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Abstract

We show the existence of periodic traveling waves at the free surface of a two dimensional, infinitely
deep, and constant vorticity flow, under gravity, whose profiles are overhanging, including one which inter-
sects itself to enclose a bubble of air. Numerical evidence has long suggested such overhanging and touching
waves, but a rigorous proof has been elusive. Crapper’s celebrated capillary waves in an irrotational flow
have recently been shown to yield an exact solution to the problem for zero gravity, and our proof uses the
implicit function theorem to construct nearby solutions for weak gravity.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

We consider periodic traveling waves at the free surface of an incompressible inviscid fluid
in two dimensions, under gravity, without the effects of surface tension. When the flow is irrota-
tional, the wave profile is necessarily the graph of a single-valued function [23] (see also [6]). In
constant vorticity flows, by contrast, numerical investigations (see, for instance, [22,24,15,14])
have revealed profiles with multi-valued height and even profiles which intersect themselves
tangentially above the trough to enclose a bubble of air. Constantin, Strauss and Varvaruca [6]
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conjectured that such overhanging and touching waves indeed exist. Here we give a proof of this
conjecture.

Crapper [9] discovered a remarkable family of exact solutions to the capillary wave problem—
that is, nonzero surface tension and zero gravity—in an irrotational flow, whose profiles become
more rounded as the amplitude increases, opposite to gravity waves, so that overhanging profiles
appear, limited by a touching wave. See Fig. 1. Akers, Ambrose and Wright [2] then employed a
perturbation method to construct nearby solutions for sufficiently weak gravity, and in particular
overhanging capillary-gravity waves. Cérdoba, Enciso and Grubic [8] took matters further and
constructed a touching wave. Recently, the authors [18] (see also [17]) showed that Crapper’s
capillary waves also give the profiles of periodic traveling waves in constant vorticity flows,
without the effects of gravity and surface tension. We follow a perturbation argument, similar to
[2,8,7] and others, to construct overhanging and touching waves for nonzero gravity.

But it is the rotational effect which generates overhanging and touching profiles for our prob-
lem, rather than the capillary effect [2,8,7]. Although the unperturbed fluid surface is the same
as Crapper’s capillary wave, the fluid flow beneath the surface is completely different, and so are
the governing equations. See [18] for more discussion, and also see [3] for a study of the stability
of the solutions with zero gravity.

For the capillary wave problem, Okamoto and Shoji [20,21] produced closed-form recurrence
relations among the Fourier coefficients for the linearized operator about Crapper’s wave, which
enabled [2,8,7] and others to work out their perturbation arguments. Unfortunately, such relations
seem unwieldy for nonzero constant vorticity and zero surface tension. Instead we reformulate
our problem for a holomorphic function in the unit disk, for which the zero-gravity exact solution
is given as a rational function (see (21)), and the commutator, first introduced in [4,5] for zero
vorticity, and its linearized operator can be evaluated by means of the calculus of residues (see
(20) and (27)). The novelty of our approach is that, to establish the invertibility of the linearized
operator, we relate it to the problem of finding holomorphic solutions to a complex ODE with
meromorphic coefficients. In retrospect, this technique seems quite natural, but so far we have
been unable to find other examples of its use in the literature. We believe that similar methods
could be applied to a much wider range of fluids problems which possess explicit solutions given
in terms of conformal mappings.

We begin in Section 2 by stating the problem and the results. In Section 3 we reformulate the
problem in conformal coordinates and, in turn, for a holomorphic function in the unit disk. In
Section 4 we employ the implicit function theorem to prove our results. Section 5 discusses how
one can possibly take matters further to finite depth, point vortices, and hollow vortices, among
others. We pause to remark that Crapper’s waves also make exact solutions for point vortices,
rather than constant vorticity, without the effects of gravity or surface tension [12]. Crowdy
and his collaborators [10,26,11] discovered exact solutions for non-rotating hollow vortices with
the effects of surface tension and showed that, interestingly, the same conformal mapping makes
exact solutions for rotating hollow vortices with N-fold symmetry. Appendix A gives a summary
of [18] and, importantly, corrects errors in [18].

2. Preliminaries and the statement of the results
2.1. Stream function formulation

We consider a two dimensional, infinitely deep, and constant vorticity flow of an incompress-
ible inviscid fluid, under gravity, without the effects of surface tension, and periodic traveling
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waves at the fluid surface. We assume for simplicity that the fluid has the unit density. Suppose
for definiteness that in Cartesian coordinates, waves propagate in the x direction and gravity acts
in the negative y direction. In a frame of reference moving with a constant velocity, suppose that
the fluid flow is stationary and occupies a region D in the (x, y) plane, bounded above by a free
surface S.

