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Abstract  

Method optimization is crucial for successful MS analysis. However, extensive method 

assessments, altering various parameters individually, are rarely performed due to practical 

limitations regarding time and sample quantity. To maximize sample space for optimization 

while maintaining reasonable instrumentation requirements, a definitive screening design (DSD) 

is leveraged for systematic optimization of data-independent acquisition (DIA) parameters to 

maximize crustacean neuropeptide identifications. While DSDs require several injections, 

library-free methodology enables surrogate sample usage for comprehensive optimization of 

MS parameters to assess biomolecules from limited samples. We identified several parameters 

contributing significant first- or second-order effects to method performance, and the DSD 

model predicted ideal values to implement. These increased reproducibility and detection 

capabilities enabled the identification of 461 peptides, compared to 375 and 262 peptides 

identified through data-dependent acquisition (DDA) and a published DIA method for crustacean 

neuropeptides, respectively. Herein, we demonstrate a DSD optimization workflow, using 

standard material, not reliant on spectral libraries for the analysis of any low abundance 

molecules from previous samples of limited availability. This extends the DIA method to low 

abundance isoforms dysregulated or only detectable in disease samples, thus improving 

characterization of previously inaccessible biomolecules, such as neuropeptides. Data are 

available via ProteomeXchange with identifier PXD038520. 
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Introduction 

Significant evidence has demonstrated that data-independent acquisition (DIA) mass 

spectrometry (MS) methods provide greater reproducibility than data-dependent acquisition 

(DDA) methods. As ion selection in DDA methods is stochastic, replicate injections can have 

low overlap in peptide and protein identifications, obscuring real biological changes. In contrast, 

DIA methods define m/z windows within a selected precursor range and fragment all precursors 

within each window simultaneously to ensure that all parent ions are fragmented.1-4 The 

incorporation of DIA methods into traditional MS workflows has enabled the discovery and 

identification of more biomolecules in a single MS acquisition run than with traditional DDA 

experiments. DIA has shown to be beneficial for proteomics and peptidomics.5-6  

One challenge in DIA experiments is that the complex fragmentation spectra of DIA require 

intensive downstream processing using either library or library-free approaches. Spectral 

libraries make identifications using a peptide’s fragmentation pattern observed in a high 

resolution DDA experiment to identify the same fragments from a DIA experiment.1, 7 Spectral 

library identifications are limited to only previously observed peptides, making it incompatible 

with discovery of new peptides.8-9 The extra instrument time and large sample amount required 

to generate a high-quality spectral library can prohibit the analysis of precious samples that are 

not abundantly available. Library-free software, in contrast, transforms DIA spectra into DDA 

pseudospectra, compatible with existing DDA search engines.4  

To perform DIA successfully, acquisition parameters must be carefully selected based on 
sample type and complexity. These decisions can directly impact library-free software 
deconvolution ability. For example, if a selected isolation window width is too large, the resulting 
MS/MS (MS2) spectra can display overlapping fragmentation patterns from multiple peptides. 
When the selected isolation window width is too small, the collected points corresponding to a 
particular peptide decrease. The design of an effective, comprehensive DIA experiment requires 
careful planning of acquisition parameters for more effective use of deconvolution algorithms, 
including maximum ion injection time (IT), target automatic gain control (AGC), collision energy 
(CE), m/z range, and others.8 Optimizing n parameters comprehensively requires n! 
experiments when considering synergistic response between any two parameters, requiring 
extremely large amounts of sample and instrument operation time.10-13  An alternative approach 
is the use of design of experiments (DoEs), which leverages statistical power to optimize 
multiple parameters in tandem using minimal experimental trials.14-15 DoEs are widely used in 
engineering16 but are less commonly applied to liquid chromatography-mass spectrometry (LC-
MS) experiments, although usage of different DoEs has increased over the years.11, 13, 17-27 

