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Abstract

Method optimization is crucial for successful MS analysis. However, extensive method
assessments, altering various parameters individually, are rarely performed due to practical
limitations regarding time and sample quantity. To maximize sample space for optimization
while maintaining reasonable instrumentation requirements, a definitive screening design (DSD)
is leveraged for systematic optimization of data-independent acquisition (DIA) parameters to
maximize crustacean neuropeptide identifications. While DSDs require several injections,
library-free methodology enables surrogate sample usage for comprehensive optimization of
MS parameters to assess biomolecules from limited samples. We identified several parameters
contributing significant first- or second-order effects to method performance, and the DSD
model predicted ideal values to implement. These increased reproducibility and detection
capabilities enabled the identification of 461 peptides, compared to 375 and 262 peptides
identified through data-dependent acquisition (DDA) and a published DIA method for crustacean
neuropeptides, respectively. Herein, we demonstrate a DSD optimization workflow, using
standard material, not reliant on spectral libraries for the analysis of any low abundance
molecules from previous samples of limited availability. This extends the DIA method to low
abundance isoforms dysregulated or only detectable in disease samples, thus improving
characterization of previously inaccessible biomolecules, such as neuropeptides. Data are
available via ProteomeXchange with identifier PXD038520.

P
; Sample of Interest _
L]
Optimized Method i |
N

Inform
T Acquisition *

il

Definitive Screening c Library-Free
Design DIAMS

Surrogate Sample

Keywords

Neuropeptides, Design of Experiments, Label-free Quantitation, DIA, Data-independent
acquisition, Peptidomics



Introduction

Significant evidence has demonstrated that data-independent acquisition (DIA) mass
spectrometry (MS) methods provide greater reproducibility than data-dependent acquisition
(DDA) methods. As ion selection in DDA methods is stochastic, replicate injections can have
low overlap in peptide and protein identifications, obscuring real biological changes. In contrast,
DIA methods define m/z windows within a selected precursor range and fragment all precursors
within each window simultaneously to ensure that all parent ions are fragmented.'* The
incorporation of DIA methods into traditional MS workflows has enabled the discovery and
identification of more biomolecules in a single MS acquisition run than with traditional DDA
experiments. DIA has shown to be beneficial for proteomics and peptidomics.5-¢

One challenge in DIA experiments is that the complex fragmentation spectra of DIA require
intensive downstream processing using either library or library-free approaches. Spectral
libraries make identifications using a peptide’s fragmentation pattern observed in a high
resolution DDA experiment to identify the same fragments from a DIA experiment.! 7 Spectral
library identifications are limited to only previously observed peptides, making it incompatible
with discovery of new peptides.®° The extra instrument time and large sample amount required
to generate a high-quality spectral library can prohibit the analysis of precious samples that are
not abundantly available. Library-free software, in contrast, transforms DIA spectra into DDA
pseudospectra, compatible with existing DDA search engines.*

To perform DIA successfully, acquisition parameters must be carefully selected based on
sample type and complexity. These decisions can directly impact library-free software
deconvolution ability. For example, if a selected isolation window width is too large, the resulting
MS/MS (MS2) spectra can display overlapping fragmentation patterns from multiple peptides.
When the selected isolation window width is too small, the collected points corresponding to a
particular peptide decrease. The design of an effective, comprehensive DIA experiment requires
careful planning of acquisition parameters for more effective use of deconvolution algorithms,
including maximum ion injection time (IT), target automatic gain control (AGC), collision energy
(CE), m/z range, and others.® Optimizing n parameters comprehensively requires n!
experiments when considering synergistic response between any two parameters, requiring
extremely large amounts of sample and instrument operation time.'%'3 An alternative approach
is the use of design of experiments (DoEs), which leverages statistical power to optimize
multiple parameters in tandem using minimal experimental trials.'*'®> DoEs are widely used in
engineering'® but are less commonly applied to liquid chromatography-mass spectrometry (LC-
MS) experiments, although usage of different DoEs has increased over the years.'" 13, 17-27

