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ABSTRACT

For Detroit Michigan the arrival of COVID-19 led to intensive measures to prevent further spread of the virus resulting
in consequent changes in traffic and energy use. We take advantage of these different emission scenarios to explore
CO, dynamics in a postindustrial city with a declining population and increasing green space. We present atmospheric
CO, concentration and net urban ecosystem exchange of CO, (NUE) from a typical eddy covariance system and canopy
greenness from a field camera on the Wayne State University campus in midtown Detroit. We categorized our study
period (January 18, 2020-July 31, 2020) into three subperiods associated with the state-wide shelter-in-place
order. Our results support that the city was a net carbon source throughout the period, particularly during the
shelter-in-place period, although reduced traffic lowered CO, concentrations and NUE. However, during the post-
order period when traffic was highest, atmospheric CO, concentrations and NUE were lowest, suggesting that the
greening of urban vegetation may have greater carbon mitigation potential than lowering anthropogenic carbon emis-
sions through traffic reductions.
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1. Introduction

The COVID-19 pandemic led to an abrupt global suspension of or reduc-
tion in many anthropogenic activities including industrial and commercial
energy use and vehicular traffic worldwide. Researchers have taken advan-
tage of this period to innovatively look at greenhouse gas emission scenar-
ios in the context of climate change that otherwise has not been possible
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(Andreoni, 2021; Grivas et al., 2020; Lovenduski et al., 2021; Tian et al.,
2021). From a global perspective, by assuming that emissions reductions
scaled according to lockdown intensity, research suggests that mandated
COVID-related confinements worldwide resulted in substantial temporary
reductions in CO, emissions, ranging from about 9 to 17% lower when
compared to the previous year (Le Quéré et al., 2020; Liu et al., 2020;
Nicolini et al., 2022). For individual cities, research supports that these mo-
bility restrictions could result in even larger emissions reductions (Turner
et al., 2020; Velasco, 2021). Overall, these studies point toward the poten-
tial of reduction in traffic emissions as an effective strategy in mitigating cli-
mate change (Liu et al., 2020; Nicolini et al., 2022).

Notably, the recent CO, COVID-19 studies have tended to be focused on
emissions, with less emphasis on uptake. The urban CO, budget can be sim-
ply expressed as:

NUE=C+R~-P (€3]

Generally speaking, the net carbon dioxide exchange between the land
surface and the atmosphere in urban settings (NUE) does tend to be domi-
nated by fossil fuel combustion (C) from vehicles, industry, and individual
households rather than the biological processes of photosynthesis (P) and res-
piration (R) (Crawford and Christen, 2015; Grimmond et al., 2002). There-
fore, the focus on emissions is logical. However, some cities have extensive
green spaces that have the potential to result in substantial carbon uptake
through photosynthesis (Hardiman et al., 2017; Nordbo et al., 2012).

For instance, recent attention has been given to the phenomenon of
urban shrinkage - substantial and long-term declines in population and eco-
nomic activity that nearly 20% of cities worldwide have been experiencing
(Beauregard, 2009; Blanco et al., 2009; Haase et al., 2013; Herrmann et al.,
2016). These shrinking cities are now experiencing land use and land cover
consequences of population decline (Beauregard, 2009; Herrmann et al.,
2016). These consequences can include a substantially altered landscape
newly covered with derelict vacant lots and brownfields (Haase et al.,
2014; Kim, 2016; Schilling and Logan, 2008). With pressure to recover
from this blight, shrinking cities are actively working to repurpose these
spaces for their potential to contribute to the collective urban “green
space” and the services it provides (Haase et al., 2014; Kim, 2016;
Meerow and Newell, 2017). Particularly relevant is that greening a city's va-
cant lots has been shown to have the potential to offset direct carbon emis-
sions (Vaccari et al., 2013) and CO, concentrations (Ng et al., 2015) by
carbon sequestration. In sum, the urban shrinkage phenomenon is emerg-
ing as a new challenge (Haase et al., 2013; Herrmann et al., 2016), with
the potential to have important consequences for global carbon cycling
moving forward.

