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Abstract

Peptides are biopolymers, typically consisting of 2–50 amino acids. 
They are biologically produced by the cellular ribosomal machinery 
or by non-ribosomal enzymes and, sometimes, other dedicated 
ligases. Peptides are arranged as linear chains or cycles, and include 
post-translational modifications, unusual amino acids and stabilizing 
motifs. Their structure and molecular size render them a unique 
chemical space, between small molecules and larger proteins. 
Peptides have important physiological functions as intrinsic signalling 
molecules, such as neuropeptides and peptide hormones, for cellular 
or interspecies communication, as toxins to catch prey or as defence 
molecules to fend off enemies and microorganisms. Clinically, they 
are gaining popularity as biomarkers or innovative therapeutics; 
to date there are more than 60 peptide drugs approved and more 
than 150 in clinical development. The emerging field of peptidomics 
comprises the comprehensive qualitative and quantitative analysis of 
the suite of peptides in a biological sample (endogenously produced, 
or exogenously administered as drugs). Peptidomics employs 
techniques of genomics, modern proteomics, state-of-the-art analytical 
chemistry and innovative computational biology, with a specialized 
set of tools. The complex biological matrices and often low abundance 
of analytes typically examined in peptidomics experiments require 
optimized sample preparation and isolation, including in silico analysis. 
This Primer covers the combination of techniques and workflows 
needed for peptide discovery and characterization and provides an 
overview of various biological and clinical applications of peptidomics.
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more powerful, bioinformatics and high-resolution mass spectrometry 
are now shaping the future of biological sciences.

Peptides can have various applications, ranging from food pre-
servatives to therapeutic agents in humans (Fig. 1). However, the use of 
peptides goes even beyond that, as peptides can act as catalysts, improv-
ing the yields and enantioselectivity of chemical synthesis10. Highly effi-
cient and selective catalysis was originally considered to be the domain 
of proteins, but peptides can be modified to catalyse simple chemical 
reactions. Biomaterials are now a trending topic, where sustainability 
and recyclability will be a requirement for future industries11,12. Peptides 
are accessible and chemically diverse oligomers, making them a popular 
choice for research and development, with ample application outside 
biological sciences. However, the discovery and characterization of new 
peptides lays the foundation for their future utilization.

This Primer aims to define and describe peptidomics technolo-
gies, tools and workflows for identification and analysis of endog-
enous peptides in a qualitative and quantitative manner. The field has 
rapidly advanced in the past three decades with the development of 
computational and mass spectrometry-based techniques. Remaining 
analytical challenges and pending questions in peptidome analysis are 
discussed for selected applications. The Primer covers various in silico 
and peptide analysis methodologies including de novo sequencing, 
high-throughput and automated peptidomics workflows, peptide 
imaging and quantitative mass spectrometry approaches. The appli-
cation of peptidomics in biology, in drug discovery and in the clinic to 
identify novel biomarkers and understand disease mechanisms are 
discussed. Lastly, reproducibility and data deposition are discussed, 
followed by current limitations and the outlook regarding ongoing 
developments in the field of peptidomics.

Experimentation
Modern peptidomics workflows encompass the analysis of genetic 
information, characterization of peptides and computational pro-
cessing of the data. Although this multilevel analysis allows for more 
comprehensive read-outs, a single-step analysis also qualifies to be 
counted into the field of peptidomics. Genetic information is accessed 
by peptide precursor mining or metabolic network analysis. Working 
at the peptide level can be subdivided into several steps, including 
sample preparation and clean-up, mass spectrometric analysis and 
data evaluation or integration.

Sample preparation
Multiple workflows have been described that proved useful for analysis 
of various peptide entities. State-of-the-art peptidomics workflows 
are amenable to complex samples, as they are obtained from plant, 
microbial cell or animal/human tissue extractions. However, sample 
processing steps are usually implemented to enrich analytes over 
matrix compounds and to concentrate low-abundance analytes. This 
Primer describes common pipelines; several of these methods can be 
modularly combined for workflows suitable to address the needs of 
any specific research questions. Approaches are optimized by trial 
and error to obtain the desired outcomes.

Sample harvest, cell lysis and extraction. Depending on the source of 
peptides, there are several harvest and extraction procedures available. 
A common problem during sample preparation is the degradation of 
peptides — especially low-abundance peptides, for example by cellular 
proteases. For instance, neuropeptides and peptide hormones are 
biosynthesized as larger precursor proteins; they are converted into 

Introduction
Peptides occur in all three domains of life. Their native functions com-
prise acting as peptide hormones for cellular signalling, as secretory 
peptides for interspecies communication and interaction, as preda-
tory peptide toxins and as defence peptides against microorganisms, 
viruses and herbivores1. Peptides are important molecules that play 
a fundamental role in human physiology and pathology. In addition, 
natural sources including animals, plants, fungi and microorganisms 
provide rich sources of biologically active peptides1,2. Research has 
focused on investigating and understanding the biological function 
of peptides and their potential as disease biomarkers or therapeutic 
lead compounds and drugs3,4.

Peptides are molecular entities of amino acids linked via amide 
bonds rendering the peptide backbone or peptide chain. Although the 
size discrimination between a large peptide and a small protein is rather 
arbitrary, the scientific community typically refers to a peptide con-
taining between 2 and 50 amino acids. Most peptides are encoded by 
DNA or RNA and, hence, are products of translation, transcription and 
the cellular protein manufacturing machinery. Typically, they contain 
many and often complex post-translational modifications, including 
side-chain modifications, disulfide bond formation, individual residue 
isomerization and, sometimes, head-to-tail or side-chain cyclizations. 
Non-ribosomal enzymatically synthesized peptides (typically pro-
duced by bacteria and fungi) further increase the variety of peptide 
species by incorporating non-proteinogenic building blocks and a set 
of additional tailoring reactions. Overall, naturally occurring peptides 
range between simple linear and often heavily modified molecules, 
which occupy a large and unique chemical space in between small 
organic molecules and larger proteins5.

The highly diverse and easily modified peptides from nature are 
among the most interesting molecules. Peptides can be obtained from 
various sources and can range from structurally simple to highly func-
tionalized and complex structures, giving them a plethora of biological 
features (Fig. 1). Although differences in the extent of modification might 
appear extreme, they could still exert the same biological function. 
Owing to their relatively small size and chemical potential, peptides can 
possess valuable chemical information for the design of novel drugs6.

The term peptidomics was introduced to define a strategy for the 
direct measurement and structural characterization of endogenous 
peptides in biological systems in a high-throughput manner, with 
robust and unprecedented sensitivity7–9. Since then, peptidomics 
became a fast developing and progressing multidisciplinary field 
that combines state-of-the-art separation techniques including liquid 
chromatography, modern mass spectrometry technologies, innovative 
bioinformatics and statistics for qualitative and quantitative analysis of 
peptides relevant to fundamental biology and human health sciences. 
Although the field of peptidomics resorts to various technologies that 
have been developed for proteomics, analytical chemistry and genom-
ics, it is the unique sample preparation and specialized combination 
of these tools and methods that make peptidomics a unique discipline 
and research field.

Peptidomics refers to a system-level study of a set of analytes with 
the aim to describe the number and identity as well as the relative or 
absolute levels of peptides. As with other biological omics fields, pepti-
domics has a significant overlap with genomics and proteomics. Bioin-
formatic approaches have been utilized to discover genes encoding for 
peptides and proteins the peptide product could have originated from, 
for potential use as novel medicinal products or as clinical biomarkers. 
With more newly discovered peptides, as the algorithms used become 
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their bioactive form by processing enzymes that cleave their precursor 
into several final active messengers or hormones13. As a neuropeptide’s 
biological message is transient, active peptides become inactivated by 

proteases14. Optimizing sampling approaches is important to counter-
act rapid postmortem/post-harvest degradation. To increase the yield 
of active peptides for analysis, degrading enzymes can be inactivated by 
heating tissue/cells, or by addition of protease inhibitors or chaotropic 
agents15,16. Extended heat treatments should be avoided as peptides 
are prone to chemical reactions, such as hydrolysis and oxidation. 
Processing/storing samples at low temperature helps avoid peptide 
degradation/modification. These steps are less crucial for stabilized 
peptides, such as plant defence peptides or venom-derived peptide 
toxins. For efficient extraction of peptide analytes, the cells/tissue must 
be broken up by cell lysis. For instance, cells derived from cell cultures 
or from collagen-treated tissues can be lysed with hypotonic buffers 
followed by ultra-sonication to disintegrate the phospholipid bilayers 
to release intracellular material17. Throughout these steps, a buffer ame-
nable to dissolving the peptides should be used, which can be aqueous 
or organic depending on the nature of the sample. Obviously, the heat 
treatment of biological samples for protease inactivation will already 
be the first step to induce lysis. The lysis of microorganisms or plants 
requires specialized protocols18. For instance, to extract peptides from 
plants, the source material is mechanically ground or pulverized (using 
a grinder/shredder or liquid N2 and mortar/pestle); the peptides are 
then extracted by use of organic solvents in combination with alcohols/ 
aqueous buffers19. The organic solvent used to remove chlorophyll 
not only helps break down cellular membranes to release the peptides 
into the buffer but also inhibits any unwanted protease degradation. 
Generally, detergent-based lysis using cationic, zwitterionic or anionic 
detergents is not compatible with mass spectrometry (but there are 
alternative methods available20). The efficient and repeatable peptide 
extraction from biological matrices is key for further sample processing,  
and to achieve maximum concentration of the peptide analytes.

