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Abstract: 

Neuropeptides are a class of endogenous peptides that have key regulatory roles in 

biochemical, physiological, and behavioral processes. Mass spectrometry analyses of 

neuropeptides often rely on protein informatics tools for database searching and peptide 

identification. As neuropeptide databases are typically experimentally built and comprised of 

short sequences with high sequence similarity to each other, we developed a novel database 

searching tool, HyPep, which utilizes sequence homology searching for peptide identification. 

HyPep aligns database-free, de novo sequenced peptide sequences generated through PEAKS 

software with neuropeptide database sequences to identify neuropeptides based on an alignment 

score. HyPep performance was optimized using LC-MS/MS measurements of peptide extracts 

from various C. sapidus neuronal tissue types and compared with a commercial database 

searching software, PEAKS DB. HyPep identified more neuropeptides from each tissue type 

than PEAKS DB at 1% false discovery rate and the false match rate from both programs was 2%. 

In addition to identification, this report describes how HyPep can aid in the discovery of novel 

neuropeptides.  
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Introduction:  

Neuropeptides are signaling molecules that are expressed by neurons and have been 

implicated in regulation of numerous biochemical pathways,1,2 physiological processes,3,4 and 

behaviors.5,6 Precursor peptides (>90 amino acids) originating from nuclear DNA undergo 

selective cleavage to form mature, bioactive neuropeptides.7,8 The resulting neuropeptides are 

typically 3-36 amino acids long, and the function of a neuropeptide sequence can be altered by 

different post-translational modifications, or by truncations or cyclization.9–11 Identification and 

discovery of neuropeptides is important for elucidation of their functional mechanism, as well as 

establishing a foundation for disease therapeutics research.12–17 A crustacean animal model is 

often utilized for neurobiology research due to their well-characterized nervous system, which 

facilitates the elucidation of neuropeptide function at the neuronal circuit and systems levels.18 

Mass spectrometry (MS) is well-suited for characterizing the full complement of neuropeptides 

due to its high sensitivity and ability to capture the expression profile of many neuropeptides 

simultaneously.19–22 Since neuropeptides undergo multiple post-transcriptional and post-

translational processing events before arriving at their mature form, neuropeptide databases 

constructed from nucleotide sequence predictions capture only a fraction of the bioactive 

neuropeptide sequences. 2,7,23 As a result, many neuropeptide databases utilized within 

proteomics software are experimentally built to contain de novo sequenced neuropeptides as well 

as neuropeptide sequences predicted from genomic or transcriptomic information.20,24,25 

Although most commercial proteomics software have been developed and optimized for 

bottom-up proteomics, they are often used for performing neuropeptide identification.26–28 The 

two main software approaches include a peptide-spectrum matching (PSM) approach where raw 

MS and MS/MS data are compared with in silico MS and MS/MS values generated from a 
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known peptide database.26,29–32 This may involve utilizing a spectral library from reference 

MS/MS datasets instead of theoretically generated MS/MS data.33,34 The other approach involves 

processing the MS dataset with a de novo sequencing algorithm, such as PEAKS, and comparing 

the de novo sequenced peptides with database sequences.35–37 One of the main differences 

between neuropeptide databases and typical protein databases is that mature neuropeptide 

sequences are shorter than protein sequences due to the several proteolytic processing steps 

involved during neuropeptide biosynthesis.38–41 This is observed within our in-house crustacean 

neuropeptide database where most sequences are less than 20 amino acids long (Figure S1).6 

Another unique database feature arises from the alternative splicing that occurs during 

neuropeptide biosynthesis, resulting in a neuropeptide database comprised of sequences with 

high similarity to each other.38–40,42–44 Additionally, due to the low neuropeptide expression 

levels in vivo, it is common for the neuropeptide fragment ion abundance within MS/MS spectra 

to be lower than that observed within bottom-up proteomics datasets.9,45 Considering these 

shortcomings, low neuropeptide identification rates are observed when proteomics software is 

used for neuropeptide data analysis.20,46–48 
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Figure 1. The workflow for HyPep analysis begins with processing LC-MS/MS data through 

PEAKS de novo sequencing program. De novo sequenced peptides are loaded into HyPep. 