Detroit, Michigan is an example of a postindustrial city that has experi-
enced a dramatic decrease in its population and economic base with
expanding blight since the 1950s due to the declining motor industry sim-
ilar to other Rustbelt cities (Berglund, 2020). This has resulted in over
100,000 vacant lots left abandoned and unmanaged (Herrmann et al.,
2017). Like other cities across the globe, immediately after Michigan's
first case was reported in the Detroit area on March 10, 2020, a state of
emergency was declared. Aligned with state-wide progress of the COVID-
19 pandemic, the State of Michigan announced the official shelter-in-
place order as a lockdown strategy effective on March 24, 2020 for regulat-
ing the spread of the disease by minimizing face-to-face contact. In compli-
ance with the executive order, all non-essential business services and
operations were discontinued. As reported daily cases decreased and finally
became steady, the state government finally lifted its order on June 1, 2020
following another executive order that eased non-essential activities from
May 29, 2020.

Consistent with the recent COVID-19 pandemic-based global emissions
studies (Le Quéré et al., 2020; Liu et al., 2020), we hypothesized that both
atmospheric CO, concentration and net ecosystem exchange of CO, in
urban Detroit (NUE) would be significantly lower during the shelter-in-
place period than during pre- and post-order periods. We expected these re-
ductions to occur mainly as a result of changes in traffic patterns and
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industrial activity within the City of Detroit. We further expected that re-
ductions in emissions associated with the temporary changes would over-
shadow any uptake effect from the urban green spaces.

2. Materials and methods
2.1. Site description

Our study takes place in the City of Detroit, located in southeast Michi-
gan, just across the Detroit River from Windsor, Ontario, Canada (Fig. 1).
Detroit has a humid temperate climate as defined by Koppen-Geiger climate
class Dfa (Peel et al., 2007). Normal annual temperature and precipitation
are 10.2°C and 796 mm, respectively (Herrmann et al., 2017). Green
space in Detroit (approximately 43% of total city parcels) includes vacant
lots, parks and recreational areas (Fig. 1a) with a growing season generally
between April and October. The majority of annual CO, emissions in De-
troit comprise energy use of buildings and facilities (e.g., electricity, natural
gas, and fuel combustion) and road traffic, approximately 63% and 30%, re-
spectively (Carlson et al., 2014).

Since August 2019, we have been operating a standard eddy covariance
(EC) system (Aubinet et al., 2012) about 5 m above the rooftop of Wayne
State University's 3 story (11 m) tall Physics Building in midtown Detroit
(42.353961°N, 83.069512°W; 193 m above sea level) (Fig. 1b). Therefore,
the presumed source area (Fig. 1) for this ~16 m tall EC system is mostly
developed with a medium-high population density, multistory buildings
(commercial and residential uses) and with high commuter traffic. Small
parks and open green spaces are scattered throughout the area with small
green infrastructure patches (Fig. 1b). While wind direction varies by the
time of day and season, the majority of the prevailing wind derives approx-
imately from the west (Fig. 2; i.e., 285°-295° clockwise from the north).

2.2. Data collection

We present data from January 1, 2020 to December 31, 2021. For the
purposes of this study, we focus on three main time periods associated
with state-wide executive orders given by the Governor of Michigan that re-
stricted mobility in the City of Detroit at the onset of the COVID-19 pan-
demic. Ultimately, this results in re: a “pre-order” period (January 18 to
March 23), a “shelter-in-place” period (March 24 to May 28) and a “post-
order” period (May 29 to July 31). Note that while 2020 was the only
year that the restrictions were actually in place, we use these periods as de-
fined both in 2020 and 2021 to enable comparison between the two years.