Enrichment and clean-up strategies. After extraction, crude biologi-
cal samples contain a low abundance of peptides, as they also contain 
salts, lipids, proteins and carbohydrates21, which makes purification 
steps necessary. The complexity of this matrix background (molecules 
other than the peptides of interest) can impair the ability of mass spec-
trometry to identify the peptides of interest. Although less complicated 
sample preparation techniques are needed for peptidomics compared 
with proteomics, several clean-up techniques are effective for enrich-
ing the peptides of interest prior to instrumental analysis22. Solid-phase 
extraction (SPE) is commonly applied for sample concentration and 
desalting, as a rapid, stand-alone tool. This is especially important 
if the samples are being analysed directly by matrix-assisted laser 
desorption/ionization (MALDI) mass spectrometry, a soft ionization 
technique, as high salt concentrations suppress analyte–matrix crystal-
lization and ionization. For reversed-phase SPE there are many different 
types of cartridges (ranging in size, volume, chemistry, vendor) avail-
able. They can be used for single or multi-channel sample processing 
using vacuum manifold systems, which can handle up to 24 cartridges 
simultaneously, or in 96/384-well format, utilizing SPE containing 
plates for automated sample clean-up. For rapid clean-up of small 
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Fig. 1 | Peptides, from analysis to application. The sources of peptides are vast, 
and many serve diverse biological roles. However, peptides are often difficult to 
detect without proper enrichment or clean-up strategies for use in downstream 
applications. Subsequent modification or derivatization of the peptides may be 
required to elucidate their sequence or structural features, which is essential for 
further design or use of discovered peptides in medical or industrial applications.
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sample volumes, ZipTips or alternative pipette tip SPE devices have 
become useful23. Alternative but low-resolution (and sometimes low-
recovery) methods for sample clean-up are molecular weight cut-off or 
nanofiltration devices and classical sample precipitation techniques.  
A more efficient method for sample clean-up is liquid chromatography. 
This technique can be used offline or coupled directly to mass spec-
trometry. It is compatible with numerous separation chemistries. One 
example is food-derived peptides, a large class of bioactive molecules 
usually ranging in size from 2 to 20 amino acids. They are generated 
from enzymatic food hydrolysates during digestion or fermentation. 
The isolation of peptides from the hydrolysate matrix is achieved by 
a combination of ultrafiltration and chromatographic separation 
techniques, such as reversed-phase, ion exchange and size exclusion 
chromatography24. The isolated peptides are further analysed to the 
amino acid level using amino acid quantitation, Edman degradation 
or mass spectrometry-based de novo sequencing.

Chemical derivatization and peptide labelling. For certain pep-
tidomics applications, such as discovery, isolation and analysis of 
cysteine-rich peptides, chemical derivatization of cysteine residues 
may be beneficial. Disulfide bridged or cysteine knot peptides are 
chemically reduced to the sulfhydryl-containing compound with 
mild reduction reagents and, then, immediately converted into sta-
ble derivatives. Thiol-containing reductants are β-mercaptoethanol, 
glutathione and dithiothreitol (DTT) supporting sulfhydryl deprotona-
tion under basic conditions. Phosphine-based reagents, for example 
tris(2-carboxyethyl)phosphine (TCEP), are considered more stable than 
thiols and are amenable to all pH conditions25. The cysteine sulfhydryl 
group derivatization makes further use of a few standard reagents, 
preferably halogenated acetate derivatives (for example, iodoaceta-
mide, iodoacetic acid), N-substituted maleimides (for example, N-ethyl 
maleimide), 4-vinylpyridine or thiosulfonate reagents (for example, 
methyl-methane thiosulfonate)26,27. Iodoacetamide has become  
a standard working horse for proteomics and peptidomics applica-
tions. Derivatization was also explored for peptide quantification 
via cysteine derivatization. For instance, owing to its chromophore, 
5,5-dithiobis(2-nitrobenzoate) (DTNB) provides labelled peptides that 
can be quantitatively analysed by HPLC–UV detectors. Other labelling 
approaches established in the peptidomics field support the detection  
and quantitation or comparative analysis of peptidome samples.

Labelling of peptides with stable isotopes is a common strategy in 
peptidomics to increase sensitivity and detection and to enable quanti-
tative analysis. Labelling of peptides of interest with stable isotopes in 
biological models can be achieved by metabolic, enzymatic and chemi-
cal strategies. Metabolic labelling introduces stable isotopes through 
metabolic incorporation in vivo, often via diet or culture media, and 
thus leads to long experimental procedures. Several chemistry-based 
labelling protocols have been implemented that enable stable isotope 
tagging of peptides in vitro28–32. There are several commercial tags 
available, for example tandem mass tags (TMT)33 and isobaric tags for 
relative and absolute quantitation (iTRAQ)34; there are also many low-
cost alternatives available, including N,N-dimethyl leucine (DiLeu)31, 
deuterium isobaric amine reactive tag (DiART)35 and 10-plex isobaric 
tags (IBT)36.

Peptide separation
Crude cell or tissue extracts typically present high chemical complexity 
and a large concentration range of diverse compounds. As peptides 
may exist in solution as charged molecules with differing degrees of 

hydrophobicity, they are amenable to several separation technologies. 
Although reversed-phase liquid chromatography has been widely used, 
size exclusion, ion exchange and mixed-mode applications are gaining 
attraction with continuous development of new sorbent materials37. 
Chromatographic separation systems are either directly hyphenated 
to mass spectrometry via the electrospray ionization (ESI) interface 
or performed offline38. Reversed-phase chromatography promises 
high peak capacity and excellent resolution. Particles in use are modi-
fied silica gels with alkyl group substitution, with pore sizes typically 
ranging from 110 to 300 Å to facilitate adsorptive analyte–stationary 
phase interactions. The alkyl chain length is the major determinant 
for overall hydrophobicity of the material and the retention power for  
analytes. Octadecyl (C18), octyl (C8) or butyl (C4) alkylated silica mate-
rials are the most common. The selectivity for analytes and their  
peak shape can further be improved by end-capping, cross-linking or 
other modifications. For instance, trimethylsilyl or polar groups are 
used for fine-tuning selectivity, resolution and retention capacity of 
the stationary phase. The optimal choice of reversed-phase stationary 
material depends on the structural and chemical diversity of peptide 
analytes. For example, C8 material commonly enables better separation 
of basic and neutral molecules (for example, tryptic peptides) under 
acidic conditions. The mobile phases in reversed-phase applications 
are aqueous and organic solvents, usually methanol or acetonitrile 
with acidic modifiers. Trifluoroacetic acid (TFA) is a strong ion-pairing 
counter-ion providing very reliable and reproducible peak shapes and 
overall separations39. TFA is unfortunately not well compatible with 
the ESI technique commonly applied in liquid chromatography–mass 
spectrometry (LC-MS) systems. Here, formic acid is used instead and 
ammonium formate or ammonium acetate can be used as the mass 
spectrometry-compatible buffer system.

More specialized applications such as affinity-based and  
immobilized-metal affinity chromatography are used to enrich or 
isolate phosphopeptides from tissue extracts, whereas hydrophilic 
liquid interaction chromatography is utilized for separation of glyco-
peptides40. For mass and volume-limited samples, capillary electro
phoresis can be used as a front-end separation method. One advantage 
of capillary electrophoresis is that it is compatible with one to two 
orders of magnitude smaller sample volumes than liquid chroma-
tography systems, and therefore is the best choice for cellular and 
subcellular peptidomics.

The most recent addition to peptide separation approaches 
is ion mobility spectrometry (IMS) that sorts and separates gas-phase 
ions according to their 3D shapes. Placing an IMS module between 
the source and the mass analyser increases ion utilization efficiency, 
improves sensitivity and specificity of detection, and broadens the 
dynamic range. Because of the introduction of a new range of IMS 
instruments, this approach is rapidly gaining application in peptide 
characterization and quantitation.

Mass spectrometry technologies
Mass spectrometry instrumentation. There are various different 
mass spectrometry systems available, which can be categorized by the 
ionization technique, resolution of the mass analyser, single or tandem 
set-up of the system or mass analyser type. The main soft ionization 
techniques are MALDI41,42 and ESI38. Fourier transform ion cyclotron reso-
nance mass spectrometers (FTICR-MS) are high-resolution instruments 
suitable for peptide mapping and characterization via accurate mass 
matching and mass spectrometry imaging (MSI) studies. High-speed 
mass spectrometry systems, typically equipped with a quadrupole, 
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time-of-flight (TOF) or ion trap mass analyser, are useful for quantitative 
analysis43,44. Most of these systems have the capacity to perform tandem 
mass spectrometry and fragmentation experiments in the MS/MS  
or MS/MS/MS mode (such as ion trap and orbitrap systems)45,46. Peptide 
fragmentation uses different techniques, such as post-source decay, 
high-energy collision-induced dissociation or electron transfer disso-
ciation methods47–49. Peptidomics studies utilize several mass analysers 
of various types, such as TOF, quadrupole, ion trap and, more recently 
due to its high resolving power, orbitrap23 or ion cyclotron resonance 
analysers.

