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Abstract—The value of intrinsic energetic behavior of human
biomechanics has recently been recognized and exploited in
physical human-robot interaction (pHRI). The authors have
recently proposed the concept of ‘“Biomechanical Excess of
Passivity,” based on nonlinear control theory, to construct a user-
specific energetic map. The map would assess the behavior of the
upper-limb in absorbing the kinesthetic energy when interacting
with robots. Integrating such knowledge into the design of
pHRI stabilizers can reduce the conservatism of the control by
unleashing hidden energy reservoirs indicating a less conservative
margin of stability. The outcome would enhance the system’s
performance, such as rendering Kkinesthetic transparency of
(tele)haptics systems. However, current methods require an offline
data-driven identification procedure prior to each operation to
estimate the energetic map of human biomechanics. This can be
time-consuming and challenge users susceptible to fatigue. In this
study, for the first time, we investigate the interday reliability of
upper-limb passivity maps in a sample of five healthy subjects.
Our statistical analyses indicate that the identified passivity map
is highly reliable in estimating the expected energetic behavior
based on Intraclass correlation coefficient analysis (conducted
on different days and with various interactions). The results
illustrate that a one-shot estimate is a reliable measure to be used
repeatedly in biomechanics-aware pHRI stabilization, enhancing
practicality in real-life scenarios.

Index Terms—Physical Human-Robot Interaction, Energetic
Behavior, Passivity, Test-retest Reliability, Biomechanics.

I. INTRODUCTION

The concept of human-robot coexistence has gained
widespread attraction in the current decade, highlighting
the importance of physical human-robot interaction (pHRI).
Therefore, increasingly more pHRI scenarios have emerged,
from robotic exoskeletons used in assistive systems to reha-
bilitative robotics and telerobotics-assisted surgical systems
[1]-[4]. In order to provide better quality for pHRI and
specifically haptics-enabled pHRI, two essential factors should
be practiced: (1) maximizing safety during pHRI and (2)
optimizing the fidelity of interactional information transfer
between robot mechanics and human biomechanics. The safety
of haptics-enabled pHRI systems is impacted by several
features, including poor quality of energy transfer. Passivity
theory governs energy exchange between robots and humans in
a pHRI scenario [5]-[7]. Any (a) internal phenomenon, such as
sensor noise and actuators’ fault, or (b) external phenomenon,
such as prescribed assistive haptics/force field or delays and
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packet losses (in a telehaptic formulation) that injects energy in
the coupling, or disturbs the synchronicity and consistency of
energy exchange can result in a nonpassive coupling between
human and robot, which could cause undesirable oscillating
behavior and possibly can even cause divergent instability in
the system, challenging the safety of the pHRI [8]-[10].

As a result, a guaranteed safety layer should be embedded
into the pHRI control architecture to ensure the system’s
stability when exposed to internal and external nonpassive
safety blocks. In the literature, various stabilizers have been
proposed (depending on the pHRI architecture) that impose
stability. A widely-used and efficient method for handling
uncertain environmental dynamics and variable delays are
the Time-domain Passivity Approach (TDPA) [11]-[17]. The
family of TDPA stabilizers observes the system energy by
monitoring the exchange of power packets (or energy profile)
between different components of the system to adaptively
modulate a control parameter (e.g., a damping or scaling
factor) to tune the exchanged information and dissipate the
excess energy, ensuring the system’s passivity and, conse-
quently, stability, improving safety. Although these stabilizers
can address the issues of stability, the natural cost would
be the degraded fidelity of haptic/force field or degraded
motion/energy tracking accuracy due to unavoidable energy
dissipation. Thus, in the literature, several variations are pro-
posed to reduce conservatism and optimize performance de-
pending on the application. For example, assistive systems that
render haptic/force fields are naturally nonpassive (needed to
elevate the mechanical energy for delivery of assistance); thus,
conventional passivity-imposing stabilizers can significantly
diminish the delivery of needed assistive force fields.