2.2.1. Eddy covariance and micrometeorological measurements

With adherence to Ameriflux protocol and applying commonly used
corrections through the free Campbell Scientific EasyFlux® DL Program,
30-minute averaged CO, fluxes are calculated using 10 Hz measurements
from an integrated open-path analyzer and sonic anemometer
(IRGASON®; Campbell Scientific Inc., Logan, UT) that is oriented in the di-
rection of the prevailing wind. The instrument simultaneously measures ab-
solute carbon dioxide and water vapor, air temperature, barometric pressure,
three-dimensional wind speed, and sonic air temperature. These data are
then stored in a Campbell Scientific CR6 datalogger. Given the uncertainty
and lack of standards associated with the determination of friction velocity
u. in urban settings (Crawford et al., 2011), we choose to adopt a u- threshold
of 0.15 m s~ ! that is consistent with other urban studies (Salgueiro et al.,
2020; Vivoni et al., 2020). A u. threshold of 0.15 m s~ results in a filtering
of ~5% of our observations, which is also consistent with other urban studies
using EC systems (Menzer and McFadden, 2017; Salgueiro et al., 2020).

Consistent with previous studies (e.g., Kurc and Small, 2007), to calcu-
late daily NUE, a half-hour average for each day is obtained, i.e., g CO, m ™2
(half hour) ~?, from all “good” half-hour data. We multiplied this average
by 48, i.e., the number of half hours in any given day, to obtain an estimate
of NUE in units of g CO, m ™~ 2 d ™. Positive values of NUE correspond to a
net source of CO5 over 24 h, and negative values of NUE correspond to a net
sink of CO, over 24 h (Kurc and Small, 2007).
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Fig. 1. The land use parcel map (a) specifically highlights the urban green spaces (vacant lots, recreation/open space/cemeteries) within the city limits of Detroit. Red
concentric circles radiating out from the EC system (red star) represent 0.5 km, 1 km, and 5 km source areas. 2020 emission reports are also presented. The Landsat
image-driven land use map (b) displays extensive urban sprawl in the Detroit metropolitan area that contributes to decentralized CO, emissions.

Additional micrometeorological measurements include air temperature
and humidity (HMP155A, Vaisala, Helsinki, Finland), wind speed and di-
rection (05103, RM Young Company, Traverse City, MI), and precipitation
(CS700H, Campbell Scientific Inc., Logan, UT). Ethernet connection to uni-
versity resources allows remote access to monitor instrumentation and col-
lect data in real-time. Due to a power outage, measurements between
February 26, 2020 and March 1, 2020, and November 24, 2021 and Decem-
ber 12, 2021 are missing.

2.2.2. Phenology camera and image analysis

A south-facing CCFC field camera (Campbell Scientific Inc., Logan, UT)
is co-located with the EC system and captures hourly digital images of the
downtown Detroit cityscape, including multiple tree canopy patches
(Fig. 3). Because they tend to have optimal light conditions, we use the
2 pm (EST) images for estimating greenness. To estimate greenness, we
identify nine static regions-of-interest (ROIs) within the 2 pm images that
capture urban green space (Fig. 3). For each of the nine ROIs, we calculate
a greenness index (Ip):

I, = (green — red) + (green — blue) = (2 x green) — (red + blue) (@))

where red, green, and blue are the mean red, green, and blue intensities
from the ROI, respectively (Kurc and Benton, 2010; Luketich et al., 2019;
Richardson et al., 2007). To obtain a daily greenness index representing
Detroit's urban green space, we average I, values for the nine ROIs. This
daily greenness index is normalized using min-max normalization for the
entire study period.

2.2.3. Point emission sources

Twenty-two facilities in and around Detroit registered to the Environ-
mental Protection Agency (EPA) Greenhouse Reporting Program
(GHGRP) report annual total CO, emissions. We clustered these facilities
into four groups based on their orientation from our EC system (Fig. 1b).
The three groups within or near downtown (Group 1, 3, 4) are all domestic
heating and energy suppliers. The southwest Downriver Group 2 facilities
range from domestic heating to industrial emissions including power,
iron, and steel production, municipal solid waste, hydrogen and oil produc-
tion, and lime manufacturing. Based on EPA's most recent report from
2020, the largest emissions in this group were made by electricity genera-
tion (3,365,426 t CO2e yr_l) and iron and steel production (1,741,148 t
CO2e yr~h.
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Fig. 2. Distribution of the wind speed and direction (a) over the whole study period, (b) in the pre-order periods, (c) in the shelter-in-place periods, and (d) post-order periods

in 2020 and 2021.