Tandem mass spectrometry workflows. Shotgun peptidomics is 
based on high-throughput automated sequencing and identification of 
endogenous peptides representative of a biological sample. Sequencing 
is realized by implementation of tandem mass spectrometry (MS/MS)45  
with two main protocols: data-dependent and data-independent 
acquisition (DDA and DIA, respectively). The benefit of DDA is high-
quality MS/MS spectra resulting from a user-specified number of the 
most intense precursor ions in a given chromatographic time frame 
subjected to fragmentation. Identification of low-abundance ions is 
facilitated by dynamic exclusion of previously sampled precursor ions 
from MS/MS. Given the limited number of precursors sampled within 
a duty cycle, the resolution of hyphenated front-end separation plat-
forms plays a crucial role in the complexity of the mass spectrometry 
spectrum and, respectively, in the degree of sample characterization 
via MS/MS. In DIA-based analysis, all precursor ions from the mass 
spectrometry survey scan are selected for MS/MS via stepping broad 
isolation windows across the entire m/z range. Implementation of DIA 
improves reproducibility across samples, which in turn reduces missing 
values and greatly improves the quantitative accuracy of peptidomics 
assay. Although useful for quantitation of peptides, the main limita-
tion of DIA is dependence on reference spectral libraries, typically 
generated via DDA analysis of additional samples. Current efforts are 
channelled towards development of library-free DIA approaches50–52.

Mass spectrometry imaging. The development of MALDI MSI maps 
the spatial locations and distribution patterns of the biomolecules in 
tissue samples53. Currently, MALDI MSI remains the most common 
method for spatial mapping of lipids, metabolites and peptides/ 
proteins. Other than MALDI MSI, secondary ion mass spectrometry 
or SIMS-MSI54, desorption ESI MSI55 and scanning microprobe MALDI 
MSI56, surface-assisted laser desorption/ionization mass spectrom-
etry57 and nanostructure imaging mass spectrometry58 are also used 
to examine the localization of proteins/peptides. Advantages and dis-
advantages of the different ionization techniques have been reviewed 
elsewhere59. Unlike immunohistochemistry, radio-immunoassays and 
fluorescence microscopy that require extensive sample preparation 
and prior knowledge of the target analytes60–62, MSI involves relatively 
simple sample preparation and enables the localization of hundreds to 
thousands of different analytes on a tissue slice in a single experiment63. 
To localize the peptide, the tissue of interest needs to be properly 
prepared. After dissection it is usually fresh frozen or embedded in gel-
atine, sodium carboxymethyl cellulose or paraffin. Formalin-fixed par-
affin-embedding is a special embedding technique that can preserve 
the specimen under room temperature for more than a decade64,65. 
Although optimal cutting temperature (OCT) compound is a common 
tissue-embedding solution, the high concentration of polyethylene 
glycol (PEG) in the OCT compound can affect the analyte signals and, 
thus, OCT compound is not recommended for tissue embedding in MSI 

experiments66. Cleaning procedures to remove interferring embedding 
substances are needed before using OCT compound or formalin-fixed 
paraffin-embedded tissue for MSI experiments67–69. For endogenous 
peptide MSI experiments, sample preparation requires fewer steps; 
before imaging, fresh frozen or embedded tissues are sectioned into 
5–20 µm slices70. Before imaging, background salts and lipids need 
to be removed from the tissue for which various washing techniques 
such as organic solvents have been evaluated71. Washing is also adapt-
able for peptide imaging experiments, but may increase the loss of 
hydrophilic peptides72 and cause analyte diffusion73. Optimization of 
the washing procedure for formalin-fixed paraffin-embedded tissue 
sections shows signal enhancement for neuropeptide imaging74. Tis-
sue slices with or without a washing procedure can then be analysed by 
imaging instruments (excluding MALDI MSI). For MALDI MSI, matrix 
application is needed as the last step before instrumental analysis. The 
matrix choice, concentration and application method are important 
for signal intensity and resolution and need to be carefully selected75,76. 
The resulting images from the MSI experiment can be analysed using 
various software choices depending on the instrument used.

In silico peptide mining
Peptides of diverse origins serve various roles in nature, and therefore 
may bear various modifications. The modifications pose a particular 
difficulty for peptide analytics and characterization, and the taxonomic 
origin (Fig. 1) requires adapted/tailored research strategies. In the 
post-genomic era, scientists have access to databases77–82 and tools to 
address these issues (Table 1). Most publicly available ab initio gene and 
protein sequence data are annotated by programs such as GeneMark83 
or Prodigal84. These are robust platforms but come with their limita-
tions as they do not always annotate short open reading frames (sORFs) 
where peptides are often found. For that purpose, specialized tools 
exist with their own rule sets for in silico peptide mining. They can be 
specialized to predict multiple post-translational enzymes, amino acid 
substrates or biosynthetic tailoring of non-ribosomal peptides, assist-
ing the researcher in annotating possible peptide modifications. In the 
case of eukaryotic organisms, bioactive peptides may originate from 
sORFs or derive from breakdown products from other enzymes58,85,86.  
For eukaryotic genetically encoded peptides, there are tools such 
as SPADA87, MiPepid88, DeepCPP89 or rAMPage90 (Table 1 and Supple-
mentary Table 1) if genomic or transcriptomic data are available. For 
protein-derived bioactive peptides, PeptideLocator86 can be used on 
protein sequences. Alternatively, comparative genomics can be help-
ful with tools such as CoGe91 or EDGAR92 (Table 1), which may be used 
when searching conserved homologues for validation; for a summary 
of databases and software tools, refer to Supplementary Table 1.

The biosynthetic genes of ribosomally synthesized and post-
translationally modified peptides (RiPPs) and non-ribosomally syn-
thesized peptides (NRPs) from bacteria and fungi93–95 are commonly 
encoded in biosynthetic gene clusters and require programs special-
ized in biosynthetic gene cluster detection, such as antiSMASH95 and 
DeepBGC96 (Tables 1 and 2). These tools can be complemented by 
phylogenetic genome mining using EvoMining97 for the discovery of 
homologous gene clusters. There are even more specialized tools for 
NRPs, such as SANDPUMA98, for the prediction of the substrates of 
the adenylation domains (A-domains). Furthermore, there are other 
mining tools for RIPP analysis, such as BAGEL99 or RODEO100 for detec-
tion and classification of RiPPs from the genome or DeepRiPP101 for 
classification, structure prediction and spectral assignment (Tables 1 
and 2). These programs use genomic or transcriptomic data to discover 
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potential peptides. Alternatively, tools such as PoGo102 map detected 
ribosomally synthesized peptides from LC-MS data to the genome. 
Recently, a retro-biosynthetic tool for NRPs has been developed103, 
which allowed non-ribosomal peptides to be mapped back to their 
respective gene clusters by tools such as Nerpa104 and BioCAT105. The 
process of discovering novel peptides is an iterative process of in 
silico and laboratory work, where new discoveries constantly feed the 
expanding databases, allowing for more precise and detailed tools to 
be developed (Fig. 2).

Results
The comprehensive sequence identification of peptides includes the 
full assignment of amino acids in the correct sequence orientation, 
which is usually determined by the encoding genes and/or the ribo-
somal protein translational machinery of a cell. The identification and 
the site of post-translational modifications or tailoring reactions are an 
additional challenge to allow full assignment of the native peptide. This 
section provides an overview on the workflows and frameworks that 
have been implemented to analyse different sets of peptide analytes 
using peptide mapping and de novo sequencing, automated LC-MS/MS  
workflows and MSI (Fig. 3).

Peptide mapping and de novo sequencing
Despite the use of coupled LC-MS methods, for certain applications, 
such as complex peptide analytes, an offline workflow can be benefi-
cial. For such applications, MALDI-TOF/TOF-MS41 is often the method 
of choice as it results in spectra with singly charged ions, for exam-
ple [M + H]+, suitable for manual peptide annotation and de novo  
sequencing (Fig. 3a).

Peptide dereplication and peptide mapping. Peptide dereplication 
is commonly applied for rapid pre-screening of peptide libraries, 
for example peptide natural products in extracted samples from 
microbial or plant origin106. Dereplication can be achieved at differ-
ent levels, for example by matching experimental m/z signals (mass 
spectrometry) or spectral MS/MS data to libraries. Peptide m/z signals 
provide valuable information for peptide content mapping by com-
parison of those experimentally determined with calculated mole
cular masses in databases. HRMS data further enable comparison of 
isotopologue intensities with theoretical data-based intensities as well 
as prediction of chemical sum formula, which can provide a further 
layer of evidence for the matched library hit. Despite the lack of com-
prehensive databases targeting natural product/microbial-derived 

Table 1 | Selected tools for peptide mining

Tool Organism Data type Description

Sequence annotation

SPADA Plant DNA sORF annotation

MiPepid Eukaryotic DNA sORF annotation

rAMPage Eukaryotic RNA Antimicrobial peptide detection

DeepCPP Eukaryotic RNA sORF annotation

antiSmash Bacterial/fungal/plant DNA Gene cluster annotation

RODEO Bacterial Amino acid Gene neighbourhood analysis

BAGEL Bacterial DNA Gene cluster annotation

DeepBGC Bacterial DNA Gene cluster annotation

Comparative genomics

EvoMining Bacterial/fungal/plant Amino acid Phylogenetic gene cluster search

CoGE Eukaryotic/prokaryotic DNA Genome comparison

EDGAR Eukaryotic/prokaryotic DNA Genome comparison

Product prediction

SANDPUMA Bacterial Amino acid A-domain specificity prediction

Peptidelocator Eukaryotic Amino acid Prediction of bioactive peptides derived from enzyme degradation