Combining DoE and library-free DIA methods can significantly decrease the sample and 
instrument time requirements to fully optimize a DIA method. To demonstrate this, we applied 
DoE and library-free DIA to the analysis of neuropeptides. Neuropeptides are signaling 
molecules crucial for neuronal communication. The sub-femtomolar concentrations of 
neuropeptides observed in vivo, along with limited sample quantities gained from animal 
models, makes them poor candidates for a spectral-library-based DIA approach. Additionally, 
neuropeptide identification is not well-suited for DDA’s top n selection criteria, as neuropeptides 
tend to co-elute with several higher abundance competing matrix components.5, 28 To minimize 
sample requirements and maximize identifications, we applied a  specific class of DoE, a 
definitive screening design (DSD), to decrease required experimental runs while maintaining a 
high level of statistical power to interpret the effects of each parameter. This model enables 
detection of both independently impactful parameters, classified as main effects, and 
parameters that complement one another to achieve a particular response, classified as two-
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factor interactions, in addition to predicting optimal parameter values to be used, all from a 
single round of data acquisition.10, 29-30 DSDs are versatile and compatible with both continuous 
and categorical, or discrete, parameters. Following the split-plot design of specific combinations 
of parameter values for experimentation, DSDs prescribe a set of strategically varied parameter 
combinations to ensure enough statistical power to impute the optimal combinations while 
limiting the number of required experiments.29, 31  

Using a DSD, we evaluated seven parameters, m/z range, isolation window width, MS1 
maximum IT, CE, MS2 maximum IT, MS2 target AGC, and the number of MS1 scans collected 
per cycle, for the increased identification of neuropeptides through library-free DIA methodology. 
We demonstrate a workflow for optimizing DIA MS acquisition of precious samples using a DSD 
and a surrogate sample of similar complexity, amenable to a wild type or control sample. The 
optimized method can then be applied to limited mutant or experimental samples precious in 
nature. We also demonstrate the ability for label-free quantitation (LFQ) of the identified 
neuropeptides and compare the resultant method with a previously established DIA method for 
neuropeptides. 

 

Experimental Section 

Sample Preparation 

Several sinus gland pairs were obtained from Callinectes sapidus. Neuropeptide samples were 

prepared according to previous protocols32. Briefly, sinus glands were homogenized via 

ultrasonication probe in ice cold acidified methanol (90% methanol / 9% water / 1% acetic acid). 

Neuropeptide containing supernatant was dried using a vacuum concentrator prior to desalting 

with C18 solid phase extraction material. The subsequent samples were pooled into one vial 

which was used for MS acquisitions for the DSD and quantitative data. Throughout this 

manuscript, peptides or neuropeptides will be considered to refer to all peptides identified 

through PEAKS contained in the neuropeptide database, including peptides that are truncated 

and/or modified by PTMs. 

HPLC-MS/MS Analysis 

All experiments were carried out using a Thermo Scientific Q Exactive orbitrap mass 

spectrometer coupled to a Waters nanoAcquity Ultra Performance LC system. Separation was 

performed on a 15 cm homemade column, packed with 1.7 μm particle size C18 ethylene 

bridged hybrid material, at a flow rate of 200 nL/min. HPLC methods were kept constant for all 

data acquisition. Using solutions of mobile phase A (0.1% formic acid (FA) in water) and B 

(0.1% FA in acetonitrile (ACN)), the gradient was ramped as follows: starting at 97% A, ramped 

to 90% A over 0.5 min; 85% A over 19.5 min; 83% A over 20 min; 80% over 15 min; 67% over 

55 min; 25% over 10 min. Unaltered MS settings between all methods include MS1 resolution of 

70,000, MS1 AGC target of 3e6, MS2 resolution of 17,500. The default precursor charge state 

for all methods was set to +2. DDA acquisition was performed with a MS2 AGC target of 2e5, 

MS2 max IT of 200 ms, loop count of 10, isolation window width of 2, normalized CE of 30, and 

dynamic exclusion window of 40 seconds. DIA acquisitions were executed with parameter 

values (Table1) as prescribed by the DSD (Figure 1A). For DIA method comparison, a 

previously published method28 for crustacean neuropeptide analysis was performed with slight 

modifications to decrease variability between parameters. Parameters that differ from the other 

DIA methods used herein are as follows: MS1 AGC target of 1e6, MS1 max IT of 250 ms, MS2 
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AGC target of 2e5, auto MS2 max IT, 20 m/z isolation window width, CE of 30 V, and loop count 

of 10. The parameters used in the final DIA method post DSD evaluation were 16 m/z isolation 

window width from 400 to 1034 m/z, CE of 25 V, MS2 max IT of 100 ms, MS2 AGC target of 

1e6, MS1 max IT of 30 ms, and 4 MS1 spectra per cycle. 

