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The quasilinear theory describes the resonant interaction between particles and waves with
two coupled equations: one for the evolution of the particle probability density function
(pdf), the other for the wave spectral energy density (sed). In this paper, we propose a
conservative Galerkin scheme for the quasilinear model in three-dimensional momentum
space and three-dimensional spectral space, with cylindrical symmetry.
We construct an unconditionally conservative weak form, and propose a discretization
that preserves the unconditional conservation property, by “unconditional” we mean that
conservation is independent of the singular transition probability. The discrete operators,
combined with a consistent quadrature rule, will preserve all the conservation laws
rigorously. The technique we propose is quite general: it works for both relativistic and
non-relativistic systems, for both magnetized and unmagnetized plasmas, and even for
problems with time-dependent dispersion relations.
We represent the particle pdf by continuous basis functions, and use discontinuous
basis functions for the wave sed, thus enabling the application of a positivity-preserving
technique. The marching simplex algorithm, which was initially designed for computer
graphics, is adopted for numerical integration on the resonance manifold. We introduce
a semi-implicit time discretization, and discuss the stability condition. In addition, we
present numerical examples with a “bump on tail” initial configuration, showing that the
particle-wave interaction results in a strong anisotropic diffusion effect on the particle pdf.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The Vlasov-Maxwell system and the Vlasov-Poisson system are widely used to describe the collective (mean-field) effect
of particles. Although a lot of work has been done in numerical methods for these systems, in practice a reduced model is
often preferred when the problem is in high dimension and some loss of details is justified from physics consideration.

For example, the electron runaway problem, which is the motivation of our research, has attracted a lot of attention
as a risk factor for magnetic confinement fusion reactors like ITER [14,4]. Runaway electrons are a group of extremely fast
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electrons generated inside the tokamak, the release of which can damage the wall. Therefore, it is important to have an
answer to the questions like how they are generated and how to mitigate them.

The dynamics of runaway electrons is determined by external electromagnetic fields, collision, and particle-wave interac-
tion. The quasilinear theory, as a reduced mean-field model governing particle-wave interaction, arises from averaging and
linearizing over the original Vlasov-Maxwell system in weak turbulence regime.

The quasilinear theory for unmagnetized plasmas was proposed by Vedenov et al. [19] and Drummond et al. [6]. It was
later generalized by Shapiro et al. [15] to model the magnetized plasma. The same idea has been used extensively in the
following years, for example in the work of Kennel [10], Lerche [11], and Kaufman [9], etc. The validity of such a model
reduction was studied numerically by Besse et al. [3], and analytically by Bardos and Besse [2] for Vlasov-Poisson system.
The existence of global weak solutions in one dimensional electrostatic case has been proved in [8].

Since the quasilinear theory studies the spectrum of waves and the averaged particle distribution function, it does not
require a small time step to characterize the high wave frequency numerically. However, the numerical computation of
the particle-wave resonance system is still challenging, due to the resonance condition described with the Dirac delta
function, the complicated dispersion relation, high dimension, nonlinearity, and conservation laws consisting of integrals in
two different spaces. Therefore, although the theory has been widely used in physics, there is no preceding work focusing
on the numerical method for quasilinear theory in magnetized plasmas.

In this paper, we propose a conservative Galerkin solver for the homogeneous quasilinear particle-wave interaction sys-
tem.

Despite being a paradigm approach in the analysis and discretization of other kinetic equations, the weak formulation of
the quasilinear model has not gained enough attention, partly because the equation for particles was usually written in a
nonlinear diffusion form, and the equation for waves was treated as independent first-order ODEs with parameters. There
are infinitely many equivalent forms to the same equation because of the resonance condition. Among all the equivalent
forms, some are superior to the others, the reason is as follows.

The quasilinear theory inherits the conservation laws from the original Vlasov-Maxwell system. However, generally the
conservation is conditional, which means the gain and loss parts only offset each other on the resonance manifold. When the
resonance manifold is broadened or approximated, conservation laws are no longer guaranteed. In this paper, we propose a
novel integro-differential form and the corresponding unconditionally conservative weak form.

It is desired that the discrete weak form will preserve the unconditional conservation property above, unfortunately,
naive standard finite element discretizations turn out to fail. We located the cause of discretization errors by analyzing the
weak form, and managed to construct a perfect discretization by replacing some quantities with their projection in the
discrete finite element spaces.

Apart from that, for numerical integration on resonance manifold, we adopt the marching simplex algorithm [5,12],
which enables us to deal with arbitrary wave modes.

This paper is organized as follows. In section 2 we review the relativistic quasilinear model for magnetized plasmas and
introduce the integro-differential system with its weak form. The conservative semi-discrete system, as the main result of
this paper, will be presented in section 3. In section 4, we derive the nonlinear ODE system associated with our conservative
semi-discrete form, and the relation between two interaction tensors is proved. Stability and positivity will be discussed in
section 5. The numerical results are presented in section 6.

2. The quasilinear particle-wave interaction system

The quasilinear particle-wave interaction system consists of a diffusion equation for electron pdf (probability distribution
function) and a reaction equation for wave sed (spectral energy density). They couple with each other through the coef-
ficients. As a reduced model for the Vlasov-Maxwell system, the quasilinear theory inherits the conservation properties:
mass, momentum, and energy. Moreover, the entropy of particles dissipates as a result of diffusion.

In this section, we are going to show that the system can be written in a novel integro-differential form, which will
finally lead to a conservative discrete scheme.

2.1. The integro-differential strong form

There are two ways to interpret the quasilinear theory. In classical language, it is a model reduction of the Vlasov-
Maxwell system in a weak turbulence regime. Meanwhile, in quantum mechanical language, the waves in a plasma can
also be regarded as a group of plasmons (wave packets, analogous to photons). Hence the interaction between particles
and waves can be interpreted as a stochastic process of particles emitting/absorbing plasmons. For a derivation in quantum
mechanical language, we refer the readers to the review paper of Vedenov [18] and the book of Thorne et al. [17]. In what
follows, we will rely more on the latter interpretation.

The particle pdf is a non-negative function defined on the particle momentum space R3, i.e.

f(p,t):R‘:; xRy — Ry

Each particle carries mass m, momentum p, and energy E(p). The particle velocity is v(p) = VpE(p).
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At the same time, the wave sed is a non-negative function defined on the wave momentum space le (the spectral
space), i.e.

Wk ) : R} x Ry — R,

Each plasmon carries momentum hk, energy hw and no mass. The relation between wave frequency @ and wave-vector
k is called the dispersion relation, w := w(k). The wave spectral energy density can be expressed in terms of plasmon
number density, W (k) = N(k)iw(K). Therefore it makes no difference whether we use W (k) or N(k) as the unknown.

