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Abstract. Agents learn about a changing state using private signals and past actions of

neighbors in a network. Bayesian learning in equilibrium yields a DeGroot-style learning dy-

namic, where agents use social information simply by averaging neighbors’ recent estimates,

with time-invariant weights. We examine when a community can aggregate information well,

responding quickly to recent changes. A key sufficient condition for good aggregation is that

each individual’s neighbors have sufficiently different types of private information. In con-

trast, when signals are homogeneous, aggregation is suboptimal on any network. Behavioral

variations of the model demonstrate that achieving good aggregation requires a sophisticated

response to correlations in neighbors’ actions. Finally, we find that an agent’s social influence

is much more sensitive to the precision of her private signal than in the DeGroot benchmark.
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1. Introduction

People learn from others about conditions relevant to decisions they have to make. For

instance, students who are about to start their careers learn from the behavior of recent grad-

uates. In many cases, the conditions—for example, the market returns to different special-

izations—are changing. Thus, welfare depends not on learning a static “state of the world,”

but rather on staying up to date with a changing state. The phenomenon of adaptation

and responsiveness to new information is central in many economic applications, including in

economic development and the study of organizations. When is a group of agents successful,

collectively, in adapting efficiently to a changing environment? The answers lie partly in

the structure of the social networks that shape agents’ social learning opportunities. Our

model is designed to analyze how a group’s adaptability is shaped by the properties of such

networks, the inflows of information into society, and the interplay of the two.

We consider overlapping generations of agents who are interested in tracking an unobserved

state that evolves over time. The state is an AR(1) process: somewhat persistent, but

with constant innovations to learn about. Each agent, before making a decision, engages in

social learning: she learns the actions of some members of prior generations, which reveal

their estimates of the state.1 The social learning opportunities are embedded in a network,

in that one’s network position determines the neighborhood of peers whom one observes.

Neighborhoods reflect geographic, cultural, organizational, or other kinds of proximity. In

addition to social information, agents also receive private signals about the current state,

with distributions that may also vary with network position; in particular, some agents may

receive more precise information about the state than others.

We give some examples. When a university student begins searching for jobs, she becomes

interested in various dimensions of the relevant labor market (e.g., typical wages for someone

like her), which naturally vary over time. She uses her own private research (a private signal)

but also learns from the choices of others (e.g., recent graduates) who have recently faced

a similar problem. The people she learns from depend on her academic specialization, dor-

mitory, extracurricular activities, and so forth: she will predominantly observe predecessors

who are “nearby” in these ways.2 Similarly, when a new cohort of professionals enters a firm

(e.g., a management consultancy or law practice) they learn about the business environment

from their seniors. Who works with whom, and therefore who learns from whom, is shaped

by the structure of the organization. Beyond heterogeneity in network position, agents differ

in the precision of the private signals they can access from outside the network: for example,

students in quantitative majors may be better placed to analyze compensation trends.

1In using an overlapping-generations model we follow a tradition in social learning that includes, for example,
the models of Banerjee and Fudenberg (2004) and Wolitzky (2018).
2Sethi and Yildiz (2016) argue that, even without explicit communication costs or constraints, people can
end up listening only to some others due to the investments needed to understand sources.
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Our first contribution is to develop a network learning model suited to examples such as

these. In the model, the state and the population are refreshed over time. The environment

in which agents learn is dynamic, but its distribution over time is stationary. This makes

equilibria and welfare simple in ways that facilitate the analysis. Indeed, our setup removes a

time-dependence inherent in many models of learning, where society accumulates information

over time about a fixed state: Those models typically imply rational updating rules that

depend on the time elapsed since the learning process started. In terms of outcomes, they

often focus on an eventual rate of learning about a fixed state.3 In contrast, our model

features stationary equilibria with time-invariant learning rules. The outcomes we focus on

are learning quality and social influence in such equilibria.

We begin by characterizing equilibria in this model. Bayesians update estimates by taking

linear combinations of neighbors’ estimates and their own private information. The weights

are endogenously determined because, when each agent extracts information from neighbors’

estimates, the information content of those estimates depends on the neighbors’ learning rules.

We characterize these weights and the distributions of behavior in a stationary equilibrium.

This characterization enables the various comparative statics and estimation exercises—both

under the Bayesian equilibrium benchmark and behavioral alternatives. Equilibria can be

numerically computed quickly in networks of thousands of nodes, which makes the model

practically useful for structural exercises.

Turning from the model’s features to substantive findings, our second contribution is to

analyze classic questions about learning in networks within our framework. We begin by

analyzing the steady-state quality of aggregation of social information, and how it depends

on signal endowments and network structure. At every point in time, agents use neighbors’

actions to form an estimate of the most recent state before the current period. Our measure

of aggregation quality is the accuracy of these estimates. The main finding is that, in large

Bayesian populations, an essentially optimal benchmark is achieved in an equilibrium, as long

as each individual has access to a set of neighbors that is sufficiently diverse, in the sense of

having different signal distributions from each other. A key mechanism behind the value of

diverse signal endowments is that it leads to diversity of neighbors’ strategies. This avoids

“collinearity problems” in agents’ sources of information, which helps them to construct

better statistical estimators of the most recent state and better filter out confounds.

If signal endowments are not diverse, then our good-aggregation result does not hold. In-

deed, equilibrium learning can be bounded far away from efficiency, even though each agent

has access to an unbounded number of observations, each containing independent informa-

tion. Thus, Bayesian agents who understand the environment perfectly are not guaranteed to

be able to aggregate information well. We first make this point in highly symmetric networks,

3See, for instance, Molavi, Tahbaz-Salehi, and Jadbabaie (2018) and Harel, Mossel, Strack, and Tamuz (2021).
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where we can show the failure of aggregation is quite severe. We also identify conditions un-

der which this has severe welfare consequences, making agents worse off by an unbounded

amount relative to a world with diverse signals. Beyond these highly symmetric networks, it

is natural to ask whether diversity of network positions (as opposed to signals) can substitute

for diversity of information endowments by making neighbors’ equilibrium strategies suffi-

ciently diverse. We show that the answer is no: network asymmetry is a poor substitute for

asymmetric signal distributions. In large networks, it is impossible in equilibrium to achieve

accuracies of aggregation of the same order as in our positive result under signal diversity.

To achieve good learning when it is possible, agents must respond in a sophisticated way

to the correlations in their neighbors’ estimates. Thus, the second contrast we emphasize is

between Bayesians who are correctly specified about others’ behavior, and agents who are

too unsophisticated about correlations among their social observations to remove confounds,

as in some canonical behavioral learning models (Eyster and Rabin, 2010).4 We identify a

class of such models in which information aggregation is essentially guaranteed to fall short

of good aggregation benchmarks for all agents. The deficiencies of naive learning rules are

different from and more severe than those in similar problems with an unchanging state,

where naive heuristics can aggregate information very well.5

Having discussed the implications of our model for questions of asymptotic learning, we

address a second classic question—namely, which agents are influential. We define a notion

of steady-state social influence—how an idiosyncratic change in an individual’s information

affects others’ average behavior. This is analogous to exercises familiar from the standard

DeGroot model of network learning (where the weights agents place on others are given

exogenously). The endogenous determination of weights makes a big difference for how

the structure of the environment affects social influence. Relative to the DeGroot model

benchmark studied in DeMarzo, Vayanos, and Zweibel (2003), an agent’s social influence is

much more sensitive to the quality of her private information. On the other hand, just as in

the standard benchmark, an agent’s influence is approximately proportional to her degree.

Our closing discussion makes two main points. First, some of our theoretical aggregation

results use large random graphs. We perform a numerical exercise to show that the main

message about information aggregation—diversity of signal types helps learning—remains

valid when we calculate equilibria on graphs reflecting real social networks. Second, our

analysis generalizes readily to richer models of multidimensional states and signals. As one

application of such a generalization, we consider a manager who wishes to facilitate better

learning in an organization, and ask what distributions of expertise such a designer would

4See also Bala and Goyal (1998), a seminal model of boundedly rational learning rules in networks.
5In analogous fixed-state environments where individuals have sufficiently many observations, if everyone uses
certain simple and stationary DeGroot-style heuristics (requiring no sophistication about correlations between
neighbors’ behavior), they can learn the state quite precisely (Golub and Jackson, 2010; Jadbabaie, Molavi,
Sandroni, and Tahbaz-Salehi, 2012). A changing state makes such imitative heuristics quite inefficient.
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prefer. Our results provide a distinctive rationale for informational specialization as a design

feature that facilitates good information aggregation.

An Example. We now present a simple example that illustrates our dynamic model, high-

lights obstacles to learning that distinctively arise in a dynamic environment, and gives a

sense of some of the main forces that play a role in our results on the quality of learning.

Consider a particular environment, with a single perfectly informed source S; many media

outlets M1, . . . ,Mn with access to the source as well as some independent private information;

and the general public. The public consists of many individuals who learn only from the media

outlets. We are interested in how well each member of the public could learn by following

many media outlets. More precisely, we consider the example shown in Figure 1.1 and think

of P as a generic member of the large public.

. . .

P

S

M1 M2 M3 M4 M5 M6 Mn

Figure 1.1. The network used in the “value of diversity” example

The state θt follows a Gaussian random walk: θt = θt−1 + νt, where the innovations νt

are standard normal. Each period, the source learns the state θt and takes an action (which

can be thought of simply as making an announcement) that reveals it. The media outlets

observe the source’s action from the previous period, which is θt−1. At each time period, they

also receive noisy private signals, sMi,t = θt + ηMi,t with normally distributed, independent,

mean-zero errors ηMi,t. They then announce their posterior means of θt, which we denote

by aMi,t. The member of the public, in a given period t, makes an estimate based on the

observations aM1,t−1, . . . , aMn,t−1 of media outlets’ actions in the previous period. All agents

are short-lived: they see actions in their neighborhoods one period ago, and then they take

an action that reveals their posterior belief of the state.

If we had a fixed state but the same signals and observation structure, learning would

trivially be perfect: media outlets would learn the state from the source and report it to the

public. In the dynamic environment, given that P has no signal, she can at best hope to

learn θt−1 (and use that to estimate θt). Can this benchmark be achieved, and if so, when?

A typical estimate of a media outlet at time t is a linear combination of sMi,t and θt−1

(the latter being the social information that the media outlets learned from the source). In
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particular, the estimate can be expressed as

aMi,t = wisMi,t + (1− wi)θt−1,

where the weight wi on the media outlet’s signal is increasing in the precision of that signal.

We give the public no private signal, for simplicity only.

Suppose first that the media outlets have identically distributed private signals. Because

the member of the public observes many symmetric media outlets, it turns out that her best

estimate of the state, aP,t, is simply the average of the estimates of the media outlets. Since

each of these outlets uses the same weight wi = w on its private signal, we may write

aP,t = w

n∑
i=1

sMi,t−1

n
+ (1− w)θt−2 ≈ wθt−1 + (1− w)θt−2.

That is, P ’s estimate is an average of media private signals from last period, combined with

what the media learned from the source, which tracks the state in the period before that. In

the approximate equality, we have used the fact that an average of many private signals is

approximately equal to the state, by our assumption of independent errors. No matter how

many media outlets there are, and even though each has independent information about θt−1,

the public’s beliefs are confounded by older information.

What if, instead, half of the media outlets (say M1, . . . ,Mn/2) have more precise private

signals than the other half, perhaps because these outlets have invested more in covering this

topic? The media outlets with more precise signals will then place weight wA on their private

signals, while the media outlets with less precise signals use a smaller weight wB. We will

now argue that a member of the public can extract more information from the media in this

setting. In particular, she can first compute the averages of the two groups’ actions

type A average

action at time t− 1
= wA

n/2∑
i=1

sMi,t−1

n/2
+ (1− wA)θt−2 ≈ wAθt−1 + (1− wA)θt−2

type B average

action at time t− 1
= wB

n∑
i=n/2+1

sMi,t−1

n/2
+ (1− wB)θt−2 ≈ wBθt−1 + (1− wB)θt−2.

Then, since wA > wB, the public knows two distinct linear combinations of θt−1 and θt−2.

The state θt−1 is identified from these. So the member of the public can form a very precise

estimate of θt−1—which, recall, is as well as she can hope to do. The key force is that the two

groups of media outlets give different mixes of the old information and the more recent state,

and by understanding this, the public can infer both. Indeed, to recover θt−1, the public puts

a negative weight on the B group actions, which allows it to subtract off old information and

focus on the recent state, θt−1. One can show that if, in contrast, agents are naive, e.g., if

they think that all of the estimates of the media are uncorrelated (or only mildly correlated)
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conditional on the state, they will put positive weights on their observations and will again

be bounded from learning the state.

This illustration relied on a particular network with several special features: a very “cen-

tral” source, one-directional links, and no communication among the media outlets or public.

We will show that the same considerations determine learning quality in a large class of ran-

dom networks in which agents have many neighbors, with complex connections among them.

Quite generally, diversity of signal endowments in their neighborhoods allows agents to con-

centrate on new developments in the state while filtering out old, less relevant information

and thus estimate the changing state as accurately as physical constraints allow.

Outline. Section 2 sets up the basic model and discusses its interpretation. Section 3 defines

our equilibrium concept and shows that equilibria exist. Section 4 reports our main theoretical

results on the quality of information aggregation. In Section 5, we discuss learning outcomes

under a variety of non-Bayesian models. Section 6 defines and analyzes social influence.

Section 7 relates our model and results to the social learning literature. In Section 8, we

describe our numerical exercise with network data from Indian villages and discuss a simple

extension to multi-dimensional states to interpret our results on signal diversity.

2. Model

State of the world. There is a discrete set of instants, T = Z = {. . . ,−2,−1, 0, 1, 2, . . .} .
At each time t ∈ T , there is a state, a random variable θt taking values in R. This state

evolves as an AR(1) stochastic process. That is,

θt+1 = ρθt + νt+1, (2.1)

where ρ is a constant with 0 < |ρ| ≤ 1 and νt+1 ∼ N (0, σ2
ν) are independent innovations.

When |ρ| < 1 we have the explicit formula

θt =
∞∑
`=0

ρ`νt−`,

and thus the state at any time t has the stationary distribution θt ∼ N
(

0, σ2
ν

1−ρ2

)
. We make

the normalization throughout that innovations have variance 1, i.e., σν = 1.

As an alternative, we will also sometimes consider a specification with a starting time,

T = Z≥0 = {0, 1, 2, . . .}, where the state process can be defined as in (2.1) starting at time

0 with some specified distribution for θ0.

Information and observations. The set of nodes is N = {1, 2, . . . , n}. Each node i can

be thought of as a location, and is associated with a set Ni ⊆ N of nodes that i can observe,

called its neighborhood.6

6For all results, a node i’s neighborhood can, but need not, include i itself.
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Each node is populated by a sequence of agents in overlapping generations. At each time

t, there is a node-i agent, labeled (i, t), who takes that node’s action ai,t. This agent is born

at time t−m at a certain node and has m periods to observe the actions taken around her

before she acts. Thus, when taking her action, the agent (i, t) knows aj,t−` for all nodes

j ∈ Ni and lags ` ∈ {1, 2, . . . ,m}. We call m the memory ; it reflects how many periods of

actions in her neighborhood an agent passively observes before acting. One interpretation is

that a node corresponds to a role in an organization. A worker in that role has some time

to observe colleagues in related roles before choosing a once-and-for-all action herself. Much

of our analysis is done for an arbitrary finite m; we view the restriction to finite memory

as useful for avoiding technical complications, but because m can be arbitrarily large, this

restriction has little substantive content.7

In addition to social information from her neighborhood, each agent also sees a private

signal,

si,t = θt + ηi,t,

where the error term ηi,t ∼ N (0, σ2
i ) has a variance σ2

i > 0 that depends on the node but

not on the time period. All the errors ηi,t and state innovations νt are independent of one

another. An agent’s information is a vector consisting of her private signal and all of her

social observations. An important special case will be m = 1, where agents observe only

one period of others’ behavior before acting themselves, so that the agent’s information is

(si,t, (aj,t−1)j∈Ni).

The observation structure is common knowledge, as is the informational environment (i.e.,

the joint distribution of all exogenous random variables). The network G = (N,E) is the set

of nodes N together with the (fixed) set of links E, defined as the subset of pairs (i, j) ∈ N×N
such that j ∈ Ni.

An environment is specified by (G,σ), where σ = (σi)i∈N is the profile of signal variances.

Preferences and best responses. As stated above, in each period t, each agent (i, t) makes

her once-and-for-all choice ai,t ∈ R, seeking to make this action close to the current state.

Utility is given by

ui,t(ai,t) = −E[(ai,t − θt)2]. (2.2)

By a standard fact about squared-error loss functions, given the distribution of (aNi,t−`)
m
`=1,

the optimal choice of agent (i, t) is to set

ai,t = E[θt | si,t, (aNi,t−`)m`=1︸ ︷︷ ︸
i’s information

]. (2.3)

7It is worth noting that even when the memory m is small, observed actions can indirectly incorporate signals
from much further in the past.
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t = −1...

...
(i,−1) observes t = −1 signal

and acts

t = 0

(i, 0) born and observes
t = −1 actions

(i, 0) observes t = 0 signal
and acts

t = 1 ...

(i, 1) born and observes
t = 0 actions

(i, 1) observes t = 1 signal
and acts

Figure 2.1. An illustration of the overlapping generations structure of the model for
m = 1. At time t − 1, agent (i, t) is born and observes actions taken at time t − 1 in her
neighborhood. Then, at time t, she observes her private signal si,t and takes her action ai,t.

Here the notation aNi,t′ refers to the vector (aj,t′)j∈Ni of time-t′ actions in the agent’s neigh-

borhood. An action can be interpreted as an agent’s estimate of the state, and we will

sometimes use this terminology.

The conditional expectation (2.3) depends, of course, on the prior of agent (i, t) about θt,

which, under correctly specified beliefs, has distribution θt ∼ N
(

0, σ2
ν

1−ρ2

)
. We actually allow

the prior to be any normal distribution or a uniform improper prior.8 It saves on notation

to analyze the case where all agents have improper priors. Because actions under a normal

prior are related to actions under the improper prior by a simple linear bijection—and thus

have the same information content for other agents—all results immediately extend to the

general case.

The doubly-infinite time axis introduces some subtleties into the definition of strategy

profiles; complete details are formalized in Appendix E.

3. Updating and equilibrium

In this section we study agents’ learning behavior and present a notion of stationary equi-

librium. We begin with the canonical case of Bayesian agents with correct models of others’

behavior; we study other behavioral assumptions in Section 5 below.

3.1. Best-response behavior. The first step is to analyze optimal updating behavior in

response to others’ strategies. A strategy of an agent is linear if the action taken is a linear

function of the variables in her information set. We will analyze agents’ best responses to

linear strategies, showing that they are linear and computing them explicitly.

8We take priors, like the information structure and network, to be common knowledge.
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Suppose predecessors have played linear strategies up to time t.9 Then we can express

each action up until time t as a weighted summation of past signals si,t, for various i and

t. Since these signals themselves are linear combinations of the Gaussian innovations νt and

signal errors ηi,t, the joint distribution of (ai,t−`′ − θt)i∈N,`′≥1 is multivariate Gaussian. It

follows that E[θt | si,t, (aNi,t−`)m`=1] is a linear function of si,t and (aNi,t−`)
m
`=1. The rest of this

subsection analyzes this conditional expectation.

3.1.1. Covariance matrices. The optimal weights for an agent to place on past actions de-

pends on their distribution. It will be useful to look at the errors ρ`ai,t−` − θt of past

actions as predictors of the time-t state. Here ρ`ai,t−` is the conditional expectation of θt

given ai,t−`, and the error is the difference between this prediction and θt. Given a linear

strategy profile played up until time t, let Vt be the covariance matrix of the vector of er-

rors (ρ`ai,t−` − θt)i∈N, 0≤`≤m−1. (This covariance matrix has dimensions nm × nm.) The

entries of Vt are denoted by Vij,t. In the case m = 1, this is simply the covariance matrix

Vt = Cov
(
(ai,t − θt)i∈N

)
.

3.1.2. Best-response weights. A strategy profile is a best response if the weights each agent

places on her observations maximize her utility, (2.2), i.e. minimize the squared error of her

action. We now characterize such weights in terms of the covariance matrices we have defined.

Consider an agent at time t, and suppose some linear strategy profile has been played up

until time t. Let VNi,t−1 be a sub-matrix of Vt−1 that contains only the rows and columns

corresponding to neighbors10 of i and consider the following covariance matrix constructed

from all of (i, t)’s observations, including her private signal si,t:

Ci,t−1 =


0

VNi,t−1 0
...

0 0 . . . σ2
i

.

9We will discuss this below in the context of our equilibrium concept; but one immediate motivation is that,
in the model with a starting time, where T = Z≥0, Bayesian agents’ updating at t = 0 is a single-agent
problem where optimal behavior is a a linear function of own signals only, and thus the hypothesis holds. At
later times it holds by induction.
10Explicitly, VNi,t−1 are the covariances of (ρ`aj,t−` − θt) for all j ∈ Ni and ` ∈ {1, . . . ,m}.
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Conditional on observations (aNi,t−`)
m
`=1 and si,t, agent (i, t)’s posterior belief about the

state θt is a normal distribution with a mean that can be calculated as

E[θt | si,t, (aNi,t−`)m`=1] =
1TC−1i,t−1

1TC−1i,t−11︸ ︷︷ ︸
agent i’s weights

·


ρaNi,t−1

...