As a result, there is a need for algorithmic stabilizers
that can impose stability while guaranteeing high-fidelity of
force interaction, specifically when the rendered force field
has assistive components. In this regard, the authors have
recently investigated the ability of human biomechanics to
absorb interactional energy during pHRI when controlling
for stiff and relaxed co-contraction of the muscles [18]—
[20]. This knowledge is graphically visualized as an energetic
passivity map and exploited in the design of biomechanically-
aware passivity controllers that reduce the conservatism of
the closed-loop passivity condition and enhance the fidelity of
rendered haptic feedback [18]-[23]. However, current methods
of measuring this passivity biomarker require an offline iden-
tification process before each operation, often conducted on
different days. The identification process is time-consuming
and can be challenging for subjects who are susceptible to
fatigue. Therefore, it is imperative to reuse the prior knowledge
regarding the energetic behavior of a user’s biomechanics and
avoid re-identification (recalibration), reducing the exhaustion,



fatigue, and time of operation and enhancing the usability of
biomechanically-aware controllers.

In order to investigate the aforementioned issue, in this
paper, for the first time, we perform an interday test-retest
statistical reliability study based on intraclass correlation
coefficient analysis (ICC) [24], [25] on the passivity-based
biomechanical energetic absorption capability of the human
limb. The goal is to examine the reliability of the upper-limb
passivity biomarker regarding the energetic characteristics to
be extrapolated over various days of use. The study answers:
(a) whether the biomechanical energetic absorption capability
of the human upper-limb is a consistent measurement and
thus can be used reliably and repetitively and (b) how much
variance exists in the identified passivity biomarker. In this
work, we also and specifically investigate the dependency of
reliability on the direction of pHRI and the level of muscle
co-contraction. During the identification process, subjects are
asked to control the level of co-contraction through a biofeed-
back mechanism visualizing the muscle activities captured
in real-time using a surface electromyography (SEMG) sys-
tem from Delsys, Inc (MA, USA). The generated passivity
biomarker in 8 different directions of interaction is named as
MyoPassivity Map. Five healthy subjects were recruited for
the study. The biomechanical absorption capabilities of the
subjects are measured between two subsequent days and used
for the reliability analysis. The statistical analysis indicates that
the identified passivity map is highly reliable based on the intr-
aclass correlation coefficient analysis within different days and
various interactions. The results, for the first time, illustrate
that a single session estimation of the energetic behavior (i.e.,
one-shot identification) is reliable to be used repeatedly for
biomechanics-aware pHRI stabilization enhancing practicality
in real-life scenarios.

II. METHOD

This section provides details regarding the method for es-
timating the proposed biomechanical absorption capability of
interactional energy during physical human-robot interaction
(for the human upper-limb), the corresponding ICC-based
reliability assessment over two days of testing and retesting,
and the experimental protocol.

A. Energetic Identification of Biomechanics during pHRI

In this work, we utilize the output strictly passive (OSP)
definition rooted in the Strong Passivity formulation of non-
linear control theory [6] to characterize the energetic behavior
of human upper-limb during physical human-robot interaction.
The OSP definition allows us to calculate a lower bound
on the amount of energy that can be absorbed by human
biomechanics in different directions and muscle co-contraction
levels. The OSP formulation in this context is given in (1).

/tF(t)TV(t)dt—i-E(O) > f/tV(t)TV(t)dt (1)
0 0

In (1), F(t) is the force perturbation and the input into
the human limb biomechanics. Also, V' (t) is the perturbation
velocity response. Considering (1), £ is the excess of passivity
(EoP) of the human biomechanics, which will form a lower
bound on the amount of energy that can be absorbed by

human biomechanics during haptics-enabled pHRI. In this
context, haptics-based pHRI relates to the kinesthetic inter-
action. Considering zero initial energy (i.e., E(0) = 0), the
OSP formulation can be rearranged to calculate the EoP as:
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The excess of passivity of human biomechanics, i.e., &, is
recently considered as a potential energy reservoir [18]-[22] in
our published stabilizers, such as [20], to increase the margin
of stability and reduce the conservatism of the closed-loop
pHRI system. We have studied the excess of passivity for the
human ankle joint during human-exoskeleton interaction [18].

