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Abstract

A basic problem in smooth dynamics is determining if a system can be distinguished from
its inverse, i.e., whether a smooth diffeomorphism T is isomorphic to T−1. We show that
this problem is sufficiently general that asking it for particular choices of T is equivalent to
the validity of well-known number theoretic conjectures including the Riemann Hypothesis and
Goldbach’s conjecture. Further one can produce computable diffeomorphisms T such that the
question of whether T is isomorphic to T−1 is independent of ZFC.
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1 Introduction

When is forward time isomorphic to backward time for a given dynamical system? When the acting
group is Z, this asks when a transformation T is isomorphic to its inverse. It was not until 1951, that
Anzai [2] refuted a conjecture of Halmos and von Neumann ([19]) by exhibiting the first example
of a transformation where T is not measure theoretically isomorphic to its inverse.1 In fact the
general problem is so complex that it cannot be be resolved using an arbitrary countable amount
of information: in [14], it was shown that the collection of ergodic Lebesgue measure preserving
diffeomorphisms of the 2-torus isomorphic to their inverse is complete analytic and hence not Borel.

In this paper we show that for a broad class of problems there is a one-to-one computable
method of associating a Lebesgue measure preserving diffeomorphism TP of the two-torus to each
problem P in this class so that:

• P is true

if and only if

• TP is measure theoretically isomorphic to T−1P .

The class of problems is large enough to include the Riemann Hypothesis, Goldbach’s Conjecture
and statements such as “Zermelo-Frankel Set Theory (ZFC) is consistent.” In consequence, each
of these problems is equivalent to the question of whether T ∼= T−1 for the diffeomorphism T of
2-torus canonically associated to that problem.

Restating this, there is an ergodic diffeomorphism of the two-torus TRH such that TRH
∼= TRH

−1

if and only if the Riemann Hypothesis holds, and a different, non-isomorphic ergodic diffeomorphism
TGC such that TGC

∼= TGC
−1 if and only if Goldbach’s conjecture holds, and so forth.

Gödel’s Second Incompleteness Theorem states that for any recursively axiomatizable theory Σ
that is sufficiently strong to prove basic arithmetic facts, if Σ proves the statement “Σ is consistent”,
then Σ is in fact inconsistent. The statement “Σ is consistent” can be formalized in the manner of
the problems we consider. Consider the most standard axiomatization for mathematics: Zermelo-
Frankel Set Theory with the Axiom of Choice and the formalization of its consistency, the statement
Con(ZFC).

If TZFC is the diffeomorphism associated with Con(ZFC) then (assuming the consistency of
conventional mathematics) the question of whether TZFC ∼= TZFC

−1 is independent of Zermelo-
Frankel Set Theory—that is, it cannot be settled with the usual assumptions of mathematics.

One can compare this with more standard independence results, the most prominent being the
Continuum Hypothesis. Those independence results inherently involve comparisons between and

1 See for example Math Review MR0047742 where Halmos states “By constructing an example of the type
described in the title the author solves (negatively) a problem proposed by the reviewer and von Neumann [Ann. of
Math. (2) 63, 332–350 (1942); MR0006617].”

2



properties of uncountable objects. The results in this paper are about the relationships between
finite computable objects.

We now give precise statements of the main theorem and its corollaries. The machinery for
proving these results combines ergodic theory and descriptive set theory with logical and meta-
mathematical techniques originally developed by Gödel. While the statements use only standard
terminology, it is combined from several fields. In an arXiv preprint of this paper ([9]) there are
several appendices in an attempt to convey this background to non-experts.

There are several standard references for connections between non-computable sets and analysis
and PDE’s. We note one in particular with results of Marian Pour-El and Ian Richards that give
an example of a wave equation with computable initial data but no computable solution [25].

1.1 The Main Theorem

As an informal guide to reading the theorem, we say a couple of words. More formal definitions
appear in later sections.

• A function F being computable means that there is a computer program that on input N
outputs F (N).

• The diffeomorphisms in the paper are taken to be C∞ and Lebesgue measure preserving. A
diffeomorphism T : T2 → T2 is computable if there is a computer program that when serially
fed the decimal expansions of a pair (x, y) ∈ T2 outputs the decimal expansions of T (x, y) and
for each n there is a computable function computing the decimal expansion of the modulus
of continuity of the n-th differential.2 Since computable functions have codes, computable
diffeomorphisms also can be coded by natural numbers.

• By isomorphism, it is meant measure isomorphism. Measure preserving transformations
S : X → X and T : Y → Y are measure theoretically isomorphic if there is a measure
isomorphism ϕ : X → Y such that

S ◦ ϕ = T ◦ S

up to a sets of measure zero.

• We use the notation Diff∞(T, λ) for the collection of C∞ measure-preserving diffeomorphisms
of T2.

• Π0
1 statements are those number-theoretic statements that start with a block of universal

quantifiers and are followed by Boolean combinations of equalities and inequalities of poly-
nomials with natural number coefficients.

• We fix Gödel numberings: computable ways of enumerating Π0
1 statements 〈ϕn : n ∈ N〉 and

computer programs 〈Cm : m ∈ N〉. The code of ϕn is n, the code of Cm is m.

• Older literature uses the word recursive and more recent literature uses the word computable
as a synonym. We use the latter in this paper. Indeed, since none of the phenomenon
discussed here involve recursive behavior that is not primitive recursive we use effective, and
computable as synonyms for primitive recursive.

2Recent work of Banerjee and Kunde in [3] allow Theorem 1 to be extended to real analytic functions by improving
the realization results in [13].
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Here is the statement of the main theorem.

Theorem 1. (Main Theorem) There is a computable function

F : {Codes for Π0
1-sentences} → {Codes for computable diffeomorphisms of T2}

such that:

1. N is the code for a true statement if and only if F (N) is the code for T , where T is measure
theoretically isomorphic to T−1;

2. For M 6= N , F (M) is not isomorphic to F (N).

The diffeomorphisms in the range of F are Lebesgue measure preserving and ergodic.

We now explicitly draw corollaries.

Corollary 2. There is an ergodic diffeomorphism of the two-torus TRH such that TRH
∼= T−1RH if

and only if the Riemann Hypothesis holds.

Similarly:

Corollary 3. There is an ergodic diffeomorphism of the two-torus TGC such that TGC
∼= T−1GC if

and only if Goldbach’s Conjecture holds.

There are at least two reasons that this theorem is not trivial. The first is that the function F is
computable, hence the association of the diffeomorphism to the Π0

1 statement is canonical. Secondly
the function is one-to-one; TRH encodes the Riemann hypothesis and TGC encodes Goldbach’s
conjecture and TRH 6∼= TGC.

Corollary 4. Assume that ZFC is consistent. Then there is a computable ergodic diffeomorphism
T of the torus such that T is measure theoretically isomorphic to T−1, but this is unprovable in
Zermelo-Frankel set theory together with the Axiom of Choice.

We note again that there is nothing particularly distinctive about Zermelo-Frankel set theory
with the Axiom of Choice. We choose it for the corollary because it forms the usual axiom system
for mathematics. Thus Corollary 4 states an independence result in a classical form. Similar results
can be drawn for theories of the form “ZFC + there is a large cardinal” or simply ZF without the
Axiom of Choice.

Finally, these results can be modified quite easily to produce diffeomorphisms of (e.g.) the
unit disc with the analogous properties. Moreover techniques from the thesis of Banerjee ([4]) and
Banerjee-Kunde ([3]) can be used to improve the reduction F so that the range consists of real
analytic maps of the 2-torus.

We finish this section by thanking Tim Carlson for asking whether Theorem 1 can be extended
to lightface Σ1

1 statements, which it can in a straightforward way. This increases the collection of
statements encoded into diffeomorphisms to include virtually all standard mathematical statements.

Primitive recursion Informally, primitive recursive functions are those that can be computed
by a program that uses only for statements and not while statements. This means that the com-
putational time can be bounded constructively using iterated exponential maps. In the statements
of the results we discuss “computable functions” but in fact all of the functions constructed are
primitive recursive. In particular the functions and computable diffeomorphisms asserted to exist
in Theorem 1 are primitive recursive.
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1.2 Hilbert’s 10th problem

Hilbert’s 10th problem asks for a general algorithm for deciding whether Diophantine equations have
integer solutions. The existence of such an algorithm was shown to be impossible by a succession
of results of Davis, Putnam and Robinson culminating a complete solution by Matijasevič in 1970
([21, 6]).

Their solution can be recast as a statement very similar to Theorem 1:

There is a computable function

F : {Codes for Π0
1-sentences} → {Diophantine Polynomials}

such that N is the code for a true statement if and only if F (N) has no integer solutions.

Thus their theorem reduces general questions about the truth of Π0
1 statements to questions about

zeros of polynomials. Theorem 1 states that there is an effective reduction of the true Π0
1 statements

to C∞ transformations isomorphic to their inverse.

1.3 Why Z? Why T2? Why C∞?

The short answer is that we want to work in the simplest, best behaved and most classical context.
Physical systems are often modeled by ordinary differential equations on a smooth compact

manifold M . Solutions are formalized as dynamical systems:

ϕ : R×M →M

such that ϕ(s, ϕ(t, x0)) = ϕ(s+ t, x0) and ϕ(s, ·) : M →M is measure preserving.
Doing repeated experiments in a physical realization of such a system—say to measure a

constant of interest such as the average value of an L1 function on M—is viewed as measuring
ϕ(t0, x0), ϕ(t0 + t0, x0), . . . ϕ((N − 1)t0, x0) and averaging: 1

N

∑
i f(ϕ(i ∗ t0, x0)). Provided that the

system is sufficiently mixing (“ergodic”), the Ergodic Theorem implies that for almost every x0 the
averages along trajectories converge to the integral of f over N .

Thus empirical experiments are construed as sampling along portions of a Z-action given by:

ψ(n, x0) = ϕ(nt0, x0).

The manifold is required to be compact to avoid wild behavior and asked to be of the smallest
possible dimension. Dimension one is impossible because there are very few conjugacy classes of
measure preserving diffeomorphisms on one dimensional manifolds. On the unit circle there are
exactly two.

Thus we move to two dimensional compact manifolds. The most convenient choice is T2, the
two torus.

As k increases, the behavior of Ck diffeomorphisms becomes more regular–the behavior of C1-
diffeomorphisms can be quite wild. Thus the theorem involves C∞-diffeomorphisms because it
illustrates that the basic issue is not how wild the diffeomorphism is.

It could be argued that the tamest situation of all involves real analytic transformations of the
2-torus. The results in this paper can be extended to real-analytic maps using the work of Banerjee
and Kunde [3].

In Summary We are proving that the question of forward vs. backward time encodes some of
the most complex problems in mathematics. This claim is made stronger by taking the simples
possible context: time is given by a Z-action, T2 is the simplest, most concrete manifold possible,
and the diffeomorphisms in question are the most regular possible.
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1.4 Π0
1-sets and Gödel numberings

While the interesting corollaries of Theorem 1 are about the Riemann Hypothesis, other number
theoretic statements, and independence results for dynamical systems, it is actually a theorem about
subsets of N. In order to prove it, one has to provide a way of translating between the interesting
mathematical objects as they are usually constructed and the natural numbers that encode them.
This is done by means of Gödel numberings, natural numbers which code the structure of familiar
mathematical objects.

The arithmetization of syntax via Gödel Numbers is one of the main insights in the proofs of
the Incompleteness Theorems. It is used to state “Σ is consistent” (where Σ is an enumerable set
of axioms) as a Π0

1 statement. Gödel numberings originally appear in [17], but are covered in any
standard logic text such as [7].

The idea behind Gödel numberings is very simple: let 〈pn : n ∈ N〉 be an enumeration of the
prime numbers. Associate a positive integer to each symbol: “x” might be 1, “0” might be 2, “∀”
might be 3 and so on. Then a sequence of symbols of length k can be coded as c = 2n1 ·3n2 ·5n3 · · · pnkk .

Example 5. Suppose we use the following coding scheme:

Symbol x 0 ∀ ∗ = ( )

Integer 1 2 3 4 5 6 7

Then the Gödel number associated with the sentence:

∀x(x ∗ 0 = 0)

is c = 23 ∗ 31 ∗ 56 ∗ 71 ∗ 114 ∗ 132 ∗ 175 ∗ 192 ∗ 237.

Clearly the sentence can be uniquely recovered from its code. With more work, one can also
use natural numbers to effectively code computer programs and their computations, sequences of
formulas that constitute a proof and many other objects. The methods use the Chinese Remainder
Theorem.

We now turn to Π0
1 sentences.

Definition 6. A sentence ϕ in the language LPA = {+, ∗, 0, 1, <} is Π0
1 if it can be written in

the form (∀x0)(∀x1) . . . (∀xm)ψ, where ψ is a Boolean combination of equalities and inequalities of
polynomials in the variables x0, . . . xm and the constants 0, 1. (We do not allow unquantified—i.e.,
free—variables to appear in ϕ.)

It is not difficult to show that

{n : n is the Gödel number of a Π0
1 sentence in a finite language}

is a computable set.
It is however, non-trivial to show that some statements such as the Riemann Hypothesis and

the consistency of ZFC are provably equivalent to Π0
1-statements. The Riemann Hypothesis was

shown to be Π0
1 by Davis, Matijasevič and Robinson ([6]) and a particularly elegant version of

such a statement is due to Lagarias ([20]). Appendix B.1.4 of [9] exhibits Π0
1-statements that are

equivalent to the Riemann Hypothesis (using [20]) and Goldbach’s Conjecture.

Truth: We say a sentence ϕ in the language LPA is true if it holds in the structure (N,+, ∗, 0, 1, <).

Definition 7. Fix a computable enumeration of all m-tuples 〈~zn = (z0, . . . zm)n : n ∈ N〉 of natural
numbers. Let ϕ = (∀x0)(∀x1) . . . (∀xm)ψ be a Π0

1 sentence. Define Ω = Ω(ϕ) to be the least n such
that ψ(~zn) is false, or, if no such n exists, set Ω =∞.

Note that Ω =∞ if and only if ϕ is true.
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1.5 Effectively computable diffeomorphisms

Since T2 is compact, a C∞-diffeomorphism T is uniformly continuous, as are its differentials. Thus,
it makes sense to view their moduli of continuity as functions d : N → N which say, informally,
that if one wishes to specify the map (x, y) 7→ T (x, y) to within 2−n, then the original point (x, y)
must be specified to within a tolerance of 2−d(n). With better and better information about (x, y),
one can produce better and better information about T (x, y). This intuitive notion is formalized
by the definitions given below, and in more detail in Appendix B.2.2 of [9].3 We note in passing
that the moduli of continuity and approximations are not uniquely defined.

Definition 8 (Effective Uniform Continuity). We say that a map T : T2 → T2 is effectively
uniformly continuous if and only if the following two computable functions exist:

• A computable Modulus of Continuity: A computable function d : N → N which, given
a target accuracy ε finds the δ within which the source must be known to approximate the
function within ε.

More concretely, suppose T : [0, 1) × [0, 1) → [0, 1) × [0, 1). View elements in [0, 1) as their
binary expansions. Then the first d(n) digits of each of (x, y) determine the first n digits of
the two entries of T (x, y).

• A Computable Approximation: A computable function f : ({0, 1}×{0, 1})<N → ({0, 1}×
{0, 1})<N, which, given the first d(n) digits of the binary expansion of (x, y)—or, equivalently,
the dyadic rational numbers (kx · 2−d(n), ky · 2−d(n)) for 0 ≤ kx, ky ≤ 2d(n) closest to (x, y)—
outputs the first n digits of the binary expansion of the coordinates of T (x, y).

The diffeomorphisms T we build are C∞ and map from T2 to T2. Because we are working on
T2 we can view T as a map from R2 to R2. The kth differential is determined by the collection of
kth partial derivatives { ∂k

∂ix∂k−iy
: 0 ≤ i ≤ k} of T with respect to the standard coordinate system

for R2. For k <∞, T is effectively Ck provided that for each n < k there are computable d(n,−)
and f(n,−) that give the moduli of continuity and approximations to the partial nth derivatives.
Being C∞ requires that the d(n,−) and f(n,−) exist and are uniformly computable; that is that
there is a single algorithm that on every input n ∈ N computes d(n,−) and f(n,−).

For clarity, in these definitions we discussed functions with domain and range T2. There is
no difficulty generalizing effective uniform continuity to effectively presented metric spaces. The
notion of a computable Ck diffeomorphism also easily generalized to smooth manifolds M and their
diffeomorphisms, using atlases.

We note that computable diffeomorphisms are uniquely determined by the procedures for com-
puting d and f and hence they too may be coded using Gödel numbers. The elements of the range
of the function F in Theorem 1 code diffeomorphisms in this manner.

Inverses of recursive diffeomorphisms It is not true that the inverse of a primitive recursive
function f : N→ N is primitive recursive. However for primitive recursive diffeomorphisms of com-
pact manifolds it is. Suppose that M is a smooth compact manifold and T is a C∞-diffeomorphism.
Then T is a diffeomorphism and hence has uniformly Lipschitz differentials of all orders. Since T
is invertible and M is compact, T−1 also has uniformly Lipschitz differentials of all orders. More-
over the Lipschitz constants for T−1 are “one over” the Lipschitz constants for T . It follows in a
straightforward way that the inverse of a primitive recursive diffeomorphism on M is a primitive
recursive diffeomorphism.

3 Since diffeomorphisms are Lipshitz, we could have worked with computable Lipshitz constants rather then
computable moduli of continuity. The methods give the same collections of computable diffeomorphisms.
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1.6 Reductions

The key idea for proving Theorem 1 is that of a reduction.

Definition 9. Suppose that A ⊆ X and B ⊆ Y and f : X → Y . Then f reduces A to B if

x ∈ A iff f(x) ∈ B.

The idea behind a reduction is that to determine whether a point x belongs to A one looks at
f(x) and asks whether it belongs to B: f reduces the question “x ∈ A” to “f(x) ∈ B.

For this to be interesting the function f must be relatively simple. In many cases the spaces
X and Y are Polish spaces and f is taken to be a Borel map. In this paper X = Y = N and F is
primitive recursive.

In [14] the function f has domain the space of trees (equivalently, acyclic countable graphs)
and has range the space of measure preserving diffeomorphisms of the two-torus. It reduces the
collection of ill-founded trees (those with an infinite branch or, respectively, acyclic graphs with a
non-trivial end) to diffeomorphisms isomorphic to their inverse.

The function f is a Borel map. The point there is that if {T : T ∼= T−1} were Borel then its
inverse by the Borel function f would also have to be Borel. But the set of ill-founded trees is
known not to be Borel. Hence the isomorphism relation of diffeomorphisms is not Borel.

In the current context the function F in Theorem 1 maps from a computable subset of N (the
collection of Gödel numbers of Π0

1 statements) to N. It takes values in the collection of codes for
diffeomorphisms of the two-torus.

