
Kiko: Programming Agents to Enact Interaction Protocols

Samuel H. Christie V
North Carolina State University

Raleigh, NC, USA
schrist@ncsu.edu

Munindar P. Singh
North Carolina State University

Raleigh, NC, USA
mpsingh@ncsu.edu

Amit K. Chopra
Lancaster University

Lancaster, UK
amit.chopra@lancaster.ac.uk

ABSTRACT

Realizing a multiagent system involves implementing member

agents who interact based on a protocol while making decisions in

a decentralized manner. Current programming models for agents

offer poor abstractions for decision making and fail to adequately

bridge an agent’s internal decision logic with its public decisions.

We presentKiko, a protocol-based programmingmodel for agents.

To implement an agent, a programmer writes one or more decision

makers, each of which chooses from among a set of valid decisions

andmakesmutually compatible decisions onwhat messages to send.

By completely abstracting away the underlying communication

service and by supporting practical decision-making patterns, Kiko

enables agent developers to focus on business logic. We provide an

operational semantics for Kiko and establish that Kiko agents are

protocol compliant and able to realize any protocol enactment.

ACM Reference Format:

Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra. 2023. Kiko:

Programming Agents to Enact Interaction Protocols. In Proc. of the 22nd

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2023), London, United Kingdom, May 29 ś June 2, 2023, IFAAMAS,

10 pages.

1 INTRODUCTION

Enterprise and other applications, e.g., in business and healthcare,

involve interactions between social entities such as humans and

organizations [25] based on technical resources such as databases.

A sociotechnical system (STS) involves social and technical entities

[31, 37] and provides a useful abstraction for such applications.

Today, an STS is implemented using a conceptually central service

through which its entities interact. In contrast, we address the chal-

lenges of implementing a decentralized multiagent system (MAS)

to realize an STS. Here, each principal maps to an agent; the agents

interact with each other via asynchronous messaging.

The messages sent by an agent represent its public decisions. For

example, a Quote by Seller for some item for some price represents

a decision by Seller; an Accept (of some Quote) sent by Buyer

represents a decision of Buyer; and so on. To coordinate their

decisions, the agents rely on an interaction protocol. By specifying

the constraints on messaging, a protocol specifies the constraints

on decision making between the agents in a MAS. For example, a

Purchase protocol in the above-introduced e-business setting may

specify that the price is offered by the seller, and payment is required

for delivery.

A protocol is specified abstractly with reference to roles to be

adopted by agents in a multiagent system. Implementing an agent

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 ś June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

according to a role means fleshing out the role with private (inter-

nal) decision logic that results in messages being emitted, that is,

decisions being made [16]. For example, suppose agents Bob and

Sally play Buyer and Seller, respectively, in Purchase. Sally’s

decision logic may be to send Quotes with lower prices to repeat

buyers. Bob’s decision logic may be to Accept a Quote if the price

fits within its budget. Such decision logic is the essence of an agent.

Supporting the common desire [28, 39] for programming models

that separate business logic from other componentsÐand combat-

ing complexity in agent communication [10], in generalÐproves

challenging. Traditional protocol languages [3, 18, 24, 29, 42] spec-

ify message ordering, which limits flexibility [11]. JADE [5, 6], a

programming model for multiagent systems, is noteworthy for

its early support for FIPA protocols [19]; however, the FIPA ap-

proach is long outdated [34] and the FIPA protocols are limited to a

few patterns of interaction specified in terms of message ordering.

Agent-oriented programming models such as Jason [8] and JaCaMo

[7] provide cognitive abstractions for encoding an agent’s internal

reasoning but do not support protocols. Existing commitment-based

approaches [22, 41] either rely on centralized commitment stores

[2] or do not adequately address operationalizing asynchronous

communication [17]; some approaches map the problem to proto-

cols [26, 38]Ðand hence within the scope of this paper. Traditional

agent-orientedmethodologies [9, 15, 30] emphasize and incorporate

protocols as design abstractions. However, the protocol specifica-

tions in these approaches are informal (usually UML interaction

diagrams), which rules out protocol-based software abstractions for

engineering agents. In a nutshell, today we lack a protocol-based

programming model for agents that supports flexible, decentralized

decision making via asynchronous messaging.

Our contribution, Kiko, addresses this gap. Specifically, Kiko

advances a novel decision-oriented programming model that en-

ables structuring and implementing agents based on the protocol

roles they play. Kiko’s fundamental abstraction is that of a decision

maker, a construct for capturing the decision logic that selects and

makes a set of decisions from those currently available. The agent

developer’s primary task is to write the set of decision makers.

Kiko guarantees an agent’s compliance with the roles its plays.

Kiko supports practical decision-making patterns that other ap-

proaches cannot easily accommodate, including correlation, cross-

enactment reasoning, emission sets, and multiprotocol reasoning.

Notably, in providing a decision-based interface for programming

agents, Kiko abstracts away the communication service that trans-

ports messages between agents. In particular, decision making in

Kiko avoids having to deal with the order in which messages are

received. Actual message emission is also handled transparently in

the programming model.

In addition, we contribute a formalization of the programming

model and prove its soundness and completeness with respect

AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

to possible protocol enactments. We also present an optimized

compliance-checking method and establish its validity.

2 INFORMATION PROTOCOLS INTRODUCED

A protocol-based programming model for agents presumes a lan-

guage in which to specify protocols. We adopt BSPL [36], a declar-

ative protocol language that eschews the specification of message

ordering and instead specifies information constraints.

Listing 1: The Purchase protocol.

Purchase {

r o l e s Buyer , S e l l e r

pa ramete r s out ID key , out item , out p r i c e , out done

Buyer −> S e l l e r : RFQ[out ID key , out i tem]

S e l l e r −> Buyer : Quote [i n ID key , i n item , out p r i c e]

Buyer −> S e l l e r : Buy [i n ID key , i n item , i n p r i c e , out done]

Buyer −> S e l l e r : R e j e c t [i n ID key , i n p r i c e , out done]

}

An information protocol in BSPL specifies the roles, messages be-

tween roles, and information constraints that define which message

emissions are valid. Information causality captures information de-

pendencies: what information must or must not be known by an

agent playing a role to be able to send a message. Information in-

tegrity captures consistency in distributed settings: there cannot

be two messages sent with conflicting information in the same

protocol enactment. Given the local store of an agent (its history of

message observations), an agent can send any message that satisfies

the specified causality and integrity constraints.

Listing 1 illustrates the main ideas of information protocols.

It specifies a purchase protocol to be enacted by agents playing

roles Buyer and Seller. Purchase composes message schemas, each

with its sender and receiver roles and information parameters. For

example, RFQ is from Buyer to Seller and its parameters are ID and

item. A concrete message instance associates the parameter names

with value bindings, e.g., binding ID to a UUID and item to łball.ž

To support information integrity, some parameters in a message

schema are annotated key, e.g., ID in all the messages of Listing 1.

A tuple of bindings for the key parameters of a message schema

uniquely identifies both an instance of the schema and the enact-

ment to which it belongs, in which all nonkey parameters may have

at most one binding. For example, say RFQ occurs with bindings

[ID: 10, item: ball]. Then, a Quote with [ID: 10, item: hat, price: 10]

would violate integrity because for the same binding of ID there

are different bindings of item. Conversely, Quote with [ID: 11, item:

hat, price: 10] satisfies integrity despite the different binding for item

because it has a different binding of the key ID.

