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ABSTRACT. Agents learn about a changing state using private signals and past actions of
neighbors in a network. Bayesian learning in equilibrium yields a DeGroot-style learning dy-
namic, where agents use social information simply by averaging neighbors’ recent estimates,
with time-invariant weights. We examine when a community can aggregate information well,
responding quickly to recent changes. A key sufficient condition for good aggregation is that
each individual’s neighbors have sufficiently different types of private information. In con-
trast, when signals are homogeneous, aggregation is suboptimal on any network. Behavioral
variations of the model demonstrate that achieving good aggregation requires a sophisticated
response to correlations in neighbors’ actions. Finally, we find that an agent’s social influence

is much more sensitive to the precision of her private signal than in the DeGroot benchmark.
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1. INTRODUCTION

People learn from others about conditions relevant to decisions they have to make. For
instance, students who are about to start their careers learn from the behavior of recent grad-
uates. In many cases, the conditions—for example, the market returns to different special-
izations—are changing. Thus, welfare depends not on learning a static “state of the world,”
but rather on staying up to date with a changing state. The phenomenon of adaptation
and responsiveness to new information is central in many economic applications, including in
economic development and the study of organizations. When is a group of agents successful,
collectively, in adapting efficiently to a changing environment? The answers lie partly in
the structure of the social networks that shape agents’ social learning opportunities. Our
model is designed to analyze how a group’s adaptability is shaped by the properties of such
networks, the inflows of information into society, and the interplay of the two.

We consider overlapping generations of agents who are interested in tracking an unobserved
state that evolves over time. The state is an AR(1) process: somewhat persistent, but
with constant innovations to learn about. Each agent, before making a decision, engages in
social learning: she learns the actions of some members of prior generations, which reveal
their estimates of the state.! The social learning opportunities are embedded in a network,
in that one’s network position determines the neighborhood of peers whom one observes.
Neighborhoods reflect geographic, cultural, organizational, or other kinds of proximity. In
addition to social information, agents also receive private signals about the current state,
with distributions that may also vary with network position; in particular, some agents may
receive more precise information about the state than others.

We give some examples. When a university student begins searching for jobs, she becomes
interested in various dimensions of the relevant labor market (e.g., typical wages for someone
like her), which naturally vary over time. She uses her own private research (a private signal)
but also learns from the choices of others (e.g., recent graduates) who have recently faced
a similar problem. The people she learns from depend on her academic specialization, dor-
mitory, extracurricular activities, and so forth: she will predominantly observe predecessors
who are “nearby” in these ways.? Similarly, when a new cohort of professionals enters a firm
(e.g., a management consultancy or law practice) they learn about the business environment
from their seniors. Who works with whom, and therefore who learns from whom, is shaped
by the structure of the organization. Beyond heterogeneity in network position, agents differ
in the precision of the private signals they can access from outside the network: for example,

students in quantitative majors may be better placed to analyze compensation trends.

n using an overlapping-generations model we follow a tradition in social learning that includes, for example,
the models of Banerjee and Fudenberg (2004) and Wolitzky (2018).

2Sethi and Yildiz (2016) argue that, even without explicit communication costs or constraints, people can
end up listening only to some others due to the investments needed to understand sources.
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Our first contribution is to develop a network learning model suited to examples such as
these. In the model, the state and the population are refreshed over time. The environment
in which agents learn is dynamic, but its distribution over time is stationary. This makes
equilibria and welfare simple in ways that facilitate the analysis. Indeed, our setup removes a
time-dependence inherent in many models of learning, where society accumulates information
over time about a fixed state: Those models typically imply rational updating rules that
depend on the time elapsed since the learning process started. In terms of outcomes, they
often focus on an eventual rate of learning about a fixed state.®> In contrast, our model
features stationary equilibria with time-invariant learning rules. The outcomes we focus on
are learning quality and social influence in such equilibria.

We begin by characterizing equilibria in this model. Bayesians update estimates by taking
linear combinations of neighbors’ estimates and their own private information. The weights
are endogenously determined because, when each agent extracts information from neighbors’
estimates, the information content of those estimates depends on the neighbors’ learning rules.
We characterize these weights and the distributions of behavior in a stationary equilibrium.
This characterization enables the various comparative statics and estimation exercises—both
under the Bayesian equilibrium benchmark and behavioral alternatives. Equilibria can be
numerically computed quickly in networks of thousands of nodes, which makes the model
practically useful for structural exercises.

Turning from the model’s features to substantive findings, our second contribution is to
analyze classic questions about learning in networks within our framework. We begin by
analyzing the steady-state quality of aggregation of social information, and how it depends
on signal endowments and network structure. At every point in time, agents use neighbors’
actions to form an estimate of the most recent state before the current period. Our measure
of aggregation quality is the accuracy of these estimates. The main finding is that, in large
Bayesian populations, an essentially optimal benchmark is achieved in an equilibrium, as long
as each individual has access to a set of neighbors that is sufficiently diverse, in the sense of
having different signal distributions from each other. A key mechanism behind the value of
diverse signal endowments is that it leads to diversity of neighbors’ strategies. This avoids
“collinearity problems” in agents’ sources of information, which helps them to construct
better statistical estimators of the most recent state and better filter out confounds.

If signal endowments are not diverse, then our good-aggregation result does not hold. In-
deed, equilibrium learning can be bounded far away from efficiency, even though each agent
has access to an unbounded number of observations, each containing independent informa-
tion. Thus, Bayesian agents who understand the environment perfectly are not guaranteed to

be able to aggregate information well. We first make this point in highly symmetric networks,

3See, for instance, Molavi, Tahbaz-Salehi, and Jadbabaie (2018) and Harel, Mossel, Strack, and Tamuz (2021).
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where we can show the failure of aggregation is quite severe. We also identify conditions un-
der which this has severe welfare consequences, making agents worse off by an unbounded
amount relative to a world with diverse signals. Beyond these highly symmetric networks, it
is natural to ask whether diversity of network positions (as opposed to signals) can substitute
for diversity of information endowments by making neighbors’ equilibrium strategies suffi-
ciently diverse. We show that the answer is no: network asymmetry is a poor substitute for
asymmetric signal distributions. In large networks, it is impossible in equilibrium to achieve
accuracies of aggregation of the same order as in our positive result under signal diversity.

To achieve good learning when it is possible, agents must respond in a sophisticated way
to the correlations in their neighbors’ estimates. Thus, the second contrast we emphasize is
between Bayesians who are correctly specified about others’ behavior, and agents who are
too unsophisticated about correlations among their social observations to remove confounds,
as in some canonical behavioral learning models (Eyster and Rabin, 2010).* We identify a
class of such models in which information aggregation is essentially guaranteed to fall short
of good aggregation benchmarks for all agents. The deficiencies of naive learning rules are
different from and more severe than those in similar problems with an unchanging state,
where naive heuristics can aggregate information very well.’

Having discussed the implications of our model for questions of asymptotic learning, we
address a second classic question—namely, which agents are influential. We define a notion
of steady-state social influence—how an idiosyncratic change in an individual’s information
affects others’ average behavior. This is analogous to exercises familiar from the standard
DeGroot model of network learning (where the weights agents place on others are given
exogenously). The endogenous determination of weights makes a big difference for how
the structure of the environment affects social influence. Relative to the DeGroot model
benchmark studied in DeMarzo, Vayanos, and Zweibel (2003), an agent’s social influence is
much more sensitive to the quality of her private information. On the other hand, just as in
the standard benchmark, an agent’s influence is approximately proportional to her degree.

Our closing discussion makes two main points. First, some of our theoretical aggregation
results use large random graphs. We perform a numerical exercise to show that the main
message about information aggregation—diversity of signal types helps learning—remains
valid when we calculate equilibria on graphs reflecting real social networks. Second, our
analysis generalizes readily to richer models of multidimensional states and signals. As one
application of such a generalization, we consider a manager who wishes to facilitate better
learning in an organization, and ask what distributions of expertise such a designer would
4See also Bala and Goyal (1998), a seminal model of boundedly rational learning rules in networks.
°In analogous fixed-state environments where individuals have sufficiently many observations, if everyone uses
certain simple and stationary DeGroot-style heuristics (requiring no sophistication about correlations between

neighbors’ behavior), they can learn the state quite precisely (Golub and Jackson, 2010; Jadbabaie, Molavi,
Sandroni, and Tahbaz-Salehi, 2012). A changing state makes such imitative heuristics quite inefficient.
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prefer. Our results provide a distinctive rationale for informational specialization as a design

feature that facilitates good information aggregation.

An Example. We now present a simple example that illustrates our dynamic model, high-
lights obstacles to learning that distinctively arise in a dynamic environment, and gives a
sense of some of the main forces that play a role in our results on the quality of learning.
Consider a particular environment, with a single perfectly informed source S; many media
outlets My, ..., M, with access to the source as well as some independent private information;
and the general public. The public consists of many individuals who learn only from the media
outlets. We are interested in how well each member of the public could learn by following
many media outlets. More precisely, we consider the example shown in Figure 1.1 and think

of P as a generic member of the large public.

FIGURE 1.1. The network used in the “value of diversity” example

The state 6, follows a Gaussian random walk: 6, = 6;_1 + 14, where the innovations 1,
are standard normal. Each period, the source learns the state #; and takes an action (which
can be thought of simply as making an announcement) that reveals it. The media outlets
observe the source’s action from the previous period, which is #;_;. At each time period, they
also receive noisy private signals, sy, = 0; + nag,+ with normally distributed, independent,
mean-zero errors 7ys,;. They then announce their posterior means of 6, which we denote
by aps, ¢+ The member of the public, in a given period ¢, makes an estimate based on the
observations aas, 41, - ., am, 1 of media outlets’ actions in the previous period. All agents
are short-lived: they see actions in their neighborhoods one period ago, and then they take
an action that reveals their posterior belief of the state.

If we had a fized state but the same signals and observation structure, learning would
trivially be perfect: media outlets would learn the state from the source and report it to the
public. In the dynamic environment, given that P has no signal, she can at best hope to
learn 6;_; (and use that to estimate ;). Can this benchmark be achieved, and if so, when?

A typical estimate of a media outlet at time ¢ is a linear combination of sy, and 6,

(the latter being the social information that the media outlets learned from the source). In
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particular, the estimate can be expressed as
an,r = wisp, ¢+ (1 —w;)0pq,

where the weight w; on the media outlet’s signal is increasing in the precision of that signal.
We give the public no private signal, for simplicity only.

Suppose first that the media outlets have identically distributed private signals. Because
the member of the public observes many symmetric media outlets, it turns out that her best
estimate of the state, apy, is simply the average of the estimates of the media outlets. Since

each of these outlets uses the same weight w; = w on its private signal, we may write

i SAT f—
apy = wz % + (1 —w)byo = wby_1 + (1 —w)bO;_s.
i=1

That is, P’s estimate is an average of media private signals from last period, combined with
what the media learned from the source, which tracks the state in the period before that. In
the approximate equality, we have used the fact that an average of many private signals is
approximately equal to the state, by our assumption of independent errors. No matter how
many media outlets there are, and even though each has independent information about 6, 1,
the public’s beliefs are confounded by older information.

What if, instead, half of the media outlets (say M, ..., M,/;) have more precise private
signals than the other half, perhaps because these outlets have invested more in covering this
topic? The media outlets with more precise signals will then place weight w4 on their private
signals, while the media outlets with less precise signals use a smaller weight wg. We will
now argue that a member of the public can extract more information from the media in this

setting. In particular, she can first compute the averages of the two groups’ actions

n/2
type A average SM. t—1
=w —— + (1 —wa)big ~ wabli—1 + (1 —wa)bi_
action at time ¢t — 1 A 21: n/Q ( A> t—=2 AVt—1 ( A) t—2
1=
n
type B average SM: i—1
= w 0 4+ (1 —wg)b,_o ~ wb,_1 + (1 —wg)b;_s.
action at time ¢t — 1 B‘%l n/z ( B>t2 BYt-1 ( B>t2
1=n/2+

Then, since wy > wpg, the public knows two distinct linear combinations of 6;_; and 6;_,.
The state 0;_; is identified from these. So the member of the public can form a very precise
estimate of 8;_;—which, recall, is as well as she can hope to do. The key force is that the two
groups of media outlets give different mixes of the old information and the more recent state,
and by understanding this, the public can infer both. Indeed, to recover 6, 1, the public puts
a negative weight on the B group actions, which allows it to subtract off old information and
focus on the recent state, #;_;. One can show that if, in contrast, agents are naive, e.g., if

they think that all of the estimates of the media are uncorrelated (or only mildly correlated)
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conditional on the state, they will put positive weights on their observations and will again
be bounded from learning the state.

This illustration relied on a particular network with several special features: a very “cen-
tral” source, one-directional links, and no communication among the media outlets or public.
We will show that the same considerations determine learning quality in a large class of ran-
dom networks in which agents have many neighbors, with complex connections among them.
Quite generally, diversity of signal endowments in their neighborhoods allows agents to con-
centrate on new developments in the state while filtering out old, less relevant information

and thus estimate the changing state as accurately as physical constraints allow.

Outline. Section 2 sets up the basic model and discusses its interpretation. Section 3 defines
our equilibrium concept and shows that equilibria exist. Section 4 reports our main theoretical
results on the quality of information aggregation. In Section 5, we discuss learning outcomes
under a variety of non-Bayesian models. Section 6 defines and analyzes social influence.
Section 7 relates our model and results to the social learning literature. In Section 8, we
describe our numerical exercise with network data from Indian villages and discuss a simple

extension to multi-dimensional states to interpret our results on signal diversity.
2. MODEL

State of the world. There is a discrete set of instants, 7 =Z = {...,—2,—-1,0,1,2,...}.
At each time t € T, there is a state, a random variable 6, taking values in R. This state

evolves as an AR(1) stochastic process. That is,
Qt—l-l = Pgt + Vi1, (21)

where p is a constant with 0 < |p| < 1 and v4; ~ N(0,02) are independent innovations.
When |p| < 1 we have the explicit formula

o0

et = Z pZVt—&

=0

and thus the state at any time ¢ has the stationary distribution 6; ~ N (O, 13%)2) . We make
the normalization throughout that innovations have variance 1, i.e., 0, = 1.

As an alternative, we will also sometimes consider a specification with a starting time,
T =Z>o ={0,1,2,...}, where the state process can be defined as in (2.1) starting at time

0 with some specified distribution for 6.

Information and observations. The set of nodes is N = {1,2,...,n}. Each node i can
be thought of as a location, and is associated with a set N; C N of nodes that ¢ can observe,

called its neighborhood.®

SFor all results, a node #’s neighborhood can, but need not, include 7 itself.
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Each node is populated by a sequence of agents in overlapping generations. At each time
t, there is a node-i agent, labeled (i,t), who takes that node’s action a;;. This agent is born
at time £ — m at a certain node and has m periods to observe the actions taken around her
before she acts. Thus, when taking her action, the agent (7,t) knows a;,—, for all nodes
j € N; and lags ¢ € {1,2,...,m}. We call m the memory; it reflects how many periods of
actions in her neighborhood an agent passively observes before acting. One interpretation is
that a node corresponds to a role in an organization. A worker in that role has some time
to observe colleagues in related roles before choosing a once-and-for-all action herself. Much
of our analysis is done for an arbitrary finite m; we view the restriction to finite memory
as useful for avoiding technical complications, but because m can be arbitrarily large, this
restriction has little substantive content.”

In addition to social information from her neighborhood, each agent also sees a private
signal,

Sip = 0p + iy,
where the error term 7,;, ~ N(0,07) has a variance o7 > 0 that depends on the node but
not on the time period. All the errors n;; and state innovations v, are independent of one
another. An agent’s information is a vector consisting of her private signal and all of her
social observations. An important special case will be m = 1, where agents observe only
one period of others’ behavior before acting themselves, so that the agent’s information is
(sie: (aja-1)jen,)-

The observation structure is common knowledge, as is the informational environment (i.e.,
the joint distribution of all exogenous random variables). The network G' = (N, E) is the set
of nodes N together with the (fixed) set of links E, defined as the subset of pairs (i, j) € N x N
such that 7 € N;.

An environment is specified by (G, o), where o = (0;);en is the profile of signal variances.

Preferences and best responses. As stated above, in each period ¢, each agent (7, t) makes
her once-and-for-all choice a;; € R, seeking to make this action close to the current state.
Utility is given by

wii(ais) = —El(ai; — 6;)%). (2.2)
By a standard fact about squared-error loss functions, given the distribution of (@, +—¢)}";,
the optimal choice of agent (i,t) is to set

Qi = E[Qt | fi,t7 (aNi,t—ﬁ)znzlj]- (2-3)

TV
i’s information

Tt is worth noting that even when the memory m is small, observed actions can indirectly incorporate signals
from much further in the past.
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t=-1 t=0 t=1
| | |
1 1 1
(i, —1) observes t = —1 signal
and acts
i orn and observes i,0) observes t = 0 signa
i,0) b d ob i,0) ob 0 signal
t = —1 actions and acts
(i,1) born and observes (i,1) observes t = 1 signal
t = 0 actions and acts

FIGURE 2.1. An illustration of the overlapping generations structure of the model for
m = 1. At time ¢ — 1, agent (7,¢) is born and observes actions taken at time ¢ — 1 in her
neighborhood. Then, at time ¢, she observes her private signal s; ; and takes her action a; ;.

Here the notation ay, ¢ refers to the vector (a;y);en, of time- actions in the agent’s neigh-
borhood. An action can be interpreted as an agent’s estimate of the state, and we will
sometimes use this terminology.

The conditional expectation (2.3) depends, of course, on the prior of agent (i,t) about 6,
which, under correctly specified beliefs, has distribution 6, ~ N (0, 1ii2>. We actually allow
the prior to be any normal distribution or a uniform improper prior.® It saves on notation

to analyze the case where all agents have improper priors. Because actions under a normal
prior are related to actions under the improper prior by a simple linear bijection—and thus
have the same information content for other agents—all results immediately extend to the
general case.

The doubly-infinite time axis introduces some subtleties into the definition of strategy

profiles; complete details are formalized in Appendix E.

3. UPDATING AND EQUILIBRIUM

In this section we study agents’ learning behavior and present a notion of stationary equi-
librium. We begin with the canonical case of Bayesian agents with correct models of others’

behavior; we study other behavioral assumptions in Section 5 below.

3.1. Best-response behavior. The first step is to analyze optimal updating behavior in
response to others’ strategies. A strategy of an agent is linear if the action taken is a linear
function of the variables in her information set. We will analyze agents’ best responses to

linear strategies, showing that they are linear and computing them explicitly.

8We take priors, like the information structure and network, to be common knowledge.
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Suppose predecessors have played linear strategies up to time ¢.” Then we can express
each action up until time ¢ as a weighted summation of past signals s;;, for various ¢ and
t. Since these signals themselves are linear combinations of the Gaussian innovations 1, and
signal errors 7);,, the joint distribution of (a;;—¢ — 0¢)ienp>1 is multivariate Gaussian. It
follows that E[6; | si+, (an, t—¢)}";] is a linear function of s, and (an;, —¢);",. The rest of this

subsection analyzes this conditional expectation.

3.1.1. Covariance matrices. The optimal weights for an agent to place on past actions de-
pends on their distribution. It will be useful to look at the errors pzam_g — 0 of past
actions as predictors of the time-t state. Here p‘}ai’t,g is the conditional expectation of 6,
given a;;_¢, and the error is the difference between this prediction and 6,. Given a linear
strategy profile played up until time ¢, let V; be the covariance matrix of the vector of er-
rors (p'ais—o — Ot)ien, 0<e<m—1. (This covariance matrix has dimensions nm x nm.) The
entries of V; are denoted by V;;;. In the case m = 1, this is simply the covariance matrix
V; = Cov ((%t — Qt)ieN).

