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Abstract:

Neuropeptides are a class of endogenous peptides that have key regulatory roles in
biochemical, physiological, and behavioral processes. Mass spectrometry analyses of
neuropeptides often rely on protein informatics tools for database searching and peptide
identification. As neuropeptide databases are typically experimentally built and comprised of
short sequences with high sequence similarity to each other, we developed a novel database
searching tool, HyPep, which utilizes sequence homology searching for peptide identification.
HyPep aligns database-free, de novo sequenced peptide sequences generated through PEAKS
software with neuropeptide database sequences to identify neuropeptides based on an alignment
score. HyPep performance was optimized using LC-MS/MS measurements of peptide extracts
from various C. sapidus neuronal tissue types and compared with a commercial database
searching software, PEAKS DB. HyPep identified more neuropeptides from each tissue type
than PEAKS DB at 1% false discovery rate and the false match rate from both programs was 2%.
In addition to identification, this report describes how HyPep can aid in the discovery of novel

neuropeptides.

Keywords: Neuropeptide, HyPep, homology, peptide, mass spectrometry, de novo sequencing,

FDR, peptidomics
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Introduction:

Neuropeptides are signaling molecules that are expressed by neurons and have been
implicated in regulation of numerous biochemical pathways,? physiological processes,** and
behaviors.>® Precursor peptides (>90 amino acids) originating from nuclear DNA undergo
selective cleavage to form mature, bioactive neuropeptides.”® The resulting neuropeptides are
typically 3-36 amino acids long, and the function of a neuropeptide sequence can be altered by
different post-translational modifications, or by truncations or cyclization.”!! Identification and
discovery of neuropeptides is important for elucidation of their functional mechanism, as well as
establishing a foundation for disease therapeutics research.!?"!” A crustacean animal model is
often utilized for neurobiology research due to their well-characterized nervous system, which
facilitates the elucidation of neuropeptide function at the neuronal circuit and systems levels. '8
Mass spectrometry (MS) is well-suited for characterizing the full complement of neuropeptides
due to its high sensitivity and ability to capture the expression profile of many neuropeptides
simultaneously.!*?? Since neuropeptides undergo multiple post-transcriptional and post-
translational processing events before arriving at their mature form, neuropeptide databases
constructed from nucleotide sequence predictions capture only a fraction of the bioactive
neuropeptide sequences. >”?* As a result, many neuropeptide databases utilized within
proteomics software are experimentally built to contain de novo sequenced neuropeptides as well

as neuropeptide sequences predicted from genomic or transcriptomic information 2%+

Although most commercial proteomics software have been developed and optimized for
bottom-up proteomics, they are often used for performing neuropeptide identification.?2® The
two main software approaches include a peptide-spectrum matching (PSM) approach where raw

MS and MS/MS data are compared with in silico MS and MS/MS values generated from a



known peptide database.?®*~3? This may involve utilizing a spectral library from reference
MS/MS datasets instead of theoretically generated MS/MS data.**** The other approach involves
processing the MS dataset with a de novo sequencing algorithm, such as PEAKS, and comparing
the de novo sequenced peptides with database sequences.> =’ One of the main differences
between neuropeptide databases and typical protein databases is that mature neuropeptide
sequences are shorter than protein sequences due to the several proteolytic processing steps
involved during neuropeptide biosynthesis.***! This is observed within our in-house crustacean
neuropeptide database where most sequences are less than 20 amino acids long (Figure S1).°
Another unique database feature arises from the alternative splicing that occurs during
neuropeptide biosynthesis, resulting in a neuropeptide database comprised of sequences with
high similarity to each other.*® %4 Additionally, due to the low neuropeptide expression
levels in vivo, it is common for the neuropeptide fragment ion abundance within MS/MS spectra
to be lower than that observed within bottom-up proteomics datasets.”* Considering these
shortcomings, low neuropeptide identification rates are observed when proteomics software is

used for neuropeptide data analysis.?%#¢8
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Figure 1. The workflow for HyPep analysis begins with processing LC-MS/MS data through

PEAKS de novo sequencing program. De novo sequenced peptides are loaded into HyPep.