ρmaNi,t−m

si,t


︸ ︷︷ ︸
agent i’s observations

. (3.1)

(see Example 4.4 of Kay (1993)). By equation (2.3), this mean is the action that (i, t) plays.

Expression (3.1) is a linear combination of the agent’s signal and the observed actions; the

weights in this linear combination depend on the matrix Vt−1, but not on realizations of any

random variables. In (3.1) we use our assumption of an improper prior.11

We denote by (Wt,w
s
t ) a weight profile in period t, with ws

t ∈ Rn being the weights agents

place on their private signals and Wt being the weights they place on their other information.

3.1.3. The evolution of covariance matrices under best-response behavior. Assuming agents

best-respond according to the optimal weights just described in (3.1), we can compute the

resulting next-period covariance matrix Vt from the previous covariance matrix. This defines

a map Φ : V → V , given by

Φ : Vt−1 7→ Vt. (3.2)

This map gives the basic dynamics of the model: how an arbitrary variance-covariance matrix

Vt−1 maps to a new one when all agents best-respond to Vt−1. The variance-covariance

matrix Vt−1 (along with parameters of the model) determines (i) the weights agents place

on their observations, via (3.1), and (ii) the distributions of the random variables that are

being combined in this operation. This yields the deterministic updating dynamic Φ. A

consequence is that the weights agents place on observations are (commonly) known, and do

not depend on any random realizations.

Example 1. We compute the map Φ explicitly in the case m = 1. We refer to the weight

agent i places on ρaj,t−1 as Wij,t and the weight on si,t, her private signal, as wsi,t. Note we

have, from (3.1) above, explicit expressions for these weights. Then

[Φ(V )] ii = (wsi )
2σ2

i +
∑

WikWik′(ρ
2Vkk′ + 1) and [Φ(V )] ij =

∑
WikWjk′(ρ

2Vkk′ + 1).

(3.3)

3.2. Stationary equilibrium in linear strategies. We will now turn our attention to

stationary equilibria in linear strategies—ones in which all agents’ strategies are linear with

11As we have mentioned, this is for convenience and without loss of generality. Our analysis applies equally
to any proper normal prior for θt: To get an agent’s estimate of θt, the formula in (3.1) would simply be
averaged with a constant term accounting for the prior, and everyone could invert this deterministic operation
to recover the same information from others’ actions.
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time-invariant coefficients—though, of course, we will allow all agents to consider deviating

to arbitrary strategies, including non-linear ones. Once we establish the existence of such

equilibria, we will use the word equilibrium to refer to one of these unless otherwise noted.

A reason for focusing on equilibria in linear strategies comes from noting that, in the

variant of the model with a starting time (i.e., the case T = Z≥0) agents begin by using only

private signals, and they do this linearly. After that, inductively applying the reasoning of

Section 3.1, best-responses are linear at all future times. Taking time to extend infinitely

backward is an idealization that allows us to focus on exactly stationary behavior.

We now show the existence of stationary equilibria in linear strategies.

Proposition 1. A stationary equilibrium in linear strategies exists, and is associated with

a covariance matrix V̂ such that Φ(V̂ ) = V̂ .

The proof appears in Appendix A.

At such an equilibrium, the covariance matrix Vt and all agent strategies are time-invariant.

Actions are linear combinations of observations with stationary weights (which we denote by

Ŵij and ŵsi ). The form of these rules has some resemblance to static equilibrium notions

studied in the rational expectations literature (e.g., Vives, 1993; Babus and Kondor, 2018;

Lambert, Ostrovsky, and Panov, 2018; Mossel, Mueller-Frank, Sly, and Tamuz, 2020). It also

has a similar form to the DeGroot (1974) and Friedkin and Johnsen (1997) updating rules,

typically imposed as behavioral heuristics. In our dynamic environment, such a solution

emerges as a steady state.

3.2.1. Proof sketch for the existence result. The goal is to apply the Brouwer fixed-point

theorem to show there is a covariance matrix V̂ that remains unchanged under updating. To

find a convex, compact set to which we can apply the fixed-point theorem, we use the fact that

when agents best respond to any beliefs about prior actions, all action variances are bounded

above and bounded away from zero below. This is because all agents’ actions must be at least

as precise in estimating θt as their private signals, and cannot be more precise than estimates

given perfect knowledge of θt−1 combined with the private signal. This establishes bounds on

action variances. The Cauchy-Schwartz inequality then bounds covariances in terms of the

corresponding variances. All matrices respecting these bounds constitute a compact, convex

set containing the image of Φ. This and the continuity of Φ allow us to apply the Brouwer

fixed-point theorem.

3.2.2. Other remarks. In the case of m = 1, we can use the formula of Example 1, equation

(3.3), to write the fixed-point condition Φ(V̂ ) = V̂ explicitly. More generally, for any m, we

can obtain a formula in terms of V̂ for the weights Ŵij and ŵsi in the best response to V̂ , and

use this to describe the equilibrium V̂ij as solving a system of polynomial equations. These

equations typically have large degree and cannot be solved analytically except in very simple
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cases, but they can readily be used to solve for equilibria numerically. A related feature of

the model is that standard methods can easily be applied to estimate it and test hypotheses

within it (see Appendix D for details).

The main insight is that we can find equilibria by studying action covariances; this idea

applies equally to many extensions and variations of our basic model. We give two examples:

(1) We assume that agents observe neighbors perfectly, but one could define other observation

structures. For instance, agents could observe actions with noise, or they could observe

some set of linear combinations of neighbors’ actions with noise. Similarly, agents could be

observing predecessors’ actions for heterogeneous durations before acting (i.e., node-specific

m). (2) We assume agents are Bayesian and best-respond rationally to the distribution of

actions, but the same proof would also show that equilibria exist under other behavioral rules

(see Section 5.1).12

Proposition 1 shows that there exists a stationary linear equilibrium. We show later, as

part of Proposition 2, that there is a unique stationary linear equilibrium in networks having

a particular structure. In general, uniqueness of the equilibrium is an open question that we

leave for future work.13 In Section 4.2.3 and Appendix G, we discuss a nonstationary variant

of the model which has a unique equilibrium, and relate it to our main model.

How much information does each agent need to play her equilibrium strategy? In a sta-

tionary equilibrium, she only needs to know the steady-state variance-covariance matrix V̂Ni
in her neighborhood. Then her problem of inferring θt−1 becomes essentially a linear regres-

sion problem. If historical empirical data on neighbors’ error variances and covariances are

available, then V̂Ni can be estimated from such data.

4. How good is information aggregation in equilibrium?

In this section we analyze the quality of information aggregation in stationary equilibrium.

We begin with a definition. Recall that an agent at time t uses social information to form

a belief about θt−1, which is a sufficient statistic for the past in the agent’s decision problem.

The conditional expectation of θt−1 that an agent (i, t) forms based on social information is

called her social signal and denoted by ri,t:

ri,t = E[θt−1 | (aNi,t−`)m`=1].

12What is important in the proof is that actions depend continuously on the covariance structure of an agent’s
observations; the action variances are uniformly bounded under the rule agents play; and there is a decaying
dependence of behavior on the very distant past.
13We have checked numerically that Φ is not, in general, a contraction in any of the usual norms (entrywise
sup, Euclidean operator norm, etc.). In computing equilibria numerically for many examples, we have not
been able to find a case of equilibrium multiplicity. Indeed, in all of our numerical examples, repeatedly
applying Φ to an initial covariance matrix gives the same fixed point for any starting conditions.
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Definition 1. For a given strategy profile, define the aggregation error κ2i,t = Var(ri,t− θt−1)
to be the variance of the social signal (equivalently, the expected squared error in the social

signal as a prediction of θt−1).

The aggregation error measures how well an agent can extract information from social obser-

vations. Note that agent i’s aggregation error is a monotone transformation of her expected

utility.14 We will be interested in this number, and how low error can be in equilibrium.

The environment features informational externalities: players do not internalize the impact

that their learning rules have on others’ learning. Consequently, there is no reason to expect

outcomes to be efficient in any exact sense. And we have seen that the details of equilibrium

in a particular network can be complicated. However, it turns out that much more can

be said about the behavior of aggregation errors as neighborhood size (i.e., the number of

social observations) grows. In this section, we study the asymptotic efficiency of information

aggregation. We give conditions under which aggregation error decays as quickly as physically

possible, and different conditions under which it remains far from efficient levels even when

agents have arbitrarily many observations. We discuss the case m = 1 for simplicity but the

reasoning extends easily to other values of m.

A benchmark lower bound on aggregation error. A first observation is a lower bound

on the aggregation error (in terms of an asymptotic rate as a function of a node’s degree)

under any behavior of agents. This establishes a benchmark relative to which we can assess

equilibrium outcomes.

Let di denote the out-degree of an agent i.

Fact 1. Fix ρ ∈ (−1, 1) as well as upper and lower bounds for private signal variances, so

that σ2
i ∈ [σ2, σ2] for all i. On any network and for all strategy profiles, we have κ2i,t ≥ c/di

for all i and t, where c is a constant that depends only on ρ, σ2, and σ2.

The lower bound is reminiscent of the central limit theorem: if an agent had di conditionally

independent noisy signals about θt−1 (e.g., by observing neighbors’ private signals directly),

then the variance of her estimate would be of order 1/di. Fact 1 notes that it is not possible

for aggregation errors to decay (as a function of degree) any faster than that.

For an intuition, imagine that an agent sees neighbors’ private signals (not just actions) one

period after they are received, and all other private signals two periods after they are received;

this clearly gives an upper bound on the quality of aggregation given physical communication

constraints. The information that is two periods old cannot be very informative about θt−1

because of the movement in the state from period t− 2 to t− 1; a large constant number z of

signals about θt−1 would be better. Thus, a lower bound on aggregation error is given by the

14In fact, for any decision dependent on θt, an agent is better off with a lower value of κ2i,t. This is a
consequence of the fact that unidimensional Gaussian signals can be Blackwell ordered by their precision.
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error that could be achieved with di + z independent signals about θt−1 of the best possible

precision (σ−2). The bound follows from these observations.

Outline of results: When is aggregation comparable to the benchmark? Fact 1

places a lower bound on aggregation error given the physical constraints. Even efficient

learning could not do better than this bound. We will examine when equilibrium learning

can achieve aggregation of similar quality. More precisely, we ask when there is a stationary

equilibrium where the aggregation error at node i satisfies κ̂2i ≤ C/di for all i, for some

constant C.

In Section 4.2 we establish a good-aggregation result: outcomes comparable to the bench-

mark are achieved in equilibrium in a class of networks. The key condition enabling the

asymptotically efficient equilibrium outcome is called signal diversity : each individual has

access to enough neighbors with multiple different kinds of private signals. The fact that

neighbors use private information differently turns out to give the agents enough power to

identify θt−1 with equilibrium aggregation error that decays at a rate matching the lower

bound up to a multiplicative constant.

In Section 4.3, we turn to negative results. Without signal diversity, equilibrium aggrega-

tion can be extremely bad. Our first negative result shows that when signals are exchange-

able, it may be that the aggregation error κ̂2i does not approach zero in any equilibrium no

matter how large neighborhoods are, though a social planner could achieve good aggrega-

tion by prescribing different updating weights. We prove this in highly symmetric networks.

Once we move away from such networks, one might ask whether diversity in individuals’

network positions could play a role analogous to signal diversity and enable approximately

efficient learning. Our second negative result shows that this is impossible. When signals

are homogeneous and all agents’ degrees in network Gn are bounded by d(n) (where d(n) is

any unbounded sequence) then in any equilibrium, aggregation errors cannot vanish at rate

C/d(n) for any C > 0 as the network grows.

4.1. Distributions of networks and signals. For our good-aggregation result, we study

large populations and specify two aspects of the environment: network distributions and

signal distributions. In terms of network distributions, we work with a standard type of

random network model—a stochastic block model (see, e.g., Holland, Laskey, and Leinhardt,

1983). It makes the structure of equilibrium tractable while also allowing us to capture rich

heterogeneity in network positions. We also specify signal distributions : how signal precisions

are allocated to agents, in a way that may depend on network position. We now formalize

these two primitives of the model and state the assumptions we work with.

Fix a set of network types k ∈ K = {1, 2, . . . , K}. For each pair of network types, there is

a given probability pkk′ that each agent of network type k has a link to each agent of network

type k′. An assumption we maintain on these probabilities is that each network type k
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observes at least one network type (possibly k itself) with positive probability. There is also

a vector (α1, . . . , αK) of population shares of each type, which we assume are all positive.

Jointly, (pkk′)k,k′∈K and α specify the network distribution. These parameters can encode

differences in expected degree and also features such as homophily (where some groups of

types are linked to each other more densely than to others).

We next define signal distributions, which describe the allocation of signal variances to

network types. Fix a finite set S of private signal variances, which we call signal types.15 We

let qkτ be the share of agents of network type k with signal type τ ; (qkτ )k∈K,τ∈S defines the

signal distribution.

Let the nodes in network n be partitioned into the network types N1
n, N

2
n, . . . , N

K
n , with the

cardinality |Nk
n | equal to bαknc or dαkne (rounding so that there are n agents in the network).

We (deterministically) set the signal variances σ2
i equal to elements of S in accordance with

the signal shares (again rounding as needed). Let (Gn)∞n=1 be a sequence of directed or

undirected random networks with these nodes, so that i ∈ Nk
n and j ∈ Nk′

n are linked with

probability pkk′ ; these realizations are all independent.

A stochastic block model D is specified by the linking probabilities (pkk′)k,k′∈K, the type

shares α, and the signal distribution (qkτ )k∈K,τ∈S. We let (Gn(D),σn(D)) denote a realization

of the network and signal variances under a given stochastic block model. We say that a signal

type τ is represented in a network type k if qkτ > 0.

Definition 2. A stochastic block model satisfies signal diversity if each network type has a

positive probability of linking with at least one network type containing two distinct signal

types.

We will discuss stochastic block models that satisfy this condition as well as ones that do

not, and show that the condition is pivotal for information-aggregation.

4.2. Good aggregation under diverse signals. Our first main result is that signal di-

versity is sufficient for good aggregation in the networks described in the previous section.

Aggregation error decays at a rate C/di for each node i independently of the structural

properties of the network.

We first define a notion of good aggregation for an agent in terms of a bound on that

agent’s aggregation error.

Definition 3. Given ε > 0, we say that agent i achieves the ε-aggregation benchmark in a

given equilibrium if the aggregation error satisfies κ̂2i ≤ ε.

We say an event (indexed by n) occurs asymptotically almost surely if the probability of

the event converges to 1 as n→∞.

15The assumptions of finitely many signal types and network types are for technical convenience only, and
could be relaxed.
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Theorem 1. Fix any stochastic block model D satisfying signal diversity. There exists C > 0

such that asymptotically almost surely the environment (Gn(D),σn(D)) has an equilibrium

where all agents achieve the C/n-aggregation benchmark.

So for large enough n, society is very likely to aggregate information very well. The

uncertainty in this statement is over the network, as there is always a small probability of

a realized network which prevents learning (e.g., an agent has no neighbors). We give an

outline of the argument next, and the proof appears in Appendix B.

The constant C in the theorem statement can depend on the stochastic block model D.

However, given any compact set of stochastic block models D, we can choose a single C > 0

for which the result holds uniformly across D.16 Thus, the theorem can be applied without

detailed information on how the random graphs are generated, as long as some bounds are

known about which models are possible.

4.2.1. Discussion of the proof. To give intuition for Theorem 1, we first describe why the

theorem holds on the complete network17 with two signal types A and B in the m = 1 case.

This echoes the intuition of the example in the introduction. We then discuss the challenges

involved in generalizing the result to our general stochastic block model networks, and the

techniques we use to overcome those challenges.

Consider a time-t agent, (i, t). Recall that the social signal ri,t is the optimal estimate of

θt−1 based on the actions (i, t) has observed in her neighborhood. In the complete network,

all players have the same social signal, which we call rt.
18

At any equilibrium, each agent’s action is a weighted average of her private signal and this

social signal.

ai,t = ŵsi si,t + (1− ŵsi )rt. (4.1)

The weights on the observations si,t and ρaj,t−1 (which constitute the social signal) sum to

1, because the optimal action is an unbiased estimate of θt. The weight ŵsi on the private

signal depends on the precision of this signal relative to the social signal. We call the weights

used by agents of the two distinct signal types ŵsA and ŵsB. Suppose signal type A is more

accurate than signal type B, so that ŵsA > ŵsB.

Now, turning our attention to the next period of updating, observe that each time-(t+ 1)

agent can compute two averages of the time-t actions—one for each type. Using (4.1) to

16The reason is that the distribution of aggregation errors is upper hemicontinuous in model parameters, so
if the desired bounds hold for each point in a compact set, they can be made uniform.
17Note this is a special case of the stochastic block model.
18In particular, agent (i, t) sees everyone’s past action, including the one taken last period at the same node,
ai,t−1.
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rewrite ai,t and then plugging in si,t = θt + ηi,t:

type A average

action at time t
=

1

nA

∑
i:σ2

i=σ
2
A

ai,t = ŵsAθt + (1− ŵsA)rt +O(n−1/2),

type B average

action at time t
=

1

nB

∑
i:σ2

i=σ
2
B

ai,t = ŵsBθt + (1− ŵsB)rt +O(n−1/2).

Here nA and nB denote the numbers of agents of each type (recalling we assumed each type is

a positive share of the population size, n). The O(n−1/2) error terms come from the average

signal noises ηi,t of agents in each group; the bound holds with high probability by the central

limit theorem. In other words, each time-(t + 1) agent can obtain precise estimates of two

different convex combinations of θt and rt. Because the two weights, ŵsA and ŵsB, are distinct,

she can approximately solve for θt as a linear combination of the average actions taken by each

type she observes (up to signal error). It follows that in the equilibrium we are considering,

the agent must have an estimate at least as precise as what she can obtain by the strategy

we have described, and will thus be very close the benchmark. The estimator of θt in this

strategy places negative weight on 1
nB

∑
i:σ2

i=σ
2
B
ai,t−1, thus anti-imitating the agents of signal

type B—those with the less precise private signal. Proposition 3 below implies that the actual

equilibrium in which agents learn will also have agents anti-imitating others.

To use the same approach in general, we need to show that each individual observes a large

number of neighbors of at least two signal types who also have similar social signals. More

precisely, the proof shows that agents with the same network type have highly correlated

social signals. Showing this is much more subtle than it was in the above illustration. In

general, the social signals in an arbitrary network realization are endogenous objects that

depend to some extent on all the links.

A key insight allowing us to overcome this difficulty is a useful general fact about sufficiently

dense stochastic block models: despite a lot of idiosyncratic randomness in direct connections,

the law of large numbers implies the number of paths of length two between any i of type k

and j of type k′ going through agents of type k′′ is nearly determined by the types k, k′, and

k′′, with a small relative error.19 We can leverage this to deduce some important facts about

the updating map Φ (recall Section 3.1.3) in the realized random network, and specifically

about the evolution of social signals.

In particular, if we look at the set of covariance matrices where all social signals are close to

perfect, we can show that the composition Φ2 := Φ◦Φ maps this set to itself. In other words,

if social signals are very precise, then they will remain very precise two periods later. If the

two-step path counts were determined by types exactly, the reasoning of the complete graph

19For simplicity we begin by illustrating the argument in a random graph family where the number of two-
step paths is nearly deterministic. The argument extends to a larger class of models where the same property
applies to longer paths, as we discuss in the next subsection.
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example above would generalize, with all neighbors of i of the same type updating in the

same way. We show that despite the path counts being known only approximately, the desired

conclusion holds. This is nontrivial because the weights agents use in their updating—and

thus the evolution of social signals—could depend sensitively on realized network structure;

small relative errors could matter. A key step is to develop results on matrix perturbations

to show that small relative changes in the network do not affect Φ2 too much. A fixed-point

theorem then implies there is a fixed point of Φ2 in the set of outcomes with very precise

social signals. With some further analysis we can deduce that this implies the existence of

an equilibrium (corresponding to a fixed point of Φ) with nearly perfect aggregation.

4.2.2. Sparser random graphs. In the random graphs we have defined in Section 4.1, the

group-level linking probabilities (pkk′) are, for simplicity, held fixed as n grows. This yields

expected degrees that grow linearly in the population size, which may not be the desired

asymptotic model. We can, however, establish versions of our results in a class of models

much more flexible with respect to degrees. While it is important to have neighborhoods

“large enough” (i.e., growing in n) to permit the application of laws of large numbers, their

rate of growth can be considerably slower than linear. For example, our proof can be extended

directly to degrees that scale as nα for any α > 0 to show that asymptotically almost surely,

there exists an equilibrium where the C/nα-aggregation benchmark is achieved for all agents.