The equations for quasilinear particle-wave interaction share the following structure,

3
—f(, )=V, (DIWIP.0) -V, f(p.1),
aat 21)
5 W k.0 =TIf10 OW (K. D).

Both relations, D:L'(R?) — (L>(R3))**3 and F:Hl(Rg)eLw(Rz), are determined by transition probabilities of the
stochastic emission/absorption process. The transition probabilities per se, depend solely on pre-interaction and post-
interaction kinetic variables: particle momentum p, particle energy E(p), plasmon momentum fhk and plasmon energy
hw(k). Hence the particle energy relation E(p) and plasmon dispersion relation w(k) must be specified before numerical
simulation.

Remark 1. The wave dispersion relation w(k) depends on the medium, i.e. the plasma itself, which is evolving. Since the
computational cost for an accurate dispersion relation w := w(Kk) can be quite high, there is, in practice, a tendency to use
low-order approximations based on appropriate assumptions, for example, the cold plasma assumption (see Appendix).

Remark 2. In a plasma, there can be multiple wave modes, i.e. multiple “species” of plasmons, each having a distinct dis-
persion relation w(k). In our numerical experiment, we use the dispersion relation of whistler waves in a cold magnetized
plasma. Nevertheless, our numerical method is compatible with any dispersion relation, and can be used to simulate multi-
ple wave modes at the same time.

In the previous paragraphs, we introduced the general governing equations for particles absorbing/emitting plasmons.
Next, let us focus on a specific example that the proposed method is designed for.

The particle-wave interaction system for magnetized plasmas with cylindrical symmetry

We are interested in particle-wave interaction for plasmas embedded in the magnetic field B(t) = By, as a consequence,
we will focus on gyro-averaged particle distribution functions f (p,t) having cylindrical symmetry. For simplicity, it is further
assumed that W (k, t) is cylindrically symmetric.

The background magnetic field By induces an axis direction e = Bg/|Bg| and the associated cylindrical coordinates,
where uy =u-e; and u; = (u? —uﬁ)l/2 for any vector u € R3. Then we have f(p.t) = f(pj,pL,t) and W(k,t) =
Wk, ki, t).

Particles with charge q and mass m have gyro-frequency w. = qBo/mc. Note that for electrons, ¢ = —e. Particles with
momentum p have relativistic energy E(p) = y (p)mc?, where y is the Lorentz factor.

To model the runaway electrons in a tokamak, Breizman et al. [4] used the following equations written in spherical
coordinates (i.e. @ = arccos p/p),

afpt) 1 9 of af 1 9 of of
=—z—p2(Dpp_+Dp9_)+ — — sinf(Dgp— + Do )s
at p2 ap ap pdd’ "~ psind 30 ap pab (2.2)
oW (K, t) .
e =Tk oW,

where the diffusion coefficients are weighted integrals of wave sed W (k, t),

+o00
Dpp(p,t) = Z /d3k{W(k, HU(p, K)S(w(K) — kyv(p) cos® —lwc/y)},

I=—00
+00 .2
loc/y — wsin“ 6
_ — 3 ¢ _ _
Dpo(p,t) = Dpo(p, 1) _lé_oo/d k {( »Sinf coso ) WK, t)U;(p, K)é(w — kv cos o la)c/)/)} ,

low, Va4 —a)sin29 2
— 2 3 ¢
Doqg (p, f)—l /d k ( wsind coso ) W (k, t)U;(p, K)§ (w kHVCOS@ lwc/)/) ’
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and the growth rate is a weighted integral of particle pdf’s gradient, Vp f (p, ©),

f oy —wsin®0 af

X 0
_ 3
r'k,t)= E /d p{v(p)(a + () sinf cos pae)U,(p,k)B(w kyvcosd —lwc/y) ¢ -

I=—00

The coefficients characterizing transition probability, are a function of p and k that always takes finite non-negative
values,

2
[ lo Ji+E3cosf J; +iE; sin@],’}

kip
U(p; k) = 87 %e? _ : (2.3)
(1—E2) L2 (w?e) +2iE2 L L (w2g) + E3 L 2 (02)

where the dielectric tensor components ¢, g, n and the wave polarization vector components E; are functions of wave
frequency w as defined in Equation (A.3) and Equation (A.4), argument of the Bessel functions is k) p /mw,, for details, see
Breizman et al. [4].

The above formulas are sufficient to perform a trivial numerical simulation: treat Equation (2.1) as a normal diffusion
equation and a normal reaction equation with time-varying coefficients. The challenging part is to preserve conservation,
especially when there are integrals containing the Dirac delta function. Numerical integrals are always performed by quadra-
ture rules, however, the quadrature points usually do not reside exactly on the resonance manifold. In this paper, we propose
an unconditionally conservative approach by employing a novel equivalent integro-differential form instead of the original
equation. By “unconditional” we mean that the scheme is conservative no matter how the resonance manifold is discretized
or broadened.

The emission/absorption kernel and directional differential operator

To rephrase Equation (2.2) in integral-differential form, let us introduce two important concepts, the emission/absorption
kernel and the directional differential operator, along with some necessary notations.

Particles with momentum p do not emit or absorb plasmons with wave vector k unless a certain resonance condition is
satisfied. Define the [-th resonance indicator function s;(p, k) := w(K) —kjv| —lw¢/y (p), | € Z, then the resonance condition
reads s;(p, k) = 0. Define the I-th resonance manifold as

S = {(p, 1) € R3 x R :51(p, k) = (k) — ky vy — looc/y () = o} , (2.4)

then we can say that particles with momentum p emit or absorb plasmons with wave vector k only when (p, k) belongs
to one of the resonance manifolds.

Analogous to the definition of collisional kernels in Boltzmann equations and Fokker-Planck-Landau equations, we define
the emission/absorption kernel which characterizes the probability for a particle with momentum p to absorb or emit a
plasmon with wave vector Kk,

+o0

Bl = Ui(p; s (s1(p; k). (2.5)

I=—00

As we have mentioned above, interaction happens only if the resonance condition is satisfied, so the emission/absorption
kernel contains a Dirac delta function. The coefficients U;(p, k) are given in Equation (2.3). They take finite non-negative
values for any coordinates (p, k).

Interaction with a plasmon results in diffusion of particle pdf f(p,t) along a particular direction B(p, k), thus we define
the directional differential operator

kyv 0 kyv 0
kv p dg o _kivi)p dg

L(g@) =A@.K) - VpgP) =~ P 9p] @ "pLopyL

(2.6)

Further, define the L2 inner product in particle momentum space (u(p), v(p))p = fR% uvd3p, and the L2 inner product
in wave spectral space (U(k), V (K)), = ng UVd3k.
Denote the adjoint operator of £ by £*, then by definition, we have

(L*u, v)p = (U, LV)p.
The bilinear integro-differential operators

Now all the ingredients are prepared, we claim that the diffusion term and reaction term can be rewritten as bilinear
integro-differential operators.
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Theorem 1. The particle-wave interaction system in Equation (2.2) is equivalent to

RO _pw, p)= —/c* B OWLS) dk,

R 27)
oW (k, t )
% —H(f, W)= / (CE()WB(Lf)dp.