HyPep performs a sequence homology search (SHS) between de novo sequenced query and

neuropeptide database sequence and sequence matches above a false discovery rate threshold are

reported. In parallel, LC-MS/MS data undergo precursor ion deconvolution through TopFD

within TopPIC Suite.*” Deconvoluted precursor masses are loaded into HyPep. HyPep performs

accurate mass matching (AMM) between intact neuropeptide database sequences and

deconvoluted precursor masses. Then, HyPep searches MS/MS scans where the isolated

precursor corresponds to a deconvoluted precursor mass and contains fragment ions pertaining to

the neuropeptide sequence. The filtered results from the SHS module are compared with the



results from the AMM module and database sequences identified in both modules are reported as

a final output.

Development of informatic methodologies optimized for neuropeptides and equipped to
address these shortcomings include IggyPep, PRESNovo and NeuroPedia.?*-3%3%5! A review of
these methods was presented by Phetsanthad, et al.>° IggyPep and PRESNovo both strategically
leverage neuropeptide homology or motif searching to assist in peptide identification, as
consideration of these features has been reported to result in higher success rates when
identifying homologs using smaller databases.**>! HyPep is a novel database searching software
that utilizes a sequence homology search approach for neuropeptide identification (Figure 1).
First, LC-MS/MS data is processed through the PEAKS software de novo sequencing algorithm
for database-free de novo sequencing. These de novo sequenced peptide queries are matched
with database sequences and the overall match is scored based on the sum of subscores from four
local alignment strategies. These local alignments consist of fixed and varying local alignments
(Figure 2), and users may control the level of alignment stringency by changing the sliding
window size (SWS) parameter within the varying-based local alignments.> It is worth noting
that this scoring system treats all mismatches equally regardless of structural similarity or amino
acid related-ness (i.e., glutamine and glutamic acid). Weighted scoring systems, such as
BLOSUMSG62, are robust because they were built upon empirically determined probabilities of
amino acid substitutions using a comprehensive protein database.> Until this breadth of
information is available for neuropeptides, it is premature to implement an identical scoring

system.



After sequence alignment, matching and scoring occurs within the sequence homology
search module, matches between the de novo sequenced peptide query and neuropeptide
database sequences are subsequently filtered based on its match score according to the user-
defined false discovery rate (FDR) threshold. Within HyPep, there are four target-decoy options
for calculating the FDR, which include the reverse, shuffle, random, and a novel target-decoy
method, hybrid, which contains characteristics from both shuffle and random methods.
Naturally, all perfect matches between de novo sequenced query and database sequences are
reported in the final HyPep output. Imperfect sequence matches above the specified FDR
threshold are subsequently verified within HyPep by searching the raw MS/MS data file and
reporting the scan(s) where the isolated precursor mass and fragment masses match with the
theoretical database sequence mass. Since PEAKS software was used for generation of the de
novo sequenced peptide queries used as the input for HyPep, the PEAKS database searching
(PEAKS DB) algorithm was also used to compare neuropeptide identifications from Callinectes
sapidus (blue crab) neuronal tissue types with HyPep, as they use the same input information. It
is worth noting that the genome for this species was recently assembled, but the information was
not able to be utilized in this study.** Although the Comparisons between HyPep and PEAKS
DB identifications at 1% FDR showed that HyPep identified sequences that were shorter,
contained more neuropeptides originating from the same neuropeptide family, and overall greater

number of identifications at the same false match rate (FMR).
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Figure 2. HyPep’s sequence homology search (SHS) algorithm contains four local alignment

strategies where each produce a subscore that is calculated by taking the number of amino acid

matches divided by the average amino acid length of the aligned sequences. All de novo

sequenced peptide queries are aligned with all neuropeptide database sequences using all four

local alignment strategies and the subscores from each alignment are summed to produce the

final HyPep score for each identification. Forward-fixed involves aligning sequences starting on

the N-terminus and backward-fixed aligns them on the C-terminus. Forward-varying also aligns

the sequences on the N-terminus, but a sliding window size (SWS) is incorporated to allow

amino acids from one sequence to match with amino acids from the other sequence in cases

where amino acid rearrangements have occurred. Backward-varying follows the same process

but aligns the sequences on the C-terminus.