Let v (x, y) denote a stream function so that (¥y, —v,) is the velocity of the fluid, and v
satisfies

Vi =—w in D, (1a)
Y =0 onsS, (1b)
NVyl+gy=b on S, (1c)
Vi = (0, —wy —¢) - (0,0) asy — —oo (1d)

for some ¢ > 0, the wave speed. Here w denotes the vorticity and we assume that it is constant
in D. Note that S is a free boundary, and (1b) and (1c) are the kinematic and dynamic boundary
conditions, where g > 0 is the gravitational constant, and b € R the Bernoulli constant. For zero
vorticity, that is, @ = 0, (1d) expresses that there is no motion of the fluid at the infinite bottom.
Additionally we assume that D and i are 27/ k periodic in the x direction for some wave number
k > 0, and symmetric about the vertical lines below the crest and the trough.

Introducing dimensionless variables'

x = kx, y = ky, Y= (k/o)y,
and dimensionless parameters
2 =w/(ck), G =g/ (ke?), B=b/c,

we can rewrite (1) more conveniently as

V2 =—0 inD,
Y=0 on S,
| 5 2
3IVY 1" +Gy=B8B on S,
Vi —(0,—2y—1)— (0,0) as y — —oo.
Suppose that the fluid surface is given parametrically as
S={(x(x),y(@)):x eR}. 3)

The periodicity and symmetry conditions become

I Rather than introducing new notation for all the variables, we choose to write, for instance, x + kx. This is to be
read ‘x is replaced by kx’, so that hereafter the symbol x will mean a dimensionless variable.
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Fig. 1. The profiles of (5) in the (x, y) plane for four values of A. (a) A =0.8Amax < V2 — 1 (see (9)), and the profile
is not overhanging. (b) A = 0.97Amax > V2 =1, and it is overhanging. (¢) A = Amax. The profile intersects itself
tangentially at one point of the trough line. (d) A = 1.06Amax, and it intersects itself transversely at two points of the
trough line. The fluid surfaces in the panels (a)—(c) give rise to physical solutions to (2)—(4) but (d) does not.

X(@+27)=x()+27 and y(a+27)=y(w),

4)
x(—a) =—x(a) and y(—a)=y(a)

for all « € R, and

Y(=x,y) =v¢(x,y) =¢(x+27,y) forall (x, y) € D.
2.2. Exact solution for zero gravity
In what follows, we identify R? with C whenever it is convenient to do so and employ the

notation z = x + iy.
For zero gravity, that is, G = 0, the authors [18] recently showed that

(@ 4) 4iAe~ia 5
o =a— PV
¢ 1+ Ae—i
together with
2(A) 1-47 d B(A) 1(1+4% ’ 6)
= an = — ,
1—3A2 2\1-342

make an exact solution to (2)—(4) for an appropriate stream function (see (42)), depending on
the real parameter A. But, unfortunately, there were sign errors, among others, causing some
equations in [18] to appear incorrect. In Appendix A we detail how to correct these errors.

Surprisingly, the same fluid surface also makes Crapper’s exact solution to the capillary wave
problem (nonzero surface tension and zero gravity) in an irrotational flow for an appropriate
value of the surface tension coefficient, depending on A [9]. See also [18].

Fig. 1 shows the profiles of (5) for four values of A in the (x,y) plane in the range
x € [—m, w]. By symmetry, it suffices to take A > 0. When A is small, the fluid surface is not
overhanging, that is, y can be given as a function of x. See, for instance, Fig. 1(a). When A is
sufficiently large, on the other hand, the fluid surface intersects itself transversely at two points of
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the trough line and, hence, the fluid flow becomes multi-valued, giving rise to a physically ‘unre-
alistic’ solution to (2)—(4). See, for instance, Fig. 1(d). A straightforward calculation reveals that
the profile of (5) is not overhanging as long as

A <2 —1=0.4142135623730950.. .. (7

Recall [9] that it does not intersect itself so long as

A < Apax = 0.4546700164520109... ., ®)

where

2sina 2sina 2
Amax ;= max —cosa | — max —cosa — 1. )
ae[—m,m] o ae[—m,m] o

When v/2 -1 < A < Amax, the profile of (5) is overhanging but does not intersect itself. See,
for instance, Fig. 1(b). When A = Anax, it intersects itself tangentially at one point of the trough
line, enclosing a bubble of air, namely, a touching wave. See Fig. 1(c).