Theorem 1 can be restated as saying that F is a primitive recursive reduction of the collection
A of Gödel numbers for true Π0

1 statements to the collection B of codes for computable measure
preserving diffeomorphisms of the torus that are isomorphic to their inverses. For N 6= M the
transformation F (N) is not isomorphic to F (M).

Thus Theorem 1 can be restated as saying that the collection of true Π0
1 statements is com-

putably reducible to the collection of measure preserving diffeomorphisms that are isomorphic to
their inverses. In the jargon: the collection of diffeomorphisms isomorphic to their inverses is
“Π0

1-hard.”

1.7 Structure of the paper

The proof of the main theorem in this paper depends on background in two subjects, requiring the
quotation of key results that would be prohibitive to prove. The actual construction itself—that is,
the reduction F of the main theorem—is described in its entirety, along with the intuition behind
these results.

The paper heavily uses results proved in [10], [14], [12] and [13]. When used, the results are
quoted, and informal intuition is given for the proofs. When specific numbered lemmas, theorems
and equations from [14] are referred to, the numbers correspond to the arXiv version cited in the
bibliography.

Structure of the paper The logical background required for the proof of Theorem 1 is minimal
and the exposition is aimed at an audience with a basic working knowledge of ergodic theory, in
particular the Anosov-Katok method.

Section 2 defines the odometer-based transformations, a large class of measure preserving sym-
bolic systems. These are built by iteratively concatenating words without spacers. We then con-
struct the reduction FO from the true Π0

1 statements to the ergodic odometer-based transformations
isomorphic to their inverse.
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Section 3 moves from symbolic dynamics to smooth dynamics. This proceeds in two steps.
The first step is to define a class of symbolic systems, the circular systems that are realizable as
measure preserving diffeomorphisms of the two-torus. The second step uses the Global Structure
Theorem of [12], which shows that the category whose objects are odometer-based systems and
whose morphisms are synchronous and anti-synchronous joinings is canonically isomorphic with
the category whose objects are circular systems and whose objects are synchronous and anti-
synchronous joinings. Thus the odometer-based systems in the range of FO can be canonically
associated with symbolic shifts that are isomorphic to diffeomorphisms.

Section 3.2 shows that different elements of the range of F ◦FO are not isomorphic, by showing
that their Kronecker factors are different. Sections 3.3 discusses diffeomorphisms of the torus and
how to realize circular systems using method of Approximation by Conjugacy due to Anosov and
Katok. Section 3.3 builds a primitive recursive map R from circular construction sequences to
measure preserving diffeomorphisms of T2 such that Kc ∼= R(Kc).

In section 3.4 we argue that the functor F defined in the Global Structure Theorem is itself a
reduction when composed with FO. Hence composing R, F and FO gives a reduction F from the
collection of true Π0

1 statements to the collection of ergodic diffeomorphisms of the torus that are
isomorphic to their inverse. This completes the proof of Theorem 1.

The overall content of the paper is summarized by Figure 1. The reduction to odometer-based
systems is FO, F is the functorial isomorphism, the realization as smooth transformations is R and
the composition F is the reduction in Theorem 1.

Figure 1: The reduction F .

The Appendix In the course of the proof of Theorem 1 various numerical parameters are chosen
with complex relationships. The are collected, explicated and shown to be coherent in Appendix A.
The numerical parameters are base on those in [14] with minor modifications and extensions. The
discussion in section 11 of that paper is solely concerned with the consistency of the requirements
in that paper. In this paper we give small variations of those arguments to verify, in addition, that
they can be realized in a primitive recursive way.

Sections 2 and 3 of the body of the paper use certain standard notions and constructions in
ergodic theory and computability theory. A complete presentation is impossible, but for readers
who want an general overview we present basic well-known ideas from each subject as well exhibit
explicit formulations of certain techniques in the appendices of he arXiv preprint of this paper [9].
Those appendices contain only known background information for this paper.
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Appendix B of [9] is an overview of the logical background necessary for the proof of the
theorem. It includes a basic description of Π0

1 formulas, a discussion of bounded quantifiers, how to
express Goldbach’s conjecture as a Π0

1 formula and the definition of “truth.” Appendix B.2 gives
basic background on recursion theory, computable functions, and primitive recursion. Appendices
B.2.2 and B.2.3 give background on effectively computable functions. Readers wishing for a more
complete discussion of computation/recursion theory, recursive analysis and related fields can see
[23] and [5].

Appendix C of [9] gives background about ergodic theory and measure theory. It includes the
notion of a measurable dynamical system, the Koopman operator, and the ergodic theorem. Ap-
pendix C.3 describes symbolic systems and gives the notation and basic definitions and conventions
used in this paper. Appendix C.4 gives basic facts about odometers and odometer-based systems.
These include the eigenvalues of the Koopman Operator associated to an odometer transforma-
tion and the canonical odometer factor associated with an odometer-based system. Appendix C.5
gives basic definitions including the relationship between joinings and isomorphisms. It discusses
disintegrations and relatively independent products. For readers wishing for a more complete dis-
cussion of various aspects of ergodic theory we suggest [16], [18], [24], [26] and for an overview of
its relationship to descriptive set theory [8].

Appendix D of [9] gives basic definitions of the space of C∞ diffeomorphisms and gives an explicit
construction of a smooth measure preserving near-transposition of adjacent rectangles. The latter
is a tool used in constructing the smooth permutations of subrectangles of the unit square. These
permutations are the basic building blocks of the approximations to the diffeomorphisms in the
reduction. The section verifies that these are recursive diffeomorphisms with recursive moduli of
continuity and that they can be given primitively recursively.

Gaebler’s Theorem The writing of this paper began as a collaboration between J. Gaebler and
the author with the goal of recording Foreman’s results that established Theorem 1 and its corol-
laries. Mathematically, Gaebler was concerned with understanding the foundational significance of
Theorem 1. Though unable to finish this writing project, Gaebler established the following theorem
in Reverse Mathematics:

Theorem (Gaebler’s Theorem). Theorem 1 can be proven in the system ACA0.

This result will appear in a future paper [15].

Acknowledgements The author has benefited from conversations with a large number of people.
These include J. Avigad, T. Carlson, S. Friedman, M. Magidor, A. Nies, T. Slaman (who pointed
out the analogy with Hilbert’s 10th problem), J. Steel, H. Towsner, B. Velickovic and others. B. Kra
was generous with suggestions for the emphases of the paper and with help editing the introduction.
B. Weiss, was always available and as helpful as usual. Finally my colleague A. Gorodetski was
indispensable for providing suggestions about how to edit the paper to make it more accessible to
dynamicists.

2 Odometer-Based Systems and Reductions

In this section we prove the existence of the preliminary reduction FO.

Theorem 10. There is a primitive recursive function FO from the codes for Π0
1-sentences to prim-

itive recursive construction sequences for ergodic odometer based transformations such that:
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1. N is the code for a true statement if and only if FO(N) is the code for a construction sequence
with limit T , where T is measure theoretically isomorphic to T−1.

2. For M 6= N , FO(M) is not isomorphic to FO(N).

Remark 11. When discussing the construction of FO and F we will always have the unstated
assumption that the input N is a Gödel number of a Π0

1-statement.
This is justified by remarking that, though formally the domain of FO (and so of F ) is the

collection of N that are Gödel numbers of Π0
1-statements, the collection of Gödel numbers of Π0

1-
statements is primitive recursive. Theorem 1 is equivalent to constructing an F that is defined on
all of N and outputs a code for the identity map when the input is an N that is not a Gödel number
of a Π0

1-statement as well as satisfying clauses 1, 2.

2.1 Basic Definitions

Both Odometer Based and Circular symbolic systems are built using construction sequences, a
tool we now describe. They code cut-and-stack constructions and give a collection of words that
constitute a clopen basis for the support of an invariant measure.

Fix a non-empty alphabet Σ. If W is a collection of words in Σ, we will say that W is uniquely
readable if and only if whenever u, v, w ∈ W and uv = pws then either:

• p = ∅ and u = w or

• s = ∅ and v = w.

A consequence of unique readability is that an arbitrary infinite concatenation of words from W
can be uniquely parsed into elements of W.

Fix an alphabet Σ. A Construction Sequence is a sequence of collections of uniquely readable
words 〈Wn : n ∈ N〉 with the properties that:

1. Each word in Wn is in the alphabet Σ.

2. For each n all of the words in Wn have the same length qn. The number of words in Wn will
be denoted sn.

3. Each w ∈ Wn occurs at least once as a subword of every w′ ∈ Wn+1.

4. There is a summable sequence 〈εn : n ∈ N〉 of positive numbers such that for each n, every
word w ∈ Wn+1 can be uniquely parsed into segments

u0w0u1w1 . . . wlul+1 (1)

such that each wi ∈ Wn, ui ∈ Σ<qn and for this parsing∑
i |ui|
qn+1

< εn+1. (2)

The segments ui in condition 1 are called the spacer or boundary portions of w. The uniqueness
requirement in clause 4 implies unique readability of each word in every Wn.

Let K be the collection of x ∈ ΣZ such that every finite contiguous subword of x occurs inside
some w ∈ Wn. Then K is a closed shift-invariant subset of ΣZ that is compact if Σ is finite. The
symbolic shift (K, sh) will be called the limit of 〈Wn : n ∈ N〉.

11



Definition 12. Let f ∈ K where K is built from a construction sequence 〈Wn : n ∈ N〉. Then by
unique readability, for all n there is a unique w ∈ Wn and an ≤ 0 < bn such that f � [an, bn) ∈ Wn.
This w is called the principal n-subword of f . If the principal n-subword of f lies on [an, bn) we
define rn(f) = −an, the location of f(0) relative to the interval [an, bn).

The construction sequences built in this paper are strongly uniform in that for each n there is a
number fn such that each word w ∈ Wn occurs exactly fn times in each word w′ ∈ Wn+1. It follows
that (K, sh) is uniquely ergodic.

We note that in definition 12 we must have bn − an = qn.

Notation For a word w ∈ Σ<N we will write |w| for the length of w.

Inverses and reversals If K is a symbolic shift built from a construction sequence 〈Wn : n ∈ N〉
then we can consider its inverse in two ways. The first is (K,Sh−1). The second, which we call
Rev(K) is the system built from the construction sequence 〈Rev(Wn) : n ∈ N〉 where Rev(Wn)
is the collection of reversed words from Wn: if w ∈ Wn then w written backwards belongs to
Rev(Wn). Clearly (K,Sh−1) is isomorphic to (Rev(K), sh) and we will use both conventions
depending on context.

Odometer Based construction sequences A construction sequence with W0 = Σ and built
without spacers is called an odometer-based construction sequence. For odometer-based sequences,
Clause 3 of the definition of Construction Sequence implies that for odometer based systemsWn+1 ⊆
Wkn
n for some sequence 〈kn : n ∈ N〉 of natural numbers with kn ≥ 2. Hence |Wn+1| ≤ |Wn|kn . In

the special case of odometer sequences we write the length of words in Wn as Kn. We note that
Kn =

∏n−1
m=0 km.

The sequence 〈kn : n ∈ N〉 determines an odometer transformation with domain the compact
space

O =def

∏
n

Zkn .

The space O is naturally a monothetic compact abelian group. We will denote the group
element (1, 0, 0, 0, . . . ) by 1̄, and the result of adding 1̄ to itself j times by j̄. There is a natural
map of O given by O(x) = x + 1̄. Then O is a topologically minimal, uniquely ergodic invertible
homeomorphism of O that preserves Haar measure. The map x 7→ −x is an isomorphism of O with
O−1. (See Appendix C.4 of [9] and [10] for more background.)

Odometer transformations are characterized by their Koopman operators. They are discrete
spectrum and the group of eigenvalues is generated by the Kn-th roots of unity.

The odometer factor If K is built from an odometer-based construction sequence and the
principal n-subword of f sits at [−an, bn) then the sequence 〈an : n ∈ N〉 gives a well defined
member πO(f) of O =

∏
i Zki . It is easy to verify that the map f 7→ πO(f) is a factor map.

A measure preserving transformation is odometer-based if it is finite entropy, ergodic and has
an odometer factor. It is shown in [11] that every odometer-based transformation is isomorphic to
a symbolic shift with an odometer-based construction sequence.

2.2 Inverses and factors induced by equivalence relations

Fix an odometer based construction sequence 〈Wn : n ∈ N〉. If Q is an equivalence relation on Wn,
then elements of K can be viewed as determining sequences of equivalence classes. More precisely

12



if Σ∗ is the alphabet consisting of classes Wn/Q we can consider the collection W∗n of words of
length Kn that are constantly equal to an element of Σ∗. Let m > n. Then for some K, the words
in Wm are concatenations of sequences of words from Wn of length K. Viewed this way, the words
in Wm determine a sequence of K many elements of W∗n. Concatenating them we get a word of
length Km that is constant on contiguous blocks of length Kn. Let W∗m be the collection of words
in the alphabet Σ∗ arising this way. There is a clear projection map π :Wm →W∗m that sends two
words in Wm to the same word in W∗m if they induce the same sequence of Q-classes.

Equivalently define the diagonal equivalence relation QK on WK
n by setting

w0w1 . . . wK−1 ∼ w′0w′1 . . . w′K−1

if and only if for all i, wi ∼Q w′i. Then for two words w,w′ ∈ Wm, π(w) = π(w′) if and only if
w ∼QK w′. Similarly let w ∈ (Wn/Q)K and w′ ∈ WK

m . Then w′ is a substitution instance of w if
and only if

w′ = w0w1 · · ·wK−1 and w = [w0]Q[w1]Q · · · [wK−1]Q.

The sequence 〈W∗m : m ≥ n〉 determines a well-defined odometer-based construction sequence
in the alphabet Σ∗. If we define KQ to be the limit of 〈W∗m : m ≥ n〉 then there is a canonical
factor map πQ : K→ KQ.

We now discuss how this factor map behaves with inverse transformation. Suppose that Z2 acts
freely on Σ∗ = Wn/Q. Then for all K we can extend this action to (Σ∗)K by the skew-diagonal
action. Suppose that g is the generator of Z2. Define

g · ([w0]Q[w1]Q . . . [wK−1]Q) = g · [wK−1]Qg · [wK−2] . . . g · [w0].

Assume that W∗m is closed under the skew-diagonal action. Let

w = [w0][w1][wK−1] ∈ W∗m.

Then we can apply g pointwise to the [wi]; i.e. the diagonal action. Since W∗m is closed under the
skew-diagonal action, the word g[w0]g[w1] . . . g[wK−1] ∈ Rev(W∗m).4

Lemma 13. Suppose for all m > n,W∗m is closed under the skew-diagonal action of g. Then
KQ ∼= Rev(KQ) and the isomorphism takes an f ∈ KQ with associated odometer sequence x to an
element of Rev(KQ) determined by the diagonal action that has associated odometer sequence −x.

` The sequence 〈Rev(W∗m) : m ≥ n〉 is a construction sequence for Rev(KQ). The map

[w0][w1] . . . [wK−1] 7→ g[w0]g[w1] . . . g[wK−1] ∈ Rev(W∗m)

is an invertible shift-equivariant map defined on the construction sequences for KQ and Rev(KQ)
and hence defines an invertible graph joining ηg from KQ to Rev(KQ) a

We note that the graph joining ηg does not depend on which elements of Wn are identified
by Q. Moreover to recover Rev(K) from Rev(KQ) one substitutes the appropriate reverse words
Rev(w) into a Q-class C. Frequently the graph joining ηg of KQ with Rev(KQ) does not come
from a graph joining of K with Rev(K).

In the construction in [10], which we modify in this paper, this process is iterated: there is an
equivalence relation Q1 on Wn1 and another equivalence relation Q2 on Wn2 with n1 < n2 and

4We note in passing that being closed under the skew diagonal action does not imply thatWm/Qn is closed under
reverses.
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Q2 a refinement of the product equivalence relation QK1 (for the appropriate K). There will be
two copies of Z2 generated by g1 and g2 with g1 acting freely on Wn1/Q1 and g2 acting freely on
Wn2/Q2.

For i = 1, 2 denote Wm/(Qi)K by (W∗m)i. We build two construction sequences consisting of
collections of words made up of equivalence classes 〈(W∗m)1 : m ≥ n1〉 and 〈(W∗m)2 : m ≥ n2〉 which
we assume are closed under the skew-diagonal actions of g1 and g2 respectively. Let K1 be the limit
of 〈(W∗m)1 : m ≥ n1〉 and K2 the limit of 〈(W∗m)2 : m ≥ n2〉.

Then we get a tower

K

K2

K1

?

?

Suppose the g2 action on Q2 is subordinate to the g1 action on Wn2/(Q1)
K ; that is, whenever C1

and C2 are classes of Wn2/(Q1)
K and Wn2/Q2 and C2 ⊆ C1, then g2C2 ⊆ g1C1.

Then the various projection maps between K, KQ2 and KQ1 commute with the shift and the
joining ηg2 of KQ2 × Rev(KQ2) extends the joining ηg1 of KQ1 × Rev(KQ1). Given an infinite
sequence of equivalence relations Qi, the associated joinings cohere into an invertible graph joining
of K with Rev(K) if and only if the σ-algebras associated with the KQi generate the measure
algebra on K.

Diagonal vs Skew-diagonal actions. Since yn extends to both the diagonal and skew-diagonal
actions, we summarize the distinct roles:

• The skew-diagonal actions give closure properties on Wm/Qmn = (W∗m)n .

• This closure under the diagonal action gives an isomorphism between Kn and Rev(K)n that
approximates a potential isomorphism from K to Rev(K).

2.3 Elements of the construction

The construction of the first reduction FO closely parallels the construction in [10] and we refer the
reader to that paper for details of claims made here. For each N the routine FO(N) inductively
builds an odometer construction sequence 〈Wn : n ∈ N〉 in the alphabet Σ = {0, 1} with Wn+1 ⊆
Wkn
n . During the construction we will accumulate inductive numerical requirements. Some, such

as the εn’s and the εn’s are positive numbers that go to zero rapidly. Some, such as the kn’s
and ln’s are sequences of natural numbers that go to infinity. These numbers depend on N , so
when necessary we will write Wn(N), εn(N), kn(N), ln(N) and so forth. However for notational
simplicity we will drop the N whenever it is clear from context. At stage n in the algorithm F (N)
for building Wn(N), for M < N F can recursively refer to objects build by F (M) at stages ≤ n.
For example F (N) can assume that kn(N − 1) is known.

These sequences of numbers are defined inductively and have complex relationships, requiring
some verification that they are consistent and can be chosen primitively recursively. That they
are consistent is the content of section 11 of [14]. That they can be chosen primitively recursively
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involves a routine review of the arguments in that paper. For completeness this is done in Appendix
A.

Numerical Requirement A There is an increasings sequence of natural numbers ≤ e(n) : n ≥ 1〉
such that for all n ≥ 1, sn = 2(n+1)e(n)

The construction will use the following auxiliary objects and their properties:

1. A sequence of equivalence relations 〈Qn : n ∈ N〉. Each Qn is an equivalence relation on Wn,
hence gives a factor Kn of K. The equivalence relation Q0 is the trivial relation where any
two elements of W0 are equivalent.