Experimental Section:



Materials

Methanol (MeOH), acetonitrile (ACN), glacial acetic acid (GAA), ammonium
bicarbonate, formic acid (FA), and all crab saline components were purchased from Fisher
Scientific (Pittsburgh, PA). All water (H20) used in this study was either of HPLC grade or
doubly distilled on a Millipore filtration system (Burlington, MA), and C18 Ziptips were

purchased from Millipore (Burlington, MA). All LC solvents were of Fisher Optima Grade.
Animals

All female blue crabs, Callinectes sapidus, were purchased from Midway Asian Foods
(Madison, WI) and housed in artificial seawater at 35 parts per thousand (ppt) salinity, 13-16 °C,
and 810 parts per million (ppm) (~80-100%) O2. Crabs were anesthetized on ice for 20 minutes
and sacrificed for the collection of brain, sinus glands (SG), pericardial organs (PO), and
commissural ganglia (CoG) as previously described.’® All dissections were performed in chilled
(~10 °C) physiological saline (composition: 440 mM NaCl; 11 mM KCI; 13 mM CaClz; 26 mM

MgClz; 10 mM Trizma acid; and pH 7.4, adjusted with NaOH).
NanoLC-ESI-Orbitrap Analysis of Tissue Samples

For each tissue type, 3 tissue samples were pooled together before sample processing.
Tissues were extracted for neuropeptides using 90/9/1 (v/v/v) MeOH/H20/GAA and desalted
using Millipore Ziptips. Peptide extract was reconstituted in 0.1% FA in water and loaded onto a
15 cm capillary (75 um i.d.) packed using 1.7 um diameter Ethylene Bridged Hybrid C18
material with the integrated emitter tip in line with the instrument inlet. Untargeted neuropeptide
profiling LC-MS/MS measurements were conducted on Thermo Q Exactive HF equipped with a

Dionex Ultimate 3000 system. Mobile phase A was 0.1% FA in H20 and mobile phase B was
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0.1% FA in can. Peptides were separated with a gradient elution of 10 to 20% B over 70 min and
20 to 95% B over 20 min at a flow rate of 300 nL/min. Full MS scans were acquired in profile
mode ranging from m/z 200 to 2000 at a resolution of 60 K. Automatic gain control (AGC) target
was 1 x 10°, and maximum injection time was 250 ms. Tandem mass spectra were acquired in
centroid mode. The top 10 most abundant precursor ions were selected for higher-energy
collisional dissociation (HCD) fragmentation with a dynamic exclusion of 30 s. Data-dependent
acquisition (DDA) parameters were set as resolution power of 15 K, isolation window of 2.0 Th,
normalized collision energy (NCE) of 30, the maximum injection time of 120 ms, AGC target of

2 x 10°, and fixed first mass of m/z 100. Each sample was injected in triplicate.
Peptide Identification and Discovery using HyPep

The algorithm and GUI were written in Python. The program is compatible with Python
3 and was validated with Python v.3.10. HyPep is open-source and freely available at

https://github.com/lingjunli-research/HyPep-v1.0, with a user manual and tutorial included. A

schematic of the HyPep workflow is shown in Figure 1. Thermo RAW files from LC-MS/MS
measurements were de novo sequenced using PEAKS software (Bioinformatics Solutions Inc).
PEAKS parameters were parent mass error tolerance = 20.0 ppm, fragment mass error tolerance
0.02 Da, enzyme = no digestion, variable modifications: amidation (-0.98 Da), oxidation (M)
(+15.99 Da), pyro-Glu from E (-18.01 Da), pyro-Glu from Q (-17.03 Da), and max variable post-
translational modifications (PTM) per peptide = 3. De novo sequenced peptides were filtered for
average local confidence (ALC) > 50 and exported as de novo peptides.csv. This .csv file was
loaded along with the neuropeptide database files into HyPep for processing. The first
neuropeptide database input is a .csv file containing each neuropeptide sequence annotated with

known PTMs and monoisotopic [M+H]" mass. The second neuropeptide database input includes
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a folder that contains a .txt file of the theoretical b- and y-series fragment ions for each
neuropeptide database sequence. Theoretical masses were generated from ProteinProspector
(https://prospector.ucsf.edu/prospector/mshome.htm). A sequence homology search (SHS) was
performed by matching de novo sequenced peptides with neuropeptide database sequences using
a local alignment strategy. Matches, or identifications, were scored using the SHS scoring
function (Figure 2). Theoretical false positives below a user-defined FDR were removed from
the identifications list by implementing a target-decoy method. As the SHS database searches of
the target and decoy databases occur separately, the FDR is calculated as the number of hits to
the decoy database (Ndecoy) divided by the total number of hits to the target (Niarget) (Equation

