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ABSTRACT

We define a decentralized software application as one that consists
of autonomous agents that communicate through asynchronous mes-
saging. Constructing a decentralized application involves designing
agents as independent local computations that coordinate to realize
the application’s requirements. Moreover, a decentralized applica-
tion is susceptible to faults manifested as message loss, delay, and
reordering.

We contribute Mandrake, a programming model for decentral-
ized applications that addresses these challenges. Specifically, we
adopt the construct of an information protocol that specifies mes-
saging between agents purely in causal terms and can be correctly
enacted by agents in a shared-nothing environment over nothing
more than unreliable, unordered transport. Mandrake facilitates
(1) implementing protocol-compliant agents by introducing a pro-
gramming model; (2) transforming fragile protocols into fault-tol-
erant ones with simple annotations; and (3) a declarative policy
language that makes it easy to implement fault-tolerance in agents
based on the capabilities in protocols. In obviating the reliance on
reliability and ordering guarantees in the communication infras-
tructure, Mandrake achieves some of the goals of the founders of
networked computing from the 1970s.
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1 INTRODUCTION

We observe two motivations for decentralization. First, decentral-
ization reflects autonomy in the overarching social architecture of
an application [3]. Applications in domains such as finance and
healthcare span multiple autonomous real-world parties. Second,
decentralization reflects loose coupling in the technical architec-
ture. Microservices [7] support developing, deploying, and scaling
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microservices independently of each other. The Internet of Things
(IoT) motivates decentralization in both social and technical terms
[6, 11] by bringing forth interactions between devices owned by
two or more parties and by technologies such as fog computing
that distribute information processing and storage [8].

However, getting decentralized applications right is extremely
difficult. Asynchrony and faults make coordinating the computa-
tions of an application challenging. This challenge is exacerbated
when, as in open applications, agents represent autonomous real-
world parties and are independently constructed. Further, autonomy
motivates flexibility in interactions [13]; however, flexibility itself
is in tension with ease of coordination [2, 12].

Conventional approaches for building distributed systems as-
sume reliable and ordered delivery communication services, e.g.,
as exemplified by TCP and message queues [1]. As the end-to-end
model [9] anticipated however, baking coordination mechanisms
into the infrastructure interferes with application-level decision
making and hits performance. Traditional fault tolerance is not
particularly meaningful because it operates transparently to the
application, without influencing or considering agent decisions.

This paper addresses the challenges of building robust decen-
tralized applications in a manner compatible with the end-to-end
model. Our contribution, Mandrake, is a set of techniques that show
how a fault-tolerant decentralized application can be realized as a
multiagent system sitting on top of an infrastructure that provides
neither ordering nor reliability guarantees. Mandrake is based on
the insight that to support meaning, a decentralized application
must be modeled via a declarative information protocol [10]. An
information protocol captures the interactive part of application
meaning by constraining an agent’s emission of messages based
purely on its local information state, which is the agent’s history of
communications. Receptions, however, are not constrained. Specifi-
cally, an agent may receive messages sent by others in any order.
An agent’s decision making (which would generally rely both on its
local state and internal state) is up to the agent’s implementation.
Taken together, the possibility of an agent receiving messages in
any order and processing them in accordance with its own decision
making are crucial to realizing application meaning.

Such an application architecture provides an opportunity to in-
troduce meaningful fault tolerance—that is, fault tolerance based
on information available to agents and incorporated in their deci-
sion making. In particular, it enables understanding a fault as the
violation of an expectation of an agent to receive some information
from others and fault tolerance as what agents do to prevent or
handle the violations.



2 SCENARIO

To illustrate our ideas, Listing 1 specifies a prescription scenario as
an information protocol called Treatment.

Listing 1: Treatment Protocol.

Treatment {
roles Patient, Doctor, Pharmacist
parameters out sID key, out symptom, out done

Patient -> Doctor: Complaint[out sID key, out
symptom]

Doctor -> Patient: Reassurancel[in sID key, in
symptom, nil Rx, out done]

Doctor -> Pharmacist: Prescription[in sID key,
in symptom, nil done, out Rx]

Pharmacist -> Patient: FilledRx[in sID key, in
Rx, out done]

In the scenario, PATIENT can send a complaint to DocTor, who
sends a prescription to PHARMACIST (or reassures PATIENT that they
don’t need medication), who fills it and sends a notification back
to PATIENT, completing the interaction. Importantly, each agent
may only send a message if the specified causality and integrity
constraints are satisfied.

In this scenario, any of the messages could fail to arrive. This is
the fundamental interaction fault; all failures in sending or transmit-
ting a message are reducible to message loss. If any of the messages
in the Treatment protocol do not arrive, the interaction cannot be
completed since agents will lack information necessary for further
actions.

3 APPROACH

To make progress despite such faults, agents must be able to detect
and compensate for them. We propose an application-level focus
on fault tolerance. Our approach consists of two main aspects:

First, a protocol specification is used to identify the expectations
that each agent can have based on the information it should ob-
serve in a correctly progressing interaction. These expectations are
the basis of detecting faults; if an expectation is not met within
a reasonable (application and possibly even enactment specific)
time-frame, a fault may be assumed to have occurred.

Secondly, we propose protocol transformations and a policy lan-
guage to support the implementation of detection and recovery
policies. Although fault tolerance should be handled at the appli-
cation level, that does not mean that every application developer
should waste time redesigning basic recovery policies. Instead, off-
the-shelf patterns and simple tools can help simplify solving the
problem without overly burdening application developers.

The protocol transformations add messages to a protocol that
propagate information between agents. For example, a forwarding
transformation could be used to let DocToR send PATIENT a copy
of the prescription, and then allow PATIENT to forward it again to
PHARMACIST directly.

If such forwarding transformations are applied to the Treatment
protocol, then a robust recovery policy such as the one in Listing 2
could be used.
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Listing 2: A robust recovery policy

// Doctor
- action: forward Prescription
// Patient
- action: remind Doctor of Complaint until
Reassurance or Prescription
when: @ 12 * * % // daily at noon
- action: remind Pharmacist of Prescription after
2 days until FilledRx
when: @ @ *x x x // daily
max tries: 5
// Pharmacist
- action: remind Patient of FilledRx upon
Prescription reminder

This policy enables PATIENT to directly act to achieve its goals
when its expectations for receiving FilledRx are unmet. Further-
more, PATIENT can take the most direct path toward its goal: if it
has not yet received a copy of the prescription, then it must remind
DOCTOR, but if it has then it can more efficiently and directly send
Prescription to PHARMACIST. This can be especially helpful if only
DocTor is unreliable.

4 CONCLUSION

We ran simulations to verify the difference that various policies
made in the reliability and performance of this system, under dif-
ferent types of load and message loss. The most dramatic result is
shown in Figure 1, which compares the rate at which enactments
are completed per second at different message loss probabilities
between two recovery policies. The blue/circle line shows a simple
retry policy, where PATIENT merely reminds DocTor about its com-
plaint to trigger the rest of the interaction again, and the red/square
line shows the checkpoint policy given above where PATIENT can
forward information directly to PHARMACIST if available.

The full paper [4] describes our approach and our results in detail.
Since then, we have extended the programming model to support de-
cision making [5]. Our work demonstrates that application-specific
fault tolerance policies, using interaction protocol specifications
as a foundation, have the potential to improve performance and
reliability without burdening developers in common cases.
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