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Abstract

Sections

Peptides are biopolymers, typically consisting of 2-50 amino acids.
They are biologically produced by the cellular ribosomal machinery

or by non-ribosomal enzymes and, sometimes, other dedicated
ligases. Peptides are arranged as linear chains or cycles, and include
post-translational modifications, unusual amino acids and stabilizing
motifs. Their structure and molecular size render them a unique
chemical space, between small molecules and larger proteins.
Peptides have important physiological functions as intrinsic signalling
molecules, such as neuropeptides and peptide hormones, for cellular
or interspecies communication, as toxins to catch prey or as defence
molecules to fend off enemies and microorganisms. Clinically, they

are gaining popularity as biomarkers or innovative therapeutics;

to date there are more than 60 peptide drugs approved and more
than150in clinical development. The emerging field of peptidomics
comprises the comprehensive qualitative and quantitative analysis of
the suite of peptidesin abiological sample (endogenously produced,
or exogenously administered as drugs). Peptidomics employs
techniques of genomics, modern proteomics, state-of-the-art analytical
chemistry and innovative computational biology, with a specialized

set of tools. The complex biological matrices and often low abundance
of analytes typically examined in peptidomics experiments require
optimized sample preparation and isolation, including in silico analysis.
This Primer covers the combination of techniques and workflows
needed for peptide discovery and characterization and provides an
overview of various biological and clinical applications of peptidomics.
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Introduction

Peptides occur inall three domains of life. Their native functions com-
prise acting as peptide hormones for cellular signalling, as secretory
peptides for interspecies communication and interaction, as preda-
tory peptide toxins and as defence peptides against microorganisms,
viruses and herbivores'. Peptides are important molecules that play
afundamental role in human physiology and pathology. In addition,
natural sources including animals, plants, fungi and microorganisms
provide rich sources of biologically active peptides'’. Research has
focused on investigating and understanding the biological function
of peptides and their potential as disease biomarkers or therapeutic
lead compounds and drugs®*.

Peptides are molecular entities of amino acids linked via amide
bondsrendering the peptide backbone or peptide chain. Although the
sizediscrimination between alarge peptide and asmall proteinis rather
arbitrary, the scientific community typically refers to a peptide con-
taining between 2 and 50 amino acids. Most peptides are encoded by
DNA or RNA and, hence, are products of translation, transcriptionand
the cellular protein manufacturing machinery. Typically, they contain
many and often complex post-translational modifications, including
side-chain modifications, disulfide bond formation, individual residue
isomerization and, sometimes, head-to-tail or side-chain cyclizations.
Non-ribosomal enzymatically synthesized peptides (typically pro-
duced by bacteria and fungi) further increase the variety of peptide
species by incorporating non-proteinogenic building blocks and aset
ofadditional tailoring reactions. Overall, naturally occurring peptides
range between simple linear and often heavily modified molecules,
which occupy a large and unique chemical space in between small
organic molecules and larger proteins’.

The highly diverse and easily modified peptides from nature are
among the mostinteresting molecules. Peptides can be obtained from
various sources and can range from structurally simple to highly func-
tionalized and complex structures, giving thema plethora of biological
features (Fig.1). Although differencesin the extent of modification might
appear extreme, they could still exert the same biological function.
Owingtotheirrelatively small size and chemical potential, peptides can
possess valuable chemical information for the design of novel drugs®.

The term peptidomics was introduced to define astrategy for the
direct measurement and structural characterization of endogenous
peptides in biological systems in a high-throughput manner, with
robust and unprecedented sensitivity”’. Since then, peptidomics
became a fast developing and progressing multidisciplinary field
that combines state-of-the-art separation techniques including liquid
chromatography, modern mass spectrometry technologies, innovative
bioinformatics and statistics for qualitative and quantitative analysis of
peptidesrelevant to fundamental biology and human health sciences.
Although the field of peptidomics resorts to various technologies that
have been developed for proteomics, analytical chemistry and genom-
ics, it is the unique sample preparation and specialized combination
ofthese tools and methods that make peptidomics aunique discipline
andresearch field.

Peptidomics refers to a system-level study of aset of analytes with
the aim to describe the number and identity as well as the relative or
absolutelevels of peptides. As with other biological omics fields, pepti-
domics hasasignificant overlap with genomics and proteomics. Bioin-
formaticapproaches have been utilized to discover genes encoding for
peptides and proteins the peptide product could have originated from,
for potential use as novel medicinal products or as clinical biomarkers.
With more newly discovered peptides, asthe algorithms used become

more powerful, bioinformatics and high-resolution mass spectrometry
are now shaping the future of biological sciences.

Peptides can have various applications, ranging from food pre-
servatives to therapeutic agentsin humans (Fig.1). However, the use of
peptides goes evenbeyond that, as peptides can act as catalysts, improv-
ing the yields and enantioselectivity of chemical synthesis'. Highly effi-
cientand selective catalysis was originally considered to be the domain
of proteins, but peptides can be modified to catalyse simple chemical
reactions. Biomaterials are now a trending topic, where sustainability
and recyclability will be arequirement for future industries™2. Peptides
areaccessible and chemically diverse oligomers, making thema popular
choice for research and development, with ample application outside
biological sciences. However, the discovery and characterization of new
peptides lays the foundation for their future utilization.

This Primer aims to define and describe peptidomics technolo-
gies, tools and workflows for identification and analysis of endog-
enous peptidesinaqualitative and quantitative manner. The field has
rapidly advanced in the past three decades with the development of
computational and mass spectrometry-based techniques. Remaining
analytical challenges and pending questions in peptidome analysis are
discussed for selected applications. The Primer covers variousinssilico
and peptide analysis methodologies including de novo sequencing,
high-throughput and automated peptidomics workflows, peptide
imaging and quantitative mass spectrometry approaches. The appli-
cation of peptidomicsin biology, in drug discovery and inthe clinicto
identify novel biomarkers and understand disease mechanisms are
discussed. Lastly, reproducibility and data deposition are discussed,
followed by current limitations and the outlook regarding ongoing
developmentsin the field of peptidomics.

Experimentation

Modern peptidomics workflows encompass the analysis of genetic
information, characterization of peptides and computational pro-
cessing of the data. Although this multilevel analysis allows for more
comprehensive read-outs, a single-step analysis also qualifies to be
countedintothe field of peptidomics. Genetic informationis accessed
by peptide precursor mining or metabolic network analysis. Working
at the peptide level can be subdivided into several steps, including
sample preparation and clean-up, mass spectrometric analysis and
data evaluation or integration.

Sample preparation

Multiple workflows have been described that proved useful for analysis
of various peptide entities. State-of-the-art peptidomics workflows
are amenable to complex samples, as they are obtained from plant,
microbial cell or animal/human tissue extractions. However, sample
processing steps are usually implemented to enrich analytes over
matrix compounds and to concentrate low-abundance analytes. This
Primer describes common pipelines; several of these methods can be
modularly combined for workflows suitable to address the needs of
any specific research questions. Approaches are optimized by trial
and error to obtain the desired outcomes.

Sample harvest, cell lysis and extraction. Depending on the source of
peptides, there are several harvest and extraction procedures available.
A common problem during sample preparation is the degradation of
peptides —especially low-abundance peptides, for example by cellular
proteases. For instance, neuropeptides and peptide hormones are
biosynthesized as larger precursor proteins; they are converted into
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their bioactive form by processing enzymes that cleave their precursor
into several final active messengers or hormones®. As aneuropeptide’s
biological message is transient, active peptides becomeinactivated by

Fig.1| Peptides, from analysis to application. The sources of peptides are vast,
and many serve diverse biological roles. However, peptides are often difficult to
detect without proper enrichment or clean-up strategies for use in downstream
applications. Subsequent modification or derivatization of the peptides may be
required to elucidate their sequence or structural features, which is essential for
further design or use of discovered peptides in medical or industrial applications.

proteases™. Optimizing sampling approaches isimportant to counter-
actrapid postmortem/post-harvest degradation. Toincrease the yield
ofactive peptides for analysis, degrading enzymes canbeinactivated by
heating tissue/cells, or by addition of protease inhibitors or chaotropic
agents™'®. Extended heat treatments should be avoided as peptides
are prone to chemical reactions, such as hydrolysis and oxidation.
Processing/storing samples at low temperature helps avoid peptide
degradation/modification. These steps are less crucial for stabilized
peptides, such as plant defence peptides or venom-derived peptide
toxins. For efficient extraction of peptide analytes, the cells/tissue must
bebrokenup by celllysis. For instance, cells derived from cell cultures
or from collagen-treated tissues can be lysed with hypotonic buffers
followed by ultra-sonication to disintegrate the phospholipid bilayers
toreleaseintracellular material”. Throughout these steps, abuffer ame-
nable todissolving the peptides should be used, which canbe aqueous
ororganicdepending onthe nature of the sample. Obviously, the heat
treatment of biological samples for protease inactivation will already
be the first step to induce lysis. The lysis of microorganisms or plants
requires specialized protocols'. For instance, to extract peptides from
plants, the source materialis mechanically ground or pulverized (using
agrinder/shredder or liquid N, and mortar/pestle); the peptides are
then extracted by use of organic solvents in combination with alcohols/
aqueous buffers'. The organic solvent used to remove chlorophyll
notonly helps break down cellular membranes torelease the peptides
into the buffer but also inhibits any unwanted protease degradation.
Generally, detergent-based lysis using cationic, zwitterionic or anionic
detergents is not compatible with mass spectrometry (but there are
alternative methods available*). The efficient and repeatable peptide
extractionfrombiological matricesis key for further sample processing,
and to achieve maximum concentration of the peptide analytes.