1).56

Equation 1 FDR = —~decoy

Ntarget

Identifications above the user-defined % FDR threshold from the SHS module were then verified
through the included accurate mass matching (AMM) module. Both SHS and AMM modules are
automatically performed in each HyPep run. AMM was performed at the peptide precursor and
fragment level at the same error tolerances as those used for PEAKS de novo sequencing (20
ppm for precursor mass and 0.02 Da for fragment mass) to verify that HyPep identifications with
a score less than 4 (i.e., an imperfect sequence alignment) were present in at least one MS/MS

spectrum within the Thermo RAW file.

To determine the optimal (i.e., most sensitive) sliding window size (SWS), neuropeptide
identifications from all SWS values (1-10) were compared. To determine the optimal target-
decoy method, neuropeptide identifications using each target-decoy method (reversed, shuffled,

randomized, and hybrid) method were compared.
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Optimal HyPep parameters (SWS = 2 and target-decoy method = shuffled) were used for
comparisons between HyPep and PEAKS DB. PEAKS DB parameters were the same as those
used for PEAKS de novo sequencing parameters. The number of identifications at 1% FDR
threshold from both programs were compared. To assess accuracy of both programs, an
entrapment database was constructed consisting of all sequences from the original target
crustacean neuropeptide database appended to a database of non-crustacean neuropeptides that
were obtained from NeuroPep.?* There were no overlapping sequences between the target and
trap databases and there were the same number of target and trap sequences in the final
entrapment database. Hits to the non-crustacean neuropeptides (Nirap) divided by the number of
hits to the crustacean neuropeptides (Niarget) Were used to calculate the FMR (Equation 2).°” The
number of identifications assigned to the correct crustacean or incorrect non-crustacean

sequences at 1% FDR threshold from both programs were compared.

Equation 2 FMR = —rep

Ntarget

For discovery of novel neuropeptides, identifications from HyPep using optimal
parameters (SWS = 2 and target-decoy method = shuffled) at 1% FDR threshold were scanned
for de novo sequences originating from 1) multiple MS/MS scans, 2) MS/MS scans with ALC =
99 and 3) HyPep score < 4. Sequences and MS/MS scans were manually evaluated, and novel

neuropeptides were reported.
Results and Discussion:
Optimization of HyPep Sliding Window Size

To assess the performance of HyPep, determination of HyPep parameters that produce

optimal (i.e., most sensitive) results is necessary. HyPep identifications are scored based on the
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sum of the subscores from four local alignment strategies: forward-fixed, backward-fixed,
forward-varying, and backward-varying (Figure 2). The latter two alignment types were
specifically designed to enable flexibility during the amino acid alignment process between the
de novo sequence query and the neuropeptide database sequence, with flexibility regulated by the
SWS.3238 For example, when matching a query sequence, sequence A, to a database sequence,
sequence B, the SWS value is the maximum number of consecutive amino acids that will be
scanned in sequence B to search for a matching residue. HyPep allows SWS values from one to
ten. Intuitively, the smallest SWS value should result in the fewest number of identifications
because it offers the least flexibility and the most stringent matching process, though this was not

observed in actuality.
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Figure 3. Neuropeptide identifications as a function of % FDR from C. sapidus brain tissue
processed using HyPep, which contains four target-decoy methods to calculate % FDR. Decoy
databases can be generated using either shuffle, reverse, random, or hybrid decoy methods for
FDR calculation (Figure S1). Insets show magnification at 0.5-1.5% FDR. Each color represents
different sliding window sizes (SWS). For each target-decoy method, the same decoy database

was used for neuropeptide identification using SWS values 1-10.