In a message schema, every message parameter is adorned ⌜in⌝,

⌜out⌝, or ⌜nil⌝. Adornments capture information causality con-

straints for the emission of an instance of a schema; ⌜in⌝ parame-

ters must be known from prior communications (they are causal

dependencies); ⌜out⌝ parameters and ⌜nil⌝ parameters must not

be known, but ⌜out⌝ parameters are bound in the emission. For

example, in Listing 1, Seller must know item before it can send

Quote, and in doing so produces a binding for price.

Knowledge of a parameter exists in the context of some binding

for the associated key. After receiving an RFQ with bindings [ID: 10,

item: ball], Seller knows that in the enactment ID=10 item is bound

to ball, and can produce a binding of price by sending Quote.

Integrity and causality apply to protocols generally. In Purchase

in Listing 1, all protocol parameters are adorned ⌜out⌝ in the pro-

tocol parameter line, meaning that each enactment of Purchase as

identified by the ID generates bindings for all of them. Further, the

parameter line enables composition with other protocols.

3 THE KIKO PROGRAMMING MODEL

We introduce the architectural basis for the programming model,

followed by examples that illustrate its features.

MAS Info Decision Makers

Protocol Adapter

Communication

Service

Config

Attempts Forms

Instances

Figure 1: The Kiko agent architecture.

Figure 1 shows the main components of the agent architecture as

focused on enacting protocols. The MAS Info and Decision Makers

are components provided by the agent programmer (indicated by

the border). The Protocol Adapter is a generic component provided

by Kiko that understands information protocols and provides an

API for plugging in Decision Makers. The adapters of all agents

collectively achieve a coordination service and assimilate informa-

tion received from messages [35]. The Communication Service is

anything that provides asynchronous messaging between agents.

Our implementation uses UDP, which is unordered and unreliable

(lossy).

An information protocol constrains only the emission of mes-

sages by agents, based on its causal dependencies. This means that

ordered delivery, as provided by TCP or a message queue, is not

required for correctly enacting a protocol. Further, message recep-

tion is idempotent, so messages can be retransmitted to enact a

protocol reliably despite message loss [12, 14]. Thus an unordered,

lossy transport like UDP is sufficient for enacting BSPL protocols.

MAS Info (Configuration). A protocol specifies a MAS abstractly

via reference to roles. A concrete MAS for a protocol is identified by

a UUID and assigns roles to the agents that will play them. MAS

identifiers are essential since an agent may play a role in several

MAS. The properties of a (concrete) MAS and the mailboxes of the

agents in theMAS are common knowledge to the agents in theMAS.

Kiko requires each agent to be configured with such knowledge;

Listing 2 gives such a configuration for agent Bob.

Listing 2: Bob’s MAS Info Configuration.

s e l f = " Bob "

systems = {

" 5 f e c eb66 " : {

" p r o t o c o l " : Purchase ,

" r o l e s " : { Buyer : s e l f , S e l l e r : " S a l l y " } } }

agen t s = {

s e l f : [(" 1 9 2 . 1 6 8 . 1 . 1 0 0 " , 1 1 1 1)]

" S a l l y " : [(" 1 9 2 . 1 6 8 . 1 . 1 0 2 " , 1 1 1 1) , (" 1 5 2 . 1 . 2 7 . 2 0 2 " , 1 1 1 1)] }

Kiko: Programming Agents to Enact Interaction Protocols AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom

In Listing 2, 5feceb66 is an identifier for a MAS that enacts

Purchase with Bob and Sally as Buyer and Seller, respectively.

Bob’s and Sally’s mailboxes are given as (IP, port) tuples. An agent

may have several mailboxes for receiving messages; in Listing 2,

Sally has two. Our focus is not on how a MAS is constituted, but

on programming abstractions that enable decentralized decision-

making. Listing 2 shows the kind of information needed to configure

a MAS, and it could be constructed dynamically at runtime.

Formally, we model an agent using a tuple ⟨𝑎, 𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩, where
the components are the name of the agent, its history, input channel

(its mailbox), and output channel respectively. Channels 𝐼𝑎 and

𝑂𝑎 are simply sets of message instances being sent and received,

respectively, by agent 𝑎. Definition 1 defines a MAS.

Definition 1 (MAS). A multiagent system 𝜇 is a tuple ⟨𝑃,𝐴⟩,
where 𝑃 is a protocol, and 𝐴 is a map from roles of 𝑃 to agents.

Decision Makers. To write an agent, programmers supply the con-

figuration and write one or more decision makers. A decision maker

is invoked upon the occurrence of specified events. When invoked,

the adapter supplies it with prototypes of message instances that

the agent is enabled to send given the agent’s current history of

message observations. We refer to these prototypes as forms, after

documents with fields that need to be filled. A form of a message

schema has bindings for the parameters that are adorned ⌜in⌝ in

the schema, reflecting that its causal dependencies are satisfied,

leaving only the parameters adorned ⌜out⌝ to be bound. The pur-

pose of a decision maker is to flesh out some message instances

from the forms by supplying bindings for their ⌜out⌝ parameters;

the adapter collects this set of completed instances as an emission

attempt. The adapter verifies whether the attempt as a whole is

consistent with the agent’s history and if so, emits the instances in

the attempt; else it rejects the attempt.

Suppose Bob’s history is empty (it has observed no messages).

Then the only form available to Bob is Bob -> Sally: RFQ[5feceb66,

(ID), (item)], with unfilled parameters in parentheses. Since proto-

col enactments occur within the context of a MAS, each form and

any instance produced from it contains a MAS identifier (here,

5feceb66)Ðconceptually like the value for an implicit parame-

ter system in every message. Bob’s programmer may have written

a decision maker that fleshes out the above form into instances

such as Bob -> Sally: RFQ[5feceb66, 1, bat] and Bob -> Sally:

RFQ[5feceb66, 2, ball] based on some decision logic. These in-

stances are passed on to the adapter for emission. Listing 3 shows a

decision maker (in Python) called start that is invoked at system

initialization, upon InitEvent. The argument enabled contains

the available forms when start is invoked and the body of start

contains code to send two instances of the form, one each for bat

and ball. The instruction to the adapter to emit the instances is

implicitÐafter the decision maker returns, the adapter goes through

all forms to see which ones have been fleshed out into instances

and emits them (conditional to validation).

Listing 3: Bob’s initial decision to send RFQs.

@adapter . d e c i s i o n (even t = I n i t E v e n t)

de f s t a r t (enab led) :

f o r i tem in [" b a l l " , " ba t "] :

ID = s t r (uuid . uuid4 ())

f o r m in enab led . messages (RFQ) :

m. b ind (ID=ID , i tem= item)

Consider another example. Suppose Bob’s history contains the

above two RFQ instances and Sally -> Bob:Quote[5feceb66, 1, bat,

5]. Then, in addition to the RFQ form specified above, the following

forms would also be available to Bob: Bob -> Sally: Buy[5feceb66,

1, bat, 5, (done)] and Bob -> Sally: Reject[5feceb66, 1, bat, (done)].

Bob’s programmer may have implemented a decision maker (as

illustrated in Listing 4) that chooses from one of these two available

forms based on how acceptable the price is, fleshes it out by binding

done, and instructs the adapter to emit the resulting instance.

Listing 4: A simple Buy or Reject decision maker for Bob.

@adapter . d e c i s i o n

de f s t a r t (enab led) :

f o r m in enab led . messages (Buy) :

i f (m[" p r i c e "] < 2 0)

m. b ind (done =" c oo l ")

e l s e

r e j e c t = nex t (enab l ed . messages (Re j e c t , ID=m[" ID "]))

r e j e c t . b ind (done =" r e j e c t e d ")

We now give an example where a decision maker’s emission

attempt fails because it erroneously contains incompatible instances.

