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Abstract

A basic problem in smooth dynamics is determining if a system can be distinguished from
its inverse, i.e., whether a smooth diffeomorphism T is isomorphic to T~!'. We show that
this problem is sufficiently general that asking it for particular choices of T is equivalent to
the validity of well-known number theoretic conjectures including the Riemann Hypothesis and
Goldbach’s conjecture. Further one can produce computable diffeomorphisms T such that the
question of whether 7T is isomorphic to 7! is independent of ZFC.
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1 Introduction

When is forward time isomorphic to backward time for a given dynamical system? When the acting
group is Z, this asks when a transformation 7" is isomorphic to its inverse. It was not until 1951, that
Anzai [2] refuted a conjecture of Halmos and von Neumann ([19]) by exhibiting the first example
of a transformation where T is not measure theoretically isomorphic to its inverse.! In fact the
general problem is so complex that it cannot be be resolved using an arbitrary countable amount
of information: in [14], it was shown that the collection of ergodic Lebesgue measure preserving
diffeomorphisms of the 2-torus isomorphic to their inverse is complete analytic and hence not Borel.

In this paper we show that for a broad class of problems there is a one-to-one computable
method of associating a Lebesgue measure preserving diffeomorphism 7p of the two-torus to each
problem P in this class so that:

e P is true
if and only if
e T'p is measure theoretically isomorphic to T, L

The class of problems is large enough to include the Riemann Hypothesis, Goldbach’s Conjecture
and statements such as “Zermelo-Frankel Set Theory (ZFC) is consistent.” In consequence, each
of these problems is equivalent to the question of whether T =2 T~! for the diffecomorphism T of
2-torus canonically associated to that problem.

Restating this, there is an ergodic diffeomorphism of the two-torus Tryg such that Try = Tru
if and only if the Riemann Hypothesis holds, and a different, non-isomorphic ergodic diffeomorphism
Tcc such that Tge = Tee ! if and only if Goldbach’s conjecture holds, and so forth.

1

Godel’s Second Incompleteness Theorem states that for any recursively axiomatizable theory
that is sufficiently strong to prove basic arithmetic facts, if ¥ proves the statement “X is consistent”,
then X is in fact inconsistent. The statement “3 is consistent” can be formalized in the manner of
the problems we consider. Consider the most standard axiomatization for mathematics: Zermelo-
Frankel Set Theory with the Axiom of Choice and the formalization of its consistency, the statement
Con(ZFC).

If Tzrc is the diffeomorphism associated with Con(ZFC) then (assuming the consistency of
conventional mathematics) the question of whether Tzpc = T; yrC L is independent of Zermelo-
Frankel Set Theory—that is, it cannot be settled with the usual assumptions of mathematics.

One can compare this with more standard independence results, the most prominent being the
Continuum Hypothesis. Those independence results inherently involve comparisons between and

! See for example Math Review MR0047742 where Halmos states “By constructing an example of the type
described in the title the author solves (negatively) a problem proposed by the reviewer and von Neumann [Ann. of
Math. (2) 63, 332-350 (1942); MR0006617].”



properties of uncountable objects. The results in this paper are about the relationships between
finite computable objects.

We now give precise statements of the main theorem and its corollaries. The machinery for
proving these results combines ergodic theory and descriptive set theory with logical and meta-
mathematical techniques originally developed by Godel. While the statements use only standard
terminology, it is combined from several fields. In an arXiv preprint of this paper ([9]) there are
several appendices in an attempt to convey this background to non-experts.

There are several standard references for connections between non-computable sets and analysis
and PDE’s. We note one in particular with results of Marian Pour-El and Ian Richards that give
an example of a wave equation with computable initial data but no computable solution [25].

1.1 The Main Theorem

As an informal guide to reading the theorem, we say a couple of words. More formal definitions
appear in later sections.

e A function F' being computable means that there is a computer program that on input N
outputs F(N).

e The diffeomorphisms in the paper are taken to be C°° and Lebesgue measure preserving. A
diffeomorphism 7' : T? — T? is computable if there is a computer program that when serially
fed the decimal expansions of a pair (z,y) € T? outputs the decimal expansions of T'(x, %) and
for each n there is a computable function computing the decimal expansion of the modulus
of continuity of the n-th differential.> Since computable functions have codes, computable
diffeomorphisms also can be coded by natural numbers.

e By isomorphism, it is meant measure isomorphism. Measure preserving transformations
S:X - Xand T : Y — Y are measure theoretically isomorphic if there is a measure
isomorphism ¢ : X — Y such that

Sop=ToS

up to a sets of measure zero.

e We use the notation Diff>*(T, \) for the collection of C°° measure-preserving diffeomorphisms
of T?.

o 119 statements are those number-theoretic statements that start with a block of universal
quantifiers and are followed by Boolean combinations of equalities and inequalities of poly-
nomials with natural number coefficients.

e We fix Gédel numberings: computable ways of enumerating I1{ statements (¢, : n € N) and
computer programs (C, : m € N). The code of ¢, is n, the code of C,, is m.

e Older literature uses the word recursive and more recent literature uses the word computable
as a synonym. We use the latter in this paper. Indeed, since none of the phenomenon
discussed here involve recursive behavior that is not primitive recursive we use effective, and
computable as synonyms for primitive recursive.

2Recent work of Banerjee and Kunde in [3] allow Theorem 1 to be extended to real analytic functions by improving
the realization results in [13].



Here is the statement of the main theorem.

Theorem 1. (Main Theorem) There is a computable function
F : {Codes for I19-sentences} — { Codes for computable diffeomorphisms of T2}

such that:

1. N is the code for a true statement if and only if F(N) is the code for T, where T is measure
theoretically isomorphic to T~;

2. For M # N, F(M) is not isomorphic to F(N).
The diffeomorphisms in the range of F' are Lebesque measure preserving and ergodic.
We now explicitly draw corollaries.

Corollary 2. There is an ergodic diffeomorphism of the two-torus Try such that Triy = Tﬁlli if
and only if the Riemann Hypothesis holds.

Similarly:

Corollary 3. There is an ergodic diffeomorphism of the two-torus Tac such that Tge = Téé if
and only if Goldbach’s Conjecture holds.

There are at least two reasons that this theorem is not trivial. The first is that the function F is
computable, hence the association of the diffeomorphism to the I1{ statement is canonical. Secondly
the function is one-to-one; Ty encodes the Riemann hypothesis and Tgc encodes Goldbach’s
conjecture and Tryy # Tcc-

Corollary 4. Assume that ZFC is consistent. Then there is a computable ergodic diffeomorphism
T of the torus such that T is measure theoretically isomorphic to T, but this is unprovable in
Zermelo-Frankel set theory together with the Axiom of Choice.

We note again that there is nothing particularly distinctive about Zermelo-Frankel set theory
with the Axiom of Choice. We choose it for the corollary because it forms the usual axiom system
for mathematics. Thus Corollary 4 states an independence result in a classical form. Similar results
can be drawn for theories of the form “ZFC + there is a large cardinal” or simply ZF without the
Axiom of Choice.

Finally, these results can be modified quite easily to produce diffeomorphisms of (e.g.) the
unit disc with the analogous properties. Moreover techniques from the thesis of Banerjee ([4]) and
Banerjee-Kunde ([3]) can be used to improve the reduction F' so that the range consists of real
analytic maps of the 2-torus.

We finish this section by thanking Tim Carlson for asking whether Theorem 1 can be extended
to lightface i statements, which it can in a straightforward way. This increases the collection of
statements encoded into diffeomorphisms to include virtually all standard mathematical statements.

Primitive recursion Informally, primitive recursive functions are those that can be computed
by a program that uses only for statements and not while statements. This means that the com-
putational time can be bounded constructively using iterated exponential maps. In the statements
of the results we discuss “computable functions” but in fact all of the functions constructed are
primitive recursive. In particular the functions and computable diffeomorphisms asserted to exist
in Theorem 1 are primitive recursive.



1.2 Hilbert’s 10th problem

Hilbert’s 10th problem asks for a general algorithm for deciding whether Diophantine equations have
integer solutions. The existence of such an algorithm was shown to be impossible by a succession
of results of Davis, Putnam and Robinson culminating a complete solution by Matijasevi¢ in 1970
(121, 6)).

Their solution can be recast as a statement very similar to Theorem 1:

There is a computable function
F : {Codes for IY-sentences} — {Diophantine Polynomials}
such that N is the code for a true statement if and only if F'(/N) has no integer solutions.

Thus their theorem reduces general questions about the truth of 1Y statements to questions about
zeros of polynomials. Theorem 1 states that there is an effective reduction of the true I1Y statements
to C'*° transformations isomorphic to their inverse.

1.3 Why Z? Why T?? Why C>?

The short answer is that we want to work in the simplest, best behaved and most classical context.
Physical systems are often modeled by ordinary differential equations on a smooth compact
manifold M. Solutions are formalized as dynamical systems:

p:RxM—M

such that ¢(s, ¢(t,x0)) = ¢(s + t,z0) and ¢(s,-) : M — M is measure preserving.

Doing repeated experiments in a physical realization of such a system—say to measure a
constant of interest such as the average value of an L' function on M—is viewed as measuring
@(to, o), (to +to, 20), - - . ((N — 1)tg, zo) and averaging: & >, f(¢(i* to, z)). Provided that the
system is sufficiently mixing (“ergodic”), the Ergodic Theorem implies that for almost every x the
averages along trajectories converge to the integral of f over NV.

Thus empirical experiments are construed as sampling along portions of a Z-action given by:

Y(n,zo) = p(nty, o).

The manifold is required to be compact to avoid wild behavior and asked to be of the smallest
possible dimension. Dimension one is impossible because there are very few conjugacy classes of
measure preserving diffeomorphisms on one dimensional manifolds. On the unit circle there are
exactly two.

Thus we move to two dimensional compact manifolds. The most convenient choice is T?, the
two torus.

As k increases, the behavior of C* diffeomorphisms becomes more regular—the behavior of C'1-
diffeomorphisms can be quite wild. Thus the theorem involves C'°°-diffeomorphisms because it
illustrates that the basic issue is not how wild the diffeomorphism is.

It could be argued that the tamest situation of all involves real analytic transformations of the
2-torus. The results in this paper can be extended to real-analytic maps using the work of Banerjee
and Kunde [3].

In Summary We are proving that the question of forward vs. backward time encodes some of
the most complex problems in mathematics. This claim is made stronger by taking the simples
possible context: time is given by a Z-action, T? is the simplest, most concrete manifold possible,
and the diffeomorphisms in question are the most regular possible.



1.4 TIl%-sets and Godel numberings

While the interesting corollaries of Theorem 1 are about the Riemann Hypothesis, other number
theoretic statements, and independence results for dynamical systems, it is actually a theorem about
subsets of N. In order to prove it, one has to provide a way of translating between the interesting
mathematical objects as they are usually constructed and the natural numbers that encode them.
This is done by means of Géddel numberings, natural numbers which code the structure of familiar
mathematical objects.

The arithmetization of syntax via Gédel Numbers is one of the main insights in the proofs of
the Incompleteness Theorems. It is used to state “¥ is consistent” (where ¥ is an enumerable set
of axioms) as a I1J statement. Godel numberings originally appear in [17], but are covered in any
standard logic text such as [7].

The idea behind Godel numberings is very simple: let (p, : n € N) be an enumeration of the
prime numbers. Associate a positive integer to each symbol: “x” might be 1, “0” might be 2, “V”

might be 3 and so on. Then a sequence of symbols of length & can be coded as ¢ = 2"1-3"2.5™ . .. pp*.

Example 5. Suppose we use the following coding scheme:

Symbol || z | 0|V | *x | =
Integer || 1| 2| 834|567

Then the Godel number associated with the sentence:
Va(z *0=0)
isc=2% %31 x50 % 71 % 114 % 132 % 17° % 192 % 237.

—
~—

Clearly the sentence can be uniquely recovered from its code. With more work, one can also
use natural numbers to effectively code computer programs and their computations, sequences of
formulas that constitute a proof and many other objects. The methods use the Chinese Remainder
Theorem.

We now turn to I1{ sentences.

Definition 6. A sentence ¢ in the language Lpa = {+,%,0,1,<} is II{ if it can be written in
the form (Vxo)(Vaq) ... (Yo, ), where ¥ is a Boolean combination of equalities and inequalities of
polynomials in the variables xo, ... Ty and the constants 0,1. (We do not allow unquantified—i.e.,
free—wvariables to appear in ¢.)

It is not difficult to show that
{n : n is the Godel number of a TI{ sentence in a finite language}

is a computable set.

It is however, non-trivial to show that some statements such as the Riemann Hypothesis and
the consistency of ZFC are provably equivalent to I19-statements. The Riemann Hypothesis was
shown to be IIY by Davis, Matijasevi¢ and Robinson ([6]) and a particularly elegant version of
such a statement is due to Lagarias ([20]). Appendix B.1.4 of [9] exhibits I1{-statements that are
equivalent to the Riemann Hypothesis (using [20]) and Goldbach’s Conjecture.

Truth: We say a sentence ¢ in the language Lp 4 is true if it holds in the structure (N, +,*,0, 1, <).

Definition 7. Fiz a computable enumeration of all m-tuples (Z, = (20, ... zm)n : n € N) of natural
numbers. Let ¢ = (VYao)(Vz1) ... (Vo) be a IIY sentence. Define Q = Q(yp) to be the least n such
that 1(Z,) is false, or, if no such n exists, set Q = co.

Note that 2 = oo if and only if ¢ is true.



1.5 Effectively computable diffeomorphisms

Since T? is compact, a C*®-diffeomorphism T is uniformly continuous, as are its differentials. Thus,
it makes sense to view their moduli of continuity as functions d : N — N which say, informally,
that if one wishes to specify the map (z,y) — T'(z,y) to within 27", then the original point (z,y)
must be specified to within a tolerance of 2-4™ . With better and better information about (z, ),
one can produce better and better information about T'(x,y). This intuitive notion is formalized
by the definitions given below, and in more detail in Appendix B.2.2 of [9].> We note in passing
that the moduli of continuity and approximations are not uniquely defined.

Definition 8 (Effective Uniform Continuity). We say that a map T : T? — T? is effectively
uniformly continuous if and only if the following two computable functions exist:

e A computable Modulus of Continuity: A computable function d : N — N which, given
a target accuracy € finds the § within which the source must be known to approrimate the
function within .

More concretely, suppose T : [0,1) x [0,1) — [0,1) x [0,1). View elements in [0,1) as their
binary expansions. Then the first d(n) digits of each of (x,y) determine the first n digits of
the two entries of T'(x,y).

e A Computable Approxzimation: A computable function f : ({0,1} x {0,1})<N — ({0,1} x
{0,11)<N, which, given the first d(n) digits of the binary expansion of (x,y)—or, equivalently,
the dyadic rational numbers (ky - 27 K, - 274 for 0 < ky, ky, < 2% closest to (v,y)—
outputs the first n digits of the binary expansion of the coordinates of T'(x,y).

The diffeomorphisms 7" we build are C* and map from T? to T?. Because we are working on
T? we can view T as a map from R? to R?. The k" differential is determined by the collection of
k' partial derivatives {#:_iy :0 <i < k} of T with respect to the standard coordinate system
for R2. For k < oo, T is effectively C* provided that for each n < k there are computable d(n, —)
and f(n,—) that give the moduli of continuity and approximations to the partial nt" derivatives.
Being C'* requires that the d(n,—) and f(n,—) exist and are uniformly computable; that is that
there is a single algorithm that on every input n € N computes d(n,—) and f(n,—).

For clarity, in these definitions we discussed functions with domain and range T2. There is
no difficulty generalizing effective uniform continuity to effectively presented metric spaces. The
notion of a computable C* diffeomorphism also easily generalized to smooth manifolds M and their
diffeomorphisms, using atlases.

We note that computable diffeomorphisms are uniquely determined by the procedures for com-
puting d and f and hence they too may be coded using Godel numbers. The elements of the range
of the function F' in Theorem 1 code diffeomorphisms in this manner.

Inverses of recursive diffeomorphisms It is not true that the inverse of a primitive recursive
function f : N — N is primitive recursive. However for primitive recursive diffeomorphisms of com-
pact manifolds it is. Suppose that M is a smooth compact manifold and T is a C*°-diffeomorphism.
Then T is a diffeomorphism and hence has uniformly Lipschitz differentials of all orders. Since T
is invertible and M is compact, 7! also has uniformly Lipschitz differentials of all orders. More-
over the Lipschitz constants for 7—! are “one over” the Lipschitz constants for 7. It follows in a
straightforward way that the inverse of a primitive recursive diffeomorphism on M is a primitive
recursive diffeomorphism.

3 Since diffeomorphisms are Lipshitz, we could have worked with computable Lipshitz constants rather then
computable moduli of continuity. The methods give the same collections of computable diffeomorphisms.



1.6 Reductions
The key idea for proving Theorem 1 is that of a reduction.

Definition 9. Suppose that AC X and BCY and f: X — Y. Then f reduces A to B if
x € A iff f(x) € B.

The idea behind a reduction is that to determine whether a point x belongs to A one looks at
f(z) and asks whether it belongs to B: f reduces the question “x € A” to “f(z) € B.

For this to be interesting the function f must be relatively simple. In many cases the spaces
X and Y are Polish spaces and f is taken to be a Borel map. In this paper X =Y = N and F' is
primitive recursive.