Neuropeptide extracts from crustacean brain tissues were analyzed with LC-MS/MS and

processed using HyPep. Figure 3 shows number of identifications as a function of % FDR at all
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SWS values 1-10. Overall, there is agreement in number of neuropeptide identifications
regardless of SWS value used. The number of identifications between 1-5% FDR were closely
examined, as these are the thresholds typically used within the proteomics community. The
greatest number of identifications occurred when smaller SWS values (i.e., 1-3) were used,
which was unexpected as a larger SWS offers more opportunities for a match to occur between a
de novo sequence and a database sequence. This observation was true in both the original, target
database as well as the decoy database, implying that the decrease in neuropeptide identifications
as SWS increases is likely due to an increasing number of hits to the decoy database (i.e., decoy-
hits). Since sequence query alignment and scoring to both target and decoy database sequences
occurs prior to the FDR calculation, increased decoy-hits raises the score that corresponds to 1%
FDR. As this score is raised, fewer target-hits meet this score threshold, resulting in fewer
neuropeptide identifications. Figure 4 shows a broader comparison of the SWS values, as it
includes the number of identifications at 1% FDR from all four neuroendocrine tissue types
(Brain, CoG, SG, and PO) at SWS values 1-10. Both Figures 3 and 4 show that an SWS value of
2 produces a higher number of identifications in all tissues. Therefore, a SWS value of 2 was

chosen as the optimal value.
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Figure 4. Four tissues from C. sapidus (brain, sinus glands, pericardial organs, and commissural
ganglia) were processed using HyPep parameters at SWS values 1-10 and four target-decoy
methods (reverse = diamond, circle = shuffle, x = random, and triangle = hybrid). The number of
identifications for each tissue using each SWS value and each target-decoy method are reported

at threshold of 1% FDR.

Evaluation of HyPep Target-Decoy Methods

The selection of an appropriate target-decoy method for calculating the FDR in

proteomics is an ongoing discussion and it is beyond the scope of this report to comprehensively
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compare the benefits and pitfalls of each method. °®%-% It is unanimously agreed upon that the
decoy database generation method and FDR calculation must be transparently described for each
informatics tool, so that the user may adapt the most suitable target-decoy method for their
dataset. Within HyPep, three common methods, reverse, shuffle, and random, as well as one
novel hybrid method for decoy database generation exists (Figure S2). %*®” Figure S3 compares
the characteristics of the target (original) crustacean neuropeptide database with the four decoy
database options. All decoy databases, including the novel hybrid method described in this
report, meet the criteria set forth by Gygi et al., which states that decoy databases must contain 1)
similar amino acid distribution, 2) similar sequence length distribution, and 3) similar number of
sequences between target and decoy database, and 4) no peptides in common between target and
decoy databases.’® Each HyPep decoy database sequence is identical in length to its
corresponding target database sequence. Each reverse and shuffle decoy sequence mass is
identical to its corresponding target sequence, and the distribution of sequence masses from the
random and hybrid decoy databases are in good agreement with the target database (Figure S3).
Based on these characteristics, as well as the increasing level of stochasticity inherent to the
reverse, shuffle, hybrid, and random decoy databases, respectively, sequences from the reverse
and shuffle decoy databases contain decoy sequences highly similar to the target sequences, and
therefore should result in more matches between de novo sequenced queries and the decoy
database sequences than the hybrid and randomized decoy databases. We indeed observed that
the reverse target-decoy method produced the lowest number of identifications at 1% FDR, yet
the shuffle decoy method produced the largest number (Figures 3, 4, and 5). Although the

number of identifications resulting from each target-decoy method were not the same, all the
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identifications from each method are valid due to the verification step that occurs after the FDR

calculation by the HyPep AMM module.

Shuffle or pseudo-shuffle decoy methods have been reported to overestimate the % FDR
for analysis of tryptic-digested peptides.®*°¢ This speculation is amplified for neuropeptide
analysis when considering the likelihood that a sequence from a shuffled decoy database not only
acts as a decoy to its originating target sequence but also to multiple target sequences due to the
highly homologous nature of neuropeptides within a family. An example of the high homology
within a family is shown in Figure S4, where roughly half of neuropeptides from the crustacean
hyperglycemic hormone (CHH) neuropeptide superfamily contain at least 50% sequence identity
to another neuropeptide. Regardless, because it produced the highest number of neuropeptides
identified at 1% FDR, the shuffle target-decoy method was selected as the optimal target-decoy
method. It is worth noting that, although the novel hybrid method for decoy database generation
was not selected as the optimal method, we believe it contains merit for potential future
informatics tools because it met the aforementioned criteria and therefore worth retaining within