Specifically, Listing 5 is erroneous because Bob creates instances for

both Buy and Reject in the same enactment. This emission attempt

fails because Buy and Reject are mutually exclusive according to

Listing 1 (because both bind ⌜out⌝ done); neither will be emitted.

Listing 5: Decision maker attempting to send Buy and Reject.

@adapter . d e c i s i o n

de f i n d e c i s i v e (enab led) :

buy = nex t (enab l ed . messages (Buy))

r e j e c t = nex t (enab l ed . messages (Re j e c t , system=buy . system ,

ID=buy [" ID "]))

buy . b ind (done =" accep ted ")

r e j e c t . b ind (done =" r e j e c t e d ")

Listing 5’s error brings out a remarkable aspect of Kiko. Kiko

enables decision makers (programmers) to choose sets of instances

to emit. Whereas each of the instances in the set (e.g., Buy) would

be individually consistent and compatible with the history when

the decision maker was invoked and therefore could be emitted by

the adapter, collectively, the set of instances chosen by the deci-

sion maker could be internally incompatible (Buy and Reject) and

therefore fail emission by the adapter. By rejecting incompatible

emission sets, the adapter guarantees that an agent will not make

noncompliant emissions.

An alternative would be to limit a decision maker to work on at

most one form at a time. Then, its emission by the adapter would

be guaranteed. Such a decision maker is a special case for Kiko.

A specific triggering event may be specified for a decision maker

(e.g., InitEvent in Listing 3). If such a triggering event is not spec-

ified (e.g., as in Listing 4), the adapter automatically invokes the

decision maker whenever a communication event occurs. Event-

based invocation enables some optimizations: First, the agent need

not poll to wait for enough information to make a decision; not

polling may be seen as an extension of the pub/sub pattern be-

cause a decision can depend on multiple pieces of information

from multiple sources. Second, because all constraints are relative

to an enactment, and communication events contain keys identi-

fying their enactment, the enactment can be directly looked up,

thus avoiding linear scans or joins across an entire database for

validation.

AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

However, there are cases where an agent may want to emit

messages outside of reacting to a message observation (whether

sent or received). For example, if the agent needs to make business

decisions only once per day, then waiting and making them all as

a batch could be more efficient and accurate. To support a wider

variety of behavioral patterns, Kiko uses an internal event queue on

which the developer can signal custom events, and decision makers

can be registered with custom filters to select which events should

trigger them.

We now formalize the concepts introduced in the above section.

An association binds values to some subset of the parameters of

a message schema.

Definition 2 (Association). If𝑚 is a schema in protocol 𝑃 , then

ℳ𝑚 is a relation with attributes payload(𝑚) = ⟨𝜇,s𝑚, r𝑚, ®𝑖𝑚, ®𝑜𝑚⟩,
andℳ is the union of all such relations. The parameter name 𝜇 refers

to a multiagent system. A tuple𝑚 is an association of schema𝑚 if

and only if it is a tuple of parameter bindings ⟨𝑏𝑝 |𝑝 ∈ payload(𝑚)]⟩
in ℳ𝑚 .

We use𝑚[...] for projecting parameters to their bindings in the

message instance; e.g.,𝑚[s𝑚] is the sender of𝑚, and𝑚[®𝑘𝑚] is the
projection of𝑚’s key parameters.

A message instance is an association where all parameters are

bound.

Definition 3 (Message Instance). An association 𝑚 ∈ ℳ𝑚

is a message instance and instance(𝑚) holds if and only if all of its

parameters are bound: 𝑝 ∈ payload(𝑚),𝑚[𝑝] ≠ ∅.
ℐ ⊂ℳ is the set of all instances.

A form is an association where the ⌜out⌝ parameters are un-

bound.

Definition 4 (Form). An association𝑚 ∈ℳ𝑚 is a form (refer-

ring to a document with empty fields that need to be filled) if some

⌜out⌝ parameter has a null value. That is, ∀𝑝 ∈ payload(𝑚) \ ®𝑜𝑚 :

𝑝 ≠ ∅ and ∃𝑝 ∈ ®𝑜𝑚 : 𝑚[𝑝] = ∅
ℱ ⊂ℳ is the set of all forms.

We introduce the notion of context to capture enactments within

a specific MAS.

Definition 5 (Context). The context of an association is its

MAS and its keys:𝑚[𝜇, ®𝑘𝑚].

Associations share context if their MAS and any of their keys

have the same bindings. A form is enabled when all of its ⌜in⌝

parameter bindings match those from observed instances that share

context (consistency), and its ⌜out⌝ and ⌜nil⌝ parameters do not

conflict with any observed instances (compatibility), as given by

Definitions 6Ð10.

Definition 6 (Consistent). Let𝑀, 𝑁 ⊆ℳ be sets of associa-

tions; then 𝑁 is consistent with 𝑀 (and consistent(𝑁,𝑀) holds) if
and only if the ⌜in⌝ bindings in 𝑁 are the same as bindings from

associations that share context in𝑀 :

∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 : 𝑚[𝜇, ®𝑘𝑚 ∩ ®𝑘𝑛] = 𝑛[𝜇, ®𝑘𝑚 ∩ ®𝑘𝑛] =⇒

𝑚[payload(𝑚) ∩ ®𝑖𝑛] = 𝑛[payload(𝑚) ∩ ®𝑖𝑛].

Definition 7 (Out-Compatible). Let𝑀, 𝑁 ⊆ℳ be sets of asso-

ciations; then 𝑁 is out-compatible with𝑀 (and compatible®𝑜 (𝑁,𝑀)

holds) if and only if no ⌜out⌝ bindings in 𝑁 are in payloads of asso-

ciations that share context in𝑀 :

∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 : 𝑚[𝜇, ®𝑘𝑚∩®𝑘𝑛] = 𝑛[𝜇, ®𝑘𝑚∩®𝑘𝑛] =⇒ payload(𝑚)∩
®𝑜𝑛 = ∅

Definition 8 (Nil-Compatible). Let𝑀, 𝑁 ⊆ℳ be sets of asso-

ciations; then 𝑁 is nil-compatible with𝑀 (and compatible®𝑛 (𝑁,𝑀)
holds) if and only if no ⌜nil⌝ bindings in 𝑁 are in payloads of associ-

ations that share context in𝑀 :

∀𝑚 ∈ 𝑀,𝑛 ∈ 𝑁 : 𝑚[𝜇, ®𝑘𝑚∩®𝑘𝑛] = 𝑛[𝜇, ®𝑘𝑚∩®𝑘𝑛] =⇒ payload(𝑚)∩
®𝑛𝑛 = ∅

Definition 9 (Derived). Let 𝐻𝑎 be an agent history and𝑚 be a

formwhose sender is𝑎; then𝑚 is derived from𝐻𝑎 (and derived(𝑚,𝐻𝑎)
holds) if and only if all of𝑚’s ⌜in⌝ parameters are drawn from in-

stances that share context in the history:

∀𝑝 ∈ ®𝑖𝑚, ∃𝑛 ∈ 𝐻𝑎 : 𝑛[𝜇, ®𝑘𝑚 ∩ ®𝑘𝑛] = 𝑚[𝜇, ®𝑘𝑚 ∩ ®𝑘𝑛] ∧ 𝑝 ∈ ®𝑖𝑛 ∧
𝑚[𝑝] = 𝑛[𝑝]

Definition 10 (Enabled). A message form 𝑚 is enabled and

enabled(𝑚,𝑎, 𝐻𝑎) holds if and only if:

(1) 𝑚 is sent by 𝑎:𝑚[s𝑚] = 𝑎

(2) consistent({𝑚}, 𝐻𝑎)
(3) compatible®𝑜 ({𝑚}, 𝐻𝑎) ∧ compatible®𝑛 ({𝑚}, 𝐻𝑎)
(4) derived(𝑚,𝐻𝑎)

We also say that enabled(𝑎, 𝐻𝑎) ⊂ ℱ is the set of message forms

that 𝑎 is enabled to send.