In [14] the function f has domain the space of trees (equivalently, acyclic countable graphs)
and has range the space of measure preserving diffeomorphisms of the two-torus. It reduces the
collection of ill-founded trees (those with an infinite branch or, respectively, acyclic graphs with a
non-trivial end) to diffeomorphisms isomorphic to their inverse.

The function f is a Borel map. The point there is that if {T": T = T~} were Borel then its
inverse by the Borel function f would also have to be Borel. But the set of ill-founded trees is
known not to be Borel. Hence the isomorphism relation of diffeomorphisms is not Borel.

In the current context the function F' in Theorem 1 maps from a computable subset of N (the
collection of Gédel numbers of TI{ statements) to N. It takes values in the collection of codes for
diffeomorphisms of the two-torus.

Theorem 1 can be restated as saying that F' is a primitive recursive reduction of the collection
A of Goédel numbers for true I statements to the collection B of codes for computable measure
preserving diffeomorphisms of the torus that are isomorphic to their inverses. For N # M the
transformation F'(N) is not isomorphic to F'(M).

Thus Theorem 1 can be restated as saying that the collection of true I1Y statements is com-
putably reducible to the collection of measure preserving diffeomorphisms that are isomorphic to
their inverses. In the jargon: the collection of diffeomorphisms isomorphic to their inverses is
“TI{-hard.”

1.7 Structure of the paper

The proof of the main theorem in this paper depends on background in two subjects, requiring the
quotation of key results that would be prohibitive to prove. The actual construction itself—that is,
the reduction F' of the main theorem—is described in its entirety, along with the intuition behind
these results.

The paper heavily uses results proved in [10], [14], [12] and [13]. When used, the results are
quoted, and informal intuition is given for the proofs. When specific numbered lemmas, theorems
and equations from [14] are referred to, the numbers correspond to the arXiv version cited in the
bibliography.

Structure of the paper The logical background required for the proof of Theorem 1 is minimal
and the exposition is aimed at an audience with a basic working knowledge of ergodic theory, in
particular the Anosov-Katok method.

Section 2 defines the odometer-based transformations, a large class of measure preserving sym-
bolic systems. These are built by iteratively concatenating words without spacers. We then con-
struct the reduction F from the true I1{ statements to the ergodic odometer-based transformations
isomorphic to their inverse.



Section 3 moves from symbolic dynamics to smooth dynamics. This proceeds in two steps.
The first step is to define a class of symbolic systems, the circular systems that are realizable as
measure preserving diffeomorphisms of the two-torus. The second step uses the Global Structure
Theorem of [12], which shows that the category whose objects are odometer-based systems and
whose morphisms are synchronous and anti-synchronous joinings is canonically isomorphic with
the category whose objects are circular systems and whose objects are synchronous and anti-
synchronous joinings. Thus the odometer-based systems in the range of F» can be canonically
associated with symbolic shifts that are isomorphic to diffeomorphisms.

Section 3.2 shows that different elements of the range of F o F» are not isomorphic, by showing
that their Kronecker factors are different. Sections 3.3 discusses diffeomorphisms of the torus and
how to realize circular systems using method of Approzimation by Conjugacy due to Anosov and
Katok. Section 3.3 builds a primitive recursive map R from circular construction sequences to
measure preserving diffeomorphisms of T2 such that K¢ = R(K€).

In section 3.4 we argue that the functor F defined in the Global Structure Theorem is itself a
reduction when composed with Fn. Hence composing R, F and Fp gives a reduction F' from the
collection of true IIY statements to the collection of ergodic diffeomorphisms of the torus that are
isomorphic to their inverse. This completes the proof of Theorem 1.

The overall content of the paper is summarized by Figure 1. The reduction to odometer-based
systems is Fp, F is the functorial isomorphism, the realization as smooth transformations is R and
the composition F' is the reduction in Theorem 1.

Codes for
N%-sentences

Odometer
Fo Based

i (’E“2 )\)”"} \ Circular
i Systems

Figure 1: The reduction F.

The Appendix In the course of the proof of Theorem 1 various numerical parameters are chosen
with complex relationships. The are collected, explicated and shown to be coherent in Appendix A.
The numerical parameters are base on those in [14] with minor modifications and extensions. The
discussion in section 11 of that paper is solely concerned with the consistency of the requirements
in that paper. In this paper we give small variations of those arguments to verify, in addition, that
they can be realized in a primitive recursive way.

Sections 2 and 3 of the body of the paper use certain standard notions and constructions in
ergodic theory and computability theory. A complete presentation is impossible, but for readers
who want an general overview we present basic well-known ideas from each subject as well exhibit
explicit formulations of certain techniques in the appendices of he arXiv preprint of this paper [9].
Those appendices contain only known background information for this paper.



Appendix B of [9] is an overview of the logical background necessary for the proof of the
theorem. It includes a basic description of II{ formulas, a discussion of bounded quantifiers, how to
express Goldbach’s conjecture as a II{ formula and the definition of “truth.” Appendix B.2 gives
basic background on recursion theory, computable functions, and primitive recursion. Appendices
B.2.2 and B.2.3 give background on effectively computable functions. Readers wishing for a more
complete discussion of computation/recursion theory, recursive analysis and related fields can see
[23] and [5].

Appendix C of [9] gives background about ergodic theory and measure theory. It includes the
notion of a measurable dynamical system, the Koopman operator, and the ergodic theorem. Ap-
pendix C.3 describes symbolic systems and gives the notation and basic definitions and conventions
used in this paper. Appendix C.4 gives basic facts about odometers and odometer-based systems.
These include the eigenvalues of the Koopman Operator associated to an odometer transforma-
tion and the canonical odometer factor associated with an odometer-based system. Appendix C.5
gives basic definitions including the relationship between joinings and isomorphisms. It discusses
disintegrations and relatively independent products. For readers wishing for a more complete dis-
cussion of various aspects of ergodic theory we suggest [16], [18], [24], [26] and for an overview of
its relationship to descriptive set theory [8].

Appendix D of [9] gives basic definitions of the space of C*° diffeomorphisms and gives an explicit
construction of a smooth measure preserving near-transposition of adjacent rectangles. The latter
is a tool used in constructing the smooth permutations of subrectangles of the unit square. These
permutations are the basic building blocks of the approximations to the diffeomorphisms in the
reduction. The section verifies that these are recursive diffeomorphisms with recursive moduli of
continuity and that they can be given primitively recursively.

Gaebler’s Theorem The writing of this paper began as a collaboration between J. Gaebler and
the author with the goal of recording Foreman’s results that established Theorem 1 and its corol-
laries. Mathematically, Gaebler was concerned with understanding the foundational significance of
Theorem 1. Though unable to finish this writing project, Gaebler established the following theorem
in Reverse Mathematics:

Theorem (Gaebler’s Theorem). Theorem 1 can be proven in the system ACAy.

This result will appear in a future paper [15].

Acknowledgements The author has benefited from conversations with a large number of people.
These include J. Avigad, T. Carlson, S. Friedman, M. Magidor, A. Nies, T. Slaman (who pointed
out the analogy with Hilbert’s 10th problem), J. Steel, H. Towsner, B. Velickovic and others. B. Kra
was generous with suggestions for the emphases of the paper and with help editing the introduction.
B. Weiss, was always available and as helpful as usual. Finally my colleague A. Gorodetski was
indispensable for providing suggestions about how to edit the paper to make it more accessible to
dynamicists.

2 Odometer-Based Systems and Reductions

In this section we prove the existence of the preliminary reduction Fp.

Theorem 10. There is a primitive recursive function Fo from the codes for I19-sentences to prim-
itive recursive construction sequences for ergodic odometer based transformations such that:

10



1. N is the code for a true statement if and only if Fo(N) is the code for a construction sequence
with limit T, where T is measure theoretically isomorphic to T™1.

2. For M # N, Fo(M) is not isomorphic to Fo(N).

Remark 11. When discussing the construction of Fo and F we will always have the unstated
assumption that the input N is a Gdodel number of a H?—statement.

This is justified by remarking that, though formally the domain of Fo (and so of F') is the
collection of N that are Gédel numbers of T1Y-statements, the collection of Gédel numbers of T19-
statements is primitive recursive. Theorem 1 is equivalent to constructing an F that is defined on
all of N and outputs a code for the identity map when the input is an N that is not a Gédel number
of a TIY-statement as well as satisfying clauses 1, 2.

2.1 Basic Definitions

Both Odometer Based and Circular symbolic systems are built using construction sequences, a
tool we now describe. They code cut-and-stack constructions and give a collection of words that
constitute a clopen basis for the support of an invariant measure.

Fix a non-empty alphabet 3. If W is a collection of words in X, we will say that W is uniquely
readable if and only if whenever u,v,w € W and uv = pws then either:

e p=0and u=w or
e s=(and v =w.

A consequence of unique readability is that an arbitrary infinite concatenation of words from W
can be uniquely parsed into elements of W.

Fix an alphabet 3. A Construction Sequence is a sequence of collections of uniquely readable
words (W, : n € N) with the properties that:

1. Each word in W, is in the alphabet 3.

2. For each n all of the words in W, have the same length ¢,. The number of words in W,, will
be denoted s,,.

3. Each w € W, occurs at least once as a subword of every w’ € W, 1.

4. There is a summable sequence (€, : n € N) of positive numbers such that for each n, every
word w € Wy11 can be uniquely parsed into segments

Upwouiwy - . . WiUI41 (1)

such that each w; € W, u; € X< and for this parsing

dn+1

< €En+1- (2)

The segments u; in condition 1 are called the spacer or boundary portions of w. The uniqueness
requirement in clause 4 implies unique readability of each word in every W,,.

Let K be the collection of x € % such that every finite contiguous subword of z occurs inside
some w € W,,. Then K is a closed shift-invariant subset of ¥% that is compact if ¥ is finite. The
symbolic shift (K, sh) will be called the limit of (W, : n € N).
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Definition 12. Let f € K where K is built from a construction sequence (W, : n € N). Then by
unique readability, for all n there is a unique w € W, and a, < 0 < by, such that f | [an,byn) € Wh,.
This w is called the principal n-subword of f. If the principal n-subword of f lies on [an,by,) we
define rn(f) = —ay, the location of f(0) relative to the interval [ay,by).

The construction sequences built in this paper are strongly uniform in that for each n there is a
number f, such that each word w € W, occurs exactly f, times in each word w' € Wyy1. It follows
that (K, sh) is uniquely ergodic.

We note that in definition 12 we must have b,, — a,, = ¢x.-
Notation For a word w € ¥<N we will write |w| for the length of w.

Inverses and reversals If K is a symbolic shift built from a construction sequence (W, : n € N)
then we can consider its inverse in two ways. The first is (K, Su~!). The second, which we call
REV(K) is the system built from the construction sequence (REV(W,,) : n € N) where REV(W,,)
is the collection of reversed words from W,: if w € W, then w written backwards belongs to
REV(W,). Clearly (K,Su™!) is isomorphic to (REV(K),sh) and we will use both conventions
depending on context.

Odometer Based construction sequences A construction sequence with Wy = ¥ and built
without spacers is called an odometer-based construction sequence. For odometer-based sequences,
Clause 3 of the definition of Construction Sequence implies that for odometer based systems W, ;1 C
Wkn for some sequence (k,, : n € N) of natural numbers with k,, > 2. Hence [W,11| < [W,|F*. In
the speciallcase of odometer sequences we write the length of words in W,, as K,,. We note that
K, =111 km-

m=0
The sequence (ky, : n € N) determines an odometer transformation with domain the compact

space
O =qes [ [ Zt.-
n

The space O is naturally a monothetic compact abelian group. We will denote the group
element (1,0,0,0,...) by 1, and the result of adding 1 to itself j times by j. There is a natural
map of O given by O(z) = x + 1. Then O is a topologically minimal, uniquely ergodic invertible
homeomorphism of O that preserves Haar measure. The map z — —x is an isomorphism of O with
O~1. (See Appendix C.4 of [9] and [10] for more background.)

Odometer transformations are characterized by their Koopman operators. They are discrete
spectrum and the group of eigenvalues is generated by the K,-th roots of unity.

The odometer factor If K is built from an odometer-based construction sequence and the
principal n-subword of f sits at [—ay,b,) then the sequence (a, : n € N) gives a well defined
member mo(f) of O =[], Z,. It is easy to verify that the map f +— 7o (f) is a factor map.

A measure preserving transformation is odometer-based if it is finite entropy, ergodic and has
an odometer factor. It is shown in [11] that every odometer-based transformation is isomorphic to
a symbolic shift with an odometer-based construction sequence.

2.2 Inverses and factors induced by equivalence relations

Fix an odometer based construction sequence (W, : n € N). If Q is an equivalence relation on W,,
then elements of K can be viewed as determining sequences of equivalence classes. More precisely
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if ¥* is the alphabet consisting of classes W),,/Q we can consider the collection W, of words of
length K, that are constantly equal to an element of >*. Let m > n. Then for some K, the words
in W), are concatenations of sequences of words from W, of length K. Viewed this way, the words
in W, determine a sequence of K many elements of WW}. Concatenating them we get a word of
length K, that is constant on contiguous blocks of length K,,. Let W, be the collection of words
in the alphabet ¥* arising this way. There is a clear projection map 7 : Wy, — W;;, that sends two
words in W, to the same word in W, if they induce the same sequence of O-classes.
Equivalently define the diagonal equivalence relation Q% on WX by setting

! /

if and only if for all 4,w; ~g w}. Then for two words w,w’ € Wy,,m(w) = m(w') if and only if
w ~ok w'. Similarly let w € Wa/Q)¥ and w' € WE. Then w' is a substitution instance of w if
and only if

w' = wown -+~ wg—1 and w = [wo]glwi]g - [wk-1]g-

The sequence (W), : m > n) determines a well-defined odometer-based construction sequence
in the alphabet ¥*. If we define Kg to be the limit of (W), : m > n) then there is a canonical
factor map mg : K — Ko.

We now discuss how this factor map behaves with inverse transformation. Suppose that Zs acts
freely on ¥* = W, /Q. Then for all K we can extend this action to (X*)® by the skew-diagonal
action. Suppose that g is the generator of Zs. Define

g ([wole[wilg - - [wk-1]o) = g [wr-1]lag - [wk—2]...g - [wo].
Assume that W, is closed under the skew-diagonal action. Let
w = [wo][wi][wr—_1] € W,,.

Then we can apply g pointwise to the [w;]; i.e. the diagonal action. Since W}, is closed under the
skew-diagonal action, the word g[wo]gw1]...g[wrk_1] € REV(WE).A

Lemma 13. Suppose for all m > n,W;, is closed under the skew-diagonal action of g. Then
Ko = REV(Kg) and the isomorphism takes an f € Kg with associated odometer sequence x to an
element of REV(Kg) determined by the diagonal action that has associated odometer sequence —x.

F The sequence (REV(WS)) : m > n) is a construction sequence for REV(Kg). The map
[wol[wi] ... [wr—1] = glwolg[wi]. .. glwx-1] € REV(W,,)

is an invertible shift-equivariant map defined on the construction sequences for Kg and REV(Kg)
and hence defines an invertible graph joining 7, from Ko to REV(Kg) =

We note that the graph joining 7, does not depend on which elements of W, are identified
by Q. Moreover to recover REV(K) from REV(Kg) one substitutes the appropriate reverse words
REV(w) into a Q-class C. Frequently the graph joining 7, of Ko with REV(Kg) does not come
from a graph joining of K with REV(K).

In the construction in [10], which we modify in this paper, this process is iterated: there is an
equivalence relation Q; on W,, and another equivalence relation Q> on W,, with n; < ny and

“We note in passing that being closed under the skew diagonal action does not imply that W, /Q,, is closed under
reverses.
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Qs a refinement of the product equivalence relation Qf (for the appropriate K). There will be
two copies of Zy generated by gi and g2 with g; acting freely on W, /Q1 and g2 acting freely on
W’I’LQ/QQ‘

For i = 1,2 denote W,,,/(Q:)X by (W2,);. We build two construction sequences consisting of
collections of words made up of equivalence classes (W},)1 : m > n1) and ((W},)2 : m > ng) which
we assume are closed under the skew-diagonal actions of g; and g9 respectively. Let K; be the limit
of (Wy,)1 : m > np) and Kg the limit of (W},)2 : m > na).

Then we get a tower

K

Y

Ky

Suppose the go action on Qs is subordinate to the g; action on W,,/(Q1)X; that is, whenever C
and Cy are classes of W,,/(Q1)% and W,,,/Qs and Ca C Cy, then goCo C ¢1C1.

Then the various projection maps between K, Ko, and Ko, commute with the shift and the
joining 74, of Kg, x REV(Kg,) extends the joining 7y, of Kg, x REV(Kg,). Given an infinite
sequence of equivalence relations Q;, the associated joinings cohere into an invertible graph joining
of K with REV(K) if and only if the o-algebras associated with the Ko, generate the measure
algebra on K.

Diagonal vs Skew-diagonal actions. Since n,, extends to both the diagonal and skew-diagonal
actions, we summarize the distinct roles:

e The skew-diagonal actions give closure properties on W,,/Qn" = (W, )n -

e This closure under the diagonal action gives an isomorphism between K,, and REV(K),, that
approximates a potential isomorphism from K to REV(K).