Neuropeptides and related peptides were identified through PEAKSxPro software33. PEAKS 

parameters were set to: parent mass error tolerance of 20.0 ppm, fragment mass error 

tolerance of 0.02 Da, unspecific enzyme digestion, variable modifications: amidation (-0.98 Da), 

oxidation (M) (+15.99 Da), pyro-glu from E (-18.01 Da), pyro-glu from Q (-17.03 Da), acetylation 

(N-term), and max variable PTM per peptide of 3. Peptides were filtered using a -logP cutoff of 

37.6, corresponding to a 5% false-discovery rate (FDR) for the DDA data. While a 1% FDR 

cutoff is considered standard within the proteomics community, this is not always the case in the 

field of peptidomics due to the unique considerations of the field. Routinely only a few hundred 

IDs (100-400) are expected. In this case, a mere two to five false positives from poor quality 

spectra will cause the FDR to quickly surpass a 1% threshold. For example, Han et al. credited 

their inability to identify 19 known neuropeptides to the use of a “strict” FDR threshold of 1%.34 

As a result, it is not an uncommon practice by the peptidomics community to use a larger FDR 

cutoff, such as 5%, and/or substitute FDR with a quality score combined with manual inspection 

for identification fidelity.35-38 

Deconvolution of DIA spectra were performed using DIA-Umpire4, according to default 

parameters, and the resulting pseudo-DDA MS2 spectra were consolidated with their 

corresponding MS1 scans using a homebuilt C# console line application 

(https://github.com/avcarr2/DIAConverter-New) to achieve compatibility with our downstream 

processing workflow. While powerful, the library-free method DIA-Umpire creates pseudo-DDA 

spectra unsuitable for LFQ by third-party software due to the dissociation and omission of MS1 

spectra information. This leads to unintended consequences which include incompatibility with 

identification software that uses MS1 spectra data to compute various metrics used to describe 

peptide spectrum match (PSM)/identification quality, such as with newer PEAKS algorithms.  

To demonstrate quantitative ability of the optimized method, peptides were diluted two-, five-, 

and ten-fold in 3% ACN/0.1% FA prior to LC-MS/MS injection. The resulting peptide 

identifications were quantified by analyzing PEAKS database search outputs through another 

console application (https://github.com/avcarr2/InjectionTimeGetterApp) and FlashLFQ39 

operating with match between runs selected, a parent mass tolerance of 5 ppm and 5 min 

retention time window. A -logP cutoff of 33.1, corresponding to a 5% FDR, was used to filter the 

DDA data for improved quantitative accuracy. Quality and quantitative assessment of the 

optimized method was compared against samples of different concentrations using the 

previously published DIA method described above.28 The mass spectrometry proteomics data 

have been deposited to the ProteomeXchange Consortium via the PRIDE40 partner repository 

with the dataset identifier PXD038520. 

Definitive Screening Design Model/Selection of Optimization Parameters/Statistical Analysis 

A DSD was created and results were interpreted using JMP Pro 15.0.0.41 Selection of the 

proper factors to include when designing a DSD is crucial to minimize the introduction of 

aliasing and confounding factors. Therefore, the parameters and values shown in Table 1 were 

chosen carefully for this model after much discussion with colleagues and experienced experts 

in the field.8, 42-43 Per specification of DSDs, the majority of included factors are evaluated as 
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continuous factors for effects on improving DIA MS identification: isolation window width, m/z 

range spanning from 400 m/z, CE, MS1 max IT, and MS2 max IT. The number of MS1 per DIA 

duty cycle (through loop count) was a categorical factor, as non-integer values are not possible. 

MS2 automatic gain control (AGC) was also evaluated as a categorical factor due to selection 

restraints within the Q Exactive software preventing three evenly distributed values from being 

selected, a key requirement of DSDs. The design involved 4 extra runs to estimate quadratic 

interactions and run order was randomized in two blocks to minimize bias.  Peptide identification 

numbers were used as a response variable to assess the methods. The “maximize desirability 

function” in JMP was used to predict optimal parameter values to increase IDs. 