Enrichment and clean-up strategies. After extraction, crude biologi-
calsamples contain alow abundance of peptides, as they also contain
salts, lipids, proteins and carbohydrates®, which makes purification
steps necessary. The complexity of this matrix background (molecules
otherthanthe peptides of interest) canimpair the ability of mass spec-
trometry toidentify the peptides ofinterest. Although less complicated
sample preparation techniques are needed for peptidomics compared
with proteomics, several clean-up techniques are effective for enrich-
ing the peptides of interest prior to instrumental analysis*. Solid-phase
extraction (SPE) is commonly applied for sample concentration and
desalting, as a rapid, stand-alone tool. This is especially important
if the samples are being analysed directly by matrix-assisted laser
desorption/ionization (MALDI) mass spectrometry, a soft ionization
technique, as high salt concentrations suppress analyte-matrix crystal-
lization andionization. For reversed-phase SPE there are many different
types of cartridges (ranging in size, volume, chemistry, vendor) avail-
able. They can be used for single or multi-channel sample processing
using vacuum manifold systems, which can handle up to 24 cartridges
simultaneously, or in 96/384-well format, utilizing SPE containing
plates for automated sample clean-up. For rapid clean-up of small
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sample volumes, ZipTips or alternative pipette tip SPE devices have
become useful®. Alternative but low-resolution (and sometimes low-
recovery) methods for sample clean-up are molecular weight cut-off or
nanofiltration devices and classical sample precipitation techniques.
Amoreefficient method for sample clean-upis liquid chromatography.
This technique can be used offline or coupled directly to mass spec-
trometry. Itis compatible with numerous separation chemistries. One
exampleisfood-derived peptides, alarge class of bioactive molecules
usually ranging in size from 2 to 20 amino acids. They are generated
from enzymatic food hydrolysates during digestion or fermentation.
The isolation of peptides from the hydrolysate matrix is achieved by
a combination of ultrafiltration and chromatographic separation
techniques, such as reversed-phase, ion exchange and size exclusion
chromatography”. The isolated peptides are further analysed to the
amino acid level using amino acid quantitation, Edman degradation
or mass spectrometry-based de novo sequencing.

Chemical derivatization and peptide labelling. For certain pep-
tidomics applications, such as discovery, isolation and analysis of
cysteine-rich peptides, chemical derivatization of cysteine residues
may be beneficial. Disulfide bridged or cysteine knot peptides are
chemically reduced to the sulfhydryl-containing compound with
mild reduction reagents and, then, immediately converted into sta-
ble derivatives. Thiol-containing reductants are 3-mercaptoethanol,
glutathione and dithiothreitol (DTT) supporting sulfhydryl deprotona-
tion under basic conditions. Phosphine-based reagents, for example
tris(2-carboxyethyl)phosphine (TCEP), are considered more stable than
thiolsand are amenable to all pH conditions®. The cysteine sulfhydryl
group derivatization makes further use of a few standard reagents,
preferably halogenated acetate derivatives (for example, iodoaceta-
mide, iodoaceticacid), N-substituted maleimides (for example, N-ethyl
maleimide), 4-vinylpyridine or thiosulfonate reagents (for example,
methyl-methane thiosulfonate)**?. lodoacetamide has become
astandard working horse for proteomics and peptidomics applica-
tions. Derivatization was also explored for peptide quantification
via cysteine derivatization. For instance, owing to its chromophore,
5,5-dithiobis(2-nitrobenzoate) (DTNB) provides labelled peptides that
canbe quantitatively analysed by HPLC-UV detectors. Other labelling
approaches establishedin the peptidomics field support the detection
and quantitation or comparative analysis of peptidome samples.

Labelling of peptides with stableisotopesisacommonstrategyin
peptidomicstoincrease sensitivity and detection and to enable quanti-
tative analysis. Labelling of peptides of interest with stable isotopes in
biological models canbe achieved by metabolic, enzymatic and chemi-
cal strategies. Metabolic labelling introduces stable isotopes through
metabolic incorporation in vivo, often via diet or culture media, and
thusleadstolongexperimental procedures. Several chemistry-based
labelling protocols have beenimplemented that enable stable isotope
tagging of peptides in vitro®™>2, There are several commercial tags
available, for example tandem mass tags (TMT)** and isobaric tags for
relative and absolute quantitation (iTRAQ)**; there are also many low-
cost alternatives available, including N,N-dimethyl leucine (DiLeu)?,
deuterium isobaric amine reactive tag (DiART)* and 10-plex isobaric
tags (IBT)*.

Peptide separation

Crudecell or tissue extracts typically present high chemical complexity
and a large concentration range of diverse compounds. As peptides
may exist in solution as charged molecules with differing degrees of

hydrophobicity, they are amenable to several separation technologies.
Althoughreversed-phase liquid chromatography has been widely used,
size exclusion, ion exchange and mixed-mode applications are gaining
attraction with continuous development of new sorbent materials®.
Chromatographic separation systems are either directly hyphenated
to mass spectrometry via the electrospray ionization (ESI) interface
or performed offline. Reversed-phase chromatography promises
high peak capacity and excellent resolution. Particles in use are modi-
fied silica gels with alkyl group substitution, with pore sizes typically
ranging from 110 to 300 A to facilitate adsorptive analyte-stationary
phase interactions. The alkyl chain length is the major determinant
for overall hydrophobicity of the material and the retention power for
analytes. Octadecyl (C;5), octyl (Cg) or butyl (C,) alkylated silica mate-
rials are the most common. The selectivity for analytes and their
peak shape can further be improved by end-capping, cross-linking or
other modifications. For instance, trimethylsilyl or polar groups are
used for fine-tuning selectivity, resolution and retention capacity of
the stationary phase. The optimal choice of reversed-phase stationary
material depends on the structural and chemical diversity of peptide
analytes. For example, Cgmaterial commonly enables better separation
of basic and neutral molecules (for example, tryptic peptides) under
acidic conditions. The mobile phases in reversed-phase applications
are aqueous and organic solvents, usually methanol or acetonitrile
with acidic modifiers. Trifluoroacetic acid (TFA) is a strongion-pairing
counter-ion providing very reliable and reproducible peak shapes and
overall separations®. TFA is unfortunately not well compatible with
the ESItechnique commonly appliedinliquid chromatography-mass
spectrometry (LC-MS) systems. Here, formic acid is used instead and
ammonium formate or ammonium acetate can be used as the mass
spectrometry-compatible buffer system.

More specialized applications such as affinity-based and
immobilized-metal affinity chromatography are used to enrich or
isolate phosphopeptides from tissue extracts, whereas hydrophilic
liquid interaction chromatography is utilized for separation of glyco-
peptides*’. For mass and volume-limited samples, capillary electro-
phoresis can be used as afront-end separation method. One advantage
of capillary electrophoresis is that it is compatible with one to two
orders of magnitude smaller sample volumes than liquid chroma-
tography systems, and therefore is the best choice for cellular and
subcellular peptidomics.

The most recent addition to peptide separation approaches
ision mobility spectrometry (IMS) that sorts and separates gas-phase
ions according to their 3D shapes. Placing an IMS module between
the source and the mass analyser increases ion utilization efficiency,
improves sensitivity and specificity of detection, and broadens the
dynamic range. Because of the introduction of a new range of IMS
instruments, this approach is rapidly gaining application in peptide
characterization and quantitation.

Mass spectrometry technologies

Mass spectrometry instrumentation. There are various different
mass spectrometry systems available, which canbe categorized by the
ionization technique, resolution of the mass analyser, single or tandem
set-up of the system or mass analyser type. The main soft ionization
techniques are MALDI**?and ESI®®. Fourier transform ion cyclotron reso-
nance mass spectrometers (FTICR-MS) are high-resolutioninstruments
suitable for peptide mapping and characterization via accurate mass
matching and mass spectrometry imaging (MSI) studies. High-speed
mass spectrometry systems, typically equipped with a quadrupole,
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time-of-flight (TOF) orion trap mass analyser, are useful for quantitative
analysis****. Most of these systems have the capacity to perform tandem
mass spectrometry and fragmentation experiments in the MS/MS
or MS/MS/MS mode (suchasiontrap and orbitrap systems)*>*¢, Peptide
fragmentation uses different techniques, such as post-source decay,
high-energy collision-induced dissociation or electron transfer disso-
ciationmethods**, Peptidomics studies utilize several mass analysers
ofvarious types, such as TOF, quadrupole,iontrap and, more recently
duetoits high resolving power, orbitrap® orion cyclotron resonance
analysers.