2. The equivalence relation Qn+1 refines the product equivalence relation (Qn)kn on Wkn
n .

3. The sub-σ-algebra Hn of B(K) corresponding to Kn. In the construction here, as with the
original construction in [10],

⋃
nHn will generate B(K) modulo the sets of measure zero with

respect to the unique shift-invariant measure µ. (This is Lemma 15 which uses specification
Q4.)

We denote the sub-σ-algebra of B(K) corresponding to the odometer fact by H0. Because the
odometer factor sits in side each Kn, H0 ⊆ Hn for all n.

4. A system of free Z2 actions yn on Wn/Qn for n < Ω. (See definition 7 for the definition of
Ω.) Denote the generator of Z2 corresponding to yn as gn.

Suppose that n < m. As in section 2.2, the words in Wm are concatenations of K = Km/Kn-
many words from Wn. Hence the product equivalence relation (Qn)K gives an equivalence relation
on Wm, which we call Qmn . We will denote Wm/Qmn by (W∗m)n. The Z2 actions have the following
properties:

• (W∗m)n is closed under the skew-diagonal action of gn.

• If n+ 1 < Ω, then the gn+1 action is subordinate to the gn action.

• We let yn be the diagonal action of gn on Kn. Since (W∗m)n is closed under the skew-diagonal
action, yn can be viewed as mapping (W∗m)n to Rev((W∗m)n). As described in section 2.2,
for n < Ω, yn canonically creates an isomorphism between Kn and K−1n that induces the
map x 7→ −x on the odometer factor.

Restating this: if the action yn is non-trivial, then it induces a graph joining ηn of Hn with
(Hn)−1 that projects to the map x 7→ −x on the odometer factor. Assuming n+ 1 < Ω, and so the
action yn+1 is subordinate to yn, the joining ηn+1 projects to the joining ηn. If Ω =∞, since the⋃
nHn will generate B(K), the ηn’s will consequently cohere into a conjugacy of T with T−1.

Lemmas 26 and 27 of [10] formalize this and show the following conclusion.

Lemma 14. Suppose Ω =∞. Then there is a measure isomorphism η of K with K−1 such that for
all n ∈ N, η induces an isomorphism ηn : Kn → Kn that coincides with the graph joining determined
by the action of the generator for yn on Kn.

The construction is arranged so that if the number Ω is finite, then K 6∼= K−1. This is done by
making the sequences of equivalence classes of elements of (W∗m)n =Wm/Qmn essentially indepen-
dent of their reversals subject to the conditions described above. The specifications given later in
this section make this precise.
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2.4 An overview of FO.

The algorithm for the reduction FO is diagrammed in Figure 2.
Given N , FO determines the Π0

1 formula coded by N :

ϕN = ∀z0∀z1 . . . ∀zmϕ(z0, z1, . . . zm).

The function F then uses the formula to generate a computational routine Rϕ that recursively
computes the objects Wn(N),Qn(N) and yn (N) (as well as the various numerical parameters
that are involved in the construction). Here is what Rϕ does.

The routine Rϕ

1. Fixes a computable enumeration of all m-tuples 〈~zn = (z0, . . . zm)n : n ∈ N〉 of natural
numbers.

2. On input n, Rϕ initializes i = 0, sets W0 = {0, 1}, Q0 the trivial equivalence relation with
one class and the action y0 the trivial action.

3. For i < n, Rϕ:

(a) builds Wi+1,Qi+1,

(b) computes 〈~zj : 0 ≤ j ≤ i〉,
(c) Asks:

“Is ϕN (~zj) true for all 0 ≤ j ≤ i?”

Since ϕN has no unbounded quantifiers, this question is primitive recursive.

(d) If yes, Rϕ builds the action yi+1

(e) If no, Rϕ makes the yi+1 trivial. (Note that if i is the first integer in this case, then Ω
will equal i+ 1.)

4. When i = n, Rϕ returns Wn.

2.5 Properties of the words and actions.

We describe the construction sequence, the equivalence relations and the actions. To start we
choose a prime number P0 > 2 sufficiently large, and let 〈PN : N > 0〉 enumerate the prime
numbers bigger than P0.

For the construction sequence corresponding to FO(N), words in W1 have length PN . The
words in Wn will have length Kn = PN2` for some ` chosen large enough as specified below. The
Kn’s will be increasing and Km divides Kn for m < n. Let kn = Kn+1/Kn. Thus kn is a large
power of 2 and each word in Wn+1 is a concatenation of kn many words from Wn. The number
of words in Wn is sn. We require that sn divides sn+1 and sn is a power of 2 that goes to goes to
infinity quickly. Since Wn+1 ⊆ Wkn

n this induces lower bounds on the growth of the kn’s.
The requirements described here are simpler than those in [10] as modified in [14], and the

“specifications” used there are appropriately simplified or omitted if not relevant to this proof.
The construction carries along numerical parameters 〈εn〉, 〈kn〉, 〈Kn〉, 〈sn〉, 〈Qn〉, 〈Cn〉, and 〈e(n)〉.
(Showing that the various coefficients are compatible and primitively recursively computable ap-
pears in Appends A.)

As an aid to the reader we use the analogous labels for the simplified specifications as those
that appear in [14].
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Input n, and
set i to 0.

Initialize
W0(M),

G0(M), and
Q0

0(M) for
M ≤ N .

Is i < n?

Return
Wn(N),
Qnn(N),
yn (N)

Set Gi+1(N)
to Z/2Z

and define
the action
yi+1 (N).

Build
Wi+1(M)

and Qi+1
j (M)

for 0 ≤ j ≤ i
and M ≤ N

Set i = i + 1

Is ϕN (~zj)
true for all
0 ≤ j ≤ i?

Calculate ~zj
for 0 ≤ j ≤ i.

Set Gi+1(N)
to {e}, the

trivial group.

yes

no

no

yes

Figure 2: The algorithm Rϕ = FO(N).
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Q4 For n ≥ 1, any two Wn-words in the same Qn class agree on an initial segment of proportion
at least (1− εn).

Q6. As a relation on Wn+1, for 1 ≤ s ≤ n + 1, Qn+1
s refines Qn+1

s−1 and each Qn+1
s−1 class contains

2e(n+1) many Qn+1
s classes.

The point of Q4 is that the Qn classes approximate words in Wn by specifying arbitrarily long
proportions of the words. A consequence of this is:

Lemma 15.
⋃
nHn generates the measure algebra of K.

` This is proved in Proposition 23 of [10]. a

Thus Q4 is the justification for Assertion 3 of Section 2.3.

We now turn to the joining specifications. These are counting requirements that determine the
joining structure. The joining specifications we present here are more complicated than strictly
necessary for the simplified construction in this paper, but we present them as appear in [10] in
order to be able to directly quote the theorems proved there. We note that specification J10.1 is a
strengthening of J10 in [10].

Suppose that u and v are elements of Wn+1 ∪ Rev(Wn+1) and (u′, v′) an ordered pair from
Wn ∪ Rev(Wn). Suppose that u and v are in positions shifted relative to each other by t units.
Then an occurrence of (u′, v′) in (sht(u), v) is a t′ such that u′ occurs in u starting at t+ t′ and in
v starting at t′. If X is an alphabet and W is a collection of words in X, and u ∈ W ∪Rev(W) we
say that u has forward parity if u ∈ W and reverse parity if u ∈ Rev(W).

By specification Q4 no word in Wn+1 belongs to Rev(Wn+1), so parity is well-defined and
unique. However the words in (W∗n)i may belong to Rev((W∗n)i) and we view those words as
having both parities.

J10.1 Let u and v be elements of Wn+1 ∪ Rev(Wn+1). Let 1 ≤ t < (1 − εn)(kn). Let j0 be a
number between εnkn and kn− t. Then for each pair u′, v′ ∈ Wn ∪Rev(Wn) such that u′ has
the same parity as u and v′ has the same parity as v, let r(u′, v′) be the number of j < j0
such that (u′, v′) occurs in (shtKn(u), v) in the j ·Kn-th position in their overlap. Then∣∣∣∣r(u′, v′)j0

− 1

s2n

∣∣∣∣ < εn.

For fixed n and s, let Qns = |(W∗n)s| and Cns be the number of equivalent elements in each block of
the partition Wn/Qns .

J11 Suppose that u ∈ Wn+1 and v ∈ Wn+1∪Rev(Wn+1). We let s = s(u, v) be the maximal i < Ω
such that [u]i and [v]i are in the same yi-orbit. Let g = gi and (u′, v′) ∈ Wn×(Wn∪Rev(Wn))
be such that g[u′]s = [v′]s. Let r(u′, v′) be the number of occurrences of (u′, v′) in (u, v). Then:∣∣∣∣∣r(u′, v′)kn

− 1

Qns

(
1

Cns

)2
∣∣∣∣∣ < εn.

The next assumption is a strengthening of a special case of J11.
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J11.1 Suppose that u ∈ Wn+1 and v ∈ Wn+1 ∪Rev(Wn+1) and [u]1 not in the y1-orbit of [v]1.
5

Let j0 be a number between εnkn and kn. Suppose that I is either an initial or a tail segment of
the interval {0, 1, . . .Kn+1−1} having length j0Kn. Then for each pair u′, v′ ∈ Wn∪Rev(Wn)
such that u′ has the same parity as u and v′ has the same parity as v, let r(u′, v′) be the
number of occurrences of (u′, v′) in (u � I, v � I). Then:∣∣∣∣r(u′, v′)j0

− 1

s2n

∣∣∣∣ < εn.

The properties and specifications described above imply the specifications in [10] as well as
J10.1 and J11.1 from [14].

Remark 16. We note that specification J10.1 implies unique readability of the words in Wn+1.
This follows by induction on n. If the words in Wn+1 were not uniquely readable then we would
have u, v, w ∈ Wn with uv = pws and neither p nor s empty. But the one of u or v would have to
overlap either an initial segment or a tail segment of w of length Kn+1/2. Suppose it is an initial
segment of w and a tail segment u. On this tail segment the n-subwords would have to agree exactly
with the n-subwords of an initial segment of w. But this contradicts J10.1.

Suppose we have built a collection of words 〈Wn : n ∈ N〉, equivalence relations 〈Qn : n ∈ N〉
and actions 〈yn: n ∈ N〉 satisfying the properties described then we can cite the following results
occurring in [10]. Fix a transformation T built with the construction sequence 〈Wn : n ∈ N〉. Recall
that if yn is non-trivial then the generator gn 6= 0 induces an invertible graph joining ηn of Kn

with K−1n . We quote the following results of [10], referencing their numbers in that paper.

Theorem 13 and Proposition 32 Suppose that η is an ergodic joining of T with T−1 that is
not a relatively independent joining over the odometer factor. Then η �H0×H0 is supported
on the graph of some j̄-shift of the odometer factor.

Proposition 37 If η is an ergodic joining of K with K−1, then exactly one of the following holds:

1. Ω <∞ and for some n ≤ Ω, j ∈ Z and some ηn, η is the relatively independent joining
of K with K−1 over the joining ηn ◦ (1, sh−j) of Kn ×K−1n .

2. Ω =∞ and for some j, all n the projection of η to a joining on Kn ×K−1n is of the form
ηn ◦ (1, sh−j)

If Ω = ∞, since the Hn’s generate, η is an invertible graph joining of K with K−1. In both
cases the projection of ηn to a joining of the odometer factor with itself concentrates on the
map x 7→ −x.

Thus it follows that:

1. If K ∼= K−1 then Ω =∞. In particular if K ∼= K−1, then the Π0
1 statement ϕN is true.

2. The projection of ηn ◦ (1, sh−j) to the odometer is of the form x 7→ −x− j.

3. Similarly the projection of η ◦ (1, sh−j) to the odometer is of the form x 7→ −x− j.
5In the language of J11: s(u, v) = 0, Qn

0 = 1 and Cn0 = sn.
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Clause 2 of Theorem 10 requires that if M 6= N are different codes for Π0
1 sentences then the

transformation FO(M) is not isomorphic to FO(N). This is clear because the odometer sequence
for FO(M) consists of k’s whose prime factors are 2 and PM , while the odometer sequence for
FO(N) has k’s whose prime factors are 2 and PN . Since PM 6= PN , the odometer factors are not
isomorphic.

Corollary 33 of [10] implies that the Kronecker factor of each FO(N) is the odometer factor.
Since any isomorphism ϕ between FO(M) with FO(N) must induce an isomorphism of the Kro-
necker factors, ϕ has to induce an isomorphism of the corresponding odometer factors, yielding a
contradiction. (See Corollary 57 in Appendix C of [9] for background about Kronecker factors.)

To finish the proof of Theorem 10 we must show that the words, equivalence relations and
actions can be built primitively recursively.

2.6 Building the words, equivalence relations and actions

To finish the proof of Theorem 10 the words Wn(N), the equivalence relations Qn(N) and actions
yn (N) must be constructed and it must be verified that the construction is primitive recursive.

Note: Formally we are just constructing actions yn for n < Ω. However for notational conve-
nience, when constructing the words at stage n+ 1, we will write yi when Ω ≤ i < n+ 1 with the
understanding that it is the trivial identity action.

The collections of wordsWn are built probabilistically. A finitary version of law of large numbers
shows that there are primitive recursive upper bounds on the length of the words in a collection
with the necessary properties. The actual collection of words can then be found with an exhaustive
search of collections of words of that length, showing that the entire construction is primitive
recursive.

Structure of the induction. The collections of words Wn are built by induction on n. For
n ≥ 1 the words in Wn+1 are built by iteratively substituting words into kn-sequences of classes
Qni , by induction on i ≤ n. We will adapt the notation of section 2.2.

The length K1 of words in W1 will be a large prime number PN . To pass from stage n to n+ 1,
one is required to build the wordsWn+1, the equivalence relation Qn+1 and, if n+1 < Ω the action
yn+1. The length Kn+1 of the words will be 2` ·Kn for an ` taken large enough.

Suppose we have already chosen kn and it is a large power of 2. Then (Qni )kn for 0 ≤ i ≤ n give
us a hierarchy of equivalence relations of potential words as described in Section 2.2 as well as the
diagonal and skew-diagonal actions of yi for i < min(n,Ω).

Remark 17. The construction of Wn+1 is top-down. We construct the (W∗n+1)i = Wn+1/Qn+1
i

by induction on i before we construct Wn+1. The equivalence relations get more refined as i in-
creases, so each step gives more information about Wn+1. Having built (W∗n+1)n, an additional step
constructs creates both Wn+1 and the equivalence relation Qn+1

n+1.

Start with i = 0. Then Wn/Qn0 has one element, a string of length Kn with a single letter. Let
(W∗n+1)0 be the single element consisting of strings of length kn ·Kn in that single letter.

Each element of (W∗n+1)1 is built by substituting kn elements of (W∗n)1—each of which is a
contiguous block of length Kn—into (W∗n+1)0. We continue this process inductively, ultimately
arriving at (W∗n+1)n.
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The elements X being substituted The result of the substitution
into previous words

(W∗n+1)0
(W∗n)1 (W∗n+1)1
(W∗n)2 (W∗n+1)2

...
...

(W∗n)n (W∗n+1)n

The result of this induction is a sequence of elements ofWn/Qn of length kn∗Kn, that is constant
on blocks of length Kn. We must finish by substituting elements of Wn into the Wn/Qn-classes to
get Wn+1 and defining Qn+1.

A step in the induction on i. Fix an i and view elements (W∗n+1)i as kn-sequences C0C1 . . . Ckn−1
of elements of (W∗n)i. Since Qi+1 refines the diagonal equivalence relation (Qi)Ki+1/Ki , (Qni+1)

kn

refines (Qni )kn . Inside each Qni class Cj , one can choose a Qni+1 class C ′j ∈ (W∗n)i+1 . Concatenating
these to get C ′0C

′
1 . . . C

′
kn−1 we create an element of (W∗n+1)i+1. We do the construction so that

result is closed under the skew diagonal action of yi+1.

Remark 18. Following section 2.2, elements of (W∗i+1)i+1 are constant sequences of length Ki+1.
Thus the concatenation C ′0C

′
1 . . . C

′
kn−1 is a sequence of kn ∗ (Kn/Ki+1) many contiguous constant

blocks of length Ki+1.

We now describe how these choices are made. Our discussion is aimed at the case where
n+ 1 < Ω, for n+ 1 ≥ Ω take yn+1 to be the trivial action. Fix a candidate k for kn. View {rev}
as acting on (Wn/Qni )k = ((W∗n)i)

k. Together, the skew-diagonal action of yi and {rev} generate
an action on (Wn/Qni )k. Let Ri be a set of representatives of each orbit of this action. Fix the
number E of i+ 1-classes desired inside each i-class. Consider

Xi =
∏
r∈Ri

E−1∏
q=0

S(r, q), (3)

where S(r, q) is the collection of all substitution instances of Qni+1 classes into r.6 More explicitly,
if r = C0C2 . . . Ck−1 where Cj ∈ Wn/Qni . Let C∗j = {C ′ : C ′ ⊆ Cj and C ′ ∈ Wn/Qni+1}. For each
0 ≤ q ≤ E − 1, let

S(r, q) =
k−1∏
j=0

C∗j .

Fix an r ∈ Ri. The every element W of
∏E−1
q=0 S(r, q) can be viewed as a collection of E many

words of length k in the language (W∗n)i+1 whose Qni classes form r. Each of these E many words
can be copied by the yi+1 action. If w is such a word, and is a substitution instance of r then
yi+1 (w) is a substitution instance of yi (r).

So comparing elements of W (and their shifts) is the same as comparing potential words in
(W∗n+1)i+1. The action of yi+1 preserves the frequencies of occurrences of words in

We work with Xi because it can be viewed as a discrete measure space with the counting
measure. The objects being counted in the various specifications correspond to random variables
on this measure space.

6Note that q is a dummy index variable here.

21



Definition 19. If 〈wr,q : r ∈ Ri, 0 ≤ q < E〉 is the collection of words built using the Substitution
Lemma passing from stage i to stage i+1, the (W∗n+1)i+1 is the closure of {wr,q : r ∈ Ri, 0 ≤ q < E}
under the skew-diagonal action of yi.

Example 20. If C ⊆ Cj , D ⊆ Cj′ are substitution instances, we have the independent random
variables Xr,q,j , Xr′,q′,j′ taking value 1 at points ~x ∈ Xi where x(r, q, j) = C and x(r′, q′, j′) = D,
respectively. The event that C occurs in Xi in the qth word in position j and D occurs in r′ in the
(q′)th word in position j′ is the event that both Xr′,q′,j′ = 1 and Xr,q,j = 1. If each i-class has p
elements then the probability that both Xr′,q′,j′ = 1 and Xr,q,j = 1 is 1/p2.

The strong law of large numbers tells us that the collection of points in each Xi that do not satisfy
the specifications (as they are coded in the conclusion of the Substitution Lemma) goes to zero
exponentially fast in k. As k grows, the number of requirements to satisfy the Substitution Lemma
grows linearly. Hoeffding’s inequality (Theorem 22 below) says that the probabilities stabilize
exponentially fast. The Substitution Lemma follows.