3.1.2. Best-response weights. A strategy profile is a best response if the weights each agent
places on her observations maximize her utility, (2.2), i.e. minimize the squared error of her
action. We now characterize such weights in terms of the covariance matrices we have defined.
Consider an agent at time ¢, and suppose some linear strategy profile has been played up
until time ¢. Let Vi, ;1 be a sub-matrix of V,_; that contains only the rows and columns
corresponding to neighbors'® of i and consider the following covariance matrix constructed

from all of (i,t)’s observations, including her private signal s;;:

0

VNi,tfl O

Cii1= _
0 0 o?

9We will discuss this below in the context of our equilibrium concept; but one immediate motivation is that,
in the model with a starting time, where 7 = Zx>(, Bayesian agents’ updating at ¢ = 0 is a single-agent
problem where optimal behavior is a a linear function of own signals only, and thus the hypothesis holds. At
later times it holds by induction.

OExplicitly, Vi, t—1 are the covariances of (pzaj,t_g —6;) forall j € N; and £ € {1,...,m}.
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Conditional on observations (ay,:—¢)j-; and s;;, agent (i,t)’s posterior belief about the

state 0; is a normal distribution with a mean that can be calculated as

pa‘Ni,t—].
Elb: | siv, (@n,o)in] = it - (3.1)
. ' 1TCi,t£11 pPran, 1—m
agent i’s weights Sit

)

agent i’s observations

(see Example 4.4 of Kay (1993)). By equation (2.3), this mean is the action that (7,t) plays.
Expression (3.1) is a linear combination of the agent’s signal and the observed actions; the
weights in this linear combination depend on the matrix V;_y, but not on realizations of any
random variables. In (3.1) we use our assumption of an improper prior.'!

We denote by (W, w?) a weight profile in period t, with w; € R™ being the weights agents

place on their private signals and W; being the weights they place on their other information.

3.1.3. The evolution of covariance matrices under best-response behavior. Assuming agents
best-respond according to the optimal weights just described in (3.1), we can compute the
resulting next-period covariance matrix V; from the previous covariance matrix. This defines
amap ¢ :)V — V, given by

®:V, 1=V, (3.2)

This map gives the basic dynamics of the model: how an arbitrary variance-covariance matrix
V,_1 maps to a new one when all agents best-respond to V;_;. The variance-covariance
matrix V;_; (along with parameters of the model) determines (i) the weights agents place
on their observations, via (3.1), and (ii) the distributions of the random variables that are
being combined in this operation. This yields the deterministic updating dynamic ®. A
consequence is that the weights agents place on observations are (commonly) known, and do

not depend on any random realizations.

Example 1. We compute the map ® explicitly in the case m = 1. We refer to the weight
agent i places on paj,; 1 as Wi, and the weight on s;;, her private signal, as w;,. Note we

have, from (3.1) above, explicit expressions for these weights. Then

(3.3)

3.2. Stationary equilibrium in linear strategies. We will now turn our attention to

stationary equilibria in linear strategies—ones in which all agents’ strategies are linear with

HAs we have mentioned, this is for convenience and without loss of generality. Our analysis applies equally
to any proper normal prior for 6;: To get an agent’s estimate of #;, the formula in (3.1) would simply be
averaged with a constant term accounting for the prior, and everyone could invert this deterministic operation
to recover the same information from others’ actions.
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time-invariant coefficients—though, of course, we will allow all agents to consider deviating
to arbitrary strategies, including non-linear ones. Once we establish the existence of such
equilibria, we will use the word equilibrium to refer to one of these unless otherwise noted.
A reason for focusing on equilibria in linear strategies comes from noting that, in the
variant of the model with a starting time (i.e., the case T = Z>() agents begin by using only
private signals, and they do this linearly. After that, inductively applying the reasoning of
Section 3.1, best-responses are linear at all future times. Taking time to extend infinitely
backward is an idealization that allows us to focus on exactly stationary behavior.

We now show the existence of stationary equilibria in linear strategies.

Proposition 1. A stationary equilibrium in linear strategies exists, and is associated with

a covariance matrix V such that (ID(‘A/) =V.

The proof appears in Appendix A.

At such an equilibrium, the covariance matrix V; and all agent strategies are time-invariant.
Actions are linear combinations of observations with stationary weights (which we denote by
Wij and w;). The form of these rules has some resemblance to static equilibrium notions
studied in the rational expectations literature (e.g., Vives, 1993; Babus and Kondor, 2018;
Lambert, Ostrovsky, and Panov, 2018; Mossel, Mueller-Frank, Sly, and Tamuz, 2020). It also
has a similar form to the DeGroot (1974) and Friedkin and Johnsen (1997) updating rules,
typically imposed as behavioral heuristics. In our dynamic environment, such a solution

emerges as a steady state.

3.2.1. Proof sketch for the existence result. The goal is to apply the Brouwer fixed-point
theorem to show there is a covariance matrix V that remains unchanged under updating. To
find a convex, compact set to which we can apply the fixed-point theorem, we use the fact that
when agents best respond to any beliefs about prior actions, all action variances are bounded
above and bounded away from zero below. This is because all agents’ actions must be at least
as precise in estimating 6; as their private signals, and cannot be more precise than estimates
given perfect knowledge of 6;,_; combined with the private signal. This establishes bounds on
action variances. The Cauchy-Schwartz inequality then bounds covariances in terms of the
corresponding variances. All matrices respecting these bounds constitute a compact, convex
set containing the image of ®. This and the continuity of ® allow us to apply the Brouwer
fixed-point theorem.

3.2.2. Other remarks. In the case of m = 1, we can use the formula of Example 1, equation
(3.3), to write the fixed-point condition @(‘7) =V explicitly. More generally, for any m, we
can obtain a formula in terms of V' for the weights /VIZ-J» and @ in the best response to ‘/}, and
use this to describe the equilibrium I//\;j as solving a system of polynomial equations. These

equations typically have large degree and cannot be solved analytically except in very simple
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cases, but they can readily be used to solve for equilibria numerically. A related feature of
the model is that standard methods can easily be applied to estimate it and test hypotheses
within it (see Appendix D for details).

The main insight is that we can find equilibria by studying action covariances; this idea
applies equally to many extensions and variations of our basic model. We give two examples:
(1) We assume that agents observe neighbors perfectly, but one could define other observation
structures. For instance, agents could observe actions with noise, or they could observe
some set of linear combinations of neighbors’ actions with noise. Similarly, agents could be
observing predecessors’ actions for heterogeneous durations before acting (i.e., node-specific
m). (2) We assume agents are Bayesian and best-respond rationally to the distribution of
actions, but the same proof would also show that equilibria exist under other behavioral rules
(see Section 5.1).1

Proposition 1 shows that there exists a stationary linear equilibrium. We show later, as
part of Proposition 2, that there is a unique stationary linear equilibrium in networks having
a particular structure. In general, uniqueness of the equilibrium is an open question that we
leave for future work.'® In Section 4.2.3 and Appendix G, we discuss a nonstationary variant
of the model which has a unique equilibrium, and relate it to our main model.

How much information does each agent need to play her equilibrium strategy? In a sta-
tionary equilibrium, she only needs to know the steady-state variance-covariance matrix ‘A/}Vl.
in her neighborhood. Then her problem of inferring #;_; becomes essentially a linear regres-
sion problem. If historical empirical data on neighbors’ error variances and covariances are

available, then ‘A/Ni can be estimated from such data.

4. HOW GOOD IS INFORMATION AGGREGATION IN EQUILIBRIUM?

In this section we analyze the quality of information aggregation in stationary equilibrium.
We begin with a definition. Recall that an agent at time ¢ uses social information to form
a belief about #;_1, which is a sufficient statistic for the past in the agent’s decision problem.
The conditional expectation of 8, ; that an agent (i,¢) forms based on social information is

called her social signal and denoted by 7;

Tip = Elfi 1 | (@n,—0)i2]-

2What is important in the proof is that actions depend continuously on the covariance structure of an agent’s
observations; the action variances are uniformly bounded under the rule agents play; and there is a decaying
dependence of behavior on the very distant past.

13We have checked numerically that ® is not, in general, a contraction in any of the usual norms (entrywise
sup, Euclidean operator norm, etc.). In computing equilibria numerically for many examples, we have not
been able to find a case of equilibrium multiplicity. Indeed, in all of our numerical examples, repeatedly
applying ® to an initial covariance matrix gives the same fixed point for any starting conditions.
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Definition 1. For a given strategy profile, define the aggregation error k7, = Var(r;; — 6;_1)
to be the variance of the social signal (equivalently, the expected squared error in the social

signal as a prediction of 6;_1).

The aggregation error measures how well an agent can extract information from social obser-
vations. Note that agent i’s aggregation error is a monotone transformation of her expected
utility.!* We will be interested in this number, and how low error can be in equilibrium.
The environment features informational externalities: players do not internalize the impact
that their learning rules have on others’ learning. Consequently, there is no reason to expect
outcomes to be efficient in any exact sense. And we have seen that the details of equilibrium
in a particular network can be complicated. However, it turns out that much more can
be said about the behavior of aggregation errors as neighborhood size (i.e., the number of
social observations) grows. In this section, we study the asymptotic efficiency of information
aggregation. We give conditions under which aggregation error decays as quickly as physically
possible, and different conditions under which it remains far from efficient levels even when
agents have arbitrarily many observations. We discuss the case m = 1 for simplicity but the

reasoning extends easily to other values of m.

A benchmark lower bound on aggregation error. A first observation is a lower bound
on the aggregation error (in terms of an asymptotic rate as a function of a node’s degree)
under any behavior of agents. This establishes a benchmark relative to which we can assess
equilibrium outcomes.

Let d; denote the out-degree of an agent +.

Fact 1. Fix p € (—1,1) as well as upper and lower bounds for private signal variances, so
that o? € [0?,77] for all i. On any network and for all strategy profiles, we have Klf’t > c/d;

for all i and ¢, where ¢ is a constant that depends only on p,o?, and 7.

The lower bound is reminiscent of the central limit theorem: if an agent had d; conditionally
independent noisy signals about 6;_; (e.g., by observing neighbors’ private signals directly),
then the variance of her estimate would be of order 1/d;. Fact 1 notes that it is not possible
for aggregation errors to decay (as a function of degree) any faster than that.

For an intuition, imagine that an agent sees neighbors’ private signals (not just actions) one
period after they are received, and all other private signals two periods after they are received;
this clearly gives an upper bound on the quality of aggregation given physical communication
constraints. The information that is two periods old cannot be very informative about 6;_;
because of the movement in the state from period ¢t —2 to ¢t — 1; a large constant number z of
signals about 6;,_; would be better. Thus, a lower bound on aggregation error is given by the

M1 fact, for any decision dependent on 6;, an agent is better off with a lower value of “?,r This is a
consequence of the fact that unidimensional Gaussian signals can be Blackwell ordered by their precision.
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error that could be achieved with d; + z independent signals about 6;_; of the best possible

precision (¢72). The bound follows from these observations.

Outline of results: When is aggregation comparable to the benchmark? Fact 1
places a lower bound on aggregation error given the physical constraints. Even efficient
learning could not do better than this bound. We will examine when equilibrium learning
can achieve aggregation of similar quality. More precisely, we ask when there is a stationary
equilibrium where the aggregation error at node i satisfies k7 < C/d; for all i, for some
constant C.

In Section 4.2 we establish a good-aggregation result: outcomes comparable to the bench-
mark are achieved in equilibrium in a class of networks. The key condition enabling the
asymptotically efficient equilibrium outcome is called signal diversity: each individual has
access to enough neighbors with multiple different kinds of private signals. The fact that
neighbors use private information differently turns out to give the agents enough power to
identify #;_; with equilibrium aggregation error that decays at a rate matching the lower
bound up to a multiplicative constant.

In Section 4.3, we turn to negative results. Without signal diversity, equilibrium aggrega-
tion can be extremely bad. Our first negative result shows that when signals are exchange-
able, it may be that the aggregation error %7 does not approach zero in any equilibrium no
matter how large neighborhoods are, though a social planner could achieve good aggrega-
tion by prescribing different updating weights. We prove this in highly symmetric networks.
Once we move away from such networks, one might ask whether diversity in individuals’
network positions could play a role analogous to signal diversity and enable approximately
efficient learning. Our second negative result shows that this is impossible. When signals
are homogeneous and all agents’ degrees in network G,, are bounded by d(n) (where d(n) is
any unbounded sequence) then in any equilibrium, aggregation errors cannot vanish at rate
C/d(n) for any C' > 0 as the network grows.

4.1. Distributions of networks and signals. For our good-aggregation result, we study
large populations and specify two aspects of the environment: network distributions and
signal distributions. In terms of network distributions, we work with a standard type of
random network model—a stochastic block model (see, e.g., Holland, Laskey, and Leinhardt,
1983). It makes the structure of equilibrium tractable while also allowing us to capture rich
heterogeneity in network positions. We also specify signal distributions: how signal precisions
are allocated to agents, in a way that may depend on network position. We now formalize
these two primitives of the model and state the assumptions we work with.

Fix a set of network types k € K ={1,2,..., K}. For each pair of network types, there is
a given probability pir that each agent of network type k has a link to each agent of network

type K. An assumption we maintain on these probabilities is that each network type k
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observes at least one network type (possibly k itself) with positive probability. There is also
a vector (ay,...,ax) of population shares of each type, which we assume are all positive.
Jointly, (prr)iwex and o specify the network distribution. These parameters can encode
differences in expected degree and also features such as homophily (where some groups of
types are linked to each other more densely than to others).

We next define signal distributions, which describe the allocation of signal variances to
network types. Fix a finite set S of private signal variances, which we call signal types.'® We
let qi, be the share of agents of network type k with signal type 7; (qxr)kex,res defines the
signal distribution.

Let the nodes in network n be partitioned into the network types N1, N2 ... NX with the
cardinality | N*| equal to |axn] or [agn] (rounding so that there are n agents in the network).
We (deterministically) set the signal variances o? equal to elements of S in accordance with
the signal shares (again rounding as needed). Let (G,) ~, be a sequence of directed or
undirected random networks with these nodes, so that i € N* and j € N¥ are linked with
probability pir/; these realizations are all independent.

A stochastic block model D is specified by the linking probabilities (pgr )k e, the type
shares a, and the signal distribution (gx. )rex res. Welet (G, (D), o,(D)) denote a realization
of the network and signal variances under a given stochastic block model. We say that a signal

type 7 is represented in a network type k if qi, > 0.

Definition 2. A stochastic block model satisfies signal diversity if each network type has a

positive probability of linking with at least one network type containing two distinct signal

types.

We will discuss stochastic block models that satisfy this condition as well as ones that do

not, and show that the condition is pivotal for information-aggregation.

4.2. Good aggregation under diverse signals. Our first main result is that signal di-
versity is sufficient for good aggregation in the networks described in the previous section.
Aggregation error decays at a rate C/d; for each node i independently of the structural
properties of the network.

We first define a notion of good aggregation for an agent in terms of a bound on that

agent’s aggregation error.

Definition 3. Given € > 0, we say that agent i achieves the e-aggregation benchmark in a

given equilibrium if the aggregation error satisfies k2 < ¢.
We say an event (indexed by m) occurs asymptotically almost surely if the probability of
the event converges to 1 as n — oo.

5The assumptions of finitely many signal types and network types are for technical convenience only, and
could be relaxed.
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Theorem 1. Fizx any stochastic block model D satisfying signal diversity. There exists C' > 0
such that asymptotically almost surely the environment (G,(D),o,(D)) has an equilibrium

where all agents achieve the C'/n-aggregation benchmark.

So for large enough n, society is very likely to aggregate information very well. The
uncertainty in this statement is over the network, as there is always a small probability of
a realized network which prevents learning (e.g., an agent has no neighbors). We give an
outline of the argument next, and the proof appears in Appendix B.

The constant C' in the theorem statement can depend on the stochastic block model D.
However, given any compact set of stochastic block models D, we can choose a single C' > 0
for which the result holds uniformly across D.'® Thus, the theorem can be applied without
detailed information on how the random graphs are generated, as long as some bounds are

known about which models are possible.

4.2.1. Discussion of the proof. To give intuition for Theorem 1, we first describe why the
theorem holds on the complete network!” with two signal types A and B in the m = 1 case.
This echoes the intuition of the example in the introduction. We then discuss the challenges
involved in generalizing the result to our general stochastic block model networks, and the
techniques we use to overcome those challenges.

Consider a time-t agent, (i,t). Recall that the social signal r;; is the optimal estimate of
0;—1 based on the actions (i,t) has observed in her neighborhood. In the complete network,
all players have the same social signal, which we call r,.'®

At any equilibrium, each agent’s action is a weighted average of her private signal and this
social signal.

aip = W;sit + (1 — ;). (4.1)
The weights on the observations s;; and pa;;—; (which constitute the social signal) sum to
1, because the optimal action is an unbiased estimate of #;. The weight W on the private
signal depends on the precision of this signal relative to the social signal. We call the weights
used by agents of the two distinct signal types w% and @3. Suppose signal type A is more
accurate than signal type B, so that w% > w3.

Now, turning our attention to the next period of updating, observe that each time-(t 4 1)

agent can compute two averages of the time-t actions—one for each type. Using (4.1) to

16The reason is that the distribution of aggregation errors is upper hemicontinuous in model parameters, so
if the desired bounds hold for each point in a compact set, they can be made uniform.

"Note this is a special case of the stochastic block model.

180 particular, agent (i,t) sees everyone’s past action, including the one taken last period at the same node,
Qi t—1-
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rewrite a;; and then plugging in s;; = 6; + n; 4

type A average 1 —~ ~ _
yp_ _ 88— g a;p = W30 + (1 —wy)ry + O(n 1/2),
action at time ¢ na

g2 — 2
Z.O’i —O'A

type B average 1 ~ ~ _
yp. . 5 - E A;t = w%@t + (1 — w%)rt + O(n 1/2),
action at time ¢ np 9

io}=0%
Here n4 and np denote the numbers of agents of each type (recalling we assumed each type is
a positive share of the population size, n). The O(n~'/2) error terms come from the average
signal noises 7; ; of agents in each group; the bound holds with high probability by the central
limit theorem. In other words, each time-(f 4+ 1) agent can obtain precise estimates of two
different convex combinations of #; and ;. Because the two weights, w¥ and w%, are distinct,
she can approximately solve for 6, as a linear combination of the average actions taken by each
type she observes (up to signal error). It follows that in the equilibrium we are considering,
the agent must have an estimate at least as precise as what she can obtain by the strategy
we have described, and will thus be very close the benchmark. The estimator of 6; in this
strategy places negative weight on % Zi:U?ZJ% a; 41, thus anti-imitating the agents of signal
type B—those with the less precise private signal. Proposition 3 below implies that the actual
equilibrium in which agents learn will also have agents anti-imitating others.

To use the same approach in general, we need to show that each individual observes a large
number of neighbors of at least two signal types who also have similar social signals. More
precisely, the proof shows that agents with the same network type have highly correlated
social signals. Showing this is much more subtle than it was in the above illustration. In
general, the social signals in an arbitrary network realization are endogenous objects that
depend to some extent on all the links.

A key insight allowing us to overcome this difficulty is a useful general fact about sufficiently
dense stochastic block models: despite a lot of idiosyncratic randomness in direct connections,
the law of large numbers implies the number of paths of length two between any i of type k
and j of type K’ going through agents of type k” is nearly determined by the types k, k', and
k", with a small relative error.'” We can leverage this to deduce some important facts about
the updating map ® (recall Section 3.1.3) in the realized random network, and specifically
about the evolution of social signals.