HyPep performs a sequence homology search (SHS) between de novo sequenced query and 

neuropeptide database sequence and sequence matches above a false discovery rate threshold are 

reported. In parallel, LC-MS/MS data undergo precursor ion deconvolution through TopFD 

within TopPIC Suite.49 Deconvoluted precursor masses are loaded into HyPep. HyPep performs 

accurate mass matching (AMM) between intact neuropeptide database sequences and 

deconvoluted precursor masses. Then, HyPep searches MS/MS scans where the isolated 

precursor corresponds to a deconvoluted precursor mass and contains fragment ions pertaining to 

the neuropeptide sequence. The filtered results from the SHS module are compared with the 
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results from the AMM module and database sequences identified in both modules are reported as 

a final output.  

 

Development of informatic methodologies optimized for neuropeptides and equipped to 

address these shortcomings include IggyPep, PRESNovo and NeuroPedia.38,39,50,51 A review of 

these methods was presented by Phetsanthad, et al.39 IggyPep and PRESNovo both strategically 

leverage neuropeptide homology or motif searching to assist in peptide identification, as 

consideration of these features has been reported to  result in higher success rates when 

identifying homologs using smaller databases.40,51 HyPep is a novel database searching software 

that utilizes a sequence homology search approach for neuropeptide identification (Figure 1). 

First, LC-MS/MS data is processed through the PEAKS software de novo sequencing algorithm 

for database-free de novo sequencing. These de novo sequenced peptide queries are matched 

with database sequences and the overall match is scored based on the sum of subscores from four 

local alignment strategies. These local alignments consist of fixed and varying local alignments 

(Figure 2), and users may control the level of alignment stringency by changing the sliding 

window size (SWS) parameter within the varying-based local alignments.52 It is worth noting 

that this scoring system treats all mismatches equally regardless of structural similarity or amino 

acid related-ness (i.e., glutamine and glutamic acid). Weighted scoring systems, such as 

BLOSUM62, are robust because they were built upon empirically determined probabilities of 

amino acid substitutions using a comprehensive protein database.53 Until this breadth of 

information is available for neuropeptides, it is premature to implement an identical scoring 

system. 
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After sequence alignment, matching and scoring occurs within the sequence homology 

search module, matches between the de novo sequenced peptide query and neuropeptide 

database sequences are subsequently filtered based on its match score according to the user-

defined false discovery rate (FDR) threshold. Within HyPep, there are four target-decoy options 

for calculating the FDR, which include the reverse, shuffle, random, and a novel target-decoy 

method, hybrid, which contains characteristics from both shuffle and random methods. 

Naturally, all perfect matches between de novo sequenced query and database sequences are 

reported in the final HyPep output. Imperfect sequence matches above the specified FDR 

threshold are subsequently verified within HyPep by searching the raw MS/MS data file and 

reporting the scan(s) where the isolated precursor mass and fragment masses match with the 

theoretical database sequence mass. Since PEAKS software was used for generation of the de 

novo sequenced peptide queries used as the input for HyPep, the PEAKS database searching 

(PEAKS DB) algorithm was also used to compare neuropeptide identifications from Callinectes 

sapidus (blue crab) neuronal tissue types with HyPep, as they use the same input information. It 

is worth noting that the genome for this species was recently assembled, but the information was 

not able to be utilized in this study.54 Although the Comparisons between HyPep and PEAKS 

DB identifications at 1% FDR showed that HyPep identified sequences that were shorter, 

contained more neuropeptides originating from the same neuropeptide family, and overall greater 

number of identifications at the same false match rate (FMR).  
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Figure 2. HyPep’s sequence homology search (SHS) algorithm contains four local alignment 

strategies where each produce a subscore that is calculated by taking the number of amino acid 

matches divided by the average amino acid length of the aligned sequences. All de novo 

sequenced peptide queries are aligned with all neuropeptide database sequences using all four 

local alignment strategies and the subscores from each alignment are summed to produce the 

final HyPep score for each identification. Forward-fixed involves aligning sequences starting on 

the N-terminus and backward-fixed aligns them on the C-terminus. Forward-varying also aligns 

the sequences on the N-terminus, but a sliding window size (SWS) is incorporated to allow 

amino acids from one sequence to match with amino acids from the other sequence in cases 

where amino acid rearrangements have occurred. Backward-varying follows the same process 

but aligns the sequences on the C-terminus.  