Combining DoE and library-free DIA methods can significantly decrease the sample and
instrument time requirements to fully optimize a DIA method. To demonstrate this, we applied
DoE and library-free DIA to the analysis of neuropeptides. Neuropeptides are signaling
molecules crucial for neuronal communication. The sub-femtomolar concentrations of
neuropeptides observed in vivo, along with limited sample quantities gained from animal
models, makes them poor candidates for a spectral-library-based DIA approach. Additionally,
neuropeptide identification is not well-suited for DDA’s top n selection criteria, as neuropeptides
tend to co-elute with several higher abundance competing matrix components.> 28 To minimize
sample requirements and maximize identifications, we applied a specific class of DoE, a
definitive screening design (DSD), to decrease required experimental runs while maintaining a
high level of statistical power to interpret the effects of each parameter. This model enables
detection of both independently impactful parameters, classified as main effects, and
parameters that complement one another to achieve a particular response, classified as two-
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factor interactions, in addition to predicting optimal parameter values to be used, all from a
single round of data acquisition.'?2°-30 DSDs are versatile and compatible with both continuous
and categorical, or discrete, parameters. Following the split-plot design of specific combinations
of parameter values for experimentation, DSDs prescribe a set of strategically varied parameter
combinations to ensure enough statistical power to impute the optimal combinations while
limiting the number of required experiments.2° 3

Using a DSD, we evaluated seven parameters, m/z range, isolation window width, MS1
maximum IT, CE, MS2 maximum IT, MS2 target AGC, and the number of MS1 scans collected
per cycle, for the increased identification of neuropeptides through library-free DIA methodology.
We demonstrate a workflow for optimizing DIA MS acquisition of precious samples using a DSD
and a surrogate sample of similar complexity, amenable to a wild type or control sample. The
optimized method can then be applied to limited mutant or experimental samples precious in
nature. We also demonstrate the ability for label-free quantitation (LFQ) of the identified
neuropeptides and compare the resultant method with a previously established DIA method for
neuropeptides.

Experimental Section

Sample Preparation

Several sinus gland pairs were obtained from Callinectes sapidus. Neuropeptide samples were
prepared according to previous protocols®. Briefly, sinus glands were homogenized via
ultrasonication probe in ice cold acidified methanol (90% methanol / 9% water / 1% acetic acid).
Neuropeptide containing supernatant was dried using a vacuum concentrator prior to desalting
with C18 solid phase extraction material. The subsequent samples were pooled into one vial
which was used for MS acquisitions for the DSD and quantitative data. Throughout this
manuscript, peptides or neuropeptides will be considered to refer to all peptides identified
through PEAKS contained in the neuropeptide database, including peptides that are truncated
and/or modified by PTMs.

HPLC-MS/MS Analysis

All experiments were carried out using a Thermo Scientific Q Exactive orbitrap mass
spectrometer coupled to a Waters nanoAcquity Ultra Performance LC system. Separation was
performed on a 15 cm homemade column, packed with 1.7 um particle size C18 ethylene
bridged hybrid material, at a flow rate of 200 nL/min. HPLC methods were kept constant for all
data acquisition. Using solutions of mobile phase A (0.1% formic acid (FA) in water) and B
(0.1% FA in acetonitrile (ACN)), the gradient was ramped as follows: starting at 97% A, ramped
to 90% A over 0.5 min; 85% A over 19.5 min; 83% A over 20 min; 80% over 15 min; 67% over
55 min; 25% over 10 min. Unaltered MS settings between all methods include MS1 resolution of
70,000, MS1 AGC target of 3e6, MS2 resolution of 17,500. The default precursor charge state
for all methods was set to +2. DDA acquisition was performed with a MS2 AGC target of 2e5,
MS2 max IT of 200 ms, loop count of 10, isolation window width of 2, normalized CE of 30, and
dynamic exclusion window of 40 seconds. DIA acquisitions were executed with parameter
values (Table1) as prescribed by the DSD (Figure 1A). For DIA method comparison, a
previously published method?® for crustacean neuropeptide analysis was performed with slight
modifications to decrease variability between parameters. Parameters that differ from the other
DIA methods used herein are as follows: MS1 AGC target of 1e6, MS1 max IT of 250 ms, MS2



AGC target of 2e5, auto MS2 max IT, 20 m/z isolation window width, CE of 30 V, and loop count
of 10. The parameters used in the final DIA method post DSD evaluation were 16 m/z isolation
window width from 400 to 1034 m/z, CE of 25V, MS2 max IT of 100 ms, MS2 AGC target of
1e6, MS1 max IT of 30 ms, and 4 MS1 spectra per cycle.