Instead of studying Φ2 and two-step paths, one can apply the same analysis to the L-fold

composition ΦL, which reflects L-step paths. In order to do this, one uses the fact that for

L larger than 1/α, the number of paths of length L between any two nodes is determined by

their types with a small relative error. Extending our proof above, we can then characterize

the behavior of ΦL and then deduce the claimed aggregation property for Φ.

4.2.3. The good-aggregation outcome as a unique prediction. The theorem above says good

aggregation is supported in an equilibrium but does not state that this is the unique equilib-

rium outcome. To deal with this issue, we study the alternative model with T = Z≥0 (where

agents begin with only their own signals and then best-respond to the previous distribution

of behavior at each time). We show that its long-run outcomes get arbitrarily close to the

good-aggregation equilibrium of Theorem 1 as n → ∞, under the same conditions. Thus,

even if there were other equilibria of the stationary model, they could not be approached via

the natural iterative procedure coming from the T = Z≥0 model. Formal statements and

details are in Appendix G.

4.3. Aggregation under homogeneous signals. Having established conditions for good

aggregation under signal diversity, we now explore what happens without signal diversity.

Our general message is that aggregation is worse.
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To gain an intuition for this, note that it is essential to the argument described in the

previous subsection that different agents have different signal precisions. Recall the complete

graph case. From the perspective of an agent (i, t + 1), the fact that type A and type B

neighbors place different weights on the social signal rt allows the agent to avoid a collinearity

problem and separate θt from a confound. In that example, if type A and B agents had the

same signal types, they would use the same weights, and our agent trying to learn from them

would face a collinearity problem.

We begin by studying graphs having a symmetric structure and show that learning out-

comes are necessarily bounded very far from good aggregation. We then turn to arbitrary

large graphs and prove a lower bound on aggregation error that implies the homogeneous-

signals regime has, quite generally, worse outcomes for some agents than those achieved by

everyone in our good-aggregation result.

4.3.1. Aggregation in graphs with symmetric neighbors.

Definition 4. A network G has symmetric neighbors if whenever j, j′ ∈ Ni for some i, then

Nj = Nj′ .

In the undirected case, the graphs with symmetric neighbors are the complete network and

complete bipartite networks.20 For directed graphs, the condition allows a larger variety of

networks.

Proposition 2. Consider a sequence (Gn)∞n=1 of strongly connected graphs with symmetric

neighbors. Assume that all signal variances are equal, and that m = 1. Then there is a

unique equilibrium on each Gn. Moreover, there exists ε > 0 such that the ε-aggregation

benchmark is not achieved by any agent i at this equilibrium for any n.

All agents have non-vanishing aggregation errors at the unique equilibrium. So all agents

learn poorly compared to the diverse signals case. The proof of this proposition, and the

proofs of all subsequent results, appear in Appendix F.

This failure of good aggregation is not due simply to a lack of sufficient information in the

environment: On the complete graph with exchangeable (i.e., non-diverse) signals, a social

planner who set weights for all agents could achieve ε-aggregation for any ε > 0 when n is

large. See Appendix I for a formal statement, proof and numerical results.21 In this sense,

the social learning externalities are quite severe: a fairly small change in weights for each

individual could yield a very large benefit in a world of homogeneous signal types.

We now give intuition for Proposition 2. In a graph with symmetric neighbors and homoge-

neous signals, in the unique equilibrium,22 actions of any agent’s neighbors are exchangeable.

20These are both special cases of our stochastic block model from Section 4.2, so Theorem 1 applies to these
network structures when signal diversity in satisfied.
21We thank Alireza Tahbaz-Salehi for suggesting this analysis.
22The proof of the proposition establishes uniqueness by showing that Φ is a contraction in a suitable sense.
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So Bayesian estimates (and thus actions) must weight all neighbors equally. This prevents

the sort of inference of θt that occurred with diverse signals. This is easiest to see on the

complete graph, where all observations are exchangeable. So, in any equilibrium, each agent’s

action at time t + 1 is equal to a weighted average of her own signal and the average action
1
|Ni|
∑

j∈Ni aj,t:

ai,t+1 = ŵsi si,t+1 + (1− ŵsi )
1

|Ni|
∑
j∈Ni

aj,t. (4.2)

By iteratively using this equation, we can see that actions must place substantial weight on

the average of signals from, e.g., two periods ago, and indeed farther back. Note that all

signals sj,t′ at past times t′ take the form θt′ + ηi,t′ . Thus, although the effect of signal errors

ηi,t′ vanishes (by averaging) as n grows large, the correlated error from past changes in the

state νt′ never “washes out” of estimates, and this is what prevents vanishing aggregation

errors.

The bad-aggregation result as stated applies to exactly homogeneous signal types only. In

fact, in finite networks we need sufficiently heterogeneous signals to avoid the bad-learning ob-

struction; this is illustrated in Appendix C. In Section 4.4 we discuss the welfare implications

of this failure of aggregation.

As a consequence of Theorem 1 and Proposition 2, we can give an example where making

one node’s private information less precise helps all agents.

Corollary 1. There exists a network G and an agent i ∈ G such that increasing σ2
i gives a

Pareto improvement at the unique equilibrium.

To prove the corollary, we consider the complete graph with homogeneous signals and

large n. By Proposition 2, all agents have non-vanishing aggregation errors. If we instead

give agent 1 a very uninformative signal, all players can anti-imitate agent 1 and achieve

vanishing aggregation errors. When the signals at the initial configuration are sufficiently

imprecise, this gives a Pareto improvement. There are also examples where severing links in

the observational network can yield a Pareto improvement, as reported in an earlier version

of the present paper (Dasaratha, Golub, and Hak, 2018).

4.3.2. Aggregation in arbitrary networks. Section 4.3.1 showed aggregation errors are non-

vanishing when signal endowments and neighborhoods are symmetric. A natural question is

whether asymmetry in network positions can substitute for asymmetry in signal endowments.

In Section 4.2 the key point was that different neighbors’ actions were informative about

different linear combinations of θt and θt−1, and this permitted filtering. Perhaps different

network positions can achieve the same effect?

We thus move to arbitrary networks and show a weaker but much more general result.

Consider any sequence of equilibria on any networks with symmetric signal endowments.
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Our result here is that no equilibrium achieves C/n-aggregation for almost all agents, no

matter what C is. In particular, this implies that the rate of learning is slower than at the

good-learning equilibrium with diversity of signal endowments from Theorem 1. Moreover, if

degrees are bounded above by some d growing at rate slower than n, we prove the stronger

statement that no equilibrium achieves C/d-aggregation for almost all agents.

Theorem 2. Let C > 0. Let (Gn)∞n=1 be an arbitrary sequence of networks and suppose all

private signals have variance σ2. If all agents’ in-degrees and out-degrees are bounded above

by some d(n) → ∞, then in any sequence of equilibria, κ̂2i > C/d(n) for a non-vanishing

fraction of agents i.

In addition to considering arbitrary networks, we allow the memory m to be arbitrary

(yet finite). Because the assumptions are much weaker, we obtain a weaker conclusion than

in Proposition 2. While Proposition 2 shows that aggregation errors are non-vanishing,

the theorem shows that aggregation errors cannot vanish quickly, but does not rule out

aggregation errors vanishing more slowly.

The basic intuition is that to avoid putting substantial weight on θt−2, an agent at time

t must anti-imitate some neighbors. If all or almost all neighbors achieve C/n-aggregation

for some C and have identical types of private signals, there is not much diversity among

neighbors. So more and more anti-imitation is needed as n grows large in the sense that

the total positive weight and total negative weight on neighbors both grow large. But then

the contribution to the agent’s variance from neighbors’ private signal errors cannot vanish

quickly.

We can combine Theorems 1 and 2 to compare the value of signal diversity and network

diversity. With diversity of signal endowments, there exists C > 0 such that asymptotically

almost surely there is a good-learning equilibrium achieving the C/n-aggregation benchmark

for all agents under the stochastic block model. With exchangeable signals, it is not possible

to find equilibria so close to the benchmark for any sequence of networks.

Theorem 2 shows that network heterogeneity cannot improve learning outcomes as much

as signal heterogeneity. The formal results establish a gap between asymptotic rates of

convergence (in contrast to the stronger bad-learning result for networks with symmetric

neighbors). Section 8.1 shows that in real-world (highly asymmetric) social networks, signal

heterogeneity improves learning outcomes much more than choosing a very favorable network

structure but homogeneous signals.

4.4. The welfare loss associated with homogeneity. The results derived so far in this

section show that there is a qualitative difference in how well agents are able to infer re-

cent states across the homogeneous and heterogeneous signal settings. How important is

this difference for welfare? We illustrate next that the welfare loss associated with signal

homogeneity can be arbitrarily severe.
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To gain an intuition for this, note that with homogeneous signals, period-t actions are

confounded by previous states. These confounds include θt−2, which all t − 1 agents use in

the same way (as illustrated in the example of the introduction). But the confounds also

include θt−3, which could not be filtered out by t− 1 agents, and so forth. The more weight

agents place on social information (i.e., the more informative the past is), the more severe

this confounding is. If the state is highly persistent and private signals are not very precise,

then the confounds from periods even very long ago are substantial. The following corollary

quantifies this effect.

Corollary 2. Consider a complete graph with all signal variances equal to σ2, and let m = 1.

Then, in any symmetric strategy profile,

Var(ai,t − θt) ≥
(1− ŵs)2

1− (1− ŵs)2ρ2
.

As ρ → 1 from below and σ−2 → 0 and, agent i’s action error in the unique equilibrium

converges to infinity. Moreover, this convergence is uniform in n.23

In contrast, recall that our main positive results show the C/n-aggregation benchmark

would be achieved with signal heterogeneity. When this benchmark is achieved, each indi-

vidual obtains a variance Var(ai,t − θt) that is at worst 1 if n is large enough.24 This bound

on variance does not depend on σ2 or ρ. This implies welfare can be arbitrarily worse in

environments with signal homogeneity compared to ones with heterogeneity. In particular,

the corollary guarantees that we can choose (σ−2, ρ) so that the error is arbitrarily large,

uniformly in n. If we modify the signal distribution so that it is heterogeneous25 then error

variance will be at most 1 for large enough n.

In large complete graphs with homogeneous signals, we can explicitly characterize the

limit action variance (and therefore welfare). Let V∞ denote the limit, as n grows large, of

Var(ai,t − θt). Let Cov∞ denote the limit covariance of any two agents’ errors. By direct

computation using equation (3.3), these can be seen to be related by the following equations,

which have a unique solution:

V∞ =
1

σ−2 + (ρ2 Cov∞+1)−1
, Cov∞ =

(ρ2 Cov∞+1)−1

[σ−2 + (ρ2 Cov∞+1)−1]2
. (4.3)

These equations also let us extend Corollary 2 beyond the complete graph. The variance

and covariance in (4.3) describe the limits of all variances and covariances in any graph with

symmetric neighbors where degrees tend uniformly to infinity. Indeed, it can be deduced (as

23For any v, there are ρ < 1 and σ−2 > 0 such that if ρ > ρ and σ−2 < σ−2, then Var(ai,t− θt) ≥ v for all n.
24Note the agent can use the estimate of last period’s state, which has an error of order C/n. If the agent
simply guessed this estimate, then she would achieve Var(θt − θt−1) = 1, since the state innovation has
variance 1. Combining this with her private signal does strictly better than this.
25For example, by making half the agents’ signals strictly worse.
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in the proof of Corollary 2) that agents’ actions are equal to an appropriately discounted sum

of past θt−`, up to error terms (arising from ηi,t−`) that vanish asymptotically. As σ−2 → 0

and ρ → 1 from below, equations (4.3) show that Cov∞ and therefore also V∞ diverge to

infinity. This shows the welfare loss from homogeneity can also be arbitrarily severe in graphs

with symmetric neighbors and large degrees.

5. The importance of understanding correlations

In the positive result on achieving the C/n-aggregation benchmark (Theorem 1), a key

aspect of the argument involved agents filtering out confounding information from their

neighbors’ estimates—i.e., responding in a sophisticated way to the correlation structure of

those estimates. In this section, we demonstrate that this sort of behavior is essential for

nearly perfect aggregation, and that more naively imitative heuristics yield outcomes far from

the benchmark. Empirical studies have found evidence (depending on the setting and the

subjects) consistent with both equilibrium behavior and naive inference in the presence of

correlated observations (e.g., Eyster, Rabin, and Weizsacker, 2015; Dasaratha and He, 2019;

Enke and Zimmermann, 2019).

We begin with a canonical model of agents who do not account for correlations among their

neighbors’ estimates conditional on the state, and show by example that naive agents achieve

much worse learning than Bayesian agents, and thus have non-vanishing aggregation errors.

We then formalize the idea that accounting for correlations in neighbors’ actions is crucial to

reaching the benchmark. This is done by demonstrating a general lack of asymptotic learning

by agents who use imitative strategies, rather than filtering in a sophisticated way. Finally,

we show that even in fixed, finite networks, any positive weights chosen by optimizing agents

will be Pareto-dominated.

5.1. Naive agents. In this part we introduce agents who misunderstand the distribution

of the signals they are facing and who therefore do not update as Bayesians with a correct

understanding of their environment. We consider a particular form of misspecification that

simplifies solving for equilibria analytically:26

Definition 5. We call an agent naive if she believes that all neighbors choose actions equal

to their private signals and maximizes her expected utility given these incorrect beliefs.

Equivalently, a naive agent believes her neighbors all have empty neighborhoods. This is

the analogue, in our model, of “best-response trailing naive inference” (Eyster and Rabin,

2010). So naive agents understand that their neighbors’ actions from the previous period

are estimates of θt−1. But they think each such estimate is independent given the state, and

26There are a number of possible variants of our behavioral assumption, and it is straightforward to nu-
merically study alternative specifications of behavior in our model (Alatas et al., 2016 consider one such
variant).
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Figure 5.1. Bayesian and naive learning on a complete graph and n = 600 agents divided
into two equal sized groups. The plot shows the aggregation error in group A as group B’s
private signal variance varies, fixing group A’s private signal variance at σ2

A = 2.

that the precision of the estimate is equal to the signal precision of the corresponding agent.

They then play their expectation of the state given this misspecified theory of others’ play.

In Figure 5.1, we compare Bayesian and naive learning outcomes. We consider a complete

network with 600 agents and α = 0.9. Half of agents have signal variance σ2
A = 2, while we

vary the signal variance σ2
B of the remaining agents. The figure shows the average social signal

variance for the group of agents with private signal variance σ2
A = 2. The figure suggests

that naive agents learn substantially worse than rational agents, whether signals are diverse

or not. We prove this holds for general stochastic block models and provide formulas for

variances under naive learning in Appendix H.

5.2. More general learning rules: Understanding correlation is essential for good

aggregation. We now show more generally that a sophisticated response to correlation is

needed to achieve vanishing aggregation errors on any sequence of growing networks. To this

end, we make the following definition:

Definition 6. The steady state associated with weights W and ws is the (unique) covariance

matrix V ∗ such that if actions have a variance-covariance matrix given by Vt = V ∗ and next-

period actions are set using weights (W ,ws), then Vt+1 = V ∗ as well.

In this definition of steady state, instead of best-responding to others’ actual distributions

of play, agents use exogenous weights W in all periods.

By a straightforward application of the contraction mapping theorem, if agents use any

non-negative weights under which covariances remain bounded at all times, there is a unique

steady state.

Consider a sequence of networks (Gn)∞n=1 with n agents in Gn.
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Proposition 3. Fix any sequence of steady states under non-negative weights on Gn. Sup-

pose that all private signal variances are bounded below by σ2 > 0 and that all agents place

weight at most w < 1 on their private signals. Then there is an ε > 0 such that, for all n,

the ε-aggregation benchmark is not achieved by any agent i at steady state.

The essential idea is that at time t+1 observed time-t actions all put weight on actions from

period t−1, which causes θt−1 to have a (positive weight) contribution to all observed actions.

Agents do not know θt−1 and, with positive weights, cannot take any linear combination that

would recover it. Even with a very large number of observations, this confound prevents

agents from learning yesterday’s state precisely.

To see why the weights on private signals must be bounded away from one, note that

an individual agent could learn well without adjusting for correlations by observing many

autarkic agents who simply report their private signals. But in this case, all of these autarkic

agents would have non-vanishing aggregation errors. If we did not impose a bound on private

signal weights, learning would fail in a weaker sense: in that case, some agent must still fail

to achieve the ε-aggregation benchmark for small enough ε.

On undirected networks, the proposition implies that aggregation errors do not vanish un-

der naive inference or under various other specifications of non-Bayesian inference. Moreover,

the same argument shows that in any sequence of Bayesian equilibria on undirected networks

where all agents use positive weights, no agent can learn well.

5.3. Without anti-imitation, outcomes are Pareto-inefficient. The previous section

argued that anti-imitation is critical to achieving vanishing aggregation errors. We now show

that even in small networks, where that benchmark is not relevant, any equilibrium without

anti-imitation is Pareto-inefficient relative to another steady state. This result complements

our asymptotic analysis by showing a different sense (relevant for small networks) in which

anti-imitation is necessary to make the best use of information.

Proposition 4. Suppose the network G is strongly connected and some agent has more than

one neighbor. Given any naive equilibrium or any Bayesian equilibrium where all weights are

positive, the action variances at that equilibrium are Pareto-dominated by action variances

at another steady state.

The basic argument behind Proposition 4 is that if agents place marginally more weight on

their private signals, this introduces more independent information that eventually benefits

everyone. In a review of sequential learning experiments, Weizsäcker (2010) finds that sub-

jects weight their private signals more heavily than is optimal (given the empirical behavior of

others they observe). Proposition 4 implies that in our environment with optimizing agents,

it is actually welfare-improving for individuals to “overweight” their own information relative

to best-response behavior.
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The condition on equilibrium weights says that no agent anti-imitates any of her neighbors.

This assumption makes the analysis tractable, but we believe the basic force also works in

finite networks with some anti-imitation. In the proof in Appendix F, we state and prove a

more general result where weights are non-negative but need not all arise from Bayesian or

naive updating.

Proof sketch. The idea of the proof of the rational case is to begin at the steady state and

then marginally shift the rational agent’s weights toward her private signal. By the envelope

theorem, this means agents’ actions are less correlated but not significantly worse in the next

period. We show that if all agents continue using these new weights, the decreased correlation

eventually benefits everyone. In the last step, we use the absence of anti-imitation, which

implies that the updating function associated with agents using fixed (as opposed to best-

response) weights is monotonic in terms of the variances of guesses. To first order, some

covariances decrease while others do not change after one period under the new weights.

Monotonicity of the updating function and strong connectedness imply that eventually all

agents’ variances decrease.

The proof in the naive case is simpler. Here a naive agent is overconfident about the

quality of her social information, so she would benefit from shifting some weight from her

social information to her signal. This deviation also reduces her correlation with other agents,

so it is Pareto-improving.

6. Social influence

It is often of interest how influential agents are in terms of affecting aggregate behavior

and how this depends on the environment. For example, these issues are a focus of stud-

ies including DeMarzo, Vayanos, and Zweibel (2003) and Golub and Jackson (2010) in the

DeGroot model with an unchanging state. In this section, we define a suitable analogue

of social influence for our dynamic environment. We then study how an agent’s influence

depends on her signal precision and degree. We find that, relative to benchmark results from

the DeGroot model, signal precisions are more important, while social connectedness plays a

similar role in both models.

6.1. Defining social influence. We define the total influence of node i in a stationary

equilibrium to be the total weight that all actions place on the private signal of agent (i, t).

The total influence measures the total increase in actions if si,t increases by 1 (due to an
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idiosyncratic shock, say).27 At equilibrium, the total influence of i is:

TI(i) =
∑
j∈N

∞∑
k=0

(ρŴ )kjiŵ
s
i .

This expression for total influence is a version of Katz-Bonacich centrality with respect to

the matrix Ŵ of weights. The decay parameter is the persistence ρ of the of the AR(1) state

process.

We define the social influence of i to be the total weight that all actions in future periods

place on the private signal of agent (i, t). At equilibrium, the social influence of i is:

SI(i) =
∑
j∈N

∞∑
k=1

(ρŴ )kjiŵ
s
i = TI(i)− ŵsi .

The social influence measures the influence of an agent at node i on other agents. Social

influence and total influence differ only by the weight (i, t) places on her own current signal,

because an agent’s signal realization does not affect others’ actions in the same period. Note

that agent i’s social influence depends on the weight ŵsi she places on her own signal as well

as the weights agents place on each others’ actions.

The next result, which follows from Proposition 1 on equilibrium existence, shows that

the summation that defines social influence is guaranteed to converge at equilibrium, which

makes social influence (and similarly total influence) well-defined.28

Proposition 5. The social influence SI(i) is well-defined at any equilibrium and is equal to

[1′(I − ρŴ )−1 − 1′]iŵ
s
i .

We show this as follows: if social influence did not converge, some agents would have

actions with very large variances (because their actions would depend sensitively on small

idiosyncratic shocks). But then these agents would have simple deviations that would improve

their accuracy, such as following their private signals. So this could not happen in equilibrium.

In general, social influence can be negative: an agent’s net effect on others can be in the

opposite direction of her signal.

