conclusion that
| EmpDisty. ;. s e (Uy, Uy, wy|Vg)
— EmpDist, i (uy, vy,|vg) ¥ EmpDisty. . (vy,, wy|[vg)l

is less than €. O

Lemma 7.5 holds where one or both of the joinings p; and p, are anti-syn-
chronous as well, however the shift coefficients for the circular systems are
no longer all 0 but belong to {0,+A,} depending on which joinings are anti-
synchronous. Similarly s* € {0, + A¢}. The argument follows the same path until
it reaches equation (60). This equation relies, in turn on equation (27). The
analogue of equation (27) for anti-synchronous joinings is equation (48), which
in turn carries over to the relatively independent product. The upshot is that
equations (63), (64), and (65) hold after applying the appropriate shifts of u¢,
and vy, relative to uy,.

This finishes the proof of Theorem 7.2. O

7.2. Weakly-mixing and compact extensions. We now show that & preserves
weakly-mixing and compact extensions. The fact that compact extensions are
preserved is due to E. Glasner and we reproduce the proof here with his kind
permission.

PROPOSITION 7.6. Let (K, 1) and (L, v) be ergodic and suppose that p and p¢ are
corresponding synchronous joinings determining factor maps

T:K—L
7¢ K¢ —L°.
Then K is a weakly mixing extension of L (via n) if and only if K¢ is a weakly
mixing extension of L® (via n®).
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Proof. Recall that if 7 : X — Y is a factor map from (X,%,u,T) to (Y,%6,v,S),
then the extension is weakly-mixing if the relatively independent joining X xy X
of X with itself over Y is ergodic relative to Y. In case Y is ergodic, this simply
means that the relatively independent joining is ergodic.

Suppose that K and L are odometer based systems with construction se-
quences (#; :neN) and (7, : n € N) respectively. If p is a synchronous factor
joining of K over L, and the extension is weakly-mixing then we can find an
ergodic sequence of words ((uy, Vn, wy) € Wy x Vy x Wy : ne N) that is generic
for the relatively independent joining of p with itself over L, i.e., p x| p. This
sequence will satisfy the hypotheses of Proposition 2.28. It follows that the se-
quence of (u$, vy, wy,)’s is also generic for an ergodic measure v. As we argued
in Lemma 7.5, the (uy,, vy, wy,)’s also satisfy the hypothesis of Proposition 2.28.
It follows that v is the relatively independent joining p¢ x p°. Since v is ergodic
p¢ is weakly mixing.

If, on the other hand the sequence of (u,, v,, wy) is not ergodic, then the
sequence (us, v5, wy) is also not ergodic. Hence if p¢ is weakly-mixing, then p
is weakly mixing. (|

It is immediate from the Furstenberg-Zimmer structure theorem [11, Chapter
10, Proposition 10.14] that X is a relatively distal extension of Y if and only if
there is no intermediate extension Z of Y, with X being a non-trivial weakly-
mixing extension of Z. Thus & takes measure-distal extensions to measure-
distal extensions.

What requires more effort to establish is the following:

PROPOSITION 7.7. (E. Glasner) The functor & takes compact extensions to com-
pact extensions.

Proof. Glasner’s proof uses a result proved in the forthcoming [8]: If (K, ) is an
ergodic odometer based system and X is a compact group extension of (K, y)
then there is a representation of X as an odometer based system with the same
coefficients.

Since X is a compact extension of Y if and only if X is a factor of a com-
pact group extension of Y, it suffices to show that % takes compact group
extensions to compact group extensions.