Neuropeptides and related peptides were identified through PEAKSxPro software®. PEAKS
parameters were set to: parent mass error tolerance of 20.0 ppm, fragment mass error
tolerance of 0.02 Da, unspecific enzyme digestion, variable modifications: amidation (-0.98 Da),
oxidation (M) (+15.99 Da), pyro-glu from E (-18.01 Da), pyro-glu from Q (-17.03 Da), acetylation
(N-term), and max variable PTM per peptide of 3. Peptides were filtered using a -logP cutoff of
37.6, corresponding to a 5% false-discovery rate (FDR) for the DDA data. While a 1% FDR
cutoff is considered standard within the proteomics community, this is not always the case in the
field of peptidomics due to the unique considerations of the field. Routinely only a few hundred
IDs (100-400) are expected. In this case, a mere two to five false positives from poor quality
spectra will cause the FDR to quickly surpass a 1% threshold. For example, Han et al. credited
their inability to identify 19 known neuropeptides to the use of a “strict” FDR threshold of 1%.3*
As a result, it is not an uncommon practice by the peptidomics community to use a larger FDR
cutoff, such as 5%, and/or substitute FDR with a quality score combined with manual inspection
for identification fidelity.3%-38

Deconvolution of DIA spectra were performed using DIA-Umpire*, according to default
parameters, and the resulting pseudo-DDA MS2 spectra were consolidated with their
corresponding MS1 scans using a homebuilt C# console line application
(https://github.com/avcarr2/DIAConverter-New) to achieve compatibility with our downstream
processing workflow. While powerful, the library-free method DIA-Umpire creates pseudo-DDA
spectra unsuitable for LFQ by third-party software due to the dissociation and omission of MS1
spectra information. This leads to unintended consequences which include incompatibility with
identification software that uses MS1 spectra data to compute various metrics used to describe
peptide spectrum match (PSM)/identification quality, such as with newer PEAKS algorithms.

To demonstrate quantitative ability of the optimized method, peptides were diluted two-, five-,
and ten-fold in 3% ACN/0.1% FA prior to LC-MS/MS injection. The resulting peptide
identifications were quantified by analyzing PEAKS database search outputs through another
console application (https://github.com/avcarr2/InjectionTimeGetterApp) and FlashLFQ3*
operating with match between runs selected, a parent mass tolerance of 5 ppm and 5 min
retention time window. A -logP cutoff of 33.1, corresponding to a 5% FDR, was used to filter the
DDA data for improved quantitative accuracy. Quality and quantitative assessment of the
optimized method was compared against samples of different concentrations using the
previously published DIA method described above.?® The mass spectrometry proteomics data
have been deposited to the ProteomeXchange Consortium via the PRIDE*? partner repository
with the dataset identifier PXD038520.

Definitive Screening Design Model/Selection of Optimization Parameters/Statistical Analysis

A DSD was created and results were interpreted using JMP Pro 15.0.0.#' Selection of the
proper factors to include when designing a DSD is crucial to minimize the introduction of
aliasing and confounding factors. Therefore, the parameters and values shown in Table 1 were
chosen carefully for this model after much discussion with colleagues and experienced experts
in the field.? 4243 Per specification of DSDs, the majority of included factors are evaluated as
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continuous factors for effects on improving DIA MS identification: isolation window width, m/z
range spanning from 400 m/z, CE, MS1 max IT, and MS2 max IT. The number of MS1 per DIA
duty cycle (through loop count) was a categorical factor, as non-integer values are not possible.
MS2 automatic gain control (AGC) was also evaluated as a categorical factor due to selection
restraints within the Q Exactive software preventing three evenly distributed values from being
selected, a key requirement of DSDs. The design involved 4 extra runs to estimate quadratic
interactions and run order was randomized in two blocks to minimize bias. Peptide identification
numbers were used as a response variable to assess the methods. The “maximize desirability
function” in JMP was used to predict optimal parameter values to increase IDs.