 

Experimental Section: 
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Materials 

Methanol (MeOH), acetonitrile (ACN), glacial acetic acid (GAA), ammonium 

bicarbonate, formic acid (FA), and all crab saline components were purchased from Fisher 

Scientific (Pittsburgh, PA). All water (H2O) used in this study was either of HPLC grade or 

doubly distilled on a Millipore filtration system (Burlington, MA), and C18 Ziptips were 

purchased from Millipore (Burlington, MA). All LC solvents were of Fisher Optima Grade. 

Animals 

All female blue crabs, Callinectes sapidus, were purchased from Midway Asian Foods 

(Madison, WI) and housed in artificial seawater at 35 parts per thousand (ppt) salinity, 13-16 °C, 

and 8–10 parts per million (ppm) (∼80–100%) O2. Crabs were anesthetized on ice for 20 minutes 

and sacrificed for the collection of brain, sinus glands (SG), pericardial organs (PO), and 

commissural ganglia (CoG) as previously described.55 All dissections were performed in chilled 

(∼10 °C) physiological saline (composition: 440 mM NaCl; 11 mM KCl; 13 mM CaCl2; 26 mM 

MgCl2; 10 mM Trizma acid; and pH 7.4, adjusted with NaOH).  

NanoLC-ESI-Orbitrap Analysis of Tissue Samples 

For each tissue type, 3 tissue samples were pooled together before sample processing. 

Tissues were extracted for neuropeptides using 90/9/1 (v/v/v) MeOH/H2O/GAA and desalted 

using Millipore Ziptips. Peptide extract was reconstituted in 0.1% FA in water and loaded onto a 

15 cm capillary (75 μm i.d.) packed using 1.7 μm diameter Ethylene Bridged Hybrid C18 

material with the integrated emitter tip in line with the instrument inlet. Untargeted neuropeptide 

profiling LC-MS/MS measurements were conducted on Thermo Q Exactive HF equipped with a 

Dionex Ultimate 3000 system. Mobile phase A was 0.1% FA in H2O and mobile phase B was 
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0.1% FA in can. Peptides were separated with a gradient elution of 10 to 20% B over 70 min and 

20 to 95% B over 20 min at a flow rate of 300 nL/min. Full MS scans were acquired in profile 

mode ranging from m/z 200 to 2000 at a resolution of 60 K. Automatic gain control (AGC) target 

was 1 × 106, and maximum injection time was 250 ms. Tandem mass spectra were acquired in 

centroid mode. The top 10 most abundant precursor ions were selected for higher-energy 

collisional dissociation (HCD) fragmentation with a dynamic exclusion of 30 s. Data-dependent 

acquisition (DDA) parameters were set as resolution power of 15 K, isolation window of 2.0 Th, 

normalized collision energy (NCE) of 30, the maximum injection time of 120 ms, AGC target of 

2 × 105, and fixed first mass of m/z 100. Each sample was injected in triplicate.  

Peptide Identification and Discovery using HyPep 

The algorithm and GUI were written in Python. The program is compatible with  Python 

3 and was validated with Python v.3.10. HyPep is open-source and freely available at 

https://github.com/lingjunli-research/HyPep-v1.0, with a user manual and tutorial included. A 

schematic of the HyPep workflow is shown in Figure 1. Thermo RAW files from LC-MS/MS 

measurements were de novo sequenced using PEAKS software (Bioinformatics Solutions Inc). 

PEAKS parameters were parent mass error tolerance = 20.0 ppm, fragment mass error tolerance 

0.02 Da, enzyme = no digestion, variable modifications: amidation (-0.98 Da), oxidation (M) 

(+15.99 Da), pyro-Glu from E (-18.01 Da), pyro-Glu from Q (-17.03 Da), and max variable post-

translational modifications (PTM) per peptide = 3. De novo sequenced peptides were filtered for 

average local confidence (ALC) > 50 and exported as de novo peptides.csv. This .csv file was 

loaded along with the neuropeptide database files into HyPep for processing. The first 

neuropeptide database input is a .csv file containing each neuropeptide sequence annotated with 

known PTMs and monoisotopic [M+H]+ mass. The second neuropeptide database input includes 

https://github.com/lingjunli-research/HyPep-v1.0
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a folder that contains a .txt file of the theoretical b- and y-series fragment ions for each 

neuropeptide database sequence. Theoretical masses were generated from ProteinProspector 