DSD Value -1 0 1 

Continuous Factors       

m/z range from 400 m/z 400 600 800 

Isolation Window Width (m/z) 16 26 36 

MS1 max IT (ms) 10 20 30 

MS2 max IT (ms) 100 200 300 

Collision Energy (V) 25 30 35 

Categorical Factors       

MS2 AGC Target 5e5 
 

1e6 

MS1 per Cycle 3   4 

Table1. The parameters selected as factors to evaluate for optimization. Values are used as 

factor levels to test the effects on response. 

Results and Discussion 

Identification and Reproducibility 

  

 

Figure 1. A) Peptide identifications resulting from 26 DIA acquisitions outlined by the DSD. B) 

Overlapping peptide identifications from triplicate DDA acquisitions are shown. C) Bar chart 

describing the number of overlapping peptides in different numbers of DIA acquisitions. Red 
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asterisk indicates where comparable peptide overlaps in DIA data to two (**) or three (*) of the 

triplicate DDA measurements is observed. 

Some proteomics optimization schemes prioritize maintaining a constant duty cycle between 

MS1 scans,43-44 however, our experiments were designed with varying duty cycles, while still 

limiting the maximum loop time (time between MS1 scans) to collect at least 8 points across the 

peak for quantitation to assess the effects of specific parameters, as shown in Figure 1A. This 

is especially important for label-free quantitative (LFQ) analysis where MS1 peak area is used, 

such as in this study. Although three experiments had a loop cycle time of 3-5 seconds, all 

others were well below this with a mean of 1.54 seconds, 1.13 second standard deviation, and 

median of 1.26 seconds. Instead, the impact of duty cycle was evaluated indirectly based on the 

effects of window size, range to scan over, and how many MS1 spectra were acquired per full 

DIA duty cycle. 

When performing library-free DIA analysis, consideration of spectral complexity is particularly 

important for successful deconvolution, thus the parameters that directly affect spectral 

complexity were prioritized over maintaining a constant duty cycle time. The number of 

neuropeptide identifications (IDs) using the DSD-prescribed DIA methods ranged from 182 to 

434 neuropeptides. The over two-fold range demonstrates the dependence of identifications on 

DIA method parameters. Through qualitative analysis, we see that higher number of IDs were 

largely associated with overall lower duty cycles; however, this was not always the case.  

While each DDA replicate produced comparable quantities of IDs to the mid-performing DIA 

methods, poor reproducibility of neuropeptide populations was observed, a hallmark of DDA 

(Figure 1B). Only 155 peptides were observed across all triplicate injections, while 331 peptides 

were observed in at least 2 injections. DIA enabled the observation of 153 common peptides 

across spectra collected from 21 different DIA methods and 331 peptides across 9 different DIA 

methods, indicated by the asterisks in Figure 1C, demonstrating decreased variability between 

DIA experiments. This is additionally beneficial in the case of LFQ, where irreproducibility 

greatly decreases the number of quantifiable peptides across conditions. While DIA already 

generally outperforms DDA in terms of number of peptide identifications, performance can be 

further improved by evaluating the responses and optimizing acquisition methods through the 

DSD. 

DSD Model Creation and Validation 
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Figure 2. Fit definitive screening to identify parameter effects. A) Main effects residual plots of 

the tested parameters are shown. B) Solution path for the generalized regression models were 

evaluated using AICc where C) the minimum AICc value resulted from this table of main and 

even-order effects. 

Combined model parameter estimates created during fit definitive screening, shown in SI Table 

S1, determined the factors to consider when designing models through main and even-order 

effect estimates. The response residuals are shown in Figure 2A. These effects were 

considered when building a generalized regression model, where model selection was 

performed through minimizing the corrected Akaike information criterion (AICc), an estimator of 

model quality, to 243.4 through forward selection and the assumption of normal data distribution 

(Figure 2B). The resulting model chosen includes several main and even-order effects shown in 

Figure 2C. Main effects were thus limited to those including CE, window width, MS2 max IT, 

and MS2 AGC. Significant even-order effects included window width and MS2 AGC, CE and 

MS2 max IT, and lastly, m/z range as a quadratic effect. No other quadratic effects were 

observed as statistically significant through the model evaluation, although in principle they are 

likely to be present. It is important to note, while other effects on peptide IDs may be present, 

DSDs can only observe those with large effects. This limitation means that variables may be 

considered to have isolated effects, or a linear fit associated in exchange for decreasing the 

number of experiments required to be performed. 