6.2. Which agents are influential? We now ask how the social influence SI(i) of an agent

depends on her signal precision and degree. To facilitate the most direct comparison with

standard results in models with a fixed state, such as DeMarzo, Vayanos, and Zweibel (2003),

we focus on cases where social influences are positive.

To examine the effect of signal precision on social influence, we first study complete net-

works with n ≥ 2 agents and two private signal variances: half the agents have more precise

27Note that in a stationary equilibrium, this depends on the node and not the time, so we speak interchange-
ably of the influence of a node and that of an agent at this node.
28Since Ŵ can contain both positive and negative numbers, some of them potentially quite large, it is not
immediately obvious that the summation converges.
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signals, and the other half have less precise signals. We call the two groups’ signal variances

σ2
A and σ2

B and the corresponding agents’ social influences SI(A) and SI(B). We show that

the ratio between the two groups’ social influences in equilibrium is larger than the ratio

between their signal precisions (whenever the imprecise group has positive social influence).

Proposition 6. On a complete network with m = 1 and signal variances σ2
A < σ2

B, in the

unique equilibrium it holds that
SI(A)

SI(B)
>
σ−2A
σ−2B

whenever SI(B) > 0.

The proposition says that increasing a group’s precision increases their influence more

than proportionately. As we have seen in our main results, if the precision difference is large

enough, then it is optimal to place zero or negative weight on the less precise group. The result

says that even before this happens, imprecision hurts a group’s influence considerably—and,

as we will discuss below, more than in benchmark models of social influence.

The proposition assumes the network is complete, but numerical evidence suggests that

on other networks, too, agents with more precise signals tend to be much more influential.

We simulate a configuration model with n = 40 nodes, each with degree d = 5.29 Nodes are

randomly assigned to a precise signal with variance σ2
A or an imprecise signal with variance

σ2
B (with equal probability).

We are interested in the ratio SI(A)/SI(B) in this more complicated environment. If

social influence were approximately proportional to precision, then SI(A)/SI(B) would be

approximately σ−2A /σ−2B . To assess by how much the better information of the precise group

exceeds this benchmark, we will look at the ratio

Rσ =
SI(A)/SI(B)

σ−2A /σ−2B
.

Table 1 reports this ratio over 100 runs of the simulation model for various pairs of σ2
A and

σ2
B each in the interval [0.5, 5]. The entries of the table would be equal to one if influence is

proportional to precision. Instead, all off-diagonal entries are greater than one (or negative),

meaning social influence depends more (and often much more) on signal precision than in

the proportional benchmark.

Having examined how influence depends on precisions, we turn to how it depends on de-

grees. We again use a configuration model, which allows us to fix any degree distribution, but

generate the graphs uniformly conditional on the degrees. We will find that social influence

depends less on degree than on precision. We simulate a configuration model with n = 40

nodes, each randomly assigned degrees dA or dB (with equal probability of each) and with

29This model works by creating n nodes, each with d “stubs” sticking out of it, and then performing a random
matching of the stubs to create a graph. See Jackson (2010), Section 4.5.10, for details.
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σ2
B

Precision 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

σ2
A

0.5 1 2.14 4.53 9.06 168.09 −29.69 −15.54 −8.22 −7.41 −6.19
1 1 1.80 3.15 5.62 9.95 26.35 −29.89 −15.23 −13.67
1.5 1 1.64 2.56 3.80 6.27 10.64 44.97 −31.32
2 1 1.51 2.22 3.13 4.35 7.05 11.34
2.5 1 1.43 2.04 2.69 3.88 5.50
3 1 1.38 1.86 2.46 3.35

3.5 1 1.34 1.74 2.27
4 1 1.30 1.67
4.5 1 1.28

5 1

Table 1. The table shows how far influence ratios are from a benchmark of being propor-
tional to precision. We use a configuration model with a regular network and heterogeneous
signal variances; there are n = 40 agents and the degree is d = 5. Agents are randomly as-
signed to signal variances σ2

A or σ2
B . Each entry is computed from 100 runs with persistence

ρ = 0.9. Each table entry reports the ratio Rσ = SI(A)/SI(B)

σ−2
A /σ−2

B

for the precision parameters

corresponding to that entry.

dB
Degree 1 2 3 4 5 6 7 8 9 10

dA

1 1 1.11 1.02 0.96 0.94 0.92 0.96 1.00 1.03 1.09

2 1 1.02 1.01 0.98 0.96 0.92 0.93 0.91 0.95

3 1 1.01 1.01 1.01 0.98 0.96 0.94 0.93
4 1 1.01 1.01 1.00 0.99 0.98 0.96

5 1 1.01 1.01 1.02 1.01 1.00

6 1 1.01 1.01 1.01 1.01
7 1 1.01 1.01 1.02

8 1 1.01 1.01

9 1 1.01
10 1

Table 2. The table shows how far influence ratios are from a benchmark of being pro-
portional to degree. We use a configuration model with two possible degrees on n = 40
agents with homogeneous signal variance σ2 = 2. Agents are randomly assigned to degrees
dA or dB . Each entry is computed from 100 runs with persistence ρ = 0.9. Each table entry

reports the ratio Rd = SI(A)/SI(B)
dA/dB

for the degree parameters corresponding to that entry.

σ2 = 2 for all agents. Table 2 reports the ratio

Rd =
SI(A)/SI(B)

dA/dB
.

over 100 runs of the simulation model for degrees between 1 and 10. Again, the entries would

be equal to one if social influence were proportional to degree. Social influence is indeed

approximately proportional to degree: the entries in the table range between 0.91 and 1.11.

Remark 1. A simple intuition explains why social influence depends more on private infor-

mation than network position. Increasing an agent’s private signal precision and her degree

both (tend to) make her action more accurate. Increasing private signal precision also implies

the agent places more weight on her private information, which is recent and independent of

other agents’ actions. This provides more reason for others to place weight on her actions,
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Figure 6.1. Level curves for average social influence of agents in a configuration model
with 5,000 networks with n = 40 agents in each and persistence ρ = 0.9. Degrees are
chosen uniformly from {1, 2, . . . , 7} and private signal variances are chosen uniformly from
{0.5, 1, . . . , 3.5}. The figure shows level curves for average social influence (drawn via cubic
interpolation) on a log-log plot.

amplifying the effect of the increased accuracy. In contrast, increasing degree tends to make

an agent place more weight on her social information, which is older and more correlated with

others. This countervails the effect of increased accuracy, making the agent a less appealing

source for others.

The exercises so far varied only one of signal precision or degree, and we now explore how

social influence depends on precision and degree jointly. To do so, we compute equilibrium

social influences on 5,000 networks with n = 40 agents in each. Each agent is randomly

assigned a degree chosen uniformly from {1, 2, . . . , 7} and a private signal variance chosen

uniformly and independently from {0.5, 1, . . . , 3.5}. Networks are then drawn via the config-

uration model. Figure 6.1 plots the level curves for average social influence. The steepness

of the level curves shows that social influence again depends more on signal variance than

degree, especially when signals are less precise.

6.3. Comparison with a DeGroot benchmark. The results above are interesting to

compare with what we might expect in canonical network models with a fixed state. A

standard benchmark in the networks literature to express influence as a function of network

position is the DeGroot model.

To allow us to also consider the effect of signal precision, we consider a fixed-state setting

studied by DeMarzo, Vayanos, and Zweibel (2003) as a foundation for DeGroot updating,

where weights depend on precisions. Agents start with an improper prior, receive independent

normal private signals si about the state once, and then each takes an action ai,0 equal to

her expectation of θ. After this, agents observe their neighbors’ actions and take actions ai,1,
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which are Bayesian expectations of the state θ given their observations. In all subsequent

periods t > 1, agents observe their neighbors’ actions aj,t−1 and take actions ai,t as if aj,t−1

has the same distribution as j’s private signal (i.e., they naively repeat their optimal strategy

from the first period).

One natural measure of social influence is the influence of si on the long-run consensus

beliefs limt→∞ aj,t. In an undirected, connected, and aperiodic network, this limit exists and

the influence of agent i is proportional to her private signal precision σ−2i and to her degree di.

Compared to this benchmark, social influence in our changing-state model is more sensitive

to signal precision (in the complete graph and in our simulations for configuration models).

On the other hand, the impact of degree on social influence is very similar to the DeGroot

benchmark—approximately proportional to degree. That is, influence depends more on an

agent’s private information while the dependence on network position is remarkably similar.

The difference between the benchmark and our model is explained in Remark 1.

7. Related literature

Whether decentralized communication can facilitate efficient adaptation to a changing

world is a fundamental question in economic theory, related to questions raised by Hayek

(1945)30 and of primary interest in some applied problems, e.g., in real business cycle models

with consumers and firms learning about evolving states.31 Nevertheless, there is relatively

little modeling of Bayesian learning of dynamic states in the large literature on social learning

and information aggregation in networks, whose most relevant papers we now review.32

Play in the stationary linear equilibria of our model closely resembles behavior in the

DeGroot (1974) model, where agents update by linearly aggregating network neighbors’ past

estimates, with constant weights on neighbors over time. DeMarzo, Vayanos, and Zweibel

(2003), in a Gaussian environment with an unchanging state, derive DeGroot learning as

the Bayesian behavior in the first round of communication, and use that as a foundation

for a DeGroot rule as a boundedly-rational heuristic. Molavi, Tahbaz-Salehi, and Jadbabaie

(2018) have offered new bounded-rationality foundations for the DeGroot rule. Our different

environment offers a different foundation for averaging rules with constant weights, as a

30“If . . . the economic problem of society is mainly one of rapid adaptation to changes in the particular
circumstances of time and place . . . there still remains the problem of communicating to [each individual] such
further information as he needs.” Hayek’s main concern was aggregation of information through markets,
but the same questions apply more generally.
31See Angeletos and La’O (2010) for a survey of related models that are used to study real business cycles.
More recent developments include Angeletos and Lian (2018) and Molavi (2019), with the latter allowing a
form of misspecification.
32For more complete surveys of different parts of this literature, see, among others, Acemoglu and Ozdaglar
(2011), Golub and Sadler (2016), and Mossel and Tamuz (2017). See Moscarini, Ottaviani, and Smith
(1998) for an early model in a binary-action environment, where it is shown that a changing state can break
information cascades.
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stationary equilibrium of a stationary environment.33 Though the updating rule resembles

those derived in fixed-state environments, we have stressed that the learning implications are

quite different.

Several recent papers in computer science and engineering study dynamic environments

similar to ours. Shahrampour, Rakhlin, and Jadbabaie (2013) study an exogenous-weights

version, interpreted as a set of Kalman filters under the control of a planner. They bound

measures of welfare in terms of the persistence of the state process (ρ) and network invariants,

such as the spectral gap. Frongillo, Schoenebeck, and Tamuz (2011) study a ρ = 1 model

of the state. They characterize the steady-state distribution of behavior for any weights,

and calculate equilibrium weights on a complete network, which they show are inefficient.

Our Proposition 4 documents a related inefficiency, while the quality of equilibrium learning

in large, incomplete networks and social influence in equilibrium are topics not considered

in these papers. In economics, Alatas, Banerjee, Chandrasekhar, Hanna, and Olken (2016)

perform an empirical exercise in a similar model with a quasi-Bayesian learning rule. Their

estimation assumes agents ignore the correlation between social observations, similarly to

our naive models.34 Our results show that the degree of rationality can be pivotal for the

outcomes of such processes, and provides foundations for structural inference to test various

behavioral assumptions.

Our results about when agents learn well are related to two phenomena that have played

an important role in the social learning literature. A theme in the social learning literature

is that heterogeneity—in agents’ preferences or in whom they observe—can be helpful for

learning. One manifestation of this is the phenomenon (typically in sequential social learning

models with a fixed state) of sacrificial lambs : a fairly sparse set of agents who observe

nobody can help everyone else learn well, because their actions are then informative only

about their private signals, and unconfounded by an information cascade (Sgroi, 2002, Arieli

and Mueller-Frank, 2019). Heterogeneity in preferences can also serve a similar purpose: if

preferences have full support, there is a positive probability that preference bias counteracts

available social information, causing an agent to follow her private signal (Goeree, Palfrey,

and Rogers, 2006, Lobel and Sadler, 2016). A crucial difference is that our mechanism does

not rely on any agents simply revealing their private signals: heterogeneity helps by changing

33Indeed, agents behaving according to the DeGroot heuristic in other environments might have to do with
their experiences in stationary environments where it is closer to optimal.
34The paper’s focus is estimating parameters of social learning rules using data from Indonesian villages,
where agents are trying to assess each other’s wealth.
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how neighbors use their social information, which in turn aids an agent in inferring a common

confound.35

Second, a robust aspect of rational learning in sequential models is the phenomenon of

anti-imitation, as discussed, e.g., by Eyster and Rabin (2014). They give general conditions

for fully Bayesian agents to anti-imitate in the sequential model. We find that anti-imitation

is also an important feature in our dynamic model, and in our context is crucial for good

learning. Despite this similarity, there is an important contrast between our environment

and standard sequential models. In those models, while rational agents do prefer to anti-

imitate, in many cases individuals, and society as a whole, could obtain good outcomes using

heuristics without any anti-imitation: for instance, by combining the information that can be

inferred from a single neighbor with one’s own private signal. Acemoglu, Dahleh, Lobel, and

Ozdaglar (2011) and Lobel and Sadler (2015) show that such a heuristic leads to asymptotic

learning in a sequential model. Our dynamic learning environment is different, as shown in

Proposition 3: to have any hope of approaching good aggregation benchmarks, agents must

respond in a sophisticated way, with anti-imitation, to their neighbors’ (correlated) estimates.

8. Discussion and extensions

8.1. Aggregation and its absence without asymptotics: Numerical results. The

message of Section 4 is that signal diversity enables good aggregation, and signal homogeneity

obstructs it. The theoretical results were asymptotic, and relied on various assumptions about

network structure. It is natural to ask whether our main conclusions hold up in realistic

finite networks. To analyze this, we numerically study equilibria of our model in actual social

networks from Indian villages (Banerjee, Chandrasekhar, Duflo, and Jackson, 2013). This

subsection briefly summarizes our findings; we describe the exercise fully in Appendix C.

We examine the benefits of signal heterogeneity for equilibrium aggregation. The network

data are essentially the only empirical input to our exercise.36 Given a network, we compute

equilibria using our model and parameters chosen for illustration. We compare two environ-

ments that differ in signal allocations: (i) a homogeneous case, with all signal variances set

to 2, and (ii) a heterogeneous case, where half of the nodes have a signal variance less than

2 (which we vary) and half of the nodes have a signal variance greater than 2.37

We first compare the value of a good network with the value of heterogeneous signals.

Some networks have better learning than others even with homogeneous signals. We define

35A bit farther afield, in Sethi and Yildiz (2012), learning outcomes when two individuals repeatedly learn
from each other depend on whether their (heterogeneous) priors are independent or correlated; the common
thread is that a natural assumption about agents’ attributes (independent priors in their case) leads to an
identification problem. The mechanics are otherwise quite different.
36In particular, we have no data on signal qualities, and simply posit that households without electricity have
worse access to external information.
37We choose the larger signal variance so that the average precision in each village is 1

2 , which holds the total
inflow of information constant in a sense made precise in the appendix.
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the network-driven variation in learning to be the standard deviation of learning quality (ag-

gregation error) across villages in the homogeneous case. Our main finding is that increasing

the private signal variance for half of the agents by 50% changes social signal error variance

by 6.5 times the network-driven variation. That is, introducing this amount of private sig-

nal heterogeneity improves learning much more than the most favorable network among the

villages.

We also quantify how much signal diversity is needed to approach benchmark aggregation

in finite networks. Though the asymptotic prediction changes starkly depending on whether

signal precisions are identical or not, considerable diversity is actually required to achieve

these benefits in a finite network. Starting from homogeneous signals and increasing signal

diversity, aggregation error changes very slightly at first. Once the variance of the less precise

signal has increased by 50% relative to the starting point, learning quality has moved about

halfway to what is achievable with the most extreme signal heterogeneity.

8.2. Multidimensional states and informational specialization. Our formal analysis

assumed a one-dimensional state and one-dimensional signals, which varied only in their

precisions. Our message about the value of diversity is, however, better interpreted in a

mathematically equivalent multidimensional model.

Consider Bayesian agents who learn and communicate about two independent dimensions

simultaneously (each one working as in our model). If all agents have equally precise signals

about both dimensions, then society may not learn well about either of them. In contrast, if

half the agents have superior signals about one dimension and inferior signals about the other

(and the other half has the reverse), then society can learn well about both dimensions. Thus,

the designer has a strong preference for an organization with informational specialization

where some, but not all, agents are expert in a particular dimension.38

Of course, there are many familiar reasons for specialization, in information or any other

activity. For instance, it may be that more total information can be collected in this case, or

that incentives are easier to provide. Crucially, specialization is valuable in our setting for a

reason distinct from all these: it helps agents with their inference problems.

More generally, one can readily extend our model and equilibrium concept to a multi-

dimensional state θt ∈ Rd and arbitrary Gaussian signals about it, with flexible correlations.

We would expect to find suitable generalizations of the basic message that sufficient diver-

sity of neighborhoods (in terms of signal types) facilitates learning. The assumption that

agents know neighbors’ signal distributions is clearly very helpful for tractability; it would be

interesting to consider models in which agents are also uncertain about these distributions.

38This raises important questions about what information agents would acquire, and whom they would choose
to observe, which are the focus of a growing literature. For recent papers on this in the context of networks,
see Sethi and Yildiz (2016) and Myatt and Wallace (2017), among others.
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Appendix A. Existence of equilibrium: Proof of Proposition 1

Recall from Section 3.1 the map Φ, which gives the next-period covariance matrix Φ(Vt)

for any Vt. The expression given there for this map ensures that its entries are continuous

functions of the entries of Vt. Our strategy is to show that this function maps a convex,

compact set, K, to itself, which, by Brouwer’s fixed-point theorem, ensures that Φ has a

fixed point V̂ . We will then argue that this fixed point corresponds to a stationary linear

equilibrium.

We begin by defining the compact set K. Because memory is arbitrary, entries of Vt are

covariances between pairs of neighbor actions from any periods available in memory. Let k, l

be two indices of such actions, corresponding to actions taken at nodes i and j respectively

(at potentially different times), and let σ2
i = max

{
σ2
i , ρ

m−1σ2
i + 1−ρm−1

1−ρ

}
. Now let K ⊂ V be

the subset of symmetric positive semi-definite matrices Vt such that, for any such k, l,

Vkk,t ∈
[
min

{
1

1 + σ−2i
,
ρm−1

1 + σ−2i
+

1− ρm−1

1− ρ

}
,max

{
σ2
i , ρ

m−1σ2
i +

1− ρm−1

1− ρ

}]
Vkl,t ∈ [−σiσj, σiσj] .

This set is closed and convex, and we claim that Φ(K) ⊂ K.
To show this claim, we will first find upper and lower bounds on the variance of any

neighbor’s action (at any period in memory). For the upper bound, note that a Bayesian

agent will not choose an action with a larger variance than her signal, which has variance σ2
i .

For a lower bound, note that if she knew the previous period’s state and her own signal, then

the variance of her action would be 1
1+σ−2

i

. Thus an agent observing only noisy estimates of

θt and her own signal can do no better.

By the same reasoning applied to the node-i agent from m periods ago, the error variance

of ρmai,t−m − θt is at most ρmσ2
i + 1−ρm

1−ρ and at least ρm

1+σ−2
i

+ 1−ρm
1−ρ . This establishes bounds

on Vkk,t for observations k from either the most recent or the oldest available period. The

corresponding bounds from the periods between t −m + 1 and t are always weaker than at

least one of the two bounds we have described, so we need only take minima and maxima

over two terms.

This established the claimed bound on the variances. The bounds on covariances follow

from Cauchy-Schwartz.

We have now established that there is a variance-covariance matrix V̂ such that Φ(V̂ ) = V̂ .

By definition of Φ, this means there exists some weight profile (Ŵ , ŵs) such that, when
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applied to prior actions that have variance-covariance matrix V̂ , produce variance-covariance

matrix V̂ . However, it still remains to show that this is the variance-covariance matrix

reached when agents have been using the weights (Ŵ , ŵs) forever.

To show this, first observe that if agents have been using the weights (Ŵ , ŵs) forever,

the variance-covariance matrix Vt in any period is uniquely determined and does not depend

on t; call this V̌ .39 This is because actions can be expressed as linear combinations of

private signals with coefficients depending only on the weights. Second, it follows from our

construction above of the matrix V̂ and the weights (Ŵ , ŵs) that there is a distribution

of actions where the variance-covariance matrix is V̂ in every period and agents are using

weights (Ŵ , ŵs) in every period. Combining the two statements shows that in fact V̌ = V̂ ,

and this completes the proof. Note that this argument also establishes that the response

profile we have constructed is a strategy profile: under the responses used, we can write

formally the dependence of actions on all prior signals, and verify using the observations

on decay of dependence across time that the formula is summable and hence defines unique

actions.