In particular, if we look at the set of covariance matrices where all social signals are close to
perfect, we can show that the composition ®2 := ® o ® maps this set to itself. In other words,
if social signals are very precise, then they will remain very precise two periods later. If the

two-step path counts were determined by types exactly, the reasoning of the complete graph

BFor simplicity we begin by illustrating the argument in a random graph family where the number of two-
step paths is nearly deterministic. The argument extends to a larger class of models where the same property
applies to longer paths, as we discuss in the next subsection.
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example above would generalize, with all neighbors of ¢ of the same type updating in the
same way. We show that despite the path counts being known only approximately, the desired
conclusion holds. This is nontrivial because the weights agents use in their updating—and
thus the evolution of social signals—could depend sensitively on realized network structure;
small relative errors could matter. A key step is to develop results on matrix perturbations
to show that small relative changes in the network do not affect ®2 too much. A fixed-point
theorem then implies there is a fixed point of ®? in the set of outcomes with very precise
social signals. With some further analysis we can deduce that this implies the existence of

an equilibrium (corresponding to a fixed point of ®) with nearly perfect aggregation.

4.2.2. Sparser random graphs. In the random graphs we have defined in Section 4.1, the
group-level linking probabilities (pyy) are, for simplicity, held fixed as n grows. This yields
expected degrees that grow linearly in the population size, which may not be the desired
asymptotic model. We can, however, establish versions of our results in a class of models
much more flexible with respect to degrees. While it is important to have neighborhoods
“large enough” (i.e., growing in n) to permit the application of laws of large numbers, their
rate of growth can be considerably slower than linear. For example, our proof can be extended
directly to degrees that scale as n® for any a > 0 to show that asymptotically almost surely,
there exists an equilibrium where the C'/n®-aggregation benchmark is achieved for all agents.
Instead of studying ®? and two-step paths, one can apply the same analysis to the L-fold
composition @, which reflects L-step paths. In order to do this, one uses the fact that for
L larger than 1/, the number of paths of length L between any two nodes is determined by
their types with a small relative error. Extending our proof above, we can then characterize

the behavior of ®* and then deduce the claimed aggregation property for ®.

4.2.3. The good-aggregation outcome as a unique prediction. The theorem above says good
aggregation is supported in an equilibrium but does not state that this is the unique equilib-
rium outcome. To deal with this issue, we study the alternative model with 7 = Z>q (where
agents begin with only their own signals and then best-respond to the previous distribution
of behavior at each time). We show that its long-run outcomes get arbitrarily close to the
good-aggregation equilibrium of Theorem 1 as n — 0o, under the same conditions. Thus,
even if there were other equilibria of the stationary model, they could not be approached via
the natural iterative procedure coming from the 7 = Z>, model. Formal statements and

details are in Appendix G.

4.3. Aggregation under homogeneous signals. Having established conditions for good
aggregation under signal diversity, we now explore what happens without signal diversity.

Our general message is that aggregation is worse.
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To gain an intuition for this, note that it is essential to the argument described in the
previous subsection that different agents have different signal precisions. Recall the complete
graph case. From the perspective of an agent (i,¢ + 1), the fact that type A and type B
neighbors place different weights on the social signal r, allows the agent to avoid a collinearity
problem and separate 6; from a confound. In that example, if type A and B agents had the
same signal types, they would use the same weights, and our agent trying to learn from them
would face a collinearity problem.

We begin by studying graphs having a symmetric structure and show that learning out-
comes are necessarily bounded very far from good aggregation. We then turn to arbitrary
large graphs and prove a lower bound on aggregation error that implies the homogeneous-
signals regime has, quite generally, worse outcomes for some agents than those achieved by

everyone in our good-aggregation result.

4.3.1. Aggregation in graphs with symmetric neighbors.

Definition 4. A network G has symmetric neighbors if whenever j, 7/ € N; for some 7, then
N; = Nj.

In the undirected case, the graphs with symmetric neighbors are the complete network and
complete bipartite networks.?’ For directed graphs, the condition allows a larger variety of

networks.

Proposition 2. Consider a sequence (Gy,), -, of strongly connected graphs with symmetric
neighbors. Assume that all signal variances are equal, and that m = 1. Then there is a
unique equilibrium on each G,,. Moreover, there exists € > 0 such that the e-aggregation

benchmark is not achieved by any agent ¢ at this equilibrium for any n.

All agents have non-vanishing aggregation errors at the unique equilibrium. So all agents
learn poorly compared to the diverse signals case. The proof of this proposition, and the
proofs of all subsequent results, appear in Appendix F.

This failure of good aggregation is not due simply to a lack of sufficient information in the
environment: On the complete graph with exchangeable (i.e., non-diverse) signals, a social
planner who set weights for all agents could achieve e-aggregation for any ¢ > 0 when n is
large. See Appendix I for a formal statement, proof and numerical results.?! In this sense,
the social learning externalities are quite severe: a fairly small change in weights for each
individual could yield a very large benefit in a world of homogeneous signal types.

We now give intuition for Proposition 2. In a graph with symmetric neighbors and homoge-

neous signals, in the unique equilibrium,?? actions of any agent’s neighbors are exchangeable.

20These are both special cases of our stochastic block model from Section 4.2, so Theorem 1 applies to these
network structures when signal diversity in satisfied.

2IWe thank Alireza Tahbaz-Salehi for suggesting this analysis.

22The proof of the proposition establishes uniqueness by showing that ® is a contraction in a suitable sense.
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So Bayesian estimates (and thus actions) must weight all neighbors equally. This prevents
the sort of inference of 6; that occurred with diverse signals. This is easiest to see on the
complete graph, where all observations are exchangeable. So, in any equilibrium, each agent’s

action at time t + 1 is equal to a weighted average of her own signal and the average action

Wlﬂ ZjeNi Qjt
> aj (4.2)

JEN;

Qi1 = W; Sipr1 + (

INI

By iteratively using this equation, we can see that actions must place substantial weight on
the average of signals from, e.g., two periods ago, and indeed farther back. Note that all
signals s,y at past times ¢’ take the form 6y + ;. Thus, although the effect of signal errors
n;» vanishes (by averaging) as n grows large, the correlated error from past changes in the
state vy never “washes out” of estimates, and this is what prevents vanishing aggregation
errors.

The bad-aggregation result as stated applies to exactly homogeneous signal types only. In
fact, in finite networks we need sufficiently heterogeneous signals to avoid the bad-learning ob-
struction; this is illustrated in Appendix C. In Section 4.4 we discuss the welfare implications
of this failure of aggregation.

As a consequence of Theorem 1 and Proposition 2, we can give an example where making

one node’s private information less precise helps all agents.

Corollary 1. There exists a network G' and an agent 7 € G such that increasing o? gives a

Pareto improvement at the unique equilibrium.

To prove the corollary, we consider the complete graph with homogeneous signals and
large n. By Proposition 2, all agents have non-vanishing aggregation errors. If we instead
give agent 1 a very uninformative signal, all players can anti-imitate agent 1 and achieve
vanishing aggregation errors. When the signals at the initial configuration are sufficiently
imprecise, this gives a Pareto improvement. There are also examples where severing links in
the observational network can yield a Pareto improvement, as reported in an earlier version
of the present paper (Dasaratha, Golub, and Hak, 2018).

4.3.2. Aggregation in arbitrary networks. Section 4.3.1 showed aggregation errors are non-
vanishing when signal endowments and neighborhoods are symmetric. A natural question is
whether asymmetry in network positions can substitute for asymmetry in signal endowments.
In Section 4.2 the key point was that different neighbors’ actions were informative about
different linear combinations of ; and 6;_;, and this permitted filtering. Perhaps different
network positions can achieve the same effect?

We thus move to arbitrary networks and show a weaker but much more general result.

Consider any sequence of equilibria on any networks with symmetric signal endowments.
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Our result here is that no equilibrium achieves C'/n-aggregation for almost all agents, no
matter what C' is. In particular, this implies that the rate of learning is slower than at the
good-learning equilibrium with diversity of signal endowments from Theorem 1. Moreover, if
degrees are bounded above by some d growing at rate slower than n, we prove the stronger

statement that no equilibrium achieves C'/d-aggregation for almost all agents.

Theorem 2. Let C' > 0. Let (G,)2, be an arbitrary sequence of networks and suppose all

private signals have variance o*. If all agents’ in-degrees and out-degrees are bounded above
2

by some d(n) — 0o, then in any sequence of equilibria, &2 > C/d(n) for a non-vanishing

fraction of agents 1.

In addition to considering arbitrary networks, we allow the memory m to be arbitrary
(yet finite). Because the assumptions are much weaker, we obtain a weaker conclusion than
in Proposition 2. While Proposition 2 shows that aggregation errors are non-vanishing,
the theorem shows that aggregation errors cannot vanish quickly, but does not rule out
aggregation errors vanishing more slowly.

The basic intuition is that to avoid putting substantial weight on 6; 5, an agent at time
t must anti-imitate some neighbors. If all or almost all neighbors achieve C'/n-aggregation
for some C' and have identical types of private signals, there is not much diversity among
neighbors. So more and more anti-imitation is needed as m grows large in the sense that
the total positive weight and total negative weight on neighbors both grow large. But then
the contribution to the agent’s variance from neighbors’ private signal errors cannot vanish
quickly.

We can combine Theorems 1 and 2 to compare the value of signal diversity and network
diversity. With diversity of signal endowments, there exists C' > 0 such that asymptotically
almost surely there is a good-learning equilibrium achieving the C'/n-aggregation benchmark
for all agents under the stochastic block model. With exchangeable signals, it is not possible
to find equilibria so close to the benchmark for any sequence of networks.

Theorem 2 shows that network heterogeneity cannot improve learning outcomes as much
as signal heterogeneity. The formal results establish a gap between asymptotic rates of
convergence (in contrast to the stronger bad-learning result for networks with symmetric
neighbors). Section 8.1 shows that in real-world (highly asymmetric) social networks, signal
heterogeneity improves learning outcomes much more than choosing a very favorable network

structure but homogeneous signals.

4.4. The welfare loss associated with homogeneity. The results derived so far in this
section show that there is a qualitative difference in how well agents are able to infer re-
cent states across the homogeneous and heterogeneous signal settings. How important is
this difference for welfare? We illustrate next that the welfare loss associated with signal

homogeneity can be arbitrarily severe.
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To gain an intuition for this, note that with homogeneous signals, period-t actions are
confounded by previous states. These confounds include 6, 5, which all ¢ — 1 agents use in
the same way (as illustrated in the example of the introduction). But the confounds also
include 6;_3, which could not be filtered out by ¢ — 1 agents, and so forth. The more weight
agents place on social information (i.e., the more informative the past is), the more severe
this confounding is. If the state is highly persistent and private signals are not very precise,
then the confounds from periods even very long ago are substantial. The following corollary

quantifies this effect.

Corollary 2. Consider a complete graph with all signal variances equal to o2, and let m = 1.

Then, in any symmetric strategy profile,

(1—a°)
Var(ai,t — Qt) Z 1 (1 — @S)QpQ'

2 5 0 and, agent i’s action error in the unique equilibrium

3

As p — 1 from below and o~

converges to infinity. Moreover, this convergence is uniform in n.?

In contrast, recall that our main positive results show the C/n-aggregation benchmark
would be achieved with signal heterogeneity. When this benchmark is achieved, each indi-
vidual obtains a variance Var(a;; — 6;) that is at worst 1 if n is large enough.** This bound

2 or p. This implies welfare can be arbitrarily worse in

on variance does not depend on o
environments with signal homogeneity compared to ones with heterogeneity. In particular,
the corollary guarantees that we can choose (072, p) so that the error is arbitrarily large,
uniformly in n. If we modify the signal distribution so that it is heterogeneous® then error
variance will be at most 1 for large enough n.

In large complete graphs with homogeneous signals, we can explicitly characterize the
limit action variance (and therefore welfare). Let V™ denote the limit, as n grows large, of
Var(a;; — 0;). Let Cov™ denote the limit covariance of any two agents’ errors. By direct
computation using equation (3.3), these can be seen to be related by the following equations,

which have a unique solution:

- 1 - (p? Cov™® +1)~1
V™ = , Cov™ = )
072+ (p? Cov™® +1)~1 [072 + (p? Cov™ +1)71]2

These equations also let us extend Corollary 2 beyond the complete graph. The variance

(4.3)

and covariance in (4.3) describe the limits of all variances and covariances in any graph with

symmetric neighbors where degrees tend uniformly to infinity. Indeed, it can be deduced (as

Z3For any v, there are p<1land 2> 0 such that if p > p and 072 < &2, then Var(a;; — 6;) > v for all n.
24Note the agent can use the estimate of last period’s state, which has an error of order C /n. If the agent
simply guessed this estimate, then she would achieve Var(6; — 6;,_1) = 1, since the state innovation has
variance 1. Combining this with her private signal does strictly better than this.

Z5For example, by making half the agents’ signals strictly worse.
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in the proof of Corollary 2) that agents’ actions are equal to an appropriately discounted sum
of past 6;_y, up to error terms (arising from 7;; ,) that vanish asymptotically. As 672 — 0
and p — 1 from below, equations (4.3) show that Cov™ and therefore also V*° diverge to
infinity. This shows the welfare loss from homogeneity can also be arbitrarily severe in graphs

with symmetric neighbors and large degrees.

5. THE IMPORTANCE OF UNDERSTANDING CORRELATIONS

In the positive result on achieving the C/n-aggregation benchmark (Theorem 1), a key
aspect of the argument involved agents filtering out confounding information from their
neighbors’ estimates—i.e., responding in a sophisticated way to the correlation structure of
those estimates. In this section, we demonstrate that this sort of behavior is essential for
nearly perfect aggregation, and that more naively imitative heuristics yield outcomes far from
the benchmark. Empirical studies have found evidence (depending on the setting and the
subjects) consistent with both equilibrium behavior and naive inference in the presence of
correlated observations (e.g., Eyster, Rabin, and Weizsacker, 2015; Dasaratha and He, 2019;
Enke and Zimmermann, 2019).

We begin with a canonical model of agents who do not account for correlations among their
neighbors’ estimates conditional on the state, and show by example that naive agents achieve
much worse learning than Bayesian agents, and thus have non-vanishing aggregation errors.
We then formalize the idea that accounting for correlations in neighbors’ actions is crucial to
reaching the benchmark. This is done by demonstrating a general lack of asymptotic learning
by agents who use imitative strategies, rather than filtering in a sophisticated way. Finally,
we show that even in fixed, finite networks, any positive weights chosen by optimizing agents

will be Pareto-dominated.

5.1. Naive agents. In this part we introduce agents who misunderstand the distribution
of the signals they are facing and who therefore do not update as Bayesians with a correct
understanding of their environment. We consider a particular form of misspecification that

simplifies solving for equilibria analytically:°

Definition 5. We call an agent naive if she believes that all neighbors choose actions equal

to their private signals and maximizes her expected utility given these incorrect beliefs.

Equivalently, a naive agent believes her neighbors all have empty neighborhoods. This is
the analogue, in our model, of “best-response trailing naive inference” (Eyster and Rabin,
2010). So naive agents understand that their neighbors’ actions from the previous period
are estimates of 6,_;. But they think each such estimate is independent given the state, and
26There are a number of possible variants of our behavioral assumption, and it is straightforward to nu-

merically study alternative specifications of behavior in our model (Alatas et al., 2016 consider one such
variant).
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FIGURE 5.1. Bayesian and naive learning on a complete graph and n = 600 agents divided
into two equal sized groups. The plot shows the aggregation error in group A as group B’s
private signal variance varies, fixing group A’s private signal variance at 0124 =2.

that the precision of the estimate is equal to the signal precision of the corresponding agent.
They then play their expectation of the state given this misspecified theory of others’ play.
In Figure 5.1, we compare Bayesian and naive learning outcomes. We consider a complete
network with 600 agents and a = 0.9. Half of agents have signal variance 0% = 2, while we
vary the signal variance 0% of the remaining agents. The figure shows the average social signal
variance for the group of agents with private signal variance 0% = 2. The figure suggests
that naive agents learn substantially worse than rational agents, whether signals are diverse
or not. We prove this holds for general stochastic block models and provide formulas for

variances under naive learning in Appendix H.

5.2. More general learning rules: Understanding correlation is essential for good
aggregation. We now show more generally that a sophisticated response to correlation is
needed to achieve vanishing aggregation errors on any sequence of growing networks. To this

end, we make the following definition:

Definition 6. The steady state associated with weights W and w? is the (unique) covariance
matrix V* such that if actions have a variance-covariance matrix given by V; = V* and next-

period actions are set using weights (W, w?), then V;,; = V* as well.

In this definition of steady state, instead of best-responding to others’ actual distributions
of play, agents use exogenous weights W in all periods.

By a straightforward application of the contraction mapping theorem, if agents use any
non-negative weights under which covariances remain bounded at all times, there is a unique
steady state.

Consider a sequence of networks (G,,).~, with n agents in G,,.
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Proposition 3. Fix any sequence of steady states under non-negative weights on G,,. Sup-
pose that all private signal variances are bounded below by o2 > 0 and that all agents place
weight at most w < 1 on their private signals. Then there is an € > 0 such that, for all n,

the e-aggregation benchmark is not achieved by any agent ¢ at steady state.

The essential idea is that at time ¢+ 1 observed time-t actions all put weight on actions from
period t—1, which causes 6;_; to have a (positive weight) contribution to all observed actions.
Agents do not know 6;_; and, with positive weights, cannot take any linear combination that
would recover it. Even with a very large number of observations, this confound prevents
agents from learning yesterday’s state precisely.

To see why the weights on private signals must be bounded away from one, note that
an individual agent could learn well without adjusting for correlations by observing many
autarkic agents who simply report their private signals. But in this case, all of these autarkic
agents would have non-vanishing aggregation errors. If we did not impose a bound on private
signal weights, learning would fail in a weaker sense: in that case, some agent must still fail
to achieve the e-aggregation benchmark for small enough «¢.

On undirected networks, the proposition implies that aggregation errors do not vanish un-
der naive inference or under various other specifications of non-Bayesian inference. Moreover,
the same argument shows that in any sequence of Bayesian equilibria on undirected networks

where all agents use positive weights, no agent can learn well.

5.3. Without anti-imitation, outcomes are Pareto-inefficient. The previous section
argued that anti-imitation is critical to achieving vanishing aggregation errors. We now show
that even in small networks, where that benchmark is not relevant, any equilibrium without
anti-imitation is Pareto-inefficient relative to another steady state. This result complements
our asymptotic analysis by showing a different sense (relevant for small networks) in which

anti-imitation is necessary to make the best use of information.

Proposition 4. Suppose the network G is strongly connected and some agent has more than
one neighbor. Given any naive equilibrium or any Bayesian equilibrium where all weights are
positive, the action variances at that equilibrium are Pareto-dominated by action variances

at another steady state.

The basic argument behind Proposition 4 is that if agents place marginally more weight on
their private signals, this introduces more independent information that eventually benefits
everyone. In a review of sequential learning experiments, Weizsicker (2010) finds that sub-
jects weight their private signals more heavily than is optimal (given the empirical behavior of
others they observe). Proposition 4 implies that in our environment with optimizing agents,
it is actually welfare-improving for individuals to “overweight” their own information relative

to best-response behavior.
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The condition on equilibrium weights says that no agent anti-imitates any of her neighbors.
This assumption makes the analysis tractable, but we believe the basic force also works in
finite networks with some anti-imitation. In the proof in Appendix F, we state and prove a
more general result where weights are non-negative but need not all arise from Bayesian or

naive updating.

Proof sketch. The idea of the proof of the rational case is to begin at the steady state and
then marginally shift the rational agent’s weights toward her private signal. By the envelope
theorem, this means agents’ actions are less correlated but not significantly worse in the next
period. We show that if all agents continue using these new weights, the decreased correlation
eventually benefits everyone. In the last step, we use the absence of anti-imitation, which
implies that the updating function associated with agents using fixed (as opposed to best-
response) weights is monotonic in terms of the variances of guesses. To first order, some
covariances decrease while others do not change after one period under the new weights.
Monotonicity of the updating function and strong connectedness imply that eventually all
agents’ variances decrease.