DSD Value -1 0 1
Continuous Factors

m/z range from 400 m/z 400 600 800
Isolation Window Width (m/z) 16 26 36
MS1 max IT (ms) 10 20 30
MS2 max IT (ms) 100 200 300
Collision Energy (V) 25 30 35
Categorical Factors

MS2 AGC Target 5e5 1e6
MS1 per Cycle 3 4

Table1. The parameters selected as factors to evaluate for optimization. Values are used as
factor levels to test the effects on response.
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Figure 1. A) Peptide identifications resulting from 26 DIA acquisitions outlined by the DSD. B)
Overlapping peptide identifications from triplicate DDA acquisitions are shown. C) Bar chart
describing the number of overlapping peptides in different numbers of DIA acquisitions. Red
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asterisk indicates where comparable peptide overlaps in DIA data to two (**) or three (*) of the
triplicate DDA measurements is observed.

Some proteomics optimization schemes prioritize maintaining a constant duty cycle between
MS1 scans,*-* however, our experiments were designed with varying duty cycles, while still
limiting the maximum loop time (time between MS1 scans) to collect at least 8 points across the
peak for quantitation to assess the effects of specific parameters, as shown in Figure 1A. This
is especially important for label-free quantitative (LFQ) analysis where MS1 peak area is used,
such as in this study. Although three experiments had a loop cycle time of 3-5 seconds, all
others were well below this with a mean of 1.54 seconds, 1.13 second standard deviation, and
median of 1.26 seconds. Instead, the impact of duty cycle was evaluated indirectly based on the
effects of window size, range to scan over, and how many MS1 spectra were acquired per full
DIA duty cycle.

When performing library-free DIA analysis, consideration of spectral complexity is particularly
important for successful deconvolution, thus the parameters that directly affect spectral
complexity were prioritized over maintaining a constant duty cycle time. The number of
neuropeptide identifications (IDs) using the DSD-prescribed DIA methods ranged from 182 to
434 neuropeptides. The over two-fold range demonstrates the dependence of identifications on
DIA method parameters. Through qualitative analysis, we see that higher number of IDs were
largely associated with overall lower duty cycles; however, this was not always the case.

While each DDA replicate produced comparable quantities of IDs to the mid-performing DIA
methods, poor reproducibility of neuropeptide populations was observed, a hallmark of DDA
(Figure 1B). Only 155 peptides were observed across all triplicate injections, while 331 peptides
were observed in at least 2 injections. DIA enabled the observation of 153 common peptides
across spectra collected from 21 different DIA methods and 331 peptides across 9 different DIA
methods, indicated by the asterisks in Figure 1C, demonstrating decreased variability between
DIA experiments. This is additionally beneficial in the case of LFQ, where irreproducibility
greatly decreases the number of quantifiable peptides across conditions. While DIA already
generally outperforms DDA in terms of number of peptide identifications, performance can be
further improved by evaluating the responses and optimizing acquisition methods through the
DSD.

DSD Model Creation and Validation
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CE(25,35) 1 1 82339.505 | 299.38536
Window(16,36) 1 1 8794.574 | 31.976955
CE*MS2IT 1 1 7301.4578 | 26.548004
Range*Range 1 1 6984.6545 | 25.396112 (
Window*MS2 AGC 1 1 6881.8884 | 25.022455| 0O
Range(400,800) 1 1 4095.8508 | 14.892459 (
MS2 IT(100,300) 1 1 1864.5053 | 6.7793167 | 0.0185*
MS2 AGC 1 1 1770.742 | 6.4383945 0.0213*
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MS1 1 0 0 0 1.0000 | Removed
Window*MS2 IT 1 0 0 0 1.0000 | Removed
0 2 4 6 8 CE*MS1 1 0 0 0 1.0000 | Removed
Step Number MS2 IT*MS2 AGC 1 0 0 0 1.0000 | Removed

evaluated using AlCc where C) the minimum AlCc value resulted from this table of main and
even-order effects.