Definition 11 says a decision maker constructs only instances

that preserve the bindings from message forms.

Definition 11 (Decision Maker). Let 𝑄 be a set of message

forms; a decision maker is a function 𝑑 : 𝒫 (ℱ) → 𝒫 (ℐ) such that

𝑚′ ∈ 𝑑 (𝑄) =⇒ instance(𝑚′) ∧ ∃𝑚 ∈ 𝑄 : 𝑚′[s𝑚, r𝑚, ®𝑖𝑚] =

𝑚[s𝑚, r𝑚, ®𝑖𝑚].

3.1 Decision-Making Challenges and Solutions

We highlight select decision making patterns supported by Kiko.

3.1.1 Correlation. An agent may simultaneously be involved in

several enactments of a protocol. For example, Buyer may be con-

currently engaged with Seller in several distinct enactments, each

for some item at some price. The programming model should enable

correlating communications by enactment.

Kiko supports correlation through the automatic derivation of

correlated forms by the adapter (as described above). The adapter

computes forms based on all information available, potentially from

the observation of multiple correlated instances. Kiko also makes

it convenient to find correlated forms where the decision logic

requires it. For example, in Listing 4, correlated Reject forms are

found by the ID of the Buy forms.

3.1.2 Cross-Enactment Decisions. Agents should be able to use

information across enactments in their decision making.

Kiko enables cross-enactment reasoning by providing forms from

all currently active contexts, that is, enactments in all systems, to the

decision makers together. Thus, the decision maker can select forms

frommultiple contexts and flesh them out for emission. For example,

Bob could participate in multiple systems, all enacting Purchase, to

Kiko: Programming Agents to Enact Interaction Protocols AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom

request quotes for the same item from multiple sellers. Then, Bob

can send a Buy for the Quote with the lowest price (Listing 6).

Listing 6: Selecting cheapest Buy across multiple contexts.

@adapter . d e c i s i o n

de f cheape s t (enab led) :

buys = enab led . messages (Buy)

cheape s t = min (buys , key= lambda b : b [" p r i c e "])

cheape s t . b ind (done=True)

3.1.3 Multiple Protocols. An agent will often play roles in multiple

unrelated protocols, using information from one to make decisions

in another.

Kiko enables implementing agents that play roles in multiple

unrelated protocols. For example, we specify Approval in Listing 7.

By enacting Approval concurrently with Purchase, Bob can seek

Alice’s approval on any purchases. To do so, Bob must map be-

tween the protocols inside its decision makers, which is supported

by the enabled set containing forms from all the protocols Bob is

enacting.

Listing 7: The Approval protocol.

Approva l {

r o l e s Reques te r , Approver

paramete r s out aID key , out r eques t , out approved

Reques t e r −> Approver : Ask [out aID key , out r e que s t]

Approver −> Reques t e r : Approve [i n aID , i n r eques t , out approved]

}

Listing 8 shows Bob’s decision maker for constructing an Ask

(approval) for each Buy as it becomes available as a form, copying

Buy’s payload into request.

Listing 8: Requesting approval for a purchase across proto-

cols.

@adapter . enab l ed (Buy)

de f r e qu e s t _ app r o v a l (buy) :

ask = nex t (adap te r . enab led_messages . messages (Ask) , None)

r e t u r n ask . b ind (ID= s t r (uuid . uuid4 ()) , r e qu e s t =buy . pay load)

3.1.4 Emission sets. For additional flexibility, Kiko enables a deci-

sion maker to emit multiple instances atomically: if the instances

are mutually compatible, then they are all emitted, else none are

emitted. Thus, e.g., if an emission set contained Buy and Reject

instances for the same enactment, no instance in the set would be

emitted. Such atomicity of emission ensures correctness and gives

full authority to the decision maker to choose its intendedmessages;

multiple attempts can be made if needed. Selecting some consis-

tent subset of the emission set for emission, by contrast, would be

arbitrary and could lead to unintended enactments.

Listing 9 shows a decision maker, where Bob figures out the best

combination of items it can buy (as computed by some optimization,

whose details are not relevant for our purposes), sending Buys for

all those items and Rejects for the others.

Listing 9: A decision maker that sends Buy in some contexts

and Rejects in the others.

1 @adapter . d e c i s i o n

2 de f s e l e c t _ g i f t s (enab led) :

3 bes t , r e s t = best_combo (enab led)

4 f o r b i n b e s t : # buy the b e s t i t ems

5 b . b ind (done=True)

6 f o r r i n r e s t : # r e j e c t the r e s t

7 r . b ind (done=True)

Another variety of decision logic where emission sets are valu-

able is a combination of łfront-endž and łback-endž reasoning. For

example, imagine Sally has a supplier with whom it engages via

some protocol. Suppose Sally wants to order an item from its sup-

plier whenever it delivers an item to a buyer. To accomplish this, it

may have a decision maker which puts Deliver (to the buyer) and

Reorder (from supplier) in the same emission set.

3.1.5 Reception-Order Freedom. Requiring agents to receive mes-

sages in a particular order can only delay the reception of infor-

mation, which in turn would limit the agent’s ability to respond

flexibly to events.

Kiko takes advantage of the fact that BSPL doesn’t rely on mes-

sage ordering for correctness, and abstracts awaymessage reception

entirely from decision making. An agent’s adapter receives mes-

sages as they arrive and depending on the information in them,

makes forms available to decisionmakers. By doing so, Kiko enables

agents to respond flexibly to events.

Listing 10: Rescind Quote.

S e l l e r −> Buyer : Resc ind [i n ID key , i n item , i n p r i c e , out

r e s c i nd ed]

Buyer −> S e l l e r : Buy [i n ID key , . . . , n i l r e s c i n d ed]

For example, Listing 10 extends Purchase by allowing Seller

to Rescind a quote. Because it depends on price, Rescind must be

sent after Quote, but could reach Bob first. Because reception is not

constrained except by integrity (inconsistent messages are rejected),

Rescind will be received, checked, and added to the history when it

arrives. As such, the matching Buy will be disabled, and Bob need

not waste any effort considering it (e.g., by requesting approval).

Note that by programming in terms of enabled forms, a decision

maker such as the one in Listing 4 that emits Buys need not change

at all; the disabled Buys are simply not provided to the decision

maker for consideration.

3.1.6 Loose Coupling. Clearly, protocols support the independent

development of agents by capturing the constraints relevant to

interoperation between them. In general, if a protocol changes, then

one would expect that the agents’ decision making would have to

change as well. Because Kiko is based on information though, it is

not necessarily the case that protocol changes lead to changes in

an agent’s decision making, thus supporting loose coupling even

better.

For example, suppose (as illustrated in Listing 11) Purchase in-

cluded a Deliver message from Seller that depended on payment

provided by Buy:

Listing 11: Delivery.

Buyer −> S e l l e r : Buy [i n ID key , i n item , i n p r i c e , out payment]

S e l l e r −> Buyer : D e l i v e r [i n ID key , i n payment , out d e l i v e r y]

Then, suppose Purchase were extended so that Buyer could pay

indirectly via bank transfer (as illustrated in Listing 12) . Because

the messages in Listing 12 do not change the messages emitted by

Seller, only how it receives the necessary information, Seller’s

decision logic need not be changed to support indirect payment.