The proof in the naive case is simpler. Here a naive agent is overconfident about the
quality of her social information, so she would benefit from shifting some weight from her
social information to her signal. This deviation also reduces her correlation with other agents,

so it is Pareto-improving.

6. SOCIAL INFLUENCE

It is often of interest how influential agents are in terms of affecting aggregate behavior
and how this depends on the environment. For example, these issues are a focus of stud-
ies including DeMarzo, Vayanos, and Zweibel (2003) and Golub and Jackson (2010) in the
DeGroot model with an unchanging state. In this section, we define a suitable analogue
of social influence for our dynamic environment. We then study how an agent’s influence
depends on her signal precision and degree. We find that, relative to benchmark results from
the DeGroot model, signal precisions are more important, while social connectedness plays a

similar role in both models.

6.1. Defining social influence. We define the total influence of node i in a stationary
equilibrium to be the total weight that all actions place on the private signal of agent (i, ).

The total influence measures the total increase in actions if s;; increases by 1 (due to an
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idiosyncratic shock, say).?” At equilibrium, the total influence of i is:

TIG) =YY (pW)ka;.
JEN k=0
This expression for total influence is a version of Katz-Bonacich centrality with respect to
the matrix W of weights. The decay parameter is the persistence p of the of the AR(1) state
process.
We define the social influence of i to be the total weight that all actions in future periods

place on the private signal of agent (7,¢). At equilibrium, the social influence of i is:

0
SIG) = > > (pW)k@s = TI(i) — .
JEN k=1

The social influence measures the influence of an agent at node ¢ on other agents. Social
influence and total influence differ only by the weight (i,t) places on her own current signal,
because an agent’s signal realization does not affect others’ actions in the same period. Note
that agent i’s social influence depends on the weight w? she places on her own signal as well
as the weights agents place on each others’ actions.

The next result, which follows from Proposition 1 on equilibrium existence, shows that
the summation that defines social influence is guaranteed to converge at equilibrium, which

makes social influence (and similarly total influence) well-defined.?®

Proposition 5. The social influence SI(7) is well-defined at any equilibrium and is equal to
V(I = pWV) ™ = 1],

We show this as follows: if social influence did not converge, some agents would have
actions with very large variances (because their actions would depend sensitively on small
idiosyncratic shocks). But then these agents would have simple deviations that would improve
their accuracy, such as following their private signals. So this could not happen in equilibrium.

In general, social influence can be negative: an agent’s net effect on others can be in the

opposite direction of her signal.

6.2. Which agents are influential? We now ask how the social influence SI(7) of an agent
depends on her signal precision and degree. To facilitate the most direct comparison with
standard results in models with a fixed state, such as DeMarzo, Vayanos, and Zweibel (2003),
we focus on cases where social influences are positive.

To examine the effect of signal precision on social influence, we first study complete net-
works with n > 2 agents and two private signal variances: half the agents have more precise
2TNote that in a stationary equilibrium, this depends on the node and not the time, so we speak interchange-
ably of the influence of a node and that of an agent at this node.

28Gince W can contain both positive and negative numbers, some of them potentially quite large, it is not
immediately obvious that the summation converges.
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signals, and the other half have less precise signals. We call the two groups’ signal variances
0% and 0% and the corresponding agents’ social influences SI(A) and SI(B). We show that
the ratio between the two groups’ social influences in equilibrium is larger than the ratio

between their signal precisions (whenever the imprecise group has positive social influence).

Proposition 6. On a complete network with m = 1 and signal variances 04 < 0%, in the

unique equilibrium it holds that

whenever SI(B) > 0.

The proposition says that increasing a group’s precision increases their influence more
than proportionately. As we have seen in our main results, if the precision difference is large
enough, then it is optimal to place zero or negative weight on the less precise group. The result
says that even before this happens, imprecision hurts a group’s influence considerably—and,
as we will discuss below, more than in benchmark models of social influence.

The proposition assumes the network is complete, but numerical evidence suggests that
on other networks, too, agents with more precise signals tend to be much more influential.
We simulate a configuration model with n = 40 nodes, each with degree d = 5.2 Nodes are
randomly assigned to a precise signal with variance 0% or an imprecise signal with variance
0% (with equal probability).

We are interested in the ratio SI(A)/SI(B) in this more complicated environment. If
social influence were approximately proportional to precision, then SI(A)/SI(B) would be
approximately 0;2 / 052. To assess by how much the better information of the precise group

exceeds this benchmark, we will look at the ratio
SI(A)/SI(B)
ox'fog’

Table 1 reports this ratio over 100 runs of the simulation model for various pairs of 0% and

R, =

0% each in the interval [0.5,5]. The entries of the table would be equal to one if influence is
proportional to precision. Instead, all off-diagonal entries are greater than one (or negative),
meaning social influence depends more (and often much more) on signal precision than in
the proportional benchmark.

Having examined how influence depends on precisions, we turn to how it depends on de-
grees. We again use a configuration model, which allows us to fix any degree distribution, but
generate the graphs uniformly conditional on the degrees. We will find that social influence
depends less on degree than on precision. We simulate a configuration model with n = 40
nodes, each randomly assigned degrees d4 or dp (with equal probability of each) and with

29This model works by creating n nodes, each with d “stubs” sticking out of it, and then performing a random
matching of the stubs to create a graph. See Jackson (2010), Section 4.5.10, for details.
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2

9B

Precision 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5 1 2.14 4.53 9.06 168.09 —29.69 —15.54 —8.22 —7.41 —6.19
1 1 1.80 3.15 5.62 9.95 26.35 —29.89 —15.23 —13.67
1.5 1 1.64 2.56 3.80 6.27 10.64 44.97 —31.32
2 1 1.51 2.22 3.13 4.35 7.05 11.34
o2 2.5 1 1.43 2.04 2.69 3.88 5.50
A3 1 1.38 1.86 2.46 3.35
3.5 1 1.34 1.74 2.27
4 1 1.30 1.67
4.5 1 1.28

5 1

TABLE 1. The table shows how far influence ratios are from a benchmark of being propor-
tional to precision. We use a configuration model with a regular network and heterogeneous
signal variances; there are n = 40 agents and the degree is d = 5. Agents are randomly as-

signed to signal variances 0% or 0%. Each entry is computed from 100 runs with persistence

p = 0.9. Each table entry reports the ratio R, = 751;’:‘%51_(]3) for the precision parameters
A B
corresponding to that entry.
dp

Degree 1 2 3 4 5 6 7 8 9 10

1 1 1.11 1.02 0.96 0.94 0.92 0.96 1.00 1.03 1.09

2 1 1.02 1.01 0.98 0.96 0.92 0.93 0.91 0.95

3 1 1.01 1.01 1.01 0.98 0.96 0.94 0.93

4 1 1.01 1.01 1.00 0.99 0.98 0.96
d 5 1 1.01 1.01 1.02 1.01 1.00
Al6 1 1.01 1.01 1.01 1.01

7 1 1.01 1.01 1.02

8 1 1.01 1.01

9 1 1.01

10 1

TABLE 2. The table shows how far influence ratios are from a benchmark of being pro-
portional to degree. We use a configuration model with two possible degrees on n = 40
agents with homogeneous signal variance 02 = 2. Agents are randomly assigned to degrees
dy or dp. Each entry is computed from 100 runs with persistence p = 0.9. Each table entry

reports the ratio Ry = % for the degree parameters corresponding to that entry.

0% = 2 for all agents. Table 2 reports the ratio
SI(A)/SI(B)
da/dp

over 100 runs of the simulation model for degrees between 1 and 10. Again, the entries would

Ry =

be equal to one if social influence were proportional to degree. Social influence is indeed

approximately proportional to degree: the entries in the table range between 0.91 and 1.11.

Remark 1. A simple intuition explains why social influence depends more on private infor-
mation than network position. Increasing an agent’s private signal precision and her degree
both (tend to) make her action more accurate. Increasing private signal precision also implies
the agent places more weight on her private information, which is recent and independent of

other agents’ actions. This provides more reason for others to place weight on her actions,
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FIGURE 6.1. Level curves for average social influence of agents in a configuration model
with 5,000 networks with n = 40 agents in each and persistence p = 0.9. Degrees are
chosen uniformly from {1,2,...,7} and private signal variances are chosen uniformly from
{0.5,1,...,3.5}. The figure shows level curves for average social influence (drawn via cubic

interpolation) on a log-log plot.

amplifying the effect of the increased accuracy. In contrast, increasing degree tends to make
an agent place more weight on her social information, which is older and more correlated with

others. This countervails the effect of increased accuracy, making the agent a less appealing

source for others.

The exercises so far varied only one of signal precision or degree, and we now explore how
social influence depends on precision and degree jointly. To do so, we compute equilibrium
social influences on 5,000 networks with n = 40 agents in each. Each agent is randomly
assigned a degree chosen uniformly from {1,2,...,7} and a private signal variance chosen
uniformly and independently from {0.5,1,...,3.5}. Networks are then drawn via the config-
uration model. Figure 6.1 plots the level curves for average social influence. The steepness

of the level curves shows that social influence again depends more on signal variance than

degree, especially when signals are less precise.

6.3. Comparison with a DeGroot benchmark. The results above are interesting to
compare with what we might expect in canonical network models with a fixed state. A
standard benchmark in the networks literature to express influence as a function of network
position is the DeGroot model.

To allow us to also consider the effect of signal precision, we consider a fixed-state setting
studied by DeMarzo, Vayanos, and Zweibel (2003) as a foundation for DeGroot updating,
where weights depend on precisions. Agents start with an improper prior, receive independent
normal private signals s; about the state once, and then each takes an action a;o equal to

her expectation of §. After this, agents observe their neighbors’ actions and take actions a; 1,
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which are Bayesian expectations of the state 6 given their observations. In all subsequent
periods t > 1, agents observe their neighbors’ actions a;;—; and take actions a;; as if a;;—;
has the same distribution as j’s private signal (i.e., they naively repeat their optimal strategy
from the first period).

One natural measure of social influence is the influence of s; on the long-run consensus
beliefs lim;_, a;;. In an undirected, connected, and aperiodic network, this limit exists and
the influence of agent 7 is proportional to her private signal precision o; * and to her degree d;.
Compared to this benchmark, social influence in our changing-state model is more sensitive
to signal precision (in the complete graph and in our simulations for configuration models).
On the other hand, the impact of degree on social influence is very similar to the DeGroot
benchmark—approximately proportional to degree. That is, influence depends more on an
agent’s private information while the dependence on network position is remarkably similar.

The difference between the benchmark and our model is explained in Remark 1.

7. RELATED LITERATURE

Whether decentralized communication can facilitate efficient adaptation to a changing
world is a fundamental question in economic theory, related to questions raised by Hayek
(1945)*" and of primary interest in some applied problems, e.g., in real business cycle models
with consumers and firms learning about evolving states.®! Nevertheless, there is relatively
little modeling of Bayesian learning of dynamic states in the large literature on social learning
and information aggregation in networks, whose most relevant papers we now review.>?

Play in the stationary linear equilibria of our model closely resembles behavior in the
DeGroot (1974) model, where agents update by linearly aggregating network neighbors’ past
estimates, with constant weights on neighbors over time. DeMarzo, Vayanos, and Zweibel
(2003), in a Gaussian environment with an unchanging state, derive DeGroot learning as
the Bayesian behavior in the first round of communication, and use that as a foundation
for a DeGroot rule as a boundedly-rational heuristic. Molavi, Tahbaz-Salehi, and Jadbabaie
(2018) have offered new bounded-rationality foundations for the DeGroot rule. Our different

environment offers a different foundation for averaging rules with constant weights, as a

30«1f ... the economic problem of society is mainly one of rapid adaptation to changes in the particular
circumstances of time and place .. . there still remains the problem of communicating to [each individual] such
further information as he needs.” Hayek’s main concern was aggregation of information through markets,
but the same questions apply more generally.

313ee Angeletos and La’O (2010) for a survey of related models that are used to study real business cycles.
More recent developments include Angeletos and Lian (2018) and Molavi (2019), with the latter allowing a
form of misspecification.

32For more complete surveys of different parts of this literature, see, among others, Acemoglu and Ozdaglar
(2011), Golub and Sadler (2016), and Mossel and Tamuz (2017). See Moscarini, Ottaviani, and Smith
(1998) for an early model in a binary-action environment, where it is shown that a changing state can break
information cascades.
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stationary equilibrium of a stationary environment.** Though the updating rule resembles
those derived in fixed-state environments, we have stressed that the learning implications are
quite different.

Several recent papers in computer science and engineering study dynamic environments
similar to ours. Shahrampour, Rakhlin, and Jadbabaie (2013) study an exogenous-weights
version, interpreted as a set of Kalman filters under the control of a planner. They bound
measures of welfare in terms of the persistence of the state process (p) and network invariants,
such as the spectral gap. Frongillo, Schoenebeck, and Tamuz (2011) study a p = 1 model
of the state. They characterize the steady-state distribution of behavior for any weights,
and calculate equilibrium weights on a complete network, which they show are inefficient.
Our Proposition 4 documents a related inefficiency, while the quality of equilibrium learning
in large, incomplete networks and social influence in equilibrium are topics not considered
in these papers. In economics, Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016)
perform an empirical exercise in a similar model with a quasi-Bayesian learning rule. Their
estimation assumes agents ignore the correlation between social observations, similarly to
our naive models.** Our results show that the degree of rationality can be pivotal for the
outcomes of such processes, and provides foundations for structural inference to test various
behavioral assumptions.

Our results about when agents learn well are related to two phenomena that have played
an important role in the social learning literature. A theme in the social learning literature
is that heterogeneity—in agents’ preferences or in whom they observe—can be helpful for
learning. One manifestation of this is the phenomenon (typically in sequential social learning
models with a fixed state) of sacrificial lambs: a fairly sparse set of agents who observe
nobody can help everyone else learn well, because their actions are then informative only
about their private signals, and unconfounded by an information cascade (Sgroi, 2002, Arieli
and Mueller-Frank, 2019). Heterogeneity in preferences can also serve a similar purpose: if
preferences have full support, there is a positive probability that preference bias counteracts
available social information, causing an agent to follow her private signal (Goeree, Palfrey,
and Rogers, 2006, Lobel and Sadler, 2016). A crucial difference is that our mechanism does

not rely on any agents simply revealing their private signals: heterogeneity helps by changing

33Indeed, agents behaving according to the DeGroot heuristic in other environments might have to do with
their experiences in stationary environments where it is closer to optimal.

34The paper’s focus is estimating parameters of social learning rules using data from Indonesian villages,
where agents are trying to assess each other’s wealth.
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how neighbors use their social information, which in turn aids an agent in inferring a common
confound.?®

Second, a robust aspect of rational learning in sequential models is the phenomenon of
anti-imitation, as discussed, e.g., by Eyster and Rabin (2014). They give general conditions
for fully Bayesian agents to anti-imitate in the sequential model. We find that anti-imitation
is also an important feature in our dynamic model, and in our context is crucial for good
learning. Despite this similarity, there is an important contrast between our environment
and standard sequential models. In those models, while rational agents do prefer to anti-
imitate, in many cases individuals, and society as a whole, could obtain good outcomes using
heuristics without any anti-imitation: for instance, by combining the information that can be
inferred from a single neighbor with one’s own private signal. Acemoglu, Dahleh, Lobel, and
Ozdaglar (2011) and Lobel and Sadler (2015) show that such a heuristic leads to asymptotic
learning in a sequential model. Our dynamic learning environment is different, as shown in
Proposition 3: to have any hope of approaching good aggregation benchmarks, agents must

respond in a sophisticated way, with anti-imitation, to their neighbors’ (correlated) estimates.

8. DISCUSSION AND EXTENSIONS

8.1. Aggregation and its absence without asymptotics: Numerical results. The
message of Section 4 is that signal diversity enables good aggregation, and signal homogeneity
obstructs it. The theoretical results were asymptotic, and relied on various assumptions about
network structure. It is natural to ask whether our main conclusions hold up in realistic
finite networks. To analyze this, we numerically study equilibria of our model in actual social
networks from Indian villages (Banerjee, Chandrasekhar, Duflo, and Jackson, 2013). This
subsection briefly summarizes our findings; we describe the exercise fully in Appendix C.

We examine the benefits of signal heterogeneity for equilibrium aggregation. The network
data are essentially the only empirical input to our exercise.*® Given a network, we compute
equilibria using our model and parameters chosen for illustration. We compare two environ-
ments that differ in signal allocations: (i) a homogeneous case, with all signal variances set
to 2, and (ii) a heterogeneous case, where half of the nodes have a signal variance less than
2 (which we vary) and half of the nodes have a signal variance greater than 2.7

We first compare the value of a good network with the value of heterogeneous signals.

Some networks have better learning than others even with homogeneous signals. We define

35A bit farther afield, in Sethi and Yildiz (2012), learning outcomes when two individuals repeatedly learn
from each other depend on whether their (heterogeneous) priors are independent or correlated; the common
thread is that a natural assumption about agents’ attributes (independent priors in their case) leads to an
identification problem. The mechanics are otherwise quite different.

3610 particular, we have no data on signal qualities, and simply posit that households without electricity have
worse access to external information.

3T™We choose the larger signal variance so that the average precision in each village is %, which holds the total
inflow of information constant in a sense made precise in the appendix.
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the network-driven variation in learning to be the standard deviation of learning quality (ag-
gregation error) across villages in the homogeneous case. Our main finding is that increasing
the private signal variance for half of the agents by 50% changes social signal error variance
by 6.5 times the network-driven variation. That is, introducing this amount of private sig-
nal heterogeneity improves learning much more than the most favorable network among the
villages.

We also quantify how much signal diversity is needed to approach benchmark aggregation
in finite networks. Though the asymptotic prediction changes starkly depending on whether
signal precisions are identical or not, considerable diversity is actually required to achieve
these benefits in a finite network. Starting from homogeneous signals and increasing signal
diversity, aggregation error changes very slightly at first. Once the variance of the less precise
signal has increased by 50% relative to the starting point, learning quality has moved about

halfway to what is achievable with the most extreme signal heterogeneity.

8.2. Multidimensional states and informational specialization. Our formal analysis
assumed a one-dimensional state and one-dimensional signals, which varied only in their
precisions. Our message about the value of diversity is, however, better interpreted in a
mathematically equivalent multidimensional model.

Consider Bayesian agents who learn and communicate about two independent dimensions
simultaneously (each one working as in our model). If all agents have equally precise signals
about both dimensions, then society may not learn well about either of them. In contrast, if
half the agents have superior signals about one dimension and inferior signals about the other
(and the other half has the reverse), then society can learn well about both dimensions. Thus,
the designer has a strong preference for an organization with informational specialization
where some, but not all, agents are expert in a particular dimension.*

Of course, there are many familiar reasons for specialization, in information or any other
activity. For instance, it may be that more total information can be collected in this case, or
that incentives are easier to provide. Crucially, specialization is valuable in our setting for a
reason distinct from all these: it helps agents with their inference problems.

More generally, one can readily extend our model and equilibrium concept to a multi-
dimensional state 6; € R? and arbitrary Gaussian signals about it, with flexible correlations.
We would expect to find suitable generalizations of the basic message that sufficient diver-
sity of neighborhoods (in terms of signal types) facilitates learning. The assumption that
agents know neighbors’ signal distributions is clearly very helpful for tractability; it would be

interesting to consider models in which agents are also uncertain about these distributions.

38This raises important questions about what information agents would acquire, and whom they would choose
to observe, which are the focus of a growing literature. For recent papers on this in the context of networks,
see Sethi and Yildiz (2016) and Myatt and Wallace (2017), among others.
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APPENDIX A. EXISTENCE OF EQUILIBRIUM: PROOF OF PROPOSITION 1

Recall from Section 3.1 the map ®, which gives the next-period covariance matrix ®(V;)
for any V;. The expression given there for this map ensures that its entries are continuous
functions of the entries of V;. Our strategy is to show that this function maps a convex,
compact set, I, to itself, which, by Brouwer’s fixed-point theorem, ensures that ® has a
fixed point V. We will then argue that this fixed point corresponds to a stationary linear
equilibrium.