We also want to bring attention to blocking being removed as a main effect, indicating any drift 

or bias associated with running the mass spectrometer for days, did not contribute to the 

variation in peptide IDs between methods. 
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Figure 3. A) Model validation was performed by comparing the predicted IDs to the observed 

IDs. B) Analysis of variance was calculated to determine the model as significant. C) Externally 

studentized residuals are shown with 95% simultaneous limits calculated through the Bonferroni 

method (red lines) and individual limits (green lines). D) Optimal parameter values were 

predicted through maximizing the desirability of the model, with confidence limits shown. 

The selected model was then statistically validated and shown to have a R-squared value of 

0.96 and root-mean-square error of 16.6 (Figure 3A) and considered to be statistically 

significant in describing the actual observed data (Figure 3B). Externally studentized residuals, 

shown in Figure 3C, have an even, normal distribution, indicating no left or right skewing of the 

model. Residuals are within the 95% Bonferroni simultaneous confidence intervals and 

individual limits demonstrating good model fit. Table 2 describes the parameters used to build 

the final model. The probability predictor feature was then used to maximize desirability of the 

model response, in the form of neuropeptide IDs (Figure 3D). It is thus predicted that acquiring 

MS2 spectra from collecting ions with an AGC target of 1e6 and max MS2 of 100 ms, where 

precursor ions are fragmented with a static CE of 25 V across a window width of 16 m/z over a 

range of 400 m/z to 1034 m/z should yield a high number of neuropeptide IDs.  

Term Estimate Std Error t Ratio Prob>|t| 

Intercept 340.04 8.58 39.62 <.0001* 

Range (400,800) 13.69 3.55 3.86 0.0013* 

Window (16,36)  -10.15 3.55  -2.86 0.0108* 

CE (25,35)  -61.40 3.55  -17.30 <.0001* 

MS2 IT (100,300)  -9.24 3.55  -2.60 0.0185* 

MS2 AGC [5e5]  -8.37 3.30  -2.54 0.0213* 

Window*MS2 AGC [5e5] 20.54 4.11 5.00 0.0001* 
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CE*MS2 IT 21.96 4.26 5.15 <.0001* 

Range*Range  -47.60 9.44  -5.04 0.0001* 

Table 2. Parameter estimates for factors used in final model. 

DSD Results for Optimal Method Creation 

The resultant model identifies the presence of main, secondary, and quadratic effects. M/z 

Range was identified as both a main effect and a quadratic effect, meaning there is an optimal 

value at a local maximum, in this case, spanning 634 m/z values from 400 m/z. This is 

consistent with the principle that a larger range will encapsulate more peptides, however due to 

a non-constant distribution where fewer precursor ions are identified at larger m/z values, the 

range needs to be curtailed at the upper end.8, 44  Precursor m/z value distributions are shown in 

Figure S1. Overall, DIA methods are less biased towards higher m/z values that tend to be 

lower in intensity with decreased ionization efficiency. Probing samples across a wide m/z range 

with DIA methods allows for the characterization of lesser observed neuropeptides, enabling the 

expansion of gathered information able to be used in the future. 

Window width can directly impact identification capabilities in many ways, but most significantly 

through increasing fragmentation spectra complexity observed with larger window widths, 

therefore complicating data deconvolution. Here, we find that fragmenting smaller windows (16 

m/z) of ions lead to increased neuropeptide identification. While carrying out a similarly 

designed DSD with smaller isolation window widths, we found that 4 m/z windows lead to 

drastically fewer IDs (data not shown). While it has been observed that narrow windows are 

optimal for the analysis of several analytes,8, 45-46 the associated increase in duty cycle 

negatively impacted identifications in crustacean neuropeptide samples. Though wider windows, 

such as 26 and 36 m/z, lead to even shorter duty cycles, the increased quantity of peptide 

precursors available for fragmentation results in more complex spectra and deconvolution is 

limited by current library-free DIA software.  