R}
Proof. By definition,
/S(S(X))S(X)g(X)dX= oA / sx)g(x)dms =0
¥ {x:s(x)=0}
Note that

lwc/y —wsin®0  wcosd — kv
wsinfcosd ~ wsind

on the resonance manifold.
We obtain Equation (2.7) by substituting the above identity into Equation (2.2) and rewriting everything in cylindrical
coordinates (i.e. replacing 6 with arccos p;/p). O

Remark 3. Both the particle diffusion operator B and the wave reaction operator H mix particle momentum p and plasmon
wave vector k through the absorption/emission kernel B(p, k).

Remark 4. One might have noticed that LE(p) = v(p). The reason we write LE rather than v is to induce our conservative
semi-discrete form and to save preprocessing time. The details will be addressed next.

2.2. The unconditionally conservative weak form and H-theorem

For the purpose of either modeling or numerical implementation, the absorption/emission kernel B(p, k) is usually
replaced with its approximation 5, (p, k). Here we present two examples for such approximation.

e Approximation to the identity.
The kernel is approximated with
i 1 (s(p,K)
B (p, k) = Z Ui(p, k)g‘P (T , (2.8)
l
where the compactly supported and positive function ¢(z) has unit mass, i.e. [ ¢(2)dz=1.
Recall the definition of resonance manifold in Equation (2.4), it is a hypersurface implicitly determined by the reso-
nance condition. The above approximation is equivalent to broadening of the resonance manifold, as the approximated
hypersurface has finite “width” proportional to ¢.
e Marching cube/simplex algorithm.
The kernel is approximated with

BP(p,1) =) Ui(p, K)8 (Lesi(p, K)) (2.9)
I

where L.s; represents the piecewise linear interpolation of s;. As have been illustrated in [5,12], such approximation dis-
cretizes the resonance manifold, i.e. replaces the smooth hypersurface with a disjoint union of simplices, thus enabling
convenient numerical integration.

In what follows we derive the special weak form, and prove that even if the emission/absorption kernel B is replaced/ap-
proximated, we can still preserve mass, momentum and energy with the proposed form.

5
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To obtain the weak formulation associated with the system (2.7), test it with ¢ (p) and n(k), we obtain that

af
ot

R3 3 R3

ow
/Wndl(=/dl(/dp{n£E£fWB}
R} 3R}

qbdp:—/dp/dk{ﬁd)ﬁfWB}

Note that the order of integration here is different on the right-hand side. In what follows, assume that ngng dkdp|L¢
LfWB| and fR?XRz dkdp|nLEL fW B are finite, therefore by Fubini’s theorem, the order of integration does not matter,

/ /£¢£fWBdl( dp:/ /£¢£fWde dk = // dkdp {LPL fW B}

R} \R R} \R} RIxR?

/ / nLELfWBp | dk = / / nCELfWBK | dp = // dkdp (nCELfWB}.
R} \R} R} \R? RIxR?

On the right-hand side is inner products of bilinear integro-differential operators with test functions. Therefore to sim-
plify the notation, we can define trilinear forms B and H as follows:

B(f,W,¢) = // dkdp {LHLfWBY,

R3 xR3
. (2.10)
HW, f,n) = // dkdp{(nLELfWB}.
Rngi
As a result, the weak form of system (2.7) can be written as,
af
(5’(1)) =—B(f,W,9),
b (2.11)

<8W )_wa
an k_ ( ) 777)

Due to resonance, there are infinitely many equivalent forms for the same equation, for example,
kyv a kyv d
kvip 99 u)£_¢>

U(p,kK)s§(w — kv —lw )(
> Uip i =lod = o PR

!
is always equal to

k l <l d K d
Vit wc/V> v p 99 1_M)£_¢’>,

Y Ui 3@ — kyvy —lwc/y) ((
1 ) ® pjapy ® "p1ipL

for any constant o > 0.
In the following theorem, we prove the superiority of the proposed form, i.e. the unconditional conservation property.

Theorem 2 (unconditional conservation). If f(p,t) and W (K, t) solve the system (2.11) with emission/absorption kernel being re-
placed by B,, then for any B, we have the following conservation laws,

e Mass Conservation

a a
57 Mot = (fs Dp+(W,0)) =0

o
o Momentum Conservation

9 9 w
gpﬁ‘" = ((f, P+ (s ﬁku)k> =0,
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e Energy Conservation

d a0 w
PY: tot at f, )p + (Flaf W)k)

Proof. Sum the two rows in Equation (2.11), we have

d ow
(50) +(50m) = [ dapionce - corcpwe) (212)
k
? R3XR?
Substitute the test functions {¢, n} with conservation quantity pairs {¢, .}, i.e. mass pair {1, 0}, parallel momentum pair
{p1 l%} and energy pair {E, 1}. In principle the condition for conservation is 7.LE — L¢. = 0 on the approximate resonance

manifold S = {(p, k) € ]Rf, X Rz 1 Be(p, k) # 0}. However, due to our particular definition of the directional differential op-

erator £, we actually have n.LE — L¢. =0 on the whole domain Rf} X R,“:’ . Therefore the conservation laws hold regardless
of emission/absorption kernel B,. 0O

Remark 5. The unconditionally conservative form also exists for unmagnetized plasmas with cylindrical symmetry, where
we just replace the emission/absorption kernel with B = % f02” %S(w —kyv —kivicosa)da.

Remark 6. Since the conservation laws solely depend on nLE — L¢ = 0, the unconditional conservative form and the scheme
we are going to propose can be generalized for time-dependent dispersion relation w(k; t) with no extra effort. An important
example is the self-consistent dispersion relation w = w(K; f1(t), f2(t),---). The only obstacle is the extra computational
cost of updating the interaction tensors in each step. As will be shown in section 4, that calculation can be expensive.

Recall the definition of emission/absorption kernel B,

+00
Bp, k)= Y Ui(p; W3(si(p; k).