Tandem mass spectrometry workflows. Shotgun peptidomics is
based on high-throughput automated sequencing and identification of
endogenous peptidesrepresentative of abiological sample.Sequencing
isrealized by implementation of tandem mass spectrometry (MS/MS)*
with two main protocols: data-dependent and data-independent
acquisition (DDA and DIA, respectively). The benefit of DDA is high-
quality MS/MS spectra resulting from a user-specified number of the
most intense precursor ions in a given chromatographic time frame
subjected to fragmentation. Identification of low-abundance ions is
facilitated by dynamic exclusion of previously sampled precursor ions
from MS/MS. Given the limited number of precursors sampled within
aduty cycle, the resolution of hyphenated front-end separation plat-
forms plays a crucial role in the complexity of the mass spectrometry
spectrum and, respectively, in the degree of sample characterization
via MS/MS. In DIA-based analysis, all precursor ions from the mass
spectrometry survey scan are selected for MS/MS via stepping broad
isolation windows across the entire m/zrange. Implementation of DIA
improves reproducibility across samples, which in turn reduces missing
values and greatly improves the quantitative accuracy of peptidomics
assay. Although useful for quantitation of peptides, the main limita-
tion of DIA is dependence on reference spectral libraries, typically
generated via DDA analysis of additional samples. Current efforts are
channelled towards development of library-free DIA approaches®® .

Mass spectrometry imaging. The development of MALDI MSI maps
the spatial locations and distribution patterns of the biomolecules in
tissue samples®. Currently, MALDI MSI remains the most common
method for spatial mapping of lipids, metabolites and peptides/
proteins. Other than MALDI MSI, secondary ion mass spectrometry
or SIMS-MSI**, desorption ESI MSI*® and scanning microprobe MALDI
MSP®, surface-assisted laser desorption/ionization mass spectrom-
etry’’ and nanostructure imaging mass spectrometry*® are also used
toexaminethelocalization of proteins/peptides. Advantages and dis-
advantages of the different ionization techniques have been reviewed
elsewhere®. Unlike immunohistochemistry, radio-immunoassays and
fluorescence microscopy that require extensive sample preparation
and prior knowledge of the target analytes®* >, MSlinvolves relatively
simple sample preparation and enables the localization of hundreds to
thousands of different analytes on atissue slice in asingle experiment®.
To localize the peptide, the tissue of interest needs to be properly
prepared. After dissectionitis usually fresh frozen orembedded in gel-
atine, sodium carboxymethyl cellulose or paraffin. Formalin-fixed par-
affin-embedding is a special embedding technique that can preserve
the specimen under room temperature for more than a decade®*®.
Although optimal cutting temperature (OCT) compoundisacommon
tissue-embedding solution, the high concentration of polyethylene
glycol (PEG) in the OCT compound can affect the analyte signals and,
thus, OCT compound is not recommended for tissue embedding in MSI

experiments®. Cleaning procedures to remove interferringembedding
substances are needed before using OCT compound or formalin-fixed
paraffin-embedded tissue for MSI experiments®*°, For endogenous
peptide MSI experiments, sample preparation requires fewer steps;
before imaging, fresh frozen or embedded tissues are sectioned into
5-20 pm slices’. Before imaging, background salts and lipids need
to be removed from the tissue for which various washing techniques
such as organicsolvents have been evaluated”. Washing is also adapt-
able for peptide imaging experiments, but may increase the loss of
hydrophilic peptides’ and cause analyte diffusion’. Optimization of
the washing procedure for formalin-fixed paraffin-embedded tissue
sections shows signal enhancement for neuropeptide imaging™. Tis-
sueslices with or without awashing procedure can then be analysed by
imaging instruments (excluding MALDI MSI). For MALDI MSI, matrix
applicationis needed as the last step before instrumental analysis. The
matrix choice, concentration and application method are important
forsignalintensity and resolution and need to be carefully selected””®.
The resulting images from the MSI experiment can be analysed using
various software choices depending on the instrument used.

Insilico peptide mining

Peptides of diverse origins serve variousroles in nature, and therefore
may bear various modifications. The modifications pose a particular
difficulty for peptide analytics and characterization, and the taxonomic
origin (Fig. 1) requires adapted/tailored research strategies. In the
post-genomic era, scientists have access to databases’ *?and tools to
addresstheseissues (Table 1). Most publicly available ab initio gene and
protein sequence data are annotated by programs such as GeneMark®
or Prodigal®*. These are robust platforms but come with their limita-
tions asthey do not always annotate short open reading frames (SORFs)
where peptides are often found. For that purpose, specialized tools
exist with their own rule sets for in silico peptide mining. They can be
specialized to predict multiple post-translational enzymes, amino acid
substrates or biosynthetic tailoring of non-ribosomal peptides, assist-
ingtheresearcherin annotating possible peptide modifications. Inthe
case of eukaryotic organisms, bioactive peptides may originate from
SORFs or derive from breakdown products from other enzymes®>*%>%¢,
For eukaryotic genetically encoded peptides, there are tools such
as SPADAY, MiPepid®®, DeepCPP*’ or rAMPage’® (Table 1 and Supple-
mentary Table 1) if genomic or transcriptomic data are available. For
protein-derived bioactive peptides, PeptideLocator® can be used on
proteinsequences. Alternatively, comparative genomics can be help-
ful with tools such as CoGe” or EDGAR?? (Table 1), which may be used
when searching conserved homologues for validation; forasummary
of databases and software tools, refer to Supplementary Table 1.

The biosynthetic genes of ribosomally synthesized and post-
translationally modified peptides (RiPPs) and non-ribosomally syn-
thesized peptides (NRPs) from bacteria and fungi”® * are commonly
encoded in biosynthetic gene clusters and require programs special-
ized in biosynthetic gene cluster detection, such as antiSMASH” and
DeepBGC’® (Tables 1 and 2). These tools can be complemented by
phylogenetic genome mining using EvoMining” for the discovery of
homologous gene clusters. There are even more specialized tools for
NRPs, such as SANDPUMA, for the prediction of the substrates of
the adenylation domains (A-domains). Furthermore, there are other
mining tools for RIPP analysis, such as BAGEL”” or RODEO'° for detec-
tion and classification of RiPPs from the genome or DeepRiPP'" for
classification, structure prediction and spectral assignment (Tables 1
and2). These programs use genomic or transcriptomic datato discover
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Table 1| Selected tools for peptide mining

Tool Organism Datatype Description

Sequence annotation

SPADA Plant DNA sORF annotation

MiPepid Eukaryotic DNA sORF annotation

rAMPage Eukaryotic RNA Antimicrobial peptide detection

DeepCPP Eukaryotic RNA sORF annotation

antiSmash Bacterial/fungal/plant DNA Gene cluster annotation

RODEO Bacterial Amino acid Gene neighbourhood analysis

BAGEL Bacterial DNA Gene cluster annotation

DeepBGC Bacterial DNA Gene cluster annotation

Comparative genomics

EvoMining Bacterial/fungal/plant Amino acid Phylogenetic gene cluster search

CoGE Eukaryotic/prokaryotic DNA Genome comparison

EDGAR Eukaryotic/prokaryotic DNA Genome comparison

Product prediction

SANDPUMA Bacterial Amino acid A-domain specificity prediction

Peptidelocator Eukaryotic Amino acid Prediction of bioactive peptides derived from enzyme degradation
Multi-omics

Nerpa Bacterial/fungal DNA/mass spectrometry Maps NRPs back to their respective gene clusters

BioCAT Bacterial/fungal DNA/mass spectrometry Maps NRPs back to their respective gene clusters
DeepRiPP Bacterial/fungal DNA/mass spectrometry Structure elucidation of RiPPs from mass spectra and sequence data
PoGo Eukaryotic DNA/mass spectrometry Peptidogenetic tool, mapping peptides to the genomic loci
MetaMiner Bacterial DNA/mass spectrometry Large-scale screening platform for microbial peptides

In silico peptide mining is aided by a myriad of interesting tools from sequence annotation, comparative genomics, product predictions and multi-omics approaches. However, a tool needs to
be matched with its proper use, as the genes and genomic architecture of plants, animals, bacteria or fungi are not the same, and will therefore often need detection rules, dedicated to each
clade of life. The detection and discovery of potential peptides can be done at each level of sequence data from genomic (DNA) to transcriptomic (RNA) or by further investigation into proteins
(amino acid) for their degradation products, or neighbouring genes may be bioactive peptides or involved in bioactive peptide processing. Furthermore, comparison of sequence data with
mass spectra has led to the development of robust multi-omics platforms to aid researchers in high-throughput peptidomics. A-domain, adenylation domain; NRP, non-ribosomally synthesized
peptide; RiPP, ribosomally synthesized and post-translationally modified peptide; sORF, short open reading frame.

potential peptides. Alternatively, tools such as PoGo'® map detected

ribosomally synthesized peptides from LC-MS data to the genome.
Recently, a retro-biosynthetic tool for NRPs has been developed'®,
which allowed non-ribosomal peptides to be mapped back to their
respective gene clusters by tools such as Nerpa'®* and BioCAT'®. The
process of discovering novel peptides is an iterative process of in
silicoand laboratory work, where new discoveries constantly feed the
expanding databases, allowing for more precise and detailed tools to
be developed (Fig. 2).

Results

The comprehensive sequence identification of peptides includes the
full assignment of amino acids in the correct sequence orientation,
which is usually determined by the encoding genes and/or the ribo-
somal protein translational machinery of a cell. Theidentification and
the site of post-translational modifications or tailoring reactions are an
additional challenge to allow full assignment of the native peptide. This
section provides an overview on the workflows and frameworks that
have been implemented to analyse different sets of peptide analytes
using peptide mapping and de novo sequencing, automated LC-MS/MS
workflows and MSI (Fig. 3).