MS2 max IT was identified as a main effect, which was logical as it directly impacts the duty 

cycle. When MS2 max IT is set too long, windows with sparse ions occupy the full allotment of 

time instead of moving to the next isolation window. Actual IT can be seen in Figure S2, 

demonstrating the necessity of limiting max IT to 100 ms, minimizing extraneous time spent 

collecting uninformative spectra where the low signal present would either never reach the 

selected AGC target, or no large benefit is gained. While a larger proportion of acquired MS2 

scans reached its AGC target, there was no significant increase in associated identifications (p 

= 0.83). 

Additionally, MS2 AGC target was identified as a main effect with a desired value of 1e6, likely 

to produce higher quality fragmentation spectra where fragment ion intensity is higher. AGC 

target and max IT work similarly to limit the duty cycle of MS2 spectra, although this even-order 

effect on peptide IDs was not large enough to be discerned through statistical analysis. While 

this 1e6 can be considered a large target for collecting MS2 spectra, the time required is limited 

by a lower max IT. Optimal MS2 AGC is also dependent on m/z isolation window width, 

identified together to produce a secondary effect. Window size impacts the range of ions 

measured when estimating AGC, with larger windows enabling more ions to be sampled from 

the same precursor packet. Increased sampling is not always desirable however, as determined 
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through the predictor tool that indicated the smallest window of 16 m/z and largest AGC target 

of 1e6 be chosen. The presence of several large ion clouds from different ion populations in an 

Orbitrap leads to coalescence and error in the resultant calculated m/z. Here, peptide 

identification benefits through the sampling of more ions to increase the intensity of individual 

ion populations, rather than vast ranges of ion populations. 

Normalized collision energy (NCE) is ubiquitously used in the field of proteomics as CE required 

for adequate fragmentation efficiency is dependent on precursor ion m/z. In traditional DDA 

methods, NCE is calculated in real time to fragment a selected precursor, however, with DIA 

fragmentation, several precursors of various m/z values are co-fragmented. As such, a fixed CE 

must be chosen to fragment all ions in the isolation window, regardless of m/z value. Through 

the DSD, 25 V was identified as optimal over the wide range of m/z ion values in the 

neuropeptide sample analyzed. While decreasing CE positively impacts identifications, there is 

likely to be a lower limit with a steep drop off in IDs outside of our sampling range, when there is 

not enough energy to cause any fragmentation. Considerations need to be made when 

interpreting these results. Many of these parameters likely reach a limit, demonstrating the 

dangers in exceeding the statistical power with a given sample space. 

The other detected secondary effect was between CE and MS2 max IT. As with many 

secondary effects, their correlation may not be clear initially and there may be confounding 

factors involved. Low CE yields inefficient parent ion fragmentation, while low MS2 max IT 

means less fragment ions are collected before detection. Combining a low CE and a low MS2 

max IT implies that unfragmented parent ions will have a higher signal-to-noise ratio (SNR) than 

in a traditional DDA experiment. The higher SNR may assist the correlation-based DIA data 

deconvolution methods that identify correlated parent and fragment ions through unfragmented 

precursors observed in MS2 spectra. 

Two factors evaluated in this design were not determined to significantly affect neuropeptide 

identification, both related to the acquisition of MS1 spectra. The collection of both 3 and 4 MS1 

spectra per cycle provided sufficient precursor information for deconvolution of fragment ion 

features. It is likely that effect would be seen if a larger range was sampled such as collecting 1 

compared to 6 spectra. However, the impact of 3 versus 4 MS1 spectra was not large enough to 

discern. Similarly, MS1 max IT was also determined to not be significant in affected observed 

peptide IDs, further supporting the low impact of MS1 scans on overall duty cycle. Again, this 

observation is limited to this study, where the tested values ranged from 10 to 30 ms. Larger 

sampling space may lead to different conclusions, further emphasizing the importance of 

thoughtful experimental design. As neither of these parameters had significant effects indicated 

by the DSD, and thus the two factors were not considered in the model, we rely on our prior 

knowledge of mass spectrometry to decide which values to use for each parameter. Moving 

forward with developing an optimized DIA method for crustacean neuropeptides, 4 MS1 spectra 

will be collected per duty cycle to increase collected points across the peak for quantitation. 