2.2.4. Vehicular traffic

Vehicle Miles Traveled (VMT), a measure of daily road traffic as the
total distance that all vehicles traveled in mega miles (Mmi), is estimated
using the location records from smartphones and global positioning system
(GPS) devices installed in motor vehicles associated with parcel and road
network data by Streetlight Data Inc. (San Francisco, CA). Daily county-
level VMT data over the US during the COVID-19 pandemic was obtained

by individual contact to the provider. In this study, we used the Wayne
County VMT data between January 1, 2020 and July 31, 2020 to represent
Detroit road traffic.

We also used data from Mobility Trends Reports (MTR) to continue to
observe traffic patterns throughout the growing season after VMT was no
longer available. The MTR standardizes a daily volume of directions re-
quests on the Apple Maps application on personal devices based on the

Fig. 3. Visual description of the field camera frame and ROIs. The sample image was acquired at 2 pm (EST) on June 14, 2020.
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baseline volume on January 13, 2020 (Monday under regular traffic in De-
troit). The dataset covers greater metropolitan areas over the world includ-
ing Detroit during the global pandemic (January 13, 2020 to April 12, 2022
as of June 20, 2022). Global daily traffic data was open to the public for free
by Apple Inc. (Cupertino, CA). We used the Detroit metropolitan MTR data
from between January 13, 2020 and December 31, 2021.

Because the Detroit commutershed, Wayne County, and metropolitan
Detroit do not perfectly overlap, the VMT and MTR product are imperfect
proxies for vehicular emissions in our study; however VMT remains the
method currently available to most cities (Hillman et al., 2011). We note
the uncertainty associated with this approach and acknowledge it in the dis-
cussion.

3. Results
3.1. Precipitation and air temperature

Rainfall conditions were different in each of the categorized periods;
pre-order totaled 41 mm, shelter-in-place totaled 158 mm, and post-order

totaled 169 mm in year 2020 (Fig. 4a); pre-order totaled 12 mm, shelter-
in-place totaled 138 mm, and post-order totaled 451 mm in year 2021

Precipitation
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(Fig. 5a). Air temperature steadily increased throughout the study period,
resulting in different temperature conditions in each of the categorized pe-
riods (Figs. 4b and 5b). In 2020, the minimum average air temperature
—10.1°C occurred in the pre-order period on DOY 45 and the maximum av-
erage air temperature 28.7°C occurred in the post-order period on DOY 191
with a temperature range of 38.8°C. In 2021, the minimum average air tem-
perature —10.6°C occurred in the pre-order period on DOY 38 and the max-
imum average air temperature 28.0°C occurred in the post-order period on
DOY 186 for a temperature range of 38.6°C. Average air temperatures were
1.7°C, 10.6°C, and 23.7°C in year 2020 and 0.4°C, 12.9°C, and 22.8°C in
year 2021 for the pre-order, shelter-in-place, and post-order periods respec-
tively. Ultimately this resulted in cold, dry pre-order conditions and warm,
wet post-order conditions.