To prove that & takes compact group extensions to compact group exten-
sions we use a remarkable theorem of Veech that characterizes group exten-
sions 7 : X — Y of ergodic systems. The criteria is that every ergodic joining
of X with itself that is the identity on Y (i.e., p, as a measure, concentrates on
those pairs (x1, x2) such that 7(x;) = m(x2)) comes from a graph joining which
is an isomorphism of (X, 9, u, T) that projects to the identity map on Y.2%

Explicity, [11, Theorem 6.18 on page 136] shows that if, in the ergodic de-
composition of the relatively independent product X xy X, only graph joinings
appear, then X is a compact group extension. The converse follows from [11,

25Gee [10] for an explicit statement and proof.
26This first appears in [19].
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Proposition 6.15, part 2], that if X is a compact group extension of Y then every
ergodic self-joining of X over Y which is the identity on Y is a graph joining.
The map & takes ergodic joinings to ergodic joinings, and all graph joinings
to graph joinings, and the identity joining to the identity joining. Thus we see it
preserves group extensions. (|

Furstenberg [9] and Zimmer [23] independently showed that for every ergodic
system X there is an ordinal a and a tower of extensions ( Xz : < a) such that
Xy is the trivial system, X, = X and for all § < a, Xg,; is a compact extension
of Xg, unless & = f+ 1 where X, is either a compact or a weakly mixing exten-
sion of Xg. If there is no compact extension at the end of the tower, then X is
measure-distal and (Xp : f < a) is a distal tower approximating X. The least
ordinal such that X can be represented this way is the distal height or distal
order of X.

Let (K, 1) be an odometer based system and consider the odometer factor &.
Let (K', ') be the Kronecker factor of (I, u). Then we have

L)

YA
Y

K, 1"

T2

Y

o,
where 7, may or may not be a trivial factor map. This tower is carried by & to
(K, u)

ys|
4

(K", WwH)

T

Y

e%a.

If K’ is a non-trivial extension of @, then Glasner’s result tells us that (K')¢ is a
compact extension of %, but is silent on the issue of whether (K')¢ is discrete
spectrum; i.e., we do not know whether & takes the Kronecker factor of K to
the Kronecker factor of K€.

Suppose now that K is given by a finite tower of factors:

o = Ko < <y < e Kn-1 =K,

where K is the Kronecker factor of K and for all i,K;,; is the maximal compact
extension of K; in K. Then K is distal of height N. The map & carries this to a
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tower of compact extensions

Ry ~ KS = KS e KS_, =K.

From this we see that the distal height of K¢ is either N or 1+ N.

We do not know an example whether the height of K¢ can be 1+ N. However
the ordinary skew product construction applied to odometers gives examples
of distal height N where & is the Kronecker factor. Hence from our analysis we
see that there are ergodic circular systems with distal height N for all finite V.

In [2], Beleznay and Foreman proved that for all countable ordinals a there
is an ergodic measure preserving transformation T of distal height a. In that
construction there are no eigenvalues of the operator Uy of finite order. Hence if
we let @ be an odometer with coefficient sequence (k, : n € N) going to infinity,
T x O is an ergodic transformation with distal height ¢ and zero entropy. In
the forthcoming [8] we see that this implies that T x @ can be presented as
an odometer based transformation. By the analysis we just gave we see that
(T x ©)° is a circular system with height 1+ a. In [8] we see that (T x ©)° can be
realized as a smooth transformation. For infinite @, 1+ a = a, hence we have:

THEOREM 7.8. Let N be a finite or countable ordinal. Then there is an ergodic
measure distal diffeomorphism of T? of distal height N.

7.3. Continuity. Fix a measure space (X, ). As noted in Section 2.3, we can
identify symbolic shifts built from construction sequences with cut-and-stack
constructions (whose levels generate X). By fixing a countable generating set
in advance, we can make this association canonical. The levels in the cut-and-
stack construction give the relationship with arbitrary partitions of X. In this
way the usual weak topology on measure preserving transformation of X de-
scribed in Section 2.1 determines a topology on the presentations of symbolic
shifts as limits of construction sequences.

The finitary nature of the maps (c, : n € N) that give bijections between
words in #;, and words in %, easily shows that the map % is a continuous map
from the presentations of odometer based systems to presentations of circular
systems. Thus we have

COROLLARY 7.9. The functor & is a homeomorphism from the objects in GB
1o 6€B.

For the purposes of the complexity of the isomorphism relation we note

COROLLARY 7.10. The map & is a continuous reduction of synchronous conju-
gacy between odometer based systems and circular systems.