2.3 Elements of the construction

The construction of the first reduction Fp closely parallels the construction in [10] and we refer the
reader to that paper for details of claims made here. For each N the routine Fp(N) inductively
builds an odometer construction sequence (W, : n € N) in the alphabet ¥ = {0,1} with W, 11 C
WPk During the construction we will accumulate inductive numerical requirements. Some, such
as the €,’s and the ¢,’s are positive numbers that go to zero rapidly. Some, such as the k,’s
and [,’s are sequences of natural numbers that go to infinity. These numbers depend on N, so
when necessary we will write Wy, (N), €,(N), kn(N), {n(IN) and so forth. However for notational
simplicity we will drop the N whenever it is clear from context. At stage n in the algorithm F'(N)
for building W, (N), for M < N F' can recursively refer to objects build by F(M) at stages < n.
For example F'(N) can assume that k,(N — 1) is known.

These sequences of numbers are defined inductively and have complex relationships, requiring
some verification that they are consistent and can be chosen primitively recursively. That they
are consistent is the content of section 11 of [14]. That they can be chosen primitively recursively
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involves a routine review of the arguments in that paper. For completeness this is done in Appendix
A.

Numerical Requirement A There is an increasings sequence of natural numbers < e(n) : n > 1)
such that for all n > 1, s, = 2 +1e®)

The construction will use the following auxiliary objects and their properties:

1. A sequence of equivalence relations (Q,, : n € N). Each Q,, is an equivalence relation on W,
hence gives a factor K,, of K. The equivalence relation Qg is the trivial relation where any
two elements of W, are equivalent.

2. The equivalence relation Q,, 11 refines the product equivalence relation (Q,)*" on Wk».

3. The sub-o-algebra H,, of B(K) corresponding to K,. In the construction here, as with the
original construction in [10], |J,, Hn will generate B(K) modulo the sets of measure zero with
respect to the unique shift-invariant measure p. (This is Lemma 15 which uses specification
Q4.)

We denote the sub-o-algebra of B(K) corresponding to the odometer fact by Hy. Because the
odometer factor sits in side each K,,, Ho C H,, for all n.

4. A system of free Zo actions n,, on W,,/Q,, for n < Q. (See definition 7 for the definition of
Q.) Denote the generator of Zy corresponding to M, as gp.

Suppose that n < m. As in section 2.2, the words in W,, are concatenations of K = K,/ K,-
many words from W,,. Hence the product equivalence relation (Q,)% gives an equivalence relation
on W,,, which we call Q7". We will denote W,/ Q" by (W},)n. The Zy actions have the following
properties:

e (W), is closed under the skew-diagonal action of g,.
o If n+1 <, then the g,4+1 action is subordinate to the g, action.

e We let v, be the diagonal action of g, on K,,. Since (W}},)y, is closed under the skew-diagonal
action, M, can be viewed as mapping (W}, ), to REV((W},),). As described in section 2.2,
for n < Q, ~, canonically creates an isomorphism between K, and K;! that induces the
map = — —x on the odometer factor.

Restating this: if the action m, is non-trivial, then it induces a graph joining 7, of H, with
(H,)~! that projects to the map z + —x on the odometer factor. Assuming n+1 < €2, and so the
action M,y is subordinate to M, the joining 1,41 projects to the joining 7,. If Q = oo, since the
U, Hr will generate B(K), the 7,’s will consequently cohere into a conjugacy of T' with Tt

Lemmas 26 and 27 of [10] formalize this and show the following conclusion.

Lemma 14. Suppose Q = co. Then there is a measure isomorphism n of K with K=! such that for
all n € N, n induces an isomorphism n, : K, — K,, that coincides with the graph joining determined
by the action of the generator for ~, on K.

The construction is arranged so that if the number € is finite, then K 2 K~!. This is done by
making the sequences of equivalence classes of elements of (W} ), = W,,/ Q" essentially indepen-
dent of their reversals subject to the conditions described above. The specifications given later in
this section make this precise.
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2.4 An overview of Fp.

The algorithm for the reduction Fp is diagrammed in Figure 2.
Given N, Fp determines the H(l) formula coded by N:

N =V2oVz1 .. Vamp(z0, 21, - - - 2m)-

The function F then uses the formula to generate a computational routine R, that recursively
computes the objects Wy, (N), Qn(N) and ~, (N) (as well as the various numerical parameters
that are involved in the construction). Here is what R, does.

The routine R,

1. Fixes a computable enumeration of all m-tuples (Z, = (z0,...2m)n : n € N) of natural
numbers.

2. On input n, R, initializes ¢ = 0, sets Wy = {0,1}, Qo the trivial equivalence relation with
one class and the action v the trivial action.

3. For ¢ < n, Ry:

(a) builds Wiy1, Qiy1,
(b) computes (Z; : 0 < j <),
(c) Asks:
“Is pn(Z;) true for all 0 < j <477

Since ¢ has no unbounded quantifiers, this question is primitive recursive.
(d) If yes, R, builds the action Mg

(e) If no, R, makes the m;4 trivial. (Note that if 4 is the first integer in this case, then €2
will equal 7 + 1.)

4. When ¢ = n, R, returns W,.

2.5 Properties of the words and actions.

We describe the construction sequence, the equivalence relations and the actions. To start we
choose a prime number Py > 2 sufficiently large, and let (Py : N > 0) enumerate the prime
numbers bigger than FPy.

For the construction sequence corresponding to Fp(N), words in W, have length Pyn. The
words in W,, will have length K,, = Pyx2¢ for some ¢ chosen large enough as specified below. The
K,’s will be increasing and K, divides K,, for m < n. Let k, = K, +1/K,. Thus k, is a large
power of 2 and each word in W41 is a concatenation of k, many words from W,. The number
of words in W, is s,. We require that s,, divides s,+1 and s, is a power of 2 that goes to goes to
infinity quickly. Since Wy, 11 € W¥» this induces lower bounds on the growth of the k,’s.

The requirements described here are simpler than those in [10] as modified in [14], and the
“specifications” used there are appropriately simplified or omitted if not relevant to this proof.
The construction carries along numerical parameters (e,,), (kn), (Kn), (sn), (@n), (Cn), and {(e(n)).
(Showing that the various coefficients are compatible and primitively recursively computable ap-
pears in Appends A.)

As an aid to the reader we use the analogous labels for the simplified specifications as those
that appear in [14].
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Figure 2: The algorithm R, = Fo(N).
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Q4 For n > 1, any two W, -words in the same @Q,, class agree on an initial segment of proportion
at least (1 —€p).

Q6. As a relation on Wy1q, for 1 < s <n+1, QZ‘H refines Q?jll and each Q?fll class contains
2¢+1) many Q*! classes.

The point of Q4 is that the Q,, classes approximate words in W, by specifying arbitrarily long
proportions of the words. A consequence of this is:

Lemma 15. |J,, ", generates the measure algebra of K.

F  This is proved in Proposition 23 of [10]. =
Thus Q4 is the justification for Assertion 3 of Section 2.3.

We now turn to the joining specifications. These are counting requirements that determine the
joining structure. The joining specifications we present here are more complicated than strictly
necessary for the simplified construction in this paper, but we present them as appear in [10] in
order to be able to directly quote the theorems proved there. We note that specification J10.1 is a
strengthening of J10 in [10].

Suppose that v and v are elements of W,, 11 UREV(W,4+1) and (v/,v") an ordered pair from
W, UREV(W,,). Suppose that u and v are in positions shifted relative to each other by t units.
Then an occurrence of (u/,v") in (sh'(u),v) is a t' such that u' occurs in u starting at ¢ +¢' and in
v starting at ¢’. If X is an alphabet and W is a collection of words in X, and uw € WU REV(W) we
say that u has forward parity if u € W and reverse parity if u € REV(W).

By specification Q4 no word in W,1 belongs to REV(W,,41), so parity is well-defined and
unique. However the words in (W}); may belong to REV((W;});) and we view those words as
having both parities.

J10.1 Let u and v be elements of Wy,11 U REVOW,,41). Let 1 <t < (1 —€,)(kyn). Let jo be a
number between €,k,, and k, —¢t. Then for each pair «',v" € W,, UREV(W,,) such that «’ has
the same parity as u and v’ has the same parity as v, let r(u/,v") be the number of j < jo
such that (u/,v’) occurs in (sh* " (u),v) in the j - K,-th position in their overlap. Then

r(u',v")

2

- < €.
Jo S

For fixed n and s, let Q7 = |(W;;)s| and C7" be the number of equivalent elements in each block of
the partition W, /Q".

J11 Suppose that u € Wy, and v € Wy, 11 UREV(W,,41). We let s = s(u, v) be the maximal i < Q
such that [u]; and [v]; are in the same ~;-orbit. Let g = g; and (v/,v") € W, x (W,UREV(W,,))
be such that g[u']s = [v]s. Let r(u/,v") be the number of occurrences of (v/,v") in (u,v). Then:

r(W,v) 1 (1 2
kn Qe \C¥

The next assumption is a strengthening of a special case of J11.

< €p.
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J11.1 Suppose that u € W41 and v € Wy11 UREV(W,41) and [u]; not in the ~q-orbit of [v];.°
Let jo be a number between €,k,, and k,,. Suppose that I is either an initial or a tail segment of
the interval {0, 1,... K,+1—1} having length joK,,. Then for each pair v’,v" € W,UREV(W,,)
such that u' has the same parity as u and v’ has the same parity as v, let r(u/,v’) be the
number of occurrences of (v/,v’) in (u | I,v | I). Then:

r(u,v")

g2

- < €.
Jo n

The properties and specifications described above imply the specifications in [10] as well as
J10.1 and J11.1 from [14].

Remark 16. We note that specification J10.1 implies unique readability of the words in Whpi1.
This follows by induction on n. If the words in Whyi1 were not uniquely readable then we would
have u,v,w € W, with uv = pws and neither p nor s empty. But the one of u or v would have to
overlap either an initial segment or a tail segment of w of length K,+1/2. Suppose it is an initial
segment of w and a tail segment u. On this tail segment the n-subwords would have to agree exactly
with the n-subwords of an initial segment of w. But this contradicts J10.1.

Suppose we have built a collection of words (W, : n € N), equivalence relations (Q, : n € N)
and actions (~v,: n € N) satisfying the properties described then we can cite the following results
occurring in [10]. Fix a transformation 7" built with the construction sequence (W, : n € N). Recall
that if ~,, is non-trivial then the generator g, # 0 induces an invertible graph joining 7, of K,
with K 1. We quote the following results of [10], referencing their numbers in that paper.

Theorem 13 and Proposition 32 Suppose that 7 is an ergodic joining of 7' with 7! that is
not a relatively independent joining over the odometer factor. Then 7 [ Ho X Ho is supported
on the graph of some j-shift of the odometer factor.

Proposition 37 If 1 is an ergodic joining of K with K~!, then exactly one of the following holds:

1. © < oo and for some n < §2, j € Z and some 7, 1 is the relatively independent joining
of K with K~! over the joining 7, o (1,sh™7) of K, x K. 1.

2. Q) = oo and for some j, all n the projection of 7 to a joining on K,, x K is of the form
o (1,sh™7)

If Q = oo, since the H,’s generate, 7 is an invertible graph joining of K with K=!. In both
cases the projection of 7, to a joining of the odometer factor with itself concentrates on the
map r — —x.

Thus it follows that:
1. If K= K~! then Q = oco. In particular if K = K~!, then the II) statement ¢y is true.
2. The projection of 1, o (1,sh™7) to the odometer is of the form z + —z — j.

3. Similarly the projection of 1o (1,sh™7) to the odometer is of the form x + —x — 7.

°In the language of J11: s(u,v) =0, Qf = 1 and CF = s,,.
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Clause 2 of Theorem 10 requires that if M # N are different codes for I1J sentences then the
transformation Fp (M) is not isomorphic to Fp(N). This is clear because the odometer sequence
for Fo(M) consists of k’s whose prime factors are 2 and Pps, while the odometer sequence for
Fo(N) has k’s whose prime factors are 2 and Py. Since Py # Py, the odometer factors are not
isomorphic.

Corollary 33 of [10] implies that the Kronecker factor of each F(IN) is the odometer factor.
Since any isomorphism ¢ between Fp (M) with Fp(N) must induce an isomorphism of the Kro-
necker factors, ¢ has to induce an isomorphism of the corresponding odometer factors, yielding a
contradiction. (See Corollary 57 in Appendix C of [9] for background about Kronecker factors.)

To finish the proof of Theorem 10 we must show that the words, equivalence relations and
actions can be built primitively recursively.

2.6 Building the words, equivalence relations and actions

To finish the proof of Theorem 10 the words W), (N), the equivalence relations 9, (NN) and actions
vy, (N) must be constructed and it must be verified that the construction is primitive recursive.

Note: Formally we are just constructing actions m, for n < 2. However for notational conve-
nience, when constructing the words at stage n + 1, we will write ~; when 2 <14 < n + 1 with the
understanding that it is the trivial identity action.

The collections of words W, are built probabilistically. A finitary version of law of large numbers
shows that there are primitive recursive upper bounds on the length of the words in a collection
with the necessary properties. The actual collection of words can then be found with an exhaustive
search of collections of words of that length, showing that the entire construction is primitive
recursive.

Structure of the induction. The collections of words W,, are built by induction on n. For
n > 1 the words in W, 11 are built by iteratively substituting words into k,-sequences of classes
Q7, by induction on i < n. We will adapt the notation of section 2.2.

The length K of words in W; will be a large prime number Py. To pass from stage n to n+1,
one is required to build the words W, 11, the equivalence relation Q, 1 and, if n4+1 < £ the action
Api1. The length K, 1 of the words will be 2¢ - K,, for an ¢ taken large enough.

Suppose we have already chosen k, and it is a large power of 2. Then (Q?)k" for 0 < i <n give
us a hierarchy of equivalence relations of potential words as described in Section 2.2 as well as the
diagonal and skew-diagonal actions of ~; for ¢ < min(n, Q).

Remark 17. The construction of Wyy1 is top-down. We construct the (W;_ )i = Wn.i_l/Q?H
by induction on i before we construct Wyi1. The equivalence relations get more refined as i in-
creases, so each step gives more information about Wy, 1. Having built WV, 1 )n, an additional step
constructs creates both Wy, 11 and the equivalence relation QZE

Start with ¢ = 0. Then W,,/Qf has one element, a string of length K, with a single letter. Let
(Wr 11)o be the single element consisting of strings of length &, - K, in that single letter.

Each element of (W} )1 is built by substituting k, elements of (W;;);—each of which is a

contiguous block of length K,—into (W} )o. We continue this process inductively, ultimately
arriving at (Wy_ i )n.
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The elements X being substituted | The result of the substitution
into previous words
Wi )o
(Wi Wit
(W:L)Q ( :+1)2
Win Wiii)n

The result of this induction is a sequence of elements of W,,/Q,, of length k,, x K, that is constant
on blocks of length K,,. We must finish by substituting elements of W, into the W,/ Q,,-classes to
get W41 and defining Q1.

A step in the induction on i. Fix an ¢ and view elements (W
of elements of (W});. Since Q;.; refines the diagonal equivalence relation (Q;)%i+1/5: ( )
refines (Q})*. Inside each QF class Cj, one can choose a QF, | class Cj € (Wy)iy1 . Concatenating

these to get CCy ... Cp ;| we create an element of (W, ;)it1. We do the construction so that

+1)i as kp-sequences CoC1 ... Cy,, 1

n
result is closed under the skew diagonal action of ;4.

Remark 18. Following section 2.2, elements of (W, )i+1 are constant sequences of length K.
Thus the concatenation C{CY .. .C’,’Qni1 is a sequence of ky * (K, /K;y+1) many contiguous constant
blocks of length K;i1.

We now describe how these choices are made. Our discussion is aimed at the case where
n+1<Q, forn+1>Q take ~,41 to be the trivial action. Fix a candidate k for k,. View {rev}
as acting on (W,,/QM)* = ((W;);)k. Together, the skew-diagonal action of ~; and {rev} generate
an action on (W, /Q")F. Let R; be a set of representatives of each orbit of this action. Fix the
number E of i + 1-classes desired inside each ¢-class. Consider

E-1
;= [1 I 59, (3)

reR; ¢=0

where S(r, q) is the collection of all substitution instances of Q7 ; classes into r.5 More explicitly,
if r = CoCy...Cx_y where Cj € W,/ Q. Let C;-‘ ={C":C" C Cjand C' € W,/Q},,}. For each
0<g<E-1,let

k-1
S(r,q) = H Cr.
=0

Fix an r € R;. The every element W of HqE:_OI S(r,q) can be viewed as a collection of E many
words of length £ in the language (W;;);+1 whose QF classes form r. Each of these £ many words
can be copied by the m;41 action. If w is such a word, and is a substitution instance of r then
~vit1 (w) is a substitution instance of ~; (7).

So comparing elements of VW (and their shifts) is the same as comparing potential words in
Q4% +1)i+1. The action of ~; 11 preserves the frequencies of occurrences of words in

We work with X; because it can be viewed as a discrete measure space with the counting
measure. The objects being counted in the various specifications correspond to random variables

on this measure space.

SNote that ¢ is a dummy index variable here.
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Definition 19. If (w, 4 :r € R;,0 < ¢ < E) is the collection of words built using the Substitution
Lemma passing from stage i to stage i+1, the (Wy; 1 )iy1 is the closure of {wyq : 7 € R;,0 < q¢ < E}
under the skew-diagonal action of ;.

Example 20. If C C C;,D C Cj are substitution instances, we have the independent random
variables X, g, X, o j» taking value 1 at points & € X; where z(r,q,j) = C and z(r',¢,j) = D,
respectively. The event that C' occurs in X; in the ¢ word in position j and D occurs in v’ in the
()" word in position j' is the event that both Xy gy =1 and X, 45 = 1. If each i-class has p
elements then the probability that both X,/ o v =1 and X, 4; =1 is 1/p?.