the HyPep toolkit.*
Performance of HyPep

To assess the performance of HyPep compared to other available software, the LC-
MS/MS data from peptide extracts of brain, SG, PO, and CoG tissue types were analyzed
separately using HyPep and PEAKS DB algorithms. PEAKS DB was selected as both HyPep
and PEAKS DB use the same de novo sequenced peptides list as the input file. The data were
processed with HyPep using a SWS value of 2 and the shuffle target-decoy method, while the
PEAKS DB program uses a decoy-fusion target-decoy method.®® Since HyPep considers all de

novo peptide sequence queries as potential full-length neuropeptide sequences, the decoy-fusion
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target-decoy method was not made available within HyPep because decoy-fusion sequences are

twice as long as sequences within the original neuropeptide database.

A threshold of 1% FDR was used for both software, with precise % FDR values from
HyPep of 0.76% for SG, 0.79% for PO, and 1.41% for CoG, and 1.3% for brain tissues. All
identifications from HyPep and PEAKS DB are listed in Supplemental Files 1 and 2,
respectively. HyPep resulted in more identifications than PEAKS DB software (Figure SA).
There is relatively low agreement in identifications between the two software, as 13-24% of
PEAKS DB identifications were not found by HyPep. In order to understand this discrepancy,
the neuropeptide family and sequence length of the identifications from both software were
compared (Figures SB and 5C). Across all tissues, one neuropeptide family, calcitonin/diapause
hormone (CT/DH), was uniquely identified using PEAKS DB, while neuropeptides from the C-
type allatostatin (AST-C), GSEFLamide, and proctolin families were only identified using
HyPep. HyPep identified more neuropeptides within each family than PEAKS DB with the
exception of the orcokinin family. Since one of the technical challenges of neuropeptide
identification we sought to overcome was the ability to detect and differentiate between
homologous neuropeptides, this observation implies that HyPep is better equipped to overcome

that obstacle than PEAKS DB.

HyPep identified sequences with up to 18 amino acid residues while PEAKS DB
identified sequences with up to 36 amino acid residues (Figure 5C). Considering the
development of HyPep was motivated by improving identification of shorter neuropeptides, the
increase in identification of shorter neuropeptides was promising. Since the disparity in
identifications between HyPep and PEAKS DB would decrease if HyPep had been able to

identify longer neuropeptides, this discrepancy is expected to decrease as algorithms used for
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database-free de novo sequencing improves their capabilities for detecting longer sequences, thus
providing a higher quality input list for HyPep. HCD fragmentation was found to be most
compatible with current de novo sequencing software, especially regarding accurate sequencing
of longer peptides, so only datasets collected with HCD fragmentation were included in this

report and compatible with HyPep.®

21



(A) Number of Neuropeptide Identifications using HyPep and PEAKS
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Figure 5. Comparison of the number of neuropeptides identified using PEAKS DB and HyPep
from four tissue types (brain, sinus glands (SG), pericardial organs (PO), and commissural
ganglia (CoGQG)) from C. sapidus. 1% FDR threshold was set for both software. Neuropeptides
were examined for (A) overlapping and unique sequences, (B) sequences from different

neuropeptide families, and (C) lengths of neuropeptide sequences. AST: allatostatin; CPRP:
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crustacean hyperglycemic hormone precursor-related peptide; CT/DH: calcitonin/diapause

hormone; PDH: pigment dispersing hormone; sNPF: short neuropeptide F.

The accuracy of peptide identification software is an important metric that is nearly
impossible to assess using a biological sample alone. A previously reported method for
estimating the accuracy of database search-based identification algorithms involves generating
an entrapment database containing sequences that are unlikely to be found in the sample, which
are then appended to the original target database, enabling FMR measurements.’”-’" Entrapment
sequences for this study included non-crustacean neuropeptides from the NeuroPep online

database (http://isyslab.info/NeuroPep/). Figure 6 shows the number of identifications from

PEAKS DB and HyPep at 1% FDR using the entrapment database. HyPep produced 85, 96, 79,
and 47 target identifications with 2.4, 2.1, 2.5, and 2.1% FMR for the brain, SG, PO, and CoG
tissues, respectively, while PEAKS DB produced 54, 50, 48, and 42 target identifications with
1.8, 2,0, and 2.4% FMR for the same tissues. All identifications using the entrapment database
are listed in Supplemental Files 3 and 4 for HyPep and PEAKS DB, respectively. The
approximately 2% FMR observed for both software aligns with the 1% FDR threshold that was
used as a processing parameter for both software. HyPep identified more neuropeptides
regardless of which database was used (original database or entrapment database) at comparable