In more detail: The word construction proceeds by first getting a very close approximation to
what is desired and then finishing the approximations to exactly satisfy the requirements. These
two steps correspond to Proposition 43 and Lemma 41 of [10].

The general setup for the Substitution Lemma (Proposition 21) at stage n+ 1 is as follows:

• An alphabet X and an equivalence relation Q on X, with Q classes each of cardinality C.

• A collection of words W ⊆ (X/Q)k for some k.

• Groups G,H with generators g, h that are either Z2 or the trivial group. If H = Z2 then
G = Z2.

• If G = Z2 then we have a free action G y X/Q and if H = Z2 we also have a free action
H y X. Thus the skew-diagonal actions of G on (X/Q)k and H on Xk are well-defined. If
either group is trivial, then the corresponding actions are trivial.

• The H y X action is subordinate to Gy X/Q action via ρ.

• Constants εa, εb ∈ (0, 1) such that εb < ε2a/5|X|.

• A constant E determining the number of substitution instances desired for each Q class.

• If u, v, w,w′ are words in the alphabet X, then r(u, v, shi(w), w′) is the number of j such that
u occurs in w starting at j + i and v occurs in w′ starting at j. Similarly if u,w are words in
the alphabet X, the r(u,w) is the number of occurrences of u in w.

A special case of the Substitution Lemma (Proposition 63 in [10]) is:

Proposition 21 (Substitution Lemma). Let E > 0 be an even number. There is a lower bound klb
depending on (εb, εa, Q,C,W,E) such that for all numbers k ≥ klb and all symmetric W ⊆ (X/Q)k

with cardinality W that are closed under the skew-diagonal action of G and Rev(), if for all i with
1 ≤ i ≤ (1− εb)k, u, v ∈ X/Q and w,w′ ∈ W:∣∣∣∣r(u, v, shi(w), w′)

k − i
− 1

Q2

∣∣∣∣ < εb (4)

and each u ∈ X/Q occurs with frequency 1/Q in each w ∈ W,
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then there is a collection of words S ⊆ Xk consisting of substitution instances of Wk such that
if W ′ = HS ∪Rev(HS) we have:7

1. Every element of W ′ is a substitution instance of an element of W and each element of W
has exactly E many substitution instances of words from HS.

2. For each x ∈ X and each w ∈ W ′ ∣∣∣∣r(x,w)

k
− 1

|X|

∣∣∣∣ < εa (5)

i.e., the frequency of x in w is within εa of 1/|X|.

3. If w1, w2 ∈ S∪Rev(S) with [w1]Q = [w2]Q and w2 /∈ H0w1 and x, y ∈ X with [x] = [y]. Then
for h ∈ H0:8 ∣∣∣∣r(x, y, w1, hw2)

k
− 1

Q · C2

∣∣∣∣ < εa. (6)

4. Let i be a number with 1 ≤ i ≤ (1 − εa)k and j0 be a number between εak/2 and k − i,
x, y ∈ X, w1, w2 ∈ W ′ ∪Rev(W ′), let r(x, y) be the number of j < j0 such that (x, y) occurs
in (shi(w1), w2) in the jth position. Then∣∣∣∣r(x, y)

j0
− 1

|X|2

∣∣∣∣ < εa. (7)

5. For all x, y ∈ X and all w1, w2 ∈ W ′ ∪Rev(W ′) with different H orbits,∣∣∣∣r([x]Q, [y]Q, [w1]Q, [w2]Q)

k
− c
∣∣∣∣ < εb (8)

implies that, ∣∣∣∣r(x, y, w1, w2)

k
− c

C2

∣∣∣∣ < εa. (9)

We remark again that the Law of Large numbers implies that conclusions 1-5 hold for almost
all infinite sequences. For example if you perform i.i.d. substitutions of elements of X to create
a typical infinite sequence ~w, then the density of occurrences of a given x in ~w will be 1/|x|. The
Hoeffding inequality says that the finitary approximations to this conclusion converge exponentially
fast. As a result, for large enough k it is possible to satisfy conclusions 1-5 with very high probability.

Another remark is that at each stage we start with a collection of wordsW closed under reversals
and produce another collection of words W ′ closed under reversals. However the words we keep at
each stage are the results of the skew diagonal actions on the actual substitutions, not the closure
under reversals.

7H is acting on Xk by the skew-diagonal action.
8 While there are typographical errors in the statement of this item in [10], the proof given there yields the correct

statement of the count of substitution instances in item 1 and the inequality 6. Similarly, conclusion 4 has been
strengthened slightly here in a way that does not materially change the proof.
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The sequence e(n). We will have a sequence e(n) such that for n ≥ 0, sn+1 = 2(n+2)e(n+1). The
sequence satisfies some growth conditions. (See Inherited Requirement 2 and Inherited Requirement
3 in Appendix A and Figure 5 for an explicit statement of these conditions.) To initialize the
construction we take e(1) = 2.

Finding kn We now use Proposition 21 to build the collections of words. We will apply it with
E = 2e(n+1) except in one instance where we apply it with E = 22e(n+1). To start the inductive
construction, we take P0 to be large enough to apply the Substitution Lemma with Q0 the trivial
equivalence relation and W0 = Σ = {0, 1}. For N > 0, since PN ≥ P0, PN can also be used for
k0(N) to initialize the construction as described below with n = 0.

We then choose kn large enough to allow n + 2 successive Lemma 21-style substitutions for
E = 22e(n+1) corresponding to the equivalence relations Qni for 1 ≤ i ≤ n together with a final
substitution of the letters in the base alphabet Σ to produce Wn+1. (This is a total of n + 1
substitutions.)

More explicitly, note that each of the n + 2 applications of the Substitution Lemma for the
various Qi with E = 22e(n+1) and εa = εn/100 and the finishing lemma produces a lower bound
k ilb. We use these lower bounds to determine kn.

The following will be important later in the paper:

Numerical Requirement B Let kn(N − 1) be the kn corresponding to the reduction FO(N − 1)
and kn(N) be the kn corresponding to the reduction FO(N) and kn(N). Then

kn(N) ≥ kn(N − 1) (10)

Choose a large power of two

kMax > max{k0
lb, k

1
lb, . . . , k

n
lb, kn(N − 1)},

ensuring that it be sufficiently large that 2−kMax < εn. Then, set

kn = k2
Max ∗ sn. (11)

Since kn is of this form and sn is a power of 2, this ensures that Kn+1 = PN · 2` for a large `.
By increasing kMax if necessary we can also assume

1. 1/kn < ε3n/4.

2. sn+1 ≤ sknn .

Building Wn+1/Qn+1
i for i ≤ n: This is done by applying the Substitution Lemma n times to

pass from (W∗n+1)0 successively to (W∗n+1)n. At each i < n we substitute 2e(n+1) many elements of
(W∗n+1)i+1 into each element of (W∗n+1)i.

Completing Wn+1: Having constructed Wn+1/Qn it remains to construct Wn+1, Qn+1 and the
action yn+1. The latter is only relevant if n+ 1 < Ω.

We must ensure that the resulting collection of words satisfy Q4 and Q6. This is accomplished
by constructing two collections of words, the stems and the tails.9

Start by rewriting k2
Max as (k2

Max − kMax) + kMax.

9 Cf. Propositions 66 and 65, and Section 8.3, in [10].
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• The tails: To build the tails, which have length kMaxsnKn, we use Lemma 21, with X =Wn

and Q = Qn to build 22e(n+1) many substitution instances in each Qn+1
n -class C of the final

kMaxsn portion of each word in (W∗n+1)n. We call these the tails corresponding to C.

• The stems: The stems have length (k2
Max − kMax)snKn. We use Lemma 21, again with

X = Wn and Q = Qn, to create 2e(n+1) many substitution instances in each initial segment
of a (W∗n+1)n-word of length k2

Max−kMax. We call these the stems corresponding to the initial
segments of all of the words in the Qn+1

n -class C of this word.

The words in Wn+1 are built one Qn+1
n class at a time. Fix such a class C. Then C has 2e(n+1)

many stems in the first k2
Max − kMax and 22e(n+1) many tails in the final segment of length kMax.

Pair each stem with 2e(n+1) many tails to create the words in Wn+1 that belong to C. This puts
22e(n+1) words into each C.

Each equivalence class in Qn+1
n+1 consists of taking all words starting with a single fixed stem.

It is immediate that there are 2e(n+1) many Qn+1
n+1-classes in each Qn+1

n class and that each Qn+1
n+1

class has 2e(n+1) many words in it. Moreover each class is associated with a fixed stem of length
k2
Max − kMax followed by many short tails. Thus specifications Q4 and Q6 are satisfied.

Finally we note that Wn+1 was built by n+ 2 many successive substitutions of size 2e(n+1) into
equivalence classes. Thus sn+1 = 2(n+2)e(n+1).

Why does this work? Though it appears in detail in [10], for the reader’s edification it may be
appropriate to say a few things about how the stems/tails construction affects the statistics. This
issue is most cogent in J10.1, where shtKn(u) and v are being compared on small portions of their
overlaps. By the manner of construction of the stems, where the stem of shtKn(u) overlaps with
the stem of v conclusion 4 of Proposition 21 holds with εa = εn/100.

Since j0 ≥ εnkn the total length of the overlap is at least εnknKn. The tails have length
kMaxsnKn, so the proportion of the overlap taken up by the tails is at most

2kMaxsn
j0

≤ 2kMaxsn
εnkn

<
2kMaxε

3
n

100εn

<
kMaxε

2
n

50
< εn/50.

The specification J10.1 approximates the proportion of j < j0 where (u′, v′) occur. This proportion
is the weighted average of the proportion PS of j < j0 where (u′, v′) occur in the overlaps of the
stems and the proportion PT of j < j0 where (u′, v′) occur in an overlap of a stem with a tail.
Let α be the proportion of the overlap of shtKn(u) and v that occurs on the stems. By the above,
α > 1− εn/50. Then ∣∣∣∣r(u′, v′)j0

− 1

s2n

∣∣∣∣ =

∣∣∣∣(αPS + (1− α)PT )− 1

s2n

∣∣∣∣
On the overlap of the stems |PS − 1

s2n
| < εn/100. Since PT ∈ [0, 1] and (1−α) < εn/50, we see that∣∣∣∣r(u′, v′)j0

− 1

s2n

∣∣∣∣ < εn.

Hence J10.1 holds.
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The action yn+1.

Case 1 (n+ 1 ≥ Ω): In this case, the action of yn+1 is trivial, so there is nothing further to be
done.

Case 2 (n+ 1 < Ω): In this case, we need to define yn+1 to be subordinate to yn. Fix a Qn+1
n -

class C and suppose that C gets sent to D by yn. Since each Qn+1
n class has the same number

of elements we can define yn+1 so that it induces a bijection between the Qn+1 subclasses of
C and D.

The construction of the Wn,Qn and yn is primitive recursive Here is a standard theorem:

Theorem 22 (Hoeffding’s Inequality). Let 〈Xn : n ∈ N〉 be a sequence of i.i.d. Bernoulli random
variables with probability of success p. Then,

P

(∣∣∣∣∣ 1n
n−1∑
k=0

Xk − p

∣∣∣∣∣ > δ

)
< exp

(
−nδ

2

6

)
.

Lemma 23. The construction of the sequence 〈Wn,Qn,yn: n ∈ N〉 is primitive recursive.

Proof. The only part of the construction that is not a completely explicit induction is finding the
collection of words satisfying the conclusions of the Substitution Lemma. For each candidate fixed
k one can primitively recursively search all substitution instances to see if there is a collection of
words of length k ∗KN that works. Using Hoeffding’s inequality can give an explicit upper bound
for a k that works. The algorithm first computes a kn that works and then does the search. a

This completes the proof of Theorem 10.

Remark 24. Two remarks are in order.

• The asymmetry of the words in the last step of the construction of Wn+1 appears problematic.
How can the words all be oriented left-to-right stem and tail if they are supposed to be closed
under all the various skew-diagonal actions at stage n+ 1 and later?

The answer is that the asymmetries are covered up by the equivalence classes. For example,
the words in Wn+1/Qn+1

n+1 are all constant sequences of length Kn+1. If w ∈ Wn+1 and C is

the Qn+1
n+1-class corresponding to w then the word in Wn+1/Qn+1

n+1 corresponding to w is simply
a string of Kn+1 C’s. Suppose that yn+1 (C) = D. When the action yn+1 is extended
to the skew-diagonal action at a later stage m, it simply takes this string of C’s to a string
of D’s in a different place in a reverse word in the alphabet Wn+1/Qn+1

n+1. It is completely
opaque whether the elements of D have tails on the same side or the opposite side as the tails
of words in C.

• Roughly speaking, Cases 1 and 2 above correspond to Cases 1 and 2 in section 8.3 of [10],
albeit with several differences. A key one is that here, once the construction falls into Case
1, it remains in Case 1.

We note that we have created inductive lower bounds on the size of kn.

Numerical Requirement C kn is large enough that sn+1 ≤ sknn .
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Numerical Requirement D kn is large enough to satisfy the use of the Substitution Lemma 21
to construct the words in Wn+1. In particular 1/kn < ε3n/4.

The data for numerical requirement D comes from the coefficients and words and equivalence rela-
tions at stages n− 1 and before.

3 Circular Systems and Diffeomorphisms of the Torus

By Theorem 10, we have a primitive recursive reduction FO from Gödel numbers of Π0
1 sets to

uniquely ergodic odometer-based systems. However the main theorem is about diffeomorphisms
of the torus and it is an open problem whether there is any smooth ergodic transformation of a
compact manifold that has an odometer as a factor. Rather than attack this problem directly, we
follow [14] and do a second transformation of odometer-based systems into circular systems, which
can be realized as diffeomorphisms. This is the downward vertical arrow F on the right of figure 1.

Subsection 3.1 covers circular systems and their construction. The primitive recursive map
F maps from the odometer-based systems to circular systems and preserves synchronous and
antisynchronous factors and conjugacies. In particular, for those odometer-based systems K in the
range of FO, K is or is not isomorphic to its inverse, if and only if F(K) is or is not isomorphic to
its inverse. We use the language of category theory to describe the structure that is preserved and
define the categorical isomorphism.

In Subsection 3.3, the circular systems produced are realized as smooth diffeomorphisms of the
torus. This is done in two steps: first, a given circular system is realized as a discontinuous map
of the torus; second, it is shown that how to smooth the toral map into a diffeomorphisms that is
measure theoretically isomorphic to the circular system.

3.1 Circular Systems

Like odometer-based systems, circular systems are symbolic systems characterized by construction
sequences 〈Wc

n : n ∈ N〉 of a certain form. The basic tool for constructing circular systems is the
C-operator.

3.1.1 Preliminaries

Let k, l, q ∈ N be arbitrary integers greater than 1, and p be coprime to q. Let 0 ≤ ji < q indicate
the unique integer such that

ji · p = i (mod q). (12)

We can rewrite ji as p−1i (mod q), and reserve the subscript notation for this use.

Definition 25 (The C-Operator). Let Σ be a non-empty finite alphabet and let b and e be two new
symbols not contained in Σ. Let w0, . . . , wk−1 be words in Σ ∪ {b, e}. The C-operator is given by:

C(w0, . . . , wk−1) =

k−1∏
i=0

q−1∏
j=0

bq−ji · wl−1j · eji ,

where “
∏

” indicates concatenation.

Fix a sequence 〈kn, ln : n ∈ N〉 of positive integers with kn ≥ 2 and ln increasing and
∑

n 1/ln <
∞. We follow Anosov-Katok ([1]) and define auxiliary sequences of integers 〈pn : n ∈ N〉 and
〈qn : n ∈ N〉. Set q0 = 1, p0 = 0. Inductively define

qn+1 = knlnq
2
n (13)
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and
pn+1 = knlnpnqn + 1. (14)

Note that pn and qn are coprime for n ≥ 1.
Let αn = pn/qn. Then

αn+1 = αn + 1/qn+1. (15)

Since qn > ln and
∑

n 1/ln < ∞, we have
∑

n 1/qn < ∞. Thus the αn converge to a Liouvillean
irrational α ∈ [0, 1):

α = lim
n→∞

αn

=
∑
n≥1

1

qn
. (16)

Circular Construction sequences We first define the notion of a circular construction se-
quence. Fix a non-empty finite alphabet Σ ∪ {b, e} as above as well as positive natural number
sequences 〈kn : n ∈ N〉 and 〈ln : n ∈ N〉, with kn ≥ 2 and 〈ln〉 strictly increasing such that∑∞

n=1 1/ln <∞. We take l0 = 1.
Let Wc

0 = Σ. For every n, choose a set Pn+1 ⊆ (Wc
n)kn of prewords. Then Wc

n+1 is given by all
words of the form

C(w0, . . . , wkn−1) =

kn−1∏
i=0

qn−1∏
j=0

bqn−ji · wln−1j · eji (17)

where (w0, . . . , wkn−1) ∈ Pn+1 is a preword. We call C the C-operator.

The words created by the C-operator are necessarily uniquely readable. However, we further
demand that the collections of prewords 〈Pn : n ∈ N〉 are uniquely readable in the sense that each
kn-tuple of words p ∈ Pn+1, considered a word in the alphabet Wc

n, is uniquely readable. (Unique
readability is discussed in Appendix C3 in definition 49 of [9] and in [13] which has more details.)

Definition 26 (Circular system). Let 〈Wc
n : n ∈ N〉 be a circular construction sequence. Then the

limit, which we denote Kc is a circular system.

To emphasize that a given construction sequence is circular we denote it 〈Wc
n : n ∈ N〉.

In this paper the circular construction sequences will be strongly uniform. As a consequence the
resulting symbolic shift is uniquely ergodic and we can write Kc = ((Σ∪{b, e})Z,B, µ,Sh) where µ
is the unique shift invariant measure on Kc.

Example 27. Let Σ = {∗}. Then |Wc
0| = 1. Passing from from Wc

n to Wc
n+1 one inductively

shows that for all n, |Wc
n| = 1. Define Kα to be the limit of the resulting construction sequence.

Suppose that 〈Ucn : n ∈ N〉 is another circular construction sequence in an alphabet Λ with the
same coefficients 〈kn, ln : n ∈ N〉 having a limit Lc. Define a map π : Lc → Kα by setting

π(f)(n) =


∗ if f(n) ∈ Λ

b if f(n) = b,

e if f(n) = e.

Then π is a factor map of symbolic systems. Hence Kα is a factor of every circular system with
coefficients 〈kn, ln : n ∈ N〉.
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3.1.2 Rotation Factors

For α ∈ [0, 1], let Rα : S1 → S1 be rotation by 2πα radians. Equivalently we view Rα : [0, 1) →
[0, 1) as given by x 7→ x+α (mod 1). This rotation Rα plays the same role with respect to circular
systems as the canonical odometer factor plays with respect to the odometer-based systems of
Section 2.