Multi-omics

Nerpa Bacterial/fungal DNA/mass spectrometry Maps NRPs back to their respective gene clusters

BioCAT Bacterial/fungal DNA/mass spectrometry Maps NRPs back to their respective gene clusters

DeepRiPP Bacterial/fungal DNA/mass spectrometry Structure elucidation of RiPPs from mass spectra and sequence data

PoGo Eukaryotic DNA/mass spectrometry Peptidogenetic tool, mapping peptides to the genomic loci

MetaMiner Bacterial DNA/mass spectrometry Large-scale screening platform for microbial peptides

In silico peptide mining is aided by a myriad of interesting tools from sequence annotation, comparative genomics, product predictions and multi-omics approaches. However, a tool needs to 
be matched with its proper use, as the genes and genomic architecture of plants, animals, bacteria or fungi are not the same, and will therefore often need detection rules, dedicated to each 
clade of life. The detection and discovery of potential peptides can be done at each level of sequence data from genomic (DNA) to transcriptomic (RNA) or by further investigation into proteins 
(amino acid) for their degradation products, or neighbouring genes may be bioactive peptides or involved in bioactive peptide processing. Furthermore, comparison of sequence data with 
mass spectra has led to the development of robust multi-omics platforms to aid researchers in high-throughput peptidomics. A-domain, adenylation domain; NRP, non-ribosomally synthesized 
peptide; RiPP, ribosomally synthesized and post-translationally modified peptide; sORF, short open reading frame.
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peptides, they are listed in common natural product databases, such 
as the Dictionary of Natural Products (Taylor & Francis) or Antibase107 
(others are under development), or specialized databases such as 
Bactibase dedicated to subsets or subclasses of peptides (Table 2 and 
Supplementary Table 1). The search runs are performed by using 
computational-aided tools for assignment and further evaluation. 
DEREPLICATOR+108 (Table 2), SEQUEST109 and MZmine3 have emerged 
as helpful tools. For example, the MZmine3 engine offers an all-in-one 
solution for peak picking, chromatographic peak detection, peak 
identification and quantitation, and data processing/visualization 
functionalities110. Using high-resolution mass spectrometers, such 
as FTICR-MS or orbitrap devices, it has become possible to derive 
molecular formulas of peptides based on their determined accurate 
mass. Common tools for molecular formula determination based 
on high-resolution spectra are pacMass111, MS-FINDER112 (Table 2) 
or MetaSpace113. Moreover, spectral library search approaches are 
also advancing into the peptidomics field as, besides customized 
in-house spectral databases, commercial (for example, mzCloud) or 
open access (such as NIST) spectral libraries are readily available for 
mapping experiments. A combination of database dereplication, high-
resolution mass detection and spectral database annotation is state of 
the art for peptide mapping approaches today. Several manufacturers 
of mass spectrometers offer software solutions, such as Metaboscape 

(Bruker Daltonics) or Compound Discoverer (Thermo Fisher Scien-
tific), to perform the identification of peptides using one or several of 
the described methods in one package. The annotation of branched 
or cyclic peptides was addressed by CycloBranch2 (refs. 114,115) or the 
VarQuest algorithm using spectral networks116. As a general limita-
tion, a comprehensive peptide database including high-resolution 
accurate mass, sequence information, fragmentation spectra is still 
not available to the research field to date.

De novo sequencing. MALDI-TOF/TOF systems are capable of post-
source decay fragmentation. Owing to metastable decay, the system 
offers less efficient fragmentation than collision-induced dissociation 
or electron transfer dissociation methods. This fragmentation tech-
nology provides signal intensities for specific fragment ions, which 
are useful for manual de novo sequencing applications117 (Fig. 3a).  
De novo sequencing examines characteristic mass shifts among the 
fragment ions to reconstruct ion series indicating non-random amino 
acid combinations, thus allowing for the detection of novel sequences118. 
De novo interpretation of fragmentation spectra is still the best choice 
to derive sequence information of highly functionalized peptides 
(for example, peptides with post-translational modifications and/or  
non-natural amino acids). The post-source decay fragmentation 
approach is useful for studying single to few peptides without much 

Table 2 | List of important databases and tools

Databases and software Use case Data available/input data Key features

Database

NCBI Biological sequences DNA, RNA, amino acid Repository of various biological sequences

Dictionary of Natural Productsa Physicochemical data Solubility, UV–Vis Extensive database resource of natural products 
and their physiochemical properties

Software for in silico annotation

antiSMASH RiPPs and NRPs DNA Rule-based cluster detection

SANDPUMA NRPs DNA A-domain specificity prediction

DeepBGC RiPPs and NRPs DNA Gene cluster detection

Software for peptidogenetic pipelines

DeepRiPP RiPPs DNA (open reading frame) Classification, processing and spectral matching

Software for mass spectrometry analysis

DEREPLICATOR+ RiPPs and NRPs LC-MS/MS data Natural product identification from mass 
spectrometry spectra (GNPS framework)

MS-FINDER Mass spectrometry data analysis EI-MS, GC-MS, MS/MS Formula predictions, fragment annotations and 
structure elucidation

Software for MSIa

MSiReader Mass spectrometry data analysis MSI MSI platform for analysis

SCiLS Laba Mass spectrometry data analysis MSI MSI platform

ImageQuesta Mass spectrometry data analysis MSI MSI platform

High Definition Imaginga Mass spectrometry data analysis MSI MSI platform

msiQuant Mass spectrometry data analysis MSI MSI platform for analysis

Various resources can aid in peptidomics and one of the main resources most researchers start with are biological sequence databases, to gather genomic (DNA), transcriptomic (RNA), 
proteomic (amino acid) or other data that may be relevant to their research. These data types can be further complemented by specialized software or other physiochemical or spectral data 
to make more accurate predictions or annotations of peptides that may be present in the sample. Databases and further tools are continued in Supplementary Table 1. A-domain, adenylation 
domain; EI-MS, electron ionization–mass spectrometry; GC-MS, gas chromatography–mass spectrometry; LC-MS, liquid chromatography–mass spectrometry; MSI, mass spectrometry 
imaging; MS-MS, tandem mass spectrometry; NRP, non-ribosomally synthesized peptide; RiPP, ribosomally synthesized and post-translationally modified peptide. aCommercial platforms,  
may be subject to licensing charges.

https://www.ncbi.nlm.nih.gov
https://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml
https://antismash.secondarymetabolites.org
https://bitbucket.org/chevrm/sandpuma/src/master/
https://github.com/Merck/deepbgc
http://deepripp.magarveylab.ca
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
http://prime.psc.riken.jp/compms/msfinder/main.html
https://msireader.com/
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/scils-lab.html
https://www.thermofisher.com/order/catalog/product/10137985
https://www.waters.com/waters/en_US/High-Definition-Imaging-(HDI)-Software/nav.htm?cid=134833914&locale=en_US
https://ms-imaging.org/paquan/
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need for further automation. High-throughput analysis and combina-
tions together with other omics techniques made a software-assisted 
solution for de novo interpretation of MS/MS spectra indispensable 
to handle these large data sets. Bioinformatic tools, such as PEAKS119, 
are algorithms for de novo peptide/protein sequencing and allow 
combinatorial database annotation. An important consideration of 
de novo sequencing is handling of false positive assignments. Deep 
learning methods have significantly improved the power of de novo 
sequencing methods, allowing ≥97% sequence coverage120. Although 
the expected sequence coverages with and without the assistance of 
databases improved over the past two decades, the algorithms to assign 
amino acid sequences de novo to experimental MS/MS data are still a 
source of variation. As these algorithms can substantially differ from 
each other, for example in their cut-offs for profitability probing or 
in other decision-making processes, their output for one spectrum 
can be conflicting with obvious false assignments. To account for this 
remaining challenge of software-assisted analysis, de novo sequence 

work should be carefully validated using known or reference peptides 
whenever possible. The quality of de novo data may also depend on 
instrument performance, spectra quality, peptide fragmentation effi-
ciency, presence of post-translational modifications, the abundance 
of precursor ions or sample size69,121,122.

Peptide databases and identification workflows
Regardless of the acquisition method (DDA or DIA), the output of a typi-
cal LC-MS/MS experiment comprises hundreds of thousands of peptide 
fragmentation spectra correlated to chromatographic retention time 
and precursor ion mass (Fig. 3b). Interpretation of such spectral data 
typically relies on querying them against in silico predicted theoretical 
spectra from protein sequences found in a species proteome data-
base (Table 2 and Supplementary Table 1). More effective, however, is a  
de novo sequence tag approach that infers the peptide sequence directly 
from characteristic mass shifts between peptide fragment ions, and then 
matches the tag to proteins in the database. The advantage of de novo 
sequencing is its ability to discover peptides outside the proteome data-
base, as unassigned tags can be searched against expressed sequence 
tag (EST) repositories or mass spectrometry databases of homo
logous species from other studies. With either matching algorithm, 
experimental data fit to matched proteins are statistically evaluated  
for probability and the false discovery rate (FDR).

Peptide identification from DDA spectra is typically done by rank-
ing the probability of non-random fit of peak patterns in the MS/MS 
spectrum into certain amino acid sequences using mass spectrometry 
vendor-specific analysis tools or the universal format software PEAKS7. 
Annotation of post-translational modifications is typically included 
with either option. It is important to recognize that popular proteom-
ics tools MaxQuant123 and Mascot124 are not suitable for native peptide 
identifications as they rely on in silico spectral libraries of theoretical 
peptides potentially originating from enzymatic cleavages of proteins 
in a database; when the enzyme is not specified, dramatic expansion 
of search space overwhelms computational resources.