Seller’s adapter will automatically derive the Deliver form when

the indirect payment has been received, demonstrating loose cou-

pling between the agents.

AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

Listing 12: Bank Transfer.

Buyer −> S e l l e r : Accept [i n ID key , i n p r i c e , out a c cep tance]

Buyer −> Bank : R eque s t T r an s f e r [i n ID key , i n p r i c e , out t x i n f o]

Bank −> S e l l e r : T r a n s f e r [i n ID key , i n t x i n f o , out payment]

3.1.7 Single Form Decision Makers. The general decision making

pattern of supporting the emission of sets of instances is highly

flexible, but for cases in which an agent need emit only instance

at a time, Kiko supports the convenient abstraction of single form

decision makers.

Such decision makers are functions invoked with a single mes-

sage form; its return value is either a message instance for emission

(binding its ⌜out⌝ parameters), or a null value canceling the emis-

sion. Listing 13 shows an example where an enabled form of Quote

is fleshed out.

Listing 13: Single Form Decision Maker for Quote.

@adapter . enab l ed (Quote)

de f send_quote (msg) :

msg [" p r i c e "] = random . r and i n t (2 0 , 1 0 0)

r e t u r n msg

3.2 Adapter Implementation

Figure 2 blows up the adapter from Figure 1 to highlight its internal

components (highlighted in green).

Receiver Emitter

Checker

Receptions Instances

Local Store

Valid

Instances
History

Enablement Decision Makers

Enactments Forms

Attempts

Figure 2: Adapter implementation.

The Emitter and Receiver interface with the communication

service, putting messages on and receiving them from the wire, re-

spectively. The Local Store records the agent’s history of emissions

and receptions. The Checker validates (checking for satisfaction of

causality and integrity constraints in the protocol specifications)

any attempt (by a decision maker) to emit a set of messages (Def-

inition 12). If an attempt is validated, then the instances in it are

added to the Local Store and passed on the Emitter for emission;

else, the attempt is discarded.

Definition 12 (Send-Check). If 𝐻𝑎 ⊆ℳ is a history for agent

𝑎, and 𝑇 ⊆ℳ is a set of message instances, check𝑠 (𝑇,𝐻𝑎) holds if
and only if:

(1) 𝑎 is enabled to send every𝑚 in 𝑇 :

∀𝑚 ∈ 𝑇, enabled(𝑚,𝑎, 𝐻𝑎)
(2) 𝑇 is out-, and nil-compatible with 𝑇 :

compatible®𝑜 (𝑇,𝑇) ∧ compatible®𝑛 (𝑇,𝑇)

If check𝑠 (𝑇,𝐻𝑎) holds, then 𝑇 is a valid set of emissions for 𝑎 and

thus a valid extension of 𝐻𝑎 .

The Checker also validates received messages for integrity; if

they pass, they are added to the Local Store, else they are discarded

(Definition 13).

Definition 13 (Receive-Check). If 𝐻𝑎 ⊆ ℳ is a history for

agent 𝑎, and𝑚 ∈ℳ is a message instance, check𝑟 (𝑚,𝐻𝑎) holds if
and only if:

(1) 𝑚 is receivable by 𝑎: 𝑎 =𝑚[r𝑚]
(2) 𝑚 is consistent and out-compatible with the history:

consistent({𝑚}, 𝐻𝑎) ∧ compatible®𝑜 ({𝑚}, 𝐻𝑎)

If check𝑟 (𝑇,𝐻𝑎) holds, it is valid for 𝑎 to receive every instance in 𝑇

and 𝑇 is a valid extension of 𝐻𝑎 .

The Local Store is used by Enablement to compute the forms

that the agent is enabled to send. Algorithm 1 describes how en-

abled forms are computed for each context. We use an incremental

method, so that only those contexts that have new information

are updated. First, on Line 1, every context that shares key bind-

ings with the observed instance 𝑜̂ is checked to see if it enables

any instances of𝑚. Lines 2 and 3 check that the ⌜out⌝ and ⌜nil⌝

parameters of the schema, respectively, are not already bound in

the context. Line 4 copies the bindings of the ⌜in⌝ parameters from

the context, Line 6 copies the system ID, and Line 7 adds the form

to the result set for processing by decision makers.

Input :Message schema𝑚, Message instance 𝑜̂

𝑄 ← {};

1 foreach 𝑐 ∈𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔_𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑠 (𝑜̂) do
2 𝑜 ← �𝑝 : 𝑝 ∈ ®𝑜𝑚 ∧ 𝑝 ∈ 𝑐.bindings;

3 𝑛 ← �𝑝 : 𝑝 ∈ ®𝑛𝑚 ∧ 𝑝 ∈ 𝑐.bindings;

4 𝑖 ← ∀𝑝 : 𝑝 ∈ ®𝑖𝑚 =⇒ 𝑝 ∈ 𝑐.bindings;

if 𝑜 ∧ 𝑖 ∧ 𝑛 then

5 𝑚[®𝑖𝑚] ← 𝑐.bindings[®𝑖𝑚];

6 𝑚[𝜇] ← 𝑜̂ [𝜇];

7 𝑄 ← 𝑄 ∪𝑚;

end

return Q;

end

Algorithm 1: Derive instance of schema from observation.

4 OPERATIONAL SEMANTICS

Protocols are formalized in an online Appendix. Here, we formalize

an agent and MAS computations via a transition semantics.

Figure 3 gives the transition semantics.

The Recv rule specifies how messages are received. For agent 𝑎

to receive a message instance𝑚 there are three conditions: (1)𝑚

must be in the agent’s input channel 𝐼𝑎 , (2)𝑚 must not already be

in the agent’s history 𝐻𝑎 , and (3)𝑚 must be a valid extension of

𝐻𝑎 . If these three conditions are met, then𝑚 is added to 𝐻𝑎 .

The Tx rule models message delivery by copying messages from

an output channel to the appropriate input channel; unreliability is

modeled by not exercising the rule.

Finally, Decide specifies how messages are instantiated for emis-

sion: First, a set 𝑄 of message forms is computed based on the

Kiko: Programming Agents to Enact Interaction Protocols AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom

Message Schema 𝑚 ∈ 𝑆𝑃
Message Instance 𝑚 ∈ ℳ

History 𝐻 ∈ ℋ ⊆ℳ

Input 𝐼 ⊆ ℳ

Output 𝑂 ⊆ ℳ

Agent 𝑎 ≔ ⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ ∈ 𝒜
Check check𝑟 ∈ ℳ ×ℋ→ {T, F}

check𝑠 ∈ 𝒫 (ℳ) ×ℋ→ {T, F}
Enabled enabled ∈ 𝒜 ×ℋ→ 𝒫 (ℱ)
Decision maker 𝑑 ∈ 𝒫 (ℱ) → 𝒫 (ℳ)
Consistent consistent ∈ 𝒫 (ℳ) → {T, F}

Recv
𝑚 ∈ 𝐼𝑎 𝑚 ∉ 𝐻𝑎 check𝑟 (𝑚,𝐻𝑎)

𝑎⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ −→ 𝑎⟨𝐻𝑎 ∪ {𝑚}, 𝐼𝑎,𝑂𝑎⟩

Tx
𝑚 ∈ 𝑂𝑥 𝑚[r] = 𝑦

𝐼𝑦 −→ 𝐼𝑦 ∪ {𝑚}

Decide
𝑄 := enabled(𝑎, 𝐻𝑎) 𝑇 := 𝑑 (𝑄) check𝑠 (𝑇,𝐻𝑎)

𝑎⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ −→ 𝑎⟨𝐻𝑎 ∪𝑇, 𝐼𝑎,𝑂𝑎 ∪𝑇 ⟩

Figure 3: Notation and core semantics.