We begin by defining the compact set . Because memory is arbitrary, entries of V; are
covariances between pairs of neighbor actions from any periods available in memory. Let k1
be two indices of such actions, corresponding to actions taken at nodes i and j respectively
(at potentially different times), and let 77 = max {01-2, pm ol + %}. Now let £ C V be

the subset of symmetric positive semi-definite matrices V; such that, for any such k, [,

. 1 Pt 1—pmt 2 me19, L=p"t
Vik+ € |min , + ,max< o;,p" o] + ——
Kkt { {1—}—02-2 l+o2  1-p P 1—p

Vie € [—0:04,0,0;]

This set is closed and convex, and we claim that ®(K) C K.

To show this claim, we will first find upper and lower bounds on the variance of any
neighbor’s action (at any period in memory). For the upper bound, note that a Bayesian
agent will not choose an action with a larger variance than her signal, which has variance o?.
For a lower bound, note that if she knew the previous period’s state and her own signal, then
L. Thus an agent observing only noisy estimates of

1+o;
f; and her own signal can do no better.

the variance of her action would be

By the same reasoning applied to the node-i agent from m periods ago, the error variance

of p"a;4—m — 0; is at most Pl + 11_ _p;n and at least N f:;? + %. This establishes bounds
on Vi for observations k from either the most recent or the oldest available period. The
corresponding bounds from the periods between t —m + 1 and ¢ are always weaker than at
least one of the two bounds we have described, so we need only take minima and maxima
over two terms.

This established the claimed bound on the variances. The bounds on covariances follow

from Cauchy-Schwartz.

We have now established that there is a variance-covariance matrix V' such that (ID(‘A/') =V.

By definition of ®, this means there exists some weight profile (ﬁ\/,’lﬁs) such that, when
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applied to prior actions that have variance-covariance matrix ‘7, produce variance-covariance
matrix V. However, it still remains to show that this is the variance-covariance matrix
reached when agents have been using the weights (ﬁ\/, w*) forever.

To show this, first observe that if agents have been using the weights (I//‘\/, w*) forever,
the variance-covariance matrix V; in any period is uniquely determined and does not depend
on t; call this V.** This is because actions can be expressed as linear combinations of
private signals with coefficients dependmg only on the Welghts Second, it follows from our
construction above of the matrix V and the Welghts (W, %) that there is a distribution
of actions where the variance-covariance matrix is V' in every period and agents are using
weights (ﬁ\/, w?®) in every period. Combining the two statements shows that in fact V = ‘7,
and this completes the proof. Note that this argument also establishes that the response
profile we have constructed is a strategy profile: under the responses used, we can write
formally the dependence of actions on all prior signals, and verify using the observations
on decay of dependence across time that the formula is summable and hence defines unique

actions.

APPENDIX B. PROOF OF THEOREM 1

B.1. Notation and key notions. Let S be the (by assumption finite) set of all possible
signal variances, and let a2 be the largest of them. The proof will focus on the covariances
of errors in social signals. Suppose that all agents have at least one neighbor. Take two
arbitrary agents ¢ and j. Recall that both r;; and r;; have mean 6,_;, because each is
an unbiased estimate® of 6,_;; we will thus focus on the errors rit — 0i—1. Let A; denote
the variance-covariance matrix (Cov(r;s — 641,71+ — 0,;_1))1.7]. and let W be the set of such
covariance matrices. For all 7, j note that Cov(r;; — 61,7, — 0:—1) € [—52,5?2] using the
Cauchy-Schwarz inequality and the fact that Var(r;;—6;_;) € [0,57] for all 4. This fact about
variances says that no social signal is worse than putting all weight on an agent who follows
only her private signal. Thus the best-response map @ is well-defined and induces a map P
onW.

Next, for any ,¢ > 0 we will define the subset Wy, C W to be the set of covariance

matrices in W such that both of the following hold:

1. for any pair of distinct agents*' i € G* and j € Gfl/,

Cov(riy — 01,750 — O1—1) = Y + Gy

39The variance-covariance matrices are well-defined because the (W, w*) weights yield unambiguous strategy
profiles in the sense of Appendix E.

40This is because it is a linear combination, with coefficients summing to 1, of unbiased estimates of 6;_1.

4 Throughout this proof, we abuse terminology by referring to agents and nodes interchangeably when the
relevant ¢ is clear or specified nearby.
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where (i) ¥y depends only on the network types of the two agents (k and k', which
may be the same); (ii) || < 95 and (iii) |G| < ¢;
2. for any single agent i € G¥,

Var(r;; — 6i-1) = ¥ + Gii

where (i) v, only depends on the network type of the agent; (ii) || < ¢, and (iii)
|Gl < ¢
This is the space of covariance matrices such that each covariance is split into two parts.
Considering (1) first, ¥y is an effect that depends only on i’s and j’s network types, while
Gij adjusts for the individual-level heterogeneity arising from different link realizations. The

description of the decomposition in (2) is analogous.
B.2. Proof strategy.

B.2.1. A set Wy of outcomes with good learning. Our goal is to show that as n grows large,
there is an equilibrium in which Var(r;; — 6;_1) becomes very small, which then implies that
the agents asymptotically learn. To this end we define a set of covariances with this property
as well as some other useful properties. We will take 1) and ¢ to be arbitrarily small numbers
and show that for large enough n, with high probability (which we abbreviate “asymptotically
almost surely” or “a.a.s.”) there is an equilibrium with a social error covariance matrix A; in
the set W;z That will imply that, in this equilibrium, Var(r;; — 6,-1) becomes arbitrarily
small as we take the constants i) and ¢ to be small. In our constructions, the ¢; (resp.,
;) terms will be set to much smaller values than the 1 (resp., ¥) terms, because group-
level covariances are more predictable and less sensitive to idiosyncratic realizations than

individual-level covariances.

B.2.2. Approach to showing that Wy z contains an equilibrium. To show that there is (a.a.s.)
an equilibrium outcome with a social error covariance matrix A; in the set Wgz, the plan
is to construct a set so that (a.a.s.) W C W5z and ®(W) C W. This set will contain an
equilibrium by the Brouwer fixed point theorem, and therefore so will Wy .

To construct the set W, we will fix a positive constant 5 (to be determined later), and
define

We will then prove that, for large enough n, (i) ®(WW) € W and (ii) for another suitable
positive constant A,

WCWQA.

n’n

This will allow us to establish that (a.a.s.) W C Wy ¢ and ®(W) C W, with ¢ and ¢ being

arbitrarily small numbers.
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The following two lemmas will allow us to deduce (immediately after stating them) prop-
erties (i) and (ii) of W.

Lemma 1. There is a function A(5) > 1 such that the following holds. For all large enough
p and all A > A(B), for n sufficiently large we have o <Wg ’ ) C Ws » with probability at

least 1 — %

1
n

Lemma 2. For all large enough g, for n sufficiently large, P2 (Wg ) C Ws 1, with proba-

bility at least 1 — %.42

3=

)

Putting these lemmas together, a.a.s. we have,

&)2 (Wg’ )CW% and &)(Wg’ >CW§’%.

1 1
n n

1
n

From this it follows that W = W;s 1 U ® (Wg 7

contained in W5 , as claimed.
n’n

) is mapped to a subset of itself by 5, and

3@

S|=

1

B.2.3. Proving the lemmas by analyzing how ® and D2 act on sets Wy ¢. The lemmas are
about how ® and ®2 act on the covariance matrix A,, assuming it is in a certain set W ¢
to yield new covariance matrices. Thus, we will prove these lemmas by studying two periods
of updating. The analysis will come in five steps.
Step 1: No-large-deviations (NLD) networks and the high-probability event. Step
1 concerns the “with high probability” part of the lemmas. In the entire argument, we
condition on the event of a no-large-deviations (NLD) network realization, which says that
certain realized statistics in the network (e.g., number of paths between two nodes) are close
to their expectations. The expectations in question depend only on agents’ types. Therefore,
on the NLD realization, the realized statistics do not vary much based on which exact agents
we focus on, but rather depend only on their types. Step 1 defines the NLD event E formally
and shows that it has high probability. We use the structure of the NLD event throughout
our subsequent steps, as we mention below.
Step 2: Weights in one step of updating are well-behaved. We are interested in d
and CT)Q, which describe how the covariance matrix A; of social signal errors changes under
updating. How this works is determined by the “basic” updating map ®, and so we begin by
studying the weights involved in it and then make deductions about the implications for the
evolution of the variance-covariance matrixA;.

The present step establishes that in one step of updating, the weight W;;,;; that agent
(7,t+1) places on the action of another agent j in period ¢, does not depend too much on the
identities of 7 and j. It only depends on their (network and signal) types. This is established

by using our explicit formula for weights in terms of covariances. We rely on (i) the fact that

42The notation ®2 means the operator ® applied twice.
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covariances are assumed to start out in a suitable Wy, ¢, and (ii) our conditioning on the NLD
event /. The NLD event is designed so that the network quantities that go into determining
the weights depend only on the types of i and j (because the NLD event forbids too much
variation within type). The restriction to A; € W, ¢ ensures that covariances in the initial
period t do not vary too much with type, either.

Step 3: Lemma 1: d (Wﬁ 1) C Ws ». Once we have analyzed one step of updating, it
is natural to consider the 1mphcat10nsnfgr the covariance matrix. Because we now have a
bound on how much weights can vary after one step of updating, we can compute bounds on
covariances. We show that if covariances A; are in W;g 1 then after one step, covariances are
in Wa A Note that the introduction of another paranmneter A on the right-hand side implies
that thls step might worsen our control on covariances somewhat, but in a bounded way.
This establishes Lemma 1.

Step 4: Weights in two steps of updating are well-behaved. The fourth step estab-
lishes that the statement made in Step 2 remains true when we replace t +1 by t + 2. By
the same sort of reasoning as in Step 2, an additional period of updating cannot create too
much further idiosyncratic variation in weights. Proving this requires analyzing the covari-
ance matrices of various social signals (i.e., the A, that the updating induces), which is
why we needed to do Step 3 first.

Step 5: Lemma 2: P2 (Wg;) C W@}. Now we use our understanding of weights from
the previous steps, along with additional nstructulre, to show the key remaining fact. What
we have established so far about weights allows us to control the weight that a given agent’s
estimate at time ¢+ 2 places on the social signal of another agent at time ¢. This is Step 5(a).
In the second part, Step 5(b), we use that to control the covariances in A; 9. It is important
in this part of the proof that different agents have very similar “second-order neighborhoods”:
the paths of length 2 beginning from an agent are very similar, in terms of their counts and
what types of agents they go through. We use our control of second-order neighborhoods, as
well as the assumptions on variation across entries of A; to bound this variation well enough
to conclude that A, 5 € Wg 7

1
n

B.3. Carrying out the steps.

B.3.1. Step 1. Here we formally define the NLD event, which we call E. It is given by
E = N2_, E;, where the events E; will be defined next.

(E7) Let XZA(}T),? be the number of agents having signal type 7 and network type k who are
observed by i. The event Fj is that this quantity is close to its expected value in the following

sense, simultaneously for all possible values of the subscript:

(1-EXD] < xY <1+ AEXD
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(EQ) Let X

Y Tk be the number of agents having signal type 7 and network type k£ who are

observed by both i and i’. The event Fj is that this quantity is close to its expected value in

the following sense, simultaneously for all possible values of the subscript:
( QQ) [ i/, Tk] < XZ(Z%)TIC (1 + Cz) [ z(zz)Tk]‘

(E3) Let X @ be the number of agents having signal type 7 and network type k£ who are

i,7k,j
observed by agent ¢ and who observe agent j. The event Fj3 is that this quantity is close to its

expected value in the following sense, simultaneously for all possible values of the subscript:
( C2) [ zrk,j] < XZ(T)kj — (1 + CQ)E[XZ(,Z)—)IC,]]

(Ey) Let X, ) be the number of agents having signal type 7 and network type k who

it 7k,
are observed by b(j)th agent i and i’ and who observe j. The event F, is that this quantity
is close to its expected value in the following sense, simultaneously for all possible values of
the subscript:
(1= BN o] < Xy < (L4 CIBIXG 1.

(E5) Let X0

”k, ;7 be the number of agents of signal type 7 and network type k who are

observed by agent ¢ and who observe both j and j’. The event Ej is that this quantity is
close to its expected value in the following sense, simultaneously for all possible values of the

subscript:
(5
( Cz) [ Z’Tk)jj] <Xz(7—)k]] — (1+€ ) [ 'LT)k‘]‘]}

We claim that the probability of the complement of the event E vanishes exponentially.
We can check this by showing that the probability of each of the F; vanishes exponentially.
For E;, for example, the bounds will hold unless at least one agent has degree outside the
specified range. The probability of this is bounded above by the sum of the probabilities of
each individual agent having degree outside the specified range. By Chebyshev’s inequality,
the probability a given agent has degree outside this range vanishes exponentially. Because
there are n agents in GG,,, this sum vanishes exponentially as well. The other cases are similar.

For the rest of the proof, we condition on the event F.

B.3.2. Step 2. Asashorthand, let ¢ = 3/n for a sufficiently large constant 3, and let { = 1/n.

Lemma 3. Suppose that in period t the matrix A = A; of covariances of social signals
satisfies A € Wy, - and all agents are optimizing in period ¢+ 1. Then there is a 7 so that for

all n sufficiently large,
Wi,
it o [1_1’1_’_1]_
Wirjr 141
whenever ¢ and i’ have the same network and signal types and j and j’ have the same network

and signal types.
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To prove this lemma, we will use our weights formula:
lTCi?
Wit = Wftll
This says that in period t 4 1, agent i’s weight on agent j is proportional to the sum of the
entries of column j of C;tl. We want to show that the change in weights is small as the
covariances of observed social signals vary slightly. To do so we will use the Taylor expansion
of f(A) = C;;" around the covariance matrix A(0) at which all ¢y = 0, ¢ = 0 and ¢;; = 0.

We begin with the first partial derivative of f at A(0) in an arbitrary direction. Let A(x)
be any perturbation of Ay in one parameter, i.e., A(z) = A(0)+axM for some constant matrix
M with entries in [—1,1]. Let C;(x) be the matrix of covariances of the actions observed
by i given that the covariances of agents’ social signals were A(x). There exists a constant
71 depending only on the possible signal types such that each entry of C;(z) — C;(z’) has
absolute value at most 7, (x — z’) whenever both x and 2" are small.

We will now show that the column sums of C;(z)~! are close to the column sums of C(0); .

To do so, we will evaluate the formula
0f (A(x)) _ 0Ci(x)™t _ _10Ci(x) 1
o = o = C;(x) o Ci(x) (B.1)

at zero. If we can bound each column sum of this expression (evaluated at zero) by a

constant (depending only on the signal types and the number of network types K), then the
first derivative of f will also be bounded by a constant.

Recall that S is the set of signal types and let S = |S|; index the signal types by numbers
ranging from 1 to S. To bound the column sums of C;(0)~!, suppose that the agent observes
r; agents from each signal type 1 < i < S. Reordering so that all agents of each signal type

are grouped together, we can write

a1117‘1 Xry + b1]7‘1 a/1217‘1 Xro aSllr1 Xrs
a12]—r2><r1 a22]—7‘2><r2 + bQIT‘Q
Ci(0) =
alS]-rerl o aSS]-rers + bsIrs

Therefore, C;(0) can be written as a block matrix with blocks a;1y,x,, + b;i0s;1,, where
1<4,5<Sandd;; =1 fori=jand 0 otherwise.

We now have the following important approximation of the inverse of this matrix.*?

Lemma 4 (Pinelis (2018)). Let C' be a matrix consisting of S x S blocks, with its (i,j) block
given by
Wijlexr; + 0i0ii 1y,

43We are very grateful to losif Pinelis for suggesting this argument.
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and let A = a;;1,,x,, be an invertible matrix. As n — oo, then the (4,) block of C~! equals

1 1
e 1/n?
bi T biri TiXT4 +O( /n )

while the off-diagonal blocks are O(1/n?).

Proof. First note that the ij-block of C~! has the form
CileiXT‘j + d’L(S’L]I?“Z

for some real ¢;; and d;.

Therefore, CC~! can be written in matrix form as

Y k(@i Lyxr, + 00ty ) (Crjlyy sy + dilpsl,) =
(CLijdj + Zk(aikrk + (5zkbk)ck]) 17"i><7’j + bldz@JIn (BQ)
Note that the last summand is the identity matrix.
Let Dy denote the diagonal matrix with d; in the (i,7) diagonal entry, let D, /v denote the
diagonal matrix with 1/b; in the (i,7) diagonal entry, etc. Breaking up the previous display

(B.2) into its diagonal and off-diagonal parts, we can write
ADq+ (AD, 4+ Dy,)C = 0 and Dgq = D .
Hence,
C = —(AD,+ Dy) 'ADy

= —(I,+ D, 'A7'Dy) " (AD,) " AD,

= —(Iy;+ D; " A7 Dy) " Dy

= —Dyj@n) +O(1/n?)
where br := (byry,...,b,r,). Therefore as n — oo the off-diagonal blocks will be O(1/n?)

while the diagonal blocks are

1
—I, — —1, o 1/n?
b bt rixr; + O(1/n7)

as desired. n
Using Lemma 4 we can analyze the column sums of*!
C;(0)"'MC;(0) .

In more detail, we use the formula of the lemma to estimate both copies of C;(0)~!, and

then expand this to write an expression for any column sum of C;(0)"*MC;(0)~!. Tt follows

4Recall we wrote A(x) = A(0) + 2M, and in (B.1) we expressed the derivative of f in z in terms of the
matrix we exhibit here.



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 45

straightforwardly from this calculation that all these column sums are O(1/n) whenever all
entries of M are in [—1,1].

We can bound the higher-order terms in the Taylor expansion by the same technique: by
differentiating equation B.1 repeatedly in x, we obtain an expression for the k" derivative in
terms of C;(0)~! and M:

FR(0) = K1C;(0) "' MCy(0)*MC;(0) ™ - ... - MC;(0) 7,

where M appears k times in the product. By the same argument as above, we can show
that the column sums of % are bounded by a constant independent of n. The Taylor

expansion is "
(0
=3 e

Since we take A € W, ¢, we can assume that x is O(1/n). Because the column sums of each
summand are bounded by a constant times z*, the column sums of f(A) are bounded by a
constant.

Finally, because the variation in the column sums is O(1/n) and the weights are propor-
tional to the column sums, each weight varies by at most a multiplicative factor of v, /n for
some ;. We find that the first part of the lemma, which bounded the ratios between weights
Wij,t+1/Wi’j’,t+1a holds.

B.3.3. Step 3. We complete the proof of Lemma 1, which states that the covariance matrix
of 7441 is in Wy . Recall that (' = A\/n for some constant n, so we are showing that if the
covariance matrix of the r;; is in a neighborhood Wy ¢, then the covariance matrix in the
next period is in a somewhat larger neighborhood W, . The remainder of the argument
then follows by the same arguments as in the proof of the first part of the lemma: we now
bound the change in time-(¢ + 2) weights as we vary the covariances of time-(t + 1) social
signals within this neighborhood.

Recall that we decomposed each covariance Cov(r;; — 61,7+ — 6i—1) = VY + (;; into a
term v depending only on the types of the two agents and a term (;;, and similarly for
variances. To show the covariance matrix is contained in Wy, -/, we bound each of these terms
suitably.