Lemma 28 (The Rotation Factor). Let α = limαn be defined from a sequence 〈kn, ln : n ∈ N〉 from
equation 16. Then Kα ∼= Rα. In particular if (Kc,B, ν,Sh) is a circular system in the alphabet
Σ ∪ {b, e} with parameters 〈kn, ln : n ∈ N〉, then there is a canonical factor map ρ : Kc → Rα.

Proof sketch. For almost every x ∈ Kα, there is an N for all n ≥ N there are an, bn ≥ 0 such that
x � [−an, bn) is some word in Wc

n. All words in Wc
n have the same length, qn, so we can define the

following quantity:

ρn(x) = an

(
pn
qn

)
.

Straightforward algebraic manipulations give that∣∣∣∣ρn+1(x)− ρn(x) <
2

qn

∣∣∣∣
whence it is clear that ρn(x)→ ρ(x) ∈ [0, 1). Since

ρn(Sh(x)) = ρn(x) +
pn
qn

taking limits shows that ρ(Sh(x)) = ρ(x) + α, as desired. a

See Theorem 52 in [14] for a complete proof.

Distinguishing α’s Theorem 1 demands that if M 6= N , then F (M) 6∼= F (N). This is achieved
by arranging that the Kronecker factors of F (M) and F (N) are non-isomorphic rotations of the
circle. This requires that α(N) 6= α(M) and that Kα(N) is the Kronecker factor of the limit sequence
Kc(N). Recall that for each N we have a prime number PN which we take for k0 and and we build
sequences 〈kn(N), ln(N) : n ∈ N〉, which in turn, yield sequences 〈pn, qn, kn, ln : n ∈ N〉(N) and
〈αn(N) : n ∈ N〉 which converge to an irrational α(N).

For each N we take l0(N) = 1, so α1(N) = 1
PN

. The sequence 〈kn(N) : n ∈ N〉 is defined in the
construction of the odometer construction sequences as described after Lemma 21. The ln’s are
chosen in the construction of the circular sequences and diffeomorphisms. They must satisfy some
lower bounds on their growth, which we describe later.

To ensure different rotation factors correspond to different Π0
1 sentences, we also put the fol-

lowing growth requirement on the 〈ln(N) : n ∈ N〉 sequences:

Numerical Requirement E Growth Requirement on the ln’s:

ln(N) ≥ ln(N − 1).

Lemma 29. Suppose that the kn(N − 1), kn(N), ln(N − 1) and ln(N) satisfy Requirements B and
E. Then α(N − 1) > α(N).
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` Note that k0(N − 1) = PN−1 < PN = k0(N), so q1(N − 1) < q1(N) Since qn+1 = knlnq
2
n,

kn(N) ≥ kn(N − 1) and ln(N) ≥ ln(N − 1) one sees inductively that for all n qn(N − 1) ≤ qn(N).
By equation 16 we see that

α(N − 1) =
∑
n≥1

1

qn(N − 1)

>
∑
n≥1

1

qn(N)
= α(N).

a

Synchronous and Anti-synchronous joinings The system Kα gives a symbolic representation
of the rotation Rα by 2πα radians. The inverse transform Rev(Kα) is therefore a representation of
rotation by 2π(1 − α) ≡ 2π(−α) radians. Moreover the conjugacies ϕ : S1 → S1 between Rα and
R−1α = R−α are of the form z 7→ z̄ ∗ e2πiδ for some δ. For combinatorial reasons we fix a particular
conjugacy \ : Kα → Rev(Kα) that is described explicitly in [12]. Thus \ corresponds to the map
defined on S1 by z 7→ z̄ ∗ e2πiγ for some particular γ. In additive notation on [0, 1) this becomes
x 7→ −x+ γ (mod 1) for some γ.

The importance of rotation factors and odometer factors in the sequel is their function as
“timing mechanisms.” Joinings between odometer-based systems induce joinings on the underlying
odometers; the same holds true of circular systems.

Definition 30 (Synchronous and Anti-synchronous Joinings). We define two kinds of joinings,
synchronous and anti-synchronous.

• Let K1 and K2 be odometer-based systems sharing the same parameter sequence 〈kn : n ∈ N〉.
Let η be a joining between K1 and K2. Then η induces a joining ηπ between K1 and K2’s
copies of the underlying odometer O. The joining η is synchronous if ηπ is the graph joining
corresponding to the identity map from O to O. A joining η between K1 and K2 is anti-
synchronous if ηπ is the graph joining corresponding to the map x 7→ −x from O to O−1.

• Let Kc
1 and Kc

2 be circular systems sharing the same parameter sequence 〈kn, ln : n ∈ N〉. Let
η be a joining between Kc

1 and Kc
2. Then η induces a joining ηπ between Kc

1 and Kc
2’s copies of

the rotation factor, Kα. The joining η is synchronous if ηπ is the graph joining corresponding
to the identity on Kα × Kα. A joining η between Kc

1 and (Kc
2)
−1 is antisynchronous if ηπ

restricts to the graph joining corresponding to \ : Kα → (Kα)−1.

3.1.3 Global Structure Theorem

Odometer-based systems and Circular systems that share the same parameter sequence 〈kn : n ∈ N〉
have similar joining structures. We begin by defining two categories.

Fix a parameter sequences 〈kn : n ∈ N〉 and 〈ln : n ∈ N〉 with
∑

1/ln < ∞. Let OB be the
category whose objects consist of all ergodic odometer-based systems with coefficients 〈kn : n ∈ N〉.
A morphism of OB is either a synchronous graph joining between K and L or an anti-synchronous
graph joining between K and L−1. Let CB be the category whose objects consist of ergodic circular
systems built with coefficients 〈kn, ln : n ∈ N〉 and whose morphisms consist of synchronous and
anti-synchronous graph joinings from Kc with (Lc)±1.

The main result of [12] is the following:
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Theorem 31 (Global Structure Theorem). The categories OB and CB are isomorphic by a func-
tor F that takes synchronous joinings to synchronous joinings, anti-synchronous joinings to anti-
synchronous joinings and isomorphisms to isomorphisms.

To prove Theorem 31 one must define the map F on objects, and on morphisms and then show
that it is a bijection and preserves composition. Since we will only be concerned here with how
effective F is we confine ourselves to defining it and refer the reader to [12] for complete proofs. In
[15], the proof is discussed to understand the strength of the assumptions needed to prove it.

We begin by defining F on the objects.

Defining F on objects. Let an K be an odometer-based system with associated construction
and parameter sequences 〈Wn : n ∈ N〉 and 〈kn : n ∈ N〉. Let 〈ln : n ∈ N〉 be an arbitrary sequence
of positive integers growing fast enough that

∑
n 1/ln <∞. Inductively define a map F taking the

construction sequence for an odometer-based system K to a construction sequence for a circular
system Kc by applying the C-operator. Define maps cn :Wn →Wc

n as follows:

• Let Wc
0 = Σ and c0 be the identity.

• Suppose that cn and Wc
n have been defined. Let

Wc
n+1 = {C(cn(w0), . . . , cn(wkn−1)) : w0w1 · · ·wkn−1 ∈ Wn+1}

and wi ∈ Wn. Define cn+1 :Wn+1 →Wc
n+1 by setting

cn+1(w0 · · ·wkn−1) = C(cn(w0), . . . , cn(wkn−1)).

where wi ∈ Wn with w0 · · ·wkn−1 ∈ Wn+1.

The construction sequence 〈Wc
n : n ∈ N〉 then gives rise to a circular system Kc. The functor F

will associate Kc with K.

Lifting measures and joinings We need to lift measures on odometer based systems to mea-
sures on circular systems for two reasons:

1. To complete the definition of F on objects, given an odometer based system (K, µ) we need
to canonically associate a measure µc to Kc. Then F(K, µ) = (Kc, µc).

In the context of this paper this first reason is not pressing: the construction sequences in the
range of FO are strongly uniform, hence uniquely ergodic. Thus there is only one candidate
for µc. However to complete the definition of F we need to understand what happens for
arbitrary ergodic µ.

2. To define F on morphisms, given a joining J between (K, µ) and (L, ν) we need to associate
a joining J c between (Kc, µc) with (Lc, νc).
For the second issue, and to deal with general odometer based systems (K, µ), we review the
notion of generic sequences of words. These were introduced in [29] and used in the proof of
Theorem 31 [12].

Let k, l > 0 and 〈Wn : n ∈ N〉 be an arbitrary construction sequence. Using the unique
readability of words inWk a word w in Σqk+l determines a unique sequence of words wj inWk such
that ,

w = u0w0u1w1 . . . wJuJ+1.
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When w ∈ Wk+l, each uj is in the region of spacers added in Wk+l′ , for l′ ≤ l. We will denote the
empirical distribution of Wk-words in w by EmpDistk(w). Formally:

EmpDistk(w)(w′) =
|{0 ≤ j ≤ J : wj = w′}|

J + 1
, w′ ∈ Wk.

Then EmpDist extends to a measure on P(Wk) in the obvious way.
To finitize the idea of a generic point for a system (K, µ) we introduce the notion of a generic

sequence of words. By µm we will denote the discrete measure on the finite set Σm given by
µm(u) = µ(〈u〉). Then µm is not a probability measure so we normalize it. Let µ̂n(w) denote the
discrete probability measure on Wn defined by

µ̂n(w) =
µqn(〈w〉)∑

w′∈Wn
µqn(〈w′〉)

.

Thus µ̂n(w) is the relative measure of 〈w〉 among all 〈w′〉, w′ ∈ Wn. The denominator is a
normalizing constant to account for spacers at stages m > n and for shifts of size less than qn.

Definition 32. A sequence 〈vn ∈ Wn : n ∈ N〉 is a generic sequence of words if and only if for all
k and ε > 0 there is an N for all m,n > N ,

‖EmpDistk(vm)− EmpDistk(vn)‖var < ε.

The sequence is generic for a measure µ if for all k:

lim
n→∞

‖EmpDistk(vn)− µ̂k‖var = 0

where ‖ ‖var is the variation norm on probability distributions.

The point here is that the ergodic theorem gives infinite generic sequences for measures µ. These
infinite generic sequences in turn, create generic sequences of finite words. A generic sequence of
finite words determines a measure. If the generic sequence is built from the measure then the
measure it determines is the original measure

We now deal with the first issue above for arbitrary (K, ν) (and not just those that are strongly
uniform). Given an odometer based system (K, ν) we must specify the measure νc we associate
with ν. Section 2.6 of [12] gives a canonical method of constructing a generic sequence of words
〈vn : n ∈ N〉 that encode any ergodic measure on K. The corresponding sequence of words vcn =
cn(vn) is also generic and determines an ergodic measure on Kc. The map F then takes (K, ν) to
(Kc, νc)

Defining F on morphisms Given an arbitrary synchronous or anti-synchronous joining J
between odometer based systems K and L±1 we can view (K×L,J ) as an odometer based system.
Taking a generic sequence of pairs of words 〈(un, vn) : n ∈ N〉 for J as in [12] and lifting it with the
sequence of cn’s (and adjusting appropriately for reversing the circular operation with a mechanism
denoted \ in [12]), one gets a joining J c between Kc and Lc.

Define F(J ) = J c.
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Is F primitive recursive? Clearly the maps cn are primitive recursive so the map taking a
construction sequence 〈Wn : n ∈ N〉 to 〈Wc

n : n ∈ N〉 is primitive recursive. For the same reason the
map taking a joining J specified by a given generic sequence to J c is primitive recursive. Thus,
assuming that joinings J are presented in a manner that one can compute the generic sequences
of words, the map J 7→ J c is primitive recursive.

In the context of the systems in the range of FO, the relevant joinings between K and K−1 are
given by limits of ηn’s, and the generic word sequences are easily seen to be primitive recursive and
can thus be translated to the joinings of Kc with (Kc)−1.

Remark 33. We have shown that if ϕN is true then F ◦ FO(N) is isomorphic to F ◦ FO(N)−1

and the isomorphism is primitive recursive. In section 3.3 we build a primitive recursive realization
function R which maps from strongly uniform circular systems to measure preserving diffeomor-
phisms of the torus. Since F = R ◦ F ◦ FO, the result we prove is something stronger than claimed
in Theorem 1. Namely we show that if ϕN is true then there is a measure isomorphism between
F (N) and F (N)−1 coded by a primitive recursive generic sequence of words.

3.2 The Kronecker Factors

The second clause of the Main Theorem (Theorem 1) says that if M and N are distinct natural
numbers than the corresponding diffeomorphisms TM and TN are not isomorphic. To distinguish
between them we use their Kronecker factors. (For more information on the Kronecker factors,
see e.g. [28]. The use of operator theoretic methods dates to [27].) For this purpose we prove the
following proposition. This section is otherwise independent of the other sections. Readers who
find the proposition and corollary obvious can skip to the next section.

Proposition 34. Let Kc be circular system in the range of F ◦ FO, built with coefficients 〈kn, ln :
n ∈ N〉 and α = limn αn then the Kronecker factor of Kc is measure theoretically isomorphic to the
rotation Rα.

An immediate corollary of this is:10

Corollary 35. Suppose that M < N are natural numbers. Then:

1. α(N) < α(M), where α(N) and α(M) are the irrationals associated with the rotation factors
of F (N) and F (M).

2. (Kc)M 6∼= (Kc)N .

` This follows immediately from Lemma 29 and the fact that the Kronecker factor (Kc)M is
isomorphic to Rα(M) and the Kronecker factor of (Kc)N is isomorphic to Rα(N). a

After Proposition 34 is shown we will have proved the following intermediate step in the proof
of Theorem 1:

Proposition 36. For N a code of a Π0
1 sentence, then F ◦FO(N) is a primitive recursive circular

construction sequence and

1. N is the code for a true statement if and only if the circular system T determined by F◦FO(N)
is measure theoretically conjugate to T−1;

2. F ◦ FO(N) is ergodic–in fact strongly uniform; and

3. For M 6= N , F ◦ FO(M) is not conjugate to F ◦ FO(N).
10See section 2.3 for an explanation of the (N)-notation.
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Review of the Kronecker factor Let ~γ = 〈γm : m ∈ Z〉 be an enumeration of the eigenvalues
of the Koopman operator of a measure preserving transformation (X,B, µ, T ). Then ~γ determines
a measure preserving action on ((S1)Z, λZ) (where λZ is the product measure on (S1)Z) by coordi-
natewise multiplication. The action is ergodic, discrete spectrum and isomorphic to the Kronecker
factor of (X,B, µ, T ).

If α is an eigenvalue of the shift operator then the powers of α, ~α = 〈αn : n ∈ Z〉 are also
eigenvalues corresponding to a subsequence of ~γ and hence the coordinatewise multiplication of ~α
on (S1)Z determines a factor of the Kronecker factor. This is a proper factor if and only if there is
an eigenvalue of the Koopman operator that is not a power of α. In particular there is a non-trivial
projection map from the Kronecker factor to the dual of the countable group {αn : n ∈ Z}

The proof of Proposition 34 follows the outline of the proof of Corollary 33 of [10]. Working
in the context of odometer based systems built with coefficients 〈kn : n ∈ N〉, it says that the
Kronecker factor Kr of each system K in the range of FO is the odometer transformation O based
on 〈kn : n ∈ N〉. Note that the odometer O is a subgroup of the Kronecker factor since rotation by
the kthn root of unity is an eigenvalue of the Koopman operator. The steps there are:

1. Any joining J of K with K projects to a joining JO of O with itself. If JO is not given by
the graph joining coming from a finite shift of the odometer then J must be the relatively
independent joining of K with itself over JO. (This is Proposition 32 of [10].)

2. If there is an eigenvalue of the unitary operator associated with K that is not a power of α
there is a non-identity element t in the Kronecker factor whose projection to the odometer O
is the identity.

3. Multiplying t by an element h ∈ O which is not a finite shift gives an element t′ of the
Kronecker factor Kr that is not in O and projects to an element of O that is not a finite shift.

4. Let H∗ be the sub-σ-algebra of the measurable subsets of K generated by Kr. Then multipli-
cation by t′ gives a graph joining J ∗ of H∗ with itself that projects to the joining of O given
by multiplication by h. Extend J ∗ to a joining J of K with K. Then J does not project to
a finite shift of the odometer but it is also not the relatively independent joining of K with
itself over the joining of O with itself given by h. This is a contradiction.

To imitate this argument we first note that for circular systems, the analogue of the odometer
is the rotation Kα, and that every element β ∈ S1 determines an invertible graph joining Sβ of Kα
with itself, corresponding to multiplication by β in the group S1. We need to identify the analogue
of the “finite shifts on the odometer” in the case of circular systems. The appropriate notion is
given in Definition 78 in [14], namely the central values. The central values form a subgroup of the
unit circle.

To prove Proposition 34, fix a circular system Kc in the range of F ◦ FO. We first show that
there is a β ∈ S1 that is not a central value. This β plays the roll of h in the outline given above.
Then the analogue of Proposition 32 is proved: any joining of Kc with itself that does not project
to the joining given by multiplication on S1 by a central value is the relatively independent joining
over its projection.

Suppose now that there is an eigenvalue of the Koopman operator that is not a power of α. Then
the action of ~α on (S1)Z is a non-trivial projection of the Kronecker factor Krc of Kc. Hence we
can fix a non-identity element t of the Kronecker factor whose projection to the factor determined
by the powers of α is the identity. As in step 3 above we multiply t by a non-central β to get a t′

in the Kronecker factor which:
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a.) induces a joining J ∗ ofH∗ with itself that projects to the graph joining of Kα with itself induced
by Sβ.

Extending J ∗ to a joining J of Kc with itself we see that:

b.) J is not the relatively independent joining over the joining of Kα given by Sβ.

After the details are filled in, this contradiction establishes Proposition 34.

Notation As in previous sections we identify the unit interval [0, 1) with the unit circle via the
map x 7→ e2πi∗x, which identifies “addition mod one” on the unit interval with multiplication on
the unit circle. When we write “+” in this section it means addition mod one, interpreted in this
manner.

We use the following numerical requirement in explicit proof of Proposition 34:

Numerical Requirement F The kn’s must grow fast enough that
∑ 6n

kn
<∞.

To finish the proof of Proposition 34, we fix a circular system Kc in the range of F ◦FO and prove
the following two lemmas.

Lemma 37. There is a non-central value β.

Lemma 38. Suppose that β is not a central value. Let J be a joining of Kc×Kc whose projection
to Kα × Kα is the graph joining of Kα with itself given by multiplication by Sβ. Then J is the
relatively independent joining of Kc ×Kc over the joining of Kα with itself given by Sβ.

` [Lemma 37] While it seems very likely that there is a measure one set of examples we just need
one. The example will be of the form β =

∑∞
n=1

an
knqn

for an inductively chosen sequence of natural
numbers 〈an : n ∈ N〉 with 0 ≤ an < 6n.

To describe β completely and verify it is non-central we need several facts from sections 5, 6 and
7 in [14], which discuss the relationship between the geometric and the symbolic representations of
Kα.