Decide2

𝑄 := enabled(𝑎, 𝐻𝑎) 𝑇 := 𝑑 (𝑄)
compatible®𝑜 (𝑇,𝑇) compatible®𝑛 (𝑇,𝑇)

𝑎⟨𝐻𝑎, 𝐼𝑎,𝑂𝑎⟩ −→ 𝑎⟨𝐻𝑎 ∪𝑇, 𝐼𝑎,𝑂𝑎 ∪𝑇 ⟩

Figure 4: Optimized decision that checks for internal consis-

tency instead of full validity.

agent’s history. Next, a set of instances are derived from the mes-

sage forms by applying a decision maker 𝑑 to the enabled form set.

If this set of instances is valid, then it is added to both the agent’s

history and output channel. Otherwise, the rule cannot be applied

and no messages are sent.

No rules are required for cases where the messages fail a validity

check; there is simply no transition in those cases. A transition for

a MAS is simply a transition for one of its agents.

Figure 4 shows an alternative version of theDecide rule,Decide2.

Because transitions are atomic, the forms will not be disabled before

the transition completes, so they do not need to be rechecked for

validity; checking internal compatibility is sufficient (e.g., not se-

lecting both an Accept and Reject in the same enactment). Checking

only internal compatibility of a small set of emissions should be

faster than a full send-check, which requires both internal compati-

bility and that the instance is consistent and compatible with the

rest of the agent’s history.

Our goal is to show that a MAS developed using our operational

semantics to implement a protocol will be both correct (that is, reach

only valid states) and complete (it is possible to implement a system

that can reach any valid state). As such, we formalize the state of

a MAS, which states are reachable according to the operational

semantics, and which states match a protocol enactment.

Definition 14 (MAS State). The state of a MAS 𝜇 is the set of

its agent histories: {𝐻𝑎 |𝑎 ∈ 𝐴𝜇 }

Definition 15 (Reachable State). Given MAS 𝜇 and transition

semantics 𝒯 , state 𝑠 of MAS 𝜇 is reachable and an element of 𝒮𝜇,𝒯 if

and only if there is a sequence of transitions 𝑡𝑖 ∈ N→ 𝒯 that results

in state 𝑠 .

ℰ𝑃 (formally defined in the Appendix) is the set of reachable

enactments of protocol 𝑃 , where a reachable enactment 𝐸 ∈ ℰ𝑃 is a

set of role histories each constructed by a sequence of viable events

according to 𝑃 ’s specification.

Definition 16 (Matching State). If 𝜇 is a MAS implementing

protocol 𝑃 , then state 𝑠 of 𝜇 matches 𝐸 ∈ ℰ𝑃 , written 𝑠 ≡ 𝐸, if and

only if, for every agent history 𝐻𝑎 in 𝑠 and instance𝑚 ∈ 𝐻𝑎 :

(1) if 𝑎 plays s𝑚 in 𝜇 then 𝑚 is sent in the corresponding role

history 𝐻s𝑚
∈ 𝐸 (that is, 𝑎 =𝑚[s𝑚] =⇒ ⟨sent,𝑚⟩ ∈ 𝐻r𝑚

)

(2) if 𝑎 plays the receiver of 𝑚 in 𝜇 then 𝑚 is received in the

corresponding role history 𝐻r𝑚
∈ 𝐸 (that is, 𝑎 =𝑚[r𝑚] =⇒

⟨received,𝑚⟩ ∈ 𝐻r𝑚
)

Simulation is the idea that transitions in the MAS should match

the reachable enactments in its protocol; each transition may be

equivalent to a set ofmultiple viable extensions because the Decide

rule can produce a set of message instances, where viable extensions

cover only one instance at a time.

Definition 17 (Simulation). If 𝜇 is a MAS implementing proto-

col 𝑃 , then state 𝑠 ∈ 𝒮𝜇 simulates 𝐸 ∈ ℰ𝑃 , written 𝑠 ∼ 𝐸, if and only

if, for every agent history 𝐻𝑎 in 𝑠 and instance𝑚 ∈ 𝐻𝑎 :

(1) 𝑠 matches 𝐸

(2) for every transition 𝑡 , the state 𝑠 ′ : 𝑠
𝑡
→ 𝑠 ′ matches some en-

actment 𝐸 ′ reachable from 𝐸 in a finite number of viable ex-

tensions.

We can now state the following theorems, whose proofs are in

the Appendix.

Theorem 1. Given a MAS 𝜇 implementing protocol 𝑃 , every reach-

able state 𝑠 ∈ 𝒮𝜇 simulates some enactment 𝐸 ∈ ℰ𝑃 .

Theorem 1 gives the correctness of our operational semantics

by showing that compliant MAS can only reach states that match

reachable enactments of a protocol. Even though the states reached

by the MAS will depend on the decision makers, they can only

select subsets of the enabled forms, and therefore cannot reach an

invalid state (that is, one that does not match an enactment that is

reachable under the protocol semantics).

Theorem 2. Decide2 is equivalent to Decide.

Theorem 2 shows that the conditions for Decide are redundant,

given that the forms are drawn from enabled(𝑎, 𝐻𝑎) and decision

makers preserve their bindings (and thus consistency and compat-

ibility with history); all that needs to be checked for the selected

emissions 𝑇 is that they are compatible with each other.

Theorem 3. Given aMAS 𝜇 implementing protocol 𝑃 , there is some

set of decision makers 𝐷 that can simulate any reachable enactment

in ℰ𝑃 , assuming that all sent message instances are received.

AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

Theorem 3 shows completeness for our operational semantics:

the operational semantics do not restrict a MAS from simulating

any reachable enactment of the protocol. Or, given a reachable

enactment of a protocol, it is possible to construct decision makers

for the agents that would reach that enactment. This is not to

say that every implementation is complete; proving completeness

for a given implementation would require formalizing its decision

makers as transition rules.

5 DISCUSSION

Kiko bridges business logic and communications: an agent provides

business decisions and the underlying adapter applies the protocol

semantics to determine which messages are viable. The underlying

causal information semantics captures the information flow and

avoids having to generate guards [33]. An agent makes and commu-

nicates a set of decisions (as reflected in the forms provided by the

adapter) based on some evaluation of the state of the world. The de-

cision making is conceptualized declaratively and suits rule-based

programming languages such as Jason.

An interesting direction is to extend Kiko’s notion of forms to

support norms-based decision making. For example, the discharge

of a commitment by an agent could be made available as a form to

be picked and instantiated by the agent. Baldoni et al. [4] present a

model for accountability that is implemented in JaCaMo via obli-

gations and relates to both (the giving of) accounts and recovery

strategies when things go wrong. Kiko’s adapter could incorporate

standard protocols for demanding accounts from other agents when

norm violations occur and incorporate them into further decision

making, e.g., to decide from which agent to buy items.

Variants of programming models based on information protocols

have been proposed in recent years. The idea of enabled message

forms was first introduced in Stellar [21]; however, Stellar lacked

support for emission sets and relied on the abstraction of message

handlers as opposed to decision makers. Thus, Bob’s implemen-

tation in Stellar would be a set of message handlers, one for each

type of message it could observe. Within a message handler, one

could retrieve a form and instantiate it. Message handling-based

abstractions are lower level compared to Kiko’s decision makers,

which are information-based. To see this, suppose an agent needed

information from two instances, say 𝑖1 and 𝑖2, which it may receive

in any order, to be able to send a third instance 𝑖3 (e.g., a shipper may

need the address from the buyer and the item from the seller to be

able to deliver). Then, in the message handling approach of Stellar,

one would write separate message handlers for 𝑖1 and 𝑖2 and in each

one check whether the form for 𝑖3 is available. By contrast, in Kiko,

one would simply write a single decision maker that completes

the form for 𝑖3. The Mandrake [13] and PoT [14] programming

models share Stellar’s limitations; however, they both also address

application-level fault tolerance, a theme that is a direction for Kiko.