(https://prospector.ucsf.edu/prospector/mshome.htm). A sequence homology search (SHS) was 

performed by matching de novo sequenced peptides with neuropeptide database sequences using 

a local alignment strategy. Matches, or identifications, were scored using the SHS scoring 

function (Figure 2). Theoretical false positives below a user-defined FDR were removed from 

the identifications list by implementing a target-decoy method. As the SHS database searches of 

the target and decoy databases occur separately, the FDR is calculated as the number of hits to 

the decoy database (Ndecoy) divided by the total number of hits to the target (Ntarget) (Equation 

1).56  

Equation 1     𝐹𝐷𝑅 =  
𝑁𝑑𝑒𝑐𝑜𝑦

𝑁𝑡𝑎𝑟𝑔𝑒𝑡
 

Identifications above the user-defined % FDR threshold from the SHS module were then verified 

through the included accurate mass matching (AMM) module. Both SHS and AMM modules are 

automatically performed in each HyPep run. AMM was performed at the peptide precursor and 

fragment level at the same error tolerances as those used for PEAKS de novo sequencing (20 

ppm for precursor mass and 0.02 Da for fragment mass) to verify that HyPep identifications with 

a score less than 4 (i.e., an imperfect sequence alignment) were present in at least one MS/MS 

spectrum within the Thermo RAW file.  

To determine the optimal (i.e., most sensitive) sliding window size (SWS), neuropeptide 

identifications from all SWS values (1-10) were compared. To determine the optimal target-

decoy method, neuropeptide identifications using each target-decoy method (reversed, shuffled, 

randomized, and hybrid) method were compared.  
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Optimal HyPep parameters (SWS = 2 and target-decoy method = shuffled) were used for 

comparisons between HyPep and PEAKS DB. PEAKS DB parameters were the same as those 

used for PEAKS de novo sequencing parameters. The number of identifications at 1% FDR 

threshold from both programs were compared. To assess accuracy of both programs, an 

entrapment database was constructed consisting of all sequences from the original target 

crustacean neuropeptide database appended to a database of non-crustacean neuropeptides that 

were obtained from NeuroPep.24 There were no overlapping sequences between the target and 

trap databases and there were the same number of target and trap sequences in the final 

entrapment database. Hits to the non-crustacean neuropeptides (Ntrap) divided by the number of 

hits to the crustacean neuropeptides (Ntarget) were used to calculate the FMR (Equation 2).57 The 

number of identifications assigned to the correct crustacean or incorrect non-crustacean 

sequences at 1% FDR threshold from both programs were compared.  

Equation 2     𝐹𝑀𝑅 =  
𝑁𝑡𝑟𝑎𝑝

𝑁𝑡𝑎𝑟𝑔𝑒𝑡
 

For discovery of novel neuropeptides, identifications from HyPep using optimal 

parameters (SWS = 2 and target-decoy method = shuffled) at 1% FDR threshold were scanned 

for de novo sequences originating from 1) multiple MS/MS scans, 2) MS/MS scans with ALC = 

99 and 3) HyPep score < 4. Sequences and MS/MS scans were manually evaluated, and novel 

neuropeptides were reported. 

Results and Discussion:  

Optimization of HyPep Sliding Window Size 

To assess the performance of HyPep, determination of HyPep parameters that produce 

optimal (i.e., most sensitive) results is necessary. HyPep identifications are scored based on the 
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sum of the subscores from four local alignment strategies: forward-fixed, backward-fixed, 

forward-varying, and backward-varying (Figure 2). The latter two alignment types were 

specifically designed to enable flexibility during the amino acid alignment process between the 

de novo sequence query and the neuropeptide database sequence, with flexibility regulated by the 

SWS.52,58 For example, when matching a query sequence, sequence A, to a database sequence, 

sequence B, the SWS value is the maximum number of consecutive amino acids that will be 

scanned in sequence B to search for a matching residue. HyPep allows SWS values from one to 

ten. Intuitively, the smallest SWS value should result in the fewest number of identifications 

because it offers the least flexibility and the most stringent matching process, though this was not 

observed in actuality.  
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Figure 3. Neuropeptide identifications as a function of % FDR from C. sapidus brain tissue 

processed using HyPep, which contains four target-decoy methods to calculate % FDR. Decoy 

databases can be generated using either shuffle, reverse, random, or hybrid decoy methods for 

FDR calculation (Figure S1). Insets show magnification at 0.5-1.5% FDR. Each color represents 

different sliding window sizes (SWS). For each target-decoy method, the same decoy database 

was used for neuropeptide identification using SWS values 1-10.  