Owing to a conceptually different fragmentation approach 
in DIA experiments, alternative software is needed for identifica-
tion and quantitation of peptides, for example Skyline125, DIA-NN50, 
OpenSWATH126, Spectronaut127 and DIA-Umpire51. Statistical analysis 
of DIA measured peptides can be performed with the output result 
files using Excel, R programming, Python and Perseus123 (Table 2 and  
Supplementary Table 1).

Quantitative peptidomics
The application of mass spectrometry-based peptide quantitation is 
rapidly growing in clinical, applied and basic research. Traditionally, in 
bottom-up proteomics, the mass spectrometry quantitation approach 
is based on comparison of protein levels via summation of measure-
ments from several encoded tryptic peptides. In peptidomics, however, 
individual bioactive peptides may have independent levels in relation 
to pathological or experimental conditions, even if originating from the 
same protein or prohormone. Therefore, endogenous peptides that 
are subject to peptidomics investigation will be quantified individually 
at the peptide level, not the protein level. With that difference in mind, 
practical strategies for quantitative peptidomics are similar to those 
widely used in bottom-up proteomics and include stable isotope or 
chemical labelling and label-free methods28–32 (Fig. 4). An advantage 
of the label-free quantitation approach is its low cost and simplicity of  
sample preparation. The two commonly used label-free quantita-
tion techniques are based on the signal intensity (using extracted  

a b

d c

Detection, annotation and filtering

RNA sequencing

PeptidesGenes

Genomic

Feature 
extraction

Peptide 
mapping

sORFs Genes

Product predictionAnalysis/annotation

Databases

Peptides

Fig. 2 | In silico peptide mining. General workflow of how multi-omics 
approaches may be applied to peptidomics. a, Novel peptide candidates are 
often discovered in publicly available data sets, from genomics, transcriptomics 
or proteins. b, FASTA files are fed into the annotation platforms, where they 
utilize their own detection rule sets to predict the likelihood of true peptide 
candidates. c, Peptides derived from ribosomal transcription may undergo 
extensive modification, or non-ribosomal proteins may be responsible for 
peptide biosynthesis; as such, product prediction tools have been made to aid 
in novel peptide discovery. d, Finally, candidates validated by chemical analysis 
will be deposited in databases, increasing our collective knowledge and data 
amount to further improve algorithms and bioinformatics tools. sORF, short 
open reading frame.
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ion chromatograms) and spectral counting128. Both methods can be 
used for relative and absolute quantitation. For absolute quantita-
tion, a peptide standard that is similar to the target peptide can be 
added43, or ideally a synthetic stable isotope-labelled internal standard 
for each peptide of interest is used, for example AQUA46 peptide. In 
silico algorithm-based methods may also be used to achieve absolute 
quantitation and assess the actual concentration of the target peptide 
in one sample58,129,130. Additionally, multiple reaction monitoring can be 
used in targeted peptide quantitation. Multiple reaction monitoring 
focuses on selected fragment ions for peptides of interest and allows 
the detection of low-abundance peptides44.

The advantage of the stable isotope labelling strategy is multiplex-
ing and throughput, although often at high cost. The quantitation of 
labelled peptides is based on the mass spectrometry signal intensity, 
and the complexity of analysis increases with the size of data sets. 
Conceptually different in vitro strategies involve isobaric labels131 that 
produce identical mass shifts on the mass spectrometry level, but gen-
erate distinct reporter ions associated with different labelling channels 
during peptide fragmentation in MS/MS events131. We refer the readers 
to another article for more extensive discussion on isobaric labelling131. 
Raw files obtained from both label-free and labelling strategies can be 
analysed through the software mentioned in the previous section and 
detailed in Table 2 and Supplementary Table 1.

Mass spectrometry imaging and spatial patterning
MSI is a complementary method to IHC staining60, radio-immuno
assays61 and fluorescence microscopy62, to yield images of the target 
analyte in relatively high throughput53. Figure 3c demonstrates the 
experimental procedure and data processing steps for MSI experi-
ments. Distribution of a list of the target m/z can be visualized in one 
experiment from the same tissue slice. Although MSI provides direct 
qualitative results for the target m/z, quantitative analysis can also be 
done with the aid of commercial and open access software. To relatively 
quantify the desired m/z for a certain peptide, direct comparison can 
be done among the different tissue regions or different tissue slices63. 
Normalization is usually completed pre and post processing132. The 
software is equipped with normalization tools, using the total ion 
chromatogram (TIC), vector norm through root mean square, median 
and noise133. Similar to LC-MS, isotopic labelling may be transformed 
for MSI relative quantitation134. Absolute quantitation is a relatively 
untapped area, and such quantitation can be performed by LC-MS/
MS or by adding the calibrant to the solvent stream in desorption ESI 
MSI experiments135,136. Another way to perform absolute quantitation 
is to create a calibration curve by spotting the standards of interest 
onto a different tissue section that is adjacent to the analysed tissue 
sections137.

Various software tools (Table  2 and Supplementary Table 1) 
have been developed for MSI visualization and analysis, including 
MSiReader138, SCiLS Lab, ImageQuest, High Definition Imaging,  
MassImager139 and msiQuant140. Several statistical analyses can be 
performed using some of these software packages, including analysis 
of variance, principal component analysis and partial least squares 
coupled to discriminant analysis (PCA-DA and PLS-DA, respectively), 
and receiver operator characteristic curve analysis for biomarker 
tests63. Subsequent statistical and classification analysis can also be 
done using machine learning and in silico algorithm-based software. 
MALDI MSI data are usually paired with LC-MS/MS data for specific 
peak assignment and peptide identification. We refer the readers to  
a more thorough review article63 for a discussion on MSI.

Applications
Function, diversity and evolution in biology
Microbial peptide biosynthesis. Some peptide species from bacteria 
and fungi are distinct from peptides commonly found in higher organ-
isms. These peptides, according to their more specialized biosynthetic 
mechanisms, can be categorized into two groups: RiPPs and NRPs. 
RiPPs are encoded as precursor peptides in the genome and undergo 
post-translational modifications beyond those commonly known from 
animal/plant-derived peptides and proteins141. RiPPs are subcatego-
rized by their characteristic post-translational modifications, which 
include thioethers, heterocycles, amino acid side-chain functionaliza-
tions and various side-chain cross links. Recently, examples such as the 
lipolanthines emerged where RiPP biosynthesis is combined with other 
biosynthesis pathways, such as fatty acid biosynthesis of polyketide 
synthesis (PKS)142.

By contrast, NRPs are commonly synthesized by modular multi
domain synthetases that can incorporate non-proteinogenic amino acids 
and other substrates. Modules for peptide assembly consist of a basic 
domain set: A-domains responsible for amino acid/substrate activation 
and selectivity; a peptidyl-carrier protein domain; and a condensation 
domain (C-domain) forming the amide bonds. A thioesterase domain 
(TE-domain) releases a linear or cyclic peptide. Additional domains may 
be interspersed to perform epimerizations (E-domains), oxidations/
reductions (Ox/Red-domains), cyclizations (Cy-domains) or other modi-
fications143. Tailoring of the peptide substrate may occur to an extent that, 
sometimes, a peptide structure is hardly recognized in the final product, 
for example in the β-lactams (precursor peptide l-aminoadipoyl-l-Cys-
d-Val). The structural diversity of NRPs is even further extended by mixing 
biosynthetic functions with PKS, rendering lipopeptides or even stronger 
morphed PKS-NRP-like structures, which probably mark the borders 
of the peptidomics field144. Although, recently, genome mining consid-
erably facilitated the discovery of new classes and types of microbial 
peptides derived from RiPP and NRP biosynthesis, the field still is in its 
infancy, as estimates consider that only 2.1% of the global prokaryotic 
taxa are represented in sequenced genomes145.

Venomics. Venomous animals (including snakes, spiders, scorpions, 
amphibians, snails and even platypuses) have evolved multiple times 
throughout evolution, and many venom cocktails are rich in pep-
tides146–148. In fact, the diversity of venom peptides is unprecedented: 
their estimated number exceeds millions149. Peptidomics has provided 
detailed insights into the diversification of venom. The venom content has 
also evolved, based on the targeted prey or predators to defend against. 
In research on the predation of cone snails Conus marmoreus and Conus 
geographus, their conotoxins and the defence stings showed remark-
ably different venoms. Whereas defensive venoms are localized in the 
proximal duct, the predation venoms are in the distal duct of the venom 
gland150,151. Predatory venoms evolved to incapacitate or kill the prey  
with high selectivity, whereas the defensive venoms had little to no activ-
ity against their prey but contained high amounts of paralytic peptides 
(conotoxins) acting on mammalian ion channels. Scorpions have also 
been studied extensively for this purpose. Their venom components 
differ concerning defensive and predatory behaviours; they might sting 
multiple times, but the venom composition may vary in response to the 
threat of the animal152,153. These examples underline the requirement for 
appropriate extraction methods when working with venomous animals.