In this experiment, the participant’s upper-limb was per-
turbed in eight directions of the X-Y plane, starting from 0
degrees and ending at 315 degrees in a counterclockwise order,
as depicted in Fig. 1(IV). Before the experiment, each subject
completed a familiarization phase which involved 2 minutes
of practicing the perturbations. Each perturbation lasted for
10 s, during which the subject was provided with real-time
feedback of their muscle co-contraction (biofeedback) and
followed a guideline muscle co-contraction level while the
robot perturbed the upper-limb and collected force and velocity
information to estimate the corresponding energetic behavior.

During the experiment, the order of perturbation directions
was the same for all participants to ensure similar experimental
conditions. The maximum linear displacement of the pertur-
bation was set to be 3 cm. Also, the maximum speed of the
perturbation was 0.27 m/s. The perturbation position P(t) is
defined by a mixture of sinusoids, as follows:
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where w1 = 2T, wy = 3T, w3 = 4T, w4 = 5T, w5 = 6T, P1 =
7T/2,¢2 = 7T/2,¢3 = O,(Z54 = 7T/2,¢5 =0 and a; = 1,(12 =
1,a3 = 1,a4 = 1,a5 = 10. A is the amplification factor which
sets the amplitude scale of P(t), B is an offset and C is a
normalization factor. In this case, A = 3e¢m, B = 11.44 and
C = 24.18. The corresponding velocity profile is:
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At the end of each perturbation, the robot returned to the
zero/home position before proceeding to the next direction.
For both co-contraction conditions, there was one trial of each
perturbation direction during which several cyclic perturba-
tions were provided. The last 5 seconds of the perturbation in
each direction is used to calculate the EoP and avoid artifacts
caused by transient directional changes. Therefore, in (2), T
represents the beginning of the 5 s window, and T, represents
the end of the 5 s window during the identification phase.

B. Participants

Five healthy subjects (three males and two females, age:
28 + 5 years) were recruited for this work. The study was
approved by the New York University Institutional Review
Board. Each subject signed a consent form prior to the
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Fig. 1. (a) Example of reactive force and velocity profiles. (b) Identification
process and set-up. (c) Resulting energetic passivity map in two sessions. (d)
Real-time SEMG recording and visual myo-feedback.

experiment and confirmed no history of any diagnosed/known
neurological or motor damage or disorders. The demographic
data is provided in Table I. The correlation between the
demographic data and the proposed biomarker (i.e. EoP of
biomechanics) is not investigated in this study but can be a
topic of future work.

TABLE I
DEMOGRAPHIC DATA OF SUBJECTS
| Subject | Height (m) | Weight (kg) | Age | Sex |
1 1.77 64 24 M
2 1.62 58 24 M
3 1.70 57 24 F
4 1.87 77 32 M
5 1.73 62 33 F

C. Experimental Setup

In order to investigate the interday reliability of the upper-
limb excess of passivity map under different interactional
scenarios (two co-contraction levels and eight directions of
interaction) over 2 days, a systematic identification protocol is
designed (see the experiment flow in Fig. 1). The experimental
set-up is shown in Fig. 2 and is composed of: (1) a 2-DOF
Quanser upper-limb rehabilitation robot for biomechanical per-
turbation (from Quanser, Markham, ON, Canada), (2) a height-
adjustable table to match the height of the user, (3) a visual
graphical user interface (GUI) to provide visual information
about the direction of the perturbation and visual biofeedback
for the subject regarding the muscle co-contraction during
perturbation, and (4) a 16-channel wireless Bipolar Delsys
Trigno dry-electrode system (from Delsys, inc, MA, USA).

The needed information modalities for the identification of
the energy absorption capacity of biomechanics, including in-
put force and output velocity profiles besides muscle activities
from 16 SEMG channels, are recorded in real-time and in-sync.
The force and velocity are sampled at 500 Hz, and the SEMG
signals are sampled at 2148 Hz. The experimental protocol is
designed to assess the energetic characteristics of the user’s
upper-limb in eight geometric directions of interaction and
two co-contraction conditions over two consecutive days (24
hours time gap). The subjects are requested to follow the
prescribed co-contraction level while the robot perturbs their
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Fig. 2. Experimental set-up showing the: (A) Quanser rehabilitation robot,
(B) height-adjustable table, (C) GUI, (D) Delsys wireless system, and (E)
electromyographic biofeedback.

biomechanics. The collected data combined with the OSP math
would allow us to investigate if the excess of passivity of the
human upper-limb is a reliable measure of energetic behavior
and can be used to estimate the energy absorption capacity
with one day of observation.