 

Neuropeptide extracts from crustacean brain tissues were analyzed with LC-MS/MS and 

processed using HyPep.  Figure 3 shows number of identifications as a function of % FDR at all 
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SWS values 1-10. Overall, there is agreement in number of neuropeptide identifications 

regardless of SWS value used. The number of identifications between 1-5% FDR were closely 

examined, as these are the thresholds typically used within the proteomics community. The 

greatest number of identifications occurred when smaller SWS values (i.e., 1-3) were used, 

which was unexpected as a larger SWS offers more opportunities for a match to occur between a 

de novo sequence and a database sequence. This observation was true in both the original, target 

database as well as the decoy database, implying that the decrease in neuropeptide identifications 

as SWS increases is likely due to an increasing number of hits to the decoy database (i.e., decoy-

hits). Since sequence query alignment and scoring to both target and decoy database sequences 

occurs prior to the FDR calculation, increased decoy-hits raises the score that corresponds to 1% 

FDR. As this score is raised, fewer target-hits meet this score threshold, resulting in fewer 

neuropeptide identifications. Figure 4 shows a broader comparison of the SWS values, as it 

includes the number of identifications at 1% FDR from all four neuroendocrine tissue types 

(Brain, CoG, SG, and PO) at SWS values 1-10. Both Figures 3 and 4 show that an SWS value of 

2 produces a higher number of identifications in all tissues. Therefore, a SWS value of 2 was 

chosen as the optimal value. 
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Figure 4. Four tissues from C. sapidus (brain, sinus glands, pericardial organs, and commissural 

ganglia) were processed using HyPep parameters at SWS values 1-10 and four target-decoy 

methods (reverse = diamond, circle = shuffle, x = random, and triangle = hybrid). The number of 

identifications for each tissue using each SWS value and each target-decoy method are reported 

at threshold of 1% FDR.  

 

Evaluation of HyPep Target-Decoy Methods 

The selection of an appropriate target-decoy method for calculating the FDR in 

proteomics is an ongoing discussion and it is beyond the scope of this report to comprehensively 
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compare the benefits and pitfalls of each method. 56,59–65 It is unanimously agreed upon that the 

decoy database generation method and FDR calculation must be transparently described for each 

informatics tool, so that the user may adapt the most suitable target-decoy method for their 

dataset. Within HyPep, three common methods, reverse, shuffle, and random, as well as one 

novel hybrid method for decoy database generation exists (Figure S2). 66,67 Figure S3 compares 

the characteristics of the target (original) crustacean neuropeptide database with the four decoy 

database options. All decoy databases, including the novel hybrid method described in this 

report, meet the criteria set forth by Gygi et al., which states that decoy databases must contain 1) 

similar amino acid distribution, 2) similar sequence length distribution, and 3) similar number of 

sequences between target and decoy database, and 4) no peptides in common between target and 

decoy databases.56 Each HyPep decoy database sequence is identical in length to its 

corresponding target database sequence. Each reverse and shuffle decoy sequence mass is 

identical to its corresponding target sequence, and the distribution of sequence masses from the 

random and hybrid decoy databases are in good agreement with the target database (Figure S3). 

Based on these characteristics, as well as the increasing level of stochasticity inherent to the 

reverse, shuffle, hybrid, and random decoy databases, respectively, sequences from the reverse 

and shuffle decoy databases contain decoy sequences highly similar to the target sequences, and 

therefore should result in more matches between de novo sequenced queries and the decoy 

database sequences than the hybrid and randomized decoy databases. We indeed observed that 

the reverse target-decoy method produced the lowest number of identifications at 1% FDR, yet 

the shuffle decoy method produced the largest number (Figures 3, 4, and 5). Although the 

number of identifications resulting from each target-decoy method were not the same, all the 
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identifications from each method are valid due to the verification step that occurs after the FDR 

calculation by the HyPep AMM module. 