3.2. Wind speed and wind direction

Wind speeds were higher and more variable in the pre-order and
shelter-in-place periods than in the post-order period (Figs. 4b and 5b). In
2020, average wind speeds were 1.1 ms~*,0.8ms %, and 1.0 m s~ * for
the pre-order, shelter-in-place, and post-order periods respectively. In
2021, average wind speeds were 1.0 ms ™', 1.4ms %, and 1.3m s * for
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Fig. 4. Time series of year 2020 daily observations including the study periods where the vertical dotted blue, green, and red line indicate the end of the pre-order period,
shelter-in-place period, and post-order period, respectively: (a) total precipitation, (b) daily and 7-day average air temperature (T,) and wind speed (1), (c) city traffic data,
(d) daily and 7-day average atmospheric CO, concentration, and (e) NUE and daily and 7-day normalized greenness index (Ip). CO, concentration and traffic of Morgan
Monroe State Forest (US-MMS; data retrieved from the AmeriFlux website: https://ameriflux.lbl.gov/) are overlaid for comparison.
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Fig. 5. Time series of year 2021 daily observations including the study periods where the vertical dotted blue, green, and red line indicate the end of the pre-order period,
shelter-in-place period, and post-order period, respectively: (a) total precipitation, (b) daily and 7-day average air temperature (T,) and wind speed (1), (c) city traffic data,
(d) daily and 7-day average atmospheric CO, concentration, and (e) NUE and daily and 7-day normalized greenness index (I,). CO, concentration of Morgan Monroe State
Forest (US-MMS; data retrieved from the AmeriFlux website: https://ameriflux.1bl.gov/) are overlaid for comparison.

the pre-order, shelter-in-place, and post-order periods respectively. In
2020, average wind direction was 225°, 180°, and 211° for the pre-order,
shelter-in-place, and post-order periods respectively. In 2021, average
wind direction was 231°, 216°, and 214° for the pre-order, shelter-in-
place, and post-order periods respectively.

3.3. Mobility trends

During the pre-order period, the traffic patterns were typical, averaging
about 58 Mmi for VMT (Fig. 4c). Associated with the arrival of COVID-19 in
Michigan on March 10, 2020, traffic began to quickly decrease during the
pre-order period, ultimately reaching 57.6% of the pre-order mean traffic
(i.e., 33 Mmi VMT) timed with the Governor's state-wide shelter-in-place
order. Traffic recovery ramped up after Memorial Day (May 25, 2020)
once the Governor began to lift travel restrictions, averaging 70 Mmi
VMT and reaching a maximum of 100 Mmi VMT on July 3, 2020. For com-
paring our urban site with a natural setting that would not normally have
much traffic, we pulled the data from the closest natural Ameriflux site,
Morgan Monroe State Forest (US-MMS). As expected, at the US-MMS,

VMT was 2 Mmi, 2 Mmi, and 3 Mmi for the pre-order, shelter-in-place,
and post-order periods respectively (Fig. 4c).

Consistent with the VMT data, MTR shows substantial decrease associ-
ated with the shelter-in-place period in 2020; pre-order MTR was 0.99,
shelter-in-place MTR was 0.67, and post-order MTR was 1.44 in year
2020 (Fig. 4c). By comparison, in year 2021, MTR was 1.05, 1.31, and
1.53 for the pre-order, shelter-in-place, and post-order periods respectively.
Importantly, MTR was significantly different in the shelter-in-place period
between 2020 and 2021 (p-value < 0.001).

3.4. CO, concentrations

Over the entire study period, daily CO, concentrations varied greatly,
but generally decreased in both years between March and July. In 2020,
CO, reached a high of 452 ppm on March 2 in the pre-order period and
low of 399 ppm on July 29 in the post-order period (Fig. 4d). In 2021,
CO,, reached a high of 459 ppm on February 17 in the pre-order period
and low of 379 ppm on July 24 in the post-order period (Fig. 5d). For
2020, in the pre-order period, daily CO, in Detroit ranged from 418 ppm
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to 452 ppm with an average of 431 ppm (standard deviation = 8.0 ppm).
For 2021, daily CO, in Detroit ranged from 409 ppm to 459 ppm with an
average of 424 ppm (standard deviation = 9.3 ppm). During the shelter-
in-place period, the range was lowered to between 416 and 441 ppm
with an average of 426 ppm (standard deviation = 5.7 ppm) in year
2020 and to between 402 and 440 ppm with an average of 419 ppm (stan-
dard deviation = 7.4 ppm) in year 2021. For the post-order period the
range was even lower, between 399 and 433 ppm, with an average of
416 ppm (standard deviation = 7.2 ppm) in year 2020 and between 379
and 431 ppm, with an average of 405 ppm (standard deviation = 11.1
ppm) in year 2021. For comparison, the US-MMS forest site had a range be-
tween 383-434 ppm (2020) and 385-443 ppm (2021) (Figs. 4d and 5d).