Invertebrate neuropeptide discovery. There is an overwhelming 
diversity of (neuro)peptidomics studies on invertebrates, including 
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the classic model species in insects154–156, molluscs157–160, worms, crusta-
ceans161–165 and cnidarians166–168. Multiple approaches proved effective 
for discovery and characterization of neuropeptides in invertebrates. 
With growing numbers of sequenced genomes or transcriptomes, 
the bioinformatics annotation of prohormones and the prediction of 
endogenous putative peptides facilitates peptidomics studies169. The 
characterization of structurally simple peptides can be achieved by 
matching the mass spectrometry-detected peptide masses to theoreti-
cal masses of peptides predicted from a protein/prohormone sequence 

while accounting for possible post-translational modifications170. This 
is an effective approach suitable for single-cell peptidomics171, and thus 
allowing for the discovery of chemical messengers in well-defined neu-
ronal circuits172 that control physiological functions and behaviour, for 
which invertebrates are extremely well suited due to the simplicity of 
their organization and conservation of signalling molecules along the 
evolution tree. For characterization of the peptidome of an organism 
with no genomic information, shotgun peptidomics on a larger tissue 
sample works best with mass spectrometry data annotated using the 
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protein database of a related species (homology search)173. Specifically, 
hybrid bioinformatics approaches for interpretation of the MS/MS  
data match experimental de novo sequence tags to a database of related 
species proteins while accounting for potential single point muta-
tions174. A more targeted analysis aimed at peptide-level validation 
of selected gene expression and/or function in specific cells or tissue 
often involves a multi-omics workflow175 or gene cloning followed by 
gene expression mapping to guide tissue or cell sampling for mass 
spectrometry analysis176–179. Elegant multi-platform studies combining 
shotgun peptidomics for peptide library construction followed by MSI 
of tissue sections have led to mapping of putative bioactive peptides in 
nervous system tissue sections under different biological paradigms, as 
well as the exploration of cellular heterogeneity and organelle peptide 
complements. Implementation of mass spectrometry-based, peptide-
centred workflows has accelerated the discovery of enzyme-derived 
d-amino acid-containing peptides (DAACPs) of high physiological 
importance in invertebrates176,180,181. DAACPs typically co-exist with 
all-l-amino acid-containing peptide counterparts in tissue extracts and 
can be fractionated via RP-HPLC and can be validated via trapped IMS 
and MS/MS182,183. An alternative discovery pipeline based on enzymatic 
screening, separation and amino acid analysis is greatly enhanced  
by MS/MS184–186.

Human and mammalian neuropeptide discovery. Peptidergic sys-
tems are abundant ligand–receptor signalling systems in mammals 
and are of high interest to further understand human signalling net-
works. There are numerous peptide hormones in the body but their 
receptor targets, many of them from the G-protein-coupled receptor 
family, and the physiological role of these systems remain elusive. 
Peptidomics assisted the deorphanization process of peptide/protein 
target signalling networks in the past. Many neuropeptides and their 
endogenous receptors were discovered with bioinformatics tools, 
as the human genome sequence data enabled large-scale analysis. 
Conceptionally, bioinformatics has limitations to detect precursor 
splicing, secretion signal sequences and post-translational modifica-
tions. Peptidomics approaches were applied in neuropeptide discovery 
but have limited sensitivity for the detection, and the identification is 
often knowledge-based using pre-defined search libraries187. Recent 
developments highlight a robust analytic framework for extracting, 
analysing and identifying endogenous peptides188. Integrated com-
putational and experimental approaches have been powerful tools for 
peptide–orphan GPCR pairing189,190. Human peptide ligands of orphan 
receptors were predicted based on common sequence motifs, for 
example secretion sequences and conserved regions in their encoding 
precursors. The identified peptides can be chemically synthesized for 

testing in vitro for activation of receptor systems. These deciphered 
systems revealed new peptide ligands for the GPR1, GPR15, GPR55, 
GPR68 and BB3 receptors189. The human neuropeptide discovery field 
is hugely significant to understand physiological process and patho-
physiological conditions, providing clinical opportunities for new 
therapies of brain disorders. For example, combinatorial workflows 
to enable large-scale mass spectrometry-based peptidomics for drug 
discovery or integrated workflows to decipher signalling systems 
provided significant contributions188,189. Overall, there is a need for 
in-depth studies of the human neuropeptidome, which is still at the 
frontiers stage compared with other omics technologies.

Drug discovery
From venoms to drugs. Historically, the discovery of drugs has been 
accomplished by natural observation, followed by trial and error 
experimentation with various plants and animal extracts191,192. Tradi-
tional knowledge, passed on by generations, became the pillar of drug 
discovery as medical sciences were established and methods were 
developed to validate the bioactivity193. Modern drug discovery can 
be split into two phases: compound screening at the molecular targets 
(Fig. 5a,b) and medicinal chemistry efforts (Fig. 5b,c) to improve the 
pharmacological properties194. Peptidomics has played a crucial role 
in the discovery of peptide drugs and peptide-derived drugs. A promi-
nent example is the bradykinin potentiating peptide isolated from  
the Brazilian pit viper Bothrops jararaca; the initial peptide isolated 
was the template for developing a small-molecule peptidomimetic 
resulting in the angiotensin converting enzyme inhibitor captopril,  
a hypertension medication195 (Fig. 5c).

Owing to their neurotoxic effects, peptide analgesics are known 
to be common components of venoms. Peptidomics analysis has shed 
light on the composition and structures of these highly complex pep-
tide mixtures. Therefore, it has been possible to isolate and identify 
peptides from various animals such as scorpions196, cnidarians197 and 
cone snails198. One such example, the cone snail conotoxin MVIIA is an 
N-type channel blocker. The synthetic version, marketed as Ziconotide 
(Prialt), is used to treat chronic pain199. Venom peptides also target 
peptide hormone systems. Remarkably, cone snails have weaponized 
peptide hormones by generating fish insulin analogues, releasing them 
from their venom glands and sending their prey into hypoglycaemic 
shock200. Peptidomics was the key technology to isolate and identify 
the activity-bearing peptides. The last example worth mentioning  
is the Gila monster (lizard) peptide exendin 4. It is a long-acting GLP1 
mimetic, which led to the development of the GLP1 antagonist exena-
tide201 (Fig. 5c) preceding liraglutide and semaglutide as peptide drugs 
in the same therapeutic area202. GLP1 and GIP are endogenous peptide 

Fig. 3 | Overview of common peptidomics workflows. a, De novo peptide 
sequencing is utilized in peptide discovery research. Purified peptides are 
analysed with matrix-assisted laser desorption/ionization time-of-flight/time-of-
flight mass spectrometry (MALDI-TOF/TOF-MS) or tandem mass spectrometry 
(MS/MS) systems. b, High-throughput peptidome analysis is often employed for 
automated sequence analysis, dereplication and/or spectral network analysis, 
quantitation and analysis for post-translational modifications. These analyses are 
usually paired with high-throughput analytical systems such as high-resolution  
liquid chromatography–tandem mass spectrometry (LC-MS/MS). Data acquisition 
generates MS/MS spectra that can be analysed with de novo sequencing algorithms 
or used for identification of peptides with a database search. Quantitation of 
peptides can be achieved at the level of the mass spectrometry peak as well as 

with multiple reaction monitoring acquisition. Post-translational modification 
analysis can be performed for tryptic peptides or for endogenous peptides 
using a peptide fragment spectrum for database search. c, Experimental 
protocol and data analysis procedure for mass spectrometry imaging (MSI). 
After sample preparation of tissue slices (for example, mouse brain tissue), the 
matrix is applied and co-registered with a tissue image to precisely define sample 
position in the mass spectrometer. The data acquisition over the entire raster 
generates a summed total ion chromatogram (TIC) spectrum. To visualize m/z 
maps, each m/z signal can be selected to show extracted ion chromatograms. 
The data can be processed (normalization, smoothing, data compression) for 
various biocomputational analysis. Scale bars, 200 μm. Part c data processing 
images reprinted from ref. 133, Springer Nature Limited.
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hormones, which amplify the response of glucose-induced insulin 
secretion. Hence, these venom-derived and hormone-derived peptides, 
identified with the help of peptidomics, are being used clinically as 
antidiabetic drugs.

Antimicrobial peptides and derivatives. Although possibly not 
regarded as antimicrobial peptides in the classical sense, microbial 
peptides and derivatives have been used for decades as highly success-
ful, mostly anti-infective drugs. Examples of marketed NRP-derived 
peptide drugs, which all show sophisticated mechanisms of action, 
are vancomycin203, daptomycin204, bleomycin205 (anticancer), cyclo-
sporin206 (immunosuppressant) and even β-lactams. Among RiPPs, 
nisin (E234) is the frequently mentioned example serving as a food 
preservative207. Antimicrobial peptides in a narrower sense include 
defensins, which kickstarted the discovery of peptides belonging to 
the innate immune system208. Antimicrobial peptides originate from 
multicellular organisms (fungi, animals and plants) and range between 
10 and 120 amino acids in size. The assignment to this family is very 
broad, preferably with an overall positive charge and cross-linked by 
disulfide bridges209, but other structural types are known. Antimicro-
bial peptides often affect cells by rupturing the lipid layer, pore for-
mation or inhibiting cell-wall synthesis205. Recent peptide discoveries 
with impressive antibacterial activity against relevant Gram-negative 

bacteria include albicidin (NRP)210 and darobactin (RiPP)211, which may 
contribute to the much-needed demand for new antibiotics.