Before the experiment, the table height is adjusted to allow
for implementing the same prescribed posture for all users
while estimating the EoP. The angle between the arm and torso
is set to be about 45 degrees when the user is holding the robot
handle. The chair is located so that the upper and lower parts
of the arm make a 90-degree angle when the end-effector is at
the center of the workspace, as provided by the GUI. During
the identifcation period, the maximum voluntary contraction
(MVC) is measured at the extensor digitorum and palmaris
longus muscles. It should be noted that these two muscles are
selected based on their sensitivity to the co-contraction in the
forearm, especially during physical human-robot interaction.

The subjects maintained the required co-contraction lev-
els with the assistance of visual myofeedback from their
SsEMG signals at a desired level of 5%MVC for relaxed and
40%MVC for stiff co-contraction condition. At the beginning
of the experiment, first, the subject is instructed to grasp the
handle with maximum effort and the MVC is recorded as
the maximum root mean square (RMS) value of the sSEMG
signal at each muscle. During the experiment, the %MVC at
each muscle is measured by normalizing the current RMS
of the SEMG to the recorded MVC. The %MVC indicates
the percentage of the participant’s maximum co-contraction
level and is used as a visual bio-feedback for the participant
during the experiment. It should be noted that the provided
bio-feedback is subject-specific (considering the MVC nor-
malization) and immune to variation in the SEMG magnitude
across participants. More muscle co-contraction (caused by
a tighter grasping of the robot handle) will result in a higher
%MV C. Two co-contraction conditions were defined based on
the desired %MVC: (a) relaxed holding of the robot handle
with 5%MVC and (b) stiff co-contraction maintaining approx-
imately 40%MVC. The order of the conditions is randomized.

As mentioned, during the experiment, the user is asked to
hold the robot’s handle and let the robot perturb the limb
while maintaining the prescribed contractions. At the start of
the experiment, the robot moves the user’s hand to the center
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Fig. 3. Resulting Geometric MyoPassivity Maps for all subjects during Day 1 (top) and Day 2 (bottom). The red dots represent the EoP of the relaxed
condition, and the blue dots represent the stiff conditions. The EoP values in eight geometric directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°) is shown.
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Fig. 4. Violin plots comparing the EoP between days and grasp conditions.
For a given day and grasp condition, the EoP of all five subjects in all eight
directions was combined together into a single distribution (n = 8 X 5 = 40).
For both days, the EoP was significantly higher for the stiff than relaxed
condition (Wilcoxon signed-rank: p — value < 0.001). For both the relaxed
and stiff conditions, no significant difference between Day 1 and Day 2 was
observed (Wilcoxon signed-rank: p — value > 0.571).

location shown on the GUI. The robot begins to perturb the
limb in eight directions separately, where the biomechanical
energetic absorption capability is calculated in real-time using
the force and velocity information and the OSP formulation.
This procedure is repeated for the second co-contraction
condition. Before the second co-contraction condition, there
was a five-minute break for the subject to rest. The experiment
is then conducted 24 hours later using the same protocol.

D. Test-retest Reliability

In this work, in order to assess the reliability of the proposed
energetic measure of the upper-limb, the intraclass correlation
coefficients were evaluated, analyzing the between-session
test-retest reliability [24], [25]. The reliability of the EoP
measurements in this paper was interpreted from the ICC
values with Fleiss’ scale [26]. Fleiss’ scale for interpreting
reliability from the ICC values is a standard commonly used
in the literature [27]-[30], and is explained as follows: poor
reliability (/C'C < 0.4), fair reliability (0.4 < ICC < 0.75),
or excellent reliability (/C'C > 0.75). Fleiss’ scale has been
applied in previous studies to convert raw ICC values into
meaningful interpretations of reliability, notably in the context
of biometrics [27]-[30]. In this work, the ICC values were
calculated using the SPSS software (version 28, IBM Corp.,
Armonk, NY). The ICC was calculated with the fixed column
and random row effects model, single score (/CC(C, 1)) [25],
[31]. ICC(C, 1) indicates the level of consistency between the

