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ABSTRACT

We define a decentralized software application as one that consists

of autonomous agents that communicate through asynchronousmes-

saging. Constructing a decentralized application involves designing

agents as independent local computations that coordinate to realize

the application’s requirements. Moreover, a decentralized applica-

tion is susceptible to faults manifested as message loss, delay, and

reordering.

We contribute Mandrake, a programming model for decentral-

ized applications that addresses these challenges. Specifically, we

adopt the construct of an information protocol that specifies mes-

saging between agents purely in causal terms and can be correctly

enacted by agents in a shared-nothing environment over nothing

more than unreliable, unordered transport. Mandrake facilitates

(1) implementing protocol-compliant agents by introducing a pro-

gramming model; (2) transforming fragile protocols into fault-tol-

erant ones with simple annotations; and (3) a declarative policy

language that makes it easy to implement fault-tolerance in agents

based on the capabilities in protocols. In obviating the reliance on

reliability and ordering guarantees in the communication infras-

tructure, Mandrake achieves some of the goals of the founders of

networked computing from the 1970s.

CCS CONCEPTS

• Computing methodologies → Multi-agent systems; • Soft-

ware and its engineering→ Software fault tolerance.
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1 INTRODUCTION

We observe two motivations for decentralization. First, decentral-

ization reflects autonomy in the overarching social architecture of

an application [3]. Applications in domains such as finance and

healthcare span multiple autonomous real-world parties. Second,

decentralization reflects loose coupling in the technical architec-

ture. Microservices [7] support developing, deploying, and scaling
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microservices independently of each other. The Internet of Things

(IoT) motivates decentralization in both social and technical terms

[6, 11] by bringing forth interactions between devices owned by

two or more parties and by technologies such as fog computing

that distribute information processing and storage [8].

However, getting decentralized applications right is extremely

difficult. Asynchrony and faults make coordinating the computa-

tions of an application challenging. This challenge is exacerbated

when, as in open applications, agents represent autonomous real-

world parties and are independently constructed. Further, autonomy

motivates flexibility in interactions [13]; however, flexibility itself

is in tension with ease of coordination [2, 12].

Conventional approaches for building distributed systems as-

sume reliable and ordered delivery communication services, e.g.,

as exemplified by TCP and message queues [1]. As the end-to-end

model [9] anticipated however, baking coordination mechanisms

into the infrastructure interferes with application-level decision

making and hits performance. Traditional fault tolerance is not

particularly meaningful because it operates transparently to the

application, without influencing or considering agent decisions.

This paper addresses the challenges of building robust decen-

tralized applications in a manner compatible with the end-to-end

model. Our contribution,Mandrake, is a set of techniques that show

how a fault-tolerant decentralized application can be realized as a

multiagent system sitting on top of an infrastructure that provides

neither ordering nor reliability guarantees. Mandrake is based on

the insight that to support meaning, a decentralized application

must be modeled via a declarative information protocol [10]. An

information protocol captures the interactive part of application

meaning by constraining an agent’s emission of messages based

purely on its local information state, which is the agent’s history of

communications. Receptions, however, are not constrained. Specifi-

cally, an agent may receive messages sent by others in any order.

An agent’s decision making (which would generally rely both on its

local state and internal state) is up to the agent’s implementation.

Taken together, the possibility of an agent receiving messages in

any order and processing them in accordance with its own decision

making are crucial to realizing application meaning.

Such an application architecture provides an opportunity to in-

troduce meaningful fault toleranceÐthat is, fault tolerance based

on information available to agents and incorporated in their deci-

sion making. In particular, it enables understanding a fault as the

violation of an expectation of an agent to receive some information

from others and fault tolerance as what agents do to prevent or

handle the violations.



2 SCENARIO

To illustrate our ideas, Listing 1 specifies a prescription scenario as

an information protocol called Treatment.

Listing 1: Treatment Protocol.

Treatment {

roles Patient , Doctor , Pharmacist

parameters out sID key , out symptom , out done

Patient -> Doctor: Complaint[out sID key , out

symptom]

Doctor -> Patient: Reassurance[in sID key , in

symptom , nil Rx, out done]

Doctor -> Pharmacist: Prescription[in sID key ,

in symptom , nil done , out Rx]

Pharmacist -> Patient: FilledRx[in sID key , in

Rx, out done]

}

In the scenario, Patient can send a complaint to Doctor, who

sends a prescription to Pharmacist (or reassures Patient that they

don’t need medication), who fills it and sends a notification back

to Patient, completing the interaction. Importantly, each agent

may only send a message if the specified causality and integrity

constraints are satisfied.

In this scenario, any of the messages could fail to arrive. This is

the fundamental interaction fault; all failures in sending or transmit-

ting a message are reducible to message loss. If any of the messages

in the Treatment protocol do not arrive, the interaction cannot be

completed since agents will lack information necessary for further

actions.

3 APPROACH

To make progress despite such faults, agents must be able to detect

and compensate for them. We propose an application-level focus

on fault tolerance. Our approach consists of two main aspects:

First, a protocol specification is used to identify the expectations

that each agent can have based on the information it should ob-

serve in a correctly progressing interaction. These expectations are

the basis of detecting faults; if an expectation is not met within

a reasonable (application and possibly even enactment specific)

time-frame, a fault may be assumed to have occurred.

Secondly, we propose protocol transformations and a policy lan-

guage to support the implementation of detection and recovery

policies. Although fault tolerance should be handled at the appli-

cation level, that does not mean that every application developer

should waste time redesigning basic recovery policies. Instead, off-

the-shelf patterns and simple tools can help simplify solving the

problem without overly burdening application developers.

The protocol transformations add messages to a protocol that

propagate information between agents. For example, a forwarding

transformation could be used to let Doctor send Patient a copy

of the prescription, and then allow Patient to forward it again to

Pharmacist directly.

If such forwarding transformations are applied to the Treatment

protocol, then a robust recovery policy such as the one in Listing 2

could be used.

Figure 1: Unreliable Doctor
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Listing 2: A robust recovery policy

// Doctor

- action: forward Prescription

// Patient

- action: remind Doctor of Complaint until

Reassurance or Prescription

when: 0 12 * * * // daily at noon

- action: remind Pharmacist of Prescription after

2 days until FilledRx

when: 0 0 * * * // daily

max tries: 5

// Pharmacist

- action: remind Patient of FilledRx upon

Prescription reminder

This policy enables Patient to directly act to achieve its goals

when its expectations for receiving FilledRx are unmet. Further-

more, Patient can take the most direct path toward its goal: if it

has not yet received a copy of the prescription, then it must remind

Doctor, but if it has then it can more efficiently and directly send

Prescription to Pharmacist. This can be especially helpful if only

Doctor is unreliable.

4 CONCLUSION

We ran simulations to verify the difference that various policies

made in the reliability and performance of this system, under dif-

ferent types of load and message loss. The most dramatic result is

shown in Figure 1, which compares the rate at which enactments

are completed per second at different message loss probabilities

between two recovery policies. The blue/circle line shows a simple

retry policy, where Patientmerely reminds Doctor about its com-

plaint to trigger the rest of the interaction again, and the red/square

line shows the checkpoint policy given above where Patient can

forward information directly to Pharmacist if available.

The full paper [4] describes our approach and our results in detail.

Since then, we have extended the programmingmodel to support de-

cision making [5]. Our work demonstrates that application-specific

fault tolerance policies, using interaction protocol specifications

as a foundation, have the potential to improve performance and

reliability without burdening developers in common cases.
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