I=—00

Test the equation for particle pdf with ¢ (p) = log f(p), since Uy and W are non-negative, the right-hand side will be
non-positive,

a 1
(5 tog = - [[ ditp cpPw <o,
thus we can prove the dissipation of entropy, i.e. H-theorem for the particle pdf,
d af af
—(f,1 =(—,1 —, 1Dy <0. 213
at(ﬁ 0g fp (atvogf)p‘f‘(at, )p < ( )

3. The conservative discretization

This section aims to find a semi-discrete problem that consistently approximates the original system, and at the same
time preserves discrete conservation laws. So in the following subsections, we will first introduce our finite element dis-
cretization, the necessary projection operators, and then elaborate on the conservation technique.

3.1. The finite element discretization

The cut-off domain and boundary conditions
Analogous to existing work on kinetic equations, for example, the papers of Zhang et al. [20,21], we assume that given
any 0 <€y < 1 and 0 < € < 1, there exist finite cylindrical domains QF, C R3 and @ € R} such that for any t >0,

Jay f(@.OE P
— | < €p,
Jr3 f.OED| =7
and
Jor Wk, 0)dk

- | <.
Jez Wk OPk| k
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The particle momentum cut-off domain QIL, is supposed to be adaptive, while in our numerical experiments it turns out
that, as a result of anisotropic diffusion, there is no need to extend it.

Then it is reasonable to solve the equations in cut-off domains Qf, and Q,f For the wave sed W (Kk), there is no need for
a boundary condition since there is no flux in wave vector space. For the particle pdf, we have the following choices, and
when the domain Qé is large enough, they are actually equivalent.

On the boundary BQIL, of cut-off domain QILJ, |f] and |Vp f] are nearly zero, two types of boundary conditions can be
applied,

1. The zero-value boundary condition
f=0,vpea
2. The zero-flux boundary condition

(DIW]IVpf) -m=0, Vp € 9Q;

Suppose we test the diffusion equation with ¢, € V. With Neumann’s boundary condition, i.e. in the zero-flux case, the
semi-discrete weak form reads:

0 fn
(_
at

For Dirichlet’s boundary conditions given by to zero-value on the discretized boundary, i.e. fiuj | sah= 0, Nitsche’s method
[13] applies, hence the weak the semi-discrete form reads
fn
at
The only difference between them is the boundary integral, which can be below machine epsilon for large enough QL,

because D and ¢y, are finite, while | f,| and |Vp f| goes to zero as we enlarge the domain. Stability can be proved for both
formulations, in the rest of the article, for simplicity, we will use the zero-flux boundary condition.

»¢n) + (DIWr]Vp fr, Vpdn) =0

(= ¢n) + (DIWn]Vp fu, Vp¢n) — ((DIWn]Vp fr) “Mp, Pn)ygl + ((DIWn1Vp¢n) - mp, fr)aqy =0

The finite element spaces
Since we have assumed cylindrical symmetry, the 3P-3K problem actually becomes 2P-2K.

P=(p1.p2.P3) €2 < (. p1) € QL CR xRT
k= (k1,kz,k3) € QII; < (kH,kJ_) € fz,’; CR x RY

Let 771” ={Rp}, 7;1‘ = {Ry} be rectangular partitions of QIL, and Q,ﬁ respectively. We define the meshsize for momentum
space as hp = Maxg 7 diam(Ry) and the meshsize for wave vector space as hy = makaedeiam(Rk).
h

The test space for particle pdf consists of continuous piecewise polynomials with degree o/,

Gt ={f(p),p1) € COUQp): fIr, € Q¥ (Rp),V Ry € TF}. 1)

The test space for wave sed consists of discontinuous piecewise polynomials with degree o5,

W2 = (W (k. k1) : Wg, € Q®2(Ry),V Ri € Ti¥). (32)

To ensure positivity of Wy, it is required that a; =0 or oz = 1, the reason will be addressed later.

As will be shown in the next section, one of the key points to conservation is replacing v, v, and kj/w with 9E(p)

ap) ’
% and Ny, where Ep =TI, E(p) is the discrete particle kinetic energy, and Ny, = Il ;N is the discrete refraction
index. The projection operators can be arbitrarily chosen as long as they satisfy the following conditions:

1. The projection IT, , into test space g,‘;“ must satisfy that
; _ 2,6L
}gl_r}}) ITp.ng®) — &M@l 2(qy) =0, V& € L7(2p),
and
}3&1}) T, hE(P) — E(p)”]-ﬂ(glﬁ) =0.
2. The projection ITj j into test space W,f” must satisfy that

lim [Tl p8 (1) — £ M)l 2 qp =0, V& € LA(S).
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There is no need to specify particular projections until we implement them in the numerical examples, our method
works with any of them.

3.2. The conservative semi-discrete form

Adopting the zero-flux boundary condition, testing the system on the cut-off domain with ¢y € g,‘j’ and n, € W2, we
write the following semi-discrete weak form,

(88—]?,¢h)p=—3f(fh,Wh,¢h)i=— // dkdp{L¢n L fpWhB},
Qb xb
IWp u
(Tvnh)k=HL(Wh,fh»77h)5= // dkdp{nn LEL fyWyB},
Qb xb

where the subscript L means integral on cut-off domain, the superscript u means unconservative. We will first analyze the
source of conservation errors and then present our conservative semi-discrete trilinear forms B; and H;.

The source of conservation errors
Suppose different quadrature rules Ry and R are used for different equations,

d fn
gyt | - [ [aviconcimnsy

L L
L QP Qk

ow
=Ry / dk / dpUInCEL fiyWhB)

L L
_Qk Q2 p

The error of conservation laws can be decomposed into three terms,

d
E(Uh, Iy nd)p + (W, T p1)i)

=Ry —/dp/dk{(ﬁl‘[p,hqﬁ) ,thWhB} + Ry /dk/dp{(l‘[kyhnﬁl:") ﬁfhWhB}
o o of o
=A1 + Az + As,

where

Ai=Ri-D /dk/dp{(—,cnpm) L faWyB}

L L
o b

Ay =(I—R) /dk/dp{(—cnpm) L faWyB}

L L
o b

A3=R; /dk/dp{(nk,hncE — LT p¢) LfrWhB}
% 9

The error terms A; and A; are caused by inconsistent numerical integration on the resonance manifold. Suppose that
Ry — I is of the same order as O(h%), and quadrature rule R, has error O(h?), then the sum will be roughly O (h™in{a:b}y,
The last error term As is a result of projection error, whose order depends on the degree of test spaces, a1 and a3.

Note that A; and A, cancel out when we use the same quadrature rules, i.e. R; = R,. In what follows, we will introduce
a conservative semi-discrete form such that Az disappears.
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The conservative semi-discrete form
Recall the definition of directional differential operator L,

k 0 k 0 OE 9 JE 9
:u‘/llg_ng]_uVui g _ N p 08 1-N p 98

Lg ) =Nj——— Ny —)——.
® p|ap ® "p1Lopi dapL p1dp) ap) " pLapL
We propose a discretized operator £, defined as follows,
JE, p 0g JE, p 0dg
Lpg =Njpr——7—+A=Njp—)——, (3.3)
dp1L p1dp op| pLdpL

where the discretized kinetic energy is defined as E, = I ,E(p), and the discretized wave refractive index is defined as
!
Nyp=IgpNy = Hk,h%-
The main result of this paper is stated in the following theorem.