The strong law of large numbers tells us that the collection of points in each X; that do not satisfy
the specifications (as they are coded in the conclusion of the Substitution Lemma) goes to zero
exponentially fast in k. As k grows, the number of requirements to satisfy the Substitution Lemma
grows linearly. Hoeffding’s inequality (Theorem 22 below) says that the probabilities stabilize
exponentially fast. The Substitution Lemma follows.

In more detail: The word construction proceeds by first getting a very close approximation to
what is desired and then finishing the approximations to exactly satisfy the requirements. These
two steps correspond to Proposition 43 and Lemma 41 of [10].

The general setup for the Substitution Lemma (Proposition 21) at stage n + 1 is as follows:

e An alphabet X and an equivalence relation @ on X, with @ classes each of cardinality C.
e A collection of words W C (X/Q)* for some k.

e Groups G, H with generators g, h that are either Zs or the trivial group. If H = Zy then
G = Zo.

o If G = Zy then we have a free action G ~ X/Q and if H = Zs we also have a free action
H ~ X. Thus the skew-diagonal actions of G on (X/Q)*¥ and H on X* are well-defined. If
either group is trivial, then the corresponding actions are trivial.

e The H n~ X action is subordinate to G ~ X/Q action via p.
e Constants €4, ¢, € (0,1) such that €, < €2/5|X]|.
e A constant E determining the number of substitution instances desired for each Q class.

e If u,v, w,w are words in the alphabet X, then r(u,v, sh’(w),w’) is the number of j such that
u occurs in w starting at j 4+ ¢ and v occurs in w’ starting at j. Similarly if u,w are words in
the alphabet X, the r(u,w) is the number of occurrences of w in w.

A special case of the Substitution Lemma (Proposition 63 in [10]) is:

Proposition 21 (Substitution Lemma). Let E > 0 be an even number. There is a lower bound kg
depending on (ey, €4, Q, C, W, E) such that for all numbers k > kuy and all symmetric W C (X/Q)F
with cardinality W that are closed under the skew-diagonal action of G and REV(), if for all i with
1<i<(l-—ek, u,ve X/Q and w,w' € W:

r(u,v, shi(w),w") 1

b —@ <€ (4)

and each u € X/Q occurs with frequency 1/Q in each w € W,
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then there is a collection of words S C X* consisting of substitution instances of W¥ such that
if W = HS UREV(HS) we have:”

1. Every element of W' is a substitution instance of an element of W and each element of W
has exactly E many substitution instances of words from HS.

2. For each x € X and each w € W'

r(x,w) 1

koo IX]

< € (5)

i.e., the frequency of x in w is within €, of 1/|X]|.
3. If wy,wy € SUREV(S) with [w1]g = [w2]o and wy ¢ Howy and z,y € X with [xz] = [y]. Then
for h € HyS

r(@,y,wi, hwy) 1
2 0-C?

< €q. (6)

4. Let i be a number with 1 < i < (1 — eq)k and jo be a number between €,k/2 and k — i,
z,y € X, wi,wa € WUREV(W), let r(x,y) be the number of j < jo such that (x,y) occurs
in (shi(wy),ws) in the j" position. Then

< €q- (7)

5. For all z,y € X and all wi,ws € W UREV(W') with different H orbits,

r([z]o, [y]Q7l£w1]Qa [walo) _ | _ o (8)
implies that,
T(x,y,wl,wg) - i
% 2| <t (9)

We remark again that the Law of Large numbers implies that conclusions 1-5 hold for almost
all infinite sequences. For example if you perform i.i.d. substitutions of elements of X to create
a typical infinite sequence w, then the density of occurrences of a given x in @ will be 1/|x|. The
Hoeffding inequality says that the finitary approximations to this conclusion converge exponentially
fast. As aresult, for large enough k it is possible to satisfy conclusions 1-5 with very high probability.

Another remark is that at each stage we start with a collection of words W closed under reversals
and produce another collection of words W’ closed under reversals. However the words we keep at
each stage are the results of the skew diagonal actions on the actual substitutions, not the closure
under reversals.

"H is acting on X* by the skew-diagonal action.

8 While there are typographical errors in the statement of this item in [10], the proof given there yields the correct
statement of the count of substitution instances in item 1 and the inequality 6. Similarly, conclusion 4 has been
strengthened slightly here in a way that does not materially change the proof.
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The sequence e(n). We will have a sequence e(n) such that for n > 0, s, 1 = 2(*+2e(+1)  The
sequence satisfies some growth conditions. (See Inherited Requirement 2 and Inherited Requirement
3 in Appendix A and Figure 5 for an explicit statement of these conditions.) To initialize the
construction we take e(1) = 2.

Finding k£, We now use Proposition 21 to build the collections of words. We will apply it with
E = 2¢("t1) except in one instance where we apply it with £ = 22¢(n+1) - To start the inductive
construction, we take Py to be large enough to apply the Substitution Lemma with Qg the trivial
equivalence relation and Wy = ¥ = {0,1}. For N > 0, since Py > Py, Py can also be used for
ko(N) to initialize the construction as described below with n = 0.

We then choose k, large enough to allow n + 2 successive Lemma 21-style substitutions for
E = 22¢(nt1) corresponding to the equivalence relations Qr for 1 < 7 < n together with a final
substitution of the letters in the base alphabet ¥ to produce W,,+1. (This is a total of n + 1
substitutions.)

More explicitly, note that each of the n + 2 applications of the Substitution Lemma for the
various Q; with F = 22e(n+1) and €a = €,/100 and the finishing lemma produces a lower bound
kl,. We use these lower bounds to determine k.

The following will be important later in the paper:

Numerical Requirement B Let k, (N — 1) be the k,, corresponding to the reduction Fp (N —1)
and k,(N) be the k,, corresponding to the reduction Fp(N) and k,(N). Then

kn(N) 2 kn(N — 1) (10)

Choose a large power of two
Fnviax > max{kly, k. - %, kn (N — 1)},
ensuring that it be sufficiently large that 2~ "ax < ¢,. Then, set
kn = k2iax * Sn.- (11)

Since k,, is of this form and s,, is a power of 2, this ensures that K, = Py - 2¢ for a large /.
By increasing kyax if necessary we can also assume

1. 1/k, < € /4.

2. Sp+1 < sﬁ".

Building W,,;+1/ Q?’H for i < n: This is done by applying the Substitution Lemma n times to
pass from (W} )o successively to (W}, ;)n. At each i < n we substitute 2°"*1) many elements of
(Wr 1 1)it1 into each element of (W) ;).
Completing W, ;1: Having constructed W, +1/Q,, it remains to construct Wy, 11, Q,41 and the
action mv,11. The latter is only relevant if n +1 < €.

We must ensure that the resulting collection of words satisfy Q4 and Q6. This is accomplished
by constructing two collections of words, the stems and the tails.”

Start by rewriting k:I%I Ax A8 (,14;1%I ax — knviax) + Eaiaxe

9 Cf. Propositions 66 and 65, and Section 8.3, in [10].
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e The tails: To build the tails, which have length knjaxsn K, we use Lemma 21, with X =W,
and Q@ = Q,, to build 92e(n+1) many substitution instances in each QZ“—C]&SS C of the final

kniaxsn portion of each word in (W) +1)n' We call these the tails corresponding to C.

e The stems: The stems have length (kfI ax — kMax)snKy,. We use Lemma 21, again with
X =W, and Q = Q,, to create 2¢("t1) many substitution instances in each initial segment
ofa (W; +1)n—word of length kl%l Ax — kvax. We call these the stems corresponding to the initial
segments of all of the words in the QZH—class C of this word.

The words in W41 are built one QZH class at a time. Fix such a class C. Then C has 2¢(n+1)
many stems in the first kfl ax — Fvax and 22¢(n+1) many tails in the final segment of length yiax.
Pair each stem with 2¢("*1) many tails to create the words in Wh+1 that belong to C. This puts
22¢(n+1) words into each C.

Each equivalence class in QZE consists of taking all words starting with a single fixed stem.
It is immediate that there are 2¢(n+1) many QZﬂ—classes in each QZ“ class and that each QZﬂ
class has 2¢("*t1) many words in it. Moreover each class is associated with a fixed stem of length
kﬁl 1x — Fnvax followed by many short tails. Thus specifications Q4 and Q6 are satisfied.

Finally we note that W, was built by n +2 many successive substitutions of size 2¢("*1) into

equivalence classes. Thus s, = 2(F2)e(n+1),

Why does this work? Though it appears in detail in [10], for the reader’s edification it may be
appropriate to say a few things about how the stems/tails construction affects the statistics. This
issue is most cogent in J10.1, where sh!"(u) and v are being compared on small portions of their
overlaps. By the manner of construction of the stems, where the stem of sh*"(u) overlaps with
the stem of v conclusion 4 of Proposition 21 holds with €, = €,/100.

Since jo > epk, the total length of the overlap is at least €,k,K,. The tails have length
kniaxSn K, so the proportion of the overlap taken up by the tails is at most

2Fk\axSn < 2k\axSn QkNIAXE%

<
Jo — enkn 100¢,,
2
< kMg(’)(e” < €n/50.

The specification J10.1 approximates the proportion of j < jo where (u’,v) occur. This proportion
is the weighted average of the proportion Pg of j < jo where (u/,v") occur in the overlaps of the
stems and the proportion Pp of j < jo where (u/,v’) occur in an overlap of a stem with a tail.
Let a be the proportion of the overlap of shtK"(u) and v that occurs on the stems. By the above,

a>1—¢€,/50. Then

1
(aPs + (1 — a)Pr) — =

r(u,v")
Jo s2

On the overlap of the stems |Pg — 2| < €,/100. Since Pr € [0,1] and (1 — a) < €,/50, we see that

r(u', v
uij < En-
Jo Sh

Hence J10.1 holds.
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The action 4.

Case 1 (n+1>Q): In this case, the action of ~,41 is trivial, so there is nothing further to be
done.

Case 2 (n+ 1 < ): In this case, we need to define ~,, 11 to be subordinate to ~,,. Fix a Q"F1-
class C and suppose that C gets sent to D by m,,. Since each Q7 *! class has the same number

of elements we can define ~,,41 so that it induces a bijection between the 9,1 subclasses of
C and D.

The construction of the W,,, Q,, and ., is primitive recursive Here is a standard theorem:

Theorem 22 (Hoeffding’s Inequality). Let (X,, : n € N) be a sequence of i.i.d. Bernoulli random
variables with probability of success p. Then,
) < n52>
> 1) < exp 7? .

1n—1
Pl|— X —

Lemma 23. The construction of the sequence (W, Qn, ~n: n € N) is primitive recursive.

Proof. The only part of the construction that is not a completely explicit induction is finding the
collection of words satisfying the conclusions of the Substitution Lemma. For each candidate fixed
k one can primitively recursively search all substitution instances to see if there is a collection of
words of length &k x Ky that works. Using Hoeffding’s inequality can give an explicit upper bound
for a k that works. The algorithm first computes a k, that works and then does the search. .

This completes the proof of Theorem 10.

Remark 24. Two remarks are in order.

o The asymmetry of the words in the last step of the construction of Why1 appears problematic.
How can the words all be oriented left-to-right stem and tail if they are supposed to be closed
under all the various skew-diagonal actions at stage n + 1 and later?

The answer is that the asymmetries are covered up by the equivalence classes. For example,
the words in WnH/QZﬁ are all constant sequences of length Kpy1. If w € Wyt and C' is
the QZﬂ—class corresponding to w then the word in Wm_l/QZﬂ corresponding to w is simply
a string of Kn+1 C’s. Suppose that 11 (C) = D. When the action ~vp41 is extended
to the skew-diagonal action at a later stage m, it simply takes this string of C'’s to a string
of D’s in a different place in a reverse word in the alphabet Wn+1/QZﬂ. It is completely
opaque whether the elements of D have tails on the same side or the opposite side as the tails

of words in C.

e Roughly speaking, Cases 1 and 2 above correspond to Cases 1 and 2 in section 8.3 of [10],
albeit with several differences. A key one is that here, once the construction falls into Case
1, it remains in Case 1.

We note that we have created inductive lower bounds on the size of ky,.

Numerical Requirement C k, is large enough that s, 1 < skn.
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Numerical Requirement D £k, is large enough to satisfy the use of the Substitution Lemma 21
to construct the words in Wyy1. In particular 1/k, < € /4.

The data for numerical requirement D comes from the coefficients and words and equivalence rela-
tions at stages n — 1 and before.

3 Circular Systems and Diffeomorphisms of the Torus

By Theorem 10, we have a primitive recursive reduction Fp from Godel numbers of H(l) sets to
uniquely ergodic odometer-based systems. However the main theorem is about diffeomorphisms
of the torus and it is an open problem whether there is any smooth ergodic transformation of a
compact manifold that has an odometer as a factor. Rather than attack this problem directly, we
follow [14] and do a second transformation of odometer-based systems into circular systems, which
can be realized as diffeomorphisms. This is the downward vertical arrow F on the right of figure 1.

Subsection 3.1 covers circular systems and their construction. The primitive recursive map
F maps from the odometer-based systems to circular systems and preserves synchronous and
antisynchronous factors and conjugacies. In particular, for those odometer-based systems K in the
range of Fp, K is or is not isomorphic to its inverse, if and only if F(K) is or is not isomorphic to
its inverse. We use the language of category theory to describe the structure that is preserved and
define the categorical isomorphism.

In Subsection 3.3, the circular systems produced are realized as smooth diffeomorphisms of the
torus. This is done in two steps: first, a given circular system is realized as a discontinuous map
of the torus; second, it is shown that how to smooth the toral map into a diffeomorphisms that is
measure theoretically isomorphic to the circular system.

3.1 Circular Systems

Like odometer-based systems, circular systems are symbolic systems characterized by construction
sequences (WS : n € N) of a certain form. The basic tool for constructing circular systems is the
C-operator.

3.1.1 Preliminaries

Let k,1,q € N be arbitrary integers greater than 1, and p be coprime to q. Let 0 < j; < ¢ indicate
the unique integer such that
Ji-p=1 (mod gq). (12)

4 (mod ¢q), and reserve the subscript notation for this use.

We can rewrite j; as p~

Definition 25 (The C-Operator). Let ¥ be a non-empty finite alphabet and let b and e be two new

symbols not contained in X. Let wy, ..., wi_1 be words in X U {b,e}. The C-operator is given by:
k—1qg—1
Clwo, ..., wk—1) = H H b i wéfl -elt
i=0 j=0

where “[]” indicates concatenation.

Fix a sequence (ky, [, : n € N) of positive integers with k,, > 2 and [, increasing and 1/l <
oco. We follow Anosov-Katok ([1]) and define auxiliary sequences of integers (p, : n € N) and
(gn :m € N). Set qo = 1, pp = 0. Inductively define

dn+1 = knln%% (13)
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and
Pn+1 = knlnpngn + 1. (14)

Note that p, and ¢, are coprime for n > 1.
Let o, = pp/qpn- Then

i1 = ap + 1/gnt1. (15)

Since ¢, > I and Y 1/l, < oo, we have ) 1/g, < co. Thus the «, converge to a Liouvillean
irrational @ € [0,1):

a= lim a,
n—0o0

= Zi. (16)

n>1 dn

Circular Construction sequences We first define the notion of a circular construction se-
quence. Fix a non-empty finite alphabet ¥ U {b,e} as above as well as positive natural number
sequences (k, : n € N) and (I, : n € N), with &k, > 2 and (l,) strictly increasing such that
S 1/l < 0o, We take [ = 1.

Let W§ = X. For every n, choose a set P, 1 C (Wfl)k” of prewords. Then Wy, ,; is given by all
words of the form

kn—1qn—1
C(U)(], . wkn—l H H an Ji . ln—l ]z (17)
=0 j=0
where (wp, ..., wg,—1) € Pyy1 is a preword. We call C the C-operator.

The words created by the C-operator are necessarily uniquely readable. However, we further
demand that the collections of prewords (P, : n € N) are uniquely readable in the sense that each
kn-tuple of words p € P, 41, considered a word in the alphabet WY, is uniquely readable. (Unique
readability is discussed in Appendix C3 in definition 49 of [9] and in [13] which has more details.)

Definition 26 (Circular system). Let (WS : n € N) be a circular construction sequence. Then the
limit, which we denote K¢ is a circular system.

To emphasize that a given construction sequence is circular we denote it (WS : n € N).

In this paper the circular construction sequences will be strongly uniform. As a consequence the
resulting symbolic shift is uniquely ergodic and we can write K¢ = (XU {b, e})%, B, 1, SH) where s
is the unique shift invariant measure on K°€.

Example 27. Let ¥ = {x}. Then |W§| = 1. Passing from from Wy, to Wy, one inductively
shows that for all n,|WS| = 1. Define K, to be the limit of the resulting construction sequence.

Suppose that (U5 : n € N) is another circular construction sequence in an alphabet A with the
same coefficients (kn,l, : n € N) having a limit L. Define a map w : L€ — K, by setting

x if f(n) €A
m(f)(n) =qb if f(n) =
e iff(n) =

Then m is a factor map of symbolic systems. Hence K, is a factor of every circular system with
coefficients (ky,l, : n € N).
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3.1.2 Rotation Factors

For a € [0,1], let Ry : ST — S! be rotation by 27« radians. Equivalently we view R, : [0,1) —
[0,1) as given by  — x+«a (mod 1). This rotation R,, plays the same role with respect to circular
systems as the canonical odometer factor plays with respect to the odometer-based systems of
Section 2.