Peptide mapping and de novo sequencing

Despite the use of coupled LC-MS methods, for certain applications,
such as complex peptide analytes, an offline workflow can be benefi-
cial. For such applications, MALDI-TOF/TOF-MS* is often the method
of choice as it results in spectra with singly charged ions, for exam-
ple [M + HJ*, suitable for manual peptide annotation and de novo
sequencing (Fig. 3a).

Peptide dereplication and peptide mapping. Peptide dereplication
is commonly applied for rapid pre-screening of peptide libraries,
for example peptide natural products in extracted samples from
microbial or plant origin'°®. Dereplication can be achieved at differ-
ent levels, for example by matching experimental m/z signals (mass
spectrometry) or spectral MS/MS datato libraries. Peptide m/zsignals
provide valuable information for peptide content mapping by com-
parison of those experimentally determined with calculated mole-
cular masses in databases. HRMS data further enable comparison of
isotopologueintensities with theoretical data-based intensities as well
as prediction of chemical sum formula, which can provide a further
layer of evidence for the matched library hit. Despite the lack of com-
prehensive databases targeting natural product/microbial-derived
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peptides, they are listed in common natural product databases, such
astheDictionary of Natural Products (Taylor & Francis) or Antibase'”’
(others are under development), or specialized databases such as
Bactibase dedicated to subsets or subclasses of peptides (Table 2 and
Supplementary Table 1). The search runs are performed by using
computational-aided tools for assignment and further evaluation.
DEREPLICATOR+%8 (Table 2), SEQUEST'® and MZmine3 have emerged
as helpful tools. For example, the MZmine3 engine offers an all-in-one
solution for peak picking, chromatographic peak detection, peak
identification and quantitation, and data processing/visualization
functionalities'®. Using high-resolution mass spectrometers, such
as FTICR-MS or orbitrap devices, it has become possible to derive
molecular formulas of peptides based on their determined accurate
mass. Common tools for molecular formula determination based
on high-resolution spectra are pacMass'', MS-FINDER"?* (Table 2)
or MetaSpace'>. Moreover, spectral library search approaches are
also advancing into the peptidomics field as, besides customized
in-house spectral databases, commercial (for example, mzCloud) or
openaccess (such as NIST) spectral libraries are readily available for
mapping experiments. A combination of database dereplication, high-
resolution mass detection and spectral database annotation s state of
theart for peptide mapping approachestoday. Several manufacturers
of mass spectrometers offer software solutions, such as Metaboscape

(Bruker Daltonics) or Compound Discoverer (Thermo Fisher Scien-
tific), to performthe identification of peptides using one or several of
the described methods in one package. The annotation of branched
or cyclic peptides was addressed by CycloBranch2 (refs. ) or the
VarQuest algorithm using spectral networks™. As a general limita-
tion, a comprehensive peptide database including high-resolution
accurate mass, sequence information, fragmentation spectra is still
notavailable to the research field to date.

De novo sequencing. MALDI-TOF/TOF systems are capable of post-
source decay fragmentation. Owing to metastable decay, the system
offersless efficient fragmentation than collision-induced dissociation
or electron transfer dissociation methods. This fragmentation tech-
nology provides signal intensities for specific fragment ions, which
are useful for manual de novo sequencing applications'” (Fig. 3a).
De novo sequencing examines characteristic mass shifts among the
fragmentionstoreconstructionseriesindicating non-randomamino
acid combinations, thus allowing for the detection of novel sequences".
Denovointerpretation of fragmentation spectrais still the best choice
to derive sequence information of highly functionalized peptides
(for example, peptides with post-translational modifications and/or
non-natural amino acids). The post-source decay fragmentation
approach is useful for studying single to few peptides without much

Table 2| List of important databases and tools

Databases and software Use case Data available/input data Key features
Database
NCBI Biological sequences DNA, RNA, amino acid Repository of various biological sequences

Dictionary of Natural Products? Physicochemical data

Solubility, UV-Vis

Extensive database resource of natural products
and their physiochemical properties

Software for in silico annotation

antiSMASH RiPPs and NRPs DNA Rule-based cluster detection
SANDPUMA NRPs DNA A-domain specificity prediction
DeepBGC RiPPs and NRPs DNA Gene cluster detection

Software for peptidogenetic pipelines

DeepRiPP RiPPs

DNA (open reading frame)

Classification, processing and spectral matching

Software for mass spectrometry analysis

DEREPLICATOR+ RiPPs and NRPs LC-MS/MS data Natural product identification from mass
spectrometry spectra (GNPS framework)
MS-FINDER Mass spectrometry data analysis EI-MS, GC-MS, MS/MS Formula predictions, fragment annotations and

structure elucidation

Software for MSI?

MSiReader Mass spectrometry data analysis MSI MSI platform for analysis
SCiLS Lab? Mass spectrometry data analysis MSI MSI platform
ImageQuest® Mass spectrometry data analysis MSI MSI platform
High Definition Imaging® Mass spectrometry data analysis MSI MSI platform
msiQuant Mass spectrometry data analysis MSI MSI platform for analysis

Various resources can aid in peptidomics and one of the main resources most researchers start with are biological sequence databases, to gather genomic (DNA), transcriptomic (RNA),
proteomic (amino acid) or other data that may be relevant to their research. These data types can be further complemented by specialized software or other physiochemical or spectral data
to make more accurate predictions or annotations of peptides that may be present in the sample. Databases and further tools are continued in Supplementary Table 1. A-domain, adenylation
domain; EI-MS, electron ionization-mass spectrometry; GC-MS, gas chromatography-mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; MSI, mass spectrometry
imaging; MS-MS, tandem mass spectrometry; NRP, non-ribosomally synthesized peptide; RiPP, ribosomally synthesized and post-translationally modified peptide. *Commercial platforms,

may be subject to licensing charges.
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Fig.2|Insilico peptide mining. General workflow of how multi-omics
approaches may be applied to peptidomics. a, Novel peptide candidates are
oftendiscovered in publicly available data sets, from genomics, transcriptomics
or proteins. b, FASTA files are fed into the annotation platforms, where they
utilize their own detection rule sets to predict the likelihood of true peptide
candidates. ¢, Peptides derived from ribosomal transcription may undergo
extensive modification, or non-ribosomal proteins may be responsible for
peptide biosynthesis; as such, product prediction tools have been made to aid
innovel peptide discovery. d, Finally, candidates validated by chemical analysis
will be deposited in databases, increasing our collective knowledge and data
amountto further improve algorithms and bioinformatics tools. sORF, short
openreading frame.

need for further automation. High-throughput analysis and combina-
tions together with other omics techniques made a software-assisted
solution for de novo interpretation of MS/MS spectra indispensable
to handle these large data sets. Bioinformatic tools, such as PEAKS™,
are algorithms for de novo peptide/protein sequencing and allow
combinatorial database annotation. An important consideration of
de novo sequencing is handling of false positive assignments. Deep
learning methods have significantly improved the power of de novo
sequencing methods, allowing >97% sequence coverage'?. Although
the expected sequence coverages with and without the assistance of
databasesimproved over the past two decades, the algorithms to assign
amino acid sequences de novo to experimental MS/MS data are still a
source of variation. As these algorithms can substantially differ from
each other, for example in their cut-offs for profitability probing or
in other decision-making processes, their output for one spectrum
canbe conflicting with obvious false assignments. To account for this
remaining challenge of software-assisted analysis, de novo sequence

work should be carefully validated using known or reference peptides
whenever possible. The quality of de novo data may also depend on
instrument performance, spectra quality, peptide fragmentation effi-
ciency, presence of post-translational modifications, the abundance
of precursor ions or sample size®'?"12,

Peptide databases and identification workflows

Regardless of the acquisition method (DDA or DIA), the output of a typi-
cal LC-MS/MS experiment comprises hundreds of thousands of peptide
fragmentation spectra correlated to chromatographic retention time
and precursorion mass (Fig. 3b). Interpretation of such spectral data
typically relies on querying themagainstinsilico predicted theoretical
spectra from protein sequences found in a species proteome data-
base (Table 2 and Supplementary Table1). More effective, however, isa
denovosequencetagapproachthatinfersthe peptidesequence directly
fromcharacteristic mass shifts between peptide fragmentions,and then
matchesthetagto proteinsin the database. The advantage of denovo
sequencingisits ability to discover peptides outside the proteome data-
base, asunassigned tags can be searched against expressed sequence
tag (EST) repositories or mass spectrometry databases of homo-
logous species from other studies. With either matching algorithm,
experimental data fit to matched proteins are statistically evaluated
for probability and the false discovery rate (FDR).

Peptide identification from DDA spectrais typically done by rank-
ing the probability of non-random fit of peak patterns in the MS/MS
spectruminto certain amino acid sequences using mass spectrometry
vendor-specific analysis tools or the universal format software PEAKS’.
Annotation of post-translational modifications is typically included
with either option. Itisimportant to recognize that popular proteom-
ics tools MaxQuant'* and Mascot'** are not suitable for native peptide
identifications as they rely oninsilico spectral libraries of theoretical
peptides potentially originating from enzymatic cleavages of proteins
in a database; when the enzyme is not specified, dramatic expansion
of search space overwhelms computational resources.