Body fluid peptidomics — novel antiviral drug candidates. Although 
it is established that peptides of the innate immune system possess anti-
bacterial and antifungal properties, these peptides also possess antiviral 
or anticancer properties6,212,213. These functions are frequent in biology 
and are termed moonlighting activities. The features that improve 
antiviral properties correlate to the cationic charge and the peptide’s 
hydrophobicity. The peptides directly bind to the viral particles them-
selves, preventing viral fusion with the host cell. These peptides dis-
play characteristics to prevent or to encounter viral infections6,214  
and further development may eventually lead to future drugs.

Clinical applications
Biomarker discovery. Mass spectrometry has made significant con-
tributions to identify and validate potential peptide biomarkers. By 
comparing healthy and diseased tissues or body fluids, differential dis-
play of the endogenous peptides can indicate potential biomarkers or 
a therapeutic target for a disease. The development of improved mass 
spectrometry techniques enabled the discovery of low-abundance 
peptides in clinical samples, especially for peptides from biofluids. 
Many studies utilized sensitive mass spectrometry tools to investigate 
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the urinary peptidome for kidney-related diseases215. The urinary 
peptidome was investigated with capillary electrophoresis–TOF-MS 
and further verified with capillary electrophoresis–FTICR-MS, where  
273 peptides were identified to be associated with advanced chronic 
kidney disease216, which later proved to be biomarkers for chronic kid
ney disease progression and diabetic nephropathy217,218. Instead of 
the traditionally used positron emission tomography technique219, 
researchers have also leveraged MALDI MSI to study diseases with 
analyte localization information. Exemplarily, the spatial progression 
of amyloid aggregates for Alzheimer disease was investigated through 
multimodal MALDI MSI220.

Targeted characterization and quantitation of peptides with 
specific post-translational modifications can also be highly valu-
able. Among the diverse modifications, glycosylation has attracted 
increased interest221, due to its close association with neurodegenera-
tive disorders222, cancer223 and autoimmune diseases224. The in-depth 
characterization and quantitation of glycosylated peptides remain 
challenging due to their low abundance in vivo and high chemical 
complexity and structural diversity221. Many mass spectrometry-
related methodologies for glycosylated peptide detection have been 
reported, including separation and enrichment of the glycopeptides 
during sample preparation, enhanced fragmentation techniques  
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(for example, collision-induced dissociation, electron transfer disso-
ciation, EThCD)47–49 and DIA-MS139,225. As an example, a targeted mass 
spectrometry approach was employed with oxonium ion-triggered 
EThCD to achieve the first large-scale discovery of O-glycosylation on 
signalling peptides in human and mouse pancreatic islets226.

Pathophysiology/physiology: mechanism of disease and treat-
ment. Since the discovery of insulin, neuropeptides and other pep-
tide hormones have been regarded as an important class of chemical 
regulators broadly involved in mediating numerous physiological 
functions227. Various animal models relevant to human physiology 
and pathophysiology provided an opportunity to link neurochemical 
changes to behavioural output and extrapolate findings to humans. 
Mass spectrometry played a significant role in the discovery and char-
acterization of signalling peptides in evolutionary conserved pathways 
governing homeostasis225, pain228, complex behaviour229, learning and 

memory230, and ageing231,232, to name a few. High-throughput LC-MS-
powered inquiries of animal peptidomes provided molecular links 
between native peptide dynamic states and environmental factors, 
nutrition, disease and behaviour233. As an example of a tour de force 
discovery effort, a label-free LC-MS approach was employed to iden-
tify and measure neuropeptide levels in a murine migraine model234. 
From 1,500 neuropeptides screened, 16 were linked to migraine and/or  
opioid-induced hyperalgesia234. To focus on secreted peptides, pepti-
domic analysis can be performed on synaptoneurosomes, dense core 
vesicles235 or captured single-cell releasates36 to probe neuropepti-
dome dynamics236, synaptic dysfunction and brain neurodegenera-
tion. A more elegant but difficult approach is an in vivo measurement 
of secreted peptides via microdialysis coupled to mass spectrometry 
platforms for identification237. Another way of gaining insights into 
intercellular communication is selective in vitro analysis of secreted, 
physiologically relevant endogenous peptides released from neu-
ronal networks in response to physiological stimulation, which can 
be achieved via microfluidic devices238. Microfluidics integration with  
mass spectrometry provides capabilities for molecular structural  
characterization and label-free and absolute quantitation of peptides239.

Reproducibility and data deposition
The field of peptidomics deals with highly variable sources of peptides, 
requiring various extraction methods, clean-up, derivatization and 
different approaches for analysis. If automated methods are used to 
assist the analysis, researchers will need to report the FDR. The FDR is a 
statistical method for determining the rate at which type 1 errors occur 
in null hypothesis testing. The FDR provides the global confidence of 
the data set, in contrast to the P value of a peptide spectrum match 
(PSM) which refers to the percentage likelihood of incorrect assign-
ment. For the FDR estimation, the decoy database is the null hypothesis. 
Accordingly, the FDR is the number of hits from the null hypothesis 
(decoy) divided by the number of total hits, providing a global confi-
dence of the data set. Although the P value only accounts for a single 
PSM and the FDR for the global data set, methods to exclude certain 
PSMs are termed controlling procedures. The simplest would be the  
q value, often interpreted as the minimum posterior probability of  
the null hypothesis or the FDR, which means the FDR and the α threshold 
are the same. Then, if set at 1%, all PSMs with P ≥ 0.01 will be rejected240. 
This method may not be sufficient, as many algorithms try to improve 
the FDR along different parameters using the posterior error prob-
ability, which can depend on the length, charge and modifications241. 
Other approaches to controlling the FDR may include using P values, 
covariates, z scores or the family-wise error rate (FWER)242. Reporting 
how the FDR is controlled is important to any omics approach, along 
with the null hypothesis of the experiment. This allows the user to 
answer questions such as whether the incorrect PSMs are truly incor-
rect if post-translational modifications prevent correct assignment or 
whether peptides in the experiment are present in the database file. As 
such, the availability of annotated peptide sequences is an invaluable 
resource for researchers, and they are encouraged to deposit them in 
relevant databases.

For reproducibility and traceability, discovered peptides and 
their modifications should be deposited in open access databases. 
The repositories of the National Center for Biotechnology Informa-
tion (NCBI)78, the European Molecular Biology Laboratory European 
Bioinformatics Institute (EMBL-EBI)243 and the DNA Data Bank of Japan 
(DDBJ)244 share access to data between themselves under the FAIR (Find-
ability, Accessibility, Interoperability and Reusability) guidelines245. 

Glossary

Fourier transform ion 
cyclotron resonance mass 
spectrometers
(FTICR-MS). High-resolution mass 
analysers that trap ions in a cyclotron 
radius by applying a fixed magnetic 
field and an oscillating electronic field. 
As the ions rotate, an interferogram 
signal is recorded by electrodes and the 
useful mass spectrum is extracted with 
a Fourier transformation.

Hyphenated front-end 
separation platforms
Platforms that separate the analytes 
online before they enter the 
mass spectrometers. Techniques 
include, but are not limited to, liquid 
chromatography, gas chromatography, 
ion mobility spectrometry (IMS), solid-
phase extraction (SPE) and capillary 
electrophoresis.

Ion mobility spectrometry
(IMS). An analytical technique that sorts 
and separates gas-phase ions based 
on their mobility in a carrier buffer gas 
under the influence of an electrical field, 
which is related to the conformation and 
3D shapes of the molecules.

Multiple reaction monitoring
A type of analysis for tandem mass 
spectrometers providing capabilities 
for quantitation of analytes. Pre-defined 
precursor ions (m/z) are selected by 
the first mass analyser and submitted 
to a fragmentation, and the selected 

product ion m/z signals are detected  
by the second mass analyser.

Peptide dereplication
Refers to the identification of known 
peptides in a sample by comparing 
mass spectrometric data with a library. 
The identification can be obtained 
by comparison of m/z mass signals, 
including the isotopologue intensities 
and pattern of isotopologues, 
giving information on the chemical 
composition as well as on tandem mass 
spectrometry (MS/MS) fragmentation 
spectra match with library data.

Peptide spectrum match
(PSM). A scoring function in which 
the mass spectrum of a peptide is 
compared with a theoretical peptide 
sequence to determine the probability 
of the measured peptide matching  
the theoretical peptide.

Post-source decay
A type of fragmentation technique 
that applies when metastable ions 
spontaneously decompose in the drift 
region between the ion source and 
reflectron.

Short open reading frames
(sORFs). Open reading frames that 
occur throughout the genome and 
usually comprise <100 codons. They 
are a possible source for peptides with 
biological relevance.
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The EMBL-EBI has three portals for submission relevant to peptidomics 
research: SPIN (Edman degradation or manual interpretation of MS/MS  
spectra)246, ENA (nucleotide translations of protein-level data)82  
and PRIDE247 (for sequences identified using search engines). Raw and 
unprocessed mass spectrometry data can be deposited along with 
processed protein and peptide output files. The use of a vendor data 
file format is less common. Instead, open source mzXML (or similar) 
is standard. The data collection should also contain meta files, such 
as sample preparation protocols and device settings, as well as infor-
mation on the sample origin (cell type, tissue). The data repositories 
have detailed requirements and provide a unique identifier to connect 
publications with the deposit data files247. Specifically, in the case of 
microbial RiPPs and NRPs (and their corresponding gene clusters), 
the resource MiBIG relies on very simple inputs of the GenBank acces-
sion for all genes in the gene cluster and the SMILES for the compound 
discovered81.