FDR and FMR accuracy as PEAKS DB.
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Figure 6. Accuracy of neuropeptide identification from HyPep and PEAKS DB was evaluated
by processing four tissue types from C. sapidus (brain, sinus glands (SG), pericardial organs
(PO), and commissural ganglia (CoG)) through both programs. An entrapment database
containing both crustacean neuropeptides and non-crustacean neuropeptides was used, and the

number of total identifications and false identifications were reported at 1% FDR.

Neuropeptide Discovery using HyPep

Neuropeptide prohormones undergo splicing at the post-transcriptional and post-
translational stages, which result in neuropeptide families containing sequences with high
sequence similarity to one another.”! Although knowledge of genomic or transcriptomic
sequence coupled with confirmed biosynthesis pathway and bioactivity information is ideal for

characterization of a de novo sequenced peptide query as a neuropeptide, de novo sequencing can
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be used as a standalone tool as a starting point for discovering neuropeptides provided the
peptide query contains a highly conserved neuropeptide sequence motif.*® It is important to note
that de novo sequencing-based discovery is only applicable for peptide extracts from
neuropeptide-relevant samples to increase confidence. Since de novo sequencing algorithms
typically produce tens of thousands of peptide sequences from a single untargeted LC-MS/MS
dataset and thousands remain even after a neuropeptide motif filter is applied, it is necessary to
narrow down the list before manual examination of the spectra. HyPep’s ability to find de novo
sequenced peptide queries that partially match with entire database sequences can be utilized for

neuropeptide discovery, given that the query sequence is associated with more than one PSM.

HyPep was used to discover neuropeptides from brain, PO, CoG, and SG tissue types.
PEAKS conveys confidence in de novo sequence outcomes as an average local confidence
(ALC) score, where an ALC of 99 represents a sequence with the highest level of certainty. As
such, an ALC score threshold of 99 was used for this analysis. It is worth mentioning that
previous reports have used lower ALC thresholds for neuropeptide discovery, thus, future usage
of this discovery strategy may also apply less stringent ALC thresholds.**$7-7> Table 1 lists 11
novel neuropeptides and reports their corresponding HyPep score to the neuropeptide database
sequences, which ranges from 2.8-3.6. The upper limit of 3.6 was chosen because it was the
highest score that was less than 4. The lower limit of 2.8 was a result of processing the data
through HyPep at a 1% FDR threshold during the database search, where 2.8 was the highest
score above a 1% FDR cutoff. Most of these putative novel neuropeptides contain conserved
sequence motifs such as carboxy-terminal arginine and an amidated phenylalanine (RFamide).”
One of the novel sequences, SSFSRPPamide, is almost a perfect match with the database

sequence SSFSPRPamide, except where the fifth and sixth amino acids are switched. If the
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genomic or transcriptomic information was available, the variation between these two sequences
could be investigated for potential amino acid insertion, substitution, deletion, or replacement
incidences.”* Considering the high homology to known neuropeptide sequences and high spectral
quality, these sequences may confidently move forward for examination of neuropeptide

function.

Table 1. Putative novel neuropeptide sequences that were discovered in four tissue types from C.

sapidus.

Novel Neuropeptide Tissue Type Homologous Neuropeptides from Database HyPep Score
AGHKNYLRF(Amidated) Brain, PO, SG, CoG | GAHKNYLRF (Amidated) 3.333
DARTPALRLRF{Amidated) Brain, SG, CoG DGRTPALRLRF(Amidated) 3.636
DARTPALRLRF SG DGRTPALRLRF(Amidated) 3.636
(Pyro-glu)ERNFLRF(Amidated) |PO ELNFLRF(Amidated) 3.429
HLSSLLR Brain, PO, SG HYSSLLR(Amidated) 3.429
HLSSLLR(Amidated) SG HYSSLLR(Amidated) 3.429
HYGSLLR SG HYSSLLR(Amidated) 3.429
NFDELDRS CoG NFDEIDRSA 2.824
QHKNYLRF(Amidated) CoG KHKNYLRF(Amidated) 35
NELRFAmGnsd) 50,70 e =
SSFSRPP(Amidated) SG SSFSPRP(Amidated) 3.143

De novo sequenced peptides were processed through HyPep and the output was filtered for
peptides that 1) were assigned an average local confidence (ALC) score of 99, 2) peptide was de
novo sequenced in more than one MS/MS spectrum and 3) the HyPep alignment score to a
neuropeptide database sequence is equal to or greater than the score required for neuropeptide

identification at 1% FDR identification.