Owing to a conceptually different fragmentation approach
in DIA experiments, alternative software is needed for identifica-
tion and quantitation of peptides, for example Skyline'”, DIA-NN*°,
OpenSWATH', Spectronaut'” and DIA-Umpire®. Statistical analysis
of DIA measured peptides can be performed with the output result
files using Excel, R programming, Python and Perseus'” (Table 2 and
Supplementary Table1).

Quantitative peptidomics

The application of mass spectrometry-based peptide quantitation is
rapidly growingin clinical, applied and basic research. Traditionally, in
bottom-up proteomics, the mass spectrometry quantitation approach
is based on comparison of protein levels via summation of measure-
ments from several encoded tryptic peptides. In peptidomics, however,
individual bioactive peptides may have independent levelsinrelation
to pathological or experimental conditions, evenif originating fromthe
same protein or prohormone. Therefore, endogenous peptides that
are subject to peptidomics investigation will be quantified individually
atthe peptidelevel, not the protein level. With that difference inmind,
practical strategies for quantitative peptidomics are similar to those
widely used in bottom-up proteomics and include stable isotope or
chemical labelling and label-free methods?** (Fig. 4). An advantage
ofthelabel-free quantitation approachisitslow cost and simplicity of
sample preparation. The two commonly used label-free quantita-
tion techniques are based on the signal intensity (using extracted
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ion chromatograms) and spectral counting'®. Both methods can be

used for relative and absolute quantitation. For absolute quantita-
tion, a peptide standard that is similar to the target peptide can be
added®, orideally asynthetic stableisotope-labelled internal standard
for each peptide of interest is used, for example AQUA*® peptide. In
silico algorithm-based methods may also be used to achieve absolute
quantitation and assess the actual concentration of the target peptide
inone sample*®'2*1*°, Additionally, multiple reaction monitoring can be
used in targeted peptide quantitation. Multiple reaction monitoring
focuses on selected fragment ions for peptides of interest and allows
the detection of low-abundance peptides*'.

Theadvantage of the stableisotope labelling strategy is multiplex-
ing and throughput, although often at high cost. The quantitation of
labelled peptides is based on the mass spectrometry signal intensity,
and the complexity of analysis increases with the size of data sets.
Conceptually differentin vitro strategies involve isobariclabels™ that
produce identical mass shifts on the mass spectrometry level, but gen-
eratedistinct reporterions associated with differentlabelling channels
during peptide fragmentationin MS/MS events™'. We refer the readers
toanother article for more extensive discussion onisobaric labelling™".
Raw files obtained from both label-free and labelling strategies can be
analysed through the software mentioned in the previous sectionand
detailed in Table 2 and Supplementary Table 1.

Mass spectrometry imaging and spatial patterning

MSlis a complementary method to IHC staining®®, radio-immuno-
assays® and fluorescence microscopy®, to yield images of the target
analyte in relatively high throughput™. Figure 3c demonstrates the
experimental procedure and data processing steps for MSI experi-
ments. Distribution of a list of the target m/z can be visualized in one
experiment from the same tissue slice. Although MSI provides direct
qualitative results for the target m/z, quantitative analysis can also be
done with the aid of commercial and open access software. Torelatively
quantify the desired m/zfor a certain peptide, direct comparison can
be done among the different tissue regions or different tissue slices®.
Normalization is usually completed pre and post processing™*>. The
software is equipped with normalization tools, using the total ion
chromatogram (TIC), vector norm through root mean square, median
and noise'”. Similar to LC-MS, isotopic labelling may be transformed
for MSl relative quantitation®*. Absolute quantitation is a relatively
untapped area, and such quantitation can be performed by LC-MS/
MS or by adding the calibrant to the solvent stream in desorption ESI
MSIl experiments™>*°, Another way to perform absolute quantitation
is to create a calibration curve by spotting the standards of interest
onto a different tissue section that is adjacent to the analysed tissue
sections™.

Various software tools (Table 2 and Supplementary Table 1)
have been developed for MSI visualization and analysis, including
MSiReader™®, SCiLS Lab, ImageQuest, High Definition Imaging,
Masslmager™®® and msiQuant'*°, Several statistical analyses can be
performed using some of these software packages, including analysis
of variance, principal component analysis and partial least squares
coupled to discriminant analysis (PCA-DA and PLS-DA, respectively),
and receiver operator characteristic curve analysis for biomarker
tests®. Subsequent statistical and classification analysis can also be
done using machine learning and in silico algorithm-based software.
MALDI MSI data are usually paired with LC-MS/MS data for specific
peak assignment and peptide identification. We refer the readers to
amore thorough review article® for a discussion on MSI.

Applications

Function, diversity and evolution in biology

Microbial peptide biosynthesis. Some peptide species from bacteria
and fungi are distinct from peptides commonly found in higher organ-
isms. These peptides, according to their more specialized biosynthetic
mechanisms, can be categorized into two groups: RiPPs and NRPs.
RiPPs are encoded as precursor peptides in the genome and undergo
post-translational modifications beyond those commonly known from
animal/plant-derived peptides and proteins'"’. RiPPs are subcatego-
rized by their characteristic post-translational modifications, which
include thioethers, heterocycles, amino acid side-chain functionaliza-
tions and various side-chain cross links. Recently, examples such as the
lipolanthines emerged where RiPP biosynthesis is combined with other
biosynthesis pathways, such as fatty acid biosynthesis of polyketide
synthesis (PKS)'*.

By contrast, NRPs are commonly synthesized by modular multi-
domainsynthetases that canincorporate non-proteinogenicaminoacids
and other substrates. Modules for peptide assembly consist of a basic
domain set: A-domains responsible for amino acid/substrate activation
and selectivity; a peptidyl-carrier protein domain; and a condensation
domain (C-domain) forming the amide bonds. A thioesterase domain
(TE-domain) releases alinear or cyclic peptide. Additional domains may
be interspersed to perform epimerizations (E-domains), oxidations/
reductions (Ox/Red-domains), cyclizations (Cy-domains) or other modi-
fications'”. Tailoring of the peptide substrate may occur toan extent that,
sometimes, apeptide structureis hardly recognizedin the final product,
forexampleinthe 3-lactams (precursor peptide L-aminoadipoyl-L-Cys-
D-Val). The structural diversity of NRPsis even further extended by mixing
biosyntheticfunctions with PKS, rendering lipopeptides or even stronger
morphed PKS-NRP-like structures, which probably mark the borders
of the peptidomics field***. Although, recently, genome mining consid-
erably facilitated the discovery of new classes and types of microbial
peptides derived from RiPP and NRP biosynthesis, the field still is in its
infancy, as estimates consider that only 2.1% of the global prokaryotic

taxaarerepresented in sequenced genomes'®,

Venomics. Venomous animals (including snakes, spiders, scorpions,
amphibians, snails and even platypuses) have evolved multiple times
throughout evolution, and many venom cocktails are rich in pep-
tides"*8, In fact, the diversity of venom peptides is unprecedented:
their estimated number exceeds millions'’. Peptidomics has provided
detailedinsightsintothediversification of venom. The venom content has
alsoevolved, based onthe targeted prey or predators to defend against.
Inresearch onthe predation of cone snails Conus marmoreus and Conus
geographus, their conotoxins and the defence stings showed remark-
ably different venoms. Whereas defensive venoms are localized in the
proximal duct, the predation venoms are in the distal duct of the venom
gland”*"', Predatory venoms evolved to incapacitate or kill the prey
with high selectivity, whereas the defensive venoms hadlittle tonoactiv-
ity against their prey but contained high amounts of paralytic peptides
(conotoxins) acting on mammalian ion channels. Scorpions have also
been studied extensively for this purpose. Their venom components
differ concerning defensive and predatory behaviours; they might sting
multiple times, but the venom composition may varyinresponse to the
threat of the animal*>'*>, These examples underline the requirement for
appropriate extraction methods when working with venomous animals.