The geometric construction builds a sequence of periodic approximations of lengths 〈qn :
n ∈ N〉 with the resulting limit being the rotation of the circle by Rα. Expanding on Lemma
28, these approximations are given by the towers of intervals Tn = {[0, 1/qn), [pn/qn, pn/qn +
1/qn), [2pn/qn, 2pn/qn + 1/qn), . . . [kpn/qn, kpn/qn + 1/qn), . . . } viewed as a periodic system.

The symbolic representation uses the C operation to build the construction sequence for the
symbolic system. The latter is described in Example 27. We give the geometric description of the
periodic approximations presently.

We use the following notions and notation from [14]:

1. ϕ0 : (Kα, sh)→ ([0, 1),+) is the measure theoretic isomorphism between the shift on Kα and
the rotation Rα given in Lemma 28. We use s’s to refer to elements of Kα and x’s to refer to
elements of [0, 1) and s corresponds to x if ϕ0(s) = x.

2. The notion of s ∈ Kα being mature implies that s has a principal n-subword and it is repeated
multiple times both before and after s(0).

3. Sβ = ϕ−10 Rβϕ0 is the symbolic conjugate of the rotation Rβ, via the map ϕ0. If s corresponds
to x then Sβ(s) corresponds to x + β (mod 1). We will occasionally be sloppy and use the
language s+ β for s ∈ Kα when we mean Sβ(s).
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4. In [14], a set S is defined as the collection of elements s ∈ Kα such that the left and right
endpoints of the principal n-subwords of s go to minus and plus infinity respectively. Explicitly
suppose that s ∈ Kα is such that for all large enough n, the principal n-subword exists and
lives on an interval [−an, bn] ⊆ Z. The point s ∈ S if limn an = limn bn =∞.

The set Sβ is
⋂
n∈Z Sβ(S), the maximal Sβ invariant subset of S. It is of measure one for the

unique invariant measure on Kα. Since Kα is a factor of every circular system Kc with the
same coefficient sequence 〈kn, ln : n ∈ N〉 for all invariant measures µ on Kc, {s ∈ Kc : the
left and right endpoints of the principal n-subwords of s go to minus and plus infinity is of
µ-measure one.

5. Given an arbitrary β we can intersect Sβ with Sq for all rational q and get another set of
measure one. Hence in a slight abuse of notation we assume that Sβ is invariant under
conjugation by rational rotations.

6. For s ∈ Kα, if rn(s) = i and x is the corresponding element of [0, 1) then x is in the ith level
of the tower corresponding to the nth approximation to Rα. This tower is given by Rαn .

In the geometric picture, at stage n, we have a tower of intervals of the form [iαn, iαn + 1/qn)
ordered in the dynamical ordering–where the successor of the interval [iαn, iαn + 1/qn) is
[(i+ 1)αn, (i+ 1)αn + 1/qn). Thus level Ii+1 is Ii + αn.

Passing from stage n to stage n + 1 involves subdividing the old levels into new levels, which
are of the form [iαn+1, iαn+1 + 1/qn+1). These subintervals move diagonally up and to the right
through the n-levels. The diagonal movement corresponds to addition of αn+1. The key formula is
15:

αn+1 = αn + 1/qn+1.

As illustrated in diagrams 9 and 10 of [13] and Figure 3, the n+ 1 tower proceeds diagonally up
through the n-tower. This is evident from the form of equation 15 and the fact that qn+1 = knlnq

2
n.
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Again, following [13], the geometric picture in Figure 3 corresponds to the symbolic represen-
tation as a circular system in the following way. Some of the diagonal paths hit the left or right
vertical strips bounding the [j/knqn, (j + 1)/knqn) subdivisions of the levels. Those diagonals cor-
respond to the boundary portion of the n + 1-words (the b’s and the e’s). The diagonal paths
that start in the region [j/knqn, (j + 1)/knqn) and traverse from the bottom to the top level while
staying in that region correspond to the jth argument of the C operator at stage n.

Restating this in terms of the isomorphism ϕ0 between Kα and ([0, 1),Rα), if s1 and s2 are
mature elements of Kα corresponding to x1, x2 ∈ S1, then:

• x1, x2 belong to two diagonal strips that do not touch a vertical strip and with base in the
same interval [j/knqn, (j + 1)/knqn)

iff

• Inside their principal n + 1-subwords, s1(0) and s2(0) are in n-words coming from the same
argument wαj of C(wα0 , wα1 , . . . wαkn−1).

We now continue the enumeration of basic notions in [14] we use here.

7. In a very slight variation of the notation of [14], when we are comparing s with t we define
dn(s, t) = rn(t)− rn(s) (mod qn). In this argument frequently t = Sβ(s) and if β is clear from
the context we simply write dn(s). If x and y correspond to s and t, the number dn(s, t) can
be viewed either as the number of levels in the n-tower between x and y or as the difference
between the locations of 0 in the principal n-subwords of s and t.

8. For mature s and t, the result of shifting t by −dn(s, t) units is that the location of 0 is in the
same position in its principal n-subword as is the position of s(0) in its principal n-subword.

9. Applying the shift map dn+1(s, t) times to s moves its zero to the same point as t’s is relative
to its n + 1 subword. Subsequently moving it back −dn(s, t) steps moves the zero of result
back to the same position in its n-subword as zero is in s’s n-subword. In other words, if s′

is the result of applying the shift map to s dn+1(s, t) − dn(s, t) times, then 0 is in the same
position relative to the n-block of s′ as it is in s.

10. The n+ 1-word in the construction sequence for Kα is of the form

C(wα0 , wα1 . . . wαkn−1)

and hence if s is mature at stage n then s(0) occurs in an n-block corresponding to the position
of wαj0 for some j0. We can ask whether the j0 corresponding to the principal n-subword of the

(dn+1(s, t)−dn(s, t))-shift of s is the same as the j0 corresponding to the principal n-subword
of s.

If it does, then s and t are well-matched at stage n and if not the s and t are ill-matched at
stage n.

11. If s′ is the result of shifting s dn+1(s, t)− dn(s, t) times then the 0 of s′ is in the same wαj as
is the zero of t. So for the purposes of determining whether s is well-β-matched at stage n,
we can compare which argument of C s(0) and t(0) belong to. As a result we can speak of s
and t well or ill-matched at stage n. If x and y are the corresponding members of [0, 1) we
can say say that x and y are well or ill-matched at stage n.
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We are now ready to construct the non-central β. We do this by induction. At stage 1, a1 = 0. At
stage n, we let βn =

∑n−1
p=1

ap
kpqp

. For i = 0, . . . 6n − 1, in the terminology of item 11 consider

Mi = {x : x and x+ βn + i/knqn are well-matched}.

Since the Mi’s are disjoint, for some i, λ(Mi) ≤ 1
6n . Let an be such an i and let βn+1 = βn+an/knqn.

Finally we let β =
∑∞

1
ap
kpqp

, so β = limn→∞ βn.
To see this works, we first show that:

For almost all x, for large enough m, if sm corresponds to x + βm then for all mature
n ≤ m, rn(sm) = rn(Sβ(s)).

This is a Borel-Cantelli argument. Note that if rm(sm) = rm(Sβ(s)) then for all mature n ≤
m, rn(sm) = rn(Sβ(s)). Hence it suffices to show that for almost all s, all sufficiently large m,
rm(sm) = rm(Sβ(s)).

If x corresponds to s then the only way that rm(sm) 6= rm(Sβ(s)) is if x + βm is in a different
level of the m-tower than x+ βm +

∑∞
p=m

ap
kpqp

. In turn, the only way that this can happen is if for
some i,

x+ βm ∈ [iαm + 1/qm −
∞∑
p=m

ap
kpqp

, iαm + 1/qm).

The latter interval is the right hand portion of a level in the m-tower, i.e. of an interval of the form
[iαm, iαm + 1/qm).

The collection of x that have this property for a given level i has measure
∑∞

p=m
ap
kpqp

. Since there

are qm many levels i, the measure of all of the x with this property at stage m is qm ∗
(∑∞

p=m
ap
kpqp

)
.

Computing:

qm ∗

( ∞∑
p=m

ap
kpqp

)
=
am
km

+ qm ∗
∞∑
m+1

ap
kpqp

<
am
km

+
qm
qm+1

∞∑
m+1

ap
kp

≤ am
km

+
1

kmlmqm
C,

where C =
∑∞

1
ap
kp

. Since we assume that
∑ 6n

kn
<∞ and ap < 6n−1, C is finite. We see immediately

that the measures of the collections of x such that at some stage m the level of x + βm in the m-
tower is different from the level of x+ β in the m-tower is summable. By Borel-Cantelli, it follows
that for almost all s there is an N for all m ≥ N , rm(sm) = rm(Sβ(s)).

From the choice of an for all but a set of measure at most 1/6n, the s are ill-matched with
sn+1. Again by the Borel-Cantelli lemma, for almost all s there is an N1 for all n ≥ N1 s and sn+1

are ill-matched. Since for almost all s and all large enough n the level of sn+1 is equal to the level
Sβ(s) it follows that for almost all s and all large enough n s is ill-matched with Sβ(s). If ν is the
unique invariant measure on Kα then equation 33 of [14] defines

∆n(β) = ν({s : s is ill-β-matched at stage n}).
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We have shown that ∆n(β)→n 1. Hence

∆(β) =
∑
n

∆n(β)

is infinite. Hence we have shown that β is not central. a

We now prove Lemma 38

` [Lemma 38] First note that the analysis in section 6.3, on page 50 of [14], says that for any
non-central β we can choose hd1 and hd2 and a spaced out set G such that, as in equation 35 on
page 50, letting

6⇓n= {s : s is ill-β-matched at stage n and in configuration Phd1,hd2}

we get equation 36 on page 50 of [14]: ∑
n∈G

ν(6⇓n) =∞. (18)

We now observe that for n < m ∈ G, 6⇓n and 6⇓m are probabilistically independent. This follows
from Lemma 75 on page 47 of [14]: belonging to 6⇓n is an issue of the value of dn+1 − dn. The
differences dm+1 − dm are independent of the differences dn+1 − dn, hence the sets 6⇓n and 6⇓m are
pairwise independent. Which level x is on in the n-tower is independent of whether or not x is
misaligned at the next stage.

Let Mm be the collection of s that are mature at stage m. Then applying the “hard” Borel-
Cantelli lemma, for almost all s ∈ Mm, there are infinitely many n ∈ G, s ∈6⇓n. Since

⋃
mMm has

measure one, for almost all s ∈ Kc there are infinitely many n, s ∈6⇓n.

We now argue that if J1 and J2 are two joinings of Kc × Kc over Sβ, then they are identical.
Thus they are both the relatively independent joining. The result follows from the following claim
which is an analogue of the claim in Proposition 32 of [10]:

Claim Let J be a joining of Kc with itself that projects to the graph joining of Kα with itself
given by Sβ. Then for all cylinder sets 〈a〉 × 〈b〉 in Kc ×Kc, the density of occurrences of (a, b) in
a generic pair (x, y) for J does not depend on the choice of (x, y).

` Since β is non-central, and x, y are generic and J extends Sβ, we know that for infinitely many
n ∈ G the n-words of x and y are misaligned. Let G∗ be this set.

It suffices to show that:

• There is a sequence of subblocks of the principal n + 1-subwords of x and y of total length
Bn,

• as n ∈ G∗ goes to infinity, Bn/qn+1 goes to 0,

• after removing the subwords in Bn the number of occurrences of 〈a〉 × 〈b〉 is independent of
the choice of (x, y).
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Fix a large n ∈ G∗. We count occurrences of (a, b) in (x, y) over the portion of the principal
n+ 1-subwords of x that overlap with the n+ 1-blocks of y. As in Proposition 32 of [10], we show
that, up to a negligible portion, this is independent of (x, y). From the definition of 6⇓n for n ∈ G,
there are fixed values of hd1 and hd2. The number hd2 determines the overlap of the n+ 1-block of
x containing x(0) is the left or right overlap. For convenience, assume that hd1 = L and hd2 = R.

First: discard n-subwords that are not mature. This is a negligible portion.
Next, shift y back by dn(x), so that the mature n-subwords of x in the principal n+ 1-subword

are aligned along the overlap of the principal n+ 1 subword of y with the corresponding n-subword
of y.11

Then by specification J.10.1 and the fact that x and y are misaligned, any pair of n–words (u, v)
occurs almost exactly 1/s2n times. So, after discarding a negligible portion of the occurrences all
pairs occur the same number of times. Shifting them all back by dn(x), an amount determined by
β and thus independent of x and y, gives a collection of counts of occurrences of (a, b) in all pairs
(u, shd

n
(v)) with all pairs occurring essentially the same number of times. The result is independent

of the choice of x and y. The errors from the negligible portions and they go to zero in proportion
to n+ 1. This proves the claim. a

3.3 Diffeomorphisms of the Torus

The map F ◦ FO maps codes for Π0
1 sentences to construction sequence for circular systems. We

now indicate how to realize circular systems as diffeomorphisms and why these diffeomorphisms
are computable. The realization map is described completely in [13]. We review it here to verify
its effectiveness.

The construction is in two stages. In both parts a sequence of periodic transformations is con-
structed and the limits are isomorphic to the given uniform circular system. In both constructions,
the torus, viewed as [0, 1]× [0, 1] with appropriate edges identified, is divided into rectangles. These
are then permuted by the periodic transformations according to the action of the shift operator
on the circular system. In the first stage, this permutation is built without regard to continuity.
The result is an abstract measure preserving transformation. In the second part, using smooth
approximations to these permutations, the limit is a C∞ diffeomorphism.

The main tool for moving from the discontinuous, symbolic transformations to the smooth
geometric transformations is the Anosov-Katok method of Approximation by Conjugacy [1]. To
allow for this smoothing the parameter sequence 〈kn, ln : n ∈ N〉 must have the sequence of ln’s
grow sufficiently fast.

The lower bounds l∗n(〈km : m ≤ n〉, 〈lm : m < n〉) will be determined inductively, the complete
list of requirements on l∗n appears in Appendix A.

For the moment we assume we are given the circular sequence 〈Wc
n : n ∈ N〉 with prescribed

coefficient sequences 〈kn, ln : n ∈ N〉 where the ln grow sufficiently fast.
The periodic approximations to the first stage transformation are of the form

Tn = Zn ◦ Rαn ◦Z−1n (19)

which result from conjugating horizontal rotations (x, y) 7→Rαn (x + αn, y), with the more com-

plicated transformations hn : T2 → T2 that permute rectangular subsets of T2. The αn are the
rationals constructed from the coefficient sequence 〈kn, ln : n ∈ N〉 described in section 3.1.1. The
maps Zn are of the form

Zn = h1 ◦ h2 ◦ . . . ◦ hn
11 Sections 4.3-4.6 of [14] discuss how the spacings of left and right overlaps correspond.
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where hi codes the combinatorial behavior of the ith application of the C-operation. The initial,
discontinuous transformation T will then be the almost-everywhere pointwise limit of the sequence
〈Tn : n ∈ N〉.

In the second part of the construction the hn’s will be replaced by smooth transformations hsn
that are close measure theoretic approximations to the hn’s. This results in a new sequence

Hn = hs1 ◦ hs2 ◦ · · · ◦ hsn. (20)

The analogue of equation 19 for the final smooth transformation is:

Sn = HnRαn H−1n (21)

The sequence of Sn’s converge in the C∞-topology to a C∞ measure preserving transformation
S : T2 → T2.

Why do we do this? In [13] it is shown that T is measure isomorphic to Kc. Hence if Kc =
F ◦ F (N) we have ϕN is true if and only T ∼= T−1. Since S ∼= T , ϕN is true if and only S ∼= S−1.
Thus if we define the realization function R by setting R(Kc) = S, we see that R ◦ F ◦ FO is a
reduction of the collection of codes for true Π0

1-sentences to the set of recursive diffeomorphisms
isomorphic to their inverses. This is the content of figure 1.

In addition to these results in [13], we will show that the sequence of Sn’s can be taken to be
effective, converge in the C∞ topology and that if S(N) comes from N and S(M) comes from M ,
then S(N) 6∼= S(M). This will complete the proof of Theorem 1.

3.3.1 Painting the circular system on the torus

We encode the symbolic system Kc on the torus by inductively constructing the sequence of hn’s.
The map h0 is the identity map corresponding to Wc

0 = Σ. To build hn+1, T2 is subdivided into
rectangles which are then permuted.

Definition 39 (Rectangular subdivisions). Let n,m ∈ N.

• For an arbitrary natural number q, Iq represent the collection of intervals
[0, 1q ), [1q ,

2
q ), . . . , [ q−1q , 1).

• Given Iq and Is, let Iq ⊗Is be the collection of all rectangles R = I0 × I1, where I0 ∈ Iq and
I1 ∈ Is.

• Let D ⊆ T2. Then, for a collection of rectangles ξ, the restriction of ξ to D is given by

ξ �D = {R ∩D : R ∈ ξ}.

• Recall the parameter sequences 〈qn : n ∈ N〉 and 〈sn : n ∈ N〉. Further recall that sn = |Wc
n|

and qn = |u| for u ∈ Wc
n. Define

ξn = Iqn ⊗ Isn .

• Lastly, for 0 ≤ i < qn and 0 ≤ j < sn, let Rni,j be the element of ξn given by [ iqn ,
i+1
qn

)×[ jsn ,
j+1
sn

).

Note that there is a straightforward description of the action of Rαn on ξn:

Rαn : Rni,j 7→ Rni+pn,j

where addition in the subscript is performed modulo qn.
The map hn+1 will be defined as a permutation of Iknqn⊗Isn+1 and thus induces a permutation

of ξn+1. It is important to make hn+1 commute with Rαn . To do this hn+1 is first defined on
(Iknqn ⊗ Isn+1) � ([0, 1/qn)× [0, 1)) and then copied over equivariantly to T2.

42



Constructing the hn’s: The paper [13] is concerned with realizing circular systems, and so
builds the hn’s in terms of the prewords used to construct the sequence 〈Wc

n : n ∈ N〉. In the case
that 〈Wc

n : n ∈ N〉 is in the range of F , the prewords are determined by the underlying odometer
based sequence 〈Wn : n ∈ N〉. We describe hn+1 directly in terms of the odometer sequence
〈Wn : n ∈ N〉 = FO(N).

Fix enumerations 〈wns : 0 ≤ s < sn〉 of each Wn. The words in Wn+1 are concatenations of
words in Wn:

wn+1
s = w0w1 . . . wkn−1

where each wi = wns′ for some s′.
To each wn+1

s associate the horizontal strip [0, 1) × [s/sn+1, (s + 1)/sn+1) and each wns′ with
[0, 1)× [s′/sn, (s

′ + 1)/sn).

Proposition 40. There is a permutation of Iknqn ⊗ Isn+1 � [0, 1/qn) × [0, 1) such that for all
0 ≤ s < sn+1,

if wi = wns′ then

hn+1([i/knqn, (i+ 1)/knqn)× [s/sn+1, (s+ 1)/sn+1)) (22)

⊆ [0, 1/qn)× [s′/sn, (s
′ + 1)/sn).