Combined model parameter estimates created during fit definitive screening, shown in S| Table
81, determined the factors to consider when designing models through main and even-order
effect estimates. The response residuals are shown in Figure 2A. These effects were
considered when building a generalized regression model, where model selection was
performed through minimizing the corrected Akaike information criterion (AlCc), an estimator of

model quality, to 243.4 through forward selection and the assumption of normal data distribution
(Figure 2B). The resulting model chosen includes several main and even-order effects shown in
Figure 2C. Main effects were thus limited to those including CE, window width, MS2 max IT,
and MS2 AGC. Significant even-order effects included window width and MS2 AGC, CE and

MS2 max IT, and lastly, m/z range as a quadratic effect. No other quadratic effects were
observed as statistically significant through the model evaluation, although in principle they are

likely to be present. It is important to note, while other effects on peptide IDs may be present,
DSDs can only observe those with large effects. This limitation means that variables may be
considered to have isolated effects, or a linear fit associated in exchange for decreasing the

number of experiments required to be performed.

We also want to bring attention to blocking being removed as a main effect, indicating any drift
or bias associated with running the mass spectrometer for days, did not contribute to the
variation in peptide IDs between methods.
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Figure 3. A) Model validation was performed by comparing the predicted IDs to the observed
IDs. B) Analysis of variance was calculated to determine the model as significant. C) Externally
studentized residuals are shown with 95% simultaneous limits calculated through the Bonferroni
method (red lines) and individual limits (green lines). D) Optimal parameter values were
predicted through maximizing the desirability of the model, with confidence limits shown.

The selected model was then statistically validated and shown to have a R-squared value of
0.96 and root-mean-square error of 16.6 (Figure 3A) and considered to be statistically
significant in describing the actual observed data (Figure 3B). Externally studentized residuals,
shown in Figure 3C, have an even, normal distribution, indicating no left or right skewing of the
model. Residuals are within the 95% Bonferroni simultaneous confidence intervals and
individual limits demonstrating good model fit. Table 2 describes the parameters used to build
the final model. The probability predictor feature was then used to maximize desirability of the
model response, in the form of neuropeptide IDs (Figure 3D). It is thus predicted that acquiring
MS2 spectra from collecting ions with an AGC target of 1e6 and max MS2 of 100 ms, where
precursor ions are fragmented with a static CE of 25 V across a window width of 16 m/z over a
range of 400 m/z to 1034 m/z should yield a high number of neuropeptide IDs.

Term Estimate Std Error tRatio Prob>|t|
Intercept 340.04 8.58 39.62 <.0001*
Range (400,800) 13.69 3.55 3.86 0.0013*
Window (16,36) -10.15 3.55 -2.86 0.0108*
CE (25,35) -61.40 3.55 -17.30  <.0001*
MS2 IT (100,300) -9.24 3.55 -2.60 0.0185*
MS2 AGC [5€e5] -8.37 3.30 -2.54 0.0213*
Window*MS2 AGC [5e5] 20.54 4.11 5.00 0.0001*



CE*MS2 IT 21.96 4.26 5.15 <.0001*

Range*Range -47.60 9.44 -5.04 0.0001*

Table 2. Parameter estimates for factors used in final model.

DSD Results for Optimal Method Creation

The resultant model identifies the presence of main, secondary, and quadratic effects. M/z
Range was identified as both a main effect and a quadratic effect, meaning there is an optimal
value at a local maximum, in this case, spanning 634 m/z values from 400 m/z. This is
consistent with the principle that a larger range will encapsulate more peptides, however due to
a non-constant distribution where fewer precursor ions are identified at larger m/z values, the
range needs to be curtailed at the upper end.® 44 Precursor m/z value distributions are shown in
Figure S1. Overall, DIA methods are less biased towards higher m/z values that tend to be
lower in intensity with decreased ionization efficiency. Probing samples across a wide m/z range
with DIA methods allows for the characterization of lesser observed neuropeptides, enabling the
expansion of gathered information able to be used in the future.

Window width can directly impact identification capabilities in many ways, but most significantly
through increasing fragmentation spectra complexity observed with larger window widths,
therefore complicating data deconvolution. Here, we find that fragmenting smaller windows (16
m/z) of ions lead to increased neuropeptide identification. While carrying out a similarly
designed DSD with smaller isolation window widths, we found that 4 m/z windows lead to
drastically fewer IDs (data not shown). While it has been observed that narrow windows are
optimal for the analysis of several analytes,? 4°-46 the associated increase in duty cycle
negatively impacted identifications in crustacean neuropeptide samples. Though wider windows,
such as 26 and 36 m/z, lead to even shorter duty cycles, the increased quantity of peptide
precursors available for fragmentation results in more complex spectra and deconvolution is
limited by current library-free DIA software.