Invertebrate neuropeptide discovery. There is an overwhelming
diversity of (neuro)peptidomics studies on invertebrates, including
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ceans'®'® and cnidarians'**°%, Multiple approaches proved effective
for discovery and characterization of neuropeptidesininvertebrates.
With growing numbers of sequenced genomes or transcriptomes,
the bioinformatics annotation of prohormones and the prediction of
endogenous putative peptides facilitates peptidomics studies’’. The
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matching the mass spectrometry-detected peptide masses to theoreti-
calmasses of peptides predicted from a protein/prohormone sequence
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while accounting for possible post-translational modifications"°. This
isan effective approach suitable for single-cell peptidomics'”, and thus
allowing for the discovery of chemical messengersin well-defined neu-
ronal circuits”*that control physiological functions and behaviour, for
whichinvertebrates are extremely well suited due to the simplicity of
their organization and conservation of signalling molecules along the
evolution tree. For characterization of the peptidome of an organism
with no genomicinformation, shotgun peptidomics onalarger tissue
sample works best with mass spectrometry data annotated using the
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Fig.3|Overview of common peptidomics workflows. a, De novo peptide
sequencingis utilized in peptide discovery research. Purified peptides are
analysed with matrix-assisted laser desorption/ionization time-of-flight/time-of-
flight mass spectrometry (MALDI-TOF/TOF-MS) or tandem mass spectrometry
(MS/MS) systems. b, High-throughput peptidome analysis is often employed for
automated sequence analysis, dereplication and/or spectral network analysis,
quantitation and analysis for post-translational modifications. These analyses are
usually paired with high-throughput analytical systems such as high-resolution
liquid chromatography-tandem mass spectrometry (LC-MS/MS). Data acquisition
generates MS/MS spectra that can be analysed with de novo sequencing algorithms
or used for identification of peptides with a database search. Quantitation of
peptides canbe achieved at the level of the mass spectrometry peak as well as

with multiple reaction monitoring acquisition. Post-translational modification
analysis can be performed for tryptic peptides or for endogenous peptides
using a peptide fragment spectrum for database search. ¢, Experimental
protocol and data analysis procedure for mass spectrometry imaging (MSI).
After sample preparation of tissue slices (for example, mouse brain tissue), the
matrix is applied and co-registered with a tissue image to precisely define sample
position in the mass spectrometer. The dataacquisition over the entire raster
generates asummed total ion chromatogram (TIC) spectrum. To visualize m/z
maps, each m/zsignal can be selected to show extracted ion chromatograms.
The data can be processed (normalization, smoothing, datacompression) for
various biocomputational analysis. Scale bars, 200 pm. Part ¢ data processing
images reprinted fromref.?, Springer Nature Limited.

protein database of a related species (homology search)'”>. Specifically,
hybrid bioinformatics approaches for interpretation of the MS/MS
datamatch experimental de novo sequence tags to adatabase of related
species proteins while accounting for potential single point muta-
tions'*. A more targeted analysis aimed at peptide-level validation
of selected gene expression and/or function in specific cells or tissue
often involves a multi-omics workflow'” or gene cloning followed by
gene expression mapping to guide tissue or cell sampling for mass
spectrometry analysis”*"”°, Elegant multi-platform studies combining
shotgun peptidomics for peptidelibrary construction followed by MSI
of tissue sections have led to mapping of putative bioactive peptidesin
nervous systemtissue sections under different biological paradigms, as
well as the exploration of cellular heterogeneity and organelle peptide
complements. Implementation of mass spectrometry-based, peptide-
centred workflows has accelerated the discovery of enzyme-derived
D-amino acid-containing peptides (DAACPs) of high physiological
importance in invertebrates*'5*'8!, DAACPs typically co-exist with
all-L-amino acid-containing peptide counterpartsintissue extracts and
canbe fractionated viaRP-HPLC and can be validated via trapped IMS
and MS/MS™>'®3, Analternative discovery pipeline based on enzymatic
screening, separation and amino acid analysis is greatly enhanced
by MS/M5184—186.

Human and mammalian neuropeptide discovery. Peptidergic sys-
tems are abundant ligand-receptor signalling systems in mammals
and are of high interest to further understand human signalling net-
works. There are numerous peptide hormones in the body but their
receptor targets, many of them from the G-protein-coupled receptor
family, and the physiological role of these systems remain elusive.
Peptidomics assisted the deorphanization process of peptide/protein
target signalling networks in the past. Many neuropeptides and their
endogenous receptors were discovered with bioinformatics tools,
as the human genome sequence data enabled large-scale analysis.
Conceptionally, bioinformatics has limitations to detect precursor
splicing, secretion signal sequences and post-translational modifica-
tions. Peptidomics approaches were applied in neuropeptide discovery
but have limited sensitivity for the detection, and theidentificationis
often knowledge-based using pre-defined search libraries'¥. Recent
developments highlight a robust analytic framework for extracting,
analysing and identifying endogenous peptides'®®, Integrated com-
putational and experimental approaches have been powerful tools for
peptide-orphan GPCR pairing’**'*°. Human peptide ligands of orphan
receptors were predicted based on common sequence motifs, for
examplesecretion sequences and conserved regionsin their encoding
precursors. The identified peptides canbe chemically synthesized for

testing in vitro for activation of receptor systems. These deciphered
systems revealed new peptide ligands for the GPR1, GPR15, GPRS55,
GPR68 and BB, receptors'®’. The human neuropeptide discovery field
is hugely significant to understand physiological process and patho-
physiological conditions, providing clinical opportunities for new
therapies of brain disorders. For example, combinatorial workflows
toenablelarge-scale mass spectrometry-based peptidomics for drug
discovery or integrated workflows to decipher signalling systems
provided significant contributions'*'®, Overall, there is a need for
in-depth studies of the human neuropeptidome, which is still at the
frontiers stage compared with other omics technologies.

Drugdiscovery

From venoms to drugs. Historically, the discovery of drugs has been
accomplished by natural observation, followed by trial and error
experimentation with various plants and animal extracts'*"'*%, Tradi-
tional knowledge, passed on by generations, became the pillar of drug
discovery as medical sciences were established and methods were
developed to validate the bioactivity”. Modern drug discovery can
besplitinto two phases: compound screening at the molecular targets
(Fig. 5a,b) and medicinal chemistry efforts (Fig. 5b,c) to improve the
pharmacological properties'*. Peptidomics has played a crucial role
inthe discovery of peptide drugs and peptide-derived drugs. A promi-
nent example is the bradykinin potentiating peptide isolated from
the Brazilian pit viper Bothrops jararaca; the initial peptide isolated
was the template for developing a small-molecule peptidomimetic
resulting in the angiotensin converting enzyme inhibitor captopril,
ahypertension medication' (Fig. 5¢).

Owing to their neurotoxic effects, peptide analgesics are known
to be common components of venoms. Peptidomics analysis has shed
light on the composition and structures of these highly complex pep-
tide mixtures. Therefore, it has been possible to isolate and identify
peptides from various animals such as scorpions™®, cnidarians'” and
conesnails'®®. One such example, the cone snail conotoxin MVIIAis an
N-type channelblocker. The synthetic version, marketed as Ziconotide
(Prialt), is used to treat chronic pain'’. Venom peptides also target
peptide hormone systems. Remarkably, cone snails have weaponized
peptide hormones by generating fishinsulin analogues, releasing them
from their venom glands and sending their prey into hypoglycaemic
shock?®. Peptidomics was the key technology to isolate and identify
the activity-bearing peptides. The last example worth mentioning
is the Gila monster (lizard) peptide exendin 4. It is along-acting GLP1
mimetic, whichled to the development of the GLP1 antagonist exena-
tide?® (Fig. 5¢) preceding liraglutide and semaglutide as peptide drugs
in the same therapeutic area**>. GLP1and GIP are endogenous peptide
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canbe quantified through the mass defect on the mass spectrometry level, whereas
isobaric-labelled samples (right panel) are quantified on the MS/MS level. Bottom
panel reprinted with permission fromref.'*>, Wiley.

hormones, which amplify the response of glucose-induced insulin
secretion.Hence, these venom-derived and hormone-derived peptides,
identified with the help of peptidomics, are being used clinically as
antidiabetic drugs.

Antimicrobial peptides and derivatives. Although possibly not
regarded as antimicrobial peptides in the classical sense, microbial
peptides and derivatives have been used for decades as highly success-
ful, mostly anti-infective drugs. Examples of marketed NRP-derived
peptide drugs, which all show sophisticated mechanisms of action,
are vancomycin®®®, daptomycin®**, bleomycin®® (anticancer), cyclo-
sporin®®® (immunosuppressant) and even B-lactams. Among RiPPs,
nisin (E234) is the frequently mentioned example serving as a food
preservative?”’, Antimicrobial peptides in a narrower sense include
defensins, which kickstarted the discovery of peptides belonging to
the innate immune system”’®, Antimicrobial peptides originate from
multicellular organisms (fungi, animals and plants) and range between
10 and 120 amino acids in size. The assignment to this family is very
broad, preferably with an overall positive charge and cross-linked by
disulfide bridges®*’, but other structural types are known. Antimicro-
bial peptides often affect cells by rupturing the lipid layer, pore for-
mation or inhibiting cell-wall synthesis*”. Recent peptide discoveries
withimpressive antibacterial activity against relevant Gram-negative

bacteriainclude albicidin (NRP)*° and darobactin (RiPP)*", which may
contribute to the much-needed demand for new antibiotics.

Body fluid peptidomics — novel antiviral drug candidates. Although
itisestablished that peptides of the innate immune system possess anti-
bacterial and antifungal properties, these peptides also possess antiviral
oranticancer properties®?>”®, These functions are frequent in biology
and are termed moonlighting activities. The features that improve
antiviral properties correlate to the cationic charge and the peptide’s
hydrophobicity. The peptides directly bind to the viral particles them-
selves, preventing viral fusion with the host cell. These peptides dis-
play characteristics to prevent or to encounter viral infections®”**
and further development may eventually lead to future drugs.