Lemma 28 (The Rotation Factor). Let o = lim v, be defined from a sequence (ky,l, : n € N) from
equation 16. Then Ko = Ry. In particular if (K¢ B,v,SH) is a circular system in the alphabet
Y U {b, e} with parameters (ky,l, : n € N), then there is a canonical factor map p : K¢ = R,.

Proof sketch. For almost every x € K, there is an N for all n > N there are a,, b, > 0 such that
x | [—an,by) is some word in WY. All words in W have the same length, g, so we can define the

following quantity:
pn(z) = ay, (pn> .
dn

Straightforward algebraic manipulations give that

2
Pn+1(«77) - pn(x) < —
gn

whence it is clear that p,(x) — p(z) € [0,1). Since

pa(SH(2)) = palz) + %

taking limits shows that p(SH(x)) = p(x) + «, as desired. =

See Theorem 52 in [14] for a complete proof.

Distinguishing a’s Theorem 1 demands that if M # N, then F(M) 2 F(N). This is achieved
by arranging that the Kronecker factors of F'(M) and F(N) are non-isomorphic rotations of the
circle. This requires that a(N) # a(M) and that Ky is the Kronecker factor of the limit sequence
K¢(N). Recall that for each N we have a prime number Py which we take for kp and and we build
sequences (k,(N),1,(N) : n € N), which in turn, yield sequences (pp,qn, kn,ln : 7 € N)(N) and
(an(N) : n € N) which converge to an irrational a(N).

For each N we take [o(N) =1, so a1 (N) = LN The sequence (k, (V) : n € N) is defined in the
construction of the odometer construction sequences as described after Lemma 21. The [,,’s are
chosen in the construction of the circular sequences and diffeomorphisms. They must satisfy some
lower bounds on their growth, which we describe later.

To ensure different rotation factors correspond to different H(l] sentences, we also put the fol-

lowing growth requirement on the {I,,(N) : n € N) sequences:

Numerical Requirement E Growth Requirement on the [,,’s:

Io(N) > 1,(N — 1).

Lemma 29. Suppose that the k(N — 1), kn(N),l,(N — 1) and l,,(N) satisfy Requirements B and
E. Then a(N —1) > a(N).
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- Note that ko(N — 1) = Py_1 < Py = ko(N), so ¢1(N — 1) < q1(N) Since ¢u11 = knlng?,
kn(N) > kp(N — 1) and 1,,(N) > 1,(N — 1) one sees inductively that for all n g, (N — 1) < ¢, (V).
By equation 16 we see that

Synchronous and Anti-synchronous joinings The system /C,, gives a symbolic representation
of the rotation R, by 2ma radians. The inverse transform REV(K,) is therefore a representation of
rotation by 27(1 — a) = 2m(—a) radians. Moreover the conjugacies ¢ : S' — S! between R,, and
R,' = R_, are of the form z — Z % 2™ for some 6. For combinatorial reasons we fix a particular
conjugacy f : Ko, — REV(K,) that is described explicitly in [12]. Thus f corresponds to the map
defined on S! by z + z % €2™7 for some particular 7. In additive notation on [0, 1) this becomes
x = —x 4y (mod 1) for some ~.

The importance of rotation factors and odometer factors in the sequel is their function as
“timing mechanisms.” Joinings between odometer-based systems induce joinings on the underlying
odometers; the same holds true of circular systems.

Definition 30 (Synchronous and Anti-synchronous Joinings). We define two kinds of joinings,
synchronous and anti-synchronous.

o Let Ky and Ky be odometer-based systems sharing the same parameter sequence {ky, : n € N).
Let n be a joining between Ky and Ko. Then n induces a joining n. between Ky and Ka’s
copies of the underlying odometer O. The joining n is synchronous if n, is the graph joining
corresponding to the identity map from O to O. A joining n between Ky and Ko is anti-
synchronous if n; is the graph joining corresponding to the map x +— —x from O to O~ 1.

o Let K§ and K§ be circular systems sharing the same parameter sequence (kp,l, :n € N). Let
n be a joining between K§ and K§. Then n induces a joining n, between K{ and K§’s copies of
the rotation factor, ICo,. The joining n is synchronous if n, is the graph joining corresponding
to the identity on Ko X Ko. A joining n between K§ and (K$)~! is antisynchronous if 1,
restricts to the graph joining corresponding to f : Ko — (Ko) 7L

3.1.3 Global Structure Theorem

Odometer-based systems and Circular systems that share the same parameter sequence (k,, : n € N)
have similar joining structures. We begin by defining two categories.

Fix a parameter sequences (k, : n € N) and (I, : n € N) with > 1/l,, < co. Let OB be the
category whose objects consist of all ergodic odometer-based systems with coefficients (k, : n € N).
A morphism of OB is either a synchronous graph joining between K and IL or an anti-synchronous
graph joining between K and L=!. Let CB be the category whose objects consist of ergodic circular
systems built with coefficients (k,, [, : n € N) and whose morphisms consist of synchronous and
anti-synchronous graph joinings from K¢ with (IL¢)*!.

The main result of [12] is the following:
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Theorem 31 (Global Structure Theorem). The categories OB and CB are isomorphic by a func-
tor F that takes synchronous joinings to synchronous joinings, anti-synchronous joinings to anti-
synchronous joinings and isomorphisms to isomorphisms.

To prove Theorem 31 one must define the map F on objects, and on morphisms and then show
that it is a bijection and preserves composition. Since we will only be concerned here with how
effective F is we confine ourselves to defining it and refer the reader to [12] for complete proofs. In
[15], the proof is discussed to understand the strength of the assumptions needed to prove it.

We begin by defining F on the objects.

Defining F on objects. Let an K be an odometer-based system with associated construction
and parameter sequences (W, : n € N) and (k,, : n € N). Let (l,, : n € N) be an arbitrary sequence
of positive integers growing fast enough that ), 1/, < co. Inductively define a map F taking the
construction sequence for an odometer-based system K to a construction sequence for a circular
system K¢ by applying the C-operator. Define maps ¢, : W,, = WS¢, as follows:

o Let W5 = X and co be the identity.
e Suppose that ¢, and Wy have been defined. Let
Wy 11 = {C(cn(wo), ..., cn(wy,—1)) : wowr - - - Wy, —1 € Wiy}
and w; € W,,. Define ¢pq1 : Wht1 — Wi by setting
Cnt1(wo -+ wg, 1) = Clen(wo), ..y cn(wg,—1)).
where w; € W,, with wg - wk, -1 € Why1.

The construction sequence (W5 : n € N) then gives rise to a circular system K°. The functor F
will associate K¢ with K.

Lifting measures and joinings We need to lift measures on odometer based systems to mea-
sures on circular systems for two reasons:

1. To complete the definition of F on objects, given an odometer based system (K, u) we need
to canonically associate a measure u¢ to K¢. Then F(K, u) = (K€, u¢).

In the context of this paper this first reason is not pressing: the construction sequences in the
range of Fp are strongly uniform, hence uniquely ergodic. Thus there is only one candidate
for u¢. However to complete the definition of F' we need to understand what happens for
arbitrary ergodic .

2. To define F on morphisms, given a joining J between (K, 1) and (L, v) we need to associate
a joining J°¢ between (K¢, p¢) with (IL¢, v¢).
For the second issue, and to deal with general odometer based systems (K, u), we review the

notion of generic sequences of words. These were introduced in [29] and used in the proof of
Theorem 31 [12].

Let k,0 > 0 and (W, : n € N) be an arbitrary construction sequence. Using the unique
readability of words in Wy, a word w in X%+ determines a unique sequence of words w; in W, such
that |

w = upwouiwy .. . WJUJj41-
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When w € Wy, each u; is in the region of spacers added in Wy, for I’ < 1. We will denote the
empirical distribution of Wy-words in w by EmpDisty(w). Formally:

:|{0§j§J:wj:w’}]
J+1

EmpDist,, (w) (w") , w € W.
Then EmpDist extends to a measure on P(W}) in the obvious way.

To finitize the idea of a generic point for a system (K, ) we introduce the notion of a generic
sequence of words. By p,, we will denote the discrete measure on the finite set 3" given by
tm(u) = p({u)). Then p, is not a probability measure so we normalize it. Let fi,(w) denote the
discrete probability measure on W,, defined by

o ()
) = s o ()

Thus fi,(w) is the relative measure of (w) among all (w'),w" € W,,. The denominator is a
normalizing constant to account for spacers at stages m > n and for shifts of size less than q,.

Definition 32. A sequence (v, € W,, : n € N) is a generic sequence of words if and only if for all
k and € > 0 there is an N for all m,n > N,

|EmpDisty(vy,) — EmpDisti(vp)]||var < €.
The sequence is generic for a measure i if for all k:
lim || EmpDisty,(vy) — fik|lvar =0
n—oo

where || ||yar is the variation norm on probability distributions.

The point here is that the ergodic theorem gives infinite generic sequences for measures . These
infinite generic sequences in turn, create generic sequences of finite words. A generic sequence of
finite words determines a measure. If the generic sequence is built from the measure then the
measure it determines is the original measure

We now deal with the first issue above for arbitrary (K, ) (and not just those that are strongly
uniform). Given an odometer based system (K, r) we must specify the measure v we associate
with v. Section 2.6 of [12] gives a canonical method of constructing a generic sequence of words
(vp : n € N) that encode any ergodic measure on K. The corresponding sequence of words v¢ =
¢n(vy) is also generic and determines an ergodic measure on K. The map F then takes (K,v) to
(K*, 1)

Defining F on morphisms Given an arbitrary synchronous or anti-synchronous joining J
between odometer based systems K and L*! we can view (K x L, J) as an odometer based system.
Taking a generic sequence of pairs of words ((un,vy,) : n € N) for J as in [12] and lifting it with the
sequence of ¢,’s (and adjusting appropriately for reversing the circular operation with a mechanism
denoted f in [12]), one gets a joining J¢ between K¢ and L°.

Define F(J) = J°.
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Is F primitive recursive? Clearly the maps ¢, are primitive recursive so the map taking a
construction sequence (W, : n € N) to (WS : n € N) is primitive recursive. For the same reason the
map taking a joining J specified by a given generic sequence to J¢ is primitive recursive. Thus,
assuming that joinings J are presented in a manner that one can compute the generic sequences
of words, the map J +— J¢ is primitive recursive.

In the context of the systems in the range of Fp, the relevant joinings between K and K—! are
given by limits of n,’s, and the generic word sequences are easily seen to be primitive recursive and
can thus be translated to the joinings of K¢ with (K¢)~1.

Remark 33. We have shown that if pn is true then F o Fo(N) is isomorphic to F o Fo(N)™1
and the isomorphism is primitive recursive. In section 3.3 we build a primitive recursive realization
function R which maps from strongly uniform circular systems to measure preserving diffeomor-
phisms of the torus. Since F' = Ro F o Fp, the result we prove is something stronger than claimed
in Theorem 1. Namely we show that if on is true then there is a measure isomorphism between
F(N) and F(N)~! coded by a primitive recursive generic sequence of words.

3.2 The Kronecker Factors

The second clause of the Main Theorem (Theorem 1) says that if M and N are distinct natural
numbers than the corresponding diffeomorphisms T; and T are not isomorphic. To distinguish
between them we use their Kronecker factors. (For more information on the Kronecker factors,
see e.g. [28]. The use of operator theoretic methods dates to [27].) For this purpose we prove the
following proposition. This section is otherwise independent of the other sections. Readers who
find the proposition and corollary obvious can skip to the next section.

Proposition 34. Let K¢ be circular system in the range of F o Fp, built with coefficients (ky,, :
n € N) and o = lim,, v, then the Kronecker factor of K¢ is measure theoretically isomorphic to the
rotation R .

An immediate corollary of this is:'"
Corollary 35. Suppose that M < N are natural numbers. Then:

1. a(N) < a(M), where a(N) and o(M) are the irrationals associated with the rotation factors
of F(N) and F(M).

2. (KM 2 (Ke)N.,

F  This follows immediately from Lemma 29 and the fact that the Kronecker factor (K)M is
isomorphic to R (pr) and the Kronecker factor of (K" is isomorphic to Ra(ny- -

After Proposition 34 is shown we will have proved the following intermediate step in the proof
of Theorem 1:

Proposition 36. For N a code of a H? sentence, then F o Fo(N) is a primitive recursive circular
construction sequence and

1. N is the code for a true statement if and only if the circular system T' determined by FoFn(N)
is measure theoretically conjugate to T—!;

2. FoFo(N) is ergodic—in fact strongly uniform; and
3. For M # N, F o Fo(M) is not conjugate to F o Fo(N).

10See section 2.3 for an explanation of the (N)-notation.
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Review of the Kronecker factor Let 7 = (v,, : m € Z) be an enumeration of the eigenvalues
of the Koopman operator of a measure preserving transformation (X, B, i1, 7). Then 4 determines
a measure preserving action on ((S1)%, \%) (where AZ is the product measure on (S*)%) by coordi-
natewise multiplication. The action is ergodic, discrete spectrum and isomorphic to the Kronecker
factor of (X, B, u,T).

If o is an eigenvalue of the shift operator then the powers of a, @ = (" : n € Z) are also
eigenvalues corresponding to a subsequence of 4 and hence the coordinatewise multiplication of &
on (SY)% determines a factor of the Kronecker factor. This is a proper factor if and only if there is
an eigenvalue of the Koopman operator that is not a power of . In particular there is a non-trivial
projection map from the Kronecker factor to the dual of the countable group {a™ : n € Z}

n

The proof of Proposition 34 follows the outline of the proof of Corollary 33 of [10]. Working
in the context of odometer based systems built with coefficients (k, : n € N), it says that the
Kronecker factor Kr of each system K in the range of F» is the odometer transformation O based
on (ky, : n € N). Note that the odometer O is a subgroup of the Kronecker factor since rotation by
the k:flh root of unity is an eigenvalue of the Koopman operator. The steps there are:

1. Any joining J of K with K projects to a joining Jo of O with itself. If J» is not given by
the graph joining coming from a finite shift of the odometer then J must be the relatively
independent joining of K with itself over Jo. (This is Proposition 32 of [10].)

2. If there is an eigenvalue of the unitary operator associated with K that is not a power of «
there is a non-identity element ¢ in the Kronecker factor whose projection to the odometer O
is the identity.

3. Multiplying ¢ by an element h € O which is not a finite shift gives an element ¢ of the
Kronecker factor Kr that is not in O and projects to an element of O that is not a finite shift.

4. Let ‘H* be the sub-o-algebra of the measurable subsets of K generated by Cr. Then multipli-
cation by ¢’ gives a graph joining J* of H* with itself that projects to the joining of O given
by multiplication by h. Extend J* to a joining J of K with K. Then J does not project to
a finite shift of the odometer but it is also not the relatively independent joining of K with
itself over the joining of O with itself given by h. This is a contradiction.

To imitate this argument we first note that for circular systems, the analogue of the odometer
is the rotation Ko, and that every element 5 € S' determines an invertible graph joining Sp of Ky
with itself, corresponding to multiplication by 8 in the group S'. We need to identify the analogue
of the “finite shifts on the odometer” in the case of circular systems. The appropriate notion is
given in Definition 78 in [14], namely the central values. The central values form a subgroup of the
unit circle.

To prove Proposition 34, fix a circular system K¢ in the range of F o Fin. We first show that
there is a 8 € S! that is not a central value. This 3 plays the roll of h in the outline given above.
Then the analogue of Proposition 32 is proved: any joining of K¢ with itself that does not project
to the joining given by multiplication on S! by a central value is the relatively independent joining
over its projection.

Suppose now that there is an eigenvalue of the Koopman operator that is not a power of o. Then
the action of @ on (S')Z is a non-trivial projection of the Kronecker factor Kr¢ of K¢. Hence we
can fix a non-identity element ¢ of the Kronecker factor whose projection to the factor determined
by the powers of « is the identity. As in step 3 above we multiply ¢ by a non-central 8 to get a t/
in the Kronecker factor which:
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a.) induces a joining J* of H* with itself that projects to the graph joining of K, with itself induced
by 85'

Extending J* to a joining J of K¢ with itself we see that:
b.) J is not the relatively independent joining over the joining of Iy given by Sg.

After the details are filled in, this contradiction establishes Proposition 34.

Notation As in previous sections we identify the unit interval [0,1) with the unit circle via the
map = — 2™ which identifies “addition mod one” on the unit interval with multiplication on
the unit circle. When we write “+” in this section it means addition mod one, interpreted in this
manner.

We use the following numerical requirement in explicit proof of Proposition 34:
Numerical Requirement F The k,,’s must grow fast enough that > 2—: < 00.

To finish the proof of Proposition 34, we fix a circular system K¢ in the range of F o F» and prove
the following two lemmas.

Lemma 37. There is a non-central value 5.

Lemma 38. Suppose that 5 is not a central value. Let J be a joining of K¢ x K¢ whose projection
to Ko X Ky is the graph joining of Ko with itself given by multiplication by Sg. Then J is the
relatively independent joining of K¢ x K¢ over the joining of Ko with itself given by Sg.

F [Lemma 37] While it seems very likely that there is a measure one set of examples we just need
one. The example will be of the form f =35>, kz;ﬂ for an inductively chosen sequence of natural
numbers (a, : n € N) with 0 < a,, < 6™.

To describe 8 completely and verify it is non-central we need several facts from sections 5, 6 and
7 in [14], which discuss the relationship between the geometric and the symbolic representations of
Ka.