Shuffle or pseudo-shuffle decoy methods have been reported to overestimate the % FDR 

for analysis of tryptic-digested peptides.63,66 This speculation is amplified for neuropeptide 

analysis when considering the likelihood that a sequence from a shuffled decoy database not only 

acts as a decoy to its originating target sequence but also to multiple target sequences due to the 

highly homologous nature of neuropeptides within a family. An example of the high homology 

within a family is shown in Figure S4, where roughly half of neuropeptides from the crustacean 

hyperglycemic hormone (CHH) neuropeptide superfamily contain at least 50% sequence identity 

to another neuropeptide. Regardless, because it produced the highest number of neuropeptides 

identified at 1% FDR, the shuffle target-decoy method was selected as the optimal target-decoy 

method. It is worth noting that, although the novel hybrid method for decoy database generation 

was not selected as the optimal method, we believe it contains merit for potential future 

informatics tools because it met the aforementioned criteria  and therefore worth retaining within 

the HyPep toolkit.63  

Performance of HyPep 

To assess the performance of HyPep compared to other available software, the LC-

MS/MS data from peptide extracts of brain, SG, PO, and CoG tissue types were analyzed 

separately using HyPep and PEAKS DB algorithms. PEAKS DB was selected as both HyPep 

and PEAKS DB use the same de novo sequenced peptides list as the input file. The data were 

processed with HyPep using a SWS value of 2 and the shuffle target-decoy method, while the 

PEAKS DB program uses a decoy-fusion target-decoy method.68 Since HyPep considers all de 

novo peptide sequence queries as potential full-length neuropeptide sequences, the decoy-fusion 
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target-decoy method was not made available within HyPep because decoy-fusion sequences are 

twice as long as sequences within the original neuropeptide database.  

A threshold of 1% FDR was used for both software, with precise % FDR values from 

HyPep of 0.76% for SG, 0.79% for PO, and 1.41% for CoG, and 1.3% for brain tissues. All 

identifications from HyPep and PEAKS DB are listed in Supplemental Files 1 and 2, 

respectively. HyPep resulted in more identifications than PEAKS DB software (Figure 5A). 

There is relatively low agreement in identifications between the two software, as 13-24% of 

PEAKS DB identifications were not found by HyPep. In order to understand this discrepancy, 

the neuropeptide family and sequence length of the identifications from both software were 

compared (Figures 5B and 5C). Across all tissues, one neuropeptide family, calcitonin/diapause 

hormone (CT/DH), was uniquely identified using PEAKS DB, while neuropeptides from the C-

type allatostatin (AST-C), GSEFLamide, and proctolin families were only identified using 

HyPep. HyPep identified more neuropeptides within each family than PEAKS DB with the 

exception of the orcokinin family. Since one of the technical challenges of neuropeptide 

identification we sought to overcome was the ability to detect and differentiate between 

homologous neuropeptides, this observation implies that HyPep is better equipped to overcome 

that obstacle than PEAKS DB.  

HyPep identified sequences with up to 18 amino acid residues while PEAKS DB 

identified sequences with up to 36 amino acid residues (Figure 5C). Considering the 

development of HyPep was motivated by improving identification of shorter neuropeptides, the 

increase in identification of shorter neuropeptides was promising. Since the disparity in 

identifications between HyPep and PEAKS DB would decrease if HyPep had been able to 

identify longer neuropeptides, this discrepancy is expected to decrease as algorithms used for 
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database-free de novo sequencing improves their capabilities for detecting longer sequences, thus 

providing a higher quality input list for HyPep. HCD fragmentation was found to be most 

compatible with current de novo sequencing software, especially regarding accurate sequencing 

of longer peptides, so only datasets collected with HCD fragmentation were included in this 

report and compatible with HyPep.69  
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Figure 5. Comparison of the number of neuropeptides identified using PEAKS DB and HyPep 

from four tissue types (brain, sinus glands (SG), pericardial organs (PO), and commissural 

ganglia (CoG)) from C. sapidus. 1% FDR threshold was set for both software. Neuropeptides 

were examined for (A) overlapping and unique sequences, (B) sequences from different 

neuropeptide families, and (C) lengths of neuropeptide sequences. AST: allatostatin; CPRP: 
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crustacean hyperglycemic hormone precursor-related peptide; CT/DH: calcitonin/diapause 

hormone; PDH: pigment dispersing hormone; sNPF: short neuropeptide F. 