We begin with ¢;; (and (;). We can write

Tit41 = Z Mﬂai,t = Z MP (w380 + (1= w5 )rs0) -

S S
1 - Wy 11 1 - Wy 11

J

J
By the first part of the lemma, the ratio between any two weights (both of the form W;; 41,
w; 4y, Or w;,) corresponding to pairs of agents of the same types is in [1—~1/n, 14~ /n] for

a constant ;. We can use this to bound the variation in covariances of r; ;1 within types
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by ¢’: we take the covariance of r; ;41 and r;j;;; using the expansion above and then bound
the resulting summation by bounding all coefficients.

Next we bound 9y (and ). It is sufficient to show that Var(r; ;11 — ;) is at most 1.
To do so, we will give an estimator of #; with variance less than (/n, and this will imply
Var(r; 41 —0:) < B/n = 1) (recall 7,41 is the estimate of 6; given agent i’s social observations
in period ¢+ 1). Since this bounds all the variance terms by 1, the covariance terms will also
be bounded by 1 in absolute value.

Fix an agent i of network type k and consider some network type &’ such that pg > 0.
Then there exists two signal types, which we call A and B, such that i observes Q(n) agents
of each of these signal types in G¥.*> The basic idea will be that we can approximate ; well
by taking a linear combination of the average of observed agents of network type k and signal
type A and the average of observed agents of network type k£ and signal type B.

In more detail: Let NN; 4 be the set of agents of type A in network type k observed by ¢
and N; g be the set of agents of type B in network type k observed by ¢. Then fixing some
agent jo of network type k,

! M + noi
— Qi1 = B Tjo.t—1 1 noise
N, Z 7 - —2 "o,
[Nial 57, 1+0,2"  1+0,

where the noise term has variance of order 1/n and depends on signal noise, variation in 7,
and variation in weights. These bounds on the noise term follow from the assumption that
the covariance matrix of the r;; is in a neighborhood W, . and our analysis of variation in
weights. Similarly

Ajt—1 = t Tjot—1 noise
N; 7 14052 1+o0527
| Ni, 5] jeNog +0op +0p

where the noise term has the same properties. Because 0% # 0%, we can write 6; as a linear
combination of these two averages with coefficients independent of n up to a noise term of
order 1/n. We can choose (3 large enough such that this noise term has variance most 5/n

for all n sufficiently large. This completes the Proof of Lemma 1.

B.3.4. Step 4: We now give the two-step version of Lemma 3.

Lemma 5. Suppose that in period ¢ the matrix A = A; of covariances of social signals
satisfies A € W, and all agents are optimizing in periods ¢ + 1 and ¢ 4 2. Then there is a 7y
so that for all n sufficiently large,

Wi,
M2 o [1 Ty 1] .
Wirjt 142

45We use the notation Q(n) to mean greater than Cn for some constant C' > 0 when n is large.
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whenever ¢ and i’ have the same network and signal types and j and j’ have the same network

and signal types.

Given what we established about covariances in Step 3, the lemma follows by the same

argument as the proof of Lemma 3.

Step 5: Now that Lemma 5 is proved, we can apply it to show that (52(W¢7<) C Wy

We will do this by first writing the time-(¢ + 2) behavior in terms of agents’ time-t obser-
vations (Step 5(a)), which comes from applying ® twice. This gives a formula that can be
used for bounding the covariances®® of time-(t + 2) actions in terms of covariances of time-
actions. Step 5(b) then applies this formula to show we can take ¢;; and ¢; to be sufficiently
small. (Recall the notation introduced in Section B.1 above.) We split our expression for
Tit+2 into several groups of terms and show that the contribution of each group of terms
depends only on agents’ types up to a small noise term. Step 5(c) notes that we can also
take ¥ and 1, to be sufficiently small.

Step 5(a): We calculate:

_ VVZ] t+2
Tity2 = —P G+l

j 1 - ’Lt+2

o I/Vz] t+2 U t+2
= p 1_ wy, 1St T Wijrir1pag 4
W 4o

z t+2

_ Wijir2 o Wijarz s
=P E T WigaSit TP E T a1 WSy
; 1- Wi 142 1-

Y7 Wi t10
,t+2
+Z 1/] ]]/ t—‘rl(]‘ - wj/7t)rj/7t>> .

z t+2

Let ¢;;j+ be the coefficient on r; , in this expansion of ;5. Explicitly,
Wijtso
Cijtt = Z ijj',m(l —wj,). (B.3)
1 - w; 42

The coefficient ¢;;; adds up the influence of 7, ; on r; ;1o over all paths of length two.

First, we establish a lemma about how much these weights vary.

Lemma 6. There exists v such that for n sufficiently large, when i and i’ have the same

network types and j and j” have the same network and signal types, the ratio ¢;;r;/cirjm 4 is
in [1—~/n,1+~v/n].

Proof. Fix ¢ and j'. For each network type k” and signal type s, consider the number of

agents j of network type k” and signal type s who are observed by ¢ and who observe j'. This

46We take this term to refer to variances, as well.
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number varies by at most a factor ¢? as we change 7 and j', preserving signal and network
types. For each such j, the contribution of that agent’s action to ¢;j; is (recalling (B.3))
Wii o
Wi (1= wh ).

s J
i,t+2

1—w

By applying Lemma 3 repeatedly, we can choose v, such that each of these contributions
varies by at most a factor of v, /n as we change i in Gy and j' in Gy. Thus, ¢;j, is a sum of
terms which vary by at most a multiplicative factor of 7, /n as we change i and j’ preserving
signal and network types. If we can show that the sum of the absolute values of these terms
is bounded, then it will follow that ¢;;; varies by at most a multiplicative factor of v/n for
some n. This bound on the sum of absolute values follows from the calculation of weights in

the proof of Lemma 3. U

Step 5(b): We first show that fixing the values of ¢y and )y in period ¢, the variation in
the covariances Cov(r; 1o — 0ry1. 7 112 — 0i11) of these terms as we vary ¢ and i’ over network
types is not larger than (. From the formula above, we observe that we can decompose
Tit+2 — 0411 as a linear combination of three mutually independent groups of terms:

(i) signal error terms 7,41 and 1, 4;

(ii) the errors r; 4 — 0, in the social signals from period ¢; and

(iii) changes in state vzand vy between periods ¢t and ¢ + 2.

Note that the terms r; , — 6, are linear combinations of older signal errors and changes in
the state. We bound each of the three groups in turn:

(i) Signal Errors: We first consider the contribution of signal errors. When i and " are
distinct, the number of such terms is close to its expected value because we are conditioning
on the events F, and Fj defined in Section B.1. Moreover the weights are close to their
expected values by Step 2, so the variation is bounded suitably. When ¢ and i’ are equal,
we use the facts that the weights are close to their expected values and the variance of an
average of Q(n) signals is small.

(ii) Social Signals: We now consider terms rj, — 6, which correspond to the third
summand in our expression for r;;1o. Since we will analyze the weight on 1 below, it is
sufficient to study the terms 7 — 6;_1.

By Lemma 6, the coefficients placed on rj; by ¢ and on 7, by i’ vary by a factor of at
most 27v/n. Moreover, the absolute value of each of these covariances is bounded above by
1 and the variation in these terms is bounded above by (. We conclude that the variation
from these terms has order 1/n?.

(iii) Innovations: Finally, we consider the contribution of the innovations v; and v;,;. We
treat 41 first. We must show that any two agents of the same types place the same weight

on the innovation vy (up to an error of order n—12) This will imply that the contributions of
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timing to the covariances Cov(r; 4o — 044177 112 — 0¢41) can be expressed as a term that can
be included in the relevant v, and a lower-order term which can be included in (.
The weight an agent places on v, is equal to the weight she places on signals from period

t + 1. So this is equivalent to showing that the total weight

7,] t+2 we

z t+2

agent ¢ places on period ¢ + 1 depends only on the network type k of agent ¢ and O(1/n?)
terms. We will first show the average weight placed on time-(¢ + 1) signals by agents of each
signal type depends only on k. We will then show that the total weights on agents of each
signal type do not depend on n.

Suppose for simplicity here that there are two signal types A and B; the general case is
the same. We can split the sum from the previous paragraph into the subgroups of agents
with signal types A and B:

zg t+2 we VVij,t—&—Q s
p E Wi+ P E : T s Wit

I —w; 1 — w;
jio? —O'A j:a?:aQB it+2
Letting W/ = o, —iit2 e the total weight placed on agents with signal type A and

g5=0y 1—w ”+2

similarly for signal type B, we can rewrite this as:

W t+2 W j,t+2
wi & W - e
P Z WAL —w; +2) j e ¥ P Z WhH(1 - wz‘s,t+2)w]’t+1

]a-—aA ]U-—UB

The coefficients 5 Av(‘ili”z ] in the first sum now sum to one, and similarly for the second.
i,t4+2
We want to check that the first sum jro?=o? %w] ++1 does not depend on k, and
the second sum is similar.
For each 7 in group A,

s

w - =
Jrt+1 —2 1’

oy + (PPRje1 + 1)

where we define H?t +1 = Var(rj,41 — 0;) to be the error variance of the social signal. Because
Kji+1 is close to zero, we can approximate W3y locally as a linear function i1k 41 + fio
where i < 1 (up to order =5 terms).

So we can write the sum of interest as

Wijtro
> A > Wi Wi (0" Vo + 1) + iz | -
W (1 — Wy t+2)

]O__O_A T

Y

By Lemma 3, the weights vary by at most a multiplicative factor contained in [1—v/n, 14+7y/n].
The number of paths from ¢ to j’ passing through agents of any network type k” and any

signal type is close to its expected value (which depends only on i’s network type), and the
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weight on each path depends only on the types involved up to a factor in [1 —~/n, 1+ v/n].
The variation in Vj»; consists of terms of the form ¢y, ¥y, and ¢y, all of which are
O(1/n), and terms from signal errors n; ;. The signal errors only contribute when j = j’,
and so only contribute to a fraction of the summands of order 1/n. So we can conclude the
total variation in this sum as we change 7 within the network type k has order 1/n?.

Now that we know each the average weight on private signals of the observed agents of
each signal type depends only on k, it remains to check that WA and W only depend on k.

The coefficients W and WP are the optimal weights on the group averages

Wijiva Wijtt2
paj i1 and W PQjt+1,
Z WAL —wg +2) g Z Wh(1 - zt+2) ’

2__ 2__
jcr O'A ]0 O'B

so we need to show that the variances and covariance of these two terms depend only on k.

We check the variance of the first sum: we can expand

z : z]t+2 z : l]t+2
WA 5 pa]t+1 WA

z t+2

)P (w5 1850401+ (1= w541 )Tj041) -

ol *UA o? *‘TA
We can again bound the signal errors and social signals as in the previous parts of this proof,
and show that the variance of this term depends only on & and O(1/n?) terms. The second
variance and covariance are similar, so W/ and W depend only on k and O(1/n?) terms.

This takes care of the innovation v;,;. Because we have included any innovations prior
to 1, in the social signals rj 4, to complete Step 5(b) we need only show the weight on 1,
depends only on the network type k of an agent.

The analysis is a simpler version of the analysis of the weight on 14,,. It is sufficient to
show the total weight placed on period t social signals depends only on the network type of
k of an agent . This weight is equal to

’ Z Mz Wijrarr - (1L —wjy).
— Wit
As in the vy case, we can approximate (1 —w? ) as a linear function of £y, up to O(1/n?)
terms. Because the number of paths to each agent j' though a given type and the weights on
each such path cannot vary too much within types, the same argument shows that this sum
depends only on k and O(1/n?) terms. Thus Step 5(b) is complete.

Step 5(c): The final step is to verify that we can take ¥y and ¥ to be smaller than .

It is sufficient to show that the variance Var(r; ;1o — 6,11) of each social signal about 6, is

at most ¢. The proof is the same as in Step 2(b).
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F1GURE C.1. Social signal variance in Indian villages. (a) The average social signal
variance of agents in each village, in the homogeneous and heterogeneous cases. In the
homogeneous case all agents have private signal variance 2. In the heterogeneous case, half
of agents have private signal variance % and half of agents have private signal variance 3. (b)
The average social signal variance for all agents as we vary the worse private signal variance
from 2 to 4 and hold fixed the average precision of private signals.

APPENDIX C. NUMERICAL RESULTS IN REAL NETWORKS (ONLINE APPENDIX)

The message of Section 4 is that signal diversity enables good aggregation, and signal
homogeneity obstructs it. The theoretical results in that section, however, were asymptotic,
and the good-aggregation result used some assumptions on the distribution of graphs. In this
section we show that the substantive message applies to realistic networks with moderate
degrees. We do this by computing equilibria for actual social networks from the data in
Banerjee, Chandrasekhar, Duflo, and Jackson (2013). This data set contains the social
networks of villages in rural India.”” There are 43 networks in the data, with an average
network size of 212 nodes (standard deviation = 53.5), and an average degree of 19 (standard
deviation = 7.5).

Our simulation exercises measure the benefits of heterogeneity for equilibrium aggregation.
For each network, we calculate the equilibrium with p = 0.9 for two types of environments.
The first is the homogeneous case, with all signal variances set to 2. The second is a heteroge-
neous case, where half of the agents have a signal variance greater than 2 and half of villagers
have a signal variance less than 2, chosen to hold constant the total amount of information
that reaches the community via private signals. That is, we set the signal variances so that
the average precision in each village is %, as in the homogeneous case. This signal assignment
holds fixed the average utility when all villagers are autarkic, or equivalently holds fixed the
average utility when all villagers know the state 6;,_; in the previous period exactly. At the
4TWe take the networks that were used in the estimation in Banerjee, Chandrasekhar, Duflo, and Jackson

(2013). As in their work, we take every reported relationship to be reciprocal for the purposes of sharing
information. This makes the graphs undirected.
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same time, it varies the level of heterogeneity in signal endowments. Villagers are randomly
assigned to better or worse private signals, and the simulation results do not depend sub-
stantially on the realized random assignment. Our outcomes will be the average social signal
error variance in each village and the average social signal error variance across all villages.

It is useful to begin by looking at the equilibrium average aggregation errors, i.e., social
signal variances, in the case of homogeneous signals. This is the horizontal coordinate in
Figure C.1(a); each village is a data point, and the points have a standard deviation of 0.013.
In this case, differences in learning outcomes are due only to differences in the network
structure, and we will call this number the network-driven wvariation. Now we introduce
some private signal diversity. In our first exercise, we change the variance of the worse
private signal from 2 (homogeneous signals) to 3 (heterogeneous signals), and adjust the
other variance as discussed above to hold fixed the total amount of information coming into
the network. The vertical coordinate in Figure C.1(b) depicts the equilibrium aggregation
error in each village. The average of this number across all villages falls to 0.470, compared to
0.555 (in the homogeneous case). Therefore, adding heterogeneity by increasing the private
signal variance for half of the agents by 50% changes social signal error variance by 6.5 times
the network-driven variation. Learning is much better with some private signal heterogeneity
than in villages with very favorable networks (i.e., those that achieve the best aggregation
under homogeneous signals).

In Figure C.1(b), rather than working with the particular choice of 3 for the variance of
the private signal, we look across all choices of this variance between 2 and 4 and plot the
average equilibrium social signal variance across all villages.

Figure C.1(b) also sheds light on the value of a small amount of heterogeneity. The results
in Section 4 can be summarized as saying that, to achieve the aggregation benchmark of
essentially knowing the previous period’s state, there need to be at least two different private
signal variances in the network. Formally, this is a knife-edge result: As long as private signal
variances differ at all, then as n — oo, aggregation errors vanish; with exactly homogeneous
signal endowments, aggregation errors are much higher. The figure shows that the transition
from the first regime to the second is actually gradual. In particular, a very small amount
of heterogeneity provides little benefit in finite networks, as there is not enough diversity of
signal endowments for villagers to anti-imitate. However, a 50% change in the variance of one
of the signals (equivalently, a 22% change in its standard deviation) makes the community

much better able to use the same total amount of information.

APPENDIX D. IDENTIFICATION AND TESTABLE IMPLICATIONS (ONLINE APPENDIX)

One of the main advantages of the parametrization we have studied is that standard meth-
ods can easily be applied to estimate the model and test hypotheses within it. The key feature

making the model econometrically well-behaved is that, in the solutions we focus on, agents’
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actions are linear functions of the random variables they observe. Moreover, the evolution of
the state and arrival of information creates exogenous variation. We briefly sketch how these
features can be used for estimation and testing.

Assume the following. The analyst obtains noisy measurements @;; = a;; + §;; of agent’s
actions (where &;; are i.i.d., mean-zero error terms). He knows the parameter p governing
the stochastic process, but may not know the network structure or the qualities of private
signals (o;)"_,. Suppose also that the analyst observes the state 6, ex post (perhaps with a
long delay).*®

Now, consider any steady state in which agents put constant weights W;; on their neighbors
and w; on their private signals over time. We will discuss the case of m = 1 to save on
notation, though all the statements here generalize readily to arbitrary m.

We first consider how to estimate the weights agents are using, and to back out the struc-
tural parameters of our model when it applies. The strategy does not rely on uniqueness of
equilibrium. We can identify the weights agents are using through standard vector autore-

gression methods. In steady state,

i = Z Wiipa;i—1 + w;0, + Gy, (D.1)
j
where (;; = wfmt—zj Wi;ip€j1—1+& ¢ are error terms i.i.d. across time. The first term of this
expression for (;, is the error of the signal that agent i receives at time ¢. The summation
combines the measurement errors from the observations @;; ; from the previous period.*
Thus, we can obtain consistent estimators Wij and w; for W;; and wy, respectively.

We now turn to the case in which agents are using equilibrium weights. First, and most
simply, our estimates of agents’ equilibrium weights allow us to recover the network structure.
If the weight Wij is non-zero for any ¢ and j, then agent ¢ observes agent j. Generically the
converse is true: if ¢ observes j then the weight /I/IZ-J- is non-zero. Thus, network links can
generically be identified by testing whether the recovered social weights are nonzero. For
such tests (and more generally) the standard errors in the estimators can be obtained by
standard techniques.®”

Now we examine the more interesting question of how structural parameters can be iden-
tified assuming an equilibrium is played, and also how to test the assumption of equilibrium.

The first step is to compute the empirical covariances of action errors from observed data;

we call these ‘72] Under the assumption of equilibrium, we now show how to determine the

48We can instead assume that the analyst observes (a proxy for) the private signal s; ; of agent ¢; we mention
how below.

49This system defines a VAR(1) process (or generally VAR(m) for memory length m).

50Methods involving regularization may be practically useful in identifying links in the network. Manresa
(2013) proposes a regularization (LASSO) technique for identifying such links (peer effects). In a dynamic
setting such as ours, with serial correlation, the techniques required will generally be more complicated.
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signal variances using the fact that equilibrium is characterized by @(‘7) =V and recalling
2

the explicit formula (3.3) for ®. In view of this formula, the signal variances o7 are uniquely

determined by the other variables:

Vi = 30 S Wy W (020 + 1) + (@)%, (D.2)
k

J

Replacing the model parameters other than ¢? by their empirical analogues, we obtain a
consistent estimate o2 of o;. This estimate could be directly useful—for example, to an
analyst who wants to choose an “expert” from the network and ask about her private signals.

Note that our basic VAR for recovering the weights relies only on constant linear strategies
and does not assume that agents are playing any particular strategy within this class. Thus,
if agents are using some other behavioral rule (e.g., optimizing in a misspecified model) we
can replace (D.2) by a suitable analogue that reflects the bounded rationality in agents’
inference. If such a steady state exists, and using the results in this section, one can create
an econometric test that is suitable for testing how agents are behaving. For instance, we
can test the hypothesis that they are Bayesian against the naive alternative of our Section
5.1.

APPENDIX E. DETAILS OF DEFINITIONS (ONLINE APPENDIX)

E.1. Exogenous random variables. Fix a probability space (2, F,P). Let (vi, i +)tezien

be normal, mutually independent random variables, with v; having variance 1 and 7; ; having
2

-

0<lpl<1)

variance o;. Also take a stochastic process (6;)icz, such that for each ¢ € Z, we have (for
0y = pt_1 + vy
Such a stochastic process exists by standard constructions of the AR(1) process or, in the case

of p = 1, of the Gaussian random walk on a doubly infinite time domain. Define s;; = 0;+n; ;.