The geometric construction builds a sequence of periodic approximations of lengths (g, :
n € N) with the resulting limit being the rotation of the circle by R,. Expanding on Lemma
28, these approximations are given by the towers of intervals 7, = {[0,1/qn), [Pn/dn,Pn/Gn +
1/Gn), 200/ qn: 200/ an + 1/ qn), - - - [kDn/dns kPn/@n + 1/an), . . . } viewed as a periodic system.

The symbolic representation uses the C operation to build the construction sequence for the
symbolic system. The latter is described in Example 27. We give the geometric description of the
periodic approximations presently.

We use the following notions and notation from [14]:

1. ¢o: (Kq,sh) — ([0,1),+) is the measure theoretic isomorphism between the shift on ICp, and
the rotation R, given in Lemma 28. We use s’s to refer to elements of ., and x’s to refer to
elements of [0,1) and s corresponds to x if po(s) = x.

2. The notion of s € K, being mature implies that s has a principal n-subword and it is repeated
multiple times both before and after s(0).

3. Sg = 9051735900 is the symbolic conjugate of the rotation Rg, via the map ¢g. If s corresponds
to = then Sg(s) corresponds to z + 3 (mod 1). We will occasionally be sloppy and use the
language s + 3 for s € K, when we mean Sg(s).
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4. In [14], a set S is defined as the collection of elements s € K, such that the left and right
endpoints of the principal n-subwords of s go to minus and plus infinity respectively. Explicitly
suppose that s € K is such that for all large enough n, the principal n-subword exists and
lives on an interval [—ay, b,] C Z. The point s € S if lim, a,, = lim,, b, = 0.

The set Sg is [,z Sa(5), the maximal Sg invariant subset of S. It is of measure one for the
unique invariant measure on ICy. Since K, is a factor of every circular system K¢ with the
same coefficient sequence (ky,,[,, : n € N) for all invariant measures pu on K¢ {s € K¢ : the
left and right endpoints of the principal n-subwords of s go to minus and plus infinity is of
[-measure one.

5. Given an arbitrary 8 we can intersect Sz with S, for all rational ¢ and get another set of
measure one. Hence in a slight abuse of notation we assume that S is invariant under
conjugation by rational rotations.

6. For s € K, if r,(s) = i and z is the corresponding element of [0,1) then x is in the it level
of the tower corresponding to the n” approximation to R,. This tower is given by Ra,, -

In the geometric picture, at stage n, we have a tower of intervals of the form [iay,,iap, +1/¢,)
ordered in the dynamical ordering—where the successor of the interval [icv,, oy, + 1/gy,) is
[(i+ D)an, (i + 1)an + 1/qy). Thus level I;4q is I; + ou,.

Passing from stage n to stage n + 1 involves subdividing the old levels into new levels, which
are of the form [icy41,i0m+1 + 1/gn+1). These subintervals move diagonally up and to the right
through the n-levels. The diagonal movement corresponds to addition of o, 1. The key formula is
15:

Qpt1 = Qn + 1/(]n+1-

As illustrated in diagrams 9 and 10 of [13] and Figure 3, the n+ 1 tower proceeds diagonally up
through the n-tower. This is evident from the form of equation 15 and the fact that g, 1 = knlng?.
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Again, following [13], the geometric picture in Figure 3 corresponds to the symbolic represen-
tation as a circular system in the following way. Some of the diagonal paths hit the left or right
vertical strips bounding the [j/knqn, (7 + 1)/kngn) subdivisions of the levels. Those diagonals cor-
respond to the boundary portion of the n + 1-words (the b’s and the e’s). The diagonal paths
that start in the region [j/knqn, (j + 1)/kngs) and traverse from the bottom to the top level while
staying in that region correspond to the j** argument of the C operator at stage n.

Restating this in terms of the isomorphism ¢y between K, and ([0,1),R,), if s; and sg are
mature elements of K, corresponding to x1, x5 € S', then:

e 11,12 belong to two diagonal strips that do not touch a vertical strip and with base in the

same interval [j/kngn, (7 +1)/knan)
iff

e Inside their principal n + 1-subwords, s1(0) and s2(0) are in n-words coming from the same

e} « [ «
argument w§ of C(wg, wf, ... wi ).

We now continue the enumeration of basic notions in [14] we use here.

7.

10.

11.

In a very slight variation of the notation of [14], when we are comparing s with ¢ we define
d"(s,t) = rp(t) —rn(s) (mod gp). In this argument frequently ¢ = Sg(s) and if 5 is clear from
the context we simply write d"(s). If z and y correspond to s and ¢, the number d"(s,t) can
be viewed either as the number of levels in the n-tower between x and y or as the difference
between the locations of 0 in the principal n-subwords of s and t.

. For mature s and ¢, the result of shifting ¢t by —d"(s,t) units is that the location of 0 is in the

same position in its principal n-subword as is the position of s(0) in its principal n-subword.

. Applying the shift map d"*!(s,t) times to s moves its zero to the same point as t’s is relative

to its n + 1 subword. Subsequently moving it back —d"(s,t) steps moves the zero of result
back to the same position in its n-subword as zero is in s’s n-subword. In other words, if s’
is the result of applying the shift map to s d"*1(s,t) — d*(s,t) times, then 0 is in the same
position relative to the n-block of s’ as it is in s.

The n + 1-word in the construction sequence for K, is of the form
C(wg,wi .. .w?n_l)

and hence if s is mature at stage n then s(0) occurs in an n-block corresponding to the position
of w?‘o for some jo. We can ask whether the jy corresponding to the principal n-subword of the
(d™*F1(s,t) —d"(s,t))-shift of s is the same as the jo corresponding to the principal n-subword
of s.

If it does, then s and t are well-matched at stage n and if not the s and t are ill-matched at
stage n.

If s’ is the result of shifting s d"*1(s,t) — d"(s,t) times then the 0 of s’ is in the same ws as
is the zero of t. So for the purposes of determining whether s is well-g-matched at stage n,
we can compare which argument of C s(0) and ¢(0) belong to. As a result we can speak of s
and ¢ well or ill-matched at stage n. If x and y are the corresponding members of [0,1) we
can say say that x and y are well or ill-matched at stage n.
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We are now ready to construct the non-central 5. We do this by induction. At stage 1, a; = 0. At

stage n, we let 5, = 22;11 kzgp‘ For ¢ =0,...6" — 1, in the terminology of item 11 consider

M; = {z:z and = + B, + i/knq, are well-matched}.

Since the M;’s are disjoint, for some i, A\(M;) < 6%. Let a,, be such an i and let 8,41 = Bn+an/kngn.
Finally we let 8 = > {° k‘:—gp, so B = limy, o0 Bn-
To see this works, we first show that:

For almost all x, for large enough m, if s,, corresponds to x + 3, then for all mature
n < m,rn(Sm) = Tn<85(8)).

This is a Borel-Cantelli argument. Note that if 7,,(s,) = 7, (Sg(s)) then for all mature n <
m, Tn(Sm) = Tn(Ss(s)). Hence it suffices to show that for almost all s, all sufficiently large m,
Tm(sm) = rm(Sp(s)).-

If z corresponds to s then the only way that 7, (sm) # rm(Sg(s)) is if & + B, is in a different
level of the m-tower than x + 8,, +>.°0  “2-. In turn, the only way that this can happen is if for

. p=m kpqp
some 1,
s a
x+ Bm € [iam+1/Qm_ Z 2 P 7iam+1/Qm)'
p=m oD

The latter interval is the right hand portion of a level in the m-tower, i.e. of an interval of the form
[iCtm, i + 1/qm).

The collection of x that have this property for a given level i has measure Y 00 2

p=m Ty Since there

are ¢, many levels ¢, the measure of all of the x with this property at stage m is ¢y, * (Z;O:m k’;zp).

Computing:

o a a — a
we(E )i e 30
p—m PP m mr1 opdp
G, G NG
km dm+1 ml kp
<imy L g

where C' = >"{° %2 Since we assume that > % < ooand a, < 6”71, C is finite. We see immediately
that the measures of the collections of z such that at some stage m the level of  + 5, in the m-
tower is different from the level of x + 8 in the m-tower is summable. By Borel-Cantelli, it follows
that for almost all s there is an N for all m > N, 7, (sm) = 7m(S5(s)).

From the choice of a,, for all but a set of measure at most 1/6™, the s are ill-matched with
Sn+1. Again by the Borel-Cantelli lemma, for almost all s there is an Nj for all n > Nj s and s,41
are ill-matched. Since for almost all s and all large enough n the level of s,,11 is equal to the level
Sp(s) it follows that for almost all s and all large enough n s is ill-matched with Sg(s). If v is the
unique invariant measure on K, then equation 33 of [14] defines

An(B) = v({s: s is ill-f-matched at stage n}).
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We have shown that A, (8) —, 1. Hence

AB) =) An(B)
is infinite. Hence we have shown that £ is not central. —

We now prove Lemma 38

F  [Lemma 38] First note that the analysis in section 6.3, on page 50 of [14], says that for any
non-central  we can choose hd; and hds and a spaced out set GG such that, as in equation 35 on
page 50, letting

¥n={s: s is ill-f-matched at stage n and in configuration Phq, pa, }

we get equation 36 on page 50 of [14]:

S () = oo (18)
neG
We now observe that for n < m € G, {f,, and J},,, are probabilistically independent. This follows
from Lemma 75 on page 47 of [14]: belonging to Jf, is an issue of the value of d"*! — d". The
differences d™*! — d™ are independent of the differences d"*! — d”, hence the sets Jf,, and ,,, are
pairwise independent. Which level z is on in the n-tower is independent of whether or not x is
misaligned at the next stage.
Let M, be the collection of s that are mature at stage m. Then applying the “hard” Borel-
Cantelli lemma, for almost all s € M,y,, there are infinitely many n € G, s €¥f,,. Since J,,, M, has
measure one, for almost all s € K¢ there are infinitely many n, s €l,.

We now argue that if J; and J> are two joinings of K¢ x K¢ over Sg, then they are identical.
Thus they are both the relatively independent joining. The result follows from the following claim
which is an analogue of the claim in Proposition 32 of [10]:

Claim Let J be a joining of K¢ with itself that projects to the graph joining of K, with itself
given by Sz. Then for all cylinder sets (a) x (b) in K¢ x K€, the density of occurrences of (a,b) in
a generic pair (z,y) for J does not depend on the choice of (z,y).

= Since 3 is non-central, and z,y are generic and J extends Sg, we know that for infinitely many
n € G the n-words of x and y are misaligned. Let G* be this set.
It suffices to show that:

e There is a sequence of subblocks of the principal n + 1-subwords of  and y of total length
By,

e as n € G* goes to infinity, B, /qn+1 goes to 0,

e after removing the subwords in B,, the number of occurrences of (a) x (b) is independent of
the choice of (x,y).
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Fix a large n € G*. We count occurrences of (a,b) in (x,y) over the portion of the principal
n + l-subwords of z that overlap with the n + 1-blocks of y. As in Proposition 32 of [10], we show
that, up to a negligible portion, this is independent of (x,y). From the definition of |}, for n € G,
there are fixed values of hdy and hdy. The number hds determines the overlap of the n + 1-block of
x containing x(0) is the left or right overlap. For convenience, assume that hd; = L and hdy = R.

First: discard n-subwords that are not mature. This is a negligible portion.

Next, shift y back by d"(x), so that the mature n-subwords of = in the principal n + 1-subword
are aligned along the overlap of the principal n + 1 subword of y with the corresponding n-subword
of y.1!

Then by specification J.10.1 and the fact that = and y are misaligned, any pair of n—words (u, v)
occurs almost exactly 1/s2 times. So, after discarding a negligible portion of the occurrences all
pairs occur the same number of times. Shifting them all back by d"(x), an amount determined by
B and thus independent of x and y, gives a collection of counts of occurrences of (a,b) in all pairs
(u, sh® (v)) with all pairs occurring essentially the same number of times. The result is independent
of the choice of x and y. The errors from the negligible portions and they go to zero in proportion
to n + 1. This proves the claim. =

3.3 Diffeomorphisms of the Torus

The map F o Fp maps codes for H(l) sentences to construction sequence for circular systems. We
now indicate how to realize circular systems as diffeomorphisms and why these diffeomorphisms
are computable. The realization map is described completely in [13]. We review it here to verify
its effectiveness.

The construction is in two stages. In both parts a sequence of periodic transformations is con-
structed and the limits are isomorphic to the given uniform circular system. In both constructions,
the torus, viewed as [0, 1] x [0, 1] with appropriate edges identified, is divided into rectangles. These
are then permuted by the periodic transformations according to the action of the shift operator
on the circular system. In the first stage, this permutation is built without regard to continuity.
The result is an abstract measure preserving transformation. In the second part, using smooth
approximations to these permutations, the limit is a C'*° diffeomorphism.

The main tool for moving from the discontinuous, symbolic transformations to the smooth
geometric transformations is the Anosov-Katok method of Approximation by Conjugacy [1]. To
allow for this smoothing the parameter sequence (kj,l, : n € N) must have the sequence of [,,’s
grow sufficiently fast.

The lower bounds I} ((kn, : m < n), (I, : m < n)) will be determined inductively, the complete
list of requirements on [ appears in Appendix A.

For the moment we assume we are given the circular sequence (WS : n € N) with prescribed
coefficient sequences (ky,l, : n € N) where the [,, grow sufficiently fast.

The periodic approximations to the first stage transformation are of the form

Ty, = Zn 0 Ra, 0Z;, " (19)

which result from conjugating horizontal rotations (z,y) =% (2 + an,y), with the more com-
plicated transformations h,, : T? — T? that permute rectangular subsets of T?. The a,, are the
rationals constructed from the coefficient sequence (k,, [, : n € N) described in section 3.1.1. The

maps Z, are of the form
Zp=hiohgo...0oh,

11 Sections 4.3-4.6 of [14] discuss how the spacings of left and right overlaps correspond.
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where h; codes the combinatorial behavior of the " application of the C-operation. The initial,
discontinuous transformation T will then be the almost-everywhere pointwise limit of the sequence
(T, : n € N).

In the second part of the construction the h,’s will be replaced by smooth transformations A},
that are close measure theoretic approximations to the h,’s. This results in a new sequence

H,=hiohjo---0h]. (20)
The analogue of equation 19 for the final smooth transformation is:
S, = H,Rq, H,* (21)

The sequence of S,,’s converge in the C*°-topology to a C*° measure preserving transformation
S :T? — T2

Why do we do this? In [13] it is shown that 7" is measure isomorphic to K¢. Hence if K¢ =
F o F(N) we have @y is true if and only T'= T~!. Since S = T, oy is true if and only S = S~1.
Thus if we define the realization function R by setting R(K®) = S, we see that R o F o Fp is a
reduction of the collection of codes for true IT{-sentences to the set of recursive diffeomorphisms
isomorphic to their inverses. This is the content of figure 1.

In addition to these results in [13], we will show that the sequence of S,,’s can be taken to be
effective, converge in the C* topology and that if S(N) comes from N and S(M) comes from M,
then S(N) 2 S(M). This will complete the proof of Theorem 1.

3.3.1 Painting the circular system on the torus

We encode the symbolic system K¢ on the torus by inductively constructing the sequence of h,’s.
The map ho is the identity map corresponding to W§ = ¥. To build hy,41, T? is subdivided into
rectangles which are then permuted.

Definition 39 (Rectangular subdivisions). Let n,m € N.

e For an arbitrary natural number q, L, represent the collection of intervals

[0, %), [%, %), ceey [%, 1).
o Giwen Ly and Is, let I, ® L, be the collection of all rectangles R = Iy x I, where Iy € Z, and
5L €Z,.

e Let D C T?. Then, for a collection of rectangles &, the restriction of & to D is given by
EID={RND:Re¢t}.

e Recall the parameter sequences (qn : n € N) and (s, : n € N). Further recall that s, = |W5|
and qn = |u| for u € WS. Define
§n =1y, ®Ls,.
e Lastly, for0 <i < gn, and0 < j < sy, let R}, be the element of &, given by [qi Ly [ IELy,

n’ qn Sn’ Sn

Note that there is a straightforward description of the action of R, on &:

Ra, : B j = Ry,
where addition in the subscript is performed modulo g,,.

The map hy, 1 will be defined as a permutation of Z, 4, ®Z;, ., and thus induces a permutation
of &,41. It is important to make h,y; commute with R,,. To do this hy4; is first defined on

(Thongn ® Is,,1) 1([0,1/g5) x [0,1)) and then copied over equivariantly to T2.
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Constructing the h,’s: The paper [13] is concerned with realizing circular systems, and so
builds the h,’s in terms of the prewords used to construct the sequence (WS : n € N). In the case
that (WS : n € N) is in the range of F, the prewords are determined by the underlying odometer
based sequence (W, : n € N). We describe h,41 directly in terms of the odometer sequence
<Wn n e N> = F@(N)

Fix enumerations (w
words in W,:

7:0<s < sy of each W,. The words in W,,41 are concatenations of

n+l __
Wy

= wowq ...Wk,—1

where each w; = w?, for some s’
To each w”™! associate the horizontal strip [0,1) X [s/sn+1, (s + 1)/sn41) and each w? with
[0,1) X [$'/sn, (8" +1)/8n).

Proposition 40. There is a permutation of Iy
0 <s< Sn+1,

® Ts,yy 110,1/gn) x [0,1) such that for all

ndn

if w; = w, then

hn—&-l([i/anny (Z + 1)/ann) X [3/371-1-17 (S + 1)/8n+1)) (22)
C[0,1/qn) X [8'/spn, (8" +1)/3n).