7.4. Extending the main result. In the main result we restricted the morphisms
to graph joinings, largely because compositions of graph joinings are ergodic
joinings. Unfortunately a composition of ergodic joinings is not necessarily
ergodic, and non-ergodic joinings also arise naturally as relatively independent
joinings of ergodic joinings. In this section we indicate how to extend our results
to the broader categories that include non-ergodic joinings as morphisms. For

JOURNAL OF MODERN DYNAMICS VOLUME 15, 2019, 345-423



FROM ODOMETERS TO CIRCULAR SYSTEMS: A GLOBAL STRUCTURE THEOREM 419

convenience, we will continue to require that our objects are ergodic measure
preserving systems.

Let ©B* and 6¥B* be the categories that have the same objects as @B and
B, but where the collections of morphisms are expanded to include all syn-
chronous and anti-synchronous joinings (rather than just graph joinings).

In Section 7.1.1, the definition of & included all such joinings (& (p) for a
non-ergodic p was defined via an ergodic decomposition). Thus without modi-
fication we can view & as a map

F :0B" — 6B".

To show that & is a morphism between these categories, i.e., to show preserves
composition for arbitrary morphisms, we develop a more combinatorial ap-
proach to lifting morphisms that coincides with the original definition.

We start by generalizing the notion of a generic sequence of words to include
non-ergodic measures. Suppose K is a symbolic system with a construction
sequence (#, : n € N). Let u be a shift invariant measure which we assume
is supported on the set S € K (where S is given in definition 2.9). The ergodic
decomposition theorem gives a representation of u as [ p1,dA(p), where each
p is a shift invariant ergodic measure and A is a probability measure on a set P
parameterizing the ergodic components. For each p, there is a generic sequence
of words ¢ w,’; :neN) for the measure u,. The main observation is that the set
of probability measures on words of a fixed length is compact. Thus for any
fixed k and € > 0, we can find a finite set Py < P of parameters so that for all p,
there is some p’ € Py with?’

(66) Ay — gl <e.

This gives a partition of the parameter space into sets {E, : p € Py} such that
inequality (66) holds for all p’ € Ej,.

Now let n be sufficiently large such that for each p € Py, we can find an
element w!, € #;, with

(67) |EmpDist; (wy) — i || <e.

If we denote A(Ep) by a(p), then a(p) =0 and }_,cp, @p = 1. It is clear that one
can obtain fi; up to a small error from the finite data {(w}, a(p)) : p € Pi}, which
is a weighted finite collection of words.

For the symbolic sequences that we are interested in, such as the circular
systems, the measure of the spacers is independent of the invariant measure u
(see Section 5.1). This means that for all 7, p, the sum }_ ey, ,uZn(< w'y) is the
same. In this context using inequality (67) we can arrange the inequality

<E.

( Z a(p)EmpDistk(wZ)) — [
pePy

27The notions of EmpDist and i & are given in the beginning of Section 2.6.
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The measure A is defined on the extreme points of the simplex of shift invariant
probability measures and if we choose the finite sets Py to consist of points that
lie in the closed support of A then we can easily ensure that when we go from
(k,€) to a (k',e") with k' > k,€e’' < € that P 2 Py. Taking a sequence k — oo and
€x — 0 with }_ e < oo, we get a set {vy,Va,...} of ergodic measures and finite sets
Ii € Ix41 of integers with probability measures ay on Iy such that (¥ ;c;, ai(i)v;)
converges to u in the weak* topology.

Let Prob(I}) denote the collection of probability measures on I.

DEFINITION 7.11. Let n; go monotonically to infinity and let {(w,’;k,ak(i))k}
be a weighted sequence of words as above. Suppose that for each k and i € I,
||EmpDistk(w,’1k) -Vl <eg, then we call {(wilk, ak(i))} a generic sequence for p.

We note that, for a fixed i, as k varies {wzk} is a generic sequence for v;,
which is one of the ergodic measures in the support of 1.

In a manner exactly analogous to the analysis in Section 2.6, Definition 7.11
can be extended to products of symbolic systems, allowing for shifting of words
in construction sequences.