Conclusions:
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We present a novel strategy for neuropeptide identification, HyPep, that utilizes sequence
alignment and sequence homology between de novo sequenced peptides and peptide database
sequences. In this report, PEAKS software was used for database-free de novo sequencing of
peptides from LC-MS/MS datasets of neural tissue extracts and processed with either HyPep or
PEAKS DB for database searching and peptide identification. Overall, HyPep identified more
neuropeptides than PEAKS DB from each tissue type at 1% FDR and at similar FMR from four
neuronal tissue types within C. sapidus. The HyPep neuropeptide identifications contained
shorter sequences and more sequences from each neuropeptide family than PEAKS DB. We also
report our strategy for leveraging HyPep to select high quality de novo sequenced peptide
candidates for discovery of novel neuropeptides. HyPep’s methodology for peptide identification
and discovery may be expanded to other classes of endogenous peptides. Although an external
limitation stems from the performance of the database-free de novo sequencing algorithm that is
used to generate the input for HyPep, future directions for HyPep include optimization of the
peptide feature detection algorithm to detect longer neuropeptide sequences, as well as
capabilities for detection of a/x and c/z fragment ions. HyPep is open source, and the software

GUI and instructions can be downloaded at https://github.com/lingjunli-research/HyPep-v1.0.

Supporting Information:

= Excel. (.XLSX): Tables of the neuropeptide identifications for the brain, SG, PO, and
CoG tissue types from HyPep using the original database (Supplemental File 1), from
PEAKS DB using the original database (Supplemental File 2), from HyPep using the
entrapment database (Supplemental File 3) and from PEAKS DB using the entrapment
database (Supplemental File 4).

=  Word (.DOCX): HyPep user manual (Supplemental File 5).
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* Word (.DOCX): (Supplemental Figures) - Distribution of sequence lengths from target
database (Figure S1), description of decoy database generation methods (Figure S2),
distribution of sequence lengths from decoy databases (Figure S3), and plot showing %
sequence identity between members of the crustacean hyperglycemic hormone
neuropeptide superfamily (Figure S4).

= Excel. (.CSV): In-house crustacean database (Supplemental File 6) and entrapment

(crustacean and non-crustacean/trap) database (Supplemental File 7)

Data deposition

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE [1] partner repository with the dataset identifier PXD037058.

Abbreviations:

MS - Mass Spectrometry

MS/MS - Tandem Mass Spectrometry

PSM - Peptide-Spectrum Match

LC - Liquid Chromatography

SWS - Sliding Window Size

FDR - False Discovery Rate

PEAKS DB - Peaks Database Search

FMR - False Match Rate

MeOH - Methanol
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ACN - Acetonitrile

GAA - Glacial Acetic Acid

FA - Formic Acid

H20 — Water

[M+H]" - Protonated Monoisotopic Mass
SG - Sinus Glands

PO - Pericardial Organs

CoG - Commissural Ganglions

NaCl - Sodium Chloride

CaClz - Calcium Chloride

MgClz - Magnesium Chloride

NaOH - Sodium Hydroxide

AGC - Automatic Gain Control

HCD - Higher-energy Collisional Dissociation
DDA - Data-dependent Acquisition

NCE - Normalized Collision Energy
GUI - Graphical User Interface

PTM - Post-Translational Modification
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SHS - Sequence Homology Search

Ntarget - Hits to Target Crustacean Database

Ndecoy - Hits to Decoy Database

AMM - Accurate Mass Matching

Da - Dalton

Nirap - Hits to Trap Non-Crustacean Database

ALC - Average Local Confidence

CHH - Crustacean Hyperglycemic Hormone

CT/DH - Calcitonin/Diapause Hormone

AST-C - Allatostatin C-Type
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