F  Equation 22 gives regions that each atom of Z, 4, ® Z,, ., [[0,1/g,) % [0,1) must be sent to by
hn+1. To prove there is such a permutation we see that each region has exactly the same number
of subrectangles as the cardinality of the collection of atoms that must map into it.

We count occurrences of n-words in (n + 1)-words. Fix a word

w?“ = Wow; ... Wk, —1 € Wht1.
Then, by strong uniformity each n-word w”, occurs ky/s, times as a w;. So each word w?*! puts
kn/sn rectangles in a target region. Since there are s,1 many words of the form w?*! the target
regions must contain s,1(ky/s,) rectangles.

Each horizontal strip of [0, 1) ®Z, is divided into s,,11/s, many horizontal strips by [0,1)®Z;,, .,
and each vertical strip of Z,, ® [0, 1) is divided into k,, many vertical strips by Zj,,q, ® [0,1). Thus
each atom of the partition &, [ [0,1/¢,) x Zs is divided into k;,(s,+1/sn) rectangles by Iy, 4, ® L, ., -
In particular Zy,, 4, ® Zs, ., [ [0,1/qn) x ['/sn, (5" +1)/s,) has ky(sp41/5,) many atoms.

Hence each target region contains the same number of rectangles as atoms sent to it and there
is a map hy41 satisfying equation 22. —

Since hy1 is a permutation of 7y, 4, ®Zs, ., [[0,1/g,) x[0, 1) for each 1 < i < gy, it can be copied
onto each 7y, 4. ® s, ., I [ip/qn, (ip + 1)/qn). The result of this is a permutation of Zj, 4, ® Z;
(and hence &,41) that commutes with the rotation R, .

n+1

Remark 41. It is a clear that hy41 can be defined in a primitive recursive way using the data

Wn+1 .

Remark It is shown in [13] that having defined the sequence of h,,’s in this manner, for sufficiently
fast growing [,, the transformations 7;, converge in measure to a measure preserving transformation
T : (T%,)\) — (T2, )\) that is isomorphic to the original circular system defined by (W¢ : n € N).
The map taking (WS, : m < n) to T, is primitive recursive.
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3.3.2 Smoothing the T,

We now must smooth the T,’s to produce S,,’s that have measure-theoretic limit S which is iso-
morphic to T'. Secondly, we show that S is a recursive diffeomorphism.

For our discussion of smoothing we need an effective complete metric on the C°°-diffeomorphisms.
Note that the C topology is the coarsest common refinement of the C* topologies for each k € N.
There are many choices for effective/recursive metrics generating the C* topology for each k. These

. . . . . . . I . .
metrics can be defined explicitly in terms of the partial derivatives ET P TP Ty for j < k. Given

an effective sequence of complete metrics (d* : k € N) generating the C* topologies, with distances
bounded by 1, then

oo
d>® — Z 2—(k+1)dk
k=0
generates the C'™ topology.

Fix such a complete effective metric giving rise to the C*> topology on T?. Without loss of

generality we can assume that
doo(‘sv T) < gé@ﬂgd’]l‘z(s(x)aT<$))a (23)
where dr2 is the ordinary metric on T2,

To pass from the discontinuous Z,’s to diffeomorphisms, the h;’s are replaced by smooth A
which are very close approximations and give the H,’s in equation 20. Then the H,’s will also be
diffeomorphisms. While there is no control over the C*°-norms of the H,, the key observation at
the heart of the Anosov-Katok method is the following: if Af,; commutes with R, then

S, = H,oRa, oH;1
=Hpohyy o (hrsz+1)_1 ° Ra, OHJI
= Hp o hj 1 0 Ra, o(hiy1) ™ o Hy '
= H,110Ra, oH;jl. (24)

Hence by taking a4 sufficiently close to «,,, S,+1 can be taken as close as necessary to Sy, in the
C®°-norm.

To carry out this plan we begin by describing how we smooth the h;,,’s. This is done explicitly
in Theorem 35 of [13], which says:

Theorem 42 (Smooth permutations). Let T? be divided into the collection of rectangles T, @ Ip,
and choose € > 0. Let o be a permutation of the rectangles. Then there is an area preserving
C>®-diffeomorphism ¢ : T? — T? such that ¢ is the identity on a neighborhood of the boundary
of [0,1] x [0,1] and for all but a set of measure at most €, if x € R, then p(z) € o(R) for all
ReZ,®7,.

In Lemma 36 of [13] it is shown that an arbitrary permutation of Z,, ®Z,, can be built by taking a
composition of transpositions of adjacent rectangles. The transformation ¢ is then built effectively
as a composition of smooth near-transpositions that swap adjacent rectangles. We summarize the
proof from [13]. The reader wanting more background details can consult Appendix D of [9], where
it is shown that the construction can be carried out recursively in a code for the permutation o.

The main technical point for building the near-transpositions of adjacent rectangles is captured
by showing that for all 0 < v < 1 and arbitrarily small € < 1 — =, there is a diffeomorphism g of
the unit disk in R? such that:
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1. o rotates the top half of the disk of radius v to the bottom half and vice versa.
2. g is the identity in a neighborhood of the unit circle of width less than e.

The map ¢q is constructed by considering a primitive recursive C* map f : [0,1] — [0, 7] that is
identically equal to 7 on [0,7] and is 0 in a neighborhood of 1. Then ¢( rotates the circle of radius
r by f(r) radians. Taking ~ very close to 1 gives a smooth near transposition.

Using Riemann mapping theorem techniques, these rotations of the disk can be copied over to
measure preserving maps from [—1, 1] x [0, 1] to itself that

1. take all but 1 — €¢/2 mass of [—1,0] x [0,1] to [0,1] x [0,1] and vice versa,
2. are analytic on the interior of [—1,1] x [0, 1],
3. are the identity in a neighborhood of the boundary.

Since every permutation of {0, 1,...mn} can be written as a composition of less than or equal
to (nm)? transpositions of the form (k, k+ 1), given any o we can build ¢ by taking e small enough
and composing sufficiently good approximations between adjacent rectangles corresponding to the
transpositions composed to create o.

Building S,,. Using Theorem 42 we can effectively choose a smooth h; , ; which well-approximates
hn+1 measure theoretically. By choosing the approximation well, we can guarantee that the .S, in
equation 21 moves the partitions &, very close to where the T,,’s move the &,’s.

Since h; ;1 is effective, using the continuity of composition with respect to d>, S,41 can be
made arbitrarily close to S5, by taking a1 sufficiently close to «,,. Thus if «, converges to «
sufficiently quickly, the sequence (S, : n € N) is Cauchy with respect to the complete metric d*>
and hence converges to a smooth measure preserving diffeomorphism S. Taking the sequence of
hi’s to be sufficiently close to the h,’s the S),’s are sufficiently close to the T},’s to apply Lemma
30 of [13] to show that the diffeomorphism S is measure theoretically isomorphic to 7. Hence
(T2, )\, S) is measure theoretically isomorphic to (K¢, v, SH).

The induction. The discussion above was predicated on choosing the l,,’s to grow fast enough.
We now show how to inductively choose lower bounds [} on the [,. Numerical Requirement E gives
one collection of lower bounds for the {’s, independently of the choices of the maps H,, and numbers
ay,. Hence we choose [ to dominate this sequence of lower bounds, as well as the lower bounds we
add here.

Suppose we have defined Hy, 11 from h;,, and H, in a manner that satisfies equation 24 holds
and that the H,’s can be computed effectively. Then, for any given €, and small rational j3,

dOO(Hn-l-lﬁanﬁB ;—ilanﬁaanl) (25)

can be primitively recursively computed to within a given €. Moreover, this is a decreasing function
of 8 for small 5 > 0. Thus one one can effectively find a 0 such that if |a,+1 — ap| < d, then
doo(SnJrl, Sn) < 2~ (n+1)
Recall the definitions of the a,, = py, /¢, from equations 13, 14 and 15. Then «,, does not depend
on I, and
Qpi1 = Qp + 1/knlnqz.

Thus to make a,41 close to «,, it suffices to make [, sufficiently large that

1/knlng? < 6. (26)
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Numerical Requirement G The parameter [,, is chosen sufficiently large that

doo(Sn-i-l, Sn) < 2—(n+1) (27)

The numbers ay,, (W5, : m < n) and (hy, : m < n+ 1) determine the ¢ in equation 26 and thus
how large [,, must be. All of this data can be computed recursively from (W,, : m < n +1). (We
note that neither the choice of s,41 nor the definition A uses [,.)

3.3.3 The effective computation of S,

We now show that each element of the sequence (S, : n € N) is effectively computable (Definition 8).

Claim 43. The functions h;, and R, are effectively computable C*-functions. As a consequence
each Sy is effectively uniformly continuous.

Proof of Claim 43. For simplicity of exposition, we only show how to compute the modulus of
continuity and approximation for S, itself; finding the modulus of continuity and approximations
to the higher differentials is conceptually identical but notationally cumbersome.

Recall that we must produce two functions:

e A modulus of continuity, d : N — N, and
e An approximation, f: ({0,1} x {0,1})<N — ({0,1} x {0,1})<N.

It is routine to check that if Ty and T are effectively uniformly continuous—that is, if there
exist moduli of continuity dy and d; and approximations fy and f; corresponding to each—then
the composition, T7 o Ty is effectively uniformly continuous.

The second part of the claim follows from the first since Equations (21) and (20) show,

Su=hjohjo---oh}oRa, o(hg) " o---o(h3) o (). (28)

The case of R, is particularly simple. Since R, is an isometry, it has a Lipschitz constant
of 1. In particular, the modulus of continuity is simply given by d(n) = n, and, since R,,, is
well-defined on rational points, we can also determine the approximation by setting f to be

([@]ms [Ylm) = ([2]m + [an]ms [Y]m)

Where [2],,, denotes the smallest dyadic rational k x 2!=™ for 0 < k < 2™ minimizing |2 — [2]|.
In the case of hj, for m < n, recall from the discussion after Theorem 42 that h;, can be built
as a composition of a sequence of smooth transpositions:
hS

— S S S
m — 0020199 0y(m)

Note that the number of transpositions necessary, t(m) < |£me1]? = (km - @m - Sma1)?, and is a
computable function of m since it is the number of transpositions necessary to build the permutation
in Proposition 40.

Since o} is a smooth transposition of an explicit form (see in Appendix D of [9] for background
details), one can calculate a uniform Lipschitz constant L% for it; hence, taking Ly, > maxXs<y(m) Lj,
we have that

B2, (@) = B ()] < (L) 4z — |
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Consequently, a suitable modulus of continuity for h?, is given by
d(n) = n+ [t(m) - logy(Lm)], (29)

where [z] is the smallest integer greater than z. The construction of a primitive recursive approx-
imation to h;, is straightforward from the primitive recursive approximations to the o;’s. As we
remarked in Section 1.5, it follows that (h$,)~! is primitive recursive. =

In summary, the modulus of continuity and approximation for .S,, can be calculated using the
following steps:

1. Compute the (hy, : m < n);
2. Build the approximations to k%, and (h$,)~! using A, and the smooth transpositions o
3. Compute the moduli of continuity of (h? : m < n) and their inverses;

4. Compute (a,, : m < n) (and, consequently, the approximations and moduli of continuity for
(Ra,, :m <n));

5. Compute the approximation and modulus of continuity of S,, by composing the approxima-
tions and moduli of continuity calculated in Steps 1 through 4 according to Equation (28).

3.4 Completing the proof

Theorem 1 claims the existence a computable function F, which on inputting a natural number
N (corresponding to the I1{ sentence ¢ = py) outputs a code for a computable diffeomorphism
S(N) of T2. Whether or not S(N) is measure theoretically conjugate to S(N)~! is equivalent to
the truth or falsity of . Finally for different numerical inputs the corresponding S’s will not be
isomorphic. In summary, letting S = S(NV),

(A) If N codes ¢, then ¢ is true if and only iff S = S—!

(B) On input N, F recursively determines a code for an effectively C'°° map of the torus to itself,
i.e., F' determines:

i.) A computable function d : N x N — N, where d(k, —) computes the moduli of uniformity
of the k" differential of S(N), and

ii.) A computable function f(k,—) where f(k,—) is a map on dyadic rational points of T?
approximating D¥S(N) (the k-th differential of S(N)). Given an input that is precise to
d(k,n) digits, f(k,—) approximates the first n-partial derivatives {#Z_iy :0<i<n}
to n-digits.

(C) If N # M, then the associated diffeomorphisms S(IN) and S(M) are not conjugate.

Because the function F' maps natural numbers to natural numbers (the codes for the diffeomor-
phisms) we let F' > be the associated function R o F o Fp that maps into the space of actual
diffeomorphisms. It produces a diffeomorphism of T2 from a Gddel number N for a I1J sentence.
We show F” satisfies (4) and (C) and then argue there is a (primitively) computable routine coded
by F(N) that has the same values.
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Item (A) Given N, Fo(N) computes an odometer-based construction sequence (W, : n € N).
By Theorem 10, if K(V) is the uniquely ergodic symbolic shift associated with the construction
sequence then K(N) = K(N)~! if and only if ¢ is true.

The sequences (h? :n € N), (I, : n € N), and (WS : n € N) are computed. If K¢ is the circular
system associated with (WS : n € N), then Proposition 36 shows that K¢ 2 (K¢)~! if and only if ¢
is true.

Finally the realization map R preserves isomorphism. So if S = R(K¢), then (T2 )\, S) =
(T2, A, S71) if and only if ¢ is true.

Item (C) We need to see that for M < N, S(NN) 2 S(M). Since the realization map R preserves
isomorphism it suffices to see that (K*)M = F o Fp(M) is not isomorphic to (K¢)V.

By Corollary 35 we see that the Kronecker factor of KM is K . Any isomorphism between
(KC)N and (K¢)™ must take the respective Kronecker factor of one to the other, hence would imply
an isomorphism between K~ and K .

However this is impossible since Corollary 35 implies that 7 > o™ > o > 0.

Item (B) F > is a map from N to diffeomorphisms. By the result of Section 3.3.3, the diffeomor-
phisms are recursive. We must show that there is a recursive algorithm coding a function F' that
computes the moduli of continuity and approximations to each F' b(N ) and its differentials.

We use the notation d” to denote the modulus of continuity returned by F(NV), and we use the
notation £V to denote the approximation. Without loss of generality, we restrict our attention to
d(0,—) and f(0, —)—that is, the C° modulus of continuity and approximation of S. The calculation
for d(k,—) and f(k,—) for k > 0 is virtually identical conceptually. We simplify the notation of
(B) above and write d™V(n) for d(0,n) and £V (5,1) for f(0,5,t).

Let us first consider the modulus of continuity. The routine for computing d” depends on
choosing a large number of numerical parameters:

€n, e(n)7 Sny kna l’nv PN

These have numerical dependencies that are generally of the form a, > b, or a, < b,. It is
routine that these can be satisfied in a primitive recursive manner—provided that the dependencies
are consistent. This is verified in Appendix A where it is shown that the dependencies among these
constants form a directed acyclic graph.

The subroutine we describe next comes during the computation of F'(N), and hence we may
assume that we have the coefficients k,(N — 1),1,(N — 1) already computed. This computation
was made during the first n steps of the computation of F(N — 1), but we neglect that recursion
in this discussion.

For the inductive construction we note that:

For each 0 < m < n+1, make the following calculations, which recursively depend on smaller m.
Specifically, W, is built from W,,,_1 using the Substitution Lemma (Proposition 21) as described
in section 2.6. Then A;, is built from the information in the words in W,,. This allows [,, to be
chosen large enough that Numerical Requirement G holds. This in turn defines p,, and ¢,, and
allows Wy, to be built.

The algorithm is illustrated in Figure 4.

1. Using (et : kK < m) and W,,—1, choose k,, large enough to satisfy the Numerical Requirements
C and D and apply the Substitution Lemma m + 1 times to generate W,,;
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2. Build Ay, smooth it to get Ay, and hence H,,. Calculate H,,’s modulus of continuity.
3. Choose I, sufficiently large that Numerical Requirements E and F hold (with n +1 = m).
4. Build Wg,.

5. Calculate the approximation and modulus of continuity corresponding to S;, using the meth-
ods of Section 3.3.3.

6. Continue until m = n + 1 and d°~(n + 1), the n + 15! approximation to the modulus of
continuity of S,41 is determined.

7. Output d(n + 1)(n + 1) = d°N(n + 1).

At the end, using the modulus of continuity d corresponding to S, 1, output d”¥(n) = d(0,n + 1)
where d(n + 1) is the modulus of continuity of Sy, 41.

To verify that this procedure actually yields a modulus of continuity for S, recall that by
Numerical Requirement G, Equation (27), it follows that

d®(Sp41,8) < 270+,

By inequality 23,

max dpz (Sn1(2), 5(x)) < d*(Sn41,5) < 9~ (n+1),
e

Since d(n + 1) yields the number of digits of input necessary to approximate S, 11 to an accuracy
of 2= (1) it follows that the approximation of Sy is itself an approximation of S which, given
d(n + 1) digits of binary input, is accurate to within 27".

The approximation f for S is calculated almost identically, except for the output. Given

([#]am (nys [Wlan ) € (0,1} x {0, 1})%)

the output is
fN(n+1) = (fO([‘T]dN(n)v [Ylan (n))s f1{[Z]an (n), [y]dN(n))>

where f(n + 1) = (fo, f1) is the approximation of S, 11 produced in Step 5, again in the notation
that [z],, is a m-digit binary approximation of z.
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B Initialize sy, (em)
Input n and set m = 0. % o

Choose
yes no Q71n7 Ems Bms Emy Sm+1
satisfying the Numer-
ical Requirements.