Clinical applications

Biomarker discovery. Mass spectrometry has made significant con-
tributions to identify and validate potential peptide biomarkers. By
comparing healthy and diseased tissues or body fluids, differential dis-
play of theendogenous peptides canindicate potential biomarkers or
atherapeutictarget for adisease. The development ofimproved mass
spectrometry techniques enabled the discovery of low-abundance
peptides in clinical samples, especially for peptides from biofluids.
Many studies utilized sensitive mass spectrometry tools to investigate
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the urinary peptidome for kidney-related diseases?”. The urinary

peptidome was investigated with capillary electrophoresis-TOF-MS
and further verified with capillary electrophoresis-FTICR-MS, where
273 peptides were identified to be associated with advanced chronic
kidney disease”, which later proved to be biomarkers for chronickid-
ney disease progression and diabetic nephropathy®”*, Instead of
the traditionally used positron emission tomography technique®”®,
researchers have also leveraged MALDI MSI to study diseases with
analytelocalization information. Exemplarily, the spatial progression
of amyloid aggregates for Alzheimer disease was investigated through
multimodal MALDI MSI*°.

a Peptidomics pipeline b scale up

.+?+. 1.+. )

Targeted characterization and quantitation of peptides with
specific post-translational modifications can also be highly valu-
able. Among the diverse modifications, glycosylation has attracted
increased interest’”, due toits close association with neurodegenera-
tive disorders*?, cancer’”’ and autoimmune diseases”*. The in-depth
characterization and quantitation of glycosylated peptides remain
challenging due to their low abundance in vivo and high chemical
complexity and structural diversity?”’. Many mass spectrometry-
related methodologies for glycosylated peptide detection have been
reported, including separation and enrichment of the glycopeptides
during sample preparation, enhanced fragmentation techniques
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Fig. 5| From nature to medicine. a, Generalized scheme of peptide sources

and the peptidomics analysis pipeline. During structural elucidation, the
complexity of spectral annotation will increase with the structural complexity of
the peptides (for example, by post-translational modifications such as disulfide
bond formation, cyclization). b, After peptide analysis, desired products are
scaled up by chemical synthesis or synthetic biology (heterologous expressionin
various host organisms) for mode of action studies and pharmacological analysis.
¢, Optimization of the lead peptides (for example, insulin, bradykinin potentiating

factor or vancomycin) by medicinal chemistry. Optimization is a multi-step
process, including pharmacophore analysis, chemical synthesis, molecule library
preparation and screening, structure-activity studies and pharmacology to
generate optimized peptide or peptidomimetic drug candidates (for example,
insulin detemir, captopril or telavancin) for applications in medicine. Structural
alterations during lead to drug optimization are highlighted by pale yellow ovals
(peptide backbones are coloured blue and red).
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Glossary

Fourier transform ion
cyclotron resonance mass
spectrometers

(FTICR-MS). High-resolution mass
analysers that trap ions in a cyclotron
radius by applying a fixed magnetic
field and an oscillating electronic field.
As the ions rotate, an interferogram
signalis recorded by electrodes and the
useful mass spectrum is extracted with
a Fourier transformation.

Hyphenated front-end
separation platforms

Platforms that separate the analytes
online before they enter the

mass spectrometers. Techniques
include, but are not limited to, liquid
chromatography, gas chromatography,
ion mobility spectrometry (IMS), solid-
phase extraction (SPE) and capillary
electrophoresis.

lon mobility spectrometry
(IMS). An analytical technique that sorts
and separates gas-phase ions based

on their mobility in a carrier buffer gas
under the influence of an electrical field,
whichis related to the conformation and
3D shapes of the molecules.

product ion m/z signals are detected
by the second mass analyser.

Peptide dereplication

Refers to the identification of known
peptides in a sample by comparing
mass spectrometric data with a library.
The identification can be obtained

by comparison of m/z mass signals,
including the isotopologue intensities
and pattern of isotopologues,

giving information on the chemical
composition as well as on tandem mass
spectrometry (MS/MS) fragmentation
spectra match with library data.

Peptide spectrum match
(PSM). A scoring function in which

the mass spectrum of a peptide is
compared with a theoretical peptide
sequence to determine the probability
of the measured peptide matching
the theoretical peptide.

Post-source decay

Atype of fragmentation technique
that applies when metastable ions
spontaneously decompose in the drift
region between the ion source and
reflectron.

Multiple reaction monitoring
A type of analysis for tandem mass
spectrometers providing capabilities
for quantitation of analytes. Pre-defined
precursor ions (M/z) are selected by
the first mass analyser and submitted
to a fragmentation, and the selected

Short open reading frames
(sORFs). Open reading frames that
occur throughout the genome and
usually comprise <100 codons. They
are a possible source for peptides with
biological relevance.

(for example, collision-induced dissociation, electron transfer disso-
ciation, EThCD)** and DIA-MS**?*, As an example, a targeted mass
spectrometry approach was employed with oxonium ion-triggered
EThCDto achieve thefirstlarge-scale discovery of O-glycosylationon

signalling peptides in human and mouse pancreatic islets*.

Pathophysiology/physiology: mechanism of disease and treat-
ment. Since the discovery of insulin, neuropeptides and other pep-
tide hormones have been regarded as an important class of chemical
regulators broadly involved in mediating numerous physiological
functions®”. Various animal models relevant to human physiology
and pathophysiology provided an opportunity to link neurochemical
changes to behavioural output and extrapolate findings to humans.
Mass spectrometry played asignificant role in the discovery and char-
acterization of signalling peptides in evolutionary conserved pathways
governing homeostasis*?, pain®?®, complex behaviour?”, learning and

memory*°, and ageing®**?, to name a few. High-throughput LC-MS-
powered inquiries of animal peptidomes provided molecular links
between native peptide dynamic states and environmental factors,
nutrition, disease and behaviour*®. As an example of a tour de force
discovery effort, alabel-free LC-MS approach was employed to iden-
tify and measure neuropeptide levels in a murine migraine model***.
From1,500 neuropeptides screened, 16 were linked to migraine and/or
opioid-induced hyperalgesia®**. To focus on secreted peptides, pepti-
domicanalysis canbe performed on synaptoneurosomes, dense core
vesicles” or captured single-cell releasates® to probe neuropepti-
dome dynamics®®, synaptic dysfunction and brain neurodegenera-
tion. Amore elegant but difficult approachis anin vivo measurement
of secreted peptides via microdialysis coupled to mass spectrometry
platforms for identification*”. Another way of gaining insights into
intercellular communication is selective in vitro analysis of secreted,
physiologically relevant endogenous peptides released from neu-
ronal networks in response to physiological stimulation, which can
be achieved viamicrofluidic devices?*. Microfluidics integration with
mass spectrometry provides capabilities for molecular structural
characterizationand label-free and absolute quantitation of peptides™.

Reproducibility and data deposition

Thefield of peptidomics deals with highly variable sources of peptides,
requiring various extraction methods, clean-up, derivatization and
different approaches for analysis. If automated methods are used to
assist the analysis, researchers willneed toreport the FDR. The FDRisa
statistical method for determining the rate at whichtypelerrors occur
innull hypothesis testing. The FDR provides the global confidence of
the data set, in contrast to the P value of a peptide spectrum match
(PSM) which refers to the percentage likelihood of incorrect assign-
ment. For the FDR estimation, the decoy database is the null hypothesis.
Accordingly, the FDR is the number of hits from the null hypothesis
(decoy) divided by the number of total hits, providing a global confi-
dence of the data set. Although the P value only accounts for a single
PSM and the FDR for the global data set, methods to exclude certain
PSMs are termed controlling procedures. The simplest would be the
g value, often interpreted as the minimum posterior probability of
thenullhypothesis or the FDR, which means the FDR and the a threshold
arethesame. Then, if setat 1%, all PSMs with P> 0.01 will be rejected®*°.
This method may not be sufficient, as many algorithms try toimprove
the FDR along different parameters using the posterior error prob-
ability, which can depend on the length, charge and modifications"’.
Other approaches to controlling the FDR may include using P values,
covariates, zscores or the family-wise error rate (FWER)**”. Reporting
how the FDR is controlled is important to any omics approach, along
with the null hypothesis of the experiment. This allows the user to
answer questions such as whether the incorrect PSMs are truly incor-
rectif post-translational modifications prevent correct assignment or
whether peptidesinthe experiment are presentin the database file. As
such, the availability of annotated peptide sequencesis aninvaluable
resource for researchers, and they are encouraged to deposit themin
relevant databases.

For reproducibility and traceability, discovered peptides and
their modifications should be deposited in open access databases.
The repositories of the National Center for Biotechnology Informa-
tion (NCBI)”®, the European Molecular Biology Laboratory European
Bioinformatics Institute (EMBL-EBI)*** and the DNA Data Bank of Japan
(DDBJ)*** share access to databetween themselves under the FAIR (Find-
ability, Accessibility, Interoperability and Reusability) guidelines*®.
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The EMBL-EBI has three portals for submission relevant to peptidomics
research: SPIN (Edman degradation or manualiinterpretation of MS/MS
spectra)®*®, ENA (nucleotide translations of protein-level data)®
and PRIDE*¥ (for sequences identified using search engines). Raw and
unprocessed mass spectrometry data can be deposited along with
processed protein and peptide output files. The use of a vendor data
file format is less common. Instead, open source mzXML (or similar)
is standard. The data collection should also contain meta files, such
as sample preparation protocols and device settings, as well as infor-
mation on the sample origin (cell type, tissue). The data repositories
have detailed requirements and provide a unique identifier to connect
publications with the deposit data files*”. Specifically, in the case of
microbial RiPPs and NRPs (and their corresponding gene clusters),
theresource MiBIGrelies on very simpleinputs of the GenBank acces-
sion for allgenesin the gene cluster and the SMILES for the compound
discovered®.