` Equation 22 gives regions that each atom of Iknqn ⊗Isn+1 � [0, 1/qn)× [0, 1) must be sent to by
hn+1. To prove there is such a permutation we see that each region has exactly the same number
of subrectangles as the cardinality of the collection of atoms that must map into it.

We count occurrences of n-words in (n+ 1)-words. Fix a word

wn+1
s = w0w1 . . . wkn−1 ∈ Wn+1.

Then, by strong uniformity each n-word wns′ occurs kn/sn times as a wi. So each word wn+1
s puts

kn/sn rectangles in a target region. Since there are sn+1 many words of the form wn+1
s the target

regions must contain sn+1(kn/sn) rectangles.
Each horizontal strip of [0, 1)⊗Isn is divided into sn+1/sn many horizontal strips by [0, 1)⊗Isn+1

and each vertical strip of Iqn ⊗ [0, 1) is divided into kn many vertical strips by Iknqn ⊗ [0, 1). Thus
each atom of the partition ξn � [0, 1/qn)×Is is divided into kn(sn+1/sn) rectangles by Iknqn⊗Isn+1 .
In particular Iknqn ⊗ Isn+1 � [0, 1/qn)× [s′/sn, (s

′ + 1)/sn) has kn(sn+1/sn) many atoms.
Hence each target region contains the same number of rectangles as atoms sent to it and there

is a map hn+1 satisfying equation 22. a

Since hn+1 is a permutation of Iknqn⊗Isn+1 �[0, 1/qn)×[0, 1) for each 1 ≤ i < qn, it can be copied
onto each Iknqn ⊗ Isn+1 � [ip/qn, (ip + 1)/qn). The result of this is a permutation of Iknqn ⊗ Isn+1

(and hence ξn+1) that commutes with the rotation Rαn .

Remark 41. It is a clear that hn+1 can be defined in a primitive recursive way using the data
Wn+1.

Remark It is shown in [13] that having defined the sequence of hn’s in this manner, for sufficiently
fast growing ln the transformations Tn converge in measure to a measure preserving transformation
T : (T2, λ) → (T2, λ) that is isomorphic to the original circular system defined by 〈Wc

n : n ∈ N〉.
The map taking 〈Wc

m : m ≤ n〉 to Tn is primitive recursive.
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3.3.2 Smoothing the Tn

We now must smooth the Tn’s to produce Sn’s that have measure-theoretic limit S which is iso-
morphic to T . Secondly, we show that S is a recursive diffeomorphism.

For our discussion of smoothing we need an effective complete metric on the C∞-diffeomorphisms.
Note that the C∞ topology is the coarsest common refinement of the Ck topologies for each k ∈ N.
There are many choices for effective/recursive metrics generating the Ck topology for each k. These

metrics can be defined explicitly in terms of the partial derivatives ∂j

∂j0x0∂j1x1...∂
jlxl

, for j ≤ k. Given

an effective sequence of complete metrics 〈dk : k ∈ N〉 generating the Ck topologies, with distances
bounded by 1, then

d∞ =
∞∑
k=0

2−(k+1)dk

generates the C∞ topology.
Fix such a complete effective metric giving rise to the C∞ topology on T2. Without loss of

generality we can assume that

d∞(S, T ) ≤ max
x∈T2

dT2(S(x), T (x)), (23)

where dT2 is the ordinary metric on T2.
To pass from the discontinuous Zn’s to diffeomorphisms, the hi’s are replaced by smooth hsi

which are very close approximations and give the Hn’s in equation 20. Then the Hn’s will also be
diffeomorphisms. While there is no control over the C∞-norms of the Hn, the key observation at
the heart of the Anosov-Katok method is the following: if hsn+1 commutes with Rαn then

Sn = Hn ◦ Rαn ◦H−1n
= Hn ◦ hsn+1 ◦ (hsn+1)

−1 ◦ Rαn ◦H−1n
= Hn ◦ hsn+1 ◦ Rαn ◦(hsn+1)

−1 ◦H−1n
= Hn+1 ◦ Rαn ◦H−1n+1. (24)

Hence by taking αn+1 sufficiently close to αn, Sn+1 can be taken as close as necessary to Sn in the
C∞-norm.

To carry out this plan we begin by describing how we smooth the hn’s. This is done explicitly
in Theorem 35 of [13], which says:

Theorem 42 (Smooth permutations). Let T2 be divided into the collection of rectangles In ⊗ Im
and choose ε > 0. Let σ be a permutation of the rectangles. Then there is an area preserving
C∞-diffeomorphism ϕ : T2 → T2 such that ϕ is the identity on a neighborhood of the boundary
of [0, 1] × [0, 1] and for all but a set of measure at most ε, if x ∈ R, then ϕ(x) ∈ σ(R) for all
R ∈ In ⊗ Im.

In Lemma 36 of [13] it is shown that an arbitrary permutation of In⊗Im can be built by taking a
composition of transpositions of adjacent rectangles. The transformation ϕ is then built effectively
as a composition of smooth near-transpositions that swap adjacent rectangles. We summarize the
proof from [13]. The reader wanting more background details can consult Appendix D of [9], where
it is shown that the construction can be carried out recursively in a code for the permutation σ.

The main technical point for building the near-transpositions of adjacent rectangles is captured
by showing that for all 0 < γ < 1 and arbitrarily small ε < 1− γ, there is a diffeomorphism ϕ0 of
the unit disk in R2 such that:
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1. ϕ0 rotates the top half of the disk of radius γ to the bottom half and vice versa.

2. ϕ0 is the identity in a neighborhood of the unit circle of width less than ε.

The map ϕ0 is constructed by considering a primitive recursive C∞ map f : [0, 1] → [0, π] that is
identically equal to π on [0, γ] and is 0 in a neighborhood of 1. Then ϕ0 rotates the circle of radius
r by f(r) radians. Taking γ very close to 1 gives a smooth near transposition.

Using Riemann mapping theorem techniques, these rotations of the disk can be copied over to
measure preserving maps from [−1, 1]× [0, 1] to itself that

1. take all but 1− ε/2 mass of [−1, 0]× [0, 1] to [0, 1]× [0, 1] and vice versa,

2. are analytic on the interior of [−1, 1]× [0, 1],

3. are the identity in a neighborhood of the boundary.

Since every permutation of {0, 1, . . .mn} can be written as a composition of less than or equal
to (nm)2 transpositions of the form (k, k+ 1), given any σ we can build ϕ by taking ε small enough
and composing sufficiently good approximations between adjacent rectangles corresponding to the
transpositions composed to create σ.

Building Sn. Using Theorem 42 we can effectively choose a smooth hsn+1 which well-approximates
hn+1 measure theoretically. By choosing the approximation well, we can guarantee that the Sn in
equation 21 moves the partitions ξn very close to where the Tn’s move the ξn’s.

Since hsn+1 is effective, using the continuity of composition with respect to d∞, Sn+1 can be
made arbitrarily close to Sn by taking αn+1 sufficiently close to αn. Thus if αn converges to α
sufficiently quickly, the sequence 〈Sn : n ∈ N〉 is Cauchy with respect to the complete metric d∞

and hence converges to a smooth measure preserving diffeomorphism S. Taking the sequence of
hsn’s to be sufficiently close to the hn’s the Sn’s are sufficiently close to the Tn’s to apply Lemma
30 of [13] to show that the diffeomorphism S is measure theoretically isomorphic to T . Hence
(T2, λ, S) is measure theoretically isomorphic to (Kc, ν,Sh).

The induction. The discussion above was predicated on choosing the ln’s to grow fast enough.
We now show how to inductively choose lower bounds l∗n on the ln. Numerical Requirement E gives
one collection of lower bounds for the l’s, independently of the choices of the maps Hn and numbers
αn. Hence we choose l∗n to dominate this sequence of lower bounds, as well as the lower bounds we
add here.

Suppose we have defined Hn+1 from hsn+1 and Hn in a manner that satisfies equation 24 holds
and that the Hn’s can be computed effectively. Then, for any given ε, and small rational β,

d∞(Hn+1Rαn+βH−1n+1, HnRαnH−1n ) (25)

can be primitively recursively computed to within a given ε. Moreover, this is a decreasing function
of β for small β > 0. Thus one one can effectively find a δ such that if |αn+1 − αn| < δ, then
d∞(Sn+1, Sn) < 2−(n+1).

Recall the definitions of the αn = pn/qn from equations 13, 14 and 15. Then αn does not depend
on ln and

αn+1 = αn + 1/knlnq
2
n.

Thus to make αn+1 close to αn it suffices to make ln sufficiently large that

1/knlnq
2
n < δ. (26)
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Numerical Requirement G The parameter ln is chosen sufficiently large that

d∞(Sn+1, Sn) < 2−(n+1) (27)

The numbers αn, 〈Wc
m : m ≤ n〉 and 〈hsm : m ≤ n+ 1〉 determine the δ in equation 26 and thus

how large ln must be. All of this data can be computed recursively from 〈Wm : m ≤ n + 1〉. (We
note that neither the choice of sn+1 nor the definition hsn+1 uses ln.)

3.3.3 The effective computation of Sn

We now show that each element of the sequence 〈Sn : n ∈ N〉 is effectively computable (Definition 8).

Claim 43. The functions hsn and Rαn are effectively computable C∞-functions. As a consequence
each Sn is effectively uniformly continuous.

Proof of Claim 43. For simplicity of exposition, we only show how to compute the modulus of
continuity and approximation for Sn itself; finding the modulus of continuity and approximations
to the higher differentials is conceptually identical but notationally cumbersome.

Recall that we must produce two functions:

• A modulus of continuity, d : N→ N, and

• An approximation, f : ({0, 1} × {0, 1})<N → ({0, 1} × {0, 1})<N.

It is routine to check that if T0 and T1 are effectively uniformly continuous—that is, if there
exist moduli of continuity d0 and d1 and approximations f0 and f1 corresponding to each—then
the composition, T1 ◦ T0 is effectively uniformly continuous.

The second part of the claim follows from the first since Equations (21) and (20) show,

Sn = hs1 ◦ hs2 ◦ · · · ◦ hsn ◦ Rαn ◦(hsn)−1 ◦ · · · ◦ (hs2)
−1 ◦ (hs1)

−1. (28)

The case of Rαn is particularly simple. Since Rαn is an isometry, it has a Lipschitz constant
of 1. In particular, the modulus of continuity is simply given by d(n) = n, and, since Rαn is
well-defined on rational points, we can also determine the approximation by setting f to be

([x]m, [y]m) 7→ ([x]m + [αn]m, [y]m)

Where [z]m denotes the smallest dyadic rational k × 21−m for 0 ≤ k ≤ 2m minimizing |z − [z]m|.
In the case of hsm for m ≤ n, recall from the discussion after Theorem 42 that hsm can be built

as a composition of a sequence of smooth transpositions:

hsm = σs0 ◦ σs1 ◦ · · · ◦ σst(m)

Note that the number of transpositions necessary, t(m) < |ξm+1|2 = (km · qm · sm+1)
2, and is a

computable function of m since it is the number of transpositions necessary to build the permutation
in Proposition 40.

Since σsj is a smooth transposition of an explicit form (see in Appendix D of [9] for background
details), one can calculate a uniform Lipschitz constant Lsj for it; hence, taking Lm > maxs≤t(m) L

s
j ,

we have that
|hsm(x)− hsm(y)| < (Lm)t(m)+1|x− y|.
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Consequently, a suitable modulus of continuity for hsm is given by

d(n) = n+ dt(m) · log2(Lm)e, (29)

where dxe is the smallest integer greater than x. The construction of a primitive recursive approx-
imation to hsm is straightforward from the primitive recursive approximations to the σsn’s. As we
remarked in Section 1.5, it follows that (hsm)−1 is primitive recursive. a

In summary, the modulus of continuity and approximation for Sn can be calculated using the
following steps:

1. Compute the 〈hm : m ≤ n〉;

2. Build the approximations to hsm and (hsm)−1 using hm and the smooth transpositions σsi

3. Compute the moduli of continuity of 〈hsm : m ≤ n〉 and their inverses;

4. Compute 〈αm : m ≤ n〉 (and, consequently, the approximations and moduli of continuity for
〈Rαm : m ≤ n〉);

5. Compute the approximation and modulus of continuity of Sn by composing the approxima-
tions and moduli of continuity calculated in Steps 1 through 4 according to Equation (28).

3.4 Completing the proof

Theorem 1 claims the existence a computable function F , which on inputting a natural number
N (corresponding to the Π0

1 sentence ϕ = ϕN ) outputs a code for a computable diffeomorphism
S(N) of T2. Whether or not S(N) is measure theoretically conjugate to S(N)−1 is equivalent to
the truth or falsity of ϕ. Finally for different numerical inputs the corresponding S’s will not be
isomorphic. In summary, letting S = S(N),

(A) If N codes ϕ, then ϕ is true if and only iff S ∼= S−1

(B) On input N , F recursively determines a code for an effectively C∞ map of the torus to itself,
i.e., F determines:

i.) A computable function d : N×N→ N, where d(k,−) computes the moduli of uniformity
of the kth differential of S(N), and

ii.) A computable function f(k,−) where f(k,−) is a map on dyadic rational points of T2

approximating DkS(N) (the k-th differential of S(N)). Given an input that is precise to
d(k, n) digits, f(k,−) approximates the first n-partial derivatives { ∂n

∂ix∂n−iy
: 0 ≤ i ≤ n}

to n-digits.

(C) If N 6= M , then the associated diffeomorphisms S(N) and S(M) are not conjugate.

Because the function F maps natural numbers to natural numbers (the codes for the diffeomor-
phisms) we let F [ be the associated function R ◦ F ◦ FO that maps into the space of actual
diffeomorphisms. It produces a diffeomorphism of T2 from a Gödel number N for a Π0

1 sentence.
We show F [ satisfies (A) and (C) and then argue there is a (primitively) computable routine coded
by F (N) that has the same values.
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Item (A) Given N , FO(N) computes an odometer-based construction sequence 〈Wn : n ∈ N〉.
By Theorem 10, if K(N) is the uniquely ergodic symbolic shift associated with the construction
sequence then K(N) ∼= K(N)−1 if and only if ϕ is true.

The sequences 〈hsn : n ∈ N〉, 〈ln : n ∈ N〉, and 〈Wc
n : n ∈ N〉 are computed. If Kc is the circular

system associated with 〈Wc
n : n ∈ N〉, then Proposition 36 shows that Kc ∼= (Kc)−1 if and only if ϕ

is true.
Finally the realization map R preserves isomorphism. So if S = R(Kc), then (T2, λ, S) ∼=

(T2, λ, S−1) if and only if ϕ is true.

Item (C) We need to see that for M < N,S(N) 6∼= S(M). Since the realization map R preserves
isomorphism it suffices to see that (Kc)M = F ◦ FO(M) is not isomorphic to (Kc)N .

By Corollary 35 we see that the Kronecker factor of KM is KαM . Any isomorphism between
(Kc)N and (Kc)M must take the respective Kronecker factor of one to the other, hence would imply
an isomorphism between KαN and KαM .

However this is impossible since Corollary 35 implies that π > αM > αN > 0.

Item (B) F [ is a map from N to diffeomorphisms. By the result of Section 3.3.3, the diffeomor-
phisms are recursive. We must show that there is a recursive algorithm coding a function F that
computes the moduli of continuity and approximations to each F [(N) and its differentials.

We use the notation d
N to denote the modulus of continuity returned by F (N), and we use the

notation f
N to denote the approximation. Without loss of generality, we restrict our attention to

d(0,−) and f(0,−)—that is, the C0 modulus of continuity and approximation of S. The calculation
for d(k,−) and f(k,−) for k > 0 is virtually identical conceptually. We simplify the notation of
(B) above and write d

N (n) for d(0, n) and f
N (~s,~t) for f(0, ~s,~t).

Let us first consider the modulus of continuity. The routine for computing d
N depends on

choosing a large number of numerical parameters:

εn, e(n), sn, kn, ln, PN .

These have numerical dependencies that are generally of the form an � bn or an � bn. It is
routine that these can be satisfied in a primitive recursive manner–provided that the dependencies
are consistent. This is verified in Appendix A where it is shown that the dependencies among these
constants form a directed acyclic graph.

The subroutine we describe next comes during the computation of F (N), and hence we may
assume that we have the coefficients kn(N − 1), ln(N − 1) already computed. This computation
was made during the first n steps of the computation of F (N − 1), but we neglect that recursion
in this discussion.

For the inductive construction we note that:

For each 0 ≤ m ≤ n+1, make the following calculations, which recursively depend on smaller m.
Specifically, Wm is built from Wm−1 using the Substitution Lemma (Proposition 21) as described
in section 2.6. Then hsm is built from the information in the words in Wm. This allows lm to be
chosen large enough that Numerical Requirement G holds. This in turn defines pm and qm and
allows Wc

m to be built.
The algorithm is illustrated in Figure 4.

1. Using 〈εk : k ≤ m〉 andWm−1, choose km large enough to satisfy the Numerical Requirements
C and D and apply the Substitution Lemma m+ 1 times to generate Wm;
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2. Build hm, smooth it to get hsm and hence Hm. Calculate Hm’s modulus of continuity.

3. Choose lm sufficiently large that Numerical Requirements E and F hold (with n+ 1 = m).

4. Build Wc
m.

5. Calculate the approximation and modulus of continuity corresponding to Sm using the meth-
ods of Section 3.3.3.

6. Continue until m = n + 1 and dSN (n + 1), the n + 1st approximation to the modulus of
continuity of Sn+1 is determined.

7. Output d(n+ 1)(n+ 1) = dSN (n+ 1).

At the end, using the modulus of continuity d corresponding to Sn+1, output dN (n) = d(0, n+ 1)
where d(n+ 1) is the modulus of continuity of Sn+1.

To verify that this procedure actually yields a modulus of continuity for S, recall that by
Numerical Requirement G, Equation (27), it follows that

d∞(Sn+1, S) < 2−(n+1).

By inequality 23,
max
x∈T2

dT2(Sn+1(x), S(x)) ≤ d∞(Sn+1, S) < 2−(n+1).

Since d(n+ 1) yields the number of digits of input necessary to approximate Sn+1 to an accuracy
of 2−(n+1), it follows that the approximation of Sn+1 is itself an approximation of S which, given
d(n+ 1) digits of binary input, is accurate to within 2−n.

The approximation f for S is calculated almost identically, except for the output. Given

([x]dN (n), [y]dN (n)) ∈ ({0, 1} × {0, 1})d(n)

the output is

f
N (n+ 1) =

(
f0([x]dN (n), [y]dN (n)), f1([x]dN (n), [y]dN (n))

)
where f(n + 1) = (f0, f1) is the approximation of Sn+1 produced in Step 5, again in the notation
that [z]m is a m-digit binary approximation of z.
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Input n and set m = 0.
Initialize sm, 〈εm〉

and 〈εm〉.