In what follows we restrict the attention to A € [0, 1/2), which includes all the physical solu-
tions (A < Amax) and some nonphysical solutions (A > Amax). We remark that both the dimen-
sionless vorticity parameter §2 (A) and the crest-to-trough vertical distance Im(z(;r; A) —z(0; A))
are strictly increasing with A € [0, 1/2).

2.3. Statement of the results

The aim here is to construct solutions to (2)—(4) nearby (5) and (6) for small but nonzero
values of G, particularly, overhanging and touching waves.
Below we state our results.

Theorem 1 (Overhanging waves). For each A € (\/E — 1, Amax) (see (9)) and G sufficiently
small, (2)—(4) has a solution, where §2 = §2(A) and B = B(A) are in (6), whose fluid surface
does not intersect itself but is overhanging, that is, y cannot be given as a function of x.

Theorem 2 (Touching waves). For G sufficiently small, there exists a solution to (2)—(4) for
which S intersects itself tangentially along the trough line, enclosing a bubble of air.

In Theorem 2, £2 = £2(A) and B = B(A) for A &~ Apax.

We emphasize that Theorems | and 2 are the first to rigorously establish that overhanging and
touching profiles exist for surface gravity waves. There is persuasive numerical evidence (see, for
instance, [15,14,13] and references therein) of their existence. Also there is a global bifurcation
result [6] which allows for overhanging profiles, although the result is incapable of determining
whether such profiles actually exist. For zero vorticity, that is, w = 0, by contrast, overhanging
waves cannot exist. See, for instance, [6] for more discussion.

The proof of Theorems | and 2 is based on the exact solution for G = 0, discussed in Sec-
tion 2.2, and uses the implicit function theorem to construct nearby solutions for small G. The
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same strategy has been implemented for the existence of overhanging and touching capillary-
gravity waves (see, for instance, [2,8,7]), based instead on Crapper’s exact solution to the capil-
lary wave problem in an irrotational flow. Although the zero-gravity fluid surface is the same, the
physical problem here is completely different from the capillary-gravity wave problem. Actually,
the fluid flows are completely different. See [18] for more discussion. The linearized operator of
the capillary wave problem about Crapper’s wave was treated in [20,21], examining closed-form
recurrence relations among the Fourier coefficients. But such an approach seems unwieldy for
our problem. We develop an alternative approach, relating the linearized operator to a complex
ODE with meromorphic coefficients, whose solvability can be studied by means of the calculus
of residues.

3. Reformulation
3.1. Reformulation via conformal mapping
We introduce
z=z(ax+ip), (10)
which maps R x (—00, 0) to D conformally, T x (—o0,0) to (T x R) N D, and satisfies
zZla+iB) — (e +ip)— 0 as B — —oo.

Suppose that (10) extends to map R x (—oo, 0] to D U S continuously. This allows us to refor-
mulate (2) in ‘conformal coordinates’ as

(1+ 2 + yHye — HOY)))? = (B —2Gy) (1 +Hye)* +y2)  forp=0.  (11)

Here H denotes the periodic Hilbert transform: for instance, for y € Lz(T),

Hy(a) = %PV/y(o/) cot(a _2“ ) o, (12)
T

where PV stands for Cauchy’s principal value integral. Alternatively,

He'™ = —isgn(n)e'™, nel. (13)
See, for instance, [15,14] for details. Here and in what follows, we regard y as a real-valued
function of @ € R whenever it is convenient to do so. Throughout we use subscripts for partial
derivatives and primes for variables of integration. We pause to remark that z(«) = o + (H +

i)y(a). In other words, S = {(o¢ + Hy (@), y(a)) : @ € R}.
For zero vorticity, that is, £2 =0, (11) becomes

1=(B-2Gy)(y2+y})  forp=0,
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and indeed (2) can be formulated as (local) elliptic boundary value problem for y in a fixed
domain. For nonzero vorticity, on the other hand, the nonlocal term H(yy,) causes technical
difficulties. But the commutator formula [4,5]

1 _ /
@Hm—H@mM®=§;/OW%Wm%%W%%za)dd (14)
T

turns out to be instrumental. See (20) and (27).
A (smooth) solution of (11) gives rise to a solution of (2), provided that

o — z(w) is injective for all « € R (15)

and

Zq () #0 for all @ € R. (16)

We refer the reader to, for instance, [15,14] for details.