Like Stellar (and Mandrake and PoT), Kiko enables building ap-

plications directly over an unordered, unreliable communication

service such as UDP formessage transport. Kiko is therefore compat-

ible with the influential end-to-end argument [32], which advocates

building applications over simple communication services, both for

reasons of enabling application-level flexibility and performance.

By contrast, message ordering-based protocol approaches would be

incompatible with the end-to-end argument. Establishing the per-

formance of Kiko-based agents and MAS compared to traditional

application architectures that rely on complex communication ser-

vices and middleware is a crucial direction. Preliminary evidence

from Mandrake and PoT indicates high performance.

Kiko’s features such as support for correlation, cross-enactment

reasoning, and multiple protocols are not readily supported in pro-

gramming models for message ordering-based protocol approaches.

This is because all of the above features have to do with querying

information, which is inadequately represented in ordering-based

protocols. Emission sets are unique to Kiko and are a powerful

feature that enables emitting a set of message instances (possibly

from different protocols and to different agents) atomically.

In the current semantics, decision makers execute atomically

with respect to the history. This makes possible the optimization

of simply checking the internal compatibility of the emission set

before emitting all its instances. However, an alternative semantics

is possible where decision makers execute concurrently from the

same history. Concurrent execution would enable taking advantage

of multicore and cloud architectures. Implementation-wise, decision

makers could be spawned off as actors [1, 23]. The tradeoff is that

the emission sets produced by concurrent decision makers may

be in conflict with each other (e.g., one set contains Buy whereas

another contains Reject for the same enactment) and therefore an

internal compatibility check would no longer suffice. Each emission

set would have to be checked for validity against the history, which

could be more expensive.

IoT-based paradigms such as edge and fog computing and the

industry paradigm of realizing applications via microservices are

conceptually decentralized. In the case of microservices especially,

decentralization is driven by the scalability afforded by the con-

tainerization of application components. Current microservices

development approaches tend to avoid distributed database trans-

actions in favor of loose coupling [27]. However, this raises the

question: On what basis should microservices coordinate their com-

putations? Information protocols could be thought of as a model

for business transactions. Therefore, approaches like Kiko, suitably

adapted to microservices, can help.

SARL [20] is an agent programming language that supports

communication using events in spaces that are akin to environ-

ments [40]. SARL would benefit from a protocol-based program-

ming model. Kiko would benefit from a more general treatment of

events. Currently, in Kiko, messages model events. However, some

domain events don’t map to messages. For example, while a Quote

may reasonably be modeled as a message, Shipment may actually

correspond to a package traveling in the back of a truck. Receiving

a shipment, therefore, requires sensing the arrival of the package.

Extending Kiko’s adapter to incorporate observation of events from

the environment would be valuable.

Supplementary Material. The online Appendix and the Kiko soft-

ware are available at: https://gitlab.com/masr/bspl/-/tree/kiko.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. We thank

the EPSRC (grant EP/N027965/1) and the US National Science Foun-

dation (grant IIS-1908374) for partial support.

Kiko: Programming Agents to Enact Interaction Protocols AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom

REFERENCES
[1] Gul A. Agha. 1986. Actors. MIT Press, Cambridge, Massachusetts. https:

//doi.org/10.7551/mitpress/1086.001.0001
[2] Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.

2019. Process Coordination with Business Artifacts and Multiagent Technologies.
Journal on Data Semantics 8, 2 (June 2019), 99ś112. https://doi.org/10.1007/s13740-
019-00100-8

[3] Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,
and Munindar P. Singh. 2009. Choice, Interoperability, and Conformance in
Interaction Protocols and Service Choreographies. In Proceedings of the 8th In-
ternational Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Budapest, 843ś850. https://doi.org/10.5555/1558109.1558129

[4] Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2021.
Robustness Based on Accountability in Multiagent Organizations. In Proceedings
of the 20th International Conference on Autonomous Agents andMultiAgent Systems
(AAMAS). IFAAMAS, Online, 142ś150. https://doi.org/10.5555/3461017.3461040

[5] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing
Multi-Agent Systems with JADE. Wiley, Chichester, UK. https://doi.org/10.1002/
9780470058411

[6] Federico Bergenti, Giovanni Caire, Stefania Monica, and Agostino Poggi. 2020.
The First Twenty Years of Agent-Based Software Development with JADE. Jour-
nal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 34, 2 (2020), 36.
https://doi.org/10.1007/s10458-020-09460-z

[7] Olivier Boissier, Rafael H. Bordini, Jomi Fred Hübner, Alessandro Ricci, and
Andrea Santi. 2013. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming 78, 6 (June 2013), 747ś761. https://doi.org/10.1016/j.
scico.2011.10.004

[8] Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason Variant
of AgentSpeak (Plan Failure and some Internal Actions). In Proceedings of the
19th European Conference on Artificial Intelligence (ECAI) (Frontiers in Artificial
Intelligence and Applications, Vol. 215). IOS Press, Lisbon, 635ś640. https://doi.
org/10.3233/978-1-60750-606-5-635

[9] Luca Cernuzzi, Thomas Juan, Leon Sterling, and Franco Zambonelli. 2004. The
Gaia Methodology. In Methodologies and Software Engineering for Agent Systems:
The Agent-Oriented Software Engineering Handbook, Federico Bergenti, Marie-
Pierre Gleizes, and Franco Zambonelli (Eds.). Multiagent Systems, Artificial
Societies, and Simulated Organizations, Vol. 11. Kluwer, Dordrecht, Netherlands,
Chapter 4, 69ś88. https://doi.org/10.1007/1-4020-8058-1_6

[10] Amit K. Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti, Frank
Dignum, Nicoletta Fornara, Andrew J. I. Jones, Munindar P. Singh, and Pınar
Yolum. 2013. Research Directions in Agent Communication. ACM Transactions on
Intelligent Systems and Technology (TIST) 42, 2, Article 20 (March 2013), 23 pages.
https://doi.org/10.1145/2438653.2438655

[11] Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-
ation of Communication Protocol Languages for Engineering Multiagent Sys-
tems. Journal of Artificial Intelligence Research (JAIR) 69 (Dec. 2020), 1351ś1393.
https://doi.org/10.1613/jair.1.12212

[12] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2021. Bungie:
Improving Fault Tolerance via Extensible Application-Level Protocols. IEEE
Computer 54, 5 (May 2021), 44ś53. https://doi.org/10.1109/MC.2021.3052147

[13] Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Mandrake:
Multiagent Systems as a Basis for Programming Fault-Tolerant Decentralized
Applications. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS)
36, 1, Article 16 (April 2022), 30 pages. https://doi.org/10.1007/s10458-021-09540-
8

[14] Samuel H. Christie V, Daria Smirnova, Amit K. Chopra, and Munindar P. Singh.
2020. Protocols Over Things: A Decentralized Programming Model for the
Internet of Things. IEEE Computer 53, 12 (Dec. 2020), 60ś68. https://doi.org/10.
1109/MC.2020.3023887

[15] Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and
Abderrafiaa Koukam. 2010. ASPECS: An Agent-Oriented Software Process for
Engineering Complex Systems. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS) 20, 2 (March 2010), 260ś304. https://doi.org/10.1007/s10458-
009-9099-4