Theorem 3. If f,(p, t) and Wy (K, t) are solutions of the following semi-discrete weak form,

df)
(a_:ad)h)p:_BL(fh»Wh’(ph)::_ / dRdp{Lydn L fuWrBn},
alwol
o e (3.4)
(a—th,nh)k=HL(Wh,ch7h)i= / dRdp{np LhEn Ly fr Wi B},
Q,{xsz},

then the following discrete conservation laws hold,

0 d
EMtot,h = 5((fh, Iy p1)p + (Wp, 0)) =0,

0 d
&Ptot,h =3 (o Ty app + (Wh, T s Nyi) =0,

)

d
55tot,h = 5((fh, My, hE(P))p + (Wp, TTi p 1)) = 0.

Proof. Substitute the discrete conservation pairs {I1, 1,0}, {ITy ypy, Ik x Ny} and {I1p , E(p), ITx y 1} into semi-discrete form
(3.4) and use the definition of £,. O

Corollary 1. If in addition to the assumptions of Theorem (3), the projections are L? orthogonal projections, i.e.

(u—TMp pu, v)p =0,Vveg,'

and

(U—TpU, V), =0,YV e W72,

then the exact conservation laws are preserved, i.e.

3/\/l —a((f Dp+ (Wi, 0)) =0
ot tot,h—at hs Up h>sY)k) =Y,

Opt 0 Wi, Nj)k) =0
apmt,h—ﬁ((fmpu)p-k( . Nyk) =0,

a

d
% tot,h = &((fhs E(P)p + (Wp, 1)) =0.

Proof. Use the fact that fy € G)'' and Wy e W2, O

Remark 7. Same as stated in Theorem (2), our semi-discrete weak form is also unconditionally conservative, i.e. the conser-
vation does not depend on a particular discrete emission/absorption kernel By.

10
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4. The sparse interaction tensors

Suppose that the test spaces are spanned by basis functions, i.e. g,‘j“ = span{¢;} and W,‘fz = span{n;}. Then we can
express the discrete particle pdf f, and wave sed Wy as a linear combination of basis functions.
Ny

fu®.t) = ai(t)¢i(p)

i=1
Nw

Wil ) =Y w;(6)n; &)
j=1

By definition, E =TI, hE € g;fl, therefore it is also a linear combination of basis functions, Ej = qu Eq¢q.
Substitute the above expressions into Equation (3.4), then the semi-discrete system becomes a first-order finite dimension
ODE system:

N¢ Ny
8a
oai / biond®p=—33 aw, / dp / AL Lo Cahm B B: 10}
n=1 k=1
Ny Ny
Z - / R / dk / dp (g L1 En Cnn i BD: K0}
k=1n=1

o o

Denote the mass matrix for particle pdf as Aim = (¢i, $m)p, and denote the mass matrix for wave sed as G jq = (17}, Ng)k-
Analogously, define the interaction tensors B and H corresponding to the trilinear forms.

Bukm = B(én, Nk, $m)
Hknq = H(nk! d)ﬂv T]q)

As a result, we obtain the nonlinear ODE system corresponding to semi-discrete weak form (3.4):

aa;

ot lAlm = —Un Wi Bnkm
ow; (4.1)
chq = WkanHknq

The interaction tensors B and H are both sparse tensors for two reasons: compactly supported basis and the resonant
feature of trilinear forms. Taking particle interaction tensor B as an example, By, =0 when

1. ¢m and ¢, are not in neighboring elements.
2. ¢m and 7 do not “resonate”, i.e. supp(¢m) x supp(n,) does not intersect with the resonant manifold.

Suppose in each dimension we have O(n) meshes, then the shape of particle interaction tensor B is roughly O (n?) x
0 (n?) x 0(n?), while the number of nonzero elements will be only O (n3), i.e. the sparsity of tensor B is about 1 — A

similar analysis can also be applied to the wave interaction tensor H.

_1_
om)”

We observed that the trilinear forms B and H defined in Equation (2.10) have similar structures. Therefore one might
wonder if there is any relation between the interaction tensors B and H. It turns out that when oy =0, i.e. piecewise
constant basis functions are used for wave sed Wy, we can infer any nonzero element of wave interaction tensor H from
particle interaction tensor B. In practice, the interaction tensors are precomputed and saved for later use. Taking advantage
of this relation, we can save half the time of preprocessing. The derivation is as follows.

When a; =0, W, %2 — span(n j} are piecewise constant functions, we have

ni(K)n;(K) = &;ni (k).

Then the mass matrix for wave sed is diagonal,
Gja = (. g = [ 8y = diagCpu(R))
R]

11
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where ,u(Ri) = [ 1d3k is the measure of j-th element in QF.
k
Moreover, note that if we define a 4-th order tensor

Hinkng ::/dk/dp{£h¢m£h¢nnl<nq6(p§ k)}
% 9
Recall the expansion Ej = Zq I 1 Eq¢q, and substitute it into the definition of wave interaction tensor H, we obtain the
relation between Hyyg and Hinkng,

Ny
Hk”q =HOk, ¢n, Ng) = Z EmHmknq

m=1

It can be observed that the form of I:Imkr,q is almost identical to the definition of particle tensor Bk, except for the
extra 74. Replace 7, (K)nq (k) with 8ign,(K), we obtain the relation between Hping and By,

Hmknq = kg /dk/dp{ﬁh(bmﬁhqbn M B(P; K)} = kg Bmnk-
%
Therefore Byn and Ep, is all we need to calculate Hypg,
Ny Ny Ny
- 0, k+#q
Hknq = Z EmHmknq = Z Emsqumnk = Skq Z EmBmnk = Ny
m=1 m=1 m=1 Zm=1 EmBmnk k=g
5. Stability and positivity

In this section, we investigate the stability of the fully discretized nonlinear system. With semi-implicit time discretiza-
tion, there is no constraint on time step size from the CFL condition. However, the stability will rely on the positivity of Wy,
which results in a condition for the time step size, relevant to the gradient of particle pdf fj,. The condition will not cause
any trouble for implementation, because we can always adapt the step size a posteriori.

5.1. Stability of the semi-discrete form

Consider the equation for particle pdf only, it has the form of a diffusion equation, thus its stability relies on the fact
that the diffusion coefficient is positive semi-definite, which further relies on the positivity of wave sed Wp,.