Limitations and optimizations

Peptide degradation

Samplingthat truly reflects the in vivo state of the tissue is imperative
for finding potential biomarkers and regulators, but thisis not entirely
possible. Native peptides in freshly isolated biological samples are
subject to a multitude of interferences including biased sampling,
variable sample stability and fast degradation that make measurement
and identification of endogenous peptides more challenging rela-
tive to traditional bottom-up proteomics. Enzymatic degradation of
ubiquitous proteinsis particularly detrimental to mass spectrometry
analysis, as degradation products fallinto a typical peptide mass range,
thus obscuring the detection of native peptides typically presentin
muchlower amountsin tissue extracts or biological fluids. To prevent
enzymatic protein degradation during tissue sampling, several tissue
stabilization approaches have been implemented®®, with heat stabi-
lization being one of the most effective methods of sample prepara-
tion®*’, Heat stabilization arrests the ex vivo peptidase activity, thereby
conserving the chemical composition of the sample*°,

Biological variation versus sensitivity

Biological systems involve acomplexinterplay of the organism andits
environment, and much of that context is lost in the laboratory setting.
Sample collection and culturing of microorganisms, for example, only
coversatiny fraction of the strains that were presentin the original sam-
ple as cultivation conditions are not known for many strains. However,
peptide extraction and analysis without propagation may reveal novel
peptides or keep some biosynthetic gene clusters active”*>. The same
applies for clinical settings: every individual has their own genetics,
lifestyle and risk factors that affect health. For instance, where rou-
tine clinical diagnostics did not suffice, anovel multi-omics approach
managed to identify Bacteroides vulgatus proteases as a novel risk
factor for ulcerative colitis by adding metapeptidomic data to their
analysis, which has often been ignored in clinical practice®>. The use
of multi-omics approaches in conjunction with peptidomics will help
address the biological variability and improve the sensitivity by proper
sampling and analysis. This might become important, for instance,
in personalized medicine applications.

Analysis, algorithms and big data

Nowadays, there are several analysis tools available (Tables 1and 2 and
Supplementary Table 1). Peptide assignment and annotation from
genomic data are straightforward if genome data of the organisms

of interest are available. However, in silico-derived and mass spec-
trometry-based datasets are not necessarily identicalin routine analy-
sis®*. These discrepancies are due to ambiguities, such as technical
shortcomings in mass spectrometric detection and data processing
or because of false positive peptide assignment and annotation. For
instance, for certain organisms, such as bacteria and fungi, it can be
challenging, due to the small reading frames and/or massive biosyn-
thetic modifications. Furthermore, in silico workflows are biased
towards well-known examples and prone to propagating bias*°. Con-
tinuous research on such peptides aids training of the algorithms to
improve peptide identifications in the future®?*°*1°°, Analysis can
become cumbersome if access to genomic or transcriptomic data is
limited. As sequencing costs continue to decrease and sequencing
power continuously increases, more genome data will become available
inthe future. Furthermore, other sources of peptides are breakdown
products of proteins, for example the opioid peptides and haemor-
phins derived from haemoglobin®. This is being addressed by deep
learning algorithms being developed to detect bioactive peptides in
protein sequences®.

A special consideration is required for RiPPs and NRPs from bac-
terial and fungal sources. Previously, classical screening approaches
were based on the taxonomic characterization of the strain and the
subsequent workflow of analytical and assay techniques. Nowadays,
massive bioinformatic data from genome sequences, however, made
genome mining the dominating technique: genes or gene clusters
are analysed by predictive tools for their putative function, which are
subsequently validated experimentally. Precedence of structuraland
functional data eases assignment to biosynthetic classes. Particularly,
in the RiPP field, the increasing availability of DNA sequences in the
databases led to a massive boost in the discovery of putative but also
new structures. NRPs, where the amino acid sequence is not encoded
in the mRNA sequence, are a special case. To predict the potential
product of these synthetases, the A-domain specificities’®* of sub-
domains involved in substrate recruitment are used. However, this
procedure may fail for new amino acid motifs or for complex-type
synthetases if the co-linearity rule is violated. Thus, sequence data
onthesynthetases alone often do not suffice to predict the structure of
the searched peptide”. This can be overcome with anincrease inknown
NRP structures and their biosynthetic gene clusters. Although most
commercial platforms can do an excellent job on properly linearized
and derivatized peptides, recently algorithms have been developed for
more complex peptides of microbial origins to be annotated directly
from the spectra'®?”. Machine learning?®and spectral networks have
been explored to identify and assign the chemical nature of peptide
natural products®®.

Outlook

Method and instrumentation developments

Rapidly evolving mass spectrometry instrumentation opens new
opportunities forin-depthinterrogation of peptidomes evenin small-
volume samples. The latest two-step methodology integrated anion
mobility with TOF or orbitrap mass analysers, leading to unprecedented
sensitivity and the highest quality of peptide sequencing. Implement-
ing ion mobility as an additional dimension of separation resulted in
improved peptideidentification rates, enhanced peptide coverage and
greater confidence of post-translational modification assignments®°.
Even unique post-translational modifications such as isomerization
that were difficult to deduce by other mass spectrometry methods
due to alack of characteristic mass shifts now can be unambiguously
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measured and validated. This technology may attract more attentionin
the peptidomics field soon. Theion mobility separation canbe further
combined with MSI to enable the investigation of spatially resolved
peptidomics in a high-throughput manner with enhanced chemical
information.

Data deposition, open source, unity

Standardization of data deposition and annotation has improved in
the past few years with centralized databases such as the NCBI’®, the
EMBL** and UniProt” (Table 2). However, valuable data are still stored
invarious ‘in-house’ or decentralized databases. Servers such as Bacti-
base (bacteriocins)®*', ConoServer (conotoxins)®, CyBase (circular
peptides)**or the PeptideAtlas (peptide spectra)®* use their own acces-
sion codes and aim to solve pre-existing problems. The generation
and deposition of data should always be a mutual goal of researchers
to make sure that the information generated does not fade away as,
eventually, websites will be archived, and information lost. Aswas the
case for ArachnoServer®**, a database for spider venoms, which no
longer responds to connection requests, whereas copies of its content
remain on UniProt cross-referenced databases. Data deposition does
notoverwrite the utility of these databases, as many of themalso come
equipped with various tools or query-specific types of data. The best
workarounds currently available are those of MiBIG* and the VEu-
PathDB project”. They connect data from the NCBI, the EMBL or other
sources to their specific applications. Researchers are encouraged to
make this the standard practice, to deposit biological sequence data
with the major repositories (NCBI, EMBL, DDBJ), fetch data through
their services and focus on adding layers relevant to their field onto
that information. The VeuPathDB project has several resources for
researchers,and MiBIGis a centralized resource used by most toolsin
natural product discovery. Even if the tools may be lost to the aeons,
researchers are encouraged to deposit their codes on publicly available
serversiftoolsaretobe discontinued (for example, Github, Bitbucket,
SourceForge). For future prospects, the Protein Data Bank (PDB)**° has
potentially the mostimportant feature of any database, the option to
deposit unpublished protein structures. This will hopefully become
more standard practice where researchers can deposit unpublished
experimental data under certain guidelines, as this would deal with
the most significant loss of scientific data, and bring them out of the
cupboards and into the Big Data landscape.

Bioinformatics, systems biology and artificial intelligence

Current bioinformatics approaches have been used successfully to
identify new genes with machine learning. The machine learning
methods primarily relied on hidden Markov models, support vector
machines or random forest algorithms that laid the foundation for
most bioinformatic approaches today®*°. Currently, deep learning
algorithms®” are becoming more frequent, as they have the advantage
of being able to learn more complex features than their predecessor.
Deep learning has been successfully implemented in the discovery
of new genes and peptides®, but possibly its most impressive feat is
the accurate prediction of protein structures’?®%, As the algorithms
continue to improve along with access to graphics processing units
to train neural networks, researchers in all fields, even with relatively
little experience in programming, will be able to make use of the power
of deep learning for their research. With the coming improvements
frombioinformatics, bioanalytics and the omics fields, the discipline
of systems biology aims to harness all levels of data it can, to under-
stand further how each of these fields may work together®*’, Systems

biology approaches have been appliedin the field of metabolomics by
generating genome-scale metabolic models”°. These approaches are
commonly used for production optimization, and industry relies on
themtoimproveyields from fermentation?’*2. The field shows prom-
ise in combining biological data for clinical applications and could
facilitate the transition into personalized medicine®.

Biological sciences are ina major transitioninto the big dataland-
scape, where alot of the focus has been on genomics, transcriptomics,
proteomics and metabolomics. Peptidomics emerges as abridge con-
necting proteomics and metabolomics, bridging the functions between
proteins and small molecules. With the advances in deep learning
and artificial intelligence, the biochemical space made available by
peptides can be better exploited, and novel peptidomimetics can be
developed for medicine orindustry. Spanning from novel therapeutics
topeptide-assisted catalysts', the field of peptidomics hasjuststarted to
show a tiny portion of its tremendous potential.

Published online: 30 March 2023
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