TABLE II
DATA MATRIX FORMAT FOR THE CALCULATION OF BETWEEN-SESSION
RELIABILITY WITH ICC(C, 1).

| Subject | Session 1 | Session 2 |

1 X11 X12
i X,'l Xi2
5 X51 X52

two sessions and can be interpreted here as the reliability of
the measurement obtained from a single session [24], [25].
ICC(C,1) was calculated from a data matrix in the standard
format presented by McGraw and colleagues with the subjects
on the rows and the sessions on the columns [25], as illustrated
in Table II. Each element of the data matrix X represents the
energetic biomechanical capacity for the i*" subject in a given
session. The ICC(C, 1) was computed for each co-contraction
condition and direction.

III. RESULTS

The Geometric MyoPassivity maps of each subject for both
co-contraction conditions on Day 1 and Day 2 of the experi-
ment are shown in Fig. 3. The blue dots represent the identified
EoP values for stiff conditions, whereas the red dots represent
the identified EoP values for relaxed conditions. Following
the same identification protocol, the first row displays the
MyoPassivity map of five subjects collected on Day 1, and
the second row displays the MyoPassivity map of five subjects
acquired on Day 2. Detailed objective statistical evaluation
using ICC is provided later in this section. However, as the
first step, through visual inspection and as can be seen in Fig.
3, on both days, the EoP values of the stiff condition appear
to be higher than the EoP values of the relaxed condition
in each direction for almost all subjects (4 out of 5). This
phenomenon is expected since higher muscle co-contractions
have been linked to increases in the limb’s intrinsic mechanical
impedance. Fig. 3 shows that this phenomenon has enhanced
the energy absorption capability of the biomechanics during
the interaction with the robot, identified by the EoP in this
paper over two days. Interestingly, differences were observed
in the shape and magnitude of the MyoPassivity maps amongst
subjects, for example Subject 3 has a maximum EoP of <20
Ns/m while Subject 4 has a maximum EoP of >125 Ns/m (Fig.
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Fig. 5. (a) No significant difference was observed between the EoP distributions of day 1 and day 2 for any direction within the relaxed condition (p > 0.645).
(b) No significant difference between Day 1 and Day 2 was uncovered for the directions within the stiff condition (p > 0.724).
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Fig. 6. ICC maps indicate excellent reliability in all directions for either
grasp condition. The ICC(C, 1) value is shown as a black dot in the map
for each direction. The shaded regions indicate poor, fair, and excellent
reliability, depending on the IC'C(C, 1) value, according to Fleiss’ scale
[26]. (a) ICC(C,1) > 0.85 in all directions for the relaxed condition. (b)
ICC(C,1) > 0.8 in all directions for the stiff condition.

3). However, the shape is well-maintained between Day 1 and
Day 2 for each subject regarding the muscle co-contraction
levels resulting in high reliability of this measure. This means
that in each geometric direction of the passivity map, the
estimated EoP value indicates a level of reproducibility and
therefore shows potential promise that the user-specific My-
oPassivity maps can be used reliably between days, and this
is statistically evaluated in more detail below.

In Fig. 4, changes of EoP with respect to alternation of
muscle co-contraction and interday variability are investigated.
For this, the EoP values of all subjects are combined and then
separated into four groups: Day 1 Relaxed, Day 1 Stiff, Day 2
Relaxed, and Day 2 Stiff. The resulting violin plot distributions
of the four groups are presented in Fig. 4. It should be noted
that each distribution in Fig. 4 consists of the EoP values for
each of the five subjects in all eight directions (n = 5 X 8 =
40 for each violin plot). Statistical analysis was conducted
with respect to the relaxed-stiff, relaxed-relaxed, and stift-
stiff groups across the two days. Through the Kolmogorov-
Smirnov normality tests [32], the distributions were found
to be non-normal. Therefore, the Wilcoxon signed-rank test
[33] was used to evaluate the null hypothesis (significance
threshold: p — value = 0.05). The results show that the stiff
co-contraction condition leads to a higher EoP on both Day 1