MS2 max IT was identified as a main effect, which was logical as it directly impacts the duty
cycle. When MS2 max IT is set too long, windows with sparse ions occupy the full allotment of
time instead of moving to the next isolation window. Actual IT can be seen in Figure S2,
demonstrating the necessity of limiting max IT to 100 ms, minimizing extraneous time spent
collecting uninformative spectra where the low signal present would either never reach the
selected AGC target, or no large benefit is gained. While a larger proportion of acquired MS2
scans reached its AGC target, there was no significant increase in associated identifications (p
=0.83).

Additionally, MS2 AGC target was identified as a main effect with a desired value of 1e6, likely
to produce higher quality fragmentation spectra where fragment ion intensity is higher. AGC
target and max IT work similarly to limit the duty cycle of MS2 spectra, although this even-order
effect on peptide IDs was not large enough to be discerned through statistical analysis. While
this 1e6 can be considered a large target for collecting MS2 spectra, the time required is limited
by a lower max IT. Optimal MS2 AGC is also dependent on m/z isolation window width,
identified together to produce a secondary effect. Window size impacts the range of ions
measured when estimating AGC, with larger windows enabling more ions to be sampled from
the same precursor packet. Increased sampling is not always desirable however, as determined
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through the predictor tool that indicated the smallest window of 16 m/z and largest AGC target
of 1e6 be chosen. The presence of several large ion clouds from different ion populations in an
Orbitrap leads to coalescence and error in the resultant calculated m/z. Here, peptide
identification benefits through the sampling of more ions to increase the intensity of individual
ion populations, rather than vast ranges of ion populations.

Normalized collision energy (NCE) is ubiquitously used in the field of proteomics as CE required
for adequate fragmentation efficiency is dependent on precursor ion m/z. In traditional DDA
methods, NCE is calculated in real time to fragment a selected precursor, however, with DIA
fragmentation, several precursors of various m/z values are co-fragmented. As such, a fixed CE
must be chosen to fragment all ions in the isolation window, regardless of m/z value. Through
the DSD, 25 V was identified as optimal over the wide range of m/z ion values in the
neuropeptide sample analyzed. While decreasing CE positively impacts identifications, there is
likely to be a lower limit with a steep drop off in IDs outside of our sampling range, when there is
not enough energy to cause any fragmentation. Considerations need to be made when
interpreting these results. Many of these parameters likely reach a limit, demonstrating the
dangers in exceeding the statistical power with a given sample space.

The other detected secondary effect was between CE and MS2 max IT. As with many
secondary effects, their correlation may not be clear initially and there may be confounding
factors involved. Low CE vyields inefficient parent ion fragmentation, while low MS2 max IT
means less fragment ions are collected before detection. Combining a low CE and a low MS2
max IT implies that unfragmented parent ions will have a higher signal-to-noise ratio (SNR) than
in a traditional DDA experiment. The higher SNR may assist the correlation-based DIA data
deconvolution methods that identify correlated parent and fragment ions through unfragmented
precursors observed in MS2 spectra.

Two factors evaluated in this design were not determined to significantly affect neuropeptide
identification, both related to the acquisition of MS1 spectra. The collection of both 3 and 4 MS1
spectra per cycle provided sufficient precursor information for deconvolution of fragment ion
features. It is likely that effect would be seen if a larger range was sampled such as collecting 1
compared to 6 spectra. However, the impact of 3 versus 4 MS1 spectra was not large enough to
discern. Similarly, MS1 max IT was also determined to not be significant in affected observed
peptide IDs, further supporting the low impact of MS1 scans on overall duty cycle. Again, this
observation is limited to this study, where the tested values ranged from 10 to 30 ms. Larger
sampling space may lead to different conclusions, further emphasizing the importance of
thoughtful experimental design. As neither of these parameters had significant effects indicated
by the DSD, and thus the two factors were not considered in the model, we rely on our prior
knowledge of mass spectrometry to decide which values to use for each parameter. Moving
forward with developing an optimized DIA method for crustacean neuropeptides, 4 MS1 spectra
will be collected per duty cycle to increase collected points across the peak for quantitation.
Additionally, MS1 IT will have the longer 30 ms limit to increase signal intensity during points
where less peptides elute. This will also improve the ability for low abundance precursor ion
detection for spectral deconvolution.