Restricting our objects to ergodic systems (X,%,u, 1), (Y,€,v,S), (Z,9,[, T
allows us to deal with the non-ergodic analogue of the material discussed be-
tween Definition 2.24 and Lemma 2.31 in a relatively straightforward way which
we now discuss.

For the analogue of Proposition 2.28 in the non-ergodic case let us make the
following observation. Fix a non-ergodic joining p of X and Y that has ergodic
decomposition p = [ pPdA(p), where, by the ergodicity of X and Y, each p?” is
also a joining of X with Y. Fix a k and an € > 0 and a cylinder set determined
by a word u € 7//kX , at location s* and let ¢ represent its indicator function. For
k' large, by the Martingale convergence theorem, there is a subset G of Y of
measure close to one such that when we look at the conditional expectation of
¢ with respect to the partition induced by the principal k’-words of y € G, for
<y and compare it to E(¢p|2), the error is small.

The element of that partition that contains y is given by a word v, € Wkl,/ and
a location parameter sy, and the conditional expectation is

p(sh* (u)) nsh® (vy)))

vvy)) '
This easily gives a set Gy € # with V4(Gy) >1—-€ and a J, < [0, gx) such that
for ve Gy, j € J,, formula (68) gives a good approximation to py(shs* ((u))) for
most of the y € sh™ ((vy)).

If we have a generic sequence of weighted words for p, then we can use it
to calculate the expression in (68). This observation makes it possible for us to
formulate Proposition 2.28 for non-ergodic joinings.

We are given ergodic systems X, Y, Z and are given construction sequences
(Un,Vy, Wy, - neN) such that for each n, the words in each %, 7,, #; have the
same length. Two joinings p; of X and Y and p, of Y and Z are given. The
analogue of Proposition 2.28 is now

(68)
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PROPOSITION 7.12. Let

(69) ({(ul,, vh, wh sk th) i€ I}, ay € Prob(I) : keN)

be a sequence of weighted words and ) €y < oco. Suppose that the following hy-
pothesis are satisfied:

1. ({(ufw v,ilk,s,’;k) (i€ I}, ay) )k is generic for py,
2. vy, wp,, t,,) 11 € I}, ag ) is generic for pa,
3. Foralle, k,s* there are k', N and a set Gy Wkl,’ and for each v € Gy there
is a set J, < [0, qx) such that
(a) Z,,EGk, EmpDist(v,)(v) >1-¢€
®) Jul>A-e)qr
(c) Forallve Gy and s€ J,, if ng > N,

. i i i i .
Y EmpDisty 1 ¢ oy (Up,, B (0, ), sh'n (wp,)|v) ak (i)
i€l}

- EmpDistkoyS(ufik, shn (v,’;k) V) a (i)

i€l

. i . .
* ) EmpDistko'sH*(v,’ik,shtﬂk Son (wy, ) V) g (i)
i€l

<eE€.

Then the weighted sequence given in (69) is generic for the relatively independent
joining X xy Z.

The analogues of Corollary 2.30 and Lemma 2.31 are easily verified, giving us
a characterization of compositions of non-ergodic joinings and the existence of
generic sequences satisfying the hypothesis of Proposition 7.12.

Verifying that & preserves composition is now straightforward in the manner
of Section 7.1.2: the Gy, and J, are constructed in exactly the same way. Check-
ing the conditional distributions of short words relative to longer words (k vs. k')
involves counting k’-words, and these are counted using equation (27) for each
component (uy, Uk, wy) separately. The weighted average is then preserved.

8. OPEN PROBLEMS

We finish with two open problems that we find interesting and believe to be
feasible. The first is to characterize the class of transformations isomorphic to
circular systems in ergodic-theoretic terms. All circular systems have common
properties that can be described in terms of rigidity sequences or zero entropy.
Can one find a complete characterization using this type of notion?

The second problem can be stated as follows. For the smooth realization
problem, the underlying rotation « of a circular system must be Liouvillian;
however realization is not necessary for the results in this paper. Can an arbi-
trary irrational a be the underlying rotation of a circular system?
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