Appendix B. Proof of Theorem 1

B.1. Notation and key notions. Let S be the (by assumption finite) set of all possible

signal variances, and let σ2 be the largest of them. The proof will focus on the covariances

of errors in social signals. Suppose that all agents have at least one neighbor. Take two

arbitrary agents i and j. Recall that both ri,t and rj,t have mean θt−1, because each is

an unbiased estimate40 of θt−1; we will thus focus on the errors ri,t − θt−1. Let At denote

the variance-covariance matrix (Cov(ri,t − θt−1, rj,t − θt−1))i,j and let W be the set of such

covariance matrices. For all i, j note that Cov(ri,t − θt−1, rj,t − θt−1) ∈ [−σ2, σ2] using the

Cauchy-Schwarz inequality and the fact that Var(ri,t−θt−1) ∈ [0, σ2] for all i. This fact about

variances says that no social signal is worse than putting all weight on an agent who follows

only her private signal. Thus the best-response map Φ is well-defined and induces a map Φ̃

onW .

Next, for any ψ, ζ > 0 we will define the subset Wψ,ζ ⊂ W to be the set of covariance

matrices in W such that both of the following hold:

1. for any pair of distinct agents41 i ∈ Gk
n and j ∈ Gk′

n ,

Cov(ri,t − θt−1, rj,t − θt−1) = ψkk′ + ζij

39The variance-covariance matrices are well-defined because the (W,ws) weights yield unambiguous strategy
profiles in the sense of Appendix E.
40This is because it is a linear combination, with coefficients summing to 1, of unbiased estimates of θt−1.
41Throughout this proof, we abuse terminology by referring to agents and nodes interchangeably when the
relevant t is clear or specified nearby.
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where (i) ψkk′ depends only on the network types of the two agents (k and k′, which

may be the same); (ii) |ψkk′ | < ψ; and (iii) |ζij| < ζ;

2. for any single agent i ∈ Gk
n,

Var(ri,t − θt−1) = ψk + ζii

where (i) ψk only depends on the network type of the agent; (ii) |ψk| < ψ, and (iii)

|ζii| < ζ.

This is the space of covariance matrices such that each covariance is split into two parts.

Considering (1) first, ψkk′ is an effect that depends only on i’s and j’s network types, while

ζij adjusts for the individual-level heterogeneity arising from different link realizations. The

description of the decomposition in (2) is analogous.

B.2. Proof strategy.

B.2.1. A set Wψ,ζ of outcomes with good learning. Our goal is to show that as n grows large,

there is an equilibrium in which Var(ri,t− θt−1) becomes very small, which then implies that

the agents asymptotically learn. To this end we define a set of covariances with this property

as well as some other useful properties. We will take ψ and ζ to be arbitrarily small numbers

and show that for large enough n, with high probability (which we abbreviate “asymptotically

almost surely” or “a.a.s.”) there is an equilibrium with a social error covariance matrix At in

the set Wψ,ζ . That will imply that, in this equilibrium, Var(ri,t − θt−1) becomes arbitrarily

small as we take the constants ψ and ζ to be small. In our constructions, the ζij (resp.,

ζi) terms will be set to much smaller values than the ψkk′ (resp., ψk) terms, because group-

level covariances are more predictable and less sensitive to idiosyncratic realizations than

individual-level covariances.

B.2.2. Approach to showing that Wψ,ζ contains an equilibrium. To show that there is (a.a.s.)

an equilibrium outcome with a social error covariance matrix At in the set Wψ,ζ , the plan

is to construct a set so that (a.a.s.) W ⊂ Wψ,ζ and Φ̃(W) ⊂ W . This set will contain an

equilibrium by the Brouwer fixed point theorem, and therefore so will Wψ,ζ .

To construct the set W , we will fix a positive constant β (to be determined later), and

define

W =W β
n
, 1
n
∪ Φ̃

(
W β

n
, 1
n

)
.

We will then prove that, for large enough n, (i) Φ̃(W) ⊆ W and (ii) for another suitable

positive constant λ,

W ⊂W β
n
,λ
n
.

This will allow us to establish that (a.a.s.) W ⊂ Wψ,ζ and Φ̃(W) ⊂ W , with ψ and ζ being

arbitrarily small numbers.
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The following two lemmas will allow us to deduce (immediately after stating them) prop-

erties (i) and (ii) of W .

Lemma 1. There is a function λ(β) ≥ 1 such that the following holds. For all large enough

β and all λ ≥ λ(β), for n sufficiently large we have Φ̃
(
W β

n
, 1
n

)
⊂ W β

n
,λ
n

with probability at

least 1− 1
n
.

Lemma 2. For all large enough β, for n sufficiently large, Φ̃2
(
W β

n
, 1
n

)
⊂ W β

n
, 1
n
, with proba-

bility at least 1− 1
n
.42

Putting these lemmas together, a.a.s. we have,

Φ̃2
(
W β

n
, 1
n

)
⊂ W β

n
, 1
n

and Φ̃
(
W β

n
, 1
n

)
⊂ W β

n
,λ
n
.

From this it follows that W = W β
n
, 1
n
∪ Φ̃

(
W β

n
, 1
n

)
is mapped to a subset of itself by Φ̃, and

contained in W β
n
,λ
n
, as claimed.

B.2.3. Proving the lemmas by analyzing how Φ̃ and Φ̃2 act on sets Wψ,ζ. The lemmas are

about how Φ̃ and Φ̃2 act on the covariance matrix At, assuming it is in a certain set Wψ,ζ ,

to yield new covariance matrices. Thus, we will prove these lemmas by studying two periods

of updating. The analysis will come in five steps.

Step 1: No-large-deviations (NLD) networks and the high-probability event. Step

1 concerns the “with high probability” part of the lemmas. In the entire argument, we

condition on the event of a no-large-deviations (NLD) network realization, which says that

certain realized statistics in the network (e.g., number of paths between two nodes) are close

to their expectations. The expectations in question depend only on agents’ types. Therefore,

on the NLD realization, the realized statistics do not vary much based on which exact agents

we focus on, but rather depend only on their types. Step 1 defines the NLD event E formally

and shows that it has high probability. We use the structure of the NLD event throughout

our subsequent steps, as we mention below.

Step 2: Weights in one step of updating are well-behaved. We are interested in Φ̃

and Φ̃2, which describe how the covariance matrix At of social signal errors changes under

updating. How this works is determined by the “basic” updating map Φ, and so we begin by

studying the weights involved in it and then make deductions about the implications for the

evolution of the variance-covariance matrixAt.

The present step establishes that in one step of updating, the weight Wij,t+1 that agent

(i, t+1) places on the action of another agent j in period t, does not depend too much on the

identities of i and j. It only depends on their (network and signal) types. This is established

by using our explicit formula for weights in terms of covariances. We rely on (i) the fact that

42The notation Φ̃2 means the operator Φ̃ applied twice.
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covariances are assumed to start out in a suitableWψ,ζ , and (ii) our conditioning on the NLD

event E. The NLD event is designed so that the network quantities that go into determining

the weights depend only on the types of i and j (because the NLD event forbids too much

variation within type). The restriction to At ∈ Wψ,ζ ensures that covariances in the initial

period t do not vary too much with type, either.

Step 3: Lemma 1: Φ̃
(
W β

n
, 1
n

)
⊂ W β

n
,λ
n
. Once we have analyzed one step of updating, it

is natural to consider the implications for the covariance matrix. Because we now have a

bound on how much weights can vary after one step of updating, we can compute bounds on

covariances. We show that if covariances At are inW β
n
, 1
n
, then after one step, covariances are

in W β
n
,λ
n
. Note that the introduction of another parameter λ on the right-hand side implies

that this step might worsen our control on covariances somewhat, but in a bounded way.

This establishes Lemma 1.

Step 4: Weights in two steps of updating are well-behaved. The fourth step estab-

lishes that the statement made in Step 2 remains true when we replace t + 1 by t + 2. By

the same sort of reasoning as in Step 2, an additional period of updating cannot create too

much further idiosyncratic variation in weights. Proving this requires analyzing the covari-

ance matrices of various social signals (i.e., the At+1 that the updating induces), which is

why we needed to do Step 3 first.

Step 5: Lemma 2: Φ̃2
(
W β

n
, 1
n

)
⊂ W β

n
, 1
n
. Now we use our understanding of weights from

the previous steps, along with additional structure, to show the key remaining fact. What

we have established so far about weights allows us to control the weight that a given agent’s

estimate at time t+2 places on the social signal of another agent at time t. This is Step 5(a).

In the second part, Step 5(b), we use that to control the covariances in At+2. It is important

in this part of the proof that different agents have very similar “second-order neighborhoods”:

the paths of length 2 beginning from an agent are very similar, in terms of their counts and

what types of agents they go through. We use our control of second-order neighborhoods, as

well as the assumptions on variation across entries of At to bound this variation well enough

to conclude that At+2 ∈ W β
n
, 1
n
.

B.3. Carrying out the steps.

B.3.1. Step 1. Here we formally define the NLD event, which we call E. It is given by

E = ∩5
i=1Ei, where the events Ei will be defined next.

(E1) Let X
(1)
i,τk be the number of agents having signal type τ and network type k who are

observed by i. The event E1 is that this quantity is close to its expected value in the following

sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X
(1)
i,τk] ≤ X

(1)
i,τk ≤ (1 + ζ2)E[X

(1)
i,τk].
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(E2) Let X
(2)
ii′,τk be the number of agents having signal type τ and network type k who are

observed by both i and i′. The event E2 is that this quantity is close to its expected value in

the following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X
(2)
ii′,τk] ≤ X

(2)
ii′,τk ≤ (1 + ζ2)E[X

(2)
ii′,τk].

(E3) Let X
(3)
i,τk,j be the number of agents having signal type τ and network type k who are

observed by agent i and who observe agent j. The event E3 is that this quantity is close to its

expected value in the following sense, simultaneously for all possible values of the subscript:

(1− ζ2)E[X
(3)
i,τk,j ] ≤ X

(3)
i,τk,j ≤ (1 + ζ2)E[X

(3)
i,τk,j ].

(E4) Let X
(4)
ii′,τk,j be the number of agents having signal type τ and network type k who

are observed by both agent i and i′ and who observe j. The event E4 is that this quantity

is close to its expected value in the following sense, simultaneously for all possible values of

the subscript:

(1− ζ2)E[X
(4)
ii′,τk′,j] ≤ X

(4)
ii′,τk′,j ≤ (1 + ζ2)E[X

(4)
ii′,τk′,j].

(E5) Let X
(5)
i,τk,jj′ be the number of agents of signal type τ and network type k who are

observed by agent i and who observe both j and j′. The event E5 is that this quantity is

close to its expected value in the following sense, simultaneously for all possible values of the

subscript:

(1− ζ2)E[X
(5)
i,τk,jj′ ] ≤ X

(5)
i,τk,jj′ ≤ (1 + ζ2)E[X

(5)
i,τk,jj′ ].

We claim that the probability of the complement of the event E vanishes exponentially.

We can check this by showing that the probability of each of the Ei vanishes exponentially.

For E1, for example, the bounds will hold unless at least one agent has degree outside the

specified range. The probability of this is bounded above by the sum of the probabilities of

each individual agent having degree outside the specified range. By Chebyshev’s inequality,

the probability a given agent has degree outside this range vanishes exponentially. Because

there are n agents in Gn, this sum vanishes exponentially as well. The other cases are similar.

For the rest of the proof, we condition on the event E.

B.3.2. Step 2. As a shorthand, let ψ = β/n for a sufficiently large constant β, and let ζ = 1/n.

Lemma 3. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wψ,ζ and all agents are optimizing in period t+ 1. Then there is a γ so that for

all n sufficiently large,
Wij,t+1

Wi′j′,t+1

∈
[
1− γ

n
, 1 +

γ

n

]
.

whenever i and i′ have the same network and signal types and j and j′ have the same network

and signal types.
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To prove this lemma, we will use our weights formula:

Wi,t+1 =
1TC−1i,t

1TC−1i,t 1
.

This says that in period t + 1, agent i’s weight on agent j is proportional to the sum of the

entries of column j of C−1i,t . We want to show that the change in weights is small as the

covariances of observed social signals vary slightly. To do so we will use the Taylor expansion

of f(A) = C−1i,t around the covariance matrix A(0) at which all ψkk′ = 0, ψk = 0 and ζij = 0.

We begin with the first partial derivative of f at A(0) in an arbitrary direction. Let A(x)

be any perturbation of A0 in one parameter, i.e., A(x) = A(0)+xM for some constant matrix

M with entries in [−1, 1]. Let Ci(x) be the matrix of covariances of the actions observed

by i given that the covariances of agents’ social signals were A(x). There exists a constant

γ1 depending only on the possible signal types such that each entry of Ci(x) − Ci(x
′) has

absolute value at most γ1(x− x′) whenever both x and x′ are small.

We will now show that the column sums of Ci(x)−1 are close to the column sums of C(0)−1i .

To do so, we will evaluate the formula

∂f(A(x))

∂x
=
∂Ci(x)−1

∂x
= Ci(x)−1

∂Ci(x)

∂x
Ci(x)−1 (B.1)

at zero. If we can bound each column sum of this expression (evaluated at zero) by a

constant (depending only on the signal types and the number of network types K), then the

first derivative of f will also be bounded by a constant.

Recall that S is the set of signal types and let S = |S|; index the signal types by numbers

ranging from 1 to S. To bound the column sums of Ci(0)−1, suppose that the agent observes

ri agents from each signal type 1 ≤ i ≤ S. Reordering so that all agents of each signal type

are grouped together, we can write

Ci(0) =


a111r1×r1 + b1Ir1 a121r1×r2 aS11r1×rS

a121r2×r1 a221r2×r2 + b2Ir2
...

. . .

a1S1rS×r1 · · · aSS1rs×rs + bsIrs


Therefore, Ci(0) can be written as a block matrix with blocks aij1ri×rj + biδijIri where

1 ≤ i, j ≤ S and δij = 1 for i = j and 0 otherwise.

We now have the following important approximation of the inverse of this matrix.43

Lemma 4 (Pinelis (2018)). Let C be a matrix consisting of S×S blocks, with its (i,j) block

given by

aij1ri×rj + biδijIri

43We are very grateful to Iosif Pinelis for suggesting this argument.
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and let A = aij1ri×rj be an invertible matrix. As n→∞, then the (i, i) block of C−1 equals

1

bi
Iri −

1

biri
1ri×ri +O(1/n2)

while the off-diagonal blocks are O(1/n2).

Proof. First note that the ij-block of C−1 has the form

cij1ri×rj + diδijIri

for some real cij and di.

Therefore, CC−1 can be written in matrix form as∑
k(aik1ri×rk + biδikIri)(ckj1rk×rj + dkδkjIrk) =

(aijdj +
∑

k(aikrk + δikbk)ckj) 1ri×rj + bidiδijIri . (B.2)

Note that the last summand is the identity matrix.

Let Dd denote the diagonal matrix with di in the (i, i) diagonal entry, let D1/b denote the

diagonal matrix with 1/bi in the (i, i) diagonal entry, etc. Breaking up the previous display

(B.2) into its diagonal and off-diagonal parts, we can write

ADd + (ADr +Db)C = 0 and Dd = D1/b.

Hence,

C = −(ADr +Db)
−1ADd

= −(Iq +D−1r A−1Db)
−1(ADr)

−1AD1/b

= −(Iq +D−1r A−1Db)
−1D1/(br)

= −D1/(br) +O(1/n2)

where br := (b1r1, . . . , bqrq). Therefore as n → ∞ the off-diagonal blocks will be O(1/n2)

while the diagonal blocks are

1

bi
Iri −

1

biri
1ri×ri +O(1/n2)

as desired. �

Using Lemma 4 we can analyze the column sums of44

Ci(0)−1MCi(0)−1.

In more detail, we use the formula of the lemma to estimate both copies of Ci(0)−1, and

then expand this to write an expression for any column sum of Ci(0)−1MCi(0)−1. It follows

44Recall we wrote A(x) = A(0) + xM , and in (B.1) we expressed the derivative of f in x in terms of the
matrix we exhibit here.
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straightforwardly from this calculation that all these column sums are O(1/n) whenever all

entries of M are in [−1, 1].

We can bound the higher-order terms in the Taylor expansion by the same technique: by

differentiating equation B.1 repeatedly in x, we obtain an expression for the kth derivative in

terms of Ci(0)−1 and M :

f (k)(0) = k!Ci(0)−1MCi(0)−1MCi(0)−1 · . . . ·MCi(0)−1,

where M appears k times in the product. By the same argument as above, we can show

that the column sums of f (k)(0)
k!

are bounded by a constant independent of n. The Taylor

expansion is

f(A) =
∑
k

f (k)(0)

k!
xk.

Since we take A ∈ Wψ,ζ , we can assume that x is O(1/n). Because the column sums of each

summand are bounded by a constant times xk, the column sums of f(A) are bounded by a

constant.

Finally, because the variation in the column sums is O(1/n) and the weights are propor-

tional to the column sums, each weight varies by at most a multiplicative factor of γ1/n for

some γ1. We find that the first part of the lemma, which bounded the ratios between weights

Wij,t+1/Wi′j′,t+1, holds.

B.3.3. Step 3. We complete the proof of Lemma 1, which states that the covariance matrix

of ri,t+1 is in Wψ,ζ′ . Recall that ζ ′ = λ/n for some constant n, so we are showing that if the

covariance matrix of the ri,t is in a neighborhood Wψ,ζ , then the covariance matrix in the

next period is in a somewhat larger neighborhood Wψ,ζ′ . The remainder of the argument

then follows by the same arguments as in the proof of the first part of the lemma: we now

bound the change in time-(t + 2) weights as we vary the covariances of time-(t + 1) social

signals within this neighborhood.

Recall that we decomposed each covariance Cov(ri,t − θt−1, rj,t − θt−1) = ψkk′ + ζij into a

term ψkk′ depending only on the types of the two agents and a term ζij, and similarly for

variances. To show the covariance matrix is contained inWψ,ζ′ , we bound each of these terms

suitably.

We begin with ζij (and ζi). We can write

ri,t+1 =
∑
j

Wij,t+1

1− wsi,t+1

ρai,t =
∑
j

Wij,t+1

1− wsi,t+1

ρ
(
wsj,tsj,t + (1− wsj,t)rj,t

)
.

By the first part of the lemma, the ratio between any two weights (both of the form Wij,t+1,

wsi,t+1, or wsj,t) corresponding to pairs of agents of the same types is in [1− γ1/n, 1 + γ1/n] for

a constant γ1. We can use this to bound the variation in covariances of ri,t+1 within types
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by ζ ′: we take the covariance of ri,t+1 and rj,t+1 using the expansion above and then bound

the resulting summation by bounding all coefficients.

Next we bound ψkk′ (and ψk). It is sufficient to show that Var(ri,t+1 − θt) is at most ψ.

To do so, we will give an estimator of θt with variance less than β/n, and this will imply

Var(ri,t+1−θt) < β/n = ψ (recall ri,t+1 is the estimate of θt given agent i’s social observations

in period t+ 1). Since this bounds all the variance terms by ψ, the covariance terms will also

be bounded by ψ in absolute value.

Fix an agent i of network type k and consider some network type k′ such that pkk′ > 0.

Then there exists two signal types, which we call A and B, such that i observes Ω(n) agents

of each of these signal types in Gk
n.45 The basic idea will be that we can approximate θt well

by taking a linear combination of the average of observed agents of network type k and signal

type A and the average of observed agents of network type k and signal type B.

In more detail: Let Ni,A be the set of agents of type A in network type k observed by i

and Ni,B be the set of agents of type B in network type k observed by i. Then fixing some

agent j0 of network type k,

1

|Ni,A|
∑
j∈Ni,A

aj,t−1 =
σ−2A

1 + σ−2A
θt +

1

1 + σ−2A
rj0,t−1 + noise

where the noise term has variance of order 1/n and depends on signal noise, variation in rj,t,

and variation in weights. These bounds on the noise term follow from the assumption that

the covariance matrix of the ri,t is in a neighborhood Wψ,ζ and our analysis of variation in

weights. Similarly

1

|Ni,B|
∑
j∈Ni,B

aj,t−1 =
σ−2B

1 + σ−2B
θt +

1

1 + σ−2B
rj0,t−1 + noise

where the noise term has the same properties. Because σ2
A 6= σ2

B, we can write θt as a linear

combination of these two averages with coefficients independent of n up to a noise term of

order 1/n. We can choose β large enough such that this noise term has variance most β/n

for all n sufficiently large. This completes the Proof of Lemma 1.

B.3.4. Step 4: We now give the two-step version of Lemma 3.

Lemma 5. Suppose that in period t the matrix A = At of covariances of social signals

satisfies A ∈ Wψ,ζ and all agents are optimizing in periods t+ 1 and t+ 2. Then there is a γ

so that for all n sufficiently large,

Wij,t+2

Wi′j′,t+2

∈
[
1− γ

n
, 1 +

γ

n

]
.

45We use the notation Ω(n) to mean greater than Cn for some constant C > 0 when n is large.
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whenever i and i′ have the same network and signal types and j and j′ have the same network

and signal types.

Given what we established about covariances in Step 3, the lemma follows by the same

argument as the proof of Lemma 3.