DIA Method Assessment
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Figure 4. Reproducibility of four different MS acquisition methods (fDSD, KD, oDSD, DDA) is
visualized via upset plots demonstrating the intersection of peptide identifications from triplicate
injections.

The pooled neuropeptide samples were re-injected into the mass spectrometer using four
different data acquisition methods. The optimal method informed by the DSD (fDSD) was
assessed against the DSD method providing the highest number of IDs (0DSD), as well as the
DDA method, and a DIA method previously optimized without leveraging a DOE for crustacean
neuropeptides (KD)?. As expected, all DIA methods outperformed the DDA method in terms of
both peptide identification and reproducibility (Figure 4). The highest percentage of peptides
identified in all triplicate injections was achieved using the KD method, however, the absolute
number of peptide identification is relatively lower. This indicates that the n=3 neuropeptides are
likely to be higher abundant or appear in less complex spectra, leading to higher reliability for
fragmentation and detection by software. Figure 5a supports this, with KD showing a larger
distribution of neuropeptides with a higher area under the curve (AUC) than the other DIA
methods. Conversely, fDSD and oDSD methods identified more neuropeptides with lower
AUCs, suggesting some improvement in sensitivity by these methods. fDSD and oDSD
methods generated many reproducible IDs, as well as many neuropeptides unique to a fraction
of the replicates. Overall, these DSD methods lead to a larger variety of peptide identifications.
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Figure 5. Comparison of figures of merit between methods and detected neuropeptides. A)
Log10 transformed neuropeptide AUC distributions. B) Distributions of identification mass error.
C) Precursor m/z distributions. D) MS1 and E) MS2 injection times. F) Loop time between MS1
scans.

While DSD usage led to the creation of a DIA method for crustacean neuropeptides capable of
outperforming different MS methods, it was comparable to the empirically highest performing
DIA method, oDSD. This highlights an important aspect of implementing applied statistics such
as DOEs; they are not infallible and not to be implemented without interpretation using expertise
in the particular field of application. Empirically determined methods can be used for subsequent
analysis, however one of the prescribed methods cannot be guaranteed to outperform the
model predicted method in every DSD implementation. As the model accounts for variability
between runs, we will consider the predicted DIA method, fDIA, as the finalized optimal method.

We would like to note that several parameters differed in these methods, limiting the ability for
direct comparison, however, we will comment on observed trends. All methods have similar
mass accuracy, with KD and DDA methods having mass error distributions closer to 0 ppm
(Figure 5b). This can again be attributed to the bias in these methods to identify neuropeptides
with higher peak intensities and AUC values. KD also has a lower AGC target, decreasing
trapped ions per scan and leading to higher mass accuracy. The DDA method skewed towards
fragmenting precursor ions in the low m/z range (Figure 5¢), unsurprising as higher m/z ranges
more commonly contain lower charge state and lower signal intensity ions. A wider distribution
of precursor m/z values are seen for the DIA methods, enabled by the unbiased fragmentation
selection scheme. A visible difference in fragmentation patterns of representative neuropeptide
precursors can be seen in Figures S3-S5, owing to the different collision energies applied.

MS1 injection times for the four methods fall around 5 to 30 ms, although different upper quartile
trends are observed in Figure 5d. Approximately 50% or more of all MS1 scans from fDSD and
oDSD reach the max IT, unlike DDA and KD methods, likely because of the 3x larger AGC
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target in these DIA methods compared to KD. Additionally, the DDA method included trapping
lower m/z ions, which commonly comprise of +1 ions of high signal intensity, reaching the target
AGC more quickly. The frequency of MS1 scans directly affects the precursor profile for each
neuropeptide, leading to differences in precursor based MS1 quantitative accuracy. Precursor
profiles of representative neuropeptides can be found in Figures $3-5. MS2 IT distributions are
similar for all methods, with the exception of method KD, which used an automatic max IT
setting (Figure 5e). The use of automatic max IT was not considered during our design;
however, future experiments may benefit from its inclusion as a level for a categorical
parameter. Most scans reached their max IT, showing the importance of balancing trap time
with AGC target. Spectra from all four methods were acquired with similar overall MS1 and MS2
injection time distributions, however, different loop times between MS1 spectra acquisitions are
seen in Figure 5f. Most notably, the DDA method varied widely from all DIA methods with the
time between MS1 scans. This is attributed to the dynamic exclusion setting; when no candidate
for fragmentation is found, MS1 spectra are acquired. This may also contribute to the
neuropeptide spectral count distribution observed (Figure S6), as the majority of peptides
identified through DDA were identified through a single PSM.