TABLE III
ICC(C, 1) VALUES FOR EACH CONDITION AND DIRECTION

| Grasp Condition |

Direction | Relaxed | Stff |

0° 0.85 0.99
45° 0.95 0.97
90° 0.96 0.97
135° 0.97 0.97
180° 0.86 1.00
225° 0.99 0.99
270° 0.97 0.80
315° 0.97 0.95

and Day 2 (Wilcoxon signed-rank: p — value < 0.001). Ad-
ditionally, no statistically significant difference was observed
between the relaxed distributions of Day 1 when compared
with Day 2 (Wilcoxon signed-rank: p — value = 0.572).
Also, no significant difference was observed between the stiff
distributions of Day 1 when compared with Day 2 (Wilcoxon
signed-rank: p — value = 0.957). The results validate the
observed behavior of the MyoPassivity maps showing that the
stiff EoP values are significantly higher than the relaxed EoP
values, as was also observed in Fig. 3.

The change of the EoP values between days was also inves-
tigated in each geometric direction for a given co-contraction
condition. The EoP values of the five subjects are compared
between Day 1 and Day 2 in Fig. 5 (n = 5). Gray lines
connect EoP values of the same subject from Day 1 to Day
2. No statistically significant difference was observed between
Day 1 and Day 2 in any direction, and this observation was the
same for both co-contraction conditions (p — value > 0.645).

After observing no significant difference between EoP val-
ues across days, a formal reliability analysis was conducted.
This is the most important result of the paper. The intraclass
correlation coefficient in each direction for relaxed and stiff
conditions are calculated and visualized in Fig. 6 and provided
in Table III. The analysis showed ICC(C,1) > 0.8 in all di-
rections for both co-contraction conditions. This result, for the
first time, reveals that the EoP measurement has statistically
excellent reliability (/CC' > 0.75) for the tested direction of
pHRI and for both conditions of muscle co-contraction. The
results suggest that the biomechanical absorption capability,
assessed by the calculated EoP in this paper, is a consistent



measure in the tested geometric directions and can be used reli-
ably and repeatedly with minimal need for recalibration based
on a one-shot observation for each subject. In other words, this
work, for the first time, suggests that the MyoPassivity map
acts as an energetic “signature” of the user’s biomechanics.
The exploitation of this in the design of biomechanics-aware
control algorithms can significantly reduce the time needed
for data collection and recalibration, reducing fatigue and
exhaustion. This can be directly applied to biomechanics-
aware pHRI systems, such as telerobotic rehabilitation, upper-
limb robotic exoskeletons, robotic ankle orthoses, and haptics-
enabled telerobotic surgery.

IV. CONCLUSION

In this paper, an interday test-retest statistical reliability
study of the upper-limb MyoPassivity map is performed for
the first time during physical human-robot interaction. The
proposed map represents the biomechanical energetic absorp-
tion capability and can be used in pHRI stabilization schemes
enhancing performance and haptics/force transparency while
imposing stability. However, without ensuring reliability, there
would be a need for data collection and (re)calibration prior
to each time of pHRI operation. This would be exhaustive,
time-consuming, and could challenge subjects susceptible to
fatigue. It is beneficial to remove the identification process
for consecutive uses and reuse the unique MyoPassivity
“signature”, reducing the time, exhaustion, and fatigue. The
results of the reliability study conducted by ICC analysis,
investigated for the first time in this paper, indicate that
the identified MyoPassivity maps have statistically excellent
interday reliability (JCC' > 0.75) in different geometric
directions and co-contraction levels.In addition, no statistically
significant difference was observed between the identified
MyoPassivity maps on different days in all eight geometric
directions and grasp conditions (p > 0.645). The robustness
of the MyoPassivity map as a measurement is demonstrated by
the excellent ICC-based reliability across all task conditions
despite differences in the shape and magnitude of the maps
amongst subjects. Thus, it can be concluded that the energetic
passivity map created in a one-shot observation represents the
unique user-specific biomechanic signature, which is reliable
and can be used repeatedly, especially for biomechanics-
aware pHRI to enhance the haptics rendering experience while
regarding the safety of the human user. The future line of
work includes: (a) enhancing and generalizing the study across
more participants and days to further investigate the reliability
and (b) determining the reliability of the MyoPassivity map
under other conditions beyond geometric directions and co-
contraction levels.
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