Output d(n + 1)(n + 1),
where d(n+ 1) is Sn+1’s
modulus of continuity.

Is m > n+ 1?

Choose
Qm1 , εm, µm, εm, sm+1

satisfying the Numer-
ical Requirements.

Calculate the modulus
of continuity and

approximation of Sm.
Set m to m + 1.

Calculate km ≥ km(N −
1) and large enough for

Substitution Lemma

Choose lm ≥ lm(N − 1)
and large enough that
d∞(Sm, Sm−1) <

10−m−1, Build Wc
m.

Build hm, h
s
m, Hm and

calculate modulus
of continuity of Hm.

Build Wm

noyes

Figure 4: The algorithm for calculating the modulus of continuity dN of S. This algorithm is easily
altered to produce the approximation f

N of S simply by changing the output to (f0(~x, ~y), f1(~x, ~y)),
where f(n+ 1) = (f0, f1) is Sn+1’s approximation.
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Appendix

In [9] there are three more appendices giving well-known background on topics in logic, dynamical
systems and a proof of the “pasting lemma” we use in this paper. The pasting lemma there is a
simplified version of an original proved by Moser ([22]).

A Numerical Parameters

A.1 The Numerical Requirements Collected.

In this appendix we review the requirements on the numerical parameters used in the construction.
Specifically, in constructing the diffeomorphism F (N) we build construction sequences 〈Wn : n ∈
N〉, 〈Wc

n : n ∈ N〉 that depend on N and realize the corresponding circular system Kc as a diffeo-
morphism. These steps are intertwined–for example the circular system is built as a function of
the sequence 〈kn, ln : n ∈ N〉. In turn the ln are chosen as function of 〈Wm : m ≤ n〉 in order to
facilitate the smooth construction. To rigorously complete the proof we need to review all of these
parameters and see that the inductive choices can be made consistently in a primitive recursive
way.

At many stages in this paper we appeal to results from [14]. Hidden in those appeals is a
sequence of parameters 〈µn : n ∈ N〉 that is not explicitly mentioned in the construction presented
here. For this reason in this review we include the inductive construction of 〈µn : n ∈ N〉.

A substantial difference between this paper and earlier constructions is that the domain of the
reductions in [10] and [14] is the space of trees of finite sequences of natural numbers. The analogue
in this paper is that the only trees considered here are the trees of sequences 〈(0, 1, . . . n) : n < Ω〉
for Ω finite or infinite depending on the input N . We note that these trees are really “stalks” and
are finite or infinite depending on Ω. Since the trees used in this paper are of this very special
form, the requirements are easier to satisfy.

Another difference with this paper and [14] is that in the earlier paper it sufficed to pick the
parameters small enough or big enough in the correct order to satisfy the Numerical Requirements.
In this paper we are concerned with having an effective construction, so we need to be more explicit
about the Numerical Requirements in certain places, or otherwise argue that they can be satisfied
primitively recursively.

Closely following section 11 of [14] we begin with a review of the inductive requirements from
[10]. We give them in the notation of [14]. These inductive requirements are modified and simplified
in the construction in the current manuscript. We note the versions used in this paper.

Requirements that were instituted in [10] and their modifications. These requirements
were dubbed Inherited Requirements in [14]. Requirements that were new in [14] are called simply
Numerical Requirements, and requirements that explicitly used in the text of this paper are labelled
with capital letters A-F.

Recall that the number of elements of Wm is denoted sm; the numbers Qms and Cms denote the
number of classes and sizes of each class of Qms respectively. From the construction in [10] we have
sequences 〈εn : n ∈ N〉, 〈sn, kn, e(n) : n ∈ N〉.

Inherited Requirement 1 〈εn : n ∈ N〉 is summable.

Inherited Requirement 2 2e(n) the number of Qni+1 classes inside each Qni class. The strictly
monotone sequence of numbers e(n) will be chosen to grow fast enough that

2(n+2)2−e(n+1) < εn (30)
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Similarly we set Cnn = 2e(n) for m ≤ n as well.

Modification: In this paper the construction is simplified so to build Wn+1 we have exactly
n + 2-substitutions of each of size 22e(n+1). Hence we can replace this requirement by the
simple formula sn = 2(n+1)e(n). In particular sm, Q

m
i and Cmi are all to be powers of 2.

Inherited Requirement 3 For all n,
2εns

2
n < εn−1 (31)

Inherited Requirement 4
εnkns

−2
n−1 →∞ as n→∞ (32)

Inherited Requirement 5

∏
n∈N

(1− εn) > 0 (33)

Comment: Since this is equivalent to the summability of the εn-sequence, it is redundant and
we will ignore in the rest of this paper

Inherited Requirement 6 (Original Version) There will be prime numbers pi such that Ki =
p2i si−1Ki−1 (i.e. ki = p2i si−1). The pn’s grow fast enough to allow the probabilistic arguments
in [10] involving kn to go through.

Modification For all n, kn = PN2`sn, where for each n, ` is large enough for the substitution
argument involving kn to go through.

Comment: In [10] Kn was a product of a sequence of prime numbers. The requirement on
the sequences of prime numbers was that they were almost disjoint for different trees and
that they grew sufficiently quickly. In this paper KN is PN ∗ 2` for a large `.

Since we have only one collection of very special trees the requirement simplifies to needing
that the ` in the exponent grows sufficiently quickly for the Substitution Lemma (Proposition
21) argument to work.

Inherited Requirement 7 sn is a power of 2.

Comment: This again is redundant as the modified Inherited Requirement 2 says directly
that sn = 2(n+1)e(n).

Inherited Requirement 8 For all n, εn < 2−n.

Numerical Requirements introduced in [14]

Numerical Requirement 1 l0 > 20 and
∑

k=n 1/lk < 1/ln−1.

Numerical Requirement 2 〈εn : n ∈ N〉 is a sequence of numbers in [0, 1) such that 6
∑

n>N εn <
εN .

Numerical Requirement 3 kn, ln and qn grow fast enough that εnkn →∞,
εnln →∞, εnqn →∞.
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Numerical Requirement 4
∑ |Gn1 |

Qn1
<∞.

Modification In this paper case |Gn1 | ≤ 2 so numerical requirement 4 becomes∑
n

1

Qn1
<∞.

Comment: Since Qn1 = 2e(n) and Inherited Requirement 2 implies that 2n+12−e(n) → 0, this
requirement is redundant in this paper.

Numerical Requirement 5 µn is chosen sufficiently small relative to min(εn, 1/Q
n
1 ).

Explicitly: let tn = min(εn, 1/Q
n
1 ) and take

0 < µn < tn min
k≤n

2−n−2
(

1

tk

)
.

Then for all m

tm >
∞∑
n=m

µn
tn
.

Numerical Requirement 6 ln is big enough relative to a lower bound determined by 〈km, sm :
m ≤ n〉, 〈lm : m < n〉 and sn+1 to make the periodic approximations to the diffeomorphism
F (N) converge. Moreover kn ≤ ln.

Numerical Requirement 7 sn goes to infinity as n goes to infinity and sn+1 is a power of sn.

Comment Since sn is a power of 2e(n) we know that sn → ∞ as long as e(n) → ∞. Making
sn+1 a power of sn is simply an algebraic condition on e(n+ 1).12

Numerical Requirement 8 sn+1 ≤ sknn .

Numerical Requirement 9 The εn’s are decreasing, ε0 < 1/40 and εn < εn.

Numerical Requirement 10 kn is chosen large enough relative to the lower bound determined
by sn+1, εn to apply the Substitution Lemma and construct the words in Wn+1. Implicitly
this requires that 1/kn < ε3n/4.

Comment: This is essentially the same as Inherited Requirement 6.

Numerical Requirement 11 εn is small relative to µn.

Modification Remark 94 of [14] discusses quantities r(x, y), r(x, C), f(x) that are determined
by counting occurrences of x, y in words in an alphabet L with s letters that have a given
length `. It says that for all µ > 0 there is an ε = ε(µ, s) such that if for all x, y ∈ L,∣∣∣∣r(x, y)

`
− 1

s2

∣∣∣∣ < ε

then for all x: ∣∣∣∣r(x, C)f(x)
− C

s

∣∣∣∣ < µ

12Any choice of e(n + 1) with e(n + 1) = (k − 1)n + k − 2 + ke(n) makes sn+1 = skn. So we choose e(n + 1) of this
form using a large k.
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From the proof of the lemma it is straightforward to find an explicit formula for ε(µ, |C|, `, s)
for an upper bound on ε. The small relative clause can be rephrased as asking that

εn < ε(µn, C
n
1 , qn, sn).

Since Cn1 = 2−e(n)sn, ε(µn, C
n
1 , qn, sn) is really a function of µ, qn, sn.

Numerical Requirement 12 ε0k0 > 20, the εnkn’s are increasing and∑
1/εnkn <∞.

Numerical Requirement 13 The numbers εn should be small enough, as a function of Qn1 , that
for all w0, w1 ∈ Wc

n+1 ∪Rev(Wc
n+1) with [w0]1 6= [w1]1 the following inequality holds:∣∣∣∣ |{i ∈ I∗ : [u′i]1 = [v′i]1}|

|I∗|
− 1

Qn1

∣∣∣∣ < 1

Qn1
. (34)

Numerical Requirements introduced in this paper

In this paper we have some supplemental numerical requirements. We list only those that are
not redundant given the requirements listed above.

Numerical Requirement B kn(N − 1) ≤ kn(N).

Numerical Requirement D 1/kn < ε3n/100.

Numerical Requirement E ln(N − 1) ≤ ln(N).

Numerical Requirement F
∑ 6n

kn
<∞.

Numerical Requirement G d∞(Sn+1, Sn) < 2−(n+1).

A.2 Resolution

A list of parameters, their first appearances and their constraints

We classify the constraints on a given sequence according to whether they refer to other se-
quences or not.

Computable collections of requirements on an element xn in a sequence ~x = 〈xn : n ∈ N〉 that
are all of the form “xn is large enough” or all of the form “xn is small enough” that inductively
refer to 〈xm : m ≤ n − 1〉 are straightforwardly consistent and can be satisfied with a primitive
recursive construction. For example a requirement that a certain inductively constructed sequence
involving a given variable be summable is satisfied by asking that the nth sequence be less than
2−n. Similarly conditions that refer to the first n steps in the computation of any parameters in
F (N−1) are not at risk of being circular and hence can be satisfied without affecting the conditions
themselves. We call these Absolute conditions.

Those requirements on ~x that refer to other sequences ~y risk the possibility of being circular and
thus inconsistent. We refer to these conditions as Dependent conditions. The Dependent conditions
are those that introduce the risk of not having solution. (See [14] for more discussion of this.)

1. The sequence 〈kn : n ∈ N〉.
Absolute conditions:
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A1 The sum
∑

n 6n/kn is finite.

A2 k0 = PN and kn(N) ≥ kn(N − 1)

Dependent conditions:

D1 Numerical Requirement 10, is a lower bound for kn depends on sn+1, εn, asking that kn
be large enough for the word construction using the Substitution Lemma to work.

Why is this primitive recursive? Given sn+1 and εn, the discussion in the proof of Lemma
23 shows that a lower bound for kn can be given from Hoeffding’s Inequality (Theorem
22) in a primitive recursing way. So the issue is circularity rather than computability.

D2 Inherited Requirement 6. In this context it says that Kn = PN2`sn for a large `.

Why is this primitive recursive?Kn is defined inductively Kn = kn−1kn−2 . . . k0. So D3
is easily seen since k0 = PN and for n > 0, kn is defined in equation 11 where it is sn
times 2` for some `. The size of ` is determined by D1.

D3 From Inherited Requirement 4, equation 32 requires that εnkns
−2
n−1 goes to ∞ as n goes

to ∞.

Why is this primitive recursive?: This can be satisfied primitively recursively by choosing

kn to be an integer larger than s2n
εn

.

We note that equation 32 implies that εnkn > s2n and by requirement 7 sn →∞. Hence∑
1/εnkn is finite.

D4 Numerical Requirement 8 implies that kn is large enough that sn+1 ≤ sknn .

Comment: This is easily satisfied by taking kn ≥ log(sn+1)
log(sn)

.

D5 Numerical Requirement D says 1/kn < ε3n/100. Comment: As long as εn is defined before
kn, Requirement D is immediate by taking kn > 4/ε3n.

D6 Numerical Requirement 12 says that ε0k0 > 20 and the εnkn’s are increasing and
∑

1/εnkn
is finite.

Why is this primitive recursive? As noted the summability condition follows from D3.
The other part of Numerical Requirement 12 is satisfied primitive recursively by taking
kn to be an integer at least n

εn
.

From D1-D5, we see that kn is dependent on the choices of 〈km, lm : m < n〉, 〈sm : m ≤ n+1〉,
and εn, and these dependencies can be satisfied primitively recursively.

2. The sequence 〈ln : n ∈ N〉.
Absolute conditions

A3 Numerical Requirement E: ln(N) ≥ ln(N − 1).

A4 Numerical Requirement 1 says that 1/ln >
∑∞

k=n+1 1/lk. We also require that ln > 20∗2n,
an exogenous requirement.

Dependent conditions

D7 By Numerical Requirement 6, ln is bigger than a number determined by 〈km, sm : m ≤
n〉, 〈lm : m < n〉 and sn+1. This is superseded by the more explicit Numerical Require-
ment G says that d∞(Sn+1, Sn) < 2−(n+1).
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Why is this primitive recursive? The ‖ ‖∞-norm of S◦T can be computed effectively from
the ‖ ‖∞-norms of S and T . In particular there is a primitively recursively computable
real number M such that

d∞(Sn+1, Sn) < M |αn+1 − αn|

≤ M

qn+1
.

and the latter inequality is from equation 15.

D8 By Numerical Requirement 3, εnqn →∞. This can be arranged by taking ln to be large
enough relative to εn that εnqn > max(εn−1qn−1, n).

Why is this primitive recursive? Because qn+1 = knlnq
2
n there is an explicit lower bound

on ln in terms of εn+1.

Thus ln depends on 〈km, sm : m ≤ n〉, 〈ln : m < n〉, εn+1 and sn+1.

3. The sequences 〈sn : n ∈ N〉 and 〈e(n) : n ∈ N〉. We treat these sequences as equivalent
since sn = 2(n+1)e(n).

Absolute conditions

A5 Inherited Requirement 7 says that sn is a power of 2.

A6 The sequence sn goes to infinity.

A7 sn+1 is a power of sn.

Dependent conditions

D9 The function e(n) : N → N referred to in equation 30 gives the number of Qns+1 classes

inside eachQns class. It has the dependent requirement that 2n+12−e(n) < εn−1. Moreover
sn = 2(n+1)e(n).

The result is that sn+1 depends on the first n+ 1 elements of T 〈km, sm, lm : m < n〉, sn, and
εn.13

Why is primitive recursive? The only requirement for choosing sn+1 is that

2−e(n+1) < εn2−n

and this is clearly primitively recursively satisfiable.

4. The sequence 〈εn : n ∈ N〉.
Absolute conditions

A8 Numerical Requirement 9 and Inherited Requirement 1 say that the 〈εn : n ∈ N〉 is
decreasing and summable and ε0 < 1/40.

A9 Inherited Requirement 8 says that εn < 2−n

Dependent conditions

13It is important to observe that the choice of sn+1 does not depend on kn or ln.
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D10 Numerical Requirement 9 says εn < εn.

D11 Equation 31 of Inherited Requirement 3 says 2εns
2
n < εn−1

D12 Numerical Requirement 11 says that εn must be small enough relative to µn.

Why is this primitive recursive? This is shown in [14] using Lemma 97, which describes
how to calculate an explicit function ε(µn, qn, sn) such that Numerical Requirement 11
holds if εn < ε(µn, qn, sn).

D13 Numerical Requirement 13 says that εn is small as a function of Qn1 .

Why is this primitive recursive? This is shown in the argument in Sublemma 99 of [14],
which gives appropriate effective upper bounds using Hoeffding’s Inequality.

The result is that εn depends exogenously on the first n elements of T , and on Qn1 , sn, εn,
εn−1 and µn.

5. The sequence 〈εn : n ∈ N〉.
Absolute conditions

A10 Numerical Requirement 2 says that 6
∑

n>N εn < εN . This can be arranged by taking
εn < 12−nεn−1.

Dependent conditions

Numerical Requirement 3 imposes three potential Dependent conditions on εn: εnkn → ∞,
εnln →∞, εnqn →∞. We deal with these in turn.

(a) The requirement that 〈εnkn : n ∈ N〉 goes to infinity already follows from the fact that
εn < εn and item D6.

(b) 〈εnln : n ∈ N〉 goes to infinity. This follows from kn ≤ ln, which is covered in Dependent
condition D7.

(c) 〈εnqn : n ∈ N〉 goes to infinity. This follows from Dependent condition D8.

Since Numerical Requirement 3 from items D6-8, all of the requirements on 〈εn : n ∈ N〉 are
absolute or follow from previously resolved dependencies. Moreover they are trivial to satisfy
primitively recursively.

6. The sequence 〈Qn1 : n ∈ N〉.
Recall Qn1 is the number of equivalence classes in Qn1 . We require:

Absolute conditions

A11 The only requirement on the choice of Qn1 not accounted for by the choices of the other
coefficients is that

∑
1/Qn1 <∞.

Dependent conditions

None.

7. The sequence 〈µn : n ∈ N〉.
This sequence gives the required pseudo-randomness in the timing assumptions.

Absolute conditions

None.

Dependent conditions
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Figure 5: Order of choice of Numerical parameters dependency diagram.

D14 Numerical Requirement 5 appearing in this paper is written explicitly as follows: Set
tn = min(εn, 1/Q

n
1 ) and take

0 < µn < tn min
k≤n

2−n−2
(

1

tk

)
.

Then for all m

tm >
∞∑
n=m

µn
tn
.

Thus Numerical Requirement 5 requires that µn satisfy a primitive recursive dependent con-
dition depending on εn and Qn1 .

The recursive dependencies of the various coefficients are summarized in Figure 5, in which an
arrow from a coefficient to another coefficient shows that the latter is dependent on the former.

Order of choices We begin by setting: s0 = 2, s1 = 8, p0 = 0, q0 = k0 = 1, l0 = 21. Q0
1 is not

defined, but Q1
1 is determined by s1. µ0 = ε0 = k0 = l0 = 1, ε0 = 1.1, ε1 = ε0/12,

Assume:

The coefficient sequences 〈km, lm, Qm1 , µm, εm : m < n〉, 〈εm : m ≤ n〉 and sn have been
chosen. It is know whether n < Ω.

To do:
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Choose kn, ln, Q
n
1 , µn, εn, εn+1 and sn+1. Each requirement is to choose the correspond-

ing variable large enough or small enough where these adjectives are determined by the
dependencies enumerated above.

Figure 5 gives an order to consistently choose the next elements on the sequences; Choose the
successor coefficients in the following order:

Qn1 , εn, µn, εn, sn+1, kn, ln.
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