Quantitation Comparison

The presence of a neuropeptide can provide valuable information, although quantitative
information is required for correlating biomarkers to diseases and measuring changes due to
certain conditions. The quantitative capabilities of the optimized DIA method were assessed
using solvent dilution and compared to the previously published DIA method for a metric of
comparison. We would like to note that assessing quantitative accuracy through solvent
dilutions and not matrix-matched dilutions can produce aberrant abundance ratios. However,
herein, we are comparing relative quantitative performance between two methods using the
same samples that are affected similarly using solvent dilution. Future absolute quantitative
analysis of any biological samples should follow more customary dilution approaches.

LFQ MS analysis does not require a large abundance of samples, nor does it involve multistep
labeling procedures where loss of valuable samples can occur, although the method suffers
from high variation and missing values between replicate injections. The higher number of
unique peptides per injection (Figure 4) leads to a higher number of total identified peptides
which is useful for quantitation where software can perform match between runs to integrate
peak areas in several chromatograms, given that a PSM was observed in at least one run.3® We
can also see a larger percentage of peptides where only one or two PSMs were detected per
peptide using fDSD over KD (Figure S6), indicating that a greater number of scans contributed
to increased peptide coverage. An increase in quantified peptides and the number of replicates
where integrated area values were obtained can be seen in Figure S7A when match between
runs was applied, decreasing missing values across triplicate injections or conditions.

To minimize quantitative inaccuracy observed through LFQ and improve quantitative accuracy
and precision of LFQ of limited samples, peptides with CV above 50%, and observed in all
triplicate measurements, were rescued by omitting the peak area contributed by the highest
deviation replicate from the median (Figure S7B). While this did not significantly impact the
original Log2 ratio distribution (Figure S8A), a shift can be seen in peptide CVs mean to lower
values of 25% and 27% (Figure S7C) from the original 33 and 35% (Figure S8B) for the diluted
samples using fDSD and KD DIA methods respectively. Standard deviations of CV similarly
improved, narrowing from 30% to 22% and 37% to 24%, respectively. This indicates increased
accuracy in quantitation of individual peptides, compared to the overall sample distribution due
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to the removal of outlying replicate information. When adjusting for poor quantitative
performance by removing 1:10 fold concentration information, an average error of 10% from the
theoretical ratio is seen compared to 21% for KD. Overall, KD underperforms, only able to
quantify roughly half the number of neuropeptides as fDSD, having higher mean density
distributions of CVs and more outlier CVs.

Conclusions

We demonstrate the utility of DSDs to create optimized DIA methods for the improved detection
and quantitation of neuropeptides. Combining higher identification rates and match-between-
runs assisted quantitation improves the number of quantified peptides across sample
conditions. The increased total peptide identifications can enable more stringent quality filtering
while still leaving many quantifiable PSMs for accurate quantitation. For the samples analyzed
in this study, we found that the performance of the optimized method decreases as the fold-
change difference increases. Therefore, neuropeptides with large observed changes should be
regarded as a qualitative change rather than a quantitative change. Further gains in LFQ
accuracy could be achieved by using intrasample normalization or an internal standard.
Additional DOE could be performed on the parameters of DIA data processing workflows; such
an approach could yield significant improvements in the number of identifications.

While significant sample amounts are required to perform a DSD, surrogate samples such as
healthy or control samples can be used. The fDSD DIA-MS method can then be applied to
precious or limited samples without requiring a spectral library that may not capture
disease/experimental specific peptide isoforms and post-translational modifications.
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