3.5. Net urban ecosystem exchange of CO»

Overall, the City of Detroit was a source of CO, (NUE > 0) to the atmo-
sphere, with the strength of that source varying throughout the study pe-
riod (Figs. 4e and 5e). In both 2020 and 2021, NUE was highest in the
pre-order period when traffic was high and the urban canopy was senesced
(Figs. 4c, e and 5c, e). In 2020, as traffic was reduced associated with the
Governor's order and as plants started to green up, NUE began to decrease
and become close to zero (Fig. 4c, e). As traffic peaked up, but the urban
canopy was still green, NUE was lowest. Specifically, average pre-order
NUE was 46 gCO, m ™~ 2, average shelter-in-place NUE was 13 gCO, m ™2,
and average post-order NUE was 5 gCO, m ™~ 2 in year 2020. Despite no or-
dered traffic reductions in 2021, NUE still approached zero as the plants
started to green up (Fig. 5c, e). Again, average pre-order NUE was 46
gCO, m™ 2, average shelter-in-place NUE was 13 gCO, m 2, and average
post-order NUE was 8 gCO, m ~ 2. By comparison, in 2020 the US-MMS for-
est site had an average 4 gCO, m ~ 2 (pre-order NUE), 0 gCO, m ™2 (shelter-
in-place NUE), and — 22 gCO, m~ 2 (post-order NUE) and an average 3
gCo, m~2 (pre-order NUE), —1 gCO, m~?2 (shelter-in-place NUE), and
—20 gCO, m ™ ? (post-order NUE). The NUE difference between the pre-
order and post-order in 2020 was —41 gCO, m~ 2 in Detroit and —26
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gCO, m ™2 in US-MMS, suggesting that the productive urban green space
could mitigate carbon emissions in combination with reduced energy con-
sumption in summer.

3.6. Vegetation greenness

The normalized daily greenness index for both years of the study period
exhibited a typical growing period trend (Figs. 4e and 5e). In both 2020 and
2021, greenness was low in the winter until budbreak in mid- to late-April
when the urban canopy began to green up and then reached a peak in late
May, sustaining greenness through the end of September. Greenness was
lowest in the pre-order period with an average of 0.12 in 2020 and 0.11
in 2021. While peak greenness in both years was reached in late May during
the shelter-in-place period (1.00 for 2020 and 0.78 for 2021), the average
for the shelter-in-place period was 0.27 as compared 0.55 in the post-
order period in 2020 and the average for the shelter-in-place period was
0.34 as compared 0.41 in the post-order period in 2021.

4. Discussion and conclusions

As expected, average daily CO, concentrations (Figs. 4d and 5d) and
NUE differed between the study periods (Figs. 4e and 5e). On an annual
scale, Detroit still acted as a net carbon source. Consistent with other stud-
ies (Bergeron and Strachan, 2011; Gratani and Varone, 2005; Helfter et al.,
2011; Ward et al., 2013), peak CO, concentrations and NUE were in the
pre-order periods which overlaps with wintertime conditions and energy
demands. In 2020, CO, concentrations (Fig. 4d) and NUE (Fig. 4e) were
lower in the shelter-in-place period than in the pre-order period. This is
not surprising given Detroit road traffic decreased up to 30-50% of its typ-
ical rates during the shelter-in-place period (Fig. 4c) (Helfter et al., 2011).
However, this was also the case for the shelter-in-place period in 2021
(Fig. 5d). This reduction in both years during the shelter-in-place period
is not unexpected and is likely associated with a decline in domestic heating