Step 5: Now that Lemma 5 is proved, we can apply it to show that Φ̃2(Wψ,ζ) ⊂ Wψ,ζ .

We will do this by first writing the time-(t+ 2) behavior in terms of agents’ time-t obser-

vations (Step 5(a)), which comes from applying Φ̃ twice. This gives a formula that can be

used for bounding the covariances46 of time-(t + 2) actions in terms of covariances of time-t

actions. Step 5(b) then applies this formula to show we can take ζij and ζi to be sufficiently

small. (Recall the notation introduced in Section B.1 above.) We split our expression for

ri,t+2 into several groups of terms and show that the contribution of each group of terms

depends only on agents’ types up to a small noise term. Step 5(c) notes that we can also

take ψkk′ and ψk to be sufficiently small.

Step 5(a): We calculate:

ri,t+2 =
∑
j

Wij,t+2

1− wsi,t+2

ρaj,t+1

= ρ

(∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 +
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1ρaj′,t

)

= ρ

(∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1sj,t+1 + ρ
(∑

j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1w
s
j′,tsj′,t

+
∑
j,j′

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t)rj′,t
))

.

Let cij′,t be the coefficient on rj′,t in this expansion of ri,t+2. Explicitly,

cij′,t =
∑
j

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t). (B.3)

The coefficient cij′,t adds up the influence of rj′,t on ri,t+2 over all paths of length two.

First, we establish a lemma about how much these weights vary.

Lemma 6. There exists γ such that for n sufficiently large, when i and i′ have the same

network types and j′ and j′′ have the same network and signal types, the ratio cij′,t/ci′j′′,t is

in [1− γ/n, 1 + γ/n].

Proof. Fix i and j′. For each network type k′′ and signal type s, consider the number of

agents j of network type k′′ and signal type s who are observed by i and who observe j′. This

46We take this term to refer to variances, as well.
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number varies by at most a factor ζ2 as we change i and j′, preserving signal and network

types. For each such j, the contribution of that agent’s action to cij′,t is (recalling (B.3))

Wij,t+2

1− wsi,t+2

Wjj′,t+1(1− wsj′,t).

By applying Lemma 3 repeatedly, we can choose γ1 such that each of these contributions

varies by at most a factor of γ1/n as we change i in Gk and j′ in Gk′ . Thus, cij′,t is a sum of

terms which vary by at most a multiplicative factor of γ1/n as we change i and j′ preserving

signal and network types. If we can show that the sum of the absolute values of these terms

is bounded, then it will follow that cij′,t varies by at most a multiplicative factor of γ/n for

some n. This bound on the sum of absolute values follows from the calculation of weights in

the proof of Lemma 3. �

Step 5(b): We first show that fixing the values of ψkk′ and ψk in period t, the variation in

the covariances Cov(ri,t+2− θt+1,ri′,t+2− θt+1) of these terms as we vary i and i′ over network

types is not larger than ζ. From the formula above, we observe that we can decompose

ri,t+2 − θt+1 as a linear combination of three mutually independent groups of terms:

(i) signal error terms ηj,t+1 and ηj′,t;

(ii) the errors rj′,t − θt in the social signals from period t; and

(iii) changes in state νtand νt+1 between periods t and t+ 2.

Note that the terms rj′,t − θt are linear combinations of older signal errors and changes in

the state. We bound each of the three groups in turn:

(i) Signal Errors: We first consider the contribution of signal errors. When i and i′ are

distinct, the number of such terms is close to its expected value because we are conditioning

on the events E2 and E4 defined in Section B.1. Moreover the weights are close to their

expected values by Step 2, so the variation is bounded suitably. When i and i′ are equal,

we use the facts that the weights are close to their expected values and the variance of an

average of Ω(n) signals is small.

(ii) Social Signals: We now consider terms rj′,t − θt, which correspond to the third

summand in our expression for ri,t+2. Since we will analyze the weight on νt below, it is

sufficient to study the terms rj′,t − θt−1.
By Lemma 6, the coefficients placed on rj′,t by i and on rj′′,t by i′ vary by a factor of at

most 2γ/n. Moreover, the absolute value of each of these covariances is bounded above by

ψ and the variation in these terms is bounded above by ζ. We conclude that the variation

from these terms has order 1/n2.

(iii) Innovations: Finally, we consider the contribution of the innovations νt and νt+1. We

treat νt+1 first. We must show that any two agents of the same types place the same weight

on the innovation νt+1 (up to an error of order 1
n2 ). This will imply that the contributions of
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timing to the covariances Cov(ri,t+2 − θt+1,ri′,t+2− θt+1) can be expressed as a term that can

be included in the relevant ψkk′ and a lower-order term which can be included in ζii′ .

The weight an agent places on νt+1 is equal to the weight she places on signals from period

t+ 1. So this is equivalent to showing that the total weight

ρ
∑
j

Wij,t+2

1− wsi,t+2

wsj,t+1

agent i places on period t + 1 depends only on the network type k of agent i and O(1/n2)

terms. We will first show the average weight placed on time-(t+ 1) signals by agents of each

signal type depends only on k. We will then show that the total weights on agents of each

signal type do not depend on n.

Suppose for simplicity here that there are two signal types A and B; the general case is

the same. We can split the sum from the previous paragraph into the subgroups of agents

with signal types A and B:

ρ
∑

j:σ2
j=σ

2
A

Wij,t+2

1− wsi,t+2

wsj,t+1 + ρ
∑

j:σ2
j=σ

2
B

Wij,t+2

1− wsi,t+2

wsj,t+1.

Letting WA
i =

∑
σ2
j=σ

2
A

Wij,t+2

1−wsi,t+2
be the total weight placed on agents with signal type A and

similarly for signal type B, we can rewrite this as:

WA
i ρ

∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

wsj,t+1 +WB
i ρ

∑
j:σ2

j=σ
2
B

Wij,t+2

WB
i (1− wsi,t+2)

wsj,t+1.

The coefficients
Wij,t+2

WA
i (1−wsi,t+2)

in the first sum now sum to one, and similarly for the second.

We want to check that the first sum
∑

j:σ2
j=σ

2
A

Wij,t+2

WA
i (1−wsi,t+2)

wsj,t+1 does not depend on k, and

the second sum is similar.

For each j in group A,

wsj,t+1 =
σ−2A

σ−2A + (ρ2κj,t+1 + 1)−1
,

where we define κ2j,t+1 = Var(rj,t+1− θt) to be the error variance of the social signal. Because

κj,t+1 is close to zero, we can approximate wsj,t+1 locally as a linear function µ1κj,t+1 + µ2

where µ1 < 1 (up to order 1
n2 terms).

So we can write the sum of interest as∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

(
µ1

∑
j′,j′′

Wjj′,t+1Wjj′′,t+1(ρ
2Vj′j′′,t + 1) + µ2

)
.

By Lemma 3, the weights vary by at most a multiplicative factor contained in [1−γ/n, 1+γ/n].

The number of paths from i to j′ passing through agents of any network type k′′ and any

signal type is close to its expected value (which depends only on i’s network type), and the
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weight on each path depends only on the types involved up to a factor in [1− γ/n, 1 + γ/n].

The variation in Vj′j′′,t consists of terms of the form ψk′k′′ , ψk′ , and ζj′j′′ , all of which are

O(1/n), and terms from signal errors ηj′,t. The signal errors only contribute when j = j′,

and so only contribute to a fraction of the summands of order 1/n. So we can conclude the

total variation in this sum as we change i within the network type k has order 1/n2.

Now that we know each the average weight on private signals of the observed agents of

each signal type depends only on k, it remains to check that WA
i and WB

i only depend on k.

The coefficients WA
i and WB

i are the optimal weights on the group averages∑
j:σ2

j=σ
2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 and
∑

j:σ2
j=σ

2
B

Wij,t+2

WB
i (1− wsi,t+2)

ρaj,t+1,

so we need to show that the variances and covariance of these two terms depend only on k.

We check the variance of the first sum: we can expand∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρaj,t+1 =
∑
σ2
j=σ

2
A

Wij,t+2

WA
i (1− wsi,t+2)

ρ
(
wsj,t+1sj,t+1 + (1− wsj,t+1)rj,t+1

)
.

We can again bound the signal errors and social signals as in the previous parts of this proof,

and show that the variance of this term depends only on k and O(1/n2) terms. The second

variance and covariance are similar, so WA
i and WB

i depend only on k and O(1/n2) terms.

This takes care of the innovation νt+1. Because we have included any innovations prior

to νt in the social signals rj′,t, to complete Step 5(b) we need only show the weight on νt

depends only on the network type k of an agent.

The analysis is a simpler version of the analysis of the weight on νt+1. It is sufficient to

show the total weight placed on period t social signals depends only on the network type of

k of an agent i. This weight is equal to

ρ2
∑
j,j′

Wij,t+2

1− wsi,t+2

·Wjj′,t+1 · (1− wsj′,t).

As in the νt+1 case, we can approximate (1−wsj′,t) as a linear function of κj′,t up to O(1/n2)

terms. Because the number of paths to each agent j′ though a given type and the weights on

each such path cannot vary too much within types, the same argument shows that this sum

depends only on k and O(1/n2) terms. Thus Step 5(b) is complete.

Step 5(c): The final step is to verify that we can take ψkk′ and ψk to be smaller than ψ.

It is sufficient to show that the variance Var(ri,t+2 − θt+1) of each social signal about θt+1 is

at most ψ. The proof is the same as in Step 2(b).
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Figure C.1. Social signal variance in Indian villages. (a) The average social signal
variance of agents in each village, in the homogeneous and heterogeneous cases. In the
homogeneous case all agents have private signal variance 2. In the heterogeneous case, half
of agents have private signal variance 3

2 and half of agents have private signal variance 3. (b)
The average social signal variance for all agents as we vary the worse private signal variance
from 2 to 4 and hold fixed the average precision of private signals.

Appendix C. Numerical results in real networks (online appendix)

The message of Section 4 is that signal diversity enables good aggregation, and signal

homogeneity obstructs it. The theoretical results in that section, however, were asymptotic,

and the good-aggregation result used some assumptions on the distribution of graphs. In this

section we show that the substantive message applies to realistic networks with moderate

degrees. We do this by computing equilibria for actual social networks from the data in

Banerjee, Chandrasekhar, Duflo, and Jackson (2013). This data set contains the social

networks of villages in rural India.47 There are 43 networks in the data, with an average

network size of 212 nodes (standard deviation = 53.5), and an average degree of 19 (standard

deviation = 7.5).

Our simulation exercises measure the benefits of heterogeneity for equilibrium aggregation.

For each network, we calculate the equilibrium with ρ = 0.9 for two types of environments.

The first is the homogeneous case, with all signal variances set to 2. The second is a heteroge-

neous case, where half of the agents have a signal variance greater than 2 and half of villagers

have a signal variance less than 2, chosen to hold constant the total amount of information

that reaches the community via private signals. That is, we set the signal variances so that

the average precision in each village is 1
2
, as in the homogeneous case. This signal assignment

holds fixed the average utility when all villagers are autarkic, or equivalently holds fixed the

average utility when all villagers know the state θt−1 in the previous period exactly. At the

47We take the networks that were used in the estimation in Banerjee, Chandrasekhar, Duflo, and Jackson
(2013). As in their work, we take every reported relationship to be reciprocal for the purposes of sharing
information. This makes the graphs undirected.
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same time, it varies the level of heterogeneity in signal endowments. Villagers are randomly

assigned to better or worse private signals, and the simulation results do not depend sub-

stantially on the realized random assignment. Our outcomes will be the average social signal

error variance in each village and the average social signal error variance across all villages.

It is useful to begin by looking at the equilibrium average aggregation errors, i.e., social

signal variances, in the case of homogeneous signals. This is the horizontal coordinate in

Figure C.1(a); each village is a data point, and the points have a standard deviation of 0.013.

In this case, differences in learning outcomes are due only to differences in the network

structure, and we will call this number the network-driven variation. Now we introduce

some private signal diversity. In our first exercise, we change the variance of the worse

private signal from 2 (homogeneous signals) to 3 (heterogeneous signals), and adjust the

other variance as discussed above to hold fixed the total amount of information coming into

the network. The vertical coordinate in Figure C.1(b) depicts the equilibrium aggregation

error in each village. The average of this number across all villages falls to 0.470, compared to

0.555 (in the homogeneous case). Therefore, adding heterogeneity by increasing the private

signal variance for half of the agents by 50% changes social signal error variance by 6.5 times

the network-driven variation. Learning is much better with some private signal heterogeneity

than in villages with very favorable networks (i.e., those that achieve the best aggregation

under homogeneous signals).

In Figure C.1(b), rather than working with the particular choice of 3 for the variance of

the private signal, we look across all choices of this variance between 2 and 4 and plot the

average equilibrium social signal variance across all villages.

Figure C.1(b) also sheds light on the value of a small amount of heterogeneity. The results

in Section 4 can be summarized as saying that, to achieve the aggregation benchmark of

essentially knowing the previous period’s state, there need to be at least two different private

signal variances in the network. Formally, this is a knife-edge result: As long as private signal

variances differ at all, then as n→∞, aggregation errors vanish; with exactly homogeneous

signal endowments, aggregation errors are much higher. The figure shows that the transition

from the first regime to the second is actually gradual. In particular, a very small amount

of heterogeneity provides little benefit in finite networks, as there is not enough diversity of

signal endowments for villagers to anti-imitate. However, a 50% change in the variance of one

of the signals (equivalently, a 22% change in its standard deviation) makes the community

much better able to use the same total amount of information.

Appendix D. Identification and testable implications (online appendix)

One of the main advantages of the parametrization we have studied is that standard meth-

ods can easily be applied to estimate the model and test hypotheses within it. The key feature

making the model econometrically well-behaved is that, in the solutions we focus on, agents’
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actions are linear functions of the random variables they observe. Moreover, the evolution of

the state and arrival of information creates exogenous variation. We briefly sketch how these

features can be used for estimation and testing.

Assume the following. The analyst obtains noisy measurements ai,t = ai,t + ξi,t of agent’s

actions (where ξi,t are i.i.d., mean-zero error terms). He knows the parameter ρ governing

the stochastic process, but may not know the network structure or the qualities of private

signals (σi)
n
i=1. Suppose also that the analyst observes the state θt ex post (perhaps with a

long delay).48

Now, consider any steady state in which agents put constant weights Wij on their neighbors

and wsi on their private signals over time. We will discuss the case of m = 1 to save on

notation, though all the statements here generalize readily to arbitrary m.

We first consider how to estimate the weights agents are using, and to back out the struc-

tural parameters of our model when it applies. The strategy does not rely on uniqueness of

equilibrium. We can identify the weights agents are using through standard vector autore-

gression methods. In steady state,

ai,t =
∑
j

Wijρaj,t−1 + wsi θt + ζi,t, (D.1)

where ζi,t = wsi ηi,t−
∑

jWijρξj,t−1+ξi,t are error terms i.i.d. across time. The first term of this

expression for ζi,t is the error of the signal that agent i receives at time t. The summation

combines the measurement errors from the observations aj,t−1 from the previous period.49

Thus, we can obtain consistent estimators W̃ij and w̃si for Wij and wsi , respectively.

We now turn to the case in which agents are using equilibrium weights. First, and most

simply, our estimates of agents’ equilibrium weights allow us to recover the network structure.

If the weight Ŵij is non-zero for any i and j, then agent i observes agent j. Generically the

converse is true: if i observes j then the weight Ŵij is non-zero. Thus, network links can

generically be identified by testing whether the recovered social weights are nonzero. For

such tests (and more generally) the standard errors in the estimators can be obtained by

standard techniques.50

Now we examine the more interesting question of how structural parameters can be iden-

tified assuming an equilibrium is played, and also how to test the assumption of equilibrium.

The first step is to compute the empirical covariances of action errors from observed data;

we call these Ṽ ij. Under the assumption of equilibrium, we now show how to determine the

48We can instead assume that the analyst observes (a proxy for) the private signal si,t of agent i; we mention
how below.
49This system defines a VAR(1) process (or generally VAR(m) for memory length m).
50Methods involving regularization may be practically useful in identifying links in the network. Manresa
(2013) proposes a regularization (LASSO) technique for identifying such links (peer effects). In a dynamic
setting such as ours, with serial correlation, the techniques required will generally be more complicated.
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signal variances using the fact that equilibrium is characterized by Φ(V̂ ) = V̂ and recalling

the explicit formula (3.3) for Φ. In view of this formula, the signal variances σ2
i are uniquely

determined by the other variables:

V̂ii =
∑
j

∑
k

ŴijŴik

(
ρ2V̂jk + 1

)
+ (ŵsi )

2σ2
i . (D.2)

Replacing the model parameters other than σ2
i by their empirical analogues, we obtain a

consistent estimate σ̃2
i of σi. This estimate could be directly useful—for example, to an

analyst who wants to choose an “expert” from the network and ask about her private signals.

Note that our basic VAR for recovering the weights relies only on constant linear strategies

and does not assume that agents are playing any particular strategy within this class. Thus,

if agents are using some other behavioral rule (e.g., optimizing in a misspecified model) we

can replace (D.2) by a suitable analogue that reflects the bounded rationality in agents’

inference. If such a steady state exists, and using the results in this section, one can create

an econometric test that is suitable for testing how agents are behaving. For instance, we

can test the hypothesis that they are Bayesian against the naive alternative of our Section

5.1.

Appendix E. Details of definitions (online appendix)

E.1. Exogenous random variables. Fix a probability space (Ω,F ,P). Let (νt, ηi,t)t∈Z,i∈N

be normal, mutually independent random variables, with νt having variance 1 and ηi,t having

variance σ2
i . Also take a stochastic process (θt)t∈Z, such that for each t ∈ Z, we have (for

0 < |ρ| ≤ 1)

θt = ρθt−1 + νt.

Such a stochastic process exists by standard constructions of the AR(1) process or, in the case

of ρ = 1, of the Gaussian random walk on a doubly infinite time domain. Define si,t = θt+ηi,t.

E.2. Formal definition of game and stationary linear equilibria.

Players and strategies. The set of players (or agents) is A = {(i, t) : i ∈ N, t ∈ Z}. The

set of (pure) responses of an agent (i, t) is defined to be the set of all Borel-measurable

functions ξ(i,t) : R× (R|N(i)|)m → R, mapping her own signal and her neighborhood’s actions,

(si,t, (aNi,t−`)
m
`=1), to a real-valued action ai,t. We call the set of these functions Ξ̃(i,t). Let

Ξ̃ =
∏

(i,t)∈A Ξ̃(i,t) be the set of response profiles. We now define the set of (unambiguous)

strategy profiles, Ξ ⊂ Ξ̃. We say that a response profile ξ ∈ Ξ̃ is a strategy profile if the

following two conditions hold

1. There is a tuple of real-valued random variables (ai,t)i∈N,t∈Z on (Ω,F ,P) such that for

each (i, t) ∈ A, we have

ai,t = ξ(i,t) (si,t, (aNi,t−`)
m
`=1) .
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2. Any two tuples of real-valued random variables (ai,t)i∈N,t∈Z satisfying Condition 1 are

equal almost surely.

That is, a response profile is a strategy profile if there is an essentially unique specification of

behavior that is consistent with the responses: i.e., if the responses uniquely determine the

behavior of the population, and hence payoffs.51 Note that if ξ ∈ Ξ, then it can be checked

that ξ̃ = (ξ′(i,t), ξ−(i,t)) ∈ Ξ whenever ξ′(i,t) ∈ Ξ̃(i,t). Thus, if we start with a strategy profile

and consider agent (i, t)’s deviations, they are unrestricted: she may consider any response.

Payoffs. The payoff of an agent (i, t) under any strategy profile ξ ∈ Ξ is

ui,t(ξ) = −E
[
(ai,t − θt)2

]
∈ [−∞, 0],

where the actions ai,t are taken according to ξ(i,t) and the expectation is taken in the probabil-

ity space we have described. This expectation is well-defined because inside the expectation

there is a non-negative, measurable random variable, for which an expectation is always

defined, though it may be infinite.

Equilibria. A (Nash) equilibrium is defined to be a strategy profile ξ ∈ Ξ such that, for each

(i, t) ∈ A and each ξ̃ ∈ Ξ such that ξ̃ = (ξ′(i,t), ξ−(i,t)) for some ξ′(i,t) ∈ Ξ(i,t), we have

ui,t(ξ̃) ≤ ui,t(ξ).

For p ∈ Z, we define the shift operator Tp to translate variables to time indices shifted p

steps forward. This definition may be applied, for example, to Ξ.52 A strategy profile ξ ∈ Ξ

is stationary if, for all p ∈ Z, we have Tpξ = ξ.

We say ξ ∈ Ξ is a linear strategy profile if each ξi is a linear function. Our analysis focuses

on stationary, linear equilibria.

Appendix F. Remaining proofs (online appendix)

F.1. Proof of Proposition 2. We first check there is a unique equilibrium and then prove

the remainder of Proposition 2.

Lemma 7. Suppose G has symmetric neighbors. Then there is a unique equilibrium.