Recall [15,14] that (15) states that the fluid surface does not intersect itself, while (16) ensures
that (10) is well-defined throughout R x (—oo, 0]. There is numerical evidence [15,14] (see also
[13]) that solutions of (11) can be found even when (15) fails to hold, although such solutions
would be nonphysical because the fluid surface intersects itself and the fluid flow becomes multi-
valued. Such nonphysical solutions can nevertheless be useful, and indeed we will make use of
them to construct a touching wave for nonzero gravity.

When (16) fails to hold, on the other hand, the fluid surface develops a stagnation point, where
the velocity of the fluid vanishes in the moving frame of reference. There is numerical evidence
[15,14] that for any value of £2, the solutions of (11) are ultimately limited by an ‘extreme’ wave
(in an appropriate function space, for instance, the (amplitude) x (wave speed) plane), whose
profile has a stagnation point at the crest, enclosing a 120° angle. Extreme waves are beyond the
scope of this work, and throughout we will require that (16) holds true.

3.2. Reformulation for holomorphic functions in the unit disk
It is convenient to introduce
¢ =eTt@th), (17)

whichmaps T x (—00,0)toD :={¢ € C:|¢]| < 1} and T x {0} to dD, by (4). Abusing notation,
we write (10) as z(¢), and let

z(§) =ilogs +w(?). (18)

Note from (10) and (4) that w is a single-valued holomorphic function of ¢ € D, although z is
not, and that

w(Z) = —w(f).
We can then rewrite (11) as
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11+ 20mw + Qw)))?
2 11— iCwe|?

—B—GImw  for|¢|=1, (19)

where after the change of variables, (14) becomes

I —w@)\?
Q) =5 515 (m(w@ w(g ))) g’ for¢|=1. (20)
[¢/]=1

(=

Of particular usefulness for our purpose is that when w is meromorphic in the unit disk, one can
evaluate the right hand side of (20) by means of the calculus of residues. See Section 3.3. Note
that (16) becomes |1 — ig“w§|2 = |zo|* #0for || = 1.

3.3. The exact solution revisited

For zero gravity, that is, G = 0, we deduce from Sections 2.2 and 3.2 that, for any A € [0, 1/2),

4iAc

w(; A) = 1+ AC

@

together with (6) are an exact solution of (19). Clearly, w(A) is holomorphic in D and w(C; A) =
—w(g; A).

When+v2—1< A < Amax, where Ay is in (9), the fluid surface given by (18), where w is in
(21), is overhanging but does not intersect itself. When A = Ay, it intersects itself tangentially
at one point over the period and can make sense of a solution of (2)—(4). When A > Anax, on the
other hand, it intersects itself transversely at two points, giving rise to a nonphysical solution of
(2)—4).

We give some details on how (21) solves (19), for the sake of completeness and also for future
reference. We restrict attention to A € [0, 1/2). Since ¢ = 1/¢ for |¢| =1,

A, 1A
[+A C+1/A

Imw(;;A):Z(—1+ ) for |¢]| = 1. (22)

Substituting (22) into (20), we evaluate the integral by means of the calculus of residues to arrive
at

Q(w(C;A)):—g(A_l/A)2< A 1/A )

[+A C+1/A
for |¢| = 1, whence

. . — 1 (E-AE -1/4)
1+ 2(A)(Imw(g; A) + Qw(g; A) =1 ZQ(A))(§+A)(§+1/A) (23)

for |¢| = 1. On the other hand,

2
¢ — 1/A> ’ 24)

l—ifw{@;A):(m
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whence

2
({—A)(C_I/A)) for |¢]=1. (25)

1—i ;A =
=i &5 A)] ((; T A T 1/A)

A straightforward calculation reveals that (19) holds true for (6) and G = 0. Note that |1 —
iCwe (A #0for [¢|=1.

4. Proof of Theorems 1 and 2

For a € (0, 1) and fixed, we define the Banach spaces

X ={we C3**D, C) : w is holomorphic in D and w(Z) = —w(Z)},
Y={feC™@D,R): f({) = f({)}

and the open set
U={weX:1—-itw;()#O0for|¢|=1}C X.
We define F: U x R? — Y as

131+ 2A) (Imw + Qw)))>

G, A) =
Fw: G A) =3 11— icw|?

+ GImw — B(A) for |¢| =1,

where £2(A) and B(A) are in (6). Since ¢ = 1/¢ for |¢| =1, note from (20) that Qw(2)) =
Q(w(¢)) for w € X. Since (14) is real analytic and (17) is holomorphic, Q is real analytic.
Therefore F is well-defined and real analytic.