Lemma 1 (L2 stability of f,(p) and L' bound of W, (K)). Suppose fi,(p,t) and Wy (K, t) are the solution of Equation (3.4) with the
following initial condition:

fn(®.0) = f (@)
Wh(k,0) = WP (K)

If Wy, always takes non-negative values, i.e. Wy (K, t) > 0,V k € QL, vt > 0, then f}, has L? stability

”fh”LZ(QILJ) =< ”fl'?”LZ(QIL,)

and Wy, has bounded L' norm.
IWhll by < Etoen + 17 li2at) - 1T phEll 2t

Proof. Since f; belongs to the test space G'', we test the equation for particles with f,, we obtain that

0 fn
B fip=— [ a [ aptccasPwis.
% %

The right hand side is non-positive as long as W), always take non-negative values, therefore the L2 norm of f}, always
decreases,

12
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0
Zat”fh”Lz(QL)_0:>||fh||L2(Q ”f]—, ”LZ(Qli’)

Now consider Wy, by definition,
||Wh||L1(Ql€) = (Whp, sgn(Wp))x = (Wp, 1)

Recall the energy conservation property in Theorem 3:
IWhllp ) + i TpnEdp = Egge

Use Holder’s inequality

||Wh||L1(Q’€) = toth (fh 1_[p hE)p
= Stot,h + |(fha np,hE)p|
= 53)1?,]1 + ”fh ”LZ(QIL?) ' ”Hp,hE”[_Z(QII})

By the L%-stability of fy, we obtain the upper bound of Wj's L! norm,
0 0
||Wh||L1(Q y = =< Smt h + ||fh ”LZ(Qé) . ||E||L2(Q’- = Smt h + ||fh ”LZ(Qé) . ”Hp,l‘lE”LZ(Q’i’) o
5.2. Time discretization

Recall our conservative semi-discrete weak form,

(83_121’@1)!7:_BL(fh»thfbh)i:— // dRdp{ LndnLh fnWnBh),
Qb xQb
AWy
(T’nh)kZHL(Wh,fh»ﬂh)iz // dRdp{nn LhEnLh fnWhBn).
QE x4

The time step size of the explicit scheme for diffusion equations is restricted by the CFL condition. Two reasons urge us
to avoid explicit schemes,

1. The CFL bound of step size may be too restrictive, and we might lose efficiency.

2. The upper bound depends on the eigenvalues of time-varying diffusion coefficients. However, in the proposed scheme,
we never calculate the diffusion coefficient explicitly, instead, we compute the interaction tensor B associated with the
trilinear form B.

On the other hand, due to nonlinearity, a fully implicit scheme requires fixed-point iteration involving both particle pdf
fn and wave sed Wy, which can be time-consuming. Therefore, the objective is to find a scheme that is only implicit for f,
and at the same time preserves discrete conservation laws.

We propose the following semi-implicit scheme,

f5+1 f
< R )+ BT WL dn) =0
: (5.1)
wit - wp 1
(T,nh)k Hi(W;, £, ) =0

The scheme is implicit for particle pdf f} if we focus on the first line, meanwhile it is explicit for wave sed Wy, consid-
ering the second line. For implementation, we solve the first row and then substitute the next step particle pdf fS+l into
the second row. It can be easily verified that the discrete conservation laws still hold, i.e. we have

(fs+] ¢c,h)p + (W;SI+] JMNehk = (fﬁ» ¢C,h)p + (W}Sp Ne )k

The following theorem is the fully discrete version of Lemma 1, giving the unconditional L?-stability of fi when W} is
non-negative.

Theorem 4. Suppose f;; (p) and W (k) are the solution of Equation (5.1).

13
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If W} always takes non-negative values, i.e. W} (k) > 0,Vk e Q,% Vs > 0, then f; has L2 stability

1l < 182y,

and W} has bounded L' norm.
0 0
”W}?,”Ll(g’%) = gtot,h + ”fh ”LZ(QIL?) ' ”Hp,hE”LZ(QIb)

Proof. Given that W} (k) > 0, Vk € Qf, we have BL(f,f“, w;, ,f“) > 0. Therefore, f§ has unconditional L2-stability.
Since the scheme (5.1) preserves energy conservation, the L! bound of W, can be proved in the same approach as we
have done in Lemma 1. O

Note that the stability depends on our assumption that W} is non-negative. Therefore, in what follows, we will discuss
the positivity-preserving technique of Wj.

5.3. Positivity-preserving technique for the wave SED

To ensure positivity of wave sed W3, we draw the strategy from Zhang et al. [22]:

1. Use a small enough time step to ensure positive cell-average of a temporary wave sed W;H’*, given that we have

oo L B
pointwise positivity of last step wave sed W}.

2. Apply a slope limiter on Wle’* which preserves cell-average at the same time, then we obtain a pointwise positive

W;H as our solution of the next step wave sed. (Obviously, if we use piecewise constant basis functions, this step is
not necessary).

Firstly we will derive the constraint on time step size. After that, we explain why the slope limiter will not break discrete

conservation laws.

Suppose 7j o is the characteristic function of the j-th element R,{ C Q,f ie.njo= Lcrds which belongs to the test space
k

W,‘fz. According to the time discretization in Equation (5.1),

(W;_H‘* _ Ws

b _/W;H’*_W;
At » N0k =

o tngodic= [ dic [ dptenEn i Wi o8,
Qt el of

which is equivalent to
/ W a3k = / Wi+ At / dp{LhEnLn f By})dk
R R} 2

To ensure positive cell-average, i.e. ij W;H‘*dk > 0, we require that there exists a constant € > 0 such that
k

1+ Ar/dp{chb‘,,chf;“sh} > ¢, ke Rl (5.2)

L
QP

As long as the time step size At satisfy condition (5.2), we have ij W;H'*dk >€ ij Wpdk > 0.
k k
The following theorem guarantees that our bound for At will not shrink over time.

Theorem 5. For any € > 0, given a regular enough discrete emission/absorption kernel 3y, there exists a constant Aty determined by
€, 2, Q5, @ and h, such that any At < Aty satisfies condition (5.2).