Proof of Lemma 7. We will show that when the network satisfies the condition in the propo-

sition statement, Φ induces a contraction on a suitable space. For each agent, we can consider

the variance of the best estimator for yesterday’s state based on observed actions. We can

51Condition 1 is necessary to rule out response profiles such as the one given by ξi,t (si,t, ai,t−1) = |ai,t−1|+1.
This profile, despite consisting of well-behaved functions, does not correspond to any specification of behavior
for the whole population (because time extends infinitely backward). Condition 2 is necessary to rule out
response profiles such has the one given by ξi,t (si,t, ai,t−1) = ai,t−1, which have many satisfying action paths,
leaving payoffs undetermined.
52I.e., σ′ = Tpσ is defined by σ(i,t) = σ(i,t−p).
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analyze these variances using the envelope theorem. Moreover, the space of these variances

is a sufficient statistic for determining all agent strategies and action variances.

Let ri,t be i’s social signal—the best estimator of θt−1 based on the period t− 1 actions of

agents in Ni—and let κ2i,t be the variance of ri,t − θt−1.
We claim that Φ induces a map Φ̃ on the space of variances κ2i,t, which we denote Ṽ . We

must check the period t variances (κ2i,t)i uniquely determine all period t+1 variances (κ2i,t+1)i:

The variance Vii,t of agent i’s action, as well as the covariances Vii′,t of all pairs of agents i,

i′ with Ni = Ni′ , are determined by κ2i,t. Moreover, by the condition on our network, these

variances and covariances determine all agents’ strategies in period t+ 1, and this is enough

to pin down all period t+ 1 variances κ2i,t+1.

The proof proceeds by showing Φ̃ is a contraction on Ṽ in the sup norm.

For each agent j, we have Ni = Ni′ for all i, i′ ∈ Nj. So the period t actions of an agent i′

in Nj are

ai′,t =
(ρ2κ2i,t + 1)−1

σ−2i′ + (ρ2κ2i,t + 1)−1
· ri,t +

σ−2i′

σ−2i′ + (ρ2κ2i,t + 1)−1
· si′,t (F.1)

where si′,t is agent (i′)’s signal in period t and ri,t the social signal of i (the same one that i′

has). It follows from this formula that each action observed by j is a linear combination of a

private signal and a common estimator ri,t, with positive coefficients which sum to one. For

simplicity we write

ai′,t = b0 · ri,t + bi′ · si′,t (F.2)

(where b0 and bi′ depend on i′ and t, but we omit these subscripts). We will use the facts

0 < b0 < 1 and 0 < bi′ < 1.

We are interested in how κ2j,t+1 = Var(rj,t+1 − θt) depends on κ2i,t = Var(ri,t − θt−1). The

estimator rj,t+1 is a linear combination of observed actions ai′,t, and therefore can be expanded

as a linear combination of signals si′,t and the estimator ri,t. We can write

rj,t+1 = c0 · (ρri,t) +
∑
i′

ci′si′,t (F.3)

and therefore (taking variances of both sides)

κ2j,t+1 = Var(rj,t+1 − θt) = c20Var(ρri,t − θt) +
∑
i′

c2i′σ
2
i′

= c20(ρ
2κ2i,t + 1) +

∑
i′

c2i′σ
2
i′

The desired result, that Φ̃ is a contraction, will follow if we can show that the derivative
dκ2j,t+1

dκ2i,t
= c20ρ

2 ∈ [0, δ] for some δ < 1. By the envelope theorem, when calculating this

derivative, we can assume that the weights placed on actions ai′,t by the estimator rj,t+1 do
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not change as we vary κ2i,t, and therefore c0 and the ci′ above do not change. So it is enough

to show the coefficient c0 is in [0, 1].

The intuition for the lower bound is that anti-imitation (agents placing negative weights on

observed actions) only occurs if observed actions put too much weight on public information.

But if c0 < 0, then the weight on public information is actually negative so there is no reason

to anti-imitate. This is formalized in the following lemma.

Lemma 8. Suppose j has symmetric neighbors. Then agent j’s social signal places non-

negative weight on a neighbor i’s social signal from the previous period, i.e., c0 ≥ 0.

Proof. To check this formally, suppose that c0 is negative. Then the social signal rj,t+1 puts
negative weight on some observed action—say the action ak,t of agent k. We want to check
that the covariance of rj,t+1− θt and ak,t− θt is negative. Using (F.2) and (F.3), we compute
that

Cov(rj,t+1 − θt, ak,t − θt) = Cov

c0(ρri,t − θt) +
∑
i′∈Nj

ci′(si′,t − θt)), b0(ρri,t − θt) + bk(sk,t − θt)


= c0b0Var(ρri,t − θt) + ckbkVar(sk,t − θt)

because all distinct summands above are mutually independent. We have b0, bk > 0, while

c0 < 0 by assumption and ck < 0 because the estimator rj,t+1 puts negative weight on ak,t.

So the expression above is negative. Therefore, it follows from the usual Gaussian Bayesian

updating formula that the best estimator of θt given rj,t+1 and ak,t puts positive weight on

ak,t. However, this is a contradiction: the best estimator of θt given rj,t+1 and ak,t is simply

rj,t+1, because rj,t+1 was defined as the best estimator of θt given observations that included

ak,t. This completes the proof of Lemma 8. �

We now complete the proof of Lemma 7. For the upper bound c0 ≤ 1, the idea is that

rj,t+1 puts more weight on agents with better signals while these agents put little weight on

public information, which keeps the overall weight on public information from growing too

large.

Note that rj,t+1 is a linear combination of actions ρai′,t for i′ ∈ Nj, with coefficients summing

to 1. The only way the coefficient on ρri,t in rj,t+1 could be at least 1 would be if some of

these coefficients on ρai′,t were negative and the estimator rj,t+1 placed greater weight on

actions ai′,t which placed more weight on ri,t.

Applying the formula (F.1) for ai′,t, we see that the coefficient b0 on ρri,t is less than 1 and

increasing in σi′ . On the other hand, it is clear that the weight on ai′,t in the social signal

rj,t+1 is decreasing in σi′ : more weight should be put on more precise individuals. So in fact

the estimator rj,t+1 places less weight on actions ai′,t which placed more weight on ri,t.

Moreover, the coefficients placed on private signals are bounded below by a positive con-

stant when we restrict to covariances in the image of Φ̃ (because all covariances are bounded
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as in the proof of Proposition 1). Therefore, each agent i′ ∈ Nj places weight at most one

on the estimator ρri,t−1. Agent j’s social signal rj,t+1 is a sum of these agents’ actions with

coefficients summing to 1 and satisfying the monotonicity property above. We conclude that

the coefficient on ρri,t in the expression for rj,t+1 is at most one. This completes the proof of

Lemma 7. �

We now prove Proposition 2.

Proof of Proposition 2. By Lemma 7 there is a unique equilibrium on any network G with

symmetric neighbors. Let ε > 0.

Consider any agent i. Her neighbors have the same private signal qualities and the same

neighborhoods (by the symmetric neighbors assumption). So there exists an equilibrium

where for all i, the actions of agent i’s neighbors are exchangeable. By uniqueness, this in

fact holds at the sole equilibrium.

So agent i’s social signal is an average of her neighbors’ actions:

ri,t =
1

|Ni|
∑
j∈Ni

aj,t−1.

Suppose the ε-aggregation benchmark is achieved. Then all agents must place weight at

least (1+ε)−1

(1+ε)−1+σ−2 on their social signals. So at time t, the social signal ri,t places weight at

least (1+ε)−1

(1+ε)−1+σ−2 on signals from at least two periods ago. Since the variance of any linear

combination of signals from at least two periods ago, with weights summing to one, is at

least 1 + ρ, it follows that for ε sufficiently small the social signal ri,t is bounded away from

a perfect estimate of θt−1. This gives a contradiction. �

F.2. Proof of Corollary 1. Consider a complete graph in which all agents have signal

variance σ2 and memory m = 1. By Proposition 2, as n grows large the variances of all

agents converge to A > (1 + σ−2)−1.

Choose σ2 large enough such that A > 1. To see that we can do this, note that as σ2 grows

large, the weight each agent places on their private signal vanishes. So the weight on signals

from at least k periods ago approaches one for any k. Taking σ2 such that this holds for k

sufficiently large, we have A > 1.

Now suppose that we increase σ2
1 to ∞. Then a1,t = r1,t in each period, so all agents can

infer all private signals from the previous period. As n grows large, the variance of agent 1

converges to 1 and the variances of all other agents converge to (1 + σ−2)−1. By our choice

of σ2, this gives a Pareto improvement. We can see by continuity that the same argument

holds for σ2
1 finite but sufficiently large.

F.3. Proof of Corollary 2. Our goal is to estimate Var(ai,t − θt).
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First, observe that

ai,t = wssi,t + (1− ws)
1

n

∑
j

aj,t−1

= ws(θt + εi,t) + (1− ws)
1

n

∑
j

aj,t−1.

This implies, inductively, that

ai,t − θt = wsεi,t +
∞∑
`=1

(
ws(1− ws)`(θt − θt−` + ζt)

)
,

where the ζt are mean-zero random variables independent of all other random variables in

the expression. (They are linear combinations of agents’ signal noise realizations.) Thus,

Var(ai,t − θt) ≥ Var

(
ws

∞∑
`=1

(1− ws)`(θt − θt−`)

)
Noting that θt =

∑∞
k=0 ρ

kνt−k, we may write

θt − θt−` =
`−1∑
k=0

ρkνt−k

and therefore

Var(ai,t − θt) ≥ Var

(
ws

∞∑
`=1

(1− ws)`
`−1∑
k=0

ρkνt−k

)

= w2
sVar

(
∞∑
k=0

νt−kρ
k

∞∑
`=k+1

(1− ws)`
)

= w2
sVar

(
∞∑
k=0

νt−k

(
ρk

∞∑
`=k+1

(1− ws)`
))

= w2
s

∞∑
k=0

(
ρk

∞∑
`=k+1

(1− ws)`
)2

=
(1− ws)2

1− (1− ws)2ρ2
.

This proves the bound

Var(ai,t − θt) ≥
(1− ws)2

1− (1− ws)2ρ2
.

It remains to show the variances diverge to infinity as σ2 → ∞ and ρ → 1 from below.

Choose a sequence of pairs (σ2, ρ) → (∞, 1). If ws → 0 along any subsequence of this

sequence, then along the subsequence we have (1−ws)2
1−(1−ws)2ρ2 → ∞ and so Var(ai,t − θt) → ∞

as well. If ws is non-vanishing, then Var(ai,t − θt) → ∞ since the action variance is at
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least w2
sσ

2 and σ2 → ∞. Finally, note that these bounds are both independent of n, so

Var(ai,t − θt)→∞ uniformly in n.

F.4. Proof of Theorem 2. Suppose that all private signals have variance σ2 > 0. Fix

a sequence of networks Gn and an equilibrium on each Gn. We will show that given any

constant C > 0 and any sequence of equilibria, the fraction of agents i such that

κ̂2i ≤
C

d

is bounded away from one.

We first prove the result in the case m = 1. For each n, let Gn be the set of agents i

satisfying

κ̂2i ≤
C

d
,

i.e., the set of agents who do learn well. Assume for the sake of contradiction that |Gn|
n
→ 1

as n→∞ along some subsequence and pass to that subsequence.

For each j, we can express the action aj,t as a weighted sum of innovations and signal

errors,53 with all terms on the right-hand side conditionally independent:

aj,t = θt −
∞∑
l=0

wj,t(νt−l)(ρ
lνt−l) +

∑
l,j′

wj,t(ηj′,t−l)(ρ
lηj′,t−l).

This expression is unique.

Lemma 9. For all j ∈ Gn we must have

wj,t(νt) ∈
(

1

σ−2 + 1
− C ′

d
,

1

σ−2 + 1

)
for some C ′ > 0 (independent of j and n).

Proof. By the standard updating formula, the optimal weight wj,t(νt) is
(ρ2κ2j,t+1)−1

(ρ2κ2j,t+1)−1+σ−2 , where

κ2j,t is the variance of the best estimator of θt−1 based on (j, t)’s social observations. The upper

bound follows because this is minimized when κ2j,t = 0. For the lower bound,

wj,t(νt) =
(ρ2κ2j,t + 1)−1

(ρ2κ2j,t + 1)−1 + σ−2

=
1

(1 + σ−2) + σ−2ρ2κ2j,t

=
1

1 + σ−2
− σ−2ρ2

(1 + σ−2)2
κ2j,t +O(κ4j,t).

53To simplify calculations, we write this expression with a negative coefficient on the first sum so that the
terms wj,t(νt−l) are positive. The weight that j places on νt−l is in fact −wj,t(νt−l).
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For κ2j,t in any neighborhood of zero, we can choose C ′′ such that the non-constant terms in

the final expression are bounded below by −C ′′κ2j,t. Since by assumption we have κ2j,t ≤ C
d

,

the lemma follows with C ′ = C · C ′′. �

There are at most (n − |Gn|)d in-coming links to agents outside Gn. Each agent who

observes at least 2(n−|Gn|)
n

· d agents outside Gn accounts for at least 2(n−|Gn|)
n

· d of those links,

so there can be at most n
2

such agents. Since |Gn|
n
→ 1, there is an agent i ∈ Gn who observes

fewer than 2(n−|Gn|)
n

· d agents outside Gn.

Consider the action of such an agent i ∈ Gn in period t+ 1. Since

κ2i,t+1 ≤
C

d
,

the weight on the innovation from the previous period satisfies

(wi,t+1(νt)ρ)2 ≤ C

d
. (F.4)

On the other hand, we can express this weight in terms of neighbors’ weights as

wi,t+1(νt) =
∑
j

ρwij,t+1wj,t(νt).

We will show that if this weight wi,t+1(νt) vanishes, then the contribution of private signal

errors to κi,t+1 must be larger than O(1
d
).

We can split this summation as

wi,t+1(νt) = ρ
∑
j∈Gn

wij,t+1wj,t(νt) + ρ
∑
j /∈Gn

wij,t+1wj,t(νt).

We now consider two cases, depending on whether
∑

j /∈Gn
|wij,t+1| → 0, i.e., whether the

sum of the absoulte values of the weights on agents outside Gn is vanishing.

Case 1: lim infn
∑

j /∈Gn
|wij,t+1| = 0. We can pass to a subsequence along which

∑
j /∈Gn
|wij,t+1| →

0.

We claim that it follows from the bounds on wj,t(νt) in Lemma 9 that this can only occur

if
∑

j |wij,t+1| → ∞. If
∑

j |wij,t+1| is bounded,

wi,t+1(νt) = ρ
∑
j∈Gn

wij,t+1wj,t(νt) + ρ
∑
j /∈Gn

wij,t+1wj,t(νt) = ρ
∑
j∈Gn

wij,t+1wj,t(νt) + o(1).

The second equality holds because
∑

j /∈Gn
|wij,t+1| → 0 and wj,t(νt) ∈ [0, 1] for all j. Therefore,

wi,t+1(νt) = ρ
∑
j∈Gn

wij,t+1wj,t(νt) + o(1) ≥
(
ρ

1

1 + σ−2
σ−2

σ−2 + 1
− o (1)

)
+ o(1),
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and the right-hand side is non-vanishing. Here the first term on the right-hand side is the

limit of the sum if all of the terms wj,t(νt) were equal to the upper bound σ−2

σ−2+1
. The first

o(1) error term corresponds to the variation in wj,t(νt) across j, which is O(1
d
) by Lemma

9 and has bounded coefficients. Thus wi,t+1(νt) is non-vanishing, but this contradicts the

inequality (F.4). We have proven the claim.

The contribution to κ2i,t+1 from signal errors ηj,t is
∑

j |wij,t+1|2(wsj,t)2σ2. Since wsj,t =

1−wj,t(νt) converge uniformly to a constant σ−2

σ−2+1
, we can bound this contribution below by

an expression that is proportional to ∑
j

|wij,t+1|2.

The summation has at most d non-zero terms. Applying the standard bound ‖v‖1 ≤
√
n‖v‖2

on Lp norms on Rn, ∑
j

|wij,t+1|2 ≥
1

d

(∑
j

|wij,t+1|

)2

.

The right-hand side of this inequality grows at a rate faster than 1
d

by the claim
∑

j |wij,t+1| →
∞, and so the social signal error grows at a rate faster than 1

d
. This gives a contradiction.

Case 2: lim infn
∑

j /∈Gn
|wij,t+1| > 0.

As in Case 1, the contribution to signal errors from neighbors j /∈ Gn is proportional to∑
j /∈Gn

|wij,t+1|2.

By our choice of the agent i, she observes at most 2(n−|Gn|)
n

· d agents outside Gn. The same

standard bound on Lp norms gives

∑
j /∈Gn

|wij,t+1|2 ≥
1

d
· n

2(n− |G |n)

∑
j /∈Gn

|wij,t+1|

2

.

By assumption, the cardinality n−|Gn| of the complement of Gn is o(n) and (
∑

j /∈Gn
|wij,t+1|)2

is non-vanishing. So the right-hand side grows at a rate faster than 1
d
. Thus the social signal

error grows at a rate faster than 1
d
, which again gives a contradiction. This completes the

proof in the case m = 1, and we next turn to the general argument.

Now, suppose m ≥ 1 is arbitrary. As before, for each agent (j, t),we can write:

aj,t = θt −
∞∑
l=0

wj,t(νt−l)(ρ
lνt−l) +

∑
l,j′

wj,t(ηj′,t−l)(ρ
lηj′,t−l).

For each n, let Gn be the set of i satisfying

κ̂2i ≤
C

d
.
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Suppose lim supn |Gn|/n = 1. Passing to a subsequence, we can assume that limn |Gn|/n = 1,

i.e., the fraction of agents in Gn converges to one.

As in the m = 1 proof above, we can choose i ∈ Gn who observes fewer than 2(n−|Gn|)
n

· d
agents outside Gn. Choose any such i and consider the agent (i, t) with i ∈ Gn, who observes

neighbors’ actions in periods t − 1, . . . , t −m. For each 1 ≤ l ≤ m, we will write w(i,t),(j,t−l)

for the weight that agent (i, t) places on the action of agent (j, t− l). By the same argument

as in Case 2 of the m = 1 proof above, lim infn
∑

j /∈Gn
|w(i,t),(j,t−l)| = 0 for each l (since the

fraction of agents outside Gn is vanishing). Passing to a subsequence, we can assume that

limn

∑
j /∈Gn
|w(i,t),(j,t−l)| = 0.

We can express agent (i, t)’s action:

ai,t =
∑

1≤l≤m

∑
j∈Gn

w(i,t),(j,t−l)ρ
laj,t−l +

∑
j /∈Gn

w(i,t),(j,t−l)ρ
laj,t−l

 .

We will show that this expression places non-vanishing weight on the innovation νt−l for some

l ≥ 1. This will contradict our assumption that i ∈ Gn.

Since limn

∑
j /∈Gn
|w(i,t),(j,t−l)| = 0 and the weight each agent places on νt−l is bounded, it

is sufficient to show that ∑
1≤l≤m

∑
j∈Gn

w(i,t),(j,t−l)ρ
laj,t−l

places non-vanishing weight on the innovation νt−l for some l ≥ 1.

For each (j, t′) such that j ∈ Gn, we have

aj,t′ =
θt′−1 + σ−2sj,t′

1 + σ−2
+ εj,t′ ,

where Var(εj,t′)→ 0. This is because

aj,t′ =
(ρ2κ2i,t + 1)−1ri,t + σ−2sj,t′

(ρ2κ2i,t + 1)−1 + σ−2
,

and we have κ2i,t = Var(ri,t − θt−1)→ 0.

Using this expression for aj,t′ , we obtain∑
1≤l≤m

∑
j∈Gn

w(i,t),(j,t−l)ρ
laj,t−l =

∑
1≤l≤m

∑
j∈Gn

w(i,t),(j,t−l)ρ
l

(
θt−l−1 + σ−2sj,t−l

1 + σ−2
+ εj,t−l

)
By the same argument as in Case 1 of the m = 1 proof above,∑

1≤l≤m

∑
j∈Gn

|w(i,t),(j,t−l)|

must be bounded (or else the contributions of signal errors to κ̂2i would be too large to have

i ∈ Gn). Therefore, it is sufficient to show that
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∑
1≤l≤m

∑
j∈Gn

w(i,t),(j,t−l)ρ
l · θt−l−1 + σ−2sj,t−l

1 + σ−2

places non-vanishing weight on the innovation νt−l for some l ≥ 1.

This holds for the largest l such that
∑

j∈Gn
w(i,t),(j,t−l) is non-vanishing. Such an l must

exist, because ∑
1≤l≤m

∑
j∈Gn

w(i,t),(j,t−l) →
1

1 + σ−2

since i ∈ Gn.

F.5. Proof of Proposition 3. For each agent i, we can write

ai,t = wsi si,t +
∑
j

Wijρaj,t−1 = wsi si,t +
∑
j

Wij

(
ρwsjsj,t +

∑
j′

Wjj′ρaj′,t−2

)
.

Because we assume wsi < w < 1 and wsj < w < 1 for all j, the total weight
∑

j,j′WijWjj′ρ

on terms aj′,t−2 is bounded away from zero. Because the error variance of each of these terms

is greater than 1, this implies agent i fails to achieve the ε-aggregation benchmark for ε > 0

sufficiently small.