Recall from Section 3.3 that for any A € [0, 1/2),

F(w(A);0,A) =0, (26)
and our task is to construct nearby solutions of F(w; G, A) =0 for G # 0 small.
Theorem 3. For each Ag € (0, 1/2) there exists ¢ > 0 and a real-analytic map
W:(—e,e) x (Ag—¢e,Ag+¢e)—> U
such that W (0, A) = w(A) and
F(W(G,A);G,A)=0.

Moreover, there exists § > 0 such that W(G, A) is the unique solution of F(w; G, A) =0 for
which ||lw — w(A)||x <.
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Our proof of Theorem 3 is based on the implicit function theorem. For w € U, G € R and
A €0, 1/2), we calculate that the linearized operator F,,(w; G, A): X — Y is given as

Fu(w: G, Ay = L EMAMw T QW) 0 4y 114+ 0 wyw)
T iCu|?
(L4 2A)Imw + Qw)))?
T igw P

Im((1 —i¢w¢)ve) + GImw for [¢] = 1.

Recalling (23), (24) and (25), after some algebra we arrive at

, o (¢ + A+ 1/A)
Fu(4): 0, Ajp = (1 = 20(A) 7 2(A) m o+ Qu (w(A)v)

2 2
- (0-2m0n EENC LUV (V)
C =M —1/4) =

for |¢]| = 1. On the other hand, linearizing (20) about w(A),

Qu(w(A)v(f) =— dt’

s % Im(w(¢; A) —w(¢’; A) Im(v(¢) —v(Z"))
i

€ —¢N?
[¢'=1

¢ Im(w(5; A) —w('; A) , /
=Im(——.§/?_§1 72 () —v())dg )

for |¢| = 1. Recalling (22), since

Im(w((; A —w(';A) 2 ( A . 1/A )
¢ =12 = \CHACHA) €+ /A + 1/A)

has poles at ¢’ = ¢ and —A in D, we evaluate the integral by means of the calculus of residues
to arrive at a strikingly simple, albeit non-local, formula

v(g) —v(=A)

w A =1 —4A
Qu(w(A)V(?) m( TR

) for |¢| = 1. 27)

Therefore

0 Ave— (] (€ +A)E +1/A) ~
Fuw(A); 0, A)v=—(1 —-282(A)) €= A= 1/A)ﬂ(A)v for [¢] =1, (28)

where

(C-A)CE+1/4)
C+A)(CE—-1/4)

v—1v(—A)
L(A)v:=Im ((1 —2802(A))¢ v — 2(A)v + 4A.Q(A)§—> .

(¢ +4)?
(29)

We pause to remark that £(A) is a ‘generalized’ Riemann—Hilbert operator, with the difference
that in addition to v itself, v, appears as well as the non-local term v(—A). General classes of
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Riemann-Hilbert operators including those of the form (29) with Holder continuous coefficients
are discussed in [16, Section 34] and [19, Section 71], among many others, and L(A)v = f can
be transformed into various integral equations. We emphasize that the particularly simple form of
(29) comes from the use of the commutator formula (20), introduced by [4,5] for zero vorticity.

Lemma 4. For any A € [0,1/2), L(A): X — Y is Fredholm with index zero.

Proof. The principal part of L(A) is

(30)

Lo(Ayv :=Im ((1 _20(ay E-DECHTA) )

C+AC—1/A)"

which is a classical Riemann-Hilbert operator acting on v, . Since

C-AC+A|
&+ A& —=1/4)

int ‘(1 —22(A))¢

whenever A € [0, 1/2), classical elliptic theory (see, for instance, [25, Chapter 1, Section 2])
implies that
vl c2tay < CUILo(A) vl c2tagpy + IVl co(Dy)

for some constant C independent of v and, hence, by interpolation,

Ivlix < CAUILAW]Y + Ivllcomy)- €19}

(Alternatively, one can obtain (31) by reformulating (29) as an elliptic system for the real and
imaginary parts of v and verifying that it satisfies the hypotheses of [1].) Since X is compact
in C%(D), we conclude that £(A): X — Y is semi-Fredholm, with closed range and a finite-
dimensional kernel. It remains to show that the index of £L(A) is zero.