Additionally, MS1 IT will have the longer 30 ms limit to increase signal intensity during points 

where less peptides elute. This will also improve the ability for low abundance precursor ion 

detection for spectral deconvolution. 

DIA Method Assessment 



12 
 

 

Figure 4. Reproducibility of four different MS acquisition methods (fDSD, KD, oDSD, DDA) is 
visualized via upset plots demonstrating the intersection of peptide identifications from triplicate 
injections. 

The pooled neuropeptide samples were re-injected into the mass spectrometer using four 
different data acquisition methods. The optimal method informed by the DSD (fDSD) was 
assessed against the DSD method providing the highest number of IDs (oDSD), as well as the 
DDA method, and a DIA method previously optimized without leveraging a DOE for crustacean 
neuropeptides (KD)28. As expected, all DIA methods outperformed the DDA method in terms of 
both peptide identification and reproducibility (Figure 4). The highest percentage of peptides 
identified in all triplicate injections was achieved using the KD method, however, the absolute 
number of peptide identification is relatively lower. This indicates that the n=3 neuropeptides are 
likely to be higher abundant or appear in less complex spectra, leading to higher reliability for 
fragmentation and detection by software. Figure 5a supports this, with KD showing a larger 
distribution of neuropeptides with a higher area under the curve (AUC) than the other DIA 
methods. Conversely, fDSD and oDSD methods identified more neuropeptides with lower 
AUCs, suggesting some improvement in sensitivity by these methods. fDSD and oDSD 
methods generated many reproducible IDs, as well as many neuropeptides unique to a fraction 
of the replicates. Overall, these DSD methods lead to a larger variety of peptide identifications. 
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Figure 5. Comparison of figures of merit between methods and detected neuropeptides. A) 
Log10 transformed neuropeptide AUC distributions. B) Distributions of identification mass error. 
C) Precursor m/z distributions. D) MS1 and E) MS2 injection times. F) Loop time between MS1 
scans. 

While DSD usage led to the creation of a DIA method for crustacean neuropeptides capable of 
outperforming different MS methods, it was comparable to the empirically highest performing 
DIA method, oDSD. This highlights an important aspect of implementing applied statistics such 
as DOEs; they are not infallible and not to be implemented without interpretation using expertise 
in the particular field of application. Empirically determined methods can be used for subsequent 
analysis, however one of the prescribed methods cannot be guaranteed to outperform the 
model predicted method in every DSD implementation. As the model accounts for variability 
between runs, we will consider the predicted DIA method, fDIA, as the finalized optimal method. 

We would like to note that several parameters differed in these methods, limiting the ability for 
direct comparison, however, we will comment on observed trends. All methods have similar 
mass accuracy, with KD and DDA methods having mass error distributions closer to 0 ppm 
(Figure 5b). This can again be attributed to the bias in these methods to identify neuropeptides 
with higher peak intensities and AUC values. KD also has a lower AGC target, decreasing 
trapped ions per scan and leading to higher mass accuracy. The DDA method skewed towards 
fragmenting precursor ions in the low m/z range (Figure 5c), unsurprising as higher m/z ranges 
more commonly contain lower charge state and lower signal intensity ions. A wider distribution 
of precursor m/z values are seen for the DIA methods, enabled by the unbiased fragmentation 
selection scheme. A visible difference in fragmentation patterns of representative neuropeptide 
precursors can be seen in Figures S3-S5, owing to the different collision energies applied.  

MS1 injection times for the four methods fall around 5 to 30 ms, although different upper quartile 
trends are observed in Figure 5d. Approximately 50% or more of all MS1 scans from fDSD and 
oDSD reach the max IT, unlike DDA and KD methods, likely because of the 3x larger AGC 
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target in these DIA methods compared to KD. Additionally, the DDA method included trapping 
lower m/z ions, which commonly comprise of +1 ions of high signal intensity, reaching the target 
AGC more quickly. The frequency of MS1 scans directly affects the precursor profile for each 
neuropeptide, leading to differences in precursor based MS1 quantitative accuracy. Precursor 
profiles of representative neuropeptides can be found in Figures S3-5.  MS2 IT distributions are 
similar for all methods, with the exception of method KD, which used an automatic max IT 
setting (Figure 5e). The use of automatic max IT was not considered during our design; 
however, future experiments may benefit from its inclusion as a level for a categorical 
parameter. Most scans reached their max IT, showing the importance of balancing trap time 
with AGC target. Spectra from all four methods were acquired with similar overall MS1 and MS2 
injection time distributions, however, different loop times between MS1 spectra acquisitions are 
seen in Figure 5f. Most notably, the DDA method varied widely from all DIA methods with the 
time between MS1 scans. This is attributed to the dynamic exclusion setting; when no candidate 
for fragmentation is found, MS1 spectra are acquired. This may also contribute to the 
neuropeptide spectral count distribution observed (Figure S6), as the majority of peptides 
identified through DDA were identified through a single PSM. 