[16] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. 2005.
Interaction Protocols as Design Abstractions for Business Processes. IEEE
Transactions on Software Engineering 31, 12 (Dec. 2005), 1015ś1027. https:
//doi.org/10.1109/TSE.2005.140

[17] Nirmit Desai and Munindar P. Singh. 2008. On the Enactability of Business
Protocols. In Proceedings of the 23rd Conference on Artificial Intelligence (AAAI).
AAAI Press, Chicago, 1126ś1131. http://www.aaai.org/Library/AAAI/2008/
aaai08-178.php

[18] Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum, and
Viviana Mascardi. 2019. On Enactability of Agent Interaction Protocols: Towards
a Unified Approach. In Proceedings of the 7th International Workshop on Engineer-
ing Multi-Agent Systems (EMAS) (Lecture Notes in Computer Science, Vol. 12058).
Springer, Montréal, 43ś64. https://doi.org/10.1007/978-3-030-51417-4_3

[19] FIPA. 2003. FIPA Interaction Protocol Specifications. http://www.fipa.org/
repository/ips.html FIPA: The Foundation for Intelligent Physical Agents. Ac-
cessed 2023-02-27.

[20] Stéphane Galland, Sebastian Rodriguez, and Nicolas Gaud. 2020. Run-time En-
vironment for the SARL Agent-Programming Language: The Example of the
Janus platform. Future Generation Computer Systems 107 (June 2020), 1105ś1115.
https://doi.org/10.1016/j.future.2017.10.020

[21] Akin Günay and Amit K. Chopra. 2018. Stellar: A Programming Model for
Developing Protocol-Compliant Agents. In Proceedings of the 6th International
Workshop on Engineering Multi-Agent Systems (EMAS) (Lecture Notes in Computer
Science, Vol. 11375). Springer, Stockholm, 117ś136. https://doi.org/10.1007/978-3-
030-25693-7_7

[22] Akın Günay, Michael Winikoff, and Pınar Yolum. 2015. Dynamically Generated
Commitment Protocols in Open Systems. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 29, 2 (March 2015), 192ś229. https://doi.org/10.
1007/s10458-014-9251-7

[23] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular Actor
Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence (IJCAI). William Kaufmann, Stanford, 235ś245.
http://ijcai.org/Proceedings/73/Papers/027B.pdf

[24] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchro-
nous Session Types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). ACM, San Francisco, 273ś284.
https://doi.org/10.1145/1328438.1328472

[25] Michael N. Huhns, Nigel Jacobs, Tomasz Ksiezyk, Wei-Min Shen, Munindar P.
Singh, and Philip E. Cannata. 1992. Enterprise Information Modeling and Model
Integration in Carnot. In Enterprise Integration Modeling: Proceedings of the First
International Conference, Charles J. Petrie, Jr. (Ed.). MIT Press, Hilton Head, South
Carolina, 290ś299. https://doi.org/10.7551/mitpress/2768.003.0036

[26] Thomas Christopher King, Akın Günay, Amit K. Chopra, and Munindar P. Singh.
2017. Tosca: Operationalizing Commitments over Information Protocols. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). IJCAI, Melbourne, 256ś264. https://doi.org/10.24963/ijcai.2017/37

[27] Rodrigo N. Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. 2021. Data Management in Microservices: State of the Prac-
tice, Challenges, and Research Directions. Proceedings of the VLDB Endowment
14, 13 (Sept. 2021), 3348ś3361. https://doi.org/10.14778/3484224.3484232

[28] Mark Little. 2017. Virtual Panel: Microservices in Practice. https://www.infoq.
com/articles/microservices-in-practice/. Accessed: 1 Mar 2023.

[29] JamesOdell, H. VanDyke Parunak, and Bernhard Bauer. 2001. RepresentingAgent
Interaction Protocols in UML. In Proceedings of the 1st International Workshop
on Agent-Oriented Software Engineering (AOSE 2000) (Lecture Notes in Computer
Science, Vol. 1957). Springer, Toronto, 121ś140. https://doi.org/10.1007/3-540-
44564-1_8

[30] Lin Padgham and Michael Winikoff. 2005. Prometheus: A Practical Agent-
OrientedMethodology. InAgent-OrientedMethodologies, Brian Henderson-Sellers
and Paolo Giorgini (Eds.). Idea Group, Hershey, Pennsylvania, Chapter 5, 107ś135.
https://doi.org/10.4018/978-1-59140-581-8.ch005

[31] Jeremy Pitt, Julia Schaumeier, and Alexander Artikis. 2012. Axiomatization of
Socio-Economic Principles for Self-Organizing Institutions: Concepts, Experi-
ments and Challenges. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 7, 4, Article 39 (Dec. 2012), 39 pages. https://doi.org/10.1145/2382570.
2382575

[32] Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-To-End Argu-
ments in System Design. ACM Transactions on Computer Systems 2, 4 (Nov. 1984),
277ś288. https://doi.org/10.1145/357401.357402

[33] Munindar P. Singh. 1996. Synthesizing Distributed Constrained Events from
Transactional Workflow Specifications. In Proceedings of the 12th International
Conference on Data Engineering (ICDE). IEEE, New Orleans, 616ś623. https:
//doi.org/10.1109/ICDE.1996.492212

[34] Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the
Principles. IEEE Computer 31, 12 (Dec. 1998), 40ś47. https://doi.org/10.1109/2.
735849

[35] Munindar P. Singh. 1998. A Customizable Coordination Service for Autonomous
Agents. In Intelligent Agents IV: Proceedings of the 4th International Workshop on
Agent Theories, Architectures, and Languages (ATAL-97) (Lecture Notes in Computer
Science, 1365). Springer, Providence, Rhode Island, 93ś106. https://doi.org/10.
1007/BFb0026752

[36] Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491ś498. https://doi.org/10.5555/2031678.2031687

[37] Munindar P. Singh. 2013. Norms as a Basis for Governing Sociotechnical Systems.
ACM Transactions on Intelligent Systems and Technology (TIST) 5, 1, Article 21
(Dec. 2013), 23 pages. https://doi.org/10.1145/2542182.2542203

[38] Munindar P. Singh and Amit K. Chopra. 2020. Clouseau: Generating Commu-
nication Protocols from Commitments. In Proceedings of the 34th Conference
on Artificial Intelligence (AAAI). AAAI Press, New York, 7244ś7252. https:

AAMAS ’23, May 29 ś June 2, 2023, London, United Kingdom Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

//doi.org/10.1609/aaai.v34i05.6215
[39] Benjamin Smith. 2021. Getting started with serverless for developers: Part 2 - The

business logic. https://aws.amazon.com/blogs/compute/getting-started-with-
serverless-for-developers-part-2-the-business-logic/. Accessed: 1 Mar 2023.

[40] Danny Weyns, Andrea Omicini, and James Odell. 2007. Environment as a First
Class Abstraction inMultiagent Systems. Journal of Autonomous Agents andMulti-
Agent Systems (JAAMAS) 14, 1 (Feb. 2007), 5ś30. https://doi.org/10.1007/s10458-
006-0012-0

[41] Michael Winikoff. 2007. Implementing Commitment-Based Interactions. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, Honolulu, 868ś875. https://doi.org/10.
1145/1329125.1329283

[42] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (Jan. 2018), 59ś133. https://doi.org/10.1007/s10458-017-9373-9

	Abstract
	1 Introduction
	2 Information Protocols Introduced
	3 The Kiko Programming Model
	3.1 Decision-Making Challenges and Solutions
	3.2 Adapter Implementation

	4 Operational Semantics
	5 Discussion
	References