Since the index of L£(A) is continuous and, hence, independent of A € [0, 1/2), it suffices to
show that the index of £(0) is zero. We write v € X as

V(@) =) val",
n=0

where the coefficients v,, are purely imaginary by symmetry, so that

LO0)v =Im(Zv; —v) =Im (Z(n - 1)un;”>

n=0

by (29) and (6). A straightforward calculation reveals that the kernel of £(0) is one dimensional,
spanned by i¢, and the co-kernel is one dimensional, spanned by Re ¢. Therefore £L(0) : X — Y
is Fredholm with index zero, and the proof is complete. O

Therefore L(A): X — Y is invertible provided that the kernel is trivial. We will study the
kernel of L(A) by relating it to a complex ODE, for which the following is useful.
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Lemma 5. Suppose that v is holomorphic in a neighborhood of {o € C and that

v + pv=gq, (32)

where p and q are meromorphic with at most simple poles at ¢.

(1) Res(q, ¢o) = v(%o) Res(p, ¢o).
(i1) If g =0 and v #£ 0 then Res(p, {o) < 0 is an integer.
>iii) IfRes(p, ¢o) = —2, so that

-2 —2v(%o)
p)=——+po+p1&—C)+- and q)=—""—+q+q (& =230+
¢ =2 =2
(33)
as ¢ — &o, by (i), for some po, p1, q0, q1 € C, then
(p§ + PV(&0) — pogo — q1 =0. (34)

Proof. The assertion (i) follows from the well-known fact that Res(fg, o) = f(¢o) Res(g, o)
whenever f is analytic and g has at most a simple pole at y. If ¢ =0 and v £ 0 then (32)
rearranges to

U; d 1
=——=——1logv
p N ac g
A simple calculation shows that Res(p, {o) = —m, where m > 0 is the order of the zero of v at

¢o. Finally, to see (iii), we insert (33) into (32) to obtain

—2v(%o)
T2 + (pov(%o) — v (o)) + (p1v(%o) + pove (§0)) (& —&o) + -+
-2
_ —2vo) +q0+q1(C =)+
¢—=2%
as { — o, where the terms involving v (&o) cancel because Res(p, {p) = —2. Grouping like

powers and eliminating v; (o), we obtain (34) as desired. O
Lemma 6. For any A € (0,1/2), L(A): X — Y is invertible.

Proof. By Lemma 4, it suffices to show that the kernel of £(A) is trivial. Suppose for the sake
of contradiction that v # 0, € X lies in the kernel of £L(A). That is,

€A+
C+ A —1/A) ¢

QA +4ag (4 A

) =0 for|¢|=1.
Clearly,

(E-A)E+1/A)
€+ A& —-1/A)
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is meromorphic in D, possibly with a simple pole at { = —A, and Im f =0 on 9D.

Since v(¢) = —v(¢) by symmetry, v is purely imaginary on the real axis and, hence, the
residue of f at { = —A must be purely imaginary. Therefore
if-1
f—
{+A

is holomorphic in D for some f_; € R. Note that

if-1 +<if1>_ if-1 +if71/A2_if71
{+A C+A) c+A c+1/A A

for [¢] =1

is real, and we consider the function

f o df /A if
f=1 C+A §+1/A+ A

(36)

which is not only holomorphic in D but also real on dD. Since v is purely imaginary on RN D,
the same is true of f. Together, these lead to

f=0 inD. (37)

Indeed, since Im f = 0 on 9D, the maximum principle implies that Im f = 0 in ID. Thus f is a
real and holomorphic function and, hence, a real constant. Finally, since f is purely imaginary
along R, the only possibility is that this constant is 0.

Recalling (35) and (36) we write (37) as the complex ODE in (32), where

&)= 2(A) (g—A)(g—l/A)_l—Azl_ 2 N 2

P = oMt + A +1/A) 1+A%c t+A 7+1/A

and
= — L G+HC-1/4) (4A9(A>v(—A>c if-1 +if—1/A2_if—1>
7%= 1 —2802(A) (¢ — A)(¢ +1/A) ¢+ A)? (+A ¢ +1/A A

_i(1-3A%) (1 (1—A4%2% 1

TAaa+Aay N\ T aranic—a
C1+6A%+A% 1 2(1 — A 1 )
(1+A4%)2 ¢+1/A A1+ A2) (¢ +1/A)?
1-A%»2 2 2 8A2 1
+v(_A)<(1+A2)2§—A_§+A+(1+A2)2§+1/A>’

where we use (6) and partial fractions. Note that potential singularities in D of p and g are simple
polesat { =4+A and ¢ =0.
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At ¢ = A we calculate that

(38)

Ros(p, A) =0 and Res(q, A) 2(1—A2)2 4) i(1—A2)2(1—3A2)f
es(p,A)=0 an es(q,A) =2—=5v(—A) — 1.
b 1 (1+ A2)2 A1+ A2)3 !