Quantitation Comparison 

The presence of a neuropeptide can provide valuable information, although quantitative 

information is required for correlating biomarkers to diseases and measuring changes due to 

certain conditions. The quantitative capabilities of the optimized DIA method were assessed 

using solvent dilution and compared to the previously published DIA method for a metric of 

comparison. We would like to note that assessing quantitative accuracy through solvent 

dilutions and not matrix-matched dilutions can produce aberrant abundance ratios. However, 

herein, we are comparing relative quantitative performance between two methods using the 

same samples that are affected similarly using solvent dilution. Future absolute quantitative 

analysis of any biological samples should follow more customary dilution approaches. 

LFQ MS analysis does not require a large abundance of samples, nor does it involve multistep 

labeling procedures where loss of valuable samples can occur, although the method suffers 

from high variation and missing values between replicate injections. The higher number of 

unique peptides per injection (Figure 4) leads to a higher number of total identified peptides 

which is useful for quantitation where software can perform match between runs to integrate 

peak areas in several chromatograms, given that a PSM was observed in at least one run.39 We 

can also see a larger percentage of peptides where only one or two PSMs were detected per 

peptide using fDSD over KD (Figure S6), indicating that a greater number of scans contributed 

to increased peptide coverage. An increase in quantified peptides and the number of replicates 

where integrated area values were obtained can be seen in Figure S7A when match between 

runs was applied, decreasing missing values across triplicate injections or conditions.  

To minimize quantitative inaccuracy observed through LFQ and improve quantitative accuracy 

and precision of LFQ of limited samples, peptides with CV above 50%, and observed in all 

triplicate measurements, were rescued by omitting the peak area contributed by the highest 

deviation replicate from the median (Figure S7B). While this did not significantly impact the 

original Log2 ratio distribution (Figure S8A), a shift can be seen in peptide CVs mean to lower 

values of 25% and 27% (Figure S7C) from the original 33 and 35% (Figure S8B) for the diluted 

samples using fDSD and KD DIA methods respectively. Standard deviations of CV similarly 

improved, narrowing from 30% to 22% and 37% to 24%, respectively. This indicates increased 

accuracy in quantitation of individual peptides, compared to the overall sample distribution due 
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to the removal of outlying replicate information. When adjusting for poor quantitative 

performance by removing 1:10 fold concentration information, an average error of 10% from the 

theoretical ratio is seen compared to 21% for KD. Overall, KD underperforms, only able to 

quantify roughly half the number of neuropeptides as fDSD, having higher mean density 

distributions of CVs and more outlier CVs. 

Conclusions 

We demonstrate the utility of DSDs to create optimized DIA methods for the improved detection 

and quantitation of neuropeptides. Combining higher identification rates and match-between-

runs assisted quantitation improves the number of quantified peptides across sample 

conditions. The increased total peptide identifications can enable more stringent quality filtering 

while still leaving many quantifiable PSMs for accurate quantitation. For the samples analyzed 

in this study, we found that the performance of the optimized method decreases as the fold-

change difference increases. Therefore, neuropeptides with large observed changes should be 

regarded as a qualitative change rather than a quantitative change. Further gains in LFQ 

accuracy could be achieved by using intrasample normalization or an internal standard. 

Additional DOE could be performed on the parameters of DIA data processing workflows; such 

an approach could yield significant improvements in the number of identifications. 

While significant sample amounts are required to perform a DSD, surrogate samples such as 

healthy or control samples can be used. The fDSD DIA-MS method can then be applied to 

precious or limited samples without requiring a spectral library that may not capture 

disease/experimental specific peptide isoforms and post-translational modifications. 
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