14
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Proof. By Holder’s inequality, the “growth rate” is bounded as follows,

/dP{EhEhChf,fHBh} E/dP‘EhEhChf,fHBh‘

L L
P 2p

<

pL p
=Lpfit! ‘—Bhﬁhfh
p re@by IPL

=27 H PL hf;—H
p

k)

L </th£hEhdpLdpll)
Lo (@)

Firstly, consider the L°°-norm factor from inequality (5.3). Recall the definition of Lp,

8E a s+1 a a s+1
L A Njp—=ny I
Bm ap opy~ dpL

EhfSJrl —

Both of the coefficients N”,h% and (1 — Ny 31’\) are bounded by some constant C dependent on QL and Q,ﬁ hence it
follows that,

aEh fs+1 8Eh 8f5+1
H 3 Ll :HN”’ha— apy T NG, 0%
1o(Qb) bL op by 9JpL 1o @b)
s+1 s+1
9
<c@k, b 9y + @k, b Jh (5.4)
PI e PL ey

e et [ws|

Lo(@by
We claim that H Vo £, f5H HL”C(QL) is bounded uniformly in time. Indeed, since the domain Qli) is finite, all L" norms are
—%ep
equivalent, therefore,
s+1 H < Co (L HV s+1
H pIi 1oo(Qb)y = 2(2) [ Vol 12(2h)

Moreover, the inverse inequality for finite element spaces,
C

<3 ’
12(@k) ~ hp

s+1
h

12k’
and the L2 stability estimate from Theorem 4

H f5+1

12(22k) _Hfh 12(22L)

leads to the following estimate for V, fSJr1

|72 57|

(QL>— | £

55
LOO(QL - LZ(QL (5:5)

Therefore, the L°°-norm factor from inequality (5.3) is bounded as follows,

H L fS-‘r]

C3
<@ 2D @ |17

1@h) 2@p

Next, consider the L'-norm factor from inequality (5.3), and write it as follows,

p OE
/ PBaLaEndp.Ldpy = / [pw(p; 0@ Ky vy ~loc/y () - ’L’]dpldp",

where §, represents an approximation of Dirac delta, see Equation (2.8) and (2.9).
We discuss the following two cases,

15
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e When [ # 0, since

? (E20° (%) "

lim Ul(p,k)—= lim 8m2e? : : -
pL—0* pL pi—0OF (1-E3) L2 (w2e) +2iE2 L L (029) + E3 L L (w2n) p1

the integral is bounded as follows,

2\ 9E
/thEhEhdpLdpll = / [(Uz(p: k)p—> h —kyv —lwc/)/(P))] dp1dp
pL/) opL
2\ JE
<sup (Uz(p; k)p—> — /[5}1(0)(1() —kyvy —lwc/y ()] dp L dp (5.6)
ak piL/ dp1

< Ca(Qp, Q).

e When [ =0, the above trick does not work, because lim, _, o+ Uo(p; k) > 0. For this special case, as an alternative to
the original operator

0Ep p 0g 0Ep. p 0g
Lpng=Nyp———+A=Nyp-—)—-—,
op1 pLap 3P|| p1Lopy

oE a oE a
: : I;E > + @ =Ny ©) IZE 5

The operator is still a consistent discretization since E = /1 + pﬁ + pi. It can also be easily verified that the L*° bound

in inequality (5.4) is still true with this new operator L’g.
In addition, the L'-norm factor becomes,

/PBhCEEthLdpn =/[pU1(P; K)ép (@ (K) — kv —lwc/J/(p))E%] dp.dpy.
Therefore inequality (5.6) still holds.

Combine inequalities (5.4), (5.5), and (5.6) to obtain

C1-Cy-C3-C
/dp{llhEhL‘hf;HBh} SZ]‘[#‘

L
P

U

L2(QL

which enables us to define the uniform-in-time upper bound,

(1—=e)hyp

Aty = :
M 27T-C1~C2'C3'C4Hfl?||1_2(s2§)

It can be easily verified that any At < Aty satisfies condition (5.2). O

The condition does not need to be calculated explicitly, because we can adapt time step size a posteriori in the code:

monitor the cell averages, if any cell average of the temporary solution Wer "* is non-positive, replace At with 0.5At and

calculate WH] * again.

Now let us discuss the effect of slope limiters on conservation laws. If o; = 0, there is no need for any slope limiter.
If oy =1, we apply the slope limiter # and obtain W;H = 6(W$+1’*) According to Zhang et al. [22], the cell average

is preserved, ie. [ Wt dk = i Wt1dk. In other words, < withx n) (Wf,“, 77)’, for any piecewise constant test
k k K

function, i.e. Vi € W,?. Therefore, to preserve discrete conservation laws, in the definition of the discrete directional differ-
ential operator £y, we need to pick a projection Iy, such that IT; U belongs to W,? - W,‘fz for any function U.

16
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6. Numerical results
6.1. Problem setting

Although the emission/absorption kernel contains a summation from | = —oco to | = 400, it is not practical to perform
that numerically. In practice, we keep the dominant part of those terms. In the following example, we will only consider one
term with | =1, associated with the anomalous Doppler resonance. We used the dispersion relation w(k) of the whistler
wave in cold magnetized plasma (see Appendix), with electron gyro-frequency w. = —2wp.

Set the cut-off computational domain as follows,

Qé ={(py,pL): py € (=5mc,25mc), p, € (0,15mc)}
Qb = (k. k1) 1k € (0.05%,0.65%), ki € (0, 0.6%)}

Take piecewise linear quadrilateral basis Gy = {f(py, p1) € C%(25): flr, € Q'(Rp),V Rp € 7,7} and piecewise constant
basis W,? ={W(ky, k) : Wig, € Q%Ry),Y R € 771"} as our test spaces. Choose the L? orthogonal projections Ip p and Iy p
as stated in Corollary 1.

The numerical experiment is performed with 75 x 75 elements in €L, and 40 x 40 elements in Qlﬁ The initial time step

size is set as At=1.0 x 10 Trap

The integration on resonance manifold is performed with Gauss-Legendre quadrature on QIL, and the marching simplex
method [7,12] on f.

Consider the following initial conditions, which is the so-called 'bump on tail instability’ configuration.

B —SL (P 2_ pL 2 no
f(PII’PJ_)|t=O—[1O ﬁexp( (mc 20) (mc) )] m3¢3

2

_= Ngmc
W (ky, k1 )|reo =107 ———
(ks k1) le=o0 (@p/0)3

Remark 8. The bump on tail configuration actually refers to the sum of a bulk and a bump, i.e. f(p,t) = fc(P) + fo(p,0),
where the cold bulk f.(p) =~ m’;g 3(p), and the bump fp(p,t) is a peak with a much smaller population, centered far from
the origin. However, as shown in the following equation,

o(f — fo)
at

=]E(W! f) =]B(W! f - fC) +]E(Wv fC) =]E(W7 f - fC)’
ow

Tl H(f, W) =H(f — fe, W) + H(fe, W) =H(f — fc, W),

we do not have to really compute the contribution from f.

6.2. Temporal evolution

In analogous to the analysis done by Kennel and Engelmann [10], for a given wave vector K, the characteristics associated
with directional differential operator £ are

w w
z(py, pL) = Hpn —E(py,p1) = k—”PH - \/m2C4 + Pﬁfz + p% ¢2 = const, (6.1)
which is the isoenergy contour in the reference frame moving at the wave’s phase velocity.