E.2. Formal definition of game and stationary linear equilibria.

Players and strategies. The set of players (or agents) is A = {(i,t) : ¢ € N,t € Z}. The
set of (pure) responses of an agent (i,t) is defined to be the set of all Borel-measurable
functions {4 : R (RIN@H™ s R mapping her own signal and her neighborhood’s actions,
(Sit, (@n; t—0)72), to a real-valued action a;;. We call the set of these functions E(i’t). Let
= = [iinea E(z}t) be the set of response profiles. We now define the set of (unambiguous)
strateqy profiles, = C =. We say that a response profile £ € = is a strategy profile if the

following two conditions hold

1. There is a tuple of real-valued random variables (a;¢)ien ez on (€2, F,P) such that for
each (i,t) € A, we have

Qi = f(z’,t) (Si,ta (a’Ni,t—f)Zn:1) .
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2. Any two tuples of real-valued random variables (a;;);en ez satisfying Condition 1 are

equal almost surely.

That is, a response profile is a strategy profile if there is an essentially unique specification of
behavior that is consistent with the responses: i.e., if the responses uniquely determine the
behavior of the population, and hence payoffs.® Note that if £ € =, then it can be checked
that £ = (§Ei7t),§_(i7t)) € E whenever {;, € é(i,t)- Thus, if we start with a strategy profile
and consider agent (i,t)’s deviations, they are unrestricted: she may consider any response.

Payoffs. The payoff of an agent (i,¢) under any strategy profile £ € = is
uir(§) = —E [(ais = 6,)°] € [-o0,0],

where the actions a;; are taken according to §(; ;) and the expectation is taken in the probabil-
ity space we have described. This expectation is well-defined because inside the expectation
there is a non-negative, measurable random variable, for which an expectation is always
defined, though it may be infinite.
Equilibria. A (Nash) equilibrium is defined to be a strategy profile £ € = such that, for each
(,t) € A and each Ee = such that E: (%’,t)’ §_ () for some 5@) € Z(i), we have

uia(€) < ui(8).

For p € Z, we define the shift operator T, to translate variables to time indices shifted p
steps forward. This definition may be applied, for example, to =Z.°2 A strategy profile £ € =
is stationary if, for all p € Z, we have T,§ = &.

We say £ € = is a linear strategy profile if each &; is a linear function. Our analysis focuses

on stationary, linear equilibria.

APPENDIX F. REMAINING PROOFS (ONLINE APPENDIX)

F.1. Proof of Proposition 2. We first check there is a unique equilibrium and then prove

the remainder of Proposition 2.
Lemma 7. Suppose G has symmetric neighbors. Then there is a unique equilibrium.

Proof of Lemma 7. We will show that when the network satisfies the condition in the propo-
sition statement, ® induces a contraction on a suitable space. For each agent, we can consider

the variance of the best estimator for yesterday’s state based on observed actions. We can

5lCondition 1 is necessary to rule out response profiles such as the one given by Eit (Sity@it—1) = laj—1]+1.
This profile, despite consisting of well-behaved functions, does not correspond to any specification of behavior
for the whole population (because time extends infinitely backward). Condition 2 is necessary to rule out
response profiles such has the one given by & ¢ (s; ¢, @i t—1) = @;—1, which have many satisfying action paths,
leaving payoffs undetermined.

2e., o = Tpo is defined by o(; ) = 0 1—p)-
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analyze these variances using the envelope theorem. Moreover, the space of these variances
is a sufficient statistic for determining all agent strategies and action variances.

Let r;; be i’s social signal—the best estimator of §,_; based on the period ¢ — 1 actions of
agents in V;—and let /{ . be the variance of r;; — 0;_;.

We claim that ¢ mduces a map ® on the space of variances /{fvt, which we denote V. We
must check the period ¢ variances (x7,); uniquely determine all period ¢+ 1 variances (K7, )::
The variance Vj;, of agent ¢’s action, as well as the covariances V; , of all pairs of agents 1,
i with N; = Ny, are determined by lﬁ?’t. Moreover, by the condition on our network, these
variances and covariances determine all agents’ strategies in period ¢ + 1, and this is enough
to pin down all period ¢ + 1 variances nft 41

The proof proceeds by showing ® is a contraction on V in the sup norm.

For each agent j, we have N; = Ny for all i,i" € N;. So the period t actions of an agent 4’
in N; are

(P ’%t + 1) o;°
Ayt = o 2 1 G "‘%,t 1) ‘Tt ;2 n (p;ﬁit 1 St (F.1)

where s, 4 is agent (i')’s signal in period ¢ and r;; the social signal of i (the same one that 7’

has). It follows from this formula that each action observed by j is a linear combination of a
private signal and a common estimator r;;, with positive coefficients which sum to one. For
simplicity we write
Qirg =bo -1+ by - Sivy (F.2)
(where by and by depend on i’ and ¢, but we omit these subscripts). We will use the facts
0<by<landO<by <1.
We are interested in how 7,,, = Var(r; 1 — 6;) depends on 7, = Var(r;y — 6;_1). The
estimator r;,,; is a linear combination of observed actions a; ¢, and therefore can be expanded

as a linear combination of signals s;;, and the estimator r; ;. We can write
7"]‘775_,_1 =Co - (pri,t) + E Ci’Si’,t (Fg)
7:/

and therefore (taking variances of both sides)

K2 = Var(rj — 0;) = cgVar(priy — 0,) + Z o
= (p°K;, + 1) —l—Zc,a,

The desired result, that P is a contraction, will follow if we can show that the derivative
dk? . .
Z;é“ = c2p* € [0,6] for some § < 1. By the envelope theorem, when calculating this

it

derivative, we can assume that the weights placed on actions ay ¢ by the estimator r;;41 do




LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 7

not change as we vary m?jt, and therefore ¢y and the ¢;; above do not change. So it is enough
to show the coefficient ¢ is in [0, 1].

The intuition for the lower bound is that anti-imitation (agents placing negative weights on
observed actions) only occurs if observed actions put too much weight on public information.
But if ¢y < 0, then the weight on public information is actually negative so there is no reason

to anti-imitate. This is formalized in the following lemma.

Lemma 8. Suppose j has symmetric neighbors. Then agent j’s social signal places non-

negative weight on a neighbor i’s social signal from the previous period, i.e., ¢g > 0.

Proof. To check this formally, suppose that ¢ is negative. Then the social signal r;,;; puts
negative weight on some observed action—say the action aj; of agent k. We want to check
that the covariance of 7,41 — 6; and ay; — 6 is negative. Using (F.2) and (F.3), we compute
that

COV(?"J',H_l — 925, ak,t — Gt) = COV (co(pm’t — Qt) —+ Z ci/(si/yt — Qt)), bg(pn-,t — 9,5) —+ bk(sk,t — Gt))

i'eN;

= coboVar(pr; + — 0¢) + cibi Var(sy s — 6;)

because all distinct summands above are mutually independent. We have by, b, > 0, while
cop < 0 by assumption and ¢, < 0 because the estimator ;41 puts negative weight on ay.
So the expression above is negative. Therefore, it follows from the usual Gaussian Bayesian
updating formula that the best estimator of 6, given r;;y1 and ax, puts positive weight on
ap:. However, this is a contradiction: the best estimator of ¢, given ;1 and ay; is simply
Tj+1, because ;1 was defined as the best estimator of 6, given observations that included

ar. This completes the proof of Lemma 8. 0

We now complete the proof of Lemma 7. For the upper bound ¢y < 1, the idea is that
rj++1 Puts more weight on agents with better signals while these agents put little weight on
public information, which keeps the overall weight on public information from growing too
large.

Note that 7,41 is a linear combination of actions pa; , for i’ € N;, with coefficients summing
to 1. The only way the coefficient on pr;; in ;.41 could be at least 1 would be if some of
these coefficients on pa; ; were negative and the estimator r;;y placed greater weight on
actions a; ; which placed more weight on 7; ;.

Applying the formula (F.1) for a; ¢, we see that the coefficient by on pr;; is less than 1 and
increasing in 0. On the other hand, it is clear that the weight on a;, in the social signal
Tj14+1 1s decreasing in o;: more weight should be put on more precise individuals. So in fact
the estimator ;41 places less weight on actions a;; which placed more weight on r; ;.

Moreover, the coefficients placed on private signals are bounded below by a positive con-

stant when we restrict to covariances in the image of ® (because all covariances are bounded
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as in the proof of Proposition 1). Therefore, each agent i’ € N; places weight at most one
on the estimator pr; ;1. Agent j’s social signal 7,41 is a sum of these agents’ actions with
coefficients summing to 1 and satisfying the monotonicity property above. We conclude that
the coefficient on pr;; in the expression for ;4 is at most one. This completes the proof of
Lemma 7. 0

We now prove Proposition 2.

Proof of Proposition 2. By Lemma 7 there is a unique equilibrium on any network G with
symmetric neighbors. Let € > 0.

Consider any agent i. Her neighbors have the same private signal qualities and the same
neighborhoods (by the symmetric neighbors assumption). So there exists an equilibrium
where for all 4, the actions of agent ¢’s neighbors are exchangeable. By uniqueness, this in
fact holds at the sole equilibrium.

So agent i’s social signal is an average of her neighbors’ actions:
1
Tit = 77 E Qjt—1-
| N

Suppose the e-aggregation benchmark is achieved. Then all agents must place weight at

least (pfi;r_;l);;_g on their social signals. So at time ¢, the social signal 7;; places weight at
least (pfi;r_;l);_g on signals from at least two periods ago. Since the variance of any linear

combination of signals from at least two periods ago, with weights summing to one, is at
least 1 + p, it follows that for e sufficiently small the social signal 7;; is bounded away from

a perfect estimate of 6;_;. This gives a contradiction. O

F.2. Proof of Corollary 1. Consider a complete graph in which all agents have signal

2 and memory m = 1. By Proposition 2, as n grows large the variances of all

variance o
agents converge to A > (1 +o072)7L,

Choose o2 large enough such that A > 1. To see that we can do this, note that as o grows
large, the weight each agent places on their private signal vanishes. So the weight on signals
from at least k periods ago approaches one for any k. Taking o? such that this holds for k&
sufficiently large, we have A > 1.

Now suppose that we increase 0’% to oo. Then a;; = 71, in each period, so all agents can
infer all private signals from the previous period. As n grows large, the variance of agent 1
converges to 1 and the variances of all other agents converge to (1 + ¢=2)~!. By our choice
of 02, this gives a Pareto improvement. We can see by continuity that the same argument

holds for o7 finite but sufficiently large.

F.3. Proof of Corollary 2. Our goal is to estimate Var(a;; — 6;).
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First, observe that

aip = WsSi + (1 —wg)— E @ji—1

1
= ws(et + 51'715) + (]. — U)s)ﬁ Z QAjt—1-
J

This implies, inductively, that

aiy — 0 = wseiy + Z (ws(l - ws)z(et — O+ Ct)) )
/=1

where the (; are mean-zero random variables independent of all other random variables in

the expression. (They are linear combinations of agents’ signal noise realizations.) Thus,

Var(a;; — 60;) > Var <ws Z(l —w,)" (0, — Ht(g)>
=1
Noting that 6, = Zk Op Vi_k, We may write
-1
O — 0y = Z pk’/t—k
k=0

and therefore

[e's) /—1
Var(a;; — 6;) > Var (ws Z(l —w,)* Z pkyt_k>
=1 k=0
= w?Var (Z Ve p" Z (1-— ws)g)

k=0 {=k+1

= w?Var (Z Vik (pk Z (1-— ws)e>>

l=k+1

This proves the bound
(1 —w,)?
T L= (1= w)?p?

It remains to show the variances diverge to infinity as 02 — oo and p — 1 from below.

Var(a;; — 0;) >

Choose a sequence of pairs (02,p) — (o0,1). If w, — 0 along any subsequence of this

(—uwa) d s0 Vi 0
m — OO and so ar(ai,t — t) — OO

as well. If w, is non-vanishing, then Var(a,; — ;) — oo since the action variance is at

sequence, then along the subsequence we have
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2 2

least w?0? and 0? — oo. Finally, note that these bounds are both independent of n, so

Var(a;+ — 0;) — oo uniformly in n.

F.4. Proof of Theorem 2. Suppose that all private signals have variance o2 > 0. Fix
a sequence of networks G, and an equilibrium on each G,. We will show that given any
constant C > 0 and any sequence of equilibria, the fraction of agents ¢ such that
2l
‘T d
is bounded away from one.

We first prove the result in the case m = 1. For each n, let ¥, be the set of agents i
satisfying

~2
ki <

allQ

Y

i.e., the set of agents who do learn well. Assume for the sake of contradiction that % — 1
as n — oo along some subsequence and pass to that subsequence.
For each j, we can express the action a;; as a weighted sum of innovations and signal

errors,” with all terms on the right-hand side conditionally independent:

e =0, — Y wia(wi—)(P'vic) + > win(mira—) (P a—).

1=0 1,5

This expression is unique.

Lemma 9. For all j € ¢4, we must have

(1) € 1 o4 1
w; (v _—— = —
A c24+1 d'o 241

for some C” > 0 (independent of j and n).

2,2 —1

Proof. By the standard updating formula, the optimal weight w;(14) is %, where
J,t

I{it is the variance of the best estimator of §;_; based on (j,t)’s social observations. The upper

bound follows because this is minimized when 3, = 0. For the lower bound,

(ﬂzﬁ'?,t + 1)71
(PR, + 1) 40
1
(1+072)+ a—2p2/f?7t
1 -2 2

_ gp 2 4
T 1402 (1+ 0*2)2Kj’t + O(Kj’t)'

w; (V) =

53To simplify calculations, we write this expression with a negative coefficient on the first sum so that the
terms w, ¢(14_;) are positive. The weight that j places on v,_; is in fact —w; (vi—i).
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For Iij%t in any neighborhood of zero, we can choose C” such that the non-constant terms in
the final expression are bounded below by —C"x?,. Since by assumption we have x3, < C
the lemma follows with C' = C - C”. D

There are at most (n — |%,|)d in-coming links to agents outside %,. Each agent who

—2(";‘%” -d agents outside ¥, accounts for at least w -d of those links,

I%\

observes at least

so there can be at most 7 such agents. Since — 1, there is an agent i € ¢, who observes

2(n Idn\

fewer than -d agents outside ¥,,.

Consider the action of such an agent i € ¢, in period t + 1. Since
2
Hz‘,t-i—l S g’

the weight on the innovation from the previous period satisfies

[ Q

(wi,tJrl(Vt)p) <

On the other hand, we can express this weight in terms of neighbors’ weights as

Wi t41 Vt Z PWijt+1W5, t(Vt)
J
We will show that if this weight w; ;41 (1) vanishes, then the contribution of private signal

errors to ;.41 must be larger than O(%).

We can split this summation as

Wig1(ve) = p Z Wij 1 Wi (Ve) + p Z Wij 1 Wy (V).
We now consider two cases, depending on whether ¢4, |wijt+1| — 0, i.e., whether the
sum of the absoulte values of the weights on agents outside ¥, is vanishing.
Case 1: liminf, >,y [wijs41| = 0. We can pass to a subsequence along which } ¢, [wijee1| —
0.
We claim that it follows from the bounds on w;;(14) in Lemma 9 that this can only occur
if > (wijer1]| — 00, If 375 Jwijea] is bounded,

Wig1(Ve) = p Z Wij 1 Wyt (Ve) + p Z Wij 1 Wi (V) = p Z Wij Wi (ve) + o(1).
JEY, J¢Yn JEYn

The second equality holds because > _ ¢, [wije1| — 0 and wj,(v4) € [0, 1] for all j. Therefore,

wi,t+1<vt>:pru,mwj,t<w>+o<1>z(p Lo —o<1>)+o<1>,

2 2
e l1+o020c2+1
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and the right-hand side is non-vanishing. Here the first term on the right- hand side is the
e =g The first

o(1) error term corresponds to the variation in w,(1;) across j, which is O(g) by Lemma

limit of the sum if all of the terms w,(1;) were equal to the upper bound

9 and has bounded coefficients. Thus w;;41(v4) is non-vanishing, but this contradicts the
inequality (F.4). We have proven the claim.
The contribution to x7,,, from signal errors i is > [wije[*(w3,)?0?. Since wf, =

1 —wj(v¢) converge uniformly to a constant we can bound this contribution below by

—2+1 Y
an expression that is proportional to

Z |wij ]
J

The summation has at most d non-zero terms. Applying the standard bound ||v]|; < /n||v]|2

on LP norms on R",
2
1
Z wije1]” > = (Z |UJz‘j,t+1|>
J J

The right-hand side of this inequality grows at a rate faster than % by the claim _; |wij 1] —
00, and so the social signal error grows at a rate faster than %. This gives a contradiction.
Case 2: liminf, Y g |wijis1| > 0.
As in Case 1, the contribution to signal errors from neighbors j ¢ ¥, is proportional to
Z |wij 1]
J¢Gn

- d agents outside ¢,. The same

By our choice of the agent i, she observes at most w

standard bound on L? norms gives

1
Z |wZ] t+1’ 3 TL _ |g| Z ’wlj t+1‘

J¢%n JEGn

2

By assumption, the cardinality n—|%,| of the complement of &, is o(n) and (3_ 44 |wij 1)
is non-vanishing. So the right-hand side grows at a rate faster than %. Thus the social signal
error grows at a rate faster than %, which again gives a contradiction. This completes the
proof in the case m = 1, and we next turn to the general argument.

Now, suppose m > 1 is arbitrary. As before, for each agent (j,t),we can write:

aje =0, — > wi(vo)(p've) + Y wie(myra—1) (o)

1=0 Lj'
For each n, let ¢, be the set of i satisfying

Ry <

2l Q
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Suppose limsup,, |%,|/n = 1. Passing to a subsequence, we can assume that lim,, |%,|/n = 1,

i.e., the fraction of agents in ¥, converges to one.
As in the m = 1 proof above, we can choose i € ¥, who observes fewer than w -d

agents outside ¥,,. Choose any such i and consider the agent (7,t) with i € ¢,,, who observes
neighbors’ actions in periods ¢ — 1,...,t —m. For each 1 <[ < m, we will write w; ) (-
for the weight that agent (i,t) places on the action of agent (j,t —[). By the same argument
as in Case 2 of the m = 1 proof above, liminf, ngz% \w(p),t—1y| = 0 for each I (since the
fraction of agents outside ¥, is vanishing). Passing to a subsequence, we can assume that
limn Zje,éffn ]w(i’t)7(j,t_l)| =0.

We can express agent (i,t)’s action:

Qi = Z Z w(i,t),(j,tfl)plaj,t—l + Z w(i,t),(j,tfl)plaj,t—l

1<i<m \ j€%, €%,
We will show that this expression places non-vanishing weight on the innovation v;_; for some
[ > 1. This will contradict our assumption that i € ¥,,.

Since lim,, ng% |w(i,t)7(j,t_l)| = 0 and the weight each agent places on v;_; is bounded, it

D0 wanGenplaji

1<I<m j€9,

is sufficient to show that

places non-vanishing weight on the innovation v;_; for some [ > 1.
For each (j,t') such that j € ¢,,, we have

Op_1+ 0 sy

Qi =
I 1+o02

ej,t’a

where Var(e;) — 0. This is because

(p*k3 + )7 'rig + 07850
(PRi, + 1)+ o072

Ajpr = ’

and we have 7, = Var(r;; — 6,_1) = 0.