Output d(n + 1)(n + 1),
where d(n + 1) is S,41’s
modulus of continuity.

Calculate k,, > k(N —
1) and large enough for
Substitution Lemma

Calculate the modulus
of continuity and Set m to m + 1.
approximation of S,,.

A

Choose Iy, > 1 (N — 1) 4

Build Ay, b, Hy, and
andoiarge BTN 0 calculate modulus Build W,,
d (Sm, Sm—l) <

10-m-1, Build We.. of continuity of H,,.

Figure 4: The algorithm for calculating the modulus of continuity d”V of S. This algorithm is easily
altered to produce the approximation %V of S simply by changing the output to (fo(Z,%), f1(Z, 7)),
where f(n+ 1) = (fo, f1) is Sp+1’s approximation.
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Appendix

In [9] there are three more appendices giving well-known background on topics in logic, dynamical
systems and a proof of the “pasting lemma” we use in this paper. The pasting lemma there is a
simplified version of an original proved by Moser ([22]).

A Numerical Parameters

A.1 The Numerical Requirements Collected.

In this appendix we review the requirements on the numerical parameters used in the construction.
Specifically, in constructing the diffeomorphism F'(N) we build construction sequences (W, : n €
N), (W< : n € N) that depend on N and realize the corresponding circular system K¢ as a diffeo-
morphism. These steps are intertwined—for example the circular system is built as a function of
the sequence (kp,l, : n € N). In turn the [, are chosen as function of (W, : m < n) in order to
facilitate the smooth construction. To rigorously complete the proof we need to review all of these
parameters and see that the inductive choices can be made consistently in a primitive recursive
way.

At many stages in this paper we appeal to results from [14]. Hidden in those appeals is a
sequence of parameters (u, : n € N) that is not explicitly mentioned in the construction presented
here. For this reason in this review we include the inductive construction of (i, : n € N).

A substantial difference between this paper and earlier constructions is that the domain of the
reductions in [10] and [14] is the space of trees of finite sequences of natural numbers. The analogue
in this paper is that the only trees considered here are the trees of sequences ((0,1,...7n) : n < Q)
for Q finite or infinite depending on the input N. We note that these trees are really “stalks” and
are finite or infinite depending on (2. Since the trees used in this paper are of this very special
form, the requirements are easier to satisfy.

Another difference with this paper and [14] is that in the earlier paper it sufficed to pick the
parameters small enough or big enough in the correct order to satisfy the Numerical Requirements.
In this paper we are concerned with having an effective construction, so we need to be more explicit
about the Numerical Requirements in certain places, or otherwise argue that they can be satisfied
primitively recursively.

Closely following section 11 of [14] we begin with a review of the inductive requirements from
[10]. We give them in the notation of [14]. These inductive requirements are modified and simplified
in the construction in the current manuscript. We note the versions used in this paper.

Requirements that were instituted in [10] and their modifications. These requirements
were dubbed Inherited Requirements in [14]. Requirements that were new in [14] are called simply
Numerical Requirements, and requirements that explicitly used in the text of this paper are labelled
with capital letters A-F.

Recall that the number of elements of W,, is denoted s,,; the numbers Q7" and CI" denote the
number of classes and sizes of each class of Q7 respectively. From the construction in [10] we have
sequences (€, : n € N), (sp, kn,e(n) : n € N).

Inherited Requirement 1 (¢, : n € N) is summable.

Inherited Requirement 2 2¢(n) the number of an+1 classes inside each QF class. The strictly
monotone sequence of numbers e(n) will be chosen to grow fast enough that

2(n+2)2—e(n+1) <e, (30)
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Similarly we set C = 2¢") for m < n as well.

Modification: In this paper the construction is simplified so to build W, 11 we have exactly
n + 2-substitutions of each of size 22¢("*1) Hence we can replace this requirement by the
simple formula s, = 2(*TDe(™) In particular sy, Q" and C" are all to be powers of 2.

Inherited Requirement 3 For all n,
2€n5i < €p—1 (31)

Inherited Requirement 4
enkns, 2, — 00 as n — 0o (32)

Inherited Requirement 5

H(l —€p) >0 (33)

neN

Comment: Since this is equivalent to the summability of the ¢,-sequence, it is redundant and
we will ignore in the rest of this paper

Inherited Requirement 6 (Original Version) There will be prime numbers p; such that K; =
p?si_lKi_l (i.e. kj = p?si_l). The p,’s grow fast enough to allow the probabilistic arguments
in [10] involving &, to go through.

Modification For all n, k, = Pn2%s,,, where for each n, ¢ is large enough for the substitution
argument involving k,, to go through.

Comment: In [10] K,, was a product of a sequence of prime numbers. The requirement on
the sequences of prime numbers was that they were almost disjoint for different trees and
that they grew sufficiently quickly. In this paper Ky is Py * 2¢ for a large /.

Since we have only one collection of very special trees the requirement simplifies to needing
that the ¢ in the exponent grows sufficiently quickly for the Substitution Lemma (Proposition
21) argument to work.

Inherited Requirement 7 s, is a power of 2.

Comment: This again is redundant as the modified Inherited Requirement 2 says directly
that s, = 2(nthe()

Inherited Requirement 8 For all n, ¢, < 27"

Numerical Requirements introduced in [14]

Numerical Requirement 1 lp >20and ), 1/l < 1/l,_1.

Numerical Requirement 2 (¢, : n € N) is a sequence of numbers in [0, 1) such that 6 ) . v en <
EN.

Numerical Requirement 3 k[, and g, grow fast enough that e,k, — oo,
enln — 00, €pgn — 00.
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|G

Numerical Requirement 4 > il < .
1

Modification In this paper case |G}| < 2 so numerical requirement 4 becomes
> 1.
SR
Comment: Since Q7 = 2¢(") and Inherited Requirement 2 implies that 27t127¢(") — (. this
requirement is redundant in this paper.
Numerical Requirement 5 p,, is chosen sufficiently small relative to min(e,, 1/Q7).
Explicitly: let ¢, = min(e,, 1/Q7) and take

0 < fin < t, min2" "2 1
" " k<n tr ’

Then for all m -
Hn
tm > —.
m>
n=m

Numerical Requirement 6 [, is big enough relative to a lower bound determined by (K., S, :
m < ny, (lm : m <n) and s,41 to make the periodic approximations to the diffeomorphism
F(N) converge. Moreover ky, < .

Numerical Requirement 7 s, goes to infinity as n goes to infinity and s,41 is a power of s,.
Comment Since s, is a power of 2¢(") we know that s, — oo as long as e(n) — co. Making
Sp+1 a power of s, is simply an algebraic condition on e(n + 1).12

Numerical Requirement 8 s,,;1 < sfl".

Numerical Requirement 9 The ¢,’s are decreasing, ¢y < 1/40 and €, < &,.

Numerical Requirement 10 k,, is chosen large enough relative to the lower bound determined
by Sn+1,€n to apply the Substitution Lemma and construct the words in W, 1. Implicitly
this requires that 1/k,, < € /4.

Comment: This is essentially the same as Inherited Requirement 6.

Numerical Requirement 11 ¢, is small relative to u,.

Modification Remark 94 of [14] discusses quantities r(z,y),(z,C), f(x) that are determined
by counting occurrences of x,y in words in an alphabet £ with s letters that have a given
length ¢. It says that for all 4 > 0 there is an € = €(u, s) such that if for all x,y € L,

r(z,y)
f — ? < €
then for all x:
r(z,C) C “u
flx) s

12 Any choice of e(n 4 1) with e(n +1) = (k — 1)n 4+ k — 2 + ke(n) makes s,1+1 = 5. So we choose e(n + 1) of this
form using a large k.
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From the proof of the lemma it is straightforward to find an explicit formula for e(u, |C|, ¢, s)
for an upper bound on €. The small relative clause can be rephrased as asking that

€n < G(Una C{l, qn, 3n)~
Since CT = 2-eln)g, €(tn, CT, Gn, spn) is really a function of u, ¢p, sp.

Numerical Requirement 12 ¢yky > 20, the ¢, k,,’s are increasing and
> 1/enkn < 0.

Numerical Requirement 13 The numbers ¢, should be small enough, as a function of Q7, that
for all wo,w; € W5y UREV(Wy, 1) with [wo]1 # [w1]1 the following inequality holds:

el [ujli =[vjli}| 1 1
| — Q—? < Q—? (34)

Numerical Requirements introduced in this paper

In this paper we have some supplemental numerical requirements. We list only those that are
not redundant given the requirements listed above.

Numerical Requirement B k,(N —1) < k,(N).
Numerical Requirement D 1/k, < ¢ /100.
Numerical Requirement E [,,(N — 1) <[,(N).

Numerical Requirement F 3~ & < cc.

Numerical Requirement G d>(S,,,1,S,) < 2~ "),

A.2 Resolution

A list of parameters, their first appearances and their constraints

We classify the constraints on a given sequence according to whether they refer to other se-
quences or not.

Computable collections of requirements on an element z,, in a sequence ¥ = (z,, : n € N) that
are all of the form “z,, is large enough” or all of the form “x,, is small enough” that inductively
refer to (x,, : m < n — 1) are straightforwardly consistent and can be satisfied with a primitive
recursive construction. For example a requirement that a certain inductively constructed sequence
involving a given variable be summable is satisfied by asking that the n'" sequence be less than
27", Similarly conditions that refer to the first n steps in the computation of any parameters in
F(N —1) are not at risk of being circular and hence can be satisfied without affecting the conditions
themselves. We call these Absolute conditions.

Those requirements on Z that refer to other sequences ¥ risk the possibility of being circular and
thus inconsistent. We refer to these conditions as Dependent conditions. The Dependent conditions
are those that introduce the risk of not having solution. (See [14] for more discussion of this.)

1. The sequence (k, : n € N).

Absolute conditions:
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A1l The sum ) 6"/k, is finite.
A2 ko = PN and k:n(N) > k}n(N — 1)

Dependent conditions:

D1 Numerical Requirement 10, is a lower bound for k, depends on s,1, €,, asking that k,
be large enough for the word construction using the Substitution Lemma to work.
Why is this primitive recursive? Given s,11 and €, the discussion in the proof of Lemma
23 shows that a lower bound for k,, can be given from Hoeffding’s Inequality (Theorem
22) in a primitive recursing way. So the issue is circularity rather than computability.

D2 Inherited Requirement 6. In this context it says that K,, = Pn2ts,, for a large /.
Why is this primitive recursive? K,, is defined inductively K,, = kp_1kp_2...kg. So D3
is easily seen since kg = Py and for n > 0, k,, is defined in equation 11 where it is s,
times 2¢ for some £. The size of ¢ is determined by D1.

D3 From Inherited Requirement 4, equation 32 requires that enknsgzl goes to co as n goes
to oo.
Why is this primitive recursive?: This can be satisfied primitively recursively by choosing
ky, to be an integer larger than %
We note that equation 32 implies that €,k, > s2 and by requirement 7 s,, — oo. Hence
> 1/enky, is finite.

D4 Numerical Requirement 8 implies that k, is large enough that s,,; < sk

log(sn+1)

Comment: This is easily satisfied by taking k, > Tog(sn) "

D5 Numerical Requirement D says 1/k, < €3 /100. Comment: As long as €, is defined before
kn, Requirement D is immediate by taking k, > 4/€3.

D6 Numerical Requirement 12 says that egko > 20 and the e, k;,’s are increasing and »_ 1/e,ky,
is finite.

Why is this primitive recursive? As noted the summability condition follows from D3.
The other part of Numerical Requirement 12 is satisfied primitive recursively by taking
k, to be an integer at least %

From D1-D5, we see that k,, is dependent on the choices of (ky,, I, : m < n), (sy : m < n+1),
and €,, and these dependencies can be satisfied primitively recursively.

. The sequence (l,, : n € N).

Absolute conditions

A3 Numerical Requirement E: [,,(N) > (N — 1).

A4 Numerical Requirement 1 says that 1/1, > > 2 ., 1/lx. We also require that l,, > 20%2",
an exogenous requirement.

Dependent conditions

D7 By Numerical Requirement 6, [,, is bigger than a number determined by (ky,, sy, : m <
nY, (I, : m < n) and s,4+1. This is superseded by the more explicit Numerical Require-
ment G says that d*(S,;1,S,) < 2-"+1),
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Why is this primitive recursive? The || ||o-norm of SoT" can be computed effectively from
the || ||co-norms of S and 7. In particular there is a primitively recursively computable
real number M such that

doo(Sn—i-l, Sn) < M’an-l—l - an|
M
<

" Gnt1

and the latter inequality is from equation 15.

D8 By Numerical Requirement 3, €,¢, — oo. This can be arranged by taking l,, to be large
enough relative to &, that £,¢, > max(e,_1¢n—1,n).

Why is this primitive recursive? Because ¢ 11 = knlng2 there is an explicit lower bound
on Iy in terms of €,41.

Thus [,, depends on (ky,, $pym : m < n), (l, : m < n), epy1 and Sp41.

3. The sequences (s, : n € N) and (e(n) : n € N). We treat these sequences as equivalent
since s, = 2(nt1e(n)

Absolute conditions

A5 Inherited Requirement 7 says that s, is a power of 2.

A6 The sequence s, goes to infinity.

AT 5,41 is a power of sy,.

Dependent conditions

D9 The function e(n) : N — N referred to in equation 30 gives the number of QF, ; classes

inside each QY class. It has the dependent requirement that ontlg—e(n) < ¢, . Moreover
8, = 2(nt1e(n)

The result is that s,11 depends on the first n 4 1 elements of T (K, S,y b : m < 1), Sy, and

e, 13

Why is primitive recursive? The only requirement for choosing s,41 is that
276(77,4’1) < 5n2in
and this is clearly primitively recursively satisfiable.

4. The sequence (¢, : n € N).

Absolute conditions

A8 Numerical Requirement 9 and Inherited Requirement 1 say that the (e, : n € N) is
decreasing and summable and ¢y < 1/40.

A9 Inherited Requirement 8 says that €, < 27"

Dependent conditions

131t is important to observe that the choice of s,41 does not depend on k,, or I,,.
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D10 Numerical Requirement 9 says ¢, < ey,.

D11 Equation 31 of Inherited Requirement 3 says 2€,52 < €,_1

D12 Numerical Requirement 11 says that €, must be small enough relative to p,.
Why is this primitive recursive? This is shown in [14] using Lemma 97, which describes
how to calculate an explicit function €(py,, ¢n, $) such that Numerical Requirement 11
holds if €, < €(tn, qn, Sn)-

D13 Numerical Requirement 13 says that €, is small as a function of Q7.

Why is this primitive recursive? This is shown in the argument in Sublemma 99 of [14],
which gives appropriate effective upper bounds using Hoeffding’s Inequality.

The result is that €, depends exogenously on the first n elements of 7, and on Q7, sy, €n,
€n—1 and f,.

. The sequence (g, : n € N).

Absolute conditions

A10 Numerical Requirement 2 says that 6y en < en. This can be arranged by taking
en < 127"e, .

Dependent conditions

Numerical Requirement 3 imposes three potential Dependent conditions on e,: ek, — o0,
Enln, — 00, €ngn — 00. We deal with these in turn.

(a) The requirement that (e,k, : n € N) goes to infinity already follows from the fact that
€, < €, and item D6.

(b) (enly : n € N) goes to infinity. This follows from k,, < l,,, which is covered in Dependent
condition D7.

(¢) (engn : m € N) goes to infinity. This follows from Dependent condition DS.
Since Numerical Requirement 3 from items D6-8, all of the requirements on (g, : n € N) are
absolute or follow from previously resolved dependencies. Moreover they are trivial to satisfy
primitively recursively.
. The sequence (Q7 : n € N).
Recall Q7 is the number of equivalence classes in QF. We require:

Absolute conditions

A11 The only requirement on the choice of @ not accounted for by the choices of the other
coefficients is that Y 1/QF < oo.

Dependent conditions

None.

. The sequence (u, : n € N).
This sequence gives the required pseudo-randomness in the timing assumptions.

Absolute conditions

None.

Dependent conditions

57



Sn+1

Figure 5: Order of choice of Numerical parameters dependency diagram.

D14 Numerical Requirement 5 appearing in this paper is written explicitly as follows: Set
tn, = min(e,, 1/Q7) and take

0< pin < tpmin27 "2 1
" nkgn tr ’

Then for all m

o

Hn
tm > —.
m>

n=m

Thus Numerical Requirement 5 requires that p, satisfy a primitive recursive dependent con-
dition depending on ¢, and Q7.

The recursive dependencies of the various coefficients are summarized in Figure 5, in which an
arrow from a coefficient to another coefficient shows that the latter is dependent on the former.

Order of choices We begin by setting: so = 2,51 = 8,p9 = 0,90 = ko = 1,1y = 21. Q? is not
defined, but Q1 is determined by s1. pop = €9 =ko =lp =1, g9 = 1.1, &1 = £0/12,

Assume:

The coefficient sequences (kny, L, QF", tim, €m : m < n), (€ : m < n) and s, have been
chosen. It is know whether n < Q.

To do:
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Choose ky, Uy, QT tin, €n, Ent+1 and s,41. Each requirement is to choose the correspond-
ing variable large enough or small enough where these adjectives are determined by the
dependencies enumerated above.

Figure 5 gives an order to consistently choose the next elements on the sequences; Choose the
successor coefficients in the following order:

n
Ql yEns Uny Ens Sn+1, k;ny ln'
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