When the wave sed W (k, t) is concentrated around the given k, the contours as illustrated in Fig. 2 indicate the principal

diffusion direction. For the specific problem setting, ,f’—u is small, hence the contour lines are almost concentric circles.

In Fig. 1 we show the evolution of electron pdf f(pj,p..t) and wave sed W (ky,ky,t). It can be observed that the
bump on tail results in the excitation of the approximate waves in a narrow region of spectral space Q€ and as predicted
by Equation (6.1), the whistler waves in turn cause anisotropic diffusion of electron pdf almost along the contour lines in
Fig. 2.

6.3. Verification of conservation

To verify the discrete conservation property of the proposed scheme, we define the relative error for conserved quantity
as follows,
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electron-plasmon system at t = (0.00e + 00)..
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Fig. 1. Temporal evolution of the electron pdf and wave sed.

0
1 Qtot,h — Lror 1150, Tmax)
0
Qtot,h

where Q is the conserved quantities defined in Theorem 2.

Then with Tpax = 8.0 x 107 2n‘wp, we have

)

€rel (Qtot,h) =

erel(Mior,n) =4.96 x 10714,
erel(P).cor.n) = 4.58 x 10714,
erel(Eror,n) = 4.69 x 10714,

For the evolution of the electron-plasmon system momentum and energy, see solid lines in Fig. 3.
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z(py.pL)

piime

-5 0 5 10 15 20 25
py/me

Fig. 2. The characteristics of directional differential operator £ given (kj,k1)=(0.2,0.3).
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(a) Momentum evolution. (b) Energy evolution.

Fig. 3. Comparison between wjyp and wexp.

6.4. Comparison of different dispersion relations

The above results were obtained with the exact whistler wave dispersion relation wjmp(K) for cold magnetized plasma,
given implicitly by Equation (A.2). One might wonder what if we replace it with a simpler explicit approximate relation, for
instance,

Ik lkc?

w3 1+ k22wt /vy

which is asymptotic to the implicit relation wimp(K) when k is small, i.e.

Wexp (k) = ||

lim (wWexp (K) — Wimp(K)) = 0.
k—>0( exp( ) 1mp( ))

As shown in Fig. 3, for both cases, energy and momentum are transferred from particles to waves. Meanwhile, we do
observe a different transfer rate for the approximate whistler dispersion relation when compared to the exact implicit
dispersion relation derived from Equation (A.2) in the Appendix.

7. Summary

We studied the numerical method for the initial value problem associated with the relativistic quasilinear diffusion model
in magnetized plasma. We showed that a conservative semi-discrete form can be derived by adopting a novel integro-
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differential form of this wave-particle interaction system. We incorporated the marching simplex algorithm in numerical
integration on the resonance manifold. A semi-implicit time discretization was introduced to ensure the stability of the
particle pdf and positivity of wave sed, which also preserves conservation in the fully discrete form. In the end, we presented
our numerical results for the bump-on-tail instability, and the conservation properties are verified.

In the future, we will consider the problem with the spatial non-uniform setting, and other factors such as Landau colli-
sion operator and external electric field will be included. Error estimates for the Galerkin scheme will also be investigated.
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Appendix A. Waves in cold magnetized plasma

The directional differential operator and the emission/absorption kernel both vary for different wave modes. Since our
numerical experiment is based on the whistler mode, we introduce the wave modes in cold magnetized plasma here to
make the paper self-contained.

Inside the medium with conductivity tensor o, we have the linear relation between current and field J = o - E. Apply the
Fourier transform to the Maxwell equations, we obtain that

A 5, i A
kx Kk x E=puogow*(— +1)-E
wEeQ
Write it with Einstein’s summation notation, we have the wave equation in spectral form,
w? .
(ke —aaﬁk2+c—zsaﬁ)5ﬁ =0,=1,2,3 (A1)
where the dielectric tensor g44 is dependent on o.
Let M(w, k) =kykg — (Saﬂkz + ‘é’—;eaﬁ, then the wave Equation (A.1) has nontrivial solution if and only if
Det[M(w,k)]=0 (A.2)

Equation (A.2) gives the graph of implicit function w(k), which is known as the dispersion relation.

The above discussion works for any medium. Now we focus on the plasma. Consider cold magnetized plasma with
background field By(x) = Bob, where By is constant and b is a fixed unit vector. A plasma is “cold” when the waves
propagate faster than its thermal speed.

The following dielectric tensor for cold magnetized plasmas can be found in textbooks [16,17]. (For simplicity, ion motion
is neglected here.)

Eqp(w) = €8np +igeupyby + (N — &)bgbg,

where
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2
w
e=el=1- pe >
w? — ws
>
_gH o _Yee  Tpe (A3)
g=8 = 3 7
W W — W
2
_ . H_1_ Ppe
n=n o2
There are two parameters in the above formulas. The electron gyro-frequency wc = —|e|B/mec is proportional to the

background magnetic field. The plasma frequency wpe = +/4mnee?/me is proportional to the square root of particle density.

Recall that the dispersion relation w(k) is given implicitly in Equation (A.2), one might wonder whether w(k) is multi-
valued, and for a specific branch, whether it is well-defined for any k € €. Textbooks never elaborate on this issue, therefore
we provide an answer here.

Define the parallel component and perpendicular component of wave vector Kk, kj :=k-B/[B|, k; = /k? — kﬁ. Denote

the magnitude k as k, and define the cosine of polar angle as & :=k/k. If ion motion is neglected, then we have what
follows.

Proposition 1.V (k, k1) € (0, +00) x (0, 400),30 < w1 < w2 < W3 < w4 < O S.L.

Det[M(w;j, ky, k)] =0, j=1,2,3,4

i.e. the equation admits exactly 4 positive single-value implicit functions wjky, k1), j = 1,2, 3,4, on domain (0, +00) x (0, +00),
moreover, wj(k, &) .= wjk(k, &), ko (k, &)) satisfy that aika)j(k, £)>0,VEe(0,1).

The first branch w; (K) is defined on the whole spectral space Ri. In a relatively strong magnetic field (a)lzJ /wg < 1), the
whistler wave actually refers to waves with wave vector k € Q, C Ri, and meanwhile has frequency wq (k). Outside the
region Q,, the first branch has another name. For details, see Aleynikov et al. [1]. In our numerical experiment, the cut-off
domain Q,f C Qy, therefore we say that we consider the whistler wave.

The polarization vector components in the emission/absorption kernel are given below

Ev(k) =1,
. 8

Erx(K)=i————

2l =i—15. (A4)
NN

E3(k) = ————
n—N{

where N = % is the refractive index.
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