Applying Lemma 5(i), we deduce that
2iA(1 4 A?)
f-1 =T a0 v(—A).
Using this to eliminate f_; in the above formula for g, things simplify considerably and we are
left with
1 1 1 2A(1 — A?) 1
qg=2v(-A)|—-— - : 5 |-
¢ ¢+A ¢+1/A 1+ A% (£+1/A)
In particular, at { = —A we calculate
Res(p, —A)=—-2 and Res(g,—A)=—-2v(—A).
Writing
()= ——+ po+pic+A) + 4 =" g+ )+
= — e an _ - .
p C+A Po T p1 q [+ A q0 T 41
as { — —A, where
o 1—4A2-AY _ 1-3A2454%144°
=0 ana+42° PP T aa-an2a+ Ay
20(—A) 2(1 — A2 4+ 24%v(—A)
q0 = q1=—

A+ AY A2(1 - A?)2(1+ A%

we conclude from Lemma 5(iii) that

ho(=4) _

2 _
(po + pv(=A) — pogo — q1 = 1—A22 "

This forces v(—A) = 0 and, hence, f_; = 0 as well by (38). Thus ¢ = 0 and, therefore,

Lemma 5(ii) implies that Res(p, 0) < 0 is an integer. But we calculate

2

Res(p.0) = {4

€ (0, 1),

which is the desired contradiction. O
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Remark. Recall v(—A) =0 and f_; = 0 in the course of the proof of Lemma 6, whence (37)
becomes

1-A%2 C—AC—-1/A)
Ve + 5 V=
1+A°¢C+A)C+1/4)

;
whose general solution is

LA NS A
¢ ){

— A2
U@)_C<g+1/A AT

where C € C is an arbitrary constant. This is multi-valued in D unless A =0 or C =0.

Remark. An earlier version of this paper contained an error in Lemma 5, which led to an overly
simplistic analysis of the complex ODE in the proof of Lemma 6. Thankfully, this error was
identified by an anonymous referee, who also suggested the current statement and proof of
Lemma 5(i)—(ii).

For each A € (0, 1/2) and fixed, recall (26). We deduce from (28) and Lemma 6 that
Fuww(A);0,A): X — Y is invertible.
Theorem 3 then follows at once from the implicit function theorem for real-analytic operators.

Proof of Theorem 1. For A € (ﬁ — 1, Amax) and fixed, Theorem 3 gives a one-parameter fam-
ily of solutions w = W(G, A) to (19), where 2 = £2(A) and B = B(A), for G sufficiently
small, depending real analytically on G. Correspondingly, (18) gives a one-parameter family of
holomorphic functions z = Z(G, A) whose imaginary part solves (11). Since W(G, A) € U by
construction, (16) holds true, whereby they give rise to physical solutions of (2) provided (15)
holds true.

When G = 0, recall from Section 2.2 that (15) holds true. For G sufficiently small, we con-
sider

_ @ —z(a)

’

fa, o) f:T?>—C.
Since w € U, this is well-defined and continuous and, moreover, (15) holds true if and only if
f #0. Since T2 is compact, this condition is preserved under small C! perturbations of z and,
hence, small C! perturbations of w.

It remains to show that the solutions indeed give overhanging waves. When G = 0, we can find
x* €T and o, o’ € T such that x(a) = x(a') = x*, yu (), ye(a’) > 0, and x4 (@) <0 < x4 (a’).
We then deduce from the implicit function theorem that these conditions continue to hold at some
a(G),a’(G) € T for G sufficiently small. This completes the proof. O

Proof of Theorem 2. When G = 0, the profile of (5) does not intersect itself for A < Apax,
intersects itself tangentially at one point for A = Anax, and intersects itself transversally at two
points for A > Apax. By continuity, the profile corresponding to the solution W (G, Apax —
€/2) to (19) does not intersect itself for G sufficiently small, while the profile corresponding to
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W(G, Amax + €/2) intersects itself transversally at two points. We can then find some A & Apax
such that the profile corresponding to w(G, A) intersects itself tangentially at one point for G
sufficiently small. Details are found, for instance, in the proof of [8, Proposition 10]. We remark
that this is the only place in this work where w € C3* (D) is needed. Elsewhere it is sufficient
to work with w € C'*¢([D). O

5. Extensions
There are several directions in which one might take matters further.

Finite depth In the finite depth setting, we replace (1d) by

Y = const. ony=—h

for some 4 > 0. We can follow along the same line of argument as in Section 3.1 to arrive at