Using this expression for a;,, we obtain

! VO 0285
Z Z W), (-0 P Ajt—1 = Z Z W), (Gt —1) P 1102 + €541

1<I<m jEY, 1<I<m jE€%,

By the same argument as in Case 1 of the m = 1 proof above,
>0 lwen gl
1<I<m j€¥9,

must be bounded (or else the contributions of signal errors to %7 would be too large to have
i €9,). Therefore, it is sufficient to show that
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;O + 0_2Sj,t—z
Z Z Wi t),(Gt-1)P -~ 1102

1<I<m j€%,
places non-vanishing weight on the innovation v;_; for some [ > 1.

This holds for the largest [ such that Zje% Wi ), (ji—1) 1S non-vanishing. Such an [ must

1
Z szt)(]tl 1+O'

1<I<m je%y,

exist, because

since i € 9,.

F.5. Proof of Proposition 3. For each agent ¢, we can write

@iy = wisig+ Yy Wigpaj, 1 = wisi; + Z Wi <pw‘j~sj,t +> Wjj’paj/,t—2> -
j ' I

Because we assume w; < w < 1 and w; <w < 1 for all j, the total weight Z WiiWijip
on terms a;r ;o is bounded away from zero. Because the error variance of each of these terms

is greater than 1, this implies agent ¢ fails to achieve the e-aggregation benchmark for € > 0

sufficiently small.

F.6. Proof of Proposition 4. We prove the following statement, which includes the propo-

sition as special cases.

Proposition 7. Suppose the network G is strongly connected.”® Consider weights W and
w?® and suppose they are all positive, with an associated steady state V,. Suppose either

(1) there is an agent ¢ whose weights are a Bayesian best response to V;, and some agent
observes that agent and at least one other neighbor; or

(2) there is an agent whose weights are a naive best response to V;, and who observes
multiple neighbors.
Then the steady state V; is Pareto-dominated by another steady state.

We provide the proof in the case m = 1 to simplify notation. The argument carries through
with arbitrary finite memory.

Case (1): Consider an agent [ who places positive weight on a rational agent k and positive
weight on at least one other agent. Define weights W by Wij = W;; and w; = w; for all
ik, Wy = (1 — €)W, for all j <n, and w§ = (1 — €)wj + ¢, where Wj; and w; are the
weights at the initial steady state. In words, agent k places weight (1 —€) on her equilibrium
strategy and extra weight ¢ on her private signal. All other players use the same weights as

at the steady state.

54That is, there is a directed path from each node to each other node.
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Suppose we are at the initial steady state until time ¢, but in period ¢ and all subsequent
periods agents instead use weights WW. These weights give an alternate updating function ®
on the space of covariance matrices. Because the weights W are positive and fixed, all coor-
dinates of ® are increasing, linear functions of all previous period variances and covariances.

Explicitly, the diagonal terms are

BV = (@)%07 + > WiWijr(p*Vigra + 1)
JJ'<n
and the off-diagonal terms are
@V))ir = > WyWaj(pVijwr +1).
Jj'<n
So it is sufficient to show the variances Eh(‘/}) after applying ® for h periods Pareto dominate
the variances in V; for some h.

In period ¢, the change in weights decreases the covariance Vj; of £ and some other agent
J, who [ also observes, by f(e) of order ©(¢). By the envelope theorem, the change in weights
only increases the variance Vi, by O(e?). Taking e sufficiently small, we can ignore O(e?)
terms.

There exists a constant § > 0 such that all initial weights on observed neighbors are at
least 6. Then each coordinate [®(V')];; is linear with coefficient at least 6% on each variance
or covariance of agents observed by 1.

Because agent [ observes k and another agent, agent [’s variance will decrease below its
equilibrium level by at least 62f(e) in period ¢ + 1. Because ® is increasing in all entries and
we are only decreasing covariances, agent [’s variance will also decrease below its initial level
by at least 6%f(e) in all periods ¢’ > ¢ + 1.

Because the network is strongly connected and finite, the network has a diameter. After
d+1 periods, the variances of all agents have decreased by at least §2?+2 f(¢) from their initial
levels. This gives a Pareto improvement.

Case (2): Consider a naive agent k& who observes at least two neighbors. We can write

agent k’s period t action as

Akt = WiSip + Z Wijpaje—1.
JEN;

Define new weights W as in the proof of case (1). Because agent k is naive and the sum-
mation .. Wijpaji—1 has at least two terms, she believes the variance of this summation
is smaller than its true value. So marginally increasing the weight on sj; and decreasing the
weight on this summation decreases her action variance. This deviation also decreases her

covariance with any other agent. The remainder of the proof proceeds as in case (1).
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F.7. Proof of Proposition 5. Suppose the social influence

sit) = S5 (o)t = v (1= ) - 1] @
JEN k=1 i

k
NS

does not converge for some 7. Then in particular, there exists j such that > -, (,0/1/17) W;

Jt
does not converge. We can write

0= Y3 (A7)

=0 j/EN

a -\ T
> (pW)ji WENis—r

7=0

;
NS

Wy Sl =

27

This expression is the sum of

and independent terms corresponding to signal errors of agents other than ¢ and changes
in the state. Because Y <, (pW)T w; does not converge, the payoff to action a;, must
therefore be —oco. But we showed ir; the proof of Proposition 1 that agent j’s equilibrium
payoff is at least —JJZ, which gives a contradiction.

Given convergence, the expression for SI(i) follows from the identity (/—M)~* = >3  M*.

F.8. Proof of Proposition 6. The social signal r;; is the same for all agents, and we will

refer to it as r;. We can express the social signal as

re=wa Y G ws Y G (F.5)
B

1:0;=0 A 1:0;,=0
for some weights w, and wpg.

We can rewrite the actions a;;—; for ¢ with signal variance ai as

+ UA—2
e—Y S R 3 5it—1,
K—i—Ufp =1 K+0A2 t—1

Aijt—1 =

where K = p?k? | +1 is the equilibrium variance of pr;_; about the state §;_;. The analogous
formula holds for agents ¢ with signal variance c%.

Substituting the formulas for a;,; into equation (F.5) and taking variances,
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k2 = Var(r; — 0,_1)

nk wA wp o,
=V —1 = O V; —————(Si1—1 — O
ar(2 <K—|—UA2+K+0'B2>(Tt1 tl))+ ar(wAZ:AK—l—JAQ(S’tl t1)>

€S B
_n’K wa wg \’ L wio n o wiop
4 \K+o0,? K+oz 2 (K+0,9)2 2 (K+oz%)?2

The equilibrium weights W, and wg minimize this expression. Using the fact that w, +
wg = %, we have that w,4 satisfies

(K2), 1 () = n’K WA N Wp 1 B 1 nf&AUf H@BO'EZ
t 2 \K+o0,? K+oz2) \K+0,? K+oz

(K +0,%)?  (K+o05")?

=0.

This equation, along with @4 + wg = 2, allows us to explicitly solve for W, and Wz in terms
of k and exogenous variables. In particular, we get that

Wa (K403 (2+Knok — K(n—2)o% (F.6)
K+o03*) \24+ Kno} — K(n—2)o% )’ '

wp
We now turn to analyzing social influences. Recall that
n oo P k
SIOESYSY (pw) @ (F.7)
- )
7j=1 k=1

On the complete graph, this expression is proportional to the product of the weight placed

on agent ¢ by the social signal 7, and agent i’s self-weight w;. Therefore, we compute

Substituting from equation (F.6),

SI(A)  [04*\ (2+ Knog — K(n—2)0c%
SI(B)  \oz*) \2+ Kno% — K(n—2)o% )"

-2
We want to show that the left-hand side is greater than Z4; whenever 022 > agz, which is
9B

equivalent to showing
2+ Kno% — K(n —2)0%
2

> 1
2+ Kno% — K(n —2)o%
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whenever 0% > o5* and this fraction is positive.
To see this, note that the difference between the numerator and denominator of the fraction
is
(Kno} — K(n—2)0%) — (Knoy — K(n—2)o}) =2K(n—1)(op — 03)

>0

as desired.

APPENDIX G. MODEL WITH A STARTING TIME (ONLINE APPENDIX)

In introducing the model (Section 2), we made the set of time indices T equal to Z, the
set of all integers. Here we study the variant with an initial time period, ¢ = 0: thus, we
take 7 to be Zso, the non-negative integers. This section shows that there is a unique
equilibrium outcome. In large networks, a suitable analogue of Theorem 1 holds, with both
aggregation quality and outcomes similar to those obtained there. Similarly, the negative
result of Proposition 2 also has a counterpart in this model.

Let 6y be drawn according to the stationary distribution of the state process: 6y ~

N (O, %p) After this, the state random variables 6, satisfy the AR(1) evolution

Orr1 = pbi + vy,

where p is a constant with 0 < |p| < 1 and 1411 ~ N(0,02) are independent innovations.
Actions, payoffs, signals, and observations are the same as in the main model, with the
obvious modification that in the initial periods, ¢t < m, information sets are smaller as there
are not yet prior actions to observe.”® To save on notation, we write actions as if agents had
an improper prior, understanding that the adjustment for actions taken under the natural
prior 6; ~ N (0, 1%,;) is immediate.

In this model, there is a straightforward prediction of behavior. A Nash equilibrium here

refers to an equilibrium of the game involving all agents (,¢) for all time indices in 7.

Fact 2. In the model with 7 = Z>, there is a unique Nash equilibrium, and it is in linear
strategies. The initial generation (¢ = 0) plays a linear strategy based on private signals only.
In any period ¢ > 0, given linear strategies from prior periods, players’ best responses are

linear. For time periods ¢t > m, we have
Vi = (V).

This fact follows from the observation that the initial (¢ = 0) generation faces a problem

of forming a conditional expectation of a Gaussian state based on Gaussian signals, so their

The actions for ¢ < 0 can be set to arbitrary (commonly known) constants.
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optimal strategies are linear. From then on, the analysis of Section 3.1 characterizes best-
response behavior inductively. Note that for arbitrary environments, the fact does not imply
that V; must converge.

Our main purpose in this section is to give analogues of the main results on learning in
large networks. We use the same definition of an environment—in terms of the distribution
of networks and signals—as in Section 4.1. For simplicity, we work with m = 1, though the
arguments for our positive result extend straightforwardly.

The analogue of Theorem 1 is:

Theorem 3. Consider the T = Z>y model. If an environment satisfies signal diversity, there
1s C' > 0 such that asymptotically almost surely 7%22775 < C/n for alli at all timest > 1 in the

unique Nash equilibrium.

In particular, this implies that the covariance matrix in each period ¢ > 1 is very close (in
the Euclidean norm) to the good-learning equilibrium from Theorem 1. We sketch the proof,
which uses the material we developed in Appendix B. We define A, as in that proof (Section
B.1). Take a # > 0, to be specified later, and consider

W:W%’ UEIV)(W%’%>.

1
n

First, for large enough /3, we have that 4; € W: In the unique Nash equilibrium, at ¢t = 1,
agents simply take weighted averages of their neighbors’ signals, weighted by their precisions.
So A; € W by the central limit theorem for 3 sufficiently large. Second, we use the previously
established fact (recall Section B.2.2) that ®(W) C W to deduce that 4, € W at all future
times. Finally, we observe that W C W5 1 by construction.

Without signal diversity, bad learning can occur forever, in the unique equilibrium. The
analogue of Proposition 2 is immediate. In graphs with symmetric neighbors, ® is a contrac-
tion when m = 1. So iteration of it arrives at the unique fixed point, and thus a learning

outcome far from the benchmark.

ApPENDIX H. NAIVE AGENTS (ONLINE APPENDIX)

In this section we provide rigorous detail for the analysis given in 5.1. We will describe
outcomes with two signal types, 0% and ¢%.°® We use the same random network model as in
Section 4.2 and assume each network type contains equal shares of agents with each signal
type.

We can define variances
_ PPRI4 1+ 0,

(1+04%)

o0

A

o ,021'134—14-0';32
B (1+052)2

%The general case, with many signal types, is similar.
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where

—2 —2
-2 _ 1 _ 1 04 Op
ky = = ) -2 = T —2 /-
(04" +o05) \1+0, 1+og
Naive agents’ equilibrium variances converge to these values.

Proposition 8. Under the assumptions in this subsection:

(1) There is a unique equilibrium on G,,.

(2) Given any 6 > 0, asymptotically almost surely all agents’ equilibrium variances are
within 0 of V§° and V5°.

(3) There exists € > 0 such that asymptotically almost surely the e-aggregation benchmark
is not achieved, and when 0% = 0% asymptotically almost surely all agents’ variances are

larger than V°°.

Aggregating information well requires a sophisticated response to the correlations in ob-
served actions. Because naive agents completely ignore these correlations, their learning out-
comes are poor. In particular their variances are larger than at the equilibria we discussed
in the Bayesian case, even when that equilibrium is inefficient (0% = 0%).

When signal qualities are homogeneous (0% = %), we obtain the same limit on any network
with enough observations. That is, on any sequence (G,,)>2; of (deterministic) networks with
the minimum degree diverging to co and any sequence of equilibria, the equilibrium action

variances of all agents converge to V3.

H.1. Proof of Proposition 8. We first check that there is a unique naive equilibrium. As

in the Bayesian case, covariances are updated according to equations (3.3):

)

Viie = (w},)°07 + > Wi iWiw (0" Viwr 1 + 1) and Vijy = > Wi Wi 4 (0° Vi -1 + 1).

The weights W, and w;, are now all positive constants that do not depend on V,_;. So
differentiating this formula, we find that all partial derivatives are bounded above by 1—w;, <
1. So the updating map (which we call ®"%*¢) is a contraction in the sup norm on V. In
particular, there is at most one equilibrium.

The remainder of the proof characterizes the variances of agents at this equilibrium. We
first construct a candidate equilibrium with variances converging to V§° and Vz°, and then
we show that for n sufficiently large, there exists an equilibrium nearby in V.

To construct the candidate equilibrium, suppose that each agent observes the same number
of neighbors of each signal type. Then there exists an equilibrium VU™ where covariances
depend only on signal types, i.e., V¥ is invariant under permutations of indices that do
not change signal types. We now show variances of the two signal types at this equilibrium

converge to V3 and Vg°.
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To estimate 6;_1, a naive agent combines observed actions from the previous period with
weight proportional to their precisions 03 or 05°. The naive agent incorrectly believes this
gives an almost perfect estimate of 6;_;. So the weight on older observations vanishes as
n — oo. The naive agent then combines this estimate of 6, _; with her private signal, with
weights converging to the weights she uses if the estimate is perfect.

naive

Agent i observes % neighbors of each signal type, so her estimate r}';*"* of 6;_; is approx-

imately:

, 2
riatte = o2 E Qi1+ 052 5 iy
’L,t |NZ|(0_22+0_§2) A Jvt 1 B ]7t 1

jGNi,U?:a'QA jENi,a?:UQB

The actual variance of this estimate converges to:

1
—2

Var(r]4e — 6§, ) = —
" (03° + 05

) (04 Covyy + o5 Covgy + 20, 05> Covyy) (H.2)

where C'ov%, is the covariance of two distinct agents of signal type A and Covyy and Covyy
are defined similarly.
Since agents believe this variance is close to 1, the action of any agent with signal variance

0% is approximately:

naive

- Tig T 0223i,t
ut 1+ 0;2
We can then compute the limits of the covariances of two distinct agents of various signal

types to be:
PP+ 1
(1+03%) (1 +05°)

22+ 1 22+ 1
p t . COV?B — p t .

(14037 (1+05%)°"

Plugging into H.2 we obtain

oo __ S S —
Coviyy = Covig =

2 -2
rpt=1- —21 ) ( UA—2+ OB—z)’
(04" +o05) \1+0, 1+o0p

Using this formula, we can check that the limits of agent variances in V¥ match equations
H.1.

We must check there is an equilibrium near VU™ with high probability. Let ( = 1/n. Let
E be the event that for each agent ¢, the number of agents observed by ¢ with private signal
variance 0% is within a factor of [1 —(?, 1+ ¢?] of its expected value, and similarly the number
of agents observed by 7 with private signal variance % is within a factor of [1—¢?,14(?] of its
expected value. This event implies that each agent observes a linear number of neighbors and

observes approximately the same number of agents with each signal quality. We can show as
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in the proof of Theorem 1 that for n sufficiently large, the event E occurs with probability
at least 1 — (. We condition on F for the remainder of the proof.

Let V. be the e-ball around in Vsvm the sup norm. We claim that for n sufficiently large,
the updating map preserves this ball: ®"*¢(},) C V.. We have CID”C”'”‘Z(‘A/SW”) = Veym up to
terms of O(1/n). As we showed in the first paragraph of this proof, the partial derivatives
of ®"%v¢ are bounded above by a constant less than one. For n large enough, these facts
imply ®"*¢().) C V.. We conclude there is an equilibrium in V. by the Brouwer fixed point
theorem.

Finally, we compare the equilibrium variances to the e-aggregation benchmark and to V.
It is easy to see these variances are worse than the e-aggregation benchmark for n large for
some ¢ > 0, and therefore by Theorem 1 also asymptotically worse than the Bayesian case
when 0% # 0%.

In the case 04 = 0%, it is sufficient to show that Bayesian agents place more weight on
their private signals (since asymptotically action error comes from past changes in the state

and not signal errors). Call the private signal variance 0. For Bayesian agents, we showed
—2
U—z—i-(pzo(-]ovoo

in Theorem 1 that the weight on the private signal is equal to e where Cov™

solves
(p? Cov™>® +1)~1

(072 + (p2 Cov™ +1)~1]2
For naive agents, the weight on the private signal is equal to %, which is smaller since
Cov™ > 0.

Cov™® =

APPENDIX I. SOCIALLY OPTIMAL LEARNING OUTCOMES WITH NON-DIVERSE SIGNALS
(ONLINE APPENDIX)

In this section, we show that a social planner can achieve vanishing aggregation errors
even when signals are non-diverse. Thus, slower rate of learning at equilibrium with non-
diverse signals is a consequence of individual incentives rather than a necessary feature of
the environment.

Let G,, be the complete network with n agents. Suppose that o? = ¢ for all i and m = 1.

Proposition 9. Let ¢ > 0. Under the assumptions in this section, for n sufficiently large
there exist weights weights W and w?® such that at the corresponding steady state on G,

the e-aggregation benchmark is achieved.

Proof. An agent with a social signal equal to 6;_; would glaee weight % 021 her private
signal and weight o++1 on her social signal. Let w¥ = ;T_H + 0 and wi = ;T_H — ¢, where

we will take § > 0 to be small.
Assume that the first |n/2] agents place weight w? on their private signals and weight

1 —w? on a common social signal 7, we will define, while the remaining agents place weight
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FIGURE I.1. Social planner’s optimum and Bayesian learning. The red curve shows equi-
librium aggregation errors on a complete graph with n = 600 agents, split into two equally-
sized groups with private signal variances 0% = 2 and % varying. The blue curve plots the
aggregation errors when weights are chosen by a social planner the sum of agents’ steady-state
action variances.

w$ on their private signals and weight 1 — w} on the social signal ;. As in the proof of

Theorem 2,

n/2|
1 _
|n/2] > a1 = wibi + (1 —wi)ry +O(n™'/?),
j=1
1 - _
Fa] 2o it = Wit + (L- wh)ris + O '),
j=In/2l+1

There is a linear combination of these summations equal to 6;,_; + O(n~/2), and we can take

ry equal to this linear combination. Taking ¢ sufficiently small and then n sufficiently large,

we find that e-perfect aggregation is achieved. OJ

In Figure 1.1, we consider equilibrium and socially optimal outcomes with n = 600. Half
of agents are in group A, with signal variance 0% = 2, while the other half are in group B,
with signal variance 0% changing. In blue we plot average equilibrium aggregation errors for
group A. In green we plot the average aggregation errors of group A when a social planner
minimizes the total action variance (of both groups). The weights that each agent puts on
her own private signal and the other agents are set to depend only on the groups. Under
these socially optimal weights agents learn very well, and heterogeneity in signal variances

only has a small impact.