(a) Pre-order
1/1/20-3/23/20

3/24/20-5/28/20

>(b) Shelter-in-place Order

(c) Post-Order
5/29/20-7/31/20

Industry

Plant
Uptake

Fig. 6. Conceptual diagram of CO, concentration attributed to primary anthropogenic emissions and plant uptake for the (a) pre-order, (b) shelter-in-place, and (c) post-order
periods. Darker background indicates greater CO, concentration. Widths of the arrows indicate the relative scale of incoming and outgoing CO, fluxes.
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as space-heating CO, emissions tend to be negatively correlated with air
temperature (Figs. 4b and 5b) (Crawford and Christen, 2015).

We expected NUE to be different in 2020 and 2021 during the shelter-
in-place period because traffic was lower in 2020 than in 2021 due to the
governor's order. However, NUE in 2020 and 2021 was not significantly dif-
ferent (p-value = 0.702) when MTR was (p-value < 0.001). What was fur-
ther not expected was for the post-order period, when traffic exceeded pre-
order levels in both 2020 and 2021, to have the lowest CO, concentrations
and the lowest NUE (Figs. 4d—-e and 5d-e). Some previous urban studies
have also reported this unexpected pattern — heavier traffic in summer
months without an associated increase in atmospheric CO, (Bergeron and
Strachan, 2011; Crawford et al., 2011; Lia et al., 2020). Our data show
that vegetation is overall greenest during the post-order period, suggesting
that vegetation would have the most influence in this post-order period by
sequestering carbon through its photosynthetic activity and storing it in
biomass (Nowak and Crane, 2002; Ward et al., 2013). Notably, cities show-
ing this unexpected pattern are either suburban or shrinking with a high
percentage of green space (Bergeron and Strachan, 2011; Crawford et al.,
2011); by parcel, green space is about 43% in Detroit (Fig. 1a). Under
high CO, conditions from traffic emissions, this carbon uptake may even
be accelerated during this period due to a potential fertilization effect (Lia
et al., 2020; Reddy et al., 2010). This suggests that at least for cities with
a declining population and an associated increasing amount of green
space, the CO, uptake from vegetation could be substantial (Haase et al.,
2014) and potentially outweigh the anthropogenic emissions during the
growing season (Fig. 6).

Green space in urban ecosystems has the potential to reduce atmo-
spheric CO, levels in multiple ways. During the growing season, plants di-
rectly sequester and accumulate CO, directly through photosynthesis.
Urban vegetation provides shade and evaporative cooling in the sum-
mer months, decreasing building cooling demand (Akbari, 2002;
Donovan and Butry, 2009; Jo, 2002). In the winter, the vegetation can
reduce windspeed and provide insulation, also decreasing heating de-
mand (Akbari, 2002; Jo, 2002). Therefore, urban vegetation indirectly
lowers atmospheric CO, levels by reducing emissions associated with
fossil fuel use (Jo, 2002; Nowak and Crane, 2002; Pataki et al., 2006).
However, carbon stored in urban vegetation (Davies et al., 2011) can
be lost to soils during litterfall, or removed and composted, in either
case ultimately returned to the atmosphere via decomposition (Jo,
2002). Nevertheless, green space plays a key role in urban carbon dy-
namics and has enormous potential for offsetting urban CO, emissions,
reducing atmospheric CO, and mitigating climate change (Akbari,
2002; Chen, 2020; Hong et al., 2019; Jo, 2002; Lia et al., 2020;
Nowak, 1993; Wang and Shu, 2020; Zhao et al., 2010). The annual re-
turn on investment of planting and managing trees has been found to
range from 37% to over 300% (McPherson et al., 2005). Therefore,
urban green space planning and management has been lauded as a
cost-effective strategy to mitigate climate change (Jo, 2002) when
considering multiple ecosystem services.
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