 

The accuracy of peptide identification software is an important metric that is nearly 

impossible to assess using a biological sample alone. A previously reported method for 

estimating the accuracy of database search-based identification algorithms involves generating 

an entrapment database containing sequences that are unlikely to be found in the sample, which 

are then appended to the original target database, enabling FMR measurements.57,70 Entrapment 

sequences for this study included non-crustacean neuropeptides from the NeuroPep online 

database (http://isyslab.info/NeuroPep/). Figure 6 shows the number of identifications from 

PEAKS DB and HyPep at 1% FDR using the entrapment database. HyPep produced 85, 96, 79, 

and 47 target identifications with 2.4, 2.1, 2.5, and 2.1% FMR for the brain, SG, PO, and CoG 

tissues, respectively, while PEAKS DB produced 54, 50, 48, and 42 target identifications with 

1.8, 2, 0, and 2.4% FMR for the same tissues. All identifications using the entrapment database 

are listed in Supplemental Files 3 and 4 for HyPep and PEAKS DB, respectively. The 

approximately 2% FMR observed for both software aligns with the 1% FDR threshold that was 

used as a processing parameter for both software. HyPep identified more neuropeptides 

regardless of which database was used (original database or entrapment database) at comparable 

FDR and FMR accuracy as PEAKS DB.  

http://isyslab.info/NeuroPep/


24 
 

 

Figure 6. Accuracy of neuropeptide identification from HyPep and PEAKS DB was evaluated 

by processing four tissue types from C. sapidus (brain, sinus glands (SG), pericardial organs 

(PO), and commissural ganglia (CoG)) through both programs. An entrapment database 

containing both crustacean neuropeptides and non-crustacean neuropeptides was used, and the 

number of total identifications and false identifications were reported at 1% FDR.  

 

Neuropeptide Discovery using HyPep 

Neuropeptide prohormones undergo splicing at the post-transcriptional and post-

translational stages, which result in neuropeptide families containing sequences with high 

sequence similarity to one another.71 Although knowledge of genomic or transcriptomic 

sequence coupled with confirmed biosynthesis pathway and bioactivity information is ideal for 

characterization of a de novo sequenced peptide query as a neuropeptide, de novo sequencing can 
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be used as a standalone tool as a starting point for discovering neuropeptides provided the 

peptide query contains a highly conserved neuropeptide sequence motif.50 It is important to note 

that de novo sequencing-based discovery is only applicable for peptide extracts from 

neuropeptide-relevant samples to increase confidence. Since de novo sequencing algorithms 

typically produce tens of thousands of peptide sequences from a single untargeted LC-MS/MS 

dataset and thousands remain even after a neuropeptide motif filter is applied, it is necessary to 

narrow down the list before manual examination of the spectra. HyPep’s ability to find de novo 

sequenced peptide queries that partially match with entire database sequences can be utilized for 

neuropeptide discovery, given that the query sequence is associated with more than one PSM. 

HyPep was used to discover neuropeptides from brain, PO, CoG, and SG tissue types. 

PEAKS conveys confidence in de novo sequence outcomes as an average local confidence 

(ALC) score, where an ALC of 99 represents a sequence with the highest level of certainty. As 

such, an ALC score threshold of 99 was used for this analysis. It is worth mentioning that 

previous reports have used lower ALC thresholds for neuropeptide discovery, thus, future usage 

of this discovery strategy may also apply less stringent ALC thresholds.48,67,72 Table 1 lists 11 

novel neuropeptides and reports their corresponding HyPep score to the neuropeptide database 

sequences, which ranges from 2.8-3.6. The upper limit of 3.6 was chosen because it was the 

highest score that was less than 4. The lower limit of 2.8 was a result of processing the data 

through HyPep at a 1% FDR threshold during the database search, where 2.8 was the highest 

score above a 1% FDR cutoff. Most of these putative novel neuropeptides contain conserved 

sequence motifs such as carboxy-terminal arginine and an amidated phenylalanine (RFamide).73 

One of the novel sequences, SSFSRPPamide, is almost a perfect match with the database 

sequence SSFSPRPamide, except where the fifth and sixth amino acids are switched. If the 
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genomic or transcriptomic information was available, the variation between these two sequences 

could be investigated for potential amino acid insertion, substitution, deletion, or replacement 

incidences.74 Considering the high homology to known neuropeptide sequences and high spectral 

quality, these sequences may confidently move forward for examination of neuropeptide 

function. 

Table 1. Putative novel neuropeptide sequences that were discovered in four tissue types from C. 

sapidus. 