I+ 20 +YTuYe — THOY))? = (B —2Gy)((1 + Tuye)* +y2)  for p=0,

instead of (11), where

T pina _ |7 coth(nH)e"  ifn#0
(4 =
" 0 ifn =0,

instead of (13). We may assume without loss of generality H = kh. See, for instance, [15] for de-
tails. Since Ty — H as H — oo (see, for instance, [6] for details), one can argue as in Section 4
to deduce that for G sufficiently small and H sufficiently large, there exists a solution to (2)—(4),
replacing the last equation of (2) by ¥ = const. on y = —H, for which the fluid surface does
not intersect itself but is overhanging. Also there exists a solution whose fluid surface intersects
itself tangentially along the trough line, enclosing a bubble of air, namely a touching wave. We
omit the details.

Point vortices 'When vorticity is concentrated at a point in the fluid region of one period in the
moving frame of reference, rather than constant throughout the fluid region, (21) also gives an
exact solution for zero gravity (see [12, Section 4] for details), whereby one may be able to follow
along the same line of argument as in Section 4 for the existence of overhanging and touching
waves for sufficiently weak gravity, either in the infinite or finite but sufficiently large depth.

Hollow vortices Last but not least we consider a hollow vortex, a bounded region of constant
pressure with some nonzero circulation around it. Exact solutions have recently been found for
rotating hollow vortices with N-fold symmetry for any integer N > 2 [11]. Interestingly, the
same conformal mapping also gives exact solutions for non-rotating hollow vortices with the
effects of surface tension [10,26]. (To compare, Crapper’s capillary waves in an irrotational flow
give rise to exact solutions in constant vorticity flows without the effects of surface tension.) One
then may be able to argue similarly as above for the existence of hollow vortices in fluid regions
with sufficiently large but bounded area, either rotating with N-fold symmetry or non-rotating
with the effects of surface tension.
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Appendix A. Exact solution of (2) with zero gravity
Here we detail how to correct errors in [18] and show that when G = 0, (5) and (6) solve (2)

for A € [—Amax, Amax] (see (9)). Recall that we identify R? with C and employ the notation
z=x +iy. Note that (5) extends holomorphically to the lower-half plane as

. . 4i Ae~i(@+ip)

B e ey e T ¢9)
We begin by writing
Vv=—32-y-f. (40)
so that the first, second and last equations of (2) become
sz =0 in D,

f=-l2y’—y s )

Vf—(0,0) as y - —oo.

Similarly as in Section 3.2, we introduce
[ = e @B,

which takes the values inside the unit disk, and we recast (41) in ID. (In [18], the incorrect formula
¢ = ¢'@th) was used instead, which takes values outside ID. This is the source of most of the
errors in [18].)

The Poisson integral formula gives

_re[ 1 nEtede
f(C)—Re(zm. %f(g)g/—; g/) for [¢] <1,
l¢'l=1

where

_2Q@7P 240+ 1) | 207 4240 + 1)
@A H/A? A+ 1/A)

/ 1 2 /
f(§)=—§9y - for |'] =1
by (5) (see also (22)). This agrees with the corresponding formula in [18] except that the

latter has a typographical error where the exponent 2 is missing in the numerators. When
A € [—Amax, Amax], since Apmax < 1/2, £(¢)) g,tg % has poles at ¢’ = —A, ¢ and 0 in D, and we
evaluate the integral by means of the calculus of residues to arrive at
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42 (1-24%72+1 4z
A2—1 (¢+1/A)2 c+1/A

f({):Re( ) for |¢] < 1,

so that (40) becomes

B 1, 482 (1-2A4%¢%2+1
V=—F-3 _A2—1Re( ¢+ 1/A)2 ) (42)
Differentiating (42),
_ 82 (1 =24%¢ — A)
Ve =l v = A(A2—1>Re< C +1/A) ) @

All of these formulas differ from those in [18] by ¢ — 1/¢. We then use the second equation of
(2) and make a chain rule calculation to see that

7
2 B
Van¥l™ = e " S.

Inserting (43) into the third equation of (2), after some algebra we arrive at

2_2A1+A2 1 2 _ _ 2
P a2t Tt =23(<; A)¢ 1/A)>_ b

€+ A& +1/4) E+A)CE+1/4)

This agrees with [18, (4.7)], which remains invariant under ¢ + 1/¢. A straightforward calcula-
tion reveals that (44) holds true for (6).
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