Limitations and optimizations
Peptide degradation
Sampling that truly reflects the in vivo state of the tissue is imperative 
for finding potential biomarkers and regulators, but this is not entirely 
possible. Native peptides in freshly isolated biological samples are 
subject to a multitude of interferences including biased sampling, 
variable sample stability and fast degradation that make measurement 
and identification of endogenous peptides more challenging rela-
tive to traditional bottom-up proteomics. Enzymatic degradation of 
ubiquitous proteins is particularly detrimental to mass spectrometry 
analysis, as degradation products fall into a typical peptide mass range, 
thus obscuring the detection of native peptides typically present in 
much lower amounts in tissue extracts or biological fluids. To prevent 
enzymatic protein degradation during tissue sampling, several tissue 
stabilization approaches have been implemented248, with heat stabi-
lization being one of the most effective methods of sample prepara-
tion249. Heat stabilization arrests the ex vivo peptidase activity, thereby 
conserving the chemical composition of the sample250.

Biological variation versus sensitivity
Biological systems involve a complex interplay of the organism and its 
environment, and much of that context is lost in the laboratory setting. 
Sample collection and culturing of microorganisms, for example, only 
covers a tiny fraction of the strains that were present in the original sam-
ple as cultivation conditions are not known for many strains. However, 
peptide extraction and analysis without propagation may reveal novel 
peptides or keep some biosynthetic gene clusters active251,252. The same 
applies for clinical settings: every individual has their own genetics, 
lifestyle and risk factors that affect health. For instance, where rou-
tine clinical diagnostics did not suffice, a novel multi-omics approach 
managed to identify Bacteroides vulgatus proteases as a novel risk 
factor for ulcerative colitis by adding metapeptidomic data to their 
analysis, which has often been ignored in clinical practice253. The use 
of multi-omics approaches in conjunction with peptidomics will help 
address the biological variability and improve the sensitivity by proper 
sampling and analysis. This might become important, for instance,  
in personalized medicine applications.

Analysis, algorithms and big data
Nowadays, there are several analysis tools available (Tables 1 and 2 and 
Supplementary Table 1). Peptide assignment and annotation from 
genomic data are straightforward if genome data of the organisms 

of interest are available. However, in silico-derived and mass spec-
trometry-based data sets are not necessarily identical in routine analy-
sis254. These discrepancies are due to ambiguities, such as technical 
shortcomings in mass spectrometric detection and data processing 
or because of false positive peptide assignment and annotation. For 
instance, for certain organisms, such as bacteria and fungi, it can be 
challenging, due to the small reading frames and/or massive biosyn-
thetic modifications. Furthermore, in silico workflows are biased 
towards well-known examples and prone to propagating bias255. Con-
tinuous research on such peptides aids training of the algorithms to 
improve peptide identifications in the future95,96,99,100. Analysis can 
become cumbersome if access to genomic or transcriptomic data is 
limited. As sequencing costs continue to decrease and sequencing 
power continuously increases, more genome data will become available 
in the future. Furthermore, other sources of peptides are breakdown 
products of proteins, for example the opioid peptides and haemor-
phins derived from haemoglobin58. This is being addressed by deep 
learning algorithms being developed to detect bioactive peptides in 
protein sequences86.

A special consideration is required for RiPPs and NRPs from bac-
terial and fungal sources. Previously, classical screening approaches 
were based on the taxonomic characterization of the strain and the 
subsequent workflow of analytical and assay techniques. Nowadays, 
massive bioinformatic data from genome sequences, however, made 
genome mining the dominating technique: genes or gene clusters 
are analysed by predictive tools for their putative function, which are 
subsequently validated experimentally. Precedence of structural and 
functional data eases assignment to biosynthetic classes. Particularly, 
in the RiPP field, the increasing availability of DNA sequences in the 
databases led to a massive boost in the discovery of putative but also 
new structures. NRPs, where the amino acid sequence is not encoded 
in the mRNA sequence, are a special case. To predict the potential 
product of these synthetases, the A-domain specificities98,256 of sub-
domains involved in substrate recruitment are used. However, this 
procedure may fail for new amino acid motifs or for complex-type 
synthetases if the co-linearity rule is violated. Thus, sequence data  
on the synthetases alone often do not suffice to predict the structure of  
the searched peptide2. This can be overcome with an increase in known 
NRP structures and their biosynthetic gene clusters. Although most 
commercial platforms can do an excellent job on properly linearized 
and derivatized peptides, recently algorithms have been developed for 
more complex peptides of microbial origins to be annotated directly 
from the spectra101,257. Machine learning258 and spectral networks have 
been explored to identify and assign the chemical nature of peptide 
natural products259.

Outlook
Method and instrumentation developments
Rapidly evolving mass spectrometry instrumentation opens new 
opportunities for in-depth interrogation of peptidomes even in small-
volume samples. The latest two-step methodology integrated an ion 
mobility with TOF or orbitrap mass analysers, leading to unprecedented 
sensitivity and the highest quality of peptide sequencing. Implement-
ing ion mobility as an additional dimension of separation resulted in 
improved peptide identification rates, enhanced peptide coverage and 
greater confidence of post-translational modification assignments260. 
Even unique post-translational modifications such as isomerization 
that were difficult to deduce by other mass spectrometry methods 
due to a lack of characteristic mass shifts now can be unambiguously 
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measured and validated. This technology may attract more attention in 
the peptidomics field soon. The ion mobility separation can be further 
combined with MSI to enable the investigation of spatially resolved 
peptidomics in a high-throughput manner with enhanced chemical 
information.

Data deposition, open source, unity
Standardization of data deposition and annotation has improved in 
the past few years with centralized databases such as the NCBI78, the 
EMBL243 and UniProt79 (Table 2). However, valuable data are still stored 
in various ‘in-house’ or decentralized databases. Servers such as Bacti-
base (bacteriocins)261, ConoServer (conotoxins)80, CyBase (circular 
peptides)262 or the PeptideAtlas (peptide spectra)263 use their own acces-
sion codes and aim to solve pre-existing problems. The generation 
and deposition of data should always be a mutual goal of researchers 
to make sure that the information generated does not fade away as, 
eventually, websites will be archived, and information lost. As was the 
case for ArachnoServer264, a database for spider venoms, which no 
longer responds to connection requests, whereas copies of its content 
remain on UniProt cross-referenced databases. Data deposition does 
not overwrite the utility of these databases, as many of them also come 
equipped with various tools or query-specific types of data. The best 
workarounds currently available are those of MiBIG81 and the VEu-
PathDB project77. They connect data from the NCBI, the EMBL or other 
sources to their specific applications. Researchers are encouraged to 
make this the standard practice, to deposit biological sequence data 
with the major repositories (NCBI, EMBL, DDBJ), fetch data through 
their services and focus on adding layers relevant to their field onto 
that information. The VeuPathDB project has several resources for 
researchers, and MiBIG is a centralized resource used by most tools in 
natural product discovery. Even if the tools may be lost to the aeons, 
researchers are encouraged to deposit their codes on publicly available 
servers if tools are to be discontinued (for example, Github, Bitbucket, 
SourceForge). For future prospects, the Protein Data Bank (PDB)265 has 
potentially the most important feature of any database, the option to 
deposit unpublished protein structures. This will hopefully become 
more standard practice where researchers can deposit unpublished 
experimental data under certain guidelines, as this would deal with 
the most significant loss of scientific data, and bring them out of the 
cupboards and into the Big Data landscape.

Bioinformatics, systems biology and artificial intelligence
Current bioinformatics approaches have been used successfully to 
identify new genes with machine learning. The machine learning 
methods primarily relied on hidden Markov models, support vector 
machines or random forest algorithms that laid the foundation for 
most bioinformatic approaches today266. Currently, deep learning 
algorithms267 are becoming more frequent, as they have the advantage 
of being able to learn more complex features than their predecessor. 
Deep learning has been successfully implemented in the discovery 
of new genes and peptides89, but possibly its most impressive feat is 
the accurate prediction of protein structures74,268. As the algorithms 
continue to improve along with access to graphics processing units 
to train neural networks, researchers in all fields, even with relatively 
little experience in programming, will be able to make use of the power 
of deep learning for their research. With the coming improvements 
from bioinformatics, bioanalytics and the omics fields, the discipline 
of systems biology aims to harness all levels of data it can, to under-
stand further how each of these fields may work together269. Systems 

biology approaches have been applied in the field of metabolomics by 
generating genome-scale metabolic models270. These approaches are 
commonly used for production optimization, and industry relies on  
them to improve yields from fermentation271,272. The field shows prom-
ise in combining biological data for clinical applications and could 
facilitate the transition into personalized medicine94.

Biological sciences are in a major transition into the big data land-
scape, where a lot of the focus has been on genomics, transcriptomics, 
proteomics and metabolomics. Peptidomics emerges as a bridge con-
necting proteomics and metabolomics, bridging the functions between 
proteins and small molecules. With the advances in deep learning 
and artificial intelligence, the biochemical space made available by 
peptides can be better exploited, and novel peptidomimetics can be 
developed for medicine or industry. Spanning from novel therapeutics  
to peptide-assisted catalysts10, the field of peptidomics has just started to  
show a tiny portion of its tremendous potential.

Published online: xx xx xxxx
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