 

De novo sequenced peptides were processed through HyPep and the output was filtered for 

peptides that 1) were assigned an average local confidence (ALC) score of 99, 2) peptide was de 

novo sequenced in more than one MS/MS spectrum and 3) the HyPep alignment score to a 

neuropeptide database sequence is equal to or greater than the score required for neuropeptide 

identification at 1% FDR identification.  

 

Conclusions:  



27 
 

We present a novel strategy for neuropeptide identification, HyPep, that utilizes sequence 

alignment and sequence homology between de novo sequenced peptides and peptide database 

sequences. In this report, PEAKS software was used for database-free de novo sequencing of 

peptides from LC-MS/MS datasets of neural tissue extracts and processed with either HyPep or 

PEAKS DB for database searching and peptide identification. Overall, HyPep identified more 

neuropeptides than PEAKS DB from each tissue type at 1% FDR and at similar FMR from four 

neuronal tissue types within C. sapidus. The HyPep neuropeptide identifications contained 

shorter sequences and more sequences from each neuropeptide family than PEAKS DB. We also 

report our strategy for leveraging HyPep to select high quality de novo sequenced peptide 

candidates for discovery of novel neuropeptides. HyPep’s methodology for peptide identification 

and discovery may be expanded to other classes of endogenous peptides. Although an external 

limitation stems from the performance of the database-free de novo sequencing algorithm that is 

used to generate the input for HyPep, future directions for HyPep include optimization of the 

peptide feature detection algorithm to detect longer neuropeptide sequences, as well as 

capabilities for detection of a/x and c/z fragment ions. HyPep is open source, and the software 

GUI and instructions can be downloaded at https://github.com/lingjunli-research/HyPep-v1.0.  

Supporting Information: 

▪ Excel. (.XLSX): Tables of the neuropeptide identifications for the brain, SG, PO, and 

CoG tissue types from HyPep using the original database (Supplemental File 1), from 

PEAKS DB using the original database (Supplemental File 2), from HyPep using the 

entrapment database (Supplemental File 3) and from PEAKS DB using the entrapment 

database (Supplemental File 4). 

▪ Word (.DOCX): HyPep user manual (Supplemental File 5). 
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▪ Word (.DOCX): (Supplemental Figures) - Distribution of sequence lengths from target 

database (Figure S1), description of decoy database generation methods (Figure S2), 

distribution of sequence lengths from decoy databases (Figure S3), and plot showing % 

sequence identity between members of the crustacean hyperglycemic hormone 

neuropeptide superfamily (Figure S4). 

▪ Excel. (.CSV): In-house crustacean database (Supplemental File 6) and entrapment 

(crustacean and non-crustacean/trap) database (Supplemental File 7) 

Data deposition 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE [1] partner repository with the dataset identifier PXD037058.   

Abbreviations: 

MS - Mass Spectrometry  

MS/MS - Tandem Mass Spectrometry  

PSM - Peptide-Spectrum Match 

LC - Liquid Chromatography 

SWS - Sliding Window Size 

FDR - False Discovery Rate 

PEAKS DB - Peaks Database Search 

FMR - False Match Rate 

MeOH - Methanol 



29 
 

ACN - Acetonitrile 

GAA - Glacial Acetic Acid 

FA - Formic Acid 

H2O – Water 

[M+H]+ - Protonated Monoisotopic Mass  

SG - Sinus Glands 

PO - Pericardial Organs 

CoG - Commissural Ganglions 

NaCl - Sodium Chloride 

CaCl2 - Calcium Chloride 

MgCl2 - Magnesium Chloride  

NaOH - Sodium Hydroxide 

AGC - Automatic Gain Control 

HCD - Higher-energy Collisional Dissociation 

DDA - Data-dependent Acquisition 

NCE - Normalized Collision Energy 

GUI - Graphical User Interface 

PTM - Post-Translational Modification 
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SHS - Sequence Homology Search 

Ntarget - Hits to Target Crustacean Database 

Ndecoy - Hits to Decoy Database  

AMM - Accurate Mass Matching 

Da - Dalton 

Ntrap - Hits to Trap Non-Crustacean Database 

ALC - Average Local Confidence 

CHH - Crustacean Hyperglycemic Hormone 

CT/DH - Calcitonin/Diapause Hormone 

AST-C - Allatostatin C-Type 
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