F.6. Proof of Proposition 4. We prove the following statement, which includes the propo-

sition as special cases.

Proposition 7. Suppose the network G is strongly connected.54 Consider weights W and

ws and suppose they are all positive, with an associated steady state Vt. Suppose either

(1) there is an agent i whose weights are a Bayesian best response to Vt, and some agent

observes that agent and at least one other neighbor; or

(2) there is an agent whose weights are a naive best response to Vt, and who observes

multiple neighbors.

Then the steady state Vt is Pareto-dominated by another steady state.

We provide the proof in the case m = 1 to simplify notation. The argument carries through

with arbitrary finite memory.

Case (1): Consider an agent l who places positive weight on a rational agent k and positive

weight on at least one other agent. Define weights W by W ij = Wij and wsi = wsi for all

i 6= k, W kj = (1 − ε)Wkj for all j ≤ n, and wsk = (1 − ε)wsk + ε, where Wij and wsi are the

weights at the initial steady state. In words, agent k places weight (1− ε) on her equilibrium

strategy and extra weight ε on her private signal. All other players use the same weights as

at the steady state.

54That is, there is a directed path from each node to each other node.
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Suppose we are at the initial steady state until time t, but in period t and all subsequent

periods agents instead use weights W . These weights give an alternate updating function Φ

on the space of covariance matrices. Because the weights W are positive and fixed, all coor-

dinates of Φ are increasing, linear functions of all previous period variances and covariances.

Explicitly, the diagonal terms are

[Φ(Vt)]ii = (wsi )
2σ2

i +
∑
j,j′≤n

W ijW ij′(ρ
2Vjj′,t + 1)

and the off-diagonal terms are

[Φ(Vt)]ii′ =
∑
j,j′≤n

W ijW i′j′(ρ
2Vjj,t′ + 1).

So it is sufficient to show the variances Φ
h
(Vt) after applying Φ for h periods Pareto dominate

the variances in Vt for some h.

In period t, the change in weights decreases the covariance Vjk,t of k and some other agent

j, who l also observes, by f(ε) of order Θ(ε). By the envelope theorem, the change in weights

only increases the variance Vkk by O(ε2). Taking ε sufficiently small, we can ignore O(ε2)

terms.

There exists a constant δ > 0 such that all initial weights on observed neighbors are at

least δ. Then each coordinate [Φ(V )]ii is linear with coefficient at least δ2 on each variance

or covariance of agents observed by i.

Because agent l observes k and another agent, agent l’s variance will decrease below its

equilibrium level by at least δ2f(ε) in period t+ 1. Because Φ is increasing in all entries and

we are only decreasing covariances, agent l’s variance will also decrease below its initial level

by at least δ2f(ε) in all periods t′ > t+ 1.

Because the network is strongly connected and finite, the network has a diameter. After

d+1 periods, the variances of all agents have decreased by at least δ2d+2f(ε) from their initial

levels. This gives a Pareto improvement.

Case (2): Consider a naive agent k who observes at least two neighbors. We can write

agent k’s period t action as

ak,t = wsksi,t +
∑
j∈Ni

Wkjρaj,t−1.

Define new weights W as in the proof of case (1). Because agent k is naive and the sum-

mation
∑

j∈NiWkjρaj,t−1 has at least two terms, she believes the variance of this summation

is smaller than its true value. So marginally increasing the weight on sk,t and decreasing the

weight on this summation decreases her action variance. This deviation also decreases her

covariance with any other agent. The remainder of the proof proceeds as in case (1).
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F.7. Proof of Proposition 5. Suppose the social influence

SI(i) =
∑
j∈N

∞∑
k=1

(
ρŴ
)k
ji
ŵsi =

[
1′
(
I − ρŴ

)−1
− 1′

]
i

ŵsi

does not converge for some i. Then in particular, there exists j such that
∑∞

k=0

(
ρŴ
)k
ji
ŵsi

does not converge. We can write

aj,t =
∞∑
τ=0

∑
j′∈N

(
ρŴ
)τ
jj′
ŵsj′sj′,t−τ .

This expression is the sum of
∞∑
τ=0

(
ρŴ
)τ
ji
ŵsi ηi,t−τ

and independent terms corresponding to signal errors of agents other than i and changes

in the state. Because
∑∞

τ=0

(
ρŴ
)τ
ji
ŵsi does not converge, the payoff to action aj,t must

therefore be −∞. But we showed in the proof of Proposition 1 that agent j’s equilibrium

payoff is at least −σ2
j , which gives a contradiction.

Given convergence, the expression for SI(i) follows from the identity (I−M)−1 =
∑∞

k=0M
k.

F.8. Proof of Proposition 6. The social signal ri,t is the same for all agents, and we will

refer to it as rt. We can express the social signal as

rt = wA
∑

i:σi=σA

ai,t−1 + wB
∑

i:σi=σB

ai,t−1 (F.5)

for some weights wA and wB.

We can rewrite the actions ai,t−1 for i with signal variance σ2
A as

ai,t−1 =
K

K + σ−2A
ρri,t−1 +

σA−2

K + σ−2A
si,t−1,

where K = ρ2κ2t−1+1 is the equilibrium variance of ρrt−1 about the state θt−1. The analogous

formula holds for agents i with signal variance σ2
B.

Substituting the formulas for ai,t−1 into equation (F.5) and taking variances,
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κ2t = Var(rt − θt−1)

= Var

(
nK

2

(
wA

K + σ−2A
+

wB

K + σ−2B

)
(rt−1 − θt−1)

)
+ Var

(
wA
∑
i∈SA

σ−2A
K + σ−2A

(si,t−1 − θt−1)

)

+ Var

(
wB

∑
i∈SB

σ−2B
K + σ−2B

(si,t−1 − θt−1)

)

=
n2K

4

(
wA

K + σ−2A
+

wB

K + σ−2B

)2

+
n

2
· w2

Aσ
−2
A

(K + σ−2A )2
+
n

2
· w2

Bσ
−2
B

(K + σ−2B )2
.

The equilibrium weights ŵA and ŵB minimize this expression. Using the fact that ŵA +

ŵB = 2
n
, we have that ŵA satisfies

(κ2)′t+1(ŵA) =
n2K

2

(
ŵA

K + σ−2A
+

ŵB

K + σ−2B

)(
1

K + σ−2A
− 1

K + σ−2B

)
+

nŵAσ
−2
A

(K + σ−2A )2
− nŵBσ

−2
B

(K + σ−2B )2

= 0.

This equation, along with ŵA + ŵB = 2
n
, allows us to explicitly solve for ŵA and ŵB in terms

of k and exogenous variables. In particular, we get that

ŵA
ŵB

=

(
K + σ−2A
K + σ−2B

)(
2 +Knσ2

B −K(n− 2)σ2
A

2 +Knσ2
A −K(n− 2)σ2

B

)
. (F.6)

We now turn to analyzing social influences. Recall that

SI(i) =
n∑
j=1

∞∑
k=1

(
ρŴ
)k
ij
ŵsi . (F.7)

On the complete graph, this expression is proportional to the product of the weight placed

on agent i by the social signal rt and agent i’s self-weight wsi . Therefore, we compute

SI(A)

SI(B)
=
ŵA
ŵB
·

σ−2
A

K+σ−2
A

σ−2
B

K+σ−2
B

.

Substituting from equation (F.6),

SI(A)

SI(B)
=

(
σ−2A
σ−2B

)(
2 +Knσ2

B −K(n− 2)σ2
A

2 +Knσ2
A −K(n− 2)σ2

B

)
.

We want to show that the left-hand side is greater than
σ−2
A

σ−2
B

whenever σ−2A > σ−2B , which is

equivalent to showing
2 +Knσ2

B −K(n− 2)σ2
A

2 +Knσ2
A −K(n− 2)σ2

B

> 1



LEARNING FROM NEIGHBORS ABOUT A CHANGING STATE 18

whenever σ−2A > σ−2B and this fraction is positive.

To see this, note that the difference between the numerator and denominator of the fraction

is (
Knσ2

B −K(n− 2)σ2
A

)
−
(
Knσ2

A −K(n− 2)σ2
B

)
= 2K(n− 1)(σ2

B − σ2
A)

> 0

as desired.

Appendix G. Model with a starting time (online appendix)

In introducing the model (Section 2), we made the set of time indices T equal to Z, the

set of all integers. Here we study the variant with an initial time period, t = 0: thus, we

take T to be Z≥0, the non-negative integers. This section shows that there is a unique

equilibrium outcome. In large networks, a suitable analogue of Theorem 1 holds, with both

aggregation quality and outcomes similar to those obtained there. Similarly, the negative

result of Proposition 2 also has a counterpart in this model.

Let θ0 be drawn according to the stationary distribution of the state process: θ0 ∼
N
(

0, 1
1−ρ

)
. After this, the state random variables θt satisfy the AR(1) evolution

θt+1 = ρθt + νt+1,

where ρ is a constant with 0 < |ρ| < 1 and νt+1 ∼ N (0, σ2
ν) are independent innovations.

Actions, payoffs, signals, and observations are the same as in the main model, with the

obvious modification that in the initial periods, t < m, information sets are smaller as there

are not yet prior actions to observe.55 To save on notation, we write actions as if agents had

an improper prior, understanding that the adjustment for actions taken under the natural

prior θt ∼ N
(

0, 1
1−ρ

)
is immediate.

In this model, there is a straightforward prediction of behavior. A Nash equilibrium here

refers to an equilibrium of the game involving all agents (i, t) for all time indices in T .

Fact 2. In the model with T = Z≥0, there is a unique Nash equilibrium, and it is in linear

strategies. The initial generation (t = 0) plays a linear strategy based on private signals only.

In any period t > 0, given linear strategies from prior periods, players’ best responses are

linear. For time periods t > m, we have

Vt = Φ(Vt−1).

This fact follows from the observation that the initial (t = 0) generation faces a problem

of forming a conditional expectation of a Gaussian state based on Gaussian signals, so their

55The actions for t < 0 can be set to arbitrary (commonly known) constants.
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optimal strategies are linear. From then on, the analysis of Section 3.1 characterizes best-

response behavior inductively. Note that for arbitrary environments, the fact does not imply

that Vt must converge.

Our main purpose in this section is to give analogues of the main results on learning in

large networks. We use the same definition of an environment—in terms of the distribution

of networks and signals—as in Section 4.1. For simplicity, we work with m = 1, though the

arguments for our positive result extend straightforwardly.

The analogue of Theorem 1 is:

Theorem 3. Consider the T = Z≥0 model. If an environment satisfies signal diversity, there

is C > 0 such that asymptotically almost surely κ̂2i,t < C/n for all i at all times t ≥ 1 in the

unique Nash equilibrium.

In particular, this implies that the covariance matrix in each period t ≥ 1 is very close (in

the Euclidean norm) to the good-learning equilibrium from Theorem 1. We sketch the proof,

which uses the material we developed in Appendix B. We define At as in that proof (Section

B.1). Take a β > 0, to be specified later, and consider

W =W β
n
, 1
n
∪ Φ̃

(
W β

n
, 1
n

)
.

First, for large enough β, we have that A1 ∈ W : In the unique Nash equilibrium, at t = 1,

agents simply take weighted averages of their neighbors’ signals, weighted by their precisions.

So A1 ∈ W by the central limit theorem for β sufficiently large. Second, we use the previously

established fact (recall Section B.2.2) that Φ̃(W) ⊂ W to deduce that At ∈ W at all future

times. Finally, we observe that W ⊆W β
n
, 1
n

by construction.

Without signal diversity, bad learning can occur forever, in the unique equilibrium. The

analogue of Proposition 2 is immediate. In graphs with symmetric neighbors, Φ is a contrac-

tion when m = 1. So iteration of it arrives at the unique fixed point, and thus a learning

outcome far from the benchmark.

Appendix H. Naive Agents (online appendix)

In this section we provide rigorous detail for the analysis given in 5.1. We will describe

outcomes with two signal types, σ2
A and σ2

B.56 We use the same random network model as in

Section 4.2 and assume each network type contains equal shares of agents with each signal

type.

We can define variances

V ∞A =
ρ2κ2t + 1 + σ−2A(

1 + σ−2A
)2 , V ∞B =

ρ2κ2t + 1 + σ−2B(
1 + σ−2B

)2 (H.1)

56The general case, with many signal types, is similar.
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where

κ−2t = 1− 1

(σ−2A + σ−2B )

(
σ−2A

1 + σ−2A
+

σ−2B
1 + σ−2B

)
.

Naive agents’ equilibrium variances converge to these values.

Proposition 8. Under the assumptions in this subsection:

(1) There is a unique equilibrium on Gn.

(2) Given any δ > 0, asymptotically almost surely all agents’ equilibrium variances are

within δ of V ∞A and V ∞B .

(3) There exists ε > 0 such that asymptotically almost surely the ε-aggregation benchmark

is not achieved, and when σ2
A = σ2

B asymptotically almost surely all agents’ variances are

larger than V∞.

Aggregating information well requires a sophisticated response to the correlations in ob-

served actions. Because naive agents completely ignore these correlations, their learning out-

comes are poor. In particular their variances are larger than at the equilibria we discussed

in the Bayesian case, even when that equilibrium is inefficient (σ2
A = σ2

B).

When signal qualities are homogeneous (σ2
A = σ2

B), we obtain the same limit on any network

with enough observations. That is, on any sequence (Gn)∞n=1 of (deterministic) networks with

the minimum degree diverging to ∞ and any sequence of equilibria, the equilibrium action

variances of all agents converge to V ∞A .

H.1. Proof of Proposition 8. We first check that there is a unique naive equilibrium. As

in the Bayesian case, covariances are updated according to equations (3.3):

Vii,t = (wsi,t)
2σ2

i +
∑

Wik,tWik′,t(ρ
2Vkk′,t−1 + 1) and Vij,t =

∑
Wik,tWi′k′,t(ρ

2Vkk′,t−1 + 1).

The weights Wik,t and wsi,t are now all positive constants that do not depend on Vt−1. So

differentiating this formula, we find that all partial derivatives are bounded above by 1−wsi,t <
1. So the updating map (which we call Φnaive) is a contraction in the sup norm on V . In

particular, there is at most one equilibrium.

The remainder of the proof characterizes the variances of agents at this equilibrium. We

first construct a candidate equilibrium with variances converging to V ∞A and V ∞B , and then

we show that for n sufficiently large, there exists an equilibrium nearby in V .

To construct the candidate equilibrium, suppose that each agent observes the same number

of neighbors of each signal type. Then there exists an equilibrium V̂ sym where covariances

depend only on signal types, i.e., V̂ sym is invariant under permutations of indices that do

not change signal types. We now show variances of the two signal types at this equilibrium

converge to V ∞A and V ∞B .
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To estimate θt−1, a naive agent combines observed actions from the previous period with

weight proportional to their precisions σ−2A or σ−2B . The naive agent incorrectly believes this

gives an almost perfect estimate of θt−1. So the weight on older observations vanishes as

n → ∞. The naive agent then combines this estimate of θt−1 with her private signal, with

weights converging to the weights she uses if the estimate is perfect.

Agent i observes |Ni|
2

neighbors of each signal type, so her estimate rnaivei,t of θt−1 is approx-

imately:

rnaivei,t =
2

|Ni|(σ−2A + σ−2B )

σ−2A ∑
j∈Ni,σ2

j=σ
2
A

aj,t−1 + σ−2B
∑

j∈Ni,σ2
j=σ

2
B

aj,t−1

 .
The actual variance of this estimate converges to:

Var(rnaivei,t − θt−1) =
1

(σ−2A + σ−2B )

[
σ−4A Cov∞AA + σ−4B Cov∞BB + 2σ−2A σ−2B Cov∞AB

]
(H.2)

where Cov∞AA is the covariance of two distinct agents of signal type A and Cov∞BB and Cov∞AB
are defined similarly.

Since agents believe this variance is close to 1, the action of any agent with signal variance

σ2
A is approximately:

ai,t =
rnaivei,t + σ−2A si,t

1 + σ−2A
.

We can then compute the limits of the covariances of two distinct agents of various signal

types to be:

Cov∞AA =
ρ2κ2t + 1(
1 + σ−2A

)2 ; Cov∞BB =
ρ2κ2t + 1(
1 + σ−2B

)2 ; Cov∞AB =
ρ2κ2t + 1(

1 + σ−2A
) (

1 + σ−2B
) .

Plugging into H.2 we obtain

κ−2t = 1− 1

(σ−2A + σ−2B )

(
σ−2A

1 + σ−2A
+

σ−2B
1 + σ−2B

)
.

Using this formula, we can check that the limits of agent variances in V̂ sym match equations

H.1.

We must check there is an equilibrium near V̂ sym with high probability. Let ζ = 1/n. Let

E be the event that for each agent i, the number of agents observed by i with private signal

variance σ2
A is within a factor of [1−ζ2, 1+ζ2] of its expected value, and similarly the number

of agents observed by i with private signal variance σ2
B is within a factor of [1−ζ2, 1+ζ2] of its

expected value. This event implies that each agent observes a linear number of neighbors and

observes approximately the same number of agents with each signal quality. We can show as
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in the proof of Theorem 1 that for n sufficiently large, the event E occurs with probability

at least 1− ζ. We condition on E for the remainder of the proof.

Let Vε be the ε-ball around in V̂ sym the sup norm. We claim that for n sufficiently large,

the updating map preserves this ball: Φnaive(Vε) ⊂ Vε. We have Φnaive(V̂ sym) = V̂ sym up to

terms of O(1/n). As we showed in the first paragraph of this proof, the partial derivatives

of Φnaive are bounded above by a constant less than one. For n large enough, these facts

imply Φnaive(Vε) ⊂ Vε. We conclude there is an equilibrium in Vε by the Brouwer fixed point

theorem.

Finally, we compare the equilibrium variances to the ε-aggregation benchmark and to V∞.

It is easy to see these variances are worse than the ε-aggregation benchmark for n large for

some ε > 0, and therefore by Theorem 1 also asymptotically worse than the Bayesian case

when σ2
A 6= σ2

B.

In the case σ2
A = σ2

B, it is sufficient to show that Bayesian agents place more weight on

their private signals (since asymptotically action error comes from past changes in the state

and not signal errors). Call the private signal variance σ2. For Bayesian agents, we showed

in Theorem 1 that the weight on the private signal is equal to σ−2

σ−2+(ρ2 Cov∞+1)−1 where Cov∞

solves

Cov∞ =
(ρ2 Cov∞+1)−1

[σ−2 + (ρ2 Cov∞+1)−1]2
.

For naive agents, the weight on the private signal is equal to σ−2

σ−2+1
, which is smaller since

Cov∞ > 0.

Appendix I. Socially optimal learning outcomes with non-diverse signals

(online appendix)

In this section, we show that a social planner can achieve vanishing aggregation errors

even when signals are non-diverse. Thus, slower rate of learning at equilibrium with non-

diverse signals is a consequence of individual incentives rather than a necessary feature of

the environment.

Let Gn be the complete network with n agents. Suppose that σ2
i = σ2 for all i and m = 1.

Proposition 9. Let ε > 0. Under the assumptions in this section, for n sufficiently large

there exist weights weights W and ws such that at the corresponding steady state on Gn,

the ε-aggregation benchmark is achieved.

Proof. An agent with a social signal equal to θt−1 would place weight σ−2

σ−2+1
on her private

signal and weight 1
σ−2+1

on her social signal. Let wsA = σ−2

σ−2+1
+ δ and wsB = σ−2

σ−2+1
− δ, where

we will take δ > 0 to be small.

Assume that the first bn/2c agents place weight wsA on their private signals and weight

1− wsA on a common social signal rt we will define, while the remaining agents place weight
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Figure I.1. Social planner’s optimum and Bayesian learning. The red curve shows equi-
librium aggregation errors on a complete graph with n = 600 agents, split into two equally-
sized groups with private signal variances σ2

A = 2 and σ2
B varying. The blue curve plots the

aggregation errors when weights are chosen by a social planner the sum of agents’ steady-state
action variances.

wsB on their private signals and weight 1 − wsB on the social signal rt. As in the proof of

Theorem 2,

1

bn/2c

bn/2c∑
j=1

aj,t−1 = wsAθt−1 + (1− wsA)rt−1 +O(n−1/2),

1

dn/2e

n∑
j=bn/2c+1

aj,t−1 = wsBθt−1 + (1− wsB)rt−1 +O(n−1/2).

There is a linear combination of these summations equal to θt−1 +O(n−1/2), and we can take

rt equal to this linear combination. Taking δ sufficiently small and then n sufficiently large,

we find that ε-perfect aggregation is achieved. �

In Figure I.1, we consider equilibrium and socially optimal outcomes with n = 600. Half

of agents are in group A, with signal variance σ2
A = 2, while the other half are in group B,

with signal variance σ2
B changing. In blue we plot average equilibrium aggregation errors for

group A. In green we plot the average aggregation errors of group A when a social planner

minimizes the total action variance (of both groups). The weights that each agent puts on

her own private signal and the other agents are set to depend only on the groups. Under

these socially optimal weights agents learn very well, and heterogeneity